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Climate models are an important tool in understanding the mechanisms of the 

climate system and for predicting future climate. However, clouds remain poorly 

simulated by models. Clouds play an important role in the climate system by reducing the 

amount of shortwave radiation reaching the surface and by trapping longwave radiation 

leaving the surface. On average, this balance leads to more cooling than warming, but 

this is dependent on cloud type and location. Improving the understanding of clouds and 

how they can be simulated will lead to more accurate models and better predictions of 

future climate. This study builds a method whereby clouds are grouped into dynamical 

regimes in order to gain insight into the connection between large-scale dynamics and 

cloud properties. This method can also be used to understand the sources of modeling 

errors and help discern ways to improve these models. An additional aspect of the study 

addresses the lack of understanding of how the balance that clouds create between 



 xi

cooling from reflection of shortwave radiation and warming from absorption of longwave 

radiation might change as the atmosphere warms due to anthropogenic increases in 

greenhouse gases like carbon dioxide. This study builds a method whereby data analysis 

can assist in estimates of the cloud-climate feedback. 
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INTRODUCTION 

Clouds are a critical element of the climate system. They are a physical 

manifestation of the water cycle, which is essential in the vertical and poleward transport 

of both water and energy. In perhaps their most familiar role, clouds bring us 

precipitation. Clouds also play an integral role in regulating the flux of radiation through 

the atmosphere. It is this last role on which this study will focus. 

 By intercepting incoming shortwave radiation from the sun and reflecting it back 

to space, clouds cool Earth’s surface. Clouds warm the surface by absorbing longwave 

radiation emitted from the surface and the atmosphere, radiation that would otherwise 

escape to space. This subtle balance of cooling and warming is governed by the type and 

location of clouds. Previous studies have shown that midlatitude clouds can reflect as 

much as 200 W/m2 more shortwave radiation than clear sky [Weaver and Ramanathan, 

1997]. 

Global climate models (GCMs) are frequently employed to understand the 

properties of the climate system. A GCM divides the atmosphere into gridboxes, then a 

series of equations is applied to understand the motion in the atmosphere. These models 

are effective in that they can be altered to understand the response of the model to various 

forcings, simulating climate from the past or a proposed future climate scenario. A 

drawback of GCMs is that they are not able to explicitly simulate all motions in the 

atmosphere; the size of the gridbox for the model essentially determines the smallest 

motion simulated. All processes on scales smaller than the gridbox need to be 

parameterized. Clouds occur on scales both greater than and less than a gridbox, so are 

both explicitly resolved and parameterized. Previous studies [e.g., Klein and Jakob, 1999;
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Norris and Weaver, 2001; Tselioudis and Jakob, 2002; Lin and Zhang, 2004] have shown 

the inability of GCMs to accurately simulate clouds associated with midlatitude cyclones. 

Some of this inability arises from the lack of subgrid-scale processes and their effect on 

gridbox-mean cloud properties. As a result of all of these factors, we cannot look to 

models to accurately understand the role of clouds in climate. 

 In addition to aiding the understanding of the mechanisms of the climate system, 

GCMs are also used to understand how anthropogenic increases in greenhouse gases are 

affecting the climate. However, the representation of clouds in climate models continues 

to be the largest source of uncertainty in simulations of future climate [IPCC, 2007]. 

Instead of relying on computer models to understand the changes to cloud properties that 

we would expect in a warmer atmosphere, we can turn to direct observations of clouds. 

We can diagnose changes by examining the sensitivity of clouds to temperature 

fluctuations observed in our current climate. 

In approaching improved modeling of clouds, we naturally seek a representation 

of average cloud properties. To view the average accurately, it is essential to determine 

what type of clouds we observe and the state of the atmosphere that is coincident with 

them. A traditional method for examining cloud properties is to take averages over large 

spatial or temporal areas, for example, taking annual or seasonal means over zonal means 

or large temporal scales. This process, while necessary for analyzing clouds, is not 

sufficient to understand the full variability of clouds that we observe in the climate 

system. 

Jakob and Tselioudis [2003] propose a method whereby clouds are grouped into 

dynamic regimes. By averaging over many cases with similar dynamics, we can 
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understand the dynamics that are an essential part of the clouds they produce. By better 

understanding the dynamics and thermodynamics of the atmosphere, we can use data to 

better understand the sensitivity of the cloud properties to temperature. Thus a k-means 

clustering algorithm is used to group cloud regimes. K-means is also an effective tool for 

diagnosing errors in cloud properties simulated in GCMs that are specific to certain cloud 

regimes. 

In order to improve our simulation of future climate in relation to clouds, we need 

a number of improvements: better understanding of the connection between large-scale 

dynamics of the atmosphere and the resulting cloud properties; a method for diagnosing 

the ability of GCMs to accurately simulate cloud properties; a process by which we can 

estimate the effect that a warmer atmosphere will have on cloud properties; and a method 

to calculate the changes in radiative flux in the atmosphere that come from changes in 

cloud properties. This study attempts to address all of these. 

This study lays out a method whereby a k-means clustering algorithm is applied 

to satellite-derived cloud properties. This statistical routine builds groups of cloud scenes 

that all have similar properties. By looking at how these cloud properties vary within 

these relatively homogeneous groups, we can better understand the sensitivity of cloud 

regimes to changes in the atmosphere. 

Chapter 1 details the clustering algorithm used in this study and its strengths and 

weaknesses. Chapter 2 details the k-means clustering algorithm as applied to a single 

location, in the central region of the United States. This region was chosen as it coincides 

with a dense atmospheric observation network. In addition to describing the clustering 

routine in detail, this study examines the ability of a single-column model to reproduce 
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the frequency and character of the clusters found from observations, as well as the large-

scale atmospheric forcing that corresponds to relatively large or small amounts of subgrid 

variability in cloud properties. 

Chapter 3 expands on this clustering technique for a larger area, providing 

information about the spatial and seasonal variability of the cloud regimes observed. 

Additionally, we examine the effect that each cloud regime has on radiative flux in the 

atmosphere. Chapter 4 uses the clustering technique from the previous two chapters and 

lays out a technique to measure the sensitivity of these cloud regimes to changes in 

atmospheric temperature so as to understand how clouds are changing as the climate 

changes, and how such changes to clouds might mitigate or exacerbate warming imposed 

by an increase in atmospheric CO2. 
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CHAPTER 1 

Clustering is a statistical tool that allows sets of data to be grouped together based 

on similar properties. There are many different types of clustering routines; the one used 

in this study is known as k-means clustering (KMC). KMC requires the user to specify 

the number of groups, or clusters, of data to be analyzed. The routine then objectively 

determines the most efficient partitioning of the data into groups, based on the relative 

difference between the data points. This chapter will describe KMC, along with its 

strength and weaknesses. 

If clustering groups data based on similar properties, an important aspect of 

clustering is the decision of how to measure this similarity of data. Our analysis uses 

satellite-derived measurements of cloud properties, which have specific values. Thus, it is 

natural to use the Euclidean distance calculation between the data points. In chapter 2, we 

deal with data that has non-uniform bounds. To correct for this, all data is normalized so 

that it varies between 0 and 1. The data in chapters 3 and 4 are already bounded by 0 and 

1, so no normalization is needed. 

Before we can begin KMC, we need to specify the number of clusters we want to 

examine; this number is known as k. At each time point, we have m observations, so each 

data point is an m-dimensional vector. The k-means clustering process began with 

random selection of k data points as initial seeds. For every other point in the data set, the 

distance is calculated to each of the initial seeds and then assigned to the initial seed it 

was closest to in a Euclidean sense. This creates k groups of data, each associated with 

the initial seed that was used to produce it. The number of elements in a cluster divided 

by the total number of elements is the frequency of occurrence of the cluster, and the 



 

 

6

average of all elements in the cluster is the centroid. Now, each cluster can be represented 

by the average values of the points that make up that cluster, its centroid. These cluster 

centroids are then used as new seeds to reinitialize the clustering routine. This process is 

repeated until the centroids converge. Depending on the random points initially chosen, 

the solution after convergence is non-unique. This is resolved by repeating the clustering 

process with different seeds a large number of times (50 tends to be sufficient), and 

choosing the solution with the least total variance of the points around the centroid that 

they are associated with. The different possible solutions are discussed in each chapter. 

An important process in the use of KMC is the choice of k. An empirical method 

employed in chapters 3 and 4 is the calculation of correlation between the centroids in the 

clustering solution. The KMC routine is run to completion for each value of k starting at 

k=2 and increasing until the maximum correlation between the centroids exceeds 0.9, 

where k=l. This indicates that at least two clusters are sufficiently similar that the number 

of clusters chosen is too high. The best number of clusters is then chosen to be l-1, or one 

fewer than the solution with correlation exceeding 0.9. This process for choosing the 

proper number of clusters is laid out by Rossow et al. [2005]. This is one method used for 

the selection of clusters in chapters 3 and 4. 

An additional method for choosing the correct number of clusters is the use of 

additional data sets. In this study, KMC is applied to satellite-derived data of cloud 

properties. This creates sets of observations that necessarily have similar cloud 

properties, but the purpose of clustering in this context is to find distinct cloud regimes. 

To do this, we compare the average meteorology as derived from the National Center for 

Environmental Prediction (NCEP) Reanalysis. This allows us to ensure that the clusters 
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not only have distinct cloud properties from the satellite data, but also have distinct 

dynamics as derived from a separate data set, providing encouragement that the clusters 

found are not purely artifacts of the data but instead represent distinct dynamic regimes 

with a connection to the large-scale circulation of the atmosphere. 
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CHAPTER 2 

Clouds remain the primary source of uncertainty in the modeling of current 

climate and predictions of future climate [IPCC, 2001]. Many previous studies 

evaluated global climate model (GCM) reliability by comparing large spatial and 

temporal averages of simulated and observed cloud properties, such as zonal and 

seasonal means [e.g., Weare et al., 1996]. One shortcoming of this approach is that it 

can obscure the presence of compensating errors. For example, Norris and Weaver 

[2001] demonstrated that overprediction of shortwave cloud radiative forcing under 

conditions of ascent largely balanced underprediction of shortwave cloud radiative 

forcing under conditions of descent such that a realistic midlatitude ocean radiation 

climatology occurred in the National Center for Atmospheric Research (NCAR) 

Community Climate Model version 3 for the wrong reasons. Moreover, comparisons 

of long-term averages do not provide much information about reasons for correct or 

incorrect simulation of cloud properties. 

A complementary method of model cloud evaluation is compositing, i.e., 

averaging cloud properties grouped by similar parameters such as 500-mb vertical 

velocity or sea-level pressure [e.g., Bony et al., 1997; Klein and Jakob, 1999; Norris 

and Weaver, 2001; Tselioudis and Jakob, 2002; Jakob, 2003; Bony et al., 2004; Lin 

and Zhang, 2004]. This technique typically focuses on the connection between cloud 

properties and the dynamical processes that affect them. There are, however, several 

disadvantages associated with compositing on dynamical parameters. One is a lack of 

reliable data for atmospheric variables important for cloud formation (temperature, 
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humidity, vertical velocity) over much of the globe. Moreover, as was pointed out by 

Jakob and Tselioudis [2003], compositing by dynamical parameter requires prior 

knowledge about the meteorological processes associated with the particular cloud 

regimes to be identified. 

Jakob and Tselioudis [2003] applied a clustering algorithm to International 

Satellite Cloud Climatology Project (ISCCP) [Rossow and Schiffer, 1999] histograms 

of cloud optical depth and cloud-top pressure to identify dominant modes of cloud 

variability in the tropical western Pacific. This study uses a similar procedure to 

determine typical cloud regimes associated with extratropical cyclones for the ISCCP 

gridbox centered on the Southern Great Plains (SGP) site of the Atmospheric 

Radiation Measurement (ARM) Program [Ackerman and Stokes, 2003]. Only the cool 

season (November-March) is examined because that is the time of year when clouds in 

this region are primarily produced by large-scale synoptic systems. Although our 

study focuses on clouds over Oklahoma and Kansas due to the dense network of ARM 

measurements there, the use of globally available ISCCP data allow us to assess the 

extent to which our results can be generalized to other regions of the world. Lidar and 

cloud radar retrievals from the ARM SGP site provide information about the vertical 

distribution of cloudiness that is not available from satellite observations. Other ARM 

measurements have been used to constrain the water and energy budgets for 

reanalyzed output from a numerical weather prediction model over approximately a 

3.5º×3.5º area, enabling relatively accurate determination of large-scale horizontal and 

vertical advection of temperature and moisture in a volume approximately the size of a 
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GCM grid column. This product, the Constraint Variational Analysis (CVA) [Zhang et 

al., 2001; Xie et al., 2004], is superior to analyses from numerical weather prediction 

models but is currently available only over the SGP site during January 1999 – March 

2001. Meteorological parameters coincident with the satellite cloud scenes are 

averaged within cloud clusters to gain a better understanding of the dynamics 

coincident with various cloud types. 

Previous studies [e.g., Klein and Jakob, 1999; Norris and Weaver, 2001; 

Tselioudis and Jakob, 2002; Lin and Zhang, 2004] have demonstrated that GCMs 

have difficulty correctly simulating clouds associated with extratropical cyclones in 

large part because subgrid scale processes and especially subgrid scale vertical motion 

are not adequately represented [Katzfey and Ryan, 2000; Ryan et al., 2000]. One 

common GCM problem is production of frontal clouds that are too thick and too 

horizontally uniform, presumably due to lack of subgrid vertical motions that in the 

real world thicken clouds in one part of the gridbox and dry out clouds in another part. 

The first step to improving GCMs is determining which cloud regimes are most 

problematic in models, and this study accomplishes that by comparing observed cloud 

properties averaged within each cloud cluster with those from the Single Column 

Model (SCM) version of the Geophysical Fluid Dynamics Laboratory (GFDL) 

Atmospheric Model (AM2) [GFDL Global Atmospheric Development Team, 2004]. 

Since the SCM receives realistic large-scale advective tendencies from the CVA, 

observed and simulated cloud properties should be largely the same if the GFDL AM2 

correctly parameterizes subgrid processes. A second goal of this study is the 
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identification of large-scale meteorological conditions that are associated with small or 

large subgrid spatial variability in frontal clouds, which will be useful for later 

parameterization. This is investigated by dividing cloud clusters according to 

instantaneous spatial variability in cloud reflectivity and cloud top pressure in each 

ISCCP scene and examining the differences in CVA meteorology and advective 

forcing for cases of high and low cloud variability. The CVA data, however, do not 

provide information about meso- and smaller scale dynamical processes directly 

responsible for generating subgrid cloud variability. These must instead be 

investigated using a high-resolution model, as reported in Weaver et al. [2004].  

 

Clustering of Cloud Data  

The primary source of cloud observations for this investigation was the ISCCP 

D1 equal-area (280km x 280km) data set, originally processed from radiances 

measured by geostationary weather satellites [Rossow et al., 1996; Rossow and 

Schiffer, 1999]. We examined the single gridbox (35-37.5ºN, 99.3-96.2ºW) most 

closely collocated with the ARM SGP/Cloud and Radiation Testbed (CART), centered 

on 36.6ºN, 97.5ºW. The entire ISCCP gridbox is located inside the boundary facilities 

of the SGP/CART site and the CVA domain. ISCCP data provide gridbox mean cloud 

fraction, cloud-top pressure and visible cloud optical thickness every three hours 

during daytime, usually averaged from 50-80 pixels about 4-7 km in size and spaced 

approximately 30 km apart. Other available data are the spatial standard deviations of 

pixel cloud top pressure and cloud optical thickness within the gridbox and the relative 
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frequencies of pixels occurring in seven cloud top pressure and six cloud optical 

thickness intervals (42 categories). We restricted our analysis to solar zenith angles 

less than 72° because cloud property retrievals may be inaccurate when the sun is 

close to the horizon. The restriction of our analysis to day-time cases should not be 

significant due to the small diurnal variability in high clouds over the central US in 

wintertime [Wylie and Woolf, 2002]. The non-linear relationship between radiation 

flux and optical thickness was taken into account by converting cloud optical 

thickness values to cloud reflectivity at 0.6 microns using an ISCCP look-up table 

[corresponding to Fig. 3.13 in Rossow et al., 1996]. Thus, our results more correctly 

represent cloud effects on gridbox mean visible radiation flux. 

ISCCP three-hourly data for the months of November-March were grouped into 

cloud regimes by applying a k-means clustering algorithm to gridbox mean cloud 

fraction, cloud reflectivity, and cloud top pressure. The k-means procedure classifies 

all data elements into a specified number of clusters such that within-cluster variance 

is minimized [Hartigan, 1975]. The only arbitrary parameter needed is the number of 

clusters; the character of the individual cluster means is then objectively determined 

by the data. For reasons described in the following paragraph, we chose to calculate 

six clusters. Values of cloud fraction, cloud reflectivity, and cloud top pressure were 

all converted to a scale varying linearly from 0 to 1 to ensure each parameter would 

contribute equally to clustering, and times with no cloudiness at all, approximately 5% 

of the total, were excluded from clustering. The clustering process began with random 

selection of six data elements as initial seeds, each element comprising a 3-hourly 
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mean cloud fraction, cloud reflectivity, and cloud-top pressure. Every other element in 

the data set was then assigned to the initial seed it was closest to in a Euclidean sense. 

The number of elements in a cluster divided by the total number of elements is the 

frequency of occurrence of the cluster, and the average of all elements in the cluster is 

the centroid. These cluster centroids became new seeds to reinitialize the clustering 

routine, which was repeated until the centroids converged.  

The most subjective aspect of the k-means method is specifying the number of 

clusters. After examining results for various numbers, we chose to use six because that 

was the minimum number of clusters that had clearly distinct cloud properties and 

meteorological conditions. Additional clusters overlapped preceding clusters without 

providing appreciable new information. For example, two of the six original clusters 

were patchy thin cirrus and extensive thicker cirrostratus, and a seventh cluster was 

merely cirrus of intermediate optical thickness and horizontal coverage. Inclusion of 

such intermediate clusters would increase the length of the paper and the number of 

plots without commensurately enhancing our understanding of dynamical and 

thermodynamical conditions associated with particular cloud types. Another 

uncertainty in the k-means method is the convergence of the clustering algorithm to 

different results for different initial seeds. We resolved this ambiguity by clustering on 

100 different sets of random initial seeds and choosing the final cluster set with the 

least sum of variance around each cluster centroid. Only two alternate realizations 

occurred, and these were substantially similar to the minimum variance cluster set. 

The differences entailed the addition of a cirrus-type cluster and the combination of 
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optically thick low-top clouds with optically thick high-top clouds in a single cluster 

rather than placing them in separate clusters. 

Our approach differs from that of Jakob and Tselioudis [2003] in that we 

cluster on three parameters (gridbox mean cloud fraction, cloud-top pressure, and 

cloud reflectivity) rather than on 42 parameters (cloud fraction within each of seven 

cloud-top pressure and six cloud optical thickness intervals). We chose to use a three-

parameter gridbox mean phase space because it is simpler and can be applied to 

GCMs that do not produce ISCCP-like output (which has non-negligible 

computational and storage costs). One disadvantage of aggregation of the 42 

parameters to three gridbox mean parameters is loss of information when pixels in the 

gridbox have widely varying cloud properties (e.g., bimodal distributions), but 

examination of instantaneous ISCCP scenes indicates that unimodal distributions 

occur 71% of the time in our domain. We define a scene as unimodal if the gridbox 

mean cloud-top pressure and optical thickness fall into a cloud-top pressure/optical 

thickness interval that is the same or adjacent to the cloud-top pressure/optical 

thickness interval with the most pixels. One disadvantage of clustering on 42 

parameters is that each parameter is treated as being equally distant from the others, 

and adjacent cloud top pressure/optical thickness intervals are grouped together only if 

they co-occur in instantaneous ISCCP scenes. We found that clustering on 42 

parameters did not produce results that were any more dynamically distinct than 

clustering on three parameters. Moreover, the 42-parameter method converged to a 
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larger number of solutions for different starting seeds than did the three-parameter 

method. 

Although the 1999-2001 time period is of greatest interest because that is when 

advective forcing from the CVA is available, the clustering algorithm was applied to 

14 years (1988-2001) of the ISCCP data for January-March and November-December 

to reduce sampling uncertainties. Clusters for January 1999-March 2001 were 

determined by matching elements to the nearest 14-year centroid, with no iterative 

reclustering. The 1999-2001 centroids were nearly identical to those for the entire 14 

years, but the cluster frequencies were slightly different. In order to match the 

temporal resolution of the CVA, January 1999-March 2001 ISCCP data were linearly 

interpolated from three-hourly to one-hourly before the application of clustering. 

Table 2.1 lists cluster centroids for the 1999-2001 time period, ordered 

according to relative frequency. Conditions with completely clear sky occurred 6% of 

the time (in the three-hourly data) and were not clustered. Although, for convenience, 

we label each cluster with a cloud name, this does not imply that the name is 

characteristic of every element in the cluster. Pixel frequency distributions as a 

function of cloud optical thickness and cloud top pressure are plotted for each cluster 

in Fig. 2.1. The variability in cloud optical thickness and cloud top pressure seen in the 

histograms results from both the subgrid variability of cloud properties within 

individual scenes and the variability of the gridbox mean elements around the cluster 

centroids. The first and second clusters, “extensive cirrus” and “patchy cirrus”, are 

optically thin with high cloud tops, but have very different cloud fractions. Clusters 3 
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and 4, “frontal/nimbostratus” and “stratus/stratocumulus”, are optically thick with 

nearly 100% cloud cover. Although the frontal/Ns reaches into the upper troposphere, 

St/Sc has the lowest cloud top of any cluster. The fifth cluster is a mixture of clouds at 

multiple levels in the atmosphere with nearly 100% cloud cover. Examination of 

individual scenes indicated that clouds occur at a variety of levels at the same time, so 

the histogram in Fig. 2.1 is not merely an artifact of averaging. This mixed cluster 

does not separate into high cloud and low cloud clusters when more than six clusters 

are calculated, suggesting it is indeed a distinct regime. Cluster 6, “cumulus/cirrus,” is 

characterized by a combination of low-level and high-level optically thin clouds, and 

in this case the gridbox mean cloud top pressure is not representative of individual 

pixels. 

While satellite observations describe well the horizontal distribution of cloud 

properties, they supply much less information about the profile of overlapping clouds. 

Knowledge of the vertical cloud distribution can be obtained from the millimeter 

cloud radar (MMCR) and ceilometer instruments located at the ARM SGP Central 

Facility. The MMCR measurements have been combined in the Active Remote 

Sensing of Cloud Layers (ARSCL) data product [Clothiaux et al., 2000], which 

identifies the presence of cloud at 45 m vertical resolution and provides the top and 

bottom heights of every cloud layer directly above the instruments. ARSCL 10-sec 

data at 45 m resolution were averaged within 250 m vertical intervals and 30-min 

periods centered on the hourly time points of the CVA to obtain cloud fraction as a 

function of height. We assume that the frequency of cloudiness above the instrument 
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during a 30-min interval is identical to the spatial cloud fraction within the 

surrounding local area (18-36 km for 10-20 m s-1 advection speeds). This is much 

smaller than the ISCCP domain (280 km), but averaging over longer time intervals can 

mix in substantial temporal variability in the cloud field [Appendix of Kim et al., 

2004]. Averages of the highest cloud top, lowest cloud base, and integrated thickness 

of all layers were also calculated. We determined lowest cloud base according to 

ceilometer measurements (30-sec sampling and 8 m vertical resolution) since they do 

not misidentify precipitation as cloud like the MMCR. This adjustment was not 

undertaken for the profiles of cloud fraction at each level, which may lead to a slight 

overestimate of cloud fraction, especially near the surface. At least 50% of the data in 

a 30-min interval were required to have valid retrievals in order to construct an 

average (16% of the data were missing from the entire dataset). The ARSCL 30-

minute values were assigned to the same clusters that the coincident ISCCP data were 

classified in, and then averaged. Although cloud fractions reported by ISCCP and 

ARSCL may exhibit large disagreement at any given time due to differences in spatial 

sampling, this effect is random and will be reduced by averaging over many time 

points in a cluster. Systematic disagreement due to different methods of observation 

will remain. 

Table 2.2 shows mean ARSCL cloud fraction, highest cloud top, lowest cloud 

bottom, and integrated cloud thickness of all layers. The cloud fraction listed in Table 

2.2 is determined by the occurrence of cloud at any level. Cluster cloud top heights 

reported by ARSCL correspond well with those reported by ISCCP. Less agreement 
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occurs for cloud fraction, although the relative variations between clusters are similar. 

One reason ISCCP might report larger cloud fraction than ARSCL is that pixels are 

designated as completely cloudy even if the actual cloud is smaller than the pixel size. 

Another possible reason is that MMCR fails to detect clouds otherwise seen by laser at 

heights above 8 km about 10-20% of the time [Clothiaux et al., 2000]. Physical cloud 

thickness is not directly comparable to optical cloud thickness since the latter also 

depends on the condensate concentration, effective particle size, and water phase. 

Figure 2.2 displays average cloud fraction at every level for each cluster. Clouds in the 

cirrus regimes occur almost entirely above 5 km whereas St/Sc clouds are generally 

confined to the lowest 3 km. Frontal/Ns cloudiness is horizontally extensive and exists 

in a deep layer, consistent with having the largest physical and optical thickness of any 

cluster. The ARSCL profiles for the multilayer clusters (Cu/Ci and mixed) exhibit 

non-negligible cloud occurrence over a wide range of vertical levels.  

 

Characteristic Dynamics  

Dynamical parameters associated with ISCCP 1-hourly interpolated data were 

obtained from the Constraint Variational Analysis (CVA) [Zhang et al., 2001; Xie et 

al., 2004], a single-column analysis carried out for a domain approximately the size of 

a GCM gridbox centered on the ARM SGP Central Facility. The CVA constrains 

numerical weather prediction (NWP) model output with atmospheric soundings and 

measurements of precipitation, surface energy fluxes, and top-of-atmosphere energy 

fluxes. Column-integrated mass, water, energy and momentum are conserved by the 
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application of objective analysis techniques. The resulting product provides vertical 

profiles of atmospheric conditions (horizontal winds, vertical motion, temperature, 

relative humidity) as well as the tendencies of temperature and water vapor due to 

large-scale horizontal and vertical advection. SCMs and Cloud System Resolving 

Models produce more realistic cloud and precipitation simulations when they are 

forced by advective tendencies from the CVA rather than from the original NWP 

output [Xie et al., 2003]. CVA data are currently available at 25 mb spacing between 

1000 mb and 100 mb for every hour during January 1999-March 2001. 

To provide insight into the atmospheric state and advective forcing associated 

with the various cloud regimes, we averaged vertical profiles of CVA data over the 

times corresponding to each cluster. Monthly means were removed from relative 

humidity (RH) and temperature values prior to averaging to prevent the large basic 

state decline in RH and temperature with height from dominating the plots. Similarly, 

advective tendencies of water vapor mixing ratio were divided by the saturation 

mixing ratio at each level, thus converting them to tendencies in RH under the 

assumption that temperature remains constant. For consistency, all values of RH and 

saturation are with respect to liquid water even though saturation with respect to ice 

may be more applicable in the upper troposphere. We calculated 95% confidence 

intervals for the cluster means assuming a normal distribution and counting successive 

hours classified into the same cluster as a single realization. The smallest effective 

sample size for any cluster is 75 (frontal/Ns). The total number of ISCCP interpolated 

hourly data contributing to the clusters is 1790. Vertical profiles of perturbation RH 
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are displayed in Fig. 2.3, pressure vertical velocity in Fig. 2.4, and advective 

tendencies of water vapor mixing ratio in Fig. 2.5. 

The mean cloud properties of each cluster are physically consistent with the 

dynamical forcing. Upper tropospheric RH is higher than normal for the Extensive Ci 

regime (cluster 1) due to upward vertical motion near the 350 mb level that is 

increasing the water vapor mixing ratio over time. This positive total advection of 

water vapor does not occur in the patchy Ci regime (cluster 2), which instead 

experiences stronger downward motion and drier conditions than extensive Ci. The 

frontal/Ns regime (cluster 3) is associated with very strong upward motion that is 

rapidly increasing water vapor mixing ratio by vertical advection and producing a 

large positive RH perturbation from surface to tropopause. Despite the occurrence of 

mean ascent throughout the troposphere in the St/Sc regime (cluster 4), a positive 

anomaly in RH occurs only below the 600 mb level. Negative horizontal advection of 

water vapor overwhelms the positive vertical advection to cause net drying above the 

low-level clouds. Weak upward motion in the mixed cloud regime (cluster 5) produces 

small positive RH anomalies in the middle and upper troposphere through vertical 

advection of water vapor. Negative horizontal advection of water vapor dominates in 

the Cu/Ci regime (cluster 6), and the troposphere is anomalously dry except near the 

surface and tropopause. Despite the similarities between advective forcing and cloud 

properties described above, it is important to keep in mind that the mean 

meteorological conditions may not be characteristic of every element in the cluster.  
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Subgrid Spatial Cloud Variability  

Previous studies have found that GCMs have difficulty correctly representing 

subgrid variability in cloud properties [e.g., Norris and Weaver, 2001; Tselioudis and 

Jakob, 2002]. This is particularly the case for frontal cloudiness, which typically is too 

uniformly high and optically thick under conditions of strong ascent. Norris and 

Weaver [2001] attributed this to the lack of representation of subgrid vertical motions 

in current GCM parameterizations, since even if gridbox mean vertical motion were 

upward, subgrid variability could result in stronger ascent in one portion of a gridbox 

and weak descent in another portion of the gridbox. Because GCMs currently do not 

consider subgrid variability in vertical motions aside from moist convective 

parameterizations, gridbox mean ascent tends to produce spatially uniform saturation 

of the entire grid column. Although the role of subgrid variability in vertical motion is 

difficult to investigate observationally due to lack of reliable data, high-resolution 

simulations of two synoptic systems passing over the SGP site indeed indicate a strong 

connection between the mesoscale distribution of upward motion and the mesoscale 

distribution of cloudiness [Weaver et al., 2004]. Identification of the large-scale 

forcing associated with mesoscale variability in vertical motion and cloudiness will aid 

parameterization of these effects. Since computationally intensive simulations are 

available only for a few short time periods, it is useful to examine in observations how 

the large-scale meteorological forcing differs between cases of high and low subgrid 

cloud variability with the same gridbox mean cloud properties. 
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We carried this out by partitioning clusters into subsets based on the spatial 

standard deviations of cloud reflectivity and cloud top pressure of each element. The 

“high variability” subset of a cluster then consists of those elements whose standard 

deviations are above the median values of both parameters for the cluster, and the 

“low variability” subset consists of those elements whose standard deviations are 

below the median values. It happens to be the case that the spatial standard deviations 

of cloud reflectivity are dominated by the gridbox means because the standard 

deviation must be close to zero when the mean value is close to zero. For this reason 

we divide cloud reflectivity standard deviations by the gridbox means before 

partitioning the cluster. The high variability and low variability subsets each have 

slightly more than one quarter of the elements since subgrid variability in cloud 

reflectivity tends to be positively correlated with subgrid variability in cloud top 

pressure. 

Figure 2.6 shows horizontal, vertical, and total water vapor advection for high 

variability and low variability subsets of the frontal/Ns regime (cluster 3). Strong 

ascent produces positive vertical and net positive total water vapor advection for both 

subsets. The horizontal water vapor advection, however, is negative for high 

variability cases and positive for low variability cases. The presence of positive 

vertical and negative horizontal water vapor advection also occurs with the high 

variability subsets of the St/Sc (cluster 4) and mixed (cluster 5) cloud regimes (not 

shown). These results suggest that substantial subgrid variability in cloud top pressure 

and cloud reflectivity may result from subgrid variability in vertical motion that 
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saturates only part of a gridbox otherwise being dried by horizontal advection, 

although subgrid variability in horizontal moisture advection may also play a role. 

Contrastingly, horizontal moistening favors much more uniform saturation and cloud 

properties. 

Subsets of high and low subgrid cloud variability are sometimes associated 

with completely different meteorological conditions. Fig. 2.7 shows this is the case for 

the St/Sc regime (cluster 4). The low variability subset resembles cold-sector 

stratocumulus. These clouds occur beneath subsidence that caps a shallow boundary 

layer and constrains cloud top height and thickness to be relatively uniform. The high 

variability subset resembles warm-sector stratus. Examination of individual days 

suggests plumes of moist ascending air advected from the subtropics form stratus 

clouds of varying heights and thicknesses. High and low variability subsets of the 

extensive cirrus regime (cluster 1) also occur in different meteorological regimes (Fig. 

2.8). The low variability subset is associated with subsidence, a cold troposphere, and 

a depressed tropopause, presumably in the upper-level trough following the passage of 

a cold front. The high variability subset is associated with ascent, a warm troposphere, 

and an elevated tropopause, presumably in an upper-level ridge ahead of an 

approaching cyclone.  

 

Global Representativeness  

The global representativeness of the results at the SGP site can be assessed by 

measuring the proximity of locally generated cluster centroids to the SGP centroids. 
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We did so by calculating clusters for 1999-2001 data in each ISCCP gridbox using the 

14-year (1989-2001) SGP centroids as initial seeds with no iterative reclustering. The 

average Euclidian distance between these centroids and the SGP centroids was 

computed for each gridbox with weighting by cluster frequency. The resulting values 

then describe how well cloud regimes around the world resemble cloud regimes at the 

SGP site. To provide insight into the relative importance of differences from the 14-

year SGP centroid, we scaled distances from all gridboxes by the distance between the 

1999-2001 SGP centroid and the 14-year centroid. Thus, a scaled distance equal to one 

means clusters at an arbitrary gridbox are as close to the 14-year SGP centroid as 

clusters calculated from three of those 14 years. Table 2.3 lists 14-year centroids and 

frequencies at the SGP site, and a comparison with Table 2.1 demonstrates that 

differences between centroids calculated over 1989-2001 and centroids calculated over 

1999-2001 are small. Fig. 2.9 shows that cloud regimes over many midlatitude land 

regions and especially over the eastern half of the U.S. have similar properties to those 

at the SGP site. This suggests the atmospheric state and advective forcing documented 

for each SGP cluster are broadly representative of midlatitude continental cool-season 

cloudiness.  

 

Model Cloud Comparison 

One difficulty with evaluating the quality of GCM cloud simulation is that it is 

not always clear whether errors in cloud simulation result from incorrect large-scale 

forcing or an incorrect response of parameterizations to correct large-scale forcing. 
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This problem is mitigated in the examination of three-hourly SCM cloud output from 

runs with CVA forcing, which presumably experienced similar forcing as the observed 

clouds. In this study we will examine output from an SCM implementing the full 

physics parameterizations, vertical resolution, and time step of the GFDL AM2 

[GFDL Global Atmospheric Model Development Team, 2004], but our procedure 

could be applied to any model. The GFDL SCM has 24 vertical levels and a 

prognostic cloud scheme based upon Tiedtke [1993] with stratiform microphysics 

from Rotstayn [1997] and Rotstayn et al. [2000]. The cumulus parameterization is 

Relaxed-Arakawa-Schubert [Moorthi and Suarez, 1992] and the turbulence 

parameterization is based upon Lock et al. [2000]. Temperature and moisture forcings 

specified from the CVA without nudging and the winds specified from observations 

drive the model. The data analyzed in this study come from hours 12 to 36 of 36-hour 

SCM forecasts that begin every day with the observed sounding. This minimizes the 

drifts of temperature and moisture that can develop in such SCM simulations [Ghan et 

al., 2000]. 

As was done for the ISCCP data, the three-hourly SCM cloud data were 

linearly interpolated to one-hourly. Cluster by cluster comparison of observed and 

simulated cloud properties will establish the specific cloud regimes that are well or 

poorly modeled. For direct comparability with the satellite data, the SCM output had 

been converted into frequency distributions of “pixels” with various values of cloud 

optical thickness and cloud top pressure using the ISCCP simulator [http://gcss-

dime.giss.nasa.gov; as described in Klein and Jakob, 1999; Webb et al., 2001]. The 
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ISCCP simulator divided the SCM column into 50 subcolumns and randomly assigned 

cloud cover or clear to each level of each subcolumn such that the model overlap 

assumption was maintained and the fraction of subcolumns with cloud was the same 

as the SCM column cloud fraction at each level. The total optical thickness and cloud 

top pressure of each subcolumn were then calculated from the vertical distribution of 

condensate amount and effective particle size in a manner consistent with ISCCP 

retrievals of cloud properties. Each subcolumn was treated as a pixel, and the fraction 

of pixels in each ISCCP cloud top pressure/optical thickness intervals was calculated. 

Subcolumn cloud optical thickness was sometimes less than that detectable by 

satellite, defined in this study as optical thickness less than 0.3. These subvisible 

cloudy pixels were not included in calculations of mean gridbox cloud fraction, cloud 

optical thickness, and cloud top pressure. Conditions of solely subvisible cloudiness in 

the SCM column occurred 10% of the time, and completely cloudless conditions 

occurred 18% of the time (in the three-hourly data). 

Table 2.4 lists average SCM cloud properties and Fig. 2.10 presents SCM pixel 

frequency distributions for the same times classified into the ISCCP clusters during 

1999-2000. Although SCM data were not available for Jan-Mar of 2001, this has little 

impact on the overall results since differences between simulated and observed clouds 

are much larger than differences between averages over 1999-2000 and 1999-2001. 

Comparison with Table 2.1 and Fig. 2.1 shows that model clouds are much more 

optically thick than observed clouds. This is true even if the subvisible clouds are 

included in the optical thickness average. SCM cloud fraction, however, is generally 



 

 

27

less than average ISCCP cloud fraction due to the frequent occurrence of completely 

clear sky or subvisible cloudiness in the SCM at times when clouds were actually 

observed. Overprediction of cloud optical thickness and underprediction of cloud 

fraction are common compensating errors in GCMs. Clusters 3, 4, and 5 in Fig. 2.10 

also exhibit the typical GCM behavior of producing clouds that are too optically thick 

and too high in the atmosphere under conditions of gridbox mean ascent (Fig. 2.4) 

[Norris and Weaver, 2001; Tselioudis and Jakob, 2002; Lin and Zhang, 2004; Xie et 

al., 2004; Xu et al., 2004; Zhang et al., 2004]. The St/Sc cloud regime (cluster 4), 

which exhibits substantial cloudiness in the middle and upper troposphere despite net 

advective drying at these levels (Fig. 2.5), has the most egregious error. Since the 

Tiedtke [1993] cloud parameterization does not have a way to treat the impacts of 

horizontal advection differently from the impacts of vertical advection, the SCM 

always generates cloud water and cloud fraction whenever gridbox mean ascent occurs 

and gridbox mean RH is greater than 80%. Although substantial variability in cloud 

properties is evident in the histograms displayed in Fig. 2.10, more variability results 

from temporal changes in the gridbox mean and less from spatial variability within the 

gridbox than is the case for ISCCP. Examination of individual scenes indicated that all 

cloud pixels occur in a single cloud top pressure interval and single cloud optical 

thickness interval three times as often in the SCM than in ISCCP. 

Model cloudiness might differ from coincident observed cloudiness if there 

were a delay in the SCM response to observed forcing or if the CVA did not correctly 

represent the observed forcing. To account for this possibility, we carried out a 
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statistical evaluation of the SCM distribution of cloud properties. This was 

accomplished by classifying the SCM elements into their own clusters by performing 

the clustering routine on the gridbox mean SCM cloud properties. Table 2.5 lists the 

resulting SCM cluster centroids, and Fig. 2.11 displays pixel frequency distributions 

as a function of cloud optical thickness and cloud top pressure for each cluster. Note 

that the SCM clusters have a different order and frequency than the ISCCP clusters. 

Patchy Ci and Cu/Ci regimes occur much less frequently in the SCM than in ISCCP, 

presumably because the SCM too often produces clear sky instead of partial cirrus 

cloudiness. This underestimation still exists even if subvisible cloudiness is included 

in the clusters. Although the greater frequency of completely clear sky in the SCM 

causes the relative frequency of frontal/Ns and St/Sc regimes to increase, they still 

occur with approximately the same absolute frequency as in the ISCCP clusters. 

Although SCM cluster cloud fractions are comparable to the ISCCP clusters, the 

optical thickness values much larger. Fig. 2.11 indicates that most of the SCM clusters 

have less variability in cloud optical thickness and/or cloud top pressure than do the 

ISCCP clusters, consistent with the general tendency for lesser subgrid spatial 

variability in individual SCM scenes.  

 

Summary and Discussion 

This study demonstrates how satellite observations of midlatitude cool-season 

continental cloudiness can be grouped into distinct cloud regimes by application of a 

k-means clustering algorithm to gridbox mean cloud fraction, cloud reflectivity, and 
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cloud top pressure. These regimes correspond to typical cloud types associated with 

various synoptic conditions over land during winter: extensive cirrus, patchy cirrus, 

frontal/nimbostratus, stratus/stratocumulus, cumulus/cirrus, and a mixture of clouds at 

a variety of levels. Averages of ground-based retrievals of cloud fraction, cloud height, 

and cloud thickness are consistent with the satellite cloud distributions and provide 

additional insight into the vertical structure of the cloud regimes. Consistency is also 

found between cloud properties of each regime and vertical profiles of meteorological 

parameters averaged over a domain approximately the size of a GCM gridbox and 

constrained by a dense network of observations to conserve column-integrated mass, 

water, energy and momentum. In particular, a close relationship is found between 

mean vertical profiles of water vapor advection, relative humidity, and cloudiness for 

each regime. We investigated cloud properties over the ARM SGP site since it was 

one of the few locations on Earth with accurate observations of water vapor advection, 

but our general results should be applicable to many midlatitude land regions around 

the globe. 

A primary motivation for this study is the diagnosis of errors in GCM 

simulations of specific cloud regimes. To this end we carried out an analogous 

classification of cloud output from the SCM version of the GFDL AM2 model and 

compared properties of the resulting cloud regimes with those of the observations. 

Since the SCM was forced with realistic large-scale boundary conditions, simulated 

cloudiness should be similar to coincident observed cloudiness if the model correctly 

parameterizes subgrid processes. An alternative diagnostic method is to calculate 
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cloud regimes separately for the SCM output and the observations and compare the 

mean properties of the cloud regimes. Both methods indicate cloud optical thickness is 

too large and completely clear sky is too frequent in the model, as is the case for other 

GCMs and SCMs [e.g., Norris and Weaver, 2001; Tselioudis and Jakob, 2002; Lin 

and Zhang, 2004; Xie et al., 2004; Xu et al., 2004; Zhang et al., 2004]. The SCM 

appears to reproduce the correct absolute frequencies of frontal/Ns and St/Sc regimes, 

albeit with clouds that are too bright, but other cloud regimes that include optically 

thin cirrus are underproduced. 

Another feature of the simulated clouds is their lack, relative to the 

observations, of subgrid spatial variability in cloud optical thickness and cloud top 

pressure, especially for the frontal/Ns regime. The GFDL SCM and other models tend 

to saturate the entire grid column under conditions of gridbox mean ascent, thus 

producing a uniform and very optically thick cloud. Possible reasons for this were 

explored using observed cloud and meteorological data. Division of the observed 

frontal/NS regime into subsets of high and low subgrid spatial cloud variability 

indicates high subgrid variability is associated with negative horizontal water vapor 

advection whereas low subgrid variability is associated with positive horizontal 

advection. In both subsets, vertical water vapor advection is positive, a result of large-

scale ascent. This finding suggests that models do not sufficiently represent the effects 

of horizontal advection of dry air in a vertically moistened column. If the vertical 

moistening is non-uniform, due to subgrid variability in vertical velocity, then 

substantial subgrid variability in cloudiness results. Weaver et al. [2004] showed, 
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using high-resolution simulations, that storms over this site indeed exhibited 

substantial mesoscale (and smaller-scale) variability in vertical motion and that this 

variability was strongly correlated with similar variability in clouds. More research 

must be carried out to identify the large-scale meteorological forcing and subgrid 

processes responsible for producing various observed cloud regimes and how these 

can be better represented in GCMs. 
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Table 2.1 - ISCCP mean cloud properties ± 1 standard deviation for each cluster 
during Jan-Mar of 1999-2001 and Nov-Dec of 1999-2000. 

Cluster 
# 

Mean Cloud 
Fraction 

Mean Cloud-
top Pressure 

(mb) 

Mean 
Reflectivity 

Optical 
Thickness 

Frequency 
(%) Cloud Type 

1 0.82 +/- 0.14 209 +/- 74 0.11 +/- 0.06 0.9 19 Extensive Cirrus 

2 0.24 +/- 0.15 190 +/- 98 0.07 +/- 0.05 0.5 17 Patchy Cirrus 

3 1.0 +/- 0.03 431 +/- 116 0.68 +/- 0.11 20.9 16 Frontal/Nimbostratus 

4 0.92 +/- 0.11 707 +/- 86 0.58 +/- 0.13 13.3 13 Stratus/Stratocumulus 

5 0.90 +/- 0.13 432 +/- 103 0.31 +/- 0.07 3.7 12 Mixed 

6 0.33 +/- 0.18 657 +/- 155 0.28 +/- 0.10 3.3 6 Cumulus/Cirrus 

     6 Clear 

 
 
Table 2.2 - ARSCL mean cloud properties ± 1 standard deviation for the same times 
as the ISCCP clusters. 

Cluster 
# 

Cloud 
Fraction 

Cloud-top 
Height 
(km) 

Cloud-
base 

Height 
(km) 

Integrated 
Cloud 

Thickness 
(km) 

Cloud Type 

1 0.48 +/- 0.66 9.4 +/- 5.0 5.8 +/- 3.9 3.1 +/- 2.7 Extensive Cirrus 

2 0.13 +/- 0.43 9.3 +/- 5.1 6.0 +/- 3.2 3.0 +/- 2.1 Patchy Cirrus 

3 0.87 +/- 0.72 8.9 +/- 3.8 1.4 +/- 1.7 5.6 +/- 3.0 Frontal/Nimbostratus 

4 0.80 +/- 0.86 3.6 +/- 2.9 1.2 +/- 1.7 1.3 +/- 1.1 Stratus/Stratocumulus 

5 0.70 +/- 0.81 7.5 +/- 4.2 3.6 +/- 2.7 2.9 +/- 2.3 Mixed 

6 0.70 +/- 0.81 5.0 +/- 3.2 2.7 +/- 2.3 1.7 +/- 1.4 Cumulus/Cirrus 
 



 

 

33

 
Table 2.3 - ISCCP Mean cloud properties for each cluster during Jan-Mar of 1988-
2001 and Nov-Dec of 1988-2000. 

Cluster 
# 

Mean 
Cloud 

Fraction 

Mean Cloud-top 
Pressure (mb) 

Mean 
Reflectivity 

Frequency 
(%) Cloud Type 

1 0.85 227 0.11 20 Extensive Cirrus 

2 0.23 218 0.07 18 Patchy Cirrus 

3 1.00 429 0.62 12 Stratus/Stratocumulus 

4 0.94 698 0.54 15 Frontal/Nimbostratus 

5 0.92 451 0.29 17 Mixed 

6 0.33 660 0.25 12 Cumulus/Cirrus 

    2 Clear 
 
Table 2.4 -  SCM mean cloud properties for the same times as the ISCCP cloud 
clusters. 

Cluster 
# 

Mean Cloud 
Fraction 

Mean Cloud-top 
Pressure (mb) Mean Reflectivity Cloud Type 

1 0.46 +/- 0.45 291 +/-273 0.27 +/- 0.23 Extensive Cirrus 

2 0.28 +/- 0.40 327 +/- 288 0.29 +/- 0.24 Patchy Cirrus 

3 0.90 +/- 0.26 371 +/- 186 0.74 +/- 0.24 Frontal/Nimbostratus 

4 0.84 +/- 0.32 579 +/- 239 0.73 +/- 0.21 Stratus/Stratocumulus 

5 0.72 +/- 0.40 388 +/- 257 0.48 +/- 0.29 Cumulus/Cirrus 

6 0.45 +/- 0.44 461 +/- 333 0.41 +/- 0.31 Mixed 
 
Table 2.5 - Mean cloud properties for clusters derived from the SCM output. 

Cluster # Mean Cloud 
Fraction (%) 

Mean Cloud-
top Pressure 

(mb) 

Mean 
Reflectivity 

Frequency 
(%) Cloud Type 

1 0.88 +/- 0.14 148 +/- 75 0.17 +/- 0.08 14 Extensive Cirrus 

2 0.23 +/- 0.13 105 +/- 86 0.08 +/- 0.06 8 Patchy Cirrus 

3 1.0 +/- 0.02 369 +/- 122 0.87 +/- 0.07 18 Frontal/Nimbostratus 

4 0.98 +/- 0.06 795 +/- 96 0.69 +/- 0.17 16 Stratus/Stratocumulus 

5 0.93 +/- 0.12 368 +/- 120 0.45 +/- 0.12 10 Mixed 

6 0.37 +/- 0.21 780 +/- 110 0.61 +/-0.18 4 Cumulus/Cirrus 

    30 Clear/Subvisible 
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Figure 2.2 - Profiles of ARSCL mean cloud fraction for each ISCCP cluster. The 
horizontal lines indicate boundaries of ISCCP cloud-top pressure intervals. 
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Figure 2.10 - Frequencies of SCM pixels in cloud-top pressure and cloud optical 
thickness intervals for each ISCCP cluster. The dashed lines indicate the nine ISCCP 
standard cloud categories and a special category of subvisible cloudiness (optical 
thickness < 0.3).  
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Figure 2.11 - As in Fig. 2.9, but for cluster generated from an independent clustering 
of SCM mean properties. 
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CHAPTER 3 

The representation of clouds in climate models continues to be the largest 

source of uncertainty in simulations of future climate [IPCC, 2007]. The previous 

chapter detailed deficiencies in the ability of GCMs to accurately predict cloud 

properties associated with midlatitude synoptic systems, even when provided with 

accurate information about the large-scale forcing of a single GCM gridbox. This 

points to a lack of thorough understanding of the connection between large-scale 

forcing and cloud properties. To better simulate clouds in GCMs, we must have a 

better handle on the relationship between large-scale motion in the atmosphere and the 

clouds that these motions produce. Determining what dynamics and thermodynamics 

are necessary elements of a given type of cloud is crucial information to fill out our 

understanding of the atmosphere and to improve the ways that models simulate clouds. 

Past studies of model fidelity focused on large spatial and temporal scales [Weare et 

al., 1996], but averaging across disparate dynamical regimes can mask the source of 

errors. Compensating errors in the simulation of cloud properties are often masked 

when only zonal or seasonal means of cloud properties are included. Norris and 

Weaver (2001) found that overprediction of cloud properties during instances of 

upward motion in the National Center for Atmospheric Research (NCAR) Community 

Climate Model (CCM3) was largely cancelled out by underprediction of cloud 

properties with downward motion. This study, along with many others, detailed the 

utility of compositing, whereby cloud scenes are grouped based on a selected property 

of the atmosphere. Dividing the atmosphere into a series of distinct regimes, each with
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unique cloud properties, is an effective method for understanding the connections 

between the dynamics and thermodynamics of the atmosphere and the clouds they 

produce. 

 Jakob [2003] proposed compositing as the core of a strategy to improve the 

parameterization of clouds in Global Climate Models (GCMs). A significant limitation 

of compositing is that it requires prior knowledge of the dynamics of the atmosphere 

that are important for cloud formation. A technique based on applying statistical 

algorithms to cloud data, first laid out by Jakob and Tselioudis (2003), provides a 

more objective means of grouping clouds into distinct regimes based on their satellite-

derived properties. 

Our study follows this method by using a k-means clustering algorithm to group cloud 

scenes from the International Satellite Cloud Climatology Project (ISCCP) based on 

similar cloud properties. K-means clustering is an effective tool for finding patterns in 

large amounts of data, and has proven particularly useful for finding distinct 

meteorological regimes by analyzing satellite-derived cloud data [Jakob and 

Tselioudis, 2003; Gordon et al., 2005; Jakob et al., 2005]. This study extends the 

clustering analysis of the previous section to all of the midlatitude ocean regions. We 

have restricted our study to ocean regions so as to minimize the role that surface 

features play in cloud forcing. 

Jakob and Tselioudis (2003) proposed that clustering cloud properties into 

dynamical regimes would be helpful in diagnosing regime-dependent errors in the 

GCM simulation of cloud properties and in understanding cloud feedbacks. The 



   

47
 

following chapter addresses the latter point. The second part of this paper presents the 

data sets that we will be using. Section 3 contains details of the clustering algorithm 

used. Section 4 discusses the cloud, meteorological, and radiative properties of each 

cluster. 

 

Data Sources 

The source of cloud observations for this investigation was the three-hourly 

ISCCP D1 equal-area (280 km x 280 km) data set, originally processed from radiances 

primarily measured by geostationary weather satellites, with lesser contribution from 

polar-orbiting satellites [Rossow et al., 1996; Rossow and Schiffer, 1999]. The ISCCP 

data consist of cloud fractions within a gridbox in three intervals of cloud-top pressure 

(CTP) and cloud optical thickness (τ), giving us nine ctp-τ categories. Each element of 

the data is the fraction of individual satellite pixels that exhibit those height and 

thickness properties. Since we analyzed the optical properties of the clouds, valid data 

only exists for daytime hours. We restricted our analysis to one time point per day for 

each satellite gridbox, choosing the value with the smallest solar zenith angle (closest 

to local noon). This restriction avoided biases associated with more valid data points 

coming from regions near the equator and from points in the summer hemisphere, 

where there are a greater number of daylight hours. The satellite pixels used to 

generate the ctp-τ histograms are approximately 4-7 km in size and spaced 

approximately 30 km apart, with up to 80 pixels per gridbox. 
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Our analysis spans nearly the entire available record of ISCCP, 21 years (1984-

2004), and incorporates all ocean points between 30° and 50° in both hemispheres, 

representing 1,444 gridboxes. The ISCCP data consisted of nearly 10 million 

observations, each consisting of a CTP-τ histogram, which is a nine-dimensional 

vector of cloud fraction. Clear-sky observations, which are infrequent (occur less than 

1% of the time), and for which all elements of the vector are exactly 0, are excluded 

from the clustering but retained in the analysis to examine the meteorology associated 

with this dynamical regime. 

In addition to mean cloud properties, we examined the radiative flux data 

derived from the ISCCP data [Zhang et al., 2004]. The flux data consists of upwelling 

and downwelling, shortwave and longwave radiative flux for both clear and cloudy 

parts of the gridbox. This data is provided at the surface, the top of the atmosphere 

(TOA), and at three levels within the atmosphere (680 mbar, 440 mbar, and 100 

mbar). To complement the satellite-derived properties of the cloud regimes, we also 

analyzed data from the Extended Edited Cloud Report Archive (EECRA), which 

provides surface-observer reports of frequency of occurrence of different cloud types. 

In order to obtain information about the dynamics and thermodynamic 

structure of the atmosphere, we utilized National Center for Environmental Prediction 

(NCEP) NCAR Reanalysis [Kalnay et al., 1996]. This data set provided standard 

meteorological parameters as well as the advective tendencies of moisture and 

temperature derived from the large-scale gradients and atmospheric motions, which 

are important to the formation of clouds. We have restricted our analysis to 
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midlatitudes because much of the dynamical forcing that leads to cloud formation in 

these regions is at or above the spatial scale of the satellite gridboxes, and the best 

quality reanalysis data from NCEP-NCAR is in the midlatitudes. 

 

Cluster Analysis 

This data was grouped into cloud regimes by applying a k-means clustering 

algorithm. The k-means procedure classifies all data elements into a specified number 

of clusters such that within-cluster variance is minimized [Hartigan, 1975; Jakob and 

Tselioudis, 2003]. The only arbitrary parameter needed is the number of clusters; the 

character of the individual cluster means is then objectively determined by the data. 

The clustering process began with random selection of k data elements as initial seeds, 

each element comprising a nine-element vector of cloud fraction in each height-

thickness category. All other elements in the data set were then assigned to the initial 

seed to which they were closest in a Euclidean sense. The number of elements in a 

cluster divided by the total number of elements is the frequency of occurrence of the 

cluster, and the average of all elements in the cluster is the centroid. These cluster 

centroids became new seeds to reinitialize the clustering routine, which was repeated 

until the centroids converged. 

A significant uncertainty in the k-means method is the convergence of the 

clustering algorithm to different results for different initial seeds. We resolved this 

ambiguity by clustering on 50 different sets of random initial seeds and choosing the 

final cluster set with the least sum of variance around each cluster centroid (the other 
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possible solutions will be discussed later). Specifying the number of clusters is the 

most subjective aspect of the k-means method. After examining results for various 

numbers, we chose to use seven clusters, as that was the minimum number of clusters 

that had clearly distinct cloud properties and meteorological conditions. Additional 

clusters overlapped preceding clusters without providing appreciable new information; 

inclusion of such intermediate clusters would have increased the number of plots 

without commensurately enhancing our understanding of dynamical and 

thermodynamical conditions associated with particular cloud types.  

Our approach differs from that of Gordon et al. [2005] in that we cluster on the 

ISCCP histograms as opposed to the gridbox mean cloud fraction, cloud-top pressure, 

and cloud reflectivity. Ours is similar to the approach used by Jakob and Tselioudis 

[2003], except that instead of using 42 parameters (cloud fraction within each of seven 

cloud-top pressure and six cloud optical-thickness intervals), we average these 42 

parameters to nine to correspond with the ISCCP-defined cloud types. The 42 

parameters do not provide significantly more information than the nine parameters 

chosen. 

Table 3.1 lists the mean properties of the cluster centroids for the 1984-2004 

time period, ordered according to relative frequency. The nonlinear relationship 

between radiation flux and optical thickness was taken into account by converting 

cloud optical thickness values to cloud reflectivity at 0.6 microns using an ISCCP 

look-up table [corresponding to Fig. 3.13 in Rossow et al., 1996]. The mean 

reflectivity was then converted back to cloud optical thickness using the same table. 
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Thus, our results more correctly represent cloud effects on grid-box-mean visible 

radiation flux. 

Figure 3.1 displays the mean ISCCP histograms for each of the seven clusters. 

Cloud fraction in each category of the mean histograms that is less than 2% is not 

displayed. The first three clusters are all predominantly low clouds; cluster #4 is the 

only midlevel cloud cluster and the last three clusters are all high clouds. The 

justification for the names given to each cluster in Table 3.1 will be described in the 

following sections. 

 Ramanathan et al. [1989] defined cloud forcing as the difference in the 

radiative flux between cloudy areas and cloud-free areas: 

SWCRF = (↑SWclear
TOA−↑SWall−sky

TOA )

LWCRF = (↑LWclear
TOA−↑LWall−sky

TOA )
 

The ISCCP cloud data we used are from the points closest to local noon, the time of 

day when downwelling shortwave radiation at TOA and the upwelling longwave 

radiation at the surface are diurnal maximums and have large variability over season 

and location. In order to avoid a radiative weighting that would bias towards 

summertime and low-latitude points, we normalize our radiation parameters by the 

downwelling SW at TOA for SWCRF and by the upwelling LW radiation at the 

surface. Thus our cloud radiative forcing parameters become: 

SWCRFnorm = (↑SWclear
TOA−↑SWall−sky

TOA ) /(↓SWTOA )

LWCRFnorm = (↑LWclear
TOA−↑LWall−sky

TOA ) /(↑LWsurface )
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To get a diurnal average of the cloud forcing in units of W/m2, as opposed to a 

noontime value, we multiplied the normalized cloud forcing by the diurnally averaged 

value of downwelling shortwave flux at TOA for SWCRFnorm or the upwelling 

longwave flux at the surface for LWCRFnorm. Both of these values were determined by 

averaging the ISCCP flux data for all three-hourly data points during a day, yielding: 

SWCRFdiurnal = (↓SWTOA
diurnal ) * (↓SWTOA−↓SWTOA

clear) /(↓SWTOA )

LWCRFdiurnal = (↑LWsurface
diurnal ) * (↓LWTOA−↓LWTOA ) /(↑LWsurface )

 

The values for these properties are listed in Table 3.2. Since the parameters are 

calculated as cloud minus clear, the SW CRF are positive, even though they represent 

cooling. The converse is true for the LW parameters. The clusters with the largest 

SWCRFdiurnal and the largest negative LWCRFdiurnal are those that are vertically 

extensive, namely the Weak and Strong Frontal clusters. The Cirrus cluster represents 

where the cooling from reflected solar radiation is nearly cancelled out by the trapping 

of longwave radiation from the surface. Averaging these properties, weighting by their 

relative frequencies, resulted in an estimate of the cloud radiative forcing of all 

midlatitude clouds. Our calculation found a net cooling of -39 W/m2, which is a 

slightly greater cooling effect than was found globally by other studies (-17 W/m2 by 

Ramanathan et al., 1989; and -27 W/m2 by Ardanuy et al., 1991). 

In addition to the satellite-derived cloud properties, we also looked at average 

cloud properties derived from the EECRA [Hahn and Warren, 1999]. This data, which 

is comprised of frequency of occurrence of cloud types as reported by a surface 

observer. Over the ocean, this data is primarily provided by merchant ships, therefore 
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data over southern hemisphere oceans is sparse. As a result, the mean surface 

observations in Table 3.3 are for the northern hemisphere points only. This should not 

bias the results appreciably, since no cluster is primarily restricted to the southern 

hemisphere, and mean cloud properties and dynamics are similar for each cluster in 

either hemisphere (not shown). 

Table 3.3 shows the frequency of occurrence for 11 different primarily low-

cloud categories for all clusters, and average low-cloud and total cloud amount. Each 

cell of the table shows the mean value for that cluster and the anomaly over the mean 

for all clusters. The relative values of the surface observations correspond with the 

satellite-derived cloud properties in a gross sense, but because of the different spatial 

scale and method of observation, we would naturally expect there to be differences. 

The surface observations are particularly useful in distinguishing the differences 

between the low-cloud clusters and providing information on cloud extent underneath 

thick clouds. 

The Small Cu cluster shows the highest occurrence of clear-sky observations, 

6.3% of the time, more than twice as frequent as for other clusters. This cluster also 

has a higher than average occurrence of small cumulus (18.5%) as well as moderate 

and large cumulus (16.8%). The Large Cu cluster has an even larger enhancement in 

this category (18.6 %), with large amounts of mixed cumulus and stratocumulus 

(22.5%) and ordinary stratocumulus (18.6%). The Sc/St cluster is fairly evenly divided 

between mixed cumulus and stratocumulus (20.2%), ordinary stratocumulus (20.6%), 

and fair-weather stratus (15.4%). There is an increase in low cloud amount going from 
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cluster #1 to #3 in both the surface observations and the satellite data (Table 3.3). The 

large low-level cloud amount for the Deep As (80.9%), Weak Frontal (79.9%), and 

Strong Frontal clusters (86.4%) suggests that these clouds most often extend down to 

the surface, even though the satellite retrievals are not able to provide that information. 

 

Characteristic Dynamics  

Dynamical parameters associated with ISCCP data were obtained from the 

NCEP-NCAR Reanalysis, a global gridded product available in six-hour increments. 

To provide insight into the atmospheric state and advective forcing associated with the 

various cloud regimes, we averaged vertical profiles of NCEP data over the times 

corresponding to each cluster. Monthly means for each spatial point and each vertical 

level were removed from all meteorological parameters to prevent spatial and seasonal 

biases from affecting the profiles. The tendencies of water-vapor mixing ratio are 

converted to tendencies in relative humidity (RH) by dividing by the saturation mixing 

ratio at each level. For consistency, we chose all values of RH and saturation with 

respect to liquid water even though saturation with respect to ice may be more 

applicable in the upper troposphere. Additionally, the meridional wind for all points in 

the southern hemisphere was multiplied by -1 before averaging so that horizontal flow 

is in a poleward sense. Vertical profiles of perturbation RH are displayed in Fig. 3.2, 

temperature in Fig. 3.3, pressure vertical velocity in Fig. 3.4, horizontal advective 

tendencies of water-vapor mixing ratio in Fig. 3.5, and horizontal advective tendencies 

of temperature in Fig. 3.6. Profiles of vertical advection tendencies of both 
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temperature and water vapor (not shown) are similar to the profile of vertical motion 

(water vapor being the opposite sign). 

The mean cloud properties of each cluster are physically consistent with the 

dynamical forcing. The low cloud clusters (1-3) occur in regions of gridbox mean 

descent, with relatively high moisture confined to the lower troposphere. Cluster 1 has 

the weakest average dynamical forcing, with near-mean profiles in temperature (Fig. 

3.3) and both zonal and meridional wind (not shown), as well as horizontal advection 

of moisture (Fig. 3.5) and horizontal advection of temperature (Fig. 3.6). Clusters 2 

and 3 have very similar dynamics, with the exception of their temperature profiles. 

Between the two clusters, there were different temperature reversals near 300 mbar. In 

the Large Cu cluster, the temperature profile switches from anomalously cold below 

300 mbar to anomalously warm above that level. This temperature profile indicates a 

depressed tropopause. The Sc/St cluster, on the other hand, had an opposite 

temperature reversal—warm below and cold above 300 mbar, suggesting a slightly 

elevated tropopause (Fig. 3.3). Additionally, there is a temperature inversion in the 

lower troposphere for this cluster.  

The Weak and Strong Frontal clusters exhibit signs of being between the 

trough and the ridge in a midtropospheric synoptic wave. Both have strong upward 

motion (Fig. 3.4) and a very moist troposphere (Fig. 3.2), as well as a relatively 

southwesterly flow (in a northern hemisphere sense) near the tropopause (not shown). 

Both frontal clusters exhibit cloud cover extending down to the surface (table 3.3), 



   

56
 

suggesting that the Weak Frontal cluster is not solely high-level clouds advected off 

from the Strong Frontal cluster.  

The profiles of dynamics for the Deep As cluster are similar in character but 

smaller in magnitude than clusters 6 and 7. The RH profile for the Ci cluster shows 

significant moisture above 500 mbar (Fig. 3.2) and the temperature profile (Fig. 3.3) 

suggests that it coincides with an elevated tropopause. The large positive horizontal 

moisture advection (Fig. 3.5), suggests that some of these clouds are formed as blow-

off from deep convective clouds, while the small upward motion in the upper 

troposphere suggests that some of these clouds may be dynamically generated in the 

upper atmosphere (Fig. 3.4). 

Figures 3.7a-g show the spatial distribution of annual mean frequency of each 

cluster. The most frequent cluster (Small Cu) is restricted to the equatorward and 

coastal regions of our analysis (Fig. 3.7a) and has the lowest cloud fraction of the 

seven clusters. The histogram (Fig. 3.1) shows that this cluster is predominantly low 

clouds, but the mean cloud-top pressure of less than the other low clouds implies that 

small amounts of high clouds are mixed in. The second cluster (Large Cu) is more 

extensive than the first, occurs more often in the center of the ocean basins, and is 

more frequent in the southern hemisphere (Fig. 3.7b). The final low-cloud cluster 

(Sc/St) has a very distinctive geographical distribution. The region of highest 

frequency is the subtropical anticyclone region in the eastern Pacific Ocean. Other 

regions of frequent Sc include the northern Pacific Ocean and off the west coast of 
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Australia (Fig. 3.7c). Other anticyclone regions that frequently have Sc are too far 

equatorward to be included in our analysis. 

The only predominantly midlevel cluster (Deep As) has extensive cloud cover 

and is primarily located in the higher latitude regions of the analysis domain (Fig. 

3.7d). These clouds tend to be restricted to higher latitudes and have an increased 

frequency in northern hemisphere summer (Fig. 3.11), suggesting that these are 

weakly forced synoptic storms. From surface observations, the low-cloud frequency 

for this cluster is 81%, suggesting that the clouds extend to the surface and are 

frequently precipitating (Table 3.3). The cirrus cluster (Ci) has the smallest cloud 

reflectivity and several regions of occurrence. The first is in the western Atlantic 

Ocean, seemingly high-level blow-off from decayed synoptic storms crossing the 

Americas. The other region of increased frequency is in the central Pacific, possibly 

the cirrus advected from the deep convective towers of the west Pacific equatorial 

warm pool (Fig. 3.7e). The final two clusters (Weak Frontal and Strong Frontal) are 

fixtures of the storm track, with the Strong Frontal cluster more focused in the western 

half of the ocean basins (Figs. 3.7f-g). These two clusters have similar mean cloud 

fraction and cloud-top pressure, but the Strong Frontal cluster has much higher optical 

thickness (Table 3.1). 

As well as looking at the spatial distribution of each cluster, we can also 

compare the relative location of each cluster. Figure 3.8 shows the relative frequency 

of clusters in the region surrounding the Strong Frontal cluster. Each box shows the 

average frequency of occurrence in a Around the Strong Frontal cluster, the location 
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of the other clusters is consistent with their placement in the midlatitude synoptic 

wave. The Large Cu cluster is most frequently found to the west of the Strong Frontal, 

while the Ci cluster is predominantly to the east and northeast (Fig. 3.8).  

 As mentioned previously, our clustering algorithm has the ability to converge 

to a different solution, depending on the initial seeds provided. We resolved this by 

taking the case with the smallest total variance. Other than the set with the lowest sum 

of variance, there are two sets of clusters to which the solution can converge. The only 

difference is the inclusion of either an additional low-level or midlevel cluster, both 

with the loss of one of the Frontal clusters. In analyzing clustering results for values of 

k higher than seven, we often found cases with more than three low-cloud or more 

than one midlevel cluster. In both of these instances, the inclusion of the additional 

cluster did not improve the analysis, as the cluster with intermediate cloud properties 

also exhibited intermediate meteorological properties. 

 

Seasonal Cycle 

In order to gain a more in-depth understanding of the dynamics of each cluster, 

it is useful to examine the seasonal cycle of each cluster’s spatial distribution. In 

cluster 1, the spatial distribution of each season is nearly identical to that of the annual 

mean (not shown). Figs. 3.9a and 3.9b show the spatial distribution of the Large Cu 

cluster for the December-January-February (DJF) and June-July-August (JJA) 

seasons, respectively. In DJF, the clouds are predominant in the North Pacific, with 

extensive occurrence in the western half, suggesting that these clouds are the result of 
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cold air advecting over warmer water behind a frontal system. There is a marked 

reduction in these clouds in the North Atlantic off the east coast of North America, 

possibly due to the warmer water of the Gulf Stream. 

 The Sc/St cluster has a very strong seasonal cycle (Fig. 3.10a-b). In DJF, this 

cluster is primarily restricted to the southern hemisphere storm track region, most 

likely associated with post-frontal Sc clouds (Fig. 3.10a). In the boreal summer, these 

clouds dominate the north and east Pacific Ocean and, to a slightly lesser extent, the 

north and east Atlantic Ocean. Sc clouds in the eastern Pacific anticyclone region are 

most extensive at this time of year (Fig. 3.10b). 

 For the most part, the distributions of clouds in the Deep As and Ci clusters for 

each season are fairly similar to the mean distributions (not shown). The exception for 

the As cluster is for JJA in the North Pacific (Fig. 3.11). The latter is evidence that 

these clouds are associated with relatively weak frontal storms that are confined to 

higher latitudes and most frequent in the summer months. For the Ci cluster, there is a 

region of enhanced frequency in the western North Pacific Ocean near the southern 

extent of our domain in JJA (Fig. 3.12). These high clouds may be the result of greater 

convection in the western equatorial warm pool, leading to more blow-off from the 

convective towers. 

 

Conclusion 

This study demonstrates how clouds can be grouped into distinct regimes 

based on a k-means clustering algorithm applied to satellite-derived cloud data. The 
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data used for this study were cloud fraction in three bins of cloud-top pressure and 

three bins of cloud optical thickness. Atmospheric dynamics, derived from NCEP-

NCAR Reanalysis, allowed us to consider these cloud clusters as part of the synoptic 

environment in which they reside. Our findings were also consistent with the spatial 

distribution of each of the clouds, allowing us to label these cloud clusters as forced by 

the synoptic meteorology. 

  The deep, thick cloud clusters (6 and 7) exhibit dynamics indicative of being 

part of a synoptic wave: strong ascent, southwesterly flow, a moist troposphere, and an 

elevated tropopause. Additionally, the frequency of occurrence of these cloud clusters 

indicates that they occur in the storm-track region and preferentially in the winter 

season. The low cloud clusters (1, 2, and 3), with weak mean descent, moist lower 

troposphere, and weak forcing, represent the dynamics that would be associated with 

low clouds over the ocean. The unique spatial distribution of these cloud clusters 

reinforces the interpretation of their dynamics, whether it is the prevalence of low 

clouds in the subtropical anticyclone region of the Pacific Ocean or in the north and 

west Pacific during winter months. 

Clustering provides a tool for examining large amounts of data and extracting 

information about patterns within the data. The clustering of cloud properties can 

group observations with similar large-scale dynamics, an effective method of 

diagnosing the ability with which GCMs will accurately predict cloud properties. 

Instead of requiring that models reproduce zonal or seasonal means, we can learn 

whether a model can recreate the observed cloud clusters with the same frequency and 
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spatial distribution as is observed in nature. Also, if certain clusters are not simulated 

well, we can compare the model-simulated dynamics for a given cluster to the 

observed dynamics to better determine the source of a model’s deficiency. 

Additionally, since within each cluster there are relatively uniform dynamics, 

we can determine the thermodynamic change in cloud properties due to surface 

warming (Part II). By keeping dynamics constant, we are able to obtain an estimate of 

the partial derivative of cloud properties with surface temperature from observations 

rather than from computer models.  
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Table 3.1 – Mean ISCCP properties for each cluster. 

  
1 - Small 

Cu 
2 - Large 

Cu 3 - Sc/St 
4 - Deep 

As 5 - Ci 
6 - Small 
Frontal 

7 - Large 
Frontal 

Frequency 0.275 0.184 0.165 0.14 0.113 0.077 0.043 

Mean CF 54.1 77.8 92.9 97.5 87.4 99.0 99.4 

Mean CTP 658.2 781.0 776.4 584.3 431.8 382.6 347.6 

Mean Tau 3.63 2.89 7.19 8.30 2.30 8.90 23.08 

emiss_cld 0.905 0.847 0.991 0.997 0.834 0.999 1.000 

CTT 267.9 272.4 274.4 259.7 246.8 240.8 236.7 

 
Table 3.2- Mean ISCCP flux data for each cluster. 

  
1 - Small 

Cu 
2 - Large 

Cu 
3 - 

Sc/St 
4 - Deep 

As 
5 - Ci 

6 - Small 
Frontal 

7 - Large 
Frontal 

SWCRF -39.01 -40.46 -96.96 -112.89 -55.04 -123.05 -168.38 
LWCRF 14.81 10.32 13.17 40.59 46.71 78.26 87.02 
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Table 3.3 – Mean surface-reported cloud properties for northern hemisphere points. 
 

Cluster # 
Obsevation   

1 2 3 4 5 6 7 

Mean 6.8 2.2 1.1 0.4 3.5 0.4 0.2 
Clear-sky Frequency 

Anom 3.7 -0.9 -2.0 -2.6 0.4 -2.7 -2.9 

Mean 2.2 2.1 10.5 9.3 1.8 9.1 12.5 Obscured-sky 
Frequency Anom -3.3 -3.4 5.0 3.8 -3.8 3.6 6.9 

Mean 58.2 68.5 87.1 90.7 67.4 92.6 95.9 
Total Cloud Amount 

Anom -16.5 -6.3 12.4 15.9 -7.4 17.9 21.1 

Mean 47.2 59.7 79.9 80.9 48.7 79.9 86.4 Low-level Cloud 
Amount Anom -16.6 -4.1 16.1 17.1 -15.1 16.1 22.6 

Mean 4.2 6.4 4.6 11.5 3.0 13.1 30.1 Rain and Snow 
Frequency Anom -3.3 -1.1 -2.9 4.0 -4.5 5.6 22.6 

Mean 16.3 6.4 4.9 4.7 17.8 5.6 3.9 No-low-cloud 
Frequency Anom 6.2 -3.7 -5.3 -5.4 7.7 -4.5 -6.2 

Mean 18.5 13.7 5.1 4.5 15.7 4.7 2.5 Small Cumulus 
Frequency Anom 7.1 2.3 -6.3 -6.9 4.4 -6.7 -8.8 

Mean 16.8 18.6 6.9 6.5 14.1 5.8 3.8 Moderate and Large 
Cumulus Frequency Anom 4.7 6.5 -5.3 -5.7 1.9 -6.4 -8.3 

Mean 16.9 22.5 20.2 19.3 18.8 18.1 12.3 Mixed Cumulus and 
Stratocumulus 

Frequency Anom -1.8 3.7 1.5 0.6 0.1 -0.6 -6.4 

Mean 9.6 18.6 20.6 18.3 12.1 16.7 13.7 Ordinary 
Stratocumulus 

Frequency Anom -4.4 6.5 6.6 4.4 -1.8 2.8 -0.3 

Mean 5.5 5.8 15.4 15.7 6.3 16.2 17.9 Fair-weather Stratus 
Frequency Anom -4.6 -4.3 5.2 5.6 -3.9 6.1 7.8 

Mean 6.1 7.5 11.4 16.0 6.2 18.5 28.0 Bad-weather Stratus 
Frequency Anom -4.5 -3.2 0.8 5.4 -4.4 7.9 17.3 
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Figure 3.1 – Mean ISCCP histograms of cloud-top pressure and optical thickness. 
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Figure 3.2 – Profiles of mean relative humidity for each cluster from NCEP 
Reanalysis. 
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Figure 3.3 – Mean temperature profiles from NCEP Reanalysis. 
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Figure 3.4 – Mean pressure vertical velocity. 
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Figure 3.5 – Mean horizontal moisture advection. 
 



   

69
 

 
 

 
 
Figure 3.6 – Mean horizontal temperature advection. 
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(a) – Patchy Cumulus 

 

 
(b) – Large Cumulus 

 

 
(c) – Stratocumulus/Stratus 

Figure 3.7 – Annual spatial distribution for each cluster. 
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(d) – Deep Altostratus 

 

 
(e) – Cirrus 

 

 
(f) – Weak Frontal 

Fig 3.7 (cont)
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(g) – Strong Frontal  

Fig 3.7 (cont) 
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Figure 3.8 – Spatial distribution of the seven clusters around the occurrence of the 
Strong Frontal cluster. 
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(a) – DJF 

 

 
(b) – JJA 

Figure 3.9 – Seasonal distribution of Large Cumulus cluster. 
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(a) – DJF 

 

 
(b) – JJA 
Figure 3.10 – Seasonal distribution of Stratocumulus/Stratus cluster. 
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Figure 3.11 – Distribution of Deep Altostratus cluster for JJA. 
 
 
 
 

 
Figure 3.12 – Distribution of Cirrus cluster for JJA. 
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CHAPTER 4 

In order to fully understand the implications for Earth’s climate system of 

increased carbon dioxide, we must understand how all elements of climate might 

change. Clouds play an integral part in the climate system by reflecting solar radiation 

and absorbing terrestrial radiation. The balance between cooling and warming is an 

important control on the temperature of Earth’s surface. Clouds reflect as much as 200 

W/m2 more shortwave radiation than clear sky [Weaver and Ramanathan, 1997], 

while the total direct radiative forcing of a doubling of atmospheric CO2 weighs in at 

less than 2 W/m2. Since clouds are such a important control on the balance of radiation 

in the atmosphere, it is important to understand how clouds might respond to an initial 

warming from increased CO2; this is known as the cloud-climate feedback. 

A first step in understanding cloud feedbacks is to determine the sensitivity of cloud 

properties to temperature. Jakob et al. [2005] suggest that linking distinct cloud 

regimes to specific characteristics of the atmosphere can be particularly useful in 

understanding cloud feedbacks. The present study builds on the classification system 

laid out in the previous chapter to diagnose the sensitivity of cloud properties—

particularly their ability to affect the flux of radiation in the atmosphere—to changes 

in atmospheric temperature. 

A k-means clustering algorithm is applied to International Satellite Cloud 

Climatology Project (ISCCP) data to group cloud regimes based on similar cloud 

properties. Many other studies have shown this to be an effective method for 

separating satellite data into cloud regimes accompanied by distinct dynamics and 
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thermodynamics [Jakob and Tselioudis, 2003; Gordon et al., 2005; Jakob et al., 

2005]. The use of the clustering algorithm allows us to group cloud scenes with 

similar atmospheric dynamics and to divide this relatively homogeneous group into 

relatively warm and cold groups, providing information about thermodynamic changes 

to clouds and the resulting effect on the balance of radiation in the climate system. 

Section 2 describes the data used in this study. The third section describes the 

clustering routine and the method for distinguishing warm and cold cases. Section 4 

discusses the changes in the radiative properties of clouds as a result of atmospheric 

warming. 

 

Data Sources 

The source of cloud observations for this investigation was the three-hourly 

ISCCP D1 equal-area (280 km x 280 km) data set, originally processed from radiances 

primarily measured by geostationary weather satellites, with lesser contribution from 

polar-orbiting satellites [Rossow et al., 1996; Rossow and Schiffer, 1999]. The ISCCP 

data consist of cloud fractions within a gridbox in three intervals of cloud-top pressure 

(CTP) and cloud optical thickness (τ), giving us nine ctp-τ categories. Each element of 

the data is the fraction of individual satellite pixels that exhibit those height and 

thickness properties. Since we analyzed the optical properties of clouds, valid data 

only exist for daytime hours. We restricted our analysis to one time point per day for 

each satellite gridbox, choosing the value with the smallest solar zenith angle (closest 

to local noon). This restriction avoided biases associated with more valid data points 
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from regions near the equator and from points in the summer hemisphere, where there 

are a greater number of daylight hours. The satellite pixels used to generate the ctp-τ 

histograms are approximately 4-7 km in size and spaced approximately 30 km apart, 

with up to 80 pixels per gridbox. 

Our analysis spans nearly the entire available record of ISCCP, 21 years (1984-

2004), and incorporates all ocean points between 30° and 50° in both hemispheres, 

representing 1,444 gridboxes. The ISCCP data consisted of nearly 10 million 

observations, each consisting of a CTP-τ histogram, which is a nine-dimensional 

vector of cloud fraction. Clear-sky observations, which are infrequent (occur less than 

1% of the time), and for which all elements of the vector are exactly 0, are excluded 

from this analysis. 

In addition to mean cloud properties, we examined the radiative flux data 

derived from the ISCCP data [Zhang et al., 2004]. The flux data consists of upwelling 

and downwelling, shortwave and longwave radiative flux for both clear and cloudy 

parts of the gridbox. This data is provided at the surface, the top of the atmosphere 

(TOA), and at three levels within the atmosphere (680 mbar, 440 mbar, and 100 

mbar). In addition to the radiances from the ISCCP data, the profiles of temperature 

and humidity are derived from TIROS operation vertical sounder (TOVS). This with 

column ozone abundance, ISCCP derived profiles of cloudiness, and a climatological 

distribution of aerosol are input into the radiative transfer model of the Goddard 

Institute for Space Studies (GISS) GCM. 
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In order to obtain information about the dynamics and thermodynamic 

structure of the atmosphere, we utilized National Center for Environmental Prediction 

(NCEP) National Center for Atmospheric Research (NCAR) Reanalysis [Kalnay et 

al., 1996]. This data set provided standard meteorological parameters as well as the 

advective tendencies of moisture and temperature derived from the large-scale 

gradients and atmospheric motions, which are important to the formation of clouds. 

We have restricted our analysis to midlatitudes because much of the dynamical forcing 

that leads to cloud formation in these regions is at or above the spatial scale of the 

satellite gridboxes, and the best quality reanalysis data from NCEP-NCAR is in the 

midlatitudes. 

 

Clustering and Temperature Restriction 

The clustering algorithm used in this study is discussed in detail in the 

companion study (Part I). The k-means procedure classifies all data elements into a 

specified number of clusters such that within-cluster variance is minimized [Hartigan, 

1975; Jakob and Tselioudis, 2003]. The only arbitrary parameter needed is the number 

of clusters; the character of the individual cluster means is then objectively determined 

by the data. The clustering process began with random selection of k data elements as 

initial seeds, each element comprising a nine-element vector of cloud fraction in each 

height-thickness category. All other elements in the data set were then assigned to the 

initial seed to which they were closest in a Euclidean sense. The number of elements 

in a cluster divided by the total number of elements is the frequency of occurrence of 
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the cluster, and the average of all elements in the cluster is the centroid. These cluster 

centroids became new seeds to reinitialize the clustering routine, which was repeated 

until the centroids converged. 

 Before the clustering algorithm was applied to the data, some quality control 

was used to remove unreliable data points. All points with any sea ice, as reported by 

the satellite, or any points with anomalously high clear-sky albedo were excluded. The 

normal range of clear-sky albedo was determined for bins of solar zenith angle (SZA) 

by calculating the difference between the 1st percentile and the median value. A data 

point has a valid value for clear-sky albedo if it is less than the sum of the median and 

the difference between the median and the 1st percentile value. This allows clear-sky 

albedo to vary uniformly above and below the median. This calculation is done 

independently for bins of SZA, as there is a strong relationship between αclear and SZA 

(not shown). We also compared the skin temperature as reported by the satellite (Tskin) 

to the sea-surface temperature (SST) derived from NCEP reanalysis. We exclude 

points in which Tskin was less than 271 K and cases where the difference between SST 

and Tskin was greater than -4K and less than 8K. We noticed that Tskin tended to be 

warmer than SST by about 2K for most observations over the midlatitude oceans. All 

of these restrictions removed less than 1% of the initial data, but was necessary to 

ensure there were no spurious changes contaminating our analysis. 

To best approximate temperature changes due to climate change, we used the 

mean temperature of the troposphere to divide cases into warm and cold, and did not 

restrict the temperature difference to the surface. In order for a case to be considered 
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relatively warm (or cold), it had to be above (or below) the median of tropospheric 

mean temperature for each ISCCP gridbox, calendar month, and cluster number. This 

is done to ensure that no geographical or temporal biases are introduced. As observed 

by Norris and Iacobellis [2006], a large contributor to local temperature is temperature 

advection. In order to eliminate this dynamical influence, we require that all cases 

analyzed be in the middle portion (between 25th and 75th percentile) of horizontal and 

vertical temperature advection. This is conducted independently for three different 

layers of the atmosphere, which corresponded to the layers of the ISCCP cloud 

histograms (1000-680mbar, 680-440mbar, and 440-100mbar). 

Two more dynamic differences to be controlled for are the lower-tropospheric 

static stability and the tropopause height. The former has particular influence on the 

dynamics of the stratocumulus cluster, while the latter influences the three high-cloud 

clusters. The change in temperature is greater in the mid-troposphere than at the 

surface, so cases that are relatively warm have a higher stability than cold cases. To 

correct for the dynamic influence of changes in lower-tropospheric stability, we 

require that the temperature difference between 1000mbar and 700mbar be in the 

middle portion for the data. For the high-cloud clusters, warm cases tend to have a 

higher tropopause, which allows for clouds to extend higher in the atmosphere. Since 

we are interested in non-dynamical effects of temperature on clouds, we wanted to 

minimize this effect. To do so, we require that the temperature difference between 

200mbar and 400mbar be in the middle portion. The temperature difference between 

these two levels acts as an indication of tropopause height because of the strong 
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temperature reversal that occurs between 400mbar and 200mbar. Again, all of this is 

conducted independently for each ISCCP gridbox, calendar month, and cluster 

number, and we ensure that each group has the same number of warm and cold points. 

The initial data contained just under 10 million points, and after all these 

restrictions we are left with about 75,000 points designated as warm and the equal 

number as cold. In order to ensure that our study is relevant, we must strike a balance 

between being overly selective on dynamic constraints and keeping a sufficiently large 

number of points. 

 To understand the differences between cases that are warm or cold, we must 

analyze the variability of cloud and meteorological properties within each group. To 

determine this, we calculate the 95% confidence interval for the cloud and 

meteorological parameters in the warm and cold groups of each cluster. For each 

cluster, we calculate the effective number (Neff) of points that are designated warm or 

cold. Points are considered independent observations if they are not adjacent 

gridboxes and separated by more than one day in time. From all points that are either 

warm or cold, we randomly select Neff points, without replacement, and label them as 

warm, and the equal number as cold. We then have a selection of points that has the 

same effective number as our original warm and cold groups, but with a random 

mixture of warm and cold points. We repeat this 1,000 times. For mean cloud or 

meteorological properties to be different at the 95% confidence level, the difference 

must be greater than 975, or fewer than 25 of the random realizations described above. 
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Results 

Figure 4.1 shows the mean ISCCP histograms for each of the seven clusters 

that were described in Part I of this study. These histograms represent the frequency 

that clouds in the domain exhibit the specified category of cloud-top pressure and 

cloud optical thickness. Since we are interested in changes to clouds as a result of 

surface warming, we will focus on differences in cloud properties between the warm 

and cold cases. 

Figure 4.2 shows the difference between the ISCCP histograms for the warm 

cases and cold cases. Unshaded areas of the histograms represent regions where the 

difference was not significant at the 95% confidence level as described previously. 

Additionally, Table 4.1 shows the warm-cold differences in mean cloud properties for 

each cluster per degree change in temperature. Again, numbers are shown only for 

those values that are different than zero at the 95% confidence level. 

 In Table 4.1 we see that there is a fairly consistent change between the 

different clusters. Reduction in cloud fraction, increase in cloud-top pressure 

(lowering of cloud-top), and increase in optical thickness are the most common pattern 

going from cold to warm. The Patchy Cu cluster has the largest decrease in cloud 

fraction at 2.3%/K, accompanied by increases in cloud-top pressure and optical 

thickness. The other low-cloud clusters (Large Cu and Sc/St) have smaller reductions 

in cloud fraction, but have large increases in cloud-top pressure at 6.9 and 9.1 mb/K, 

respectively. The Large Cu cluster’s increase in optical thickness (0.09/K) is similar to 

that of the Patchy Cu (0.13/K), while the Sc/St cluster shows a reduction in optical 
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thickness of 0.05/K. The Deep As cluster shows little change in cloud fraction or 

cloud-top pressure, but exhibits the largest change in optical thickness of 0.33/K. A 

reduction in cloud fraction of 0.9 %/K is accompanied by a reduction in cloud-top (-

3.8 mb/K), with a small change in optical thickness (0.03/K). For the weak frontal 

cluster, the only significant change is an increase in optical thickness of 0.25/K, while 

the strong frontal cluster has no significant changes (Table 4.1). 

 Figure 4.2 shows the difference between the mean ISCCP histograms between 

the warm and cold cases for each cluster. The first two clusters exhibit a general shift 

to optically thicker clouds, with reductions in the occurrence of clouds in the thinnest 

category and increases in the middle-thickness category. This is mirrored in the 

increase in mean optical thickness for these two clusters. Similar shifts toward the 

higher optical thickness can be seen for the Deep As cluster as well as the Weak 

Frontal cluster. A decrease in mean cloud-top pressure for the Cirrus cluster can be 

seen from the changes in the histogram. A general decrease in clouds is exhibited in 

the lower two levels of the atmosphere with an attendant increase in cloud fraction in 

the upper level. 

 To aid in the understanding in the cloud changes, we can look at the 

differences in the mean profiles of meteorology derived from NCEP Reanalysis. 

Figures 4.3-4.7 show the average anomaly profile of temperature, relative humidity, 

vertical velocity, and specific humidity (respectively). The similarity in the profiles of 

vertical velocity give confidence that the dynamics in the warm and cold subgroups in 

the cluster are similar. 
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 In order to better understand the effect of changes in cloud properties on the 

climate system, it is important to look at changes in the fluxes of radiation in the 

atmosphere. Upwelling and downwelling long- and shortwave radiation data are 

provided by the ISCCP flux data at the surface, top-of-atmosphere, and three levels in 

the atmosphere (100mb, 440mb, and 680mb). These levels correspond to the 

boundaries between low, middle, and high clouds in the ISCCP histograms. In order 

for our study to be applicable to the climate change scenario of warming from 

increased CO2, we must be careful in our analysis of radiative fluxes. Since we are 

only selecting one satellite observation per day for each ISCCP gridbox, and it is the 

observation closest to local noon, we must normalize the shortwave fluxes by the top-

of-atmosphere insolation. For each observation, the shortwave flux at any point in the 

atmosphere is divided by the insolation for that point. The shortwave fluxes are then 

multiplied by the diurnally averaged insolation for that cluster. This allows us to 

calculate the mean radiative effect of the changes in cloud properties. Table 4.2 shows 

the mean shortwave cloud radiative forcing (SWCRF) for warm and cold cases 

defined as: 

 

The shortwave fluxes must be normalized by the instantaneous insolation, so that more 

shortwave forcing is not primarily a result of more incoming solar radiation. To 

convert SWCRF back to units of W/m2, we multiply the average difference between 

the clear and all-sky SW fluxes by the diurnally averaged insolation for each cluster. 

SWCRF = (SW ↑clear,normalized
TOA −SW ↑all−sky,normalized

TOA )* SW ↓diurnal
TOA
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This allows us to calculate average changes in cloud properties that are not biased by 

season or latitude. 

 In order to understand the changes in SWCRF, we can break the changes into 

components. Another definition of SWCRF: 

This allows us to attribute changes in SWCRF to observed changes in cloud 

properties, either cloud fraction (f) or α , which is the difference between the albedo of 

an overcast scene and the clear-sky albedo. For most clusters, the changes to clear-sky 

albedo are smaller than the changes to the albedo of the overcast scene (Table 4.2). To 

break up the SWCRF changes, we define: 

 

Therefore, the term ΔSWCRFCF  represents changes in the SWCRF resulting only from 

changes in cloud fraction while ΔSWCRFα  represents changes only from changes in  

α . These changes are primarily a result of changes to the cloud, as opposed to clear-

sky changes (Table 4.2). All calculations are conducted such that a positive number 

represents a net warming for the warm cases relative to the cold cases. 

 For the Patchy Cu cluster, there is a large warming of 1.3 W/m2*K associated 

with a reduction in cloud fraction, letting more solar radiation in, while only partially 

balanced by a cooling associated with a small increase in reflected shortwave radiation 

SWCRF = − f *α * SW ↓TOA

α =αovercast −αclear =
SW ↑overcast

TOA −SW ↑clear
TOA

SW ↓TOA

ΔSWCRFCF = −Δf *α * SW ↓TOA

ΔSWCRFα = − f *Δα * SW ↓TOA
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(-0.3 W/m2*K) as a result of an increase in optical thickness (Table 4.1). There is a 

near cancellation in the SW effects for the Large Cu cluster, with a small warming (0.3 

W/m2*K) due to a decrease in cloud fraction nearly balanced by a change in SWCRF 

of -0.4 W/m2*K from the increased opacity of these clouds. The changes to the Sc/St 

cluster warm the climate system, with warming resulting from less cloud fraction (0.5 

W/m2*K) and a 0.7 W/m2*K warming from a modest increase in optical thickness of 

0.05 (Table 4.1). 

 The largest SW change among any of the clusters is due to a cooling of the 

Deep As cluster. All of the -1.5 W/m2*K change in SWCRF is a result of the increase 

in optical thickness of 0.33/K. The warming of 0.3 W/m2*K for the Ci cluster is a 

result of the reduction of cloud fraction, while changes in optical thickness have 

negligible impact. Conversely, the change in optical depth produces the large cooling 

of -1.0 W/m2*K for the Weak Frontal cluster. There is little change in the SW 

properties of the Large Frontal cluster. 

 For the changes in longwave flux, calculating the difference between the 

average LWCRF for the warm and cold subgroups is not directly applicable to the 

climate change scenario, since the temperature difference that we observe is not 

identical to what we would expect from a doubling of CO2. The temperature change is 

largest in the mid-troposphere, with a much smaller difference near the surface. This is 

in contrast to a much more uniform warming with height projected in 2xCO2 model 

simulations (IPCC, 2007). Our observations will underestimate the upwelling 

longwave flux from the surface, relative to the more uniform warming associated with 
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climate change. In order to understand how the longwave fluxes might change, we can 

examine the components of the longwave flux: 

 

We also can examine the terms that go into the top-of-atmosphere upwelling LW flux 

for overcast sky and the LWCRF, where gac is the above-cloud greenhouse parameter, 

εcld is the cloud emissivity, and LWbc is the LW flux coming from beneath the cloud: 

 

The cloud greenhouse parameter accounts for the reduction in the emission from 

cloud-top or from the atmosphere and surface below the cloud. For clouds that have 

near-unit emissivity, namely the Sc/St, Deep As, and the two Frontal clusters, the 

below-cloud longwave flux will be negligible. In these cases, nearly all radiation 

emitted from below the cloud-top is absorbed by the cloud. The cloud-top temperature 

(TCT) is calculated from the cloud-top pressure and the mean temperature profile is 

derived from the NCEP reanalysis, so as to focus on the effect that changes in cloud 

properties, like cloud-top pressure, had on the TOA radiation balance. 

 Our analysis leaves us with one equation and two unknowns, namely gac and 

LWbc. Yet, since the below-cloud longwave flux goes away for clusters with ε ≈ 1, we 

can calculate a value of gac for those four clusters. Fig. 4.8 shows that the value of gac 

LWall−sky
TOA = f * LWovercast

TOA − (1− f ) * LWclear
TOA

LWCRF = LWclear
TOA − LWall−sky

TOA = f *(LWclear
TOA − LWovercast

TOA )

LWovercast
TOA = (1− gac ) *[ε*σ *TCTT

4 + (1−ε)* LWbc ]

LWCRF = f * LWclear
TOA − f *(1− gac ) *[ε*σ *TCT

4 + (1−ε) * LWbc ]
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is highly dependent on cloud-top pressure. We assume that this is the only factor that 

controls the value of this parameter. We use the values obtained for the two Frontal 

clusters and the mid-level cluster to deduce the value of gac for the cirrus cluster. 

Additionally, we use the value of gac for the St/Sc cluster and the Deep As, along with 

their mean cloud-top pressure, to determine the value of above-cloud greenhouse 

parameters for the other two low-cloud clusters. 

 Now that we have an estimate for the fraction of radiation absorbed by the 

atmosphere above the cloud for each cluster, we can use the above formula to 

calculate the below-cloud longwave flux for the three clusters with ε < 1 (Table 4.3). 

We have introduced these formulae to attribute changes in LWCRF to specific 

changes in the mean cloud properties. By utilizing the above equations, we can 

observe the change in LWCRF as a result of changes in cloud fraction, emissivity, and 

cloud-top temperature: 

 

Values for each of these is displayed in Table 4.4. The changes in LWCRF as a result 

of the consistent reduction in cloud fraction for all clusters are all negative, which is a 

cooling on the climate. The changes resulting from increases in emissivity are 

relatively small, with the largest change for the cirrus clouds, which is also the cluster 

with the smallest mean emissivity. The largest changes in LWCRF come from changes 

LWCRFf = Δf * (LWclear
TOA − LWovercast

TOA )

LWCRFε = − f * (1− gac )*Δε[σ *TCT
4
− LWbc ]

LWCRFCTT = − f * (1− gac ) *[4 *ε*σ *TCT
3

*ΔTCT ]
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to cloud-top temperature, with changes of both signs. For the Cirrus cluster, there is a 

strong warming associated with the changes in cloud-top (1.1 W/m2 per K), while 

changes from emissivity (0.4 1 W/m2 per K) and cloud fraction (-0.5 1 W/m2 per K) 

nearly balance out. This is the only cluster in which changes in cloud properties act as 

a positive feedback for both the longwave and shortwave flux.  

 

Conclusion 

This study has presented a method by which satellite-derived data on cloud 

properties can be used to determine the character and magnitude of cloud feedbacks in 

our climate system. A clustering routine is applied to 21 years of ISCCP satellite data 

in order to partition the data into seven groups, each representing a different cloud 

regime with a unique suite of dynamics. These clusters are then used as the initial 

kernel for producing a set of observations whose dynamics are relatively 

homogeneous. In addition to cluster membership, other dynamics were factored in so 

as to minimize variability in dynamics that are important for cloud formation. We can 

then isolate changes in cloud properties resulting from thermodynamic changes of the 

atmosphere. 

 Across clusters, there is a consistent reduction in cloud fraction and an increase 

in optical depth for the warm clouds. The changes in cloud-top pressure are less 

consistent. The inclusion of the ISCCP flux data allows us to examine how these 

changes in cloud properties affect the radiative flux in the atmosphere. If our study is 

to be applicable to the climate change scenario, where an external forcing results in a 
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near-uniform warming of the troposphere, we must take caution in the analysis of our 

results. Instead of taking the difference in LWCRF between the warm and cold 

subgroups, we instead examine how the LWCRF is sensitive to individual cloud 

properties. The sum of these changes can then provide information about the change in 

LWCRF in the climate change scenario. 

 For the changes in the shortwave flux, it was important to carefully normalize 

the TOA fluxes by the insolation, so as to consider mean radiative effects and so as to 

not introduce excess influence from summertime and equatorward points. The changes 

in the SWCRF could then be divided into those resulting from changes in cloud 

fraction or cloud albedo. For all clusters except the Sc/St, the two effects were 

competing, with a reduction in cloud fraction leading to a warming while an increase 

in cloud albedo leading to a cooling. 

 Table 4.5 shows the sum of the changes to the shortwave and longwave 

radiation.  This partial cancellation of shortwave effects along with strong changes in 

cloud-top temperature resulting from a lowering of cloud-top, leads to an average 

cloud forcing of -0.47 W/m2 per degree K, which suggests that clouds act as a negative 

feedback on the climate system. Williams and Tselioudis [2007] use a clustering 

algorithm on output from a GCM to suggest that changes in cloud properties will act 

to enhance the warming brought about by the doubling of CO2. 
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Table 4.1 – Mean cloud properties for warm and cold subgroups, and the difference 
between the two divided by the temperature change for each cluster. 

 

 

1 - 
Small 

Cu 

2 - 
Large 

Cu 

3 - 
Sc/St 

4 - 
Deep 
As 

5 - Ci 
6 - 

Small 
Frontal 

7 - 
Large 

Frontal 

Frequency 0.275 0.184 0.165 0.14 0.113 0.077 0.043 

Mean CF 54.1 77.8 92.9 97.5 87.4 99.0 99.4 

Warm 45.5 75.9 91.9 97.7 84.8 99.3 99.5 

Cold 50.7 77.1 92.9 97.9 87.0 99.4 99.5 

Diff (per 
K) 

-2.28 -0.55 -0.44 -0.07 -0.92 -0.04 0.00 

Mean CTP 658.2 781.0 776.4 584.3 431.8 382.6 347.6 

Warm 679.2 799.2 795.0 588.1 425.2 389.1 350.9 

Cold 668.7 783.8 774.5 589.5 434.1 388.5 349.0 

Diff (per 
K) 

4.6 6.9 9.1 -0.5 -3.8 0.3 0.8 

Mean Tau 3.63 2.89 7.19 8.30 2.30 8.90 23.08 

Warm 3.32 2.89 7.07 8.30 2.12 9.06 22.63 

Cold 3.03 2.69 7.19 7.46 2.06 8.44 22.63 

Diff (per 
K) 

0.13 0.09 -0.05 0.33 0.03 0.25 0.00 

emiss_cld 0.905 0.847 0.991 0.997 0.834 0.999 1.000 

Warm 0.884 0.847 0.990 0.997 0.808 0.999 1.000 

Cold 0.860 0.825 0.991 0.995 0.799 0.999 1.000 

Diff (per 
K) 

0.0106 0.0096 
-

0.0004 
0.0009 0.0039 0.0002 0.0000 

CTT 267.9 272.4 274.4 259.7 246.8 240.8 236.7 

Warm 270.7 274.6 276.4 260.6 246.5 242.1 237.8 

Cold 268.2 272.0 273.5 258.7 246.0 240.2 235.8 

Diff (per 
K) 

1.11 1.17 1.27 0.72 0.21 0.80 0.85 
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Table 4.2 – SWCRF for warm and cold subgroups, the difference between the two 
(per degree temperature change) and the changes in SWCRF resulting from changes in 
cloud fraction and emissivity 
 

t_diff 2.25 2.23 2.25 2.58 2.37 2.45 2.37 

 

 

1 - 
Small 

Cu 

2 - 
Large 

Cu 

3 - 
Sc/St 

4 - 
Deep 
As 

5 - Ci 
6 - 

Small 
Frontal 

7 - 
Large 

Frontal 

SWCRF -39.01 -40.46 -96.96 -112.89 -55.04 -123.05 -168.38 

Warm -30.69 -37.85 -95.33 -113.48 -50.16 -118.72 -162.83 

Cold -32.16 -37.51 -97.99 -109.70 -50.87 -116.23 -162.94 

Diff (per K) 0.66 -0.15 1.18 -1.46 0.30 -1.02 0.05 

SWCRF_cf               

Warm -25.68 -36.67 -95.29 -111.13 -47.31 -117.29 -162.77 

Cold -28.57 -37.26 -96.32 -111.35 -48.54 -117.42 -162.76 

Diff 1.285 0.264 0.457 0.086 0.516 0.055 -0.006 

SWCRF_alpha               

Warm -27.46 -37.40 -94.97 -113.21 -47.97 -118.66 -162.69 

Cold -26.80 -36.53 -96.64 -109.26 -47.88 -116.06 -162.84 

Diff -0.293 -0.390 0.742 -1.534 -0.042 -1.060 0.064 
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Table 4.3 – Below-cloud longwave flux. 

  1 - Small Cu 2 - Large Cu 5 - Ci 

LW_bc 305.01 357.71 337.99 

 
 
Table 4.4 – LWCRF changes as a result of changes in cloud fraction, cloud-top 
pressure, and emissivity. 

 

 

1 - 
Small 

Cu 

2 - 
Large 

Cu 

3 - 
Sc/St 

4 - 
Deep 
As 

5 - Ci 
6 - 

Small 
Frontal 

7 - 
Large 

Frontal 

del_LWCRF(f) 
(per K) 

  
-0.61 

  
-0.07 

  
-0.06 

  
-0.03 

  
-0.48 

  
-0.04 

  
0.00 

del_LWCRF 
(T) 

(per K) 

  
-0.53 

  
-0.92 

  
-1.38 

  
0.14 

  
1.09 

  
-0.10 

  
-0.32 

del_LWCRF 
(e) 

(per K) 

  
0.05 

  
0.25 

  
0.00 

  
0.00 

  
0.38 

  
0.00 

  
0.00 
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Table 4.5 – Total SWCRF and LWCRF changes for each cluster and the average from 
the midlatitude based on relative frequency of occurrence. 

 

 

1 - 
Small 

Cu 

2 - 
Large 

Cu 

3 - 
Sc/St 

4 - 
Deep 
As 

5 - Ci 
6 - 

Small 
Frontal 

7 - 
Large 

Frontal 
Global 

Frequency 0.275 0.184 0.165 0.14 0.113 0.077 0.043  

sum 
del_LWCRF 

-1.09 -0.74 -1.44 0.11 0.99 -0.14 -0.32  

del_SWCRF 
(total) 

0.65 -0.15 1.18 -1.47 0.30 -1.01 0.05  

SUM -0.43 -0.89 -0.25 -1.36 1.29 -1.15 -0.27 -0.47 
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Figure 4.1 – Mean ISCCP histograms of cloud-top pressure and optical thickness. 
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Figure 4.2 – Differences in ISCCP histograms between warm and cold subgroups for 
each cluster. 
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Figure 4.3 – Mean profile of anomaly temperature for warm (red) and cold (blue) 
subgroups of each cluster. 
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Figure 4.4 - Mean profile of anomaly relative humidity for warm (red) and cold (blue) 
subgroups of each cluster.  
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Figure 4.5 - Mean profile of anomaly pressure vertical velocity for warm (red) and 
cold (blue) subgroups of each cluster.  
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Figure 4.6 - Mean profile of anomaly specific humidity for warm (red) and cold (blue) 
subgroups of each cluster.  
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Figure 4.7 – Relationship between the above-cloud greenhouse parameter and cloud-
top pressure. 
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CONCLUSION 

Clouds cool Earth’s surface by reflecting incoming solar radiation and warm 

the surface by absorption of longwave radiation, a subtle balance that makes clouds a 

crucial component of Earth’s climate. Yet the representation of clouds in climate 

models continues to be the largest source of uncertainty in simulations of future 

climate [IPCC, 2007]. In order to accurately predict changes to our climate system, it 

is critical that we understand the character and substance of clouds and the exact 

nature of the role they play in the climate system. 

This study has built a method whereby a k-means clustering algorithm is 

applied to satellite-derived cloud properties. This statistical routine builds groups of 

cloud scenes that all have similar properties. By looking at how these cloud properties 

vary within relatively homogeneous groups, we can better understand the sensitivity of 

cloud regimes to changes in the atmosphere. 

The first section demonstrates how satellite observations of midlatitude cool-

season continental cloudiness can be grouped into distinct cloud regimes by 

application of a k-means clustering algorithm to gridbox mean cloud fraction, cloud 

reflectivity, and cloud-top pressure. The cloud regimes correspond to typical cloud 

types associated with various synoptic conditions over land during winter: extensive 

cirrus, patchy cirrus, frontal/nimbostratus, stratus/stratocumulus, cumulus/cirrus, and a 

mixture of clouds at a variety of levels. Averages of ground-based retrievals of cloud 

fraction, cloud height, and cloud thickness are consistent with satellite cloud 

distributions and provide additional insight into the vertical structure of the cloud



 

 

105

regimes. Consistency is also found between cloud properties of each regime and 

vertical profiles of meteorological parameters averaged over a domain approximately 

the size of a GCM gridbox and constrained by a dense network of observations to 

conserve column-integrated mass, water, energy, and momentum. In particular, a close 

relationship is found between mean vertical profiles of water vapor advection, relative 

humidity, and cloudiness for each regime. We investigated cloud properties over the 

ARM SGP site, since it was one of the few locations on Earth with accurate 

observations of water-vapor advection, but our general results should be applicable to 

many midlatitude land regions around the globe. 

The second section of our study builds on this clustering algorithm and extends 

it to all midlatitude ocean basins. The data used for this study were cloud fraction in 

three bins of cloud-top pressure and three bins of cloud optical thickness. Atmospheric 

dynamics, derived from NCEP-NCAR Reanalysis, allowed us to consider these cloud 

clusters as part of the synoptic environment in which they reside. Our findings were 

also consistent with the spatial distribution of each of the clouds, allowing us to label 

these cloud clusters as forced by the synoptic meteorology. By analyzing large areas, 

as opposed to a single observation site, we are better able to compare the relationships 

between clusters. The midlatitude ocean clusters are very similar to those found over 

the ARM SGP site, with the marked exception that low clouds are much more frequent 

over the oceans.  

Clustering provides a tool for examining large amounts of data and extracting 

information about patterns within the data. The clustering of cloud properties can 
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group observations with similar large-scale dynamics, an effective method of 

diagnosing the ability with which GCMs will accurately predict cloud properties. 

Instead of requiring that models reproduce zonal or seasonal means, we can learn 

whether a model can recreate the observed cloud clusters with the same frequency and 

spatial distribution as is observed in nature. Also, if certain clusters are not simulated 

well, we can compare the model-simulated dynamics for a given cluster to the 

observed dynamics to better determine the source of a model’s deficiency. 

Additionally, since within each cluster there are relatively uniform dynamics, 

we can determine the thermodynamic change in cloud properties due to surface 

warming. These clusters are then used as the initial kernel for producing a set of 

observations whose dynamics are relatively homogeneous. In addition to cluster 

membership, other dynamics were factored in so as to minimize variability in 

dynamics that are important for cloud formation. We can then isolate changes in cloud 

properties resulting from thermodynamic changes in the atmosphere. 

 Across clusters, there is a consistent reduction in cloud fraction and an increase 

in optical depth for warm clouds. The changes in cloud-top pressure are less 

consistent. The inclusion of the ISCCP flux data allows us to examine how these 

changes in cloud properties affect the radiative flux in the atmosphere. If our study is 

to be applicable to the climate change scenario, where an external forcing results in a 

near-uniform warming of the troposphere, we must take caution in the analysis of our 

results. Instead of considering the difference in LWCRF between the warm and cold 

subgroups, we instead examine how the LWCRF is sensitive to individual cloud 
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properties. The sum of these changes can then provide information about the change in 

LWCRF in the climate change scenario. 

 To understand changes in the shortwave flux, it is important to carefully 

normalize the TOA fluxes by the insolation, so as to consider mean radiative effects 

and so as not to introduce excess influence from summertime and equatorward points. 

The changes in the SWCRF could then be divided into those resulting from changes in 

cloud fraction or cloud albedo. For all clusters except Sc/St, the two effects were 

competing, with a reduction in cloud fraction leading to a warming and an increase in 

cloud albedo leading to a cooling. The partial cancellation of shortwave effects, along 

with strong changes in cloud-top temperature resulting from a lowering of cloud-top, 

leads to an average cloud forcing of -0.47 W/m2 per degree K, which suggests that 

clouds could act as a negative feedback on the climate system. 
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