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ABSTRACT OF THE DISSERTATION 
 

Brain Development in Toddlers and Preschoolers with Autism Spectrum Disorder:  
A Multimodal MRI Examination  

 
by 

 

Bosi Chen 

 

Doctor of Philosophy in Clinical Psychology 

 

University of California San Diego, 2023 
San Diego State University, 2023 

 
 

Professor Inna Fishman, Chair  
Professor Martin Sereno, Co-Chair 

 

 

Although symptoms of autism spectrum disorder (ASD) emerge in the first years of life, 

little is known about the trajectories of brain development and their relation to symptom onset in 

the first years of life in ASD. Identification of early brain markers of ASD during one of the 

most dynamic and vulnerable neurodevelopmental periods is critical to developing more targeted 

intervention programs. This three-paper dissertation used anatomical and functional MRI in 

combination with clinical and behavioral data that have been collected from toddlers and 

preschoolers with ASD and typically developing (TD) young children in the context of the 
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SDSU Toddler MRI Project. Study 1 (Chen et al., 2021) used resting-state fMRI data acquired 

during natural sleep from 24 children with early diagnosis of ASD and 33 TD children (aged 1.5-

3.5 years) to examine intrinsic functional connectivity (iFC) within and between functional 

networks generated with independent component analysis. Atypically increased iFC between 

visual and sensorimotor networks was found in young children with ASD, and was linked with 

greater autism symptoms, suggesting that disrupted connectivity within primary sensory circuits 

may be implicated in the emergence of autism symptomatology. Building upon these results, 

Study 2 (Chen et al., 2022) examined intracortical myelination, an aspect of brain maturation 

essential for establishing and maintaining neural connectivity, using anatomical T1-weighted and 

T2-weighted MRI data acquired in 21 young children with ASD and 16 TD children (aged 1.5-

5.5 years). Although no group differences were found between TD children and those with ASD 

in intracortical myelin estimated with T1w/T2w ratio, differential associations between 

T1w/T2w and age were identified in several early myelinated regions in the ASD and TD 

groups. The atypical age-related effects in intracortical myelin suggested a disruption in 

myelination in the first years of life in ASD, which may have cascading effects on brain network 

connectivity development. Study 3 (Chen et al., in preparation) examined multivariate 

relationships between brain structure and function using morphometric measures (i.e., surface 

area and cortical thickness) and an index of local spontaneous activity (fractional Amplitude of 

Low Frequency Fluctuation) in 38 young children with ASD and 31 TD children (aged 1.5-5.5 

years) using canonical correlation analysis. Significantly reduced structure-function correlation 

and differential age-related effects in structure-function covariation were identified in the ASD 

cohort as compared to children with typical development. Furthermore, the functional composite 

capturing local spontaneous activity was associated with overall developmental and adaptive 
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behavior skills in children with ASD. Collectively, Studies 1, 2, and 3 showed that multiple 

neurodevelopmental processes (i.e., functional network and connectivity, intracortical 

myelination, cortical morphometry, and local spontaneous activity) are implicated in ASD in 

early childhood, when autism symptoms first manifest. These findings highlight the importance 

of integrating multimodal data and examining distinct but complementary anatomical and 

functional brain measures to elucidate the trajectories of early brain development in ASD.
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INTEGRATED INTRODUCTION 
 

Autism spectrum disorders (ASD) are neurodevelopmental disorders behaviorally 

characterized by social communication deficits and restricted and repetitive behaviors, which 

appear early in life and are typically persistent throughout life (APA, 2013). As disorders of 

development, ASD can have profound, lifelong impacts for affected individuals and their 

families, with most individuals with ASD requiring long-term support in some form—familial, 

community, public services, healthcare system, employment, etc. (Lord, Elsabbagh, Baird, & 

Veenstra-Vanderweele, 2018)—making research in this population a pressing public health 

priority. Symptoms of ASD emerge early in postnatal life (Johnson, Gliga, Jones, & Charman, 

2015; Jones, Gliga, Bedford, Charman, & Johnson, 2014; Palomo, Belinchon, & Ozonoff, 2006; 

Pierce et al., 2011), can be reliably identified during the second year of life (Corsello, 

Akshoomoff, & Stahmer, 2013; Ozonoff et al., 2015; Pierce et al., 2019), and early diagnosis of 

ASD is typically stable throughout life (McCauley, Elias, & Lord, 2020). However, most 

children with ASD are not diagnosed until after age 4 (and even later in socioeconomically 

disadvantaged communities), with the median age of diagnosis in the US being 52 months 

(Maenner et al., 2020), in large part due to the lack of clinically meaningful biomarkers. The 

implications of delayed identification are significant, given the positive impact of early 

interventions on both behavior and the developing brain (Dawson et al., 2012; Estes et al., 2015; 

Landa, 2018).  

Although there is no known single etiology for ASD, the current consensus is that ASD is 

highly heritable (Sandin et al., 2017) and originates prenatally, affecting early building blocks of 

brain circuit development and function, such as protein synthesis and cellular metabolism, with 

cascading effects on neuronal proliferation and migration, synaptogenesis and synaptic signaling, 
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myelination, and network formation (Courchesne et al., 2019; Gordon & Geschwind, 2020). 

However, the current understanding of these fundamental neurodevelopmental processes, some 

of which continue to varying degrees throughout life (e.g., synaptic pruning [(Spear, 2013), 

myelination (Abrahám et al., 2010; Chapman & Hill, 2020)), is limited by the scarcity of brain 

imaging studies in young children with ASD (before 5 years of age) due to the known challenges 

of acquiring high quality imaging data early in life (Turesky, Vanderauwera, & Gaab, 2021). 

While not directly addressing the cellular and molecular mechanisms giving rise to atypical 

neurodevelopment in ASD, neuroimaging can help understand variability at circuit levels 

through examination of how different brain systems map onto various developmental trajectories 

and outcomes in ASD. Thus, investigations of brain development during early childhood, which 

represents one of the most dynamic and vulnerable neurodevelopmental periods (Gao, Alcauter, 

Elton, et al., 2015; Gilmore et al., 2012; Johnson et al., 2015), is critical for better understanding 

of both typical brain maturation and the pathogenic pathways to ASD and other 

neurodevelopmental disorders. 

Magnetic Resonance Imaging (MRI) has become a principled choice for studying the 

developing brain, including in children with neurodevelopmental disorders, because of its ability 

to examine both brain structure and function non-invasively (i.e., without ionizing radiation). 

There has been a significant increase in the number of MRI studies in early childhood due to 

improved methods in data acquisition (Dean et al., 2014; Reynolds, Long, Paniukov, Bagshawe, 

& Lebel, 2020) and data processing (Makropoulos, Counsell, & Rueckert, 2018; Zöllei, Iglesias, 

Ou, Grant, & Fischl, 2020). These advancements are particularly important as the participants 

are often required to remain still in the MRI scanner for at least 20-30 minutes given the 

sensitivity of MRI images to motion artifacts. In children older than 4-5 years old, 
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comprehensive habituation protocols have been developed and implemented by many groups to 

reduce fear and anxiety to the MRI environment and minimize in-scanner movements through 

practice in a mock scanner with feedback, in which the child’s head movement is monitored by a 

motion tracker and relayed back to the child as a game (de Bie et al., 2010). Unfortunately, these 

habituation procedures are less useful for children younger than 5, as they are unlikely to be able 

to understand and follow instructions given their developmental level. While sedation or general 

anesthesia are routinely used in clinical MRI to increase compliance and reduce movements 

when scans are clinically indicated, use of sedation in research studies is unacceptable because of 

the related risks such as hypoxia and neurotoxic effects on development. Due to these 

considerations, in research studies, infants and toddlers are usually scanned under natural sleep, 

without sedation (Chen, Linke, Olson, Ibarra, Kinnear, et al., 2021; Dean et al., 2014; Nordahl et 

al., 2016; Raschle et al., 2012). Scanning infants (from birth to 1-year-old) during natural sleep is 

relatively easy to accomplish as they can be fed and swaddled prior to the scan and are likely to 

be asleep during most of the day (Almli, Rivkin, & McKinstry, 2007). However, scanning 

toddlers and preschoolers (1-to-4-year-old) during natural sleep presents multiple practical 

challenges, such as getting the child to fall asleep in a novel environment and to maintain sleep 

during transfer to the MRI bed or while being scanned, with the loud scanner noise, as well as 

ensuring that the child remains still during sleep throughout the scan (in the same position, on 

their back), without physical constraints. Consequently, relatively few imaging studies – in 

typical development or in neurodevelopmental disorders – have been conducted in this age 

range.   

1. Brain maturation in the first years of life in typical development  
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Early childhood (which typically refers to the first years of life spanning infancy, 

toddlerhood and preschool age), when ASD symptoms first emerge and fully manifest, is a key 

period of postnatal brain maturation (Tau & Peterson, 2010), peak neuroplasticity (Kolb & Gibb, 

2011), and a critical window for emergence of cognitive and behavioral skills and rapid learning 

(Johnson, Grossmann, & Farroni, 2008). The time from birth to five years is when many 

foundational skills across all areas of development are acquired, including gross and fine motor 

skills, receptive and expressive language skills allowing communication with others, and 

socioemotional skills enabling the child to learn from others through social learning and to form 

relationships (Bornstein, 2014). These skills serve as developmental building blocks, laying 

foundation for acquisition of academic and socioemotional competencies in middle and late 

childhood, with lifelong effects on one’s adaptive functioning, health, and well-being. At the 

same time, both brain and neurocognitive development in early childhood are particularly 

responsive to environmental input (Merz, Wiltshire, & Noble, 2019; Tierney & Nelson, 2009), 

setting the stage for the greatest window of opportunity for modifying developmental trajectories 

(Dawson et al., 2012). 

1.1  Structural brain changes in the first years of life 

A growing number of cross-sectional and longitudinal studies have begun to characterize 

brain maturation in the first years of life. Generally, these studies have indicated that brain 

structure is largely in place by the second year of life, undergoing reorganization and fine-

tunning beyond two years of age. Cortical and subcortical gray matter volumes, in particular, 

grow most rapidly in the first year of life, with growth rates peaking in early childhood 

(Bethlehem et al., 2022; Gilmore et al., 2012; Haynes et al., 2020; Knickmeyer et al., 2008; 

Pfefferbaum et al., 1994). This rapid gray matter volume growth likely reflects continuous 
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synapse formation, albeit with variable rates across different brain regions (Huttenlocher & 

Dabholkar, 1997). Beyond the volumetric growth, maturational changes in brain structure are 

indexed by dramatic increases in cortical thickness and expansion of cortical surface area, as 

well as continued cortical folding, or gyrification observed in the first years of life (Brown & 

Jernigan, 2012; Li et al., 2013; Li et al., 2014; Lyall et al., 2015). The rapid cortical thickness 

growth and surface area expansion are thought to reflect postnatal increases in dendritic 

arborization, axonal elongation and thickening (as a result of continuous myelination, as 

described below), and synaptogenesis (Huttenlocher & Dabholkar, 1997). While there is a 

general consensus that expansion of cortical surface area peaks around middle to late childhood, 

the findings on when cortical thickness (CT) peaks in development are mixed (Frangou et al., 

2022; Walhovd, Fjell, Giedd, Dale, & Brown, 2017), with some studies suggesting that it peaks 

around age 8 or later (Raznahan et al., 2011; Shaw et al., 2008) while others reporting that 

cortical thinning, or decrease in CT, starts in early childhood, as early as before age 2 

(Bethlehem et al., 2022; Brown et al., 2012; Sowell et al., 2004). Generally, across various 

indices of neurodevelopment, the rate of the growth and maturational changes is nonuniform 

throughout the brain, with sensory and motor cortices developing earlier and more rapidly than 

association cortices (Brown et al., 2012; Tau & Peterson, 2010).  

In addition to these macro-scale morphometric changes, microstructural changes are also 

a salient feature of brain maturation. One such neurodevelopmental process shaping the brain 

structure and function is myelination which is essential for efficient neural communication (Liu, 

Li, Zhu, Li, & Liu, 2019), as myelinated axons and white matter fibers allow for rapid and 

reliable propagation of inter-neuronal signals across the brain. Although the majority of major 

white matter pathways are present at birth, white matter myelination continues over a protracted 
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developmental period from birth into adulthood (Gilmore, Knickmeyer, & Gao, 2018). Equally 

critical for brain maturation and connectivity is intracortical myelination found predominately in 

the deeper cortical layers (Fields, 2014), in part due to propagation of myelin in the white mater 

into the periphery of cortical neuropil (Shaw et al., 2008; Sowell et al., 2004). Intracortical 

myelination is essential for establishing and maintaining neuronal circuitry, as it contributes to 

fine-tuning the timing and synchrony of neural connectivity (Haroutunian et al., 2014). In typical 

development, the maturational timing of intracortical myelination, which commences at or near 

birth (Arnold & Trojanowski, 1996), follows a general neurodevelopmental trajectory, with 

unimodal primary sensory and motor cortices being highly myelinated by 1 year of age, and 

association areas in frontal and temporal cortices exhibiting more protracted myelination, 

continuing at least through the third decade of life (Deoni, Dean, Remer, Dirks, & 

O'Muircheartaigh, 2015; Rowley et al., 2017).  

1.2  Functional brain changes in the first years of life 

The first years of life are also a period of rapid development of brain functional 

organization. Functionally, the brain is organized into large-scale networks supporting 

specialized cognitive or physical functions (Petersen & Sporns, 2015; Raichle, 2010). Most 

functional networks are present at birth and undergo reorganization and fine-tuning throughout 

early childhood (Gao, Alcauter, Elton, et al., 2015), in parallel with the behavioral and cognitive 

milestones achieved during this pivotal period in human development (Johnson, 2001). In 

particular, primary sensory and motor networks – implicated in processing sensory information 

and supporting motor development – become increasingly more integrated in the first year of life 

and substantially resemble adult topology by age two (Gao et al., 2015; Lin et al., 2008). In 

contrast, supra-modal functional networks implicated in higher-order cognitive functions are far 
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from the adult-like organization in the first postnatal years and undergo prolonged maturation 

over the first decades of life (Gao, Alcauter, Elton, et al., 2015; Hoff, Van den Heuvel, Benders, 

Kersbergen, & De Vries, 2013).  

Current understanding of brain functional networks has been primarily informed by 

resting-state functional connectivity studies, which use fMRI blood oxygen level-dependent 

(BOLD) signal to estimate synchronicity in neural activity across different brain regions. The 

inter-regional synchronicity or coupling is thought to reflect intrinsically organized functional 

networks formed by a history of co-activation in the course of development or individual 

experience associated with functional specialization. Validity of this interpretation is supported 

by the observation that most of the resting-state functional connectivity patterns tend to occur 

between brain regions that overlap in function and have plausible neuroanatomical links, for 

example regions known to comprise motor, visual, or auditory circuitry (e.g., (Biswal, Yetkin, 

Haughton, & Hyde, 1995; Damoiseaux et al., 2006; van den Heuvel & Hulshoff Pol, 2010). 

Further, because functional networks reflect ongoing neural activity synchronized between 

different brain regions as a result of co-activation, these patterns are present and can be detected 

at rest, during so-called resting state, as well as under various states of arousal, including sleep 

and anesthesia (Power, Fair, Schlaggar, & Petersen, 2010; Raichle, 2010). Methodologically, a 

common data-driven approach for identifying resting-state functional networks (RFNs) is 

independent component analysis (ICA), which statistically decomposes fMRI data into a set of 

spatial components with maximally independent time courses (Beckmann, 2012), with resultant 

components showing close correspondence to known neuroanatomy and canonical brain 

functional activation maps (Smith et al., 2009). Based on their spatial and temporal 

characteristics, independent components are classified as RFNs (e.g., visual network spanning 
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regions in the occipital visual cortex, motor network spanning the motor strip, etc.) or non-

neuronal noise or artifact components (e.g., generated by motion during scanning, or 

corresponding to physiological variables, such as breathing or pulsation in large blood vessels 

(Griffanti et al., 2017)).  

Utilizing ICA approach, distinct RFNs have been reliably described in children and 

adults, including primary, unimodal sensory networks (i.e., visual, auditory, and sensorimotor 

networks) and higher-order or supra-modal networks, such as self-reference (default mode), 

language, attention, and executive networks (Damoiseaux et al., 2006; Smith et al., 2009). 

Comparable functional brain networks have also been reliably identified early in life in young 

children (Chen, Linke, Olson, Ibarra, Kinnear, et al., 2021; Fransson et al., 2007; Gao, Alcauter, 

Elton, et al., 2015; Gao, Alcauter, Smith, Gilmore, & Lin, 2015), with some observed even 

prenatally with fetal imaging methods (Thomason et al., 2013). As mentioned above, brain 

functional networks mature along the general neurodevelopmental sequence, with primary 

sensory networks maturing first (Gao, Alcauter, Smith, et al., 2015; Lin et al., 2008) and 

association or supra-modal functional networks undergoing prolonged maturation over the first 

decades of life (Dosenbach et al., 2010; Fair et al., 2008; Gao, Alcauter, Elton, et al., 2015), 

resembling the order in which behavioral and cognitive skills emerge and develop in early 

childhood (Johnson, 2001).  

Since the seminal studies by Gao and colleagues describing the development of RFNs in 

infants, the maturational trajectories of RFNs in toddlerhood and preschool age (1 to 4 years) 

remain understudied. Only a few studies have examined brain activation or functional 

connectivity in typically developing toddlers and preschoolers, with a particular focus on speech 

perception and language circuitry, either through passive auditory stimulation or resting-state 
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during sleep (Hutton et al., 2015; Redcay, Haist, & Courchesne, 2008; Xiao et al., 2016). 

Examining local and global functional connectivity features (i.e., amplitude of low frequency 

fluctuation, regional homogeneity, and eigenvector centrality mapping) in awake 2.5-6 year old 

children during passive viewing fMRI, Long and colleagues (Long, Benischek, Dewey, & Lebel, 

2017) found age-related increase in local and global connectivity in regions within the default 

mode and frontoparietal networks, as well as age-related shift from more global to local 

connectivity in the superior parietal and fusiform gyri, and a local-to-global shift in the superior 

temporal area, suggesting that functional connectivity undergoes substantial reorganization 

during toddler and preschool years. More recently, Bruchhage and colleagues (2020) also 

reported a cross-age shift in functional connectivity toward networks involved in higher-order 

cognitive processes (e.g., default mode, attention, and salience networks) and links between 

functional connectivity indices and developmental skills in a cohort spanning a relatively broad 

age range from infancy to early school age (3 months to 6 years). Similarly, in our own work 

(Chen, Linke, Olson, Ibarra, Kinnear, et al., 2021) we observed age-related increase in network 

homogeneity in several higher-order networks (e.g., default mode, salience, and language 

networks), which was associated with more advanced developmental skills in typically 

developing toddlers between ages 1.5 and 3.5 years, suggesting that greater network 

cohesiveness or functional specialization may be critical for, or at least coupled with 

development of behavioral skills in early childhood.  

2. Early brain development in ASD: Review of neuroimaging findings to date  

Although much of the neurobiology of ASD remains unknown, a few consistent findings 

have emerged from the relatively limited but growing number of MRI studies focusing on ASD 

in infancy and toddlerhood, including prospective studies of infant siblings of older children with 
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ASD who themselves are at a high risk for developing ASD. These studies increasingly support a 

picture of early neurodevelopmental abnormalities, including atypical brain development and 

widespread alterations in brain connectivity. The most consistently reported finding to date is 

enlargement of brain volume early in life reported at the group-level, in comparisons of young 

children with, or at familial risk for ASD to TD peers (Courchesne et al., 2001; Hazlett et al., 

2005; Hazlett et al., 2011; Nordahl et al., 2011). This early brain overgrowth appears to reflect 

accelerated growth rate between one and two years of age (Hazlett et al., 2011), affecting both 

white and gray matter volumes (Hazlett et al., 2005), and being possibly driven by cortical 

surface area hyper-expansion between 6 and 12 months of age (Hazlett et al., 2017). 

Additionally, a number of cross-sectional and longitudinal diffusion-weighted imaging (DWI) 

studies have reported atypical increases in structural connectivity (indexed by greater fractional 

anisotropy [FA]) across multiple white matter tracts (e.g., corpus callosum, cingulum, arcuate 

fasciculus) in infants and toddlers who either have been or are later diagnosed with ASD (Conti 

et al., 2017; Solso et al., 2016; Wolff et al., 2012; Xiao et al., 2014). The early increase in 

structural connectivity – contrasted with generally reduced structural connectivity (i.e., lower 

FA) reported in older children and adults with ASD (Travers et al., 2012) – is thought to indicate 

an accelerated white matter growth in the first years of life in ASD, consistent with the 

aforementioned accelerated volumetric growth. 

Besides these findings of early structural brain abnormalities in ASD detected with 

anatomical and diffusion MRI, a growing number of studies using functional MRI (fMRI) 

acquired during natural sleep have contributed unique information on the functional architecture 

of neural networks in young children with ASD. Earlier studies using fMRI activation to speech 

stimuli delivered during natural sleep have largely focused on brain function in putative language 
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regions, given that language delay had been one of the core symptoms required for an ASD 

diagnosis prior to the most recent DSM-5 diagnostic conceptualization of ASD. These studies 

have found reduced neural activity in response to speech sounds, absent or reversed hemispheric 

lateralization for language processing, and diminished interhemispheric synchronization of 

language region activation patterns in young children (1–4 years) with ASD (Dinstein et al., 

2011; Eyler, Pierce, & Courchesne, 2012; Lombardo et al., 2015; Redcay & Courchesne, 2008). 

More recently, studies have begun examining functional connectivity patterns in infants and 

toddlers who have been, or are later diagnosed with ASD. While Shen and colleagues (Shen et 

al., 2016) reported weaker cortical and subcortical amygdala connectivity in preschoolers with 

ASD (mean age 3.5 years) compared to typically developing controls (which is significant in the 

context of amygdala’s critical involvement in social cognition), most other studies to date have 

utilized data acquired in infants with familial risk for ASD (i.e., those with an older sibling with 

autism) followed prospectively (e.g., the Infant Brain Imaging Study [IBIS]). The evidence 

beginning to emerge from these studies suggests that (a) whole-brain functional connectivity 

patterns at 6 months appear to predict clinical best-estimate diagnosis of autism at two years 

(Emerson et al., 2017), and (b) distinct functional brain networks identified in both low- and 

high-risk infants at 12 months are associated with the emergence of gross motor (walking; 

Marrus et al., 2018) and fundamental social skills (initiation of joint attention; Eggebrecht et al., 

2017), as well as with the core ASD symptoms such as restricted and repetitive behaviors 

(McKinnon et al., 2019), both at 12 and 24 months. Notably, while these prospective studies 

provided important insights into the development of functional brain networks underlying 

specific behavioral outcomes (i.e., walking and joint attention), most (Eggebrecht et al., 2017; 

Emerson et al., 2017; Marrus et al., 2018) focused on outcomes shared by all high- and low-risk 
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children. Thus, still little is known about the organization and development of functional brain 

networks in ASD most proximal to the onset of its core symptomatology. This gap in knowledge 

is critical because studies in older children with ASD have provided robust evidence of disrupted 

brain connectivity in school age and adolescence (Fishman, Datko, Cabrera, Carper, & Müller, 

2015; Fishman, Keown, Lincoln, Pineda, & Müller, 2014; Fishman, Linke, Hau, Carper, & 

Müller, 2018), which persists into adulthood (cf. (Hull et al., 2016) for review). This life-long 

broad dysconnectivity likely reflects cascading and pervasive effects of early 

neurodevelopmental abnormalities of brain function and organization; however, the extent to 

which it is present early in life – when the defining behavioral features of ASD first emerge and 

are identifiable – remains unknown. Understanding the full developmental course of brain 

network abnormalities in ASD is needed in order to make any causal or mechanistic inferences 

about neurodevelopmental origins of ASD.   

Yet, other brain maturational trajectories remain even more opaque in ASD. For instance, 

to our knowledge, intracortical myelination has not been directly studied in ASD, despite its 

central role in brain maturation and neural wiring and connectivity (Barbas, 2015). A few recent 

studies have examined the gray-white matter boundary contrast (GWC) in ASD (although not in 

the first years of life), which is methodologically related to in-vivo ascertainment of myelin 

content from MRI data. Specifically, lower GWC indicates that gray matter (GM) and white 

matter (WM) intensities are more similar, while a higher contrast reflects a sharper GM-WM 

transition. Yet, the biological interpretation of GWC is more complex as it can be driven by a 

number of neurodevelopmental processes such as neuronal migration and myelination. Andrews 

and colleagues (2017) first reported reduced GWC in adults with ASD indicating a less distinct 

gray-white matter boundary in ASD, consistent with prior postmortem findings (Avino & 
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Hutsler, 2010). Further, examination of gray matter intensity (GMI) across the cortical layers at 

different depths into the cortical sheet has revealed increased GMI in many regions with reduced 

GWC, suggesting that ASD may be primarily associated with disruptions to the GM rather than 

the WM (Andrews et al., 2017). It has been proposed that the increased GMI may be driven by 

atypical myelination (Sowell et al., 2004) and/or differences in cytoarchitectural organization 

(Casanova, Buxhoeveden, Switala, & Roy, 2002). A subsequent study investigating age-related 

changes of GWC in children and young adults with ASD found that the most prominent 

decreases in GWC occur during childhood (Mann et al., 2018), which suggests that the disrupted 

GWC in ASD may not be exclusively driven by atypical GM cytoarchitecture (typically set 

around birth) but rather reflects atypical myelination. Although GWC is not a specific index of 

intracortical myelin, these recent studies on atypical GWC in ASD suggest that the 

developmental trajectory of intracortical myelin may be disrupted in ASD. This is further 

supported by a recent study (Olafson et al., 2021), which employed a novel metric capturing 

cortical blurring, boundary sharpness coefficient (BSC), in a large multisite dataset of individuals 

with ASD spanning a wide age range (4 – 65 years). The results revealed increased BSC, 

indicating sharper transition from gray to white matter, in lateral frontal and temporal regions, 

which may reflect a reduction of intracortical myelin content in ASD. The validity of this 

interpretation is supported by the general agreement between the BSC map in this cohort and the 

intracortical myelin maps indexed by T1w/T2w ratio obtained in a large cohort of healthy adults 

by Glasser et al (2011). However, given the lack of direct investigations of intracortical myelin 

content in ASD, and during early childhood in particular, studies examining intracortical 

myelination in young children with ASD are warranted to enhance our understanding of 

disrupted neurodevelopment in autism.  
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3. General Aims 

This staple dissertation aimed to use multimodal MRI data to comprehensively examine 

multiple aspects of brain development in the first years of life in ASD. Generally, we sought to 

understand how (and potentially when) the postnatal brain maturation deviates from typical 

development, and whether early brain markers are related to ASD symptomatology and overall 

developmental skills in the first years of life. The main objectives were as follows: 1) to better 

characterize the large-scale resting-state functional networks in toddlers and preschoolers with 

ASD, 2) to examine intracortical myelination in young children with ASD, 3) to investigate 

multimodal covariation patterns between brain morphometry including surface area and cortical 

thickness and local spontaneous activity in young children with ASD, and 4) to relate brain 

indices derived across the abovementioned modalities to overall developmental abilities and 

ASD symptomatology. Overall, these 3 studies combined improve our understanding of multiple 

aspects of structural and functional brain development in ASD between 1 and 5 years of age, 

when autism behavioral symptoms first emerge and manifest. 
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CHAPTER 1: STUDY 1 
 

The content within this section, titled “Chapter 1: Study 1,” reflects material from a paper 

that has been published in the Journal of Child Psychology and Psychiatry. The full citation is as 

follows:  

 

Chen, B., Linke, A., Olson, L., Ibarra, C., Reynolds, S., Müller, R. A., Kinnear, M., & Fishman, 

I. (2021). Greater functional connectivity between sensory networks is related to symptom 

severity in toddlers with autism spectrum disorder. Journal of Child Psychology and 

Psychiatry, 62(2), 160–170. https://doi.org/10.1111/jcpp.13268 
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ABSTRACT 

Symptoms of autism spectrum disorder (ASD) emerge in the first years of life. Yet, little 

is known about the organization and development of functional brain networks in ASD 

proximally to the symptom onset. Further, the relationship between brain network connectivity 

and emerging ASD symptoms and overall functioning in early childhood is not well understood.  

Resting-state fMRI data were acquired during natural sleep from 24 young children with ASD 

and 23 typically developing (TD) children, ages 17 to 45 months. Intrinsic functional 

connectivity (iFC) within and between resting-state functional networks was derived with 

independent component analysis (ICA). Increased iFC between visual and sensorimotor 

networks was found in young children with ASD compared to TD participants. Within the ASD 

group, the degree of overconnectivity between visual and sensorimotor networks was associated 

with greater autism symptoms. Age-related weakening of the visual-auditory between-network 

connectivity was observed in the ASD but not the TD group. Taken together, these results 

provide evidence for disrupted functional network maturation and differentiation, particularly 

involving visual and sensorimotor networks, during the first years of life in ASD. The observed 

pattern of greater visual-sensorimotor between-network connectivity associated with poorer 

clinical outcomes suggests that disruptions in multisensory brain circuitry may play a critical role 

for early development of behavioral skills and autism symptomatology in young children with 

ASD.  
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Introduction 

Autism spectrum disorders (ASD) comprise a group of neurodevelopmental disorders 

clinically characterized by social communication deficits and restricted and repetitive behaviors 

(American Psychiatric Association, 2013). These impairments affect the individual’s ability to 

function socially, at school, at work, or in other areas of life, often throughout the lifespan. 

Symptoms of ASD emerge in the first years of life, and can be reliably identified during the 

second year of life (Chlebowski, Robins, Barton, & Fein, 2013; Pierce et al., 2019). Yet, most 

children with ASD are not diagnosed until approximately 4 years of age (Baio et al., 2018) 

creating a missed opportunity for early implementation of interventions shown to be most 

effective in the first years of life, at the time when the brain undergoes profound maturational 

changes providing a fertile ground for maximal learning and improvements. In typical 

neurodevelopment, the early years are marked by major morphological changes in cortical 

lamination (Petanjek, Judas, Kostovic, & Uylings, 2008), neuronal differentiation and axon 

myelination (Huttenlocher, 1984; Lebel, Walker, Leemans, Phillips, & Beaulieu, 2008), 

synaptogenesis and synapse elimination (Huttenlocher & Dabholkar, 1997), and intragyral 

connectivity (Mrzljak, Uylings, Van Eden, & Judas, 1990). These progressive and regressive 

processes contribute to the increasing cortical differentiation and specialization of neural 

pathways, through continuous activity-dependent interactions between brain regions (Fair et al., 

2009; Johnson, 2000, 2003), characterizing a typical maturational course for brain circuits.  

The extent to which in ASD these neurodevelopmental processes take an aberrant path in 

the early years, proximally to the symptom onset, remains largely unknown. Despite the sizeable 

(albeit often inconsistent) evidence of atypical brain structure, function, and connectivity in older 

children, adolescents and, to a lesser degree, adults with ASD (Ecker, Bookheimer, & Murphy, 
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2015; Hull et al., 2016), the current understanding of brain network organization and 

connectivity in the first years of life in autism is limited by the scarcity of brain imaging studies 

in young children (before 4-5 years of age) due to the challenges of acquiring usable imaging 

data at that age. Within this more limited MRI literature on infants and toddlers with ASD, a 

relatively well-established finding is atypically increased brain growth in the first years of life 

(Courchesne et al., 2001; Hazlett et al., 2005; Hazlett et al., 2011; although see Nordahl et al., 

2011). This early brain overgrowth appears to affect both white and gray matter volumes 

(Hazlett et al., 2005), is driven by surface area rather than cortical thickness expansion and, 

based on longitudinal evidence, reflects accelerated growth rate between ages one and two years 

(Hazlett et al., 2011). Additionally, a number of cross-sectional and longitudinal diffusion-

weighted imaging (DWI) studies have reported increased fractional anisotropy (FA) across 

multiple white matter tracts (e.g., corpus callosum, cingulum, arcuate fasciculus) in infants and 

toddlers who either have been or are later diagnosed with ASD (Conti et al., 2017; Solso et al., 

2016; Wolff et al., 2012; Xiao et al., 2014). Notably, these findings of increased structural 

connectivity indices (i.e., increased FA) in the first years of life in autism are in contrast with 

generally reduced connectivity (i.e., lower FA) reported in older children and adults with ASD 

(Travers et al., 2012), suggesting an accelerated white matter growth in the first years of life, 

consistent with the aforementioned atypical volumetric growth trajectories. 

Besides these findings of early structural brain abnormalities in ASD detected with 

anatomical and diffusion MRI, a growing number of studies using functional MRI (fMRI) 

acquired during natural sleep (Dean et al., 2014; Nordahl et al., 2016) have contributed unique 

information on the functional architecture of neural networks in infants and toddlers with ASD. 

Studies using fMRI activation to speech stimuli delivered during natural sleep have largely 
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focused on brain function in putative language regions and found reduced neural activity in 

response to speech sounds, absent or reversed hemispheric lateralization typically associated 

with language processing, as well as diminished inter-hemispheric synchronization of language 

region activation patterns in young children (1 to 4 years) with ASD (Dinstein et al., 2011; Eyler, 

Pierce, & Courchesne, 2012; Lombardo et al., 2015; Redcay & Courchesne, 2008). Additionally, 

a handful of studies have examined intrinsic functional connectivity (iFC) in infants and toddlers 

who have been, or are later diagnosed with ASD. While Shen and colleagues (Shen et al., 2016) 

reported weaker cortical and subcortical amygdala connectivity in preschoolers with ASD (mean 

age 3.5 years) compared to typically developing controls, all the other studies to date have 

utilized data acquired in infants with high familial risk for ASD, due to having an older sibling 

with autism (i.e., the Infant Brain Imaging Study [IBIS]). The evidence beginning to emerge 

from this cohort of at-risk infants followed prospectively suggests that (a) whole-brain iFC 

patterns at 6 months appear to predict clinical best-estimate diagnosis of autism at two years 

(Emerson et al., 2017), and (b) distinct functional brain networks identified in both low- and 

high-risk infants at 12 months are associated with the emergence of gross motor (walking) 

(Marrus et al., 2018) and fundamental social skills (initiation of joint attention) (Eggebrecht et 

al., 2017), as well as with restricted and repetitive behaviors (McKinnon et al., 2019), both at 12 

and 24 months. Notably, while these prospective studies provided important insights into the 

development of functional brain networks underlying specific behavioral outcomes (i.e., walking 

and joint attention), three (Eggebrecht et al., 2017; Emerson et al., 2017; Marrus et al., 2018) out 

of the four studies focused on outcomes shared by all high- and low-risk children.  

In the face of this evidence, still little is known about the organization and development 

of functional brain networks in ASD proximally to the onset of core symptomatology. The 
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human brain is intrinsically organized into large-scale, coherent functional networks, which 

reflect strong coupling of the ongoing brain activity fluctuations in different brain regions, 

robustly detected under different mental states, including wakefulness, sleep and anesthesia 

(Power, Fair, Schlaggar, & Petersen, 2010; Raichle, 2010). Functional brain networks, including 

primary sensory and, more variably, higher-order supramodal networks, such as default mode 

and frontoparietal networks, have been reliably identified early in life in typical development 

(Fransson et al., 2007; Gao, Alcauter, Elton, et al., 2015; Gao, Alcauter, Smith, Gilmore, & Lin, 

2015), with some observed even prenatally with fetal imaging methods (Thomason et al., 2013). 

While the primary sensory networks undergo subtle refinement and strengthening over the first 

two years of life, and substantially resemble adult topology by age two (Gao, Alcauter, Elton, et 

al., 2015; Lin et al., 2008), higher-order functional networks are far from the adult-like 

organization in the first postnatal years, and undergo prolonged development over the first 

decades of life (Dosenbach et al., 2010; Fair et al., 2008; Gao, Alcauter, Elton, et al., 2015), in 

parallel with the order in which behavioral and cognitive skills emerge (Johnson, 2001). These 

trajectories of functional network integration and differentiation have not been mapped in ASD, 

and it remains unknown how or when the network maturation in the first years of life in ASD 

deviates from typical development, and whether it is related to ASD symptomatology and overall 

functioning.  

In the current study, we examined the large-scale functional networks in toddlers and 

preschoolers with ASD, compared to typically developing (TD) controls, between the ages of 1.5 

and 3.5 years, using resting-state fMRI acquired during natural nocturnal sleep. We utilized 

independent component analysis (ICA), a data-driven approach, to derive resting-state functional 

networks (RFNs), and compared the iFC within and between RFNs in the ASD and TD cohorts. 



21 
 

We hypothesized that, when compared to matched TD controls, young children with ASD would 

exhibit atypical iFC patterns involving primary sensorimotor networks, and that the atypical 

connectivity would be associated with more severe autism symptoms and impaired 

developmental outcomes.  

Methods 
 
Participants 

Participants were enrolled in the San Diego State University (SDSU) Toddler MRI 

Project, an ongoing longitudinal study of early brain markers of ASD. Children between the ages 

of 16 and 48 months with a diagnosis of ASD or behavioral concerns consistent with ASD 

symptoms were referred to the Toddler MRI Project from specialty autism clinics, state-funded 

early education and developmental evaluation programs, local pediatricians, service providers, 

and community clinics. Typically developing (TD) children were recruited from the community. 

Participants in either group were screened and excluded for any comorbid neurological disorders 

(e.g., cerebral palsy), history of perinatal CNS infection or gross CNS injury, non-febrile 

seizures, contraindications for MRI. Participants with known syndromic forms of ASD (e.g., 

fragile X or Rett syndrome), as ascertained from parent report, were also excluded. To limit 

known risk factors for developmental delays among children enrolled in the TD group, TD 

participants were also screened and excluded for prematurity (<36 weeks of gestation), family 

history (in first-degree relatives) of ASD, intellectual disability, or other heritable psychiatric or 

neurological disorders. The research protocol was approved by the institutional review boards of 

SDSU and University of California San Diego (UCSD), and the County of San Diego Health and 

Human Services Agency. Written informed consent was obtained from the caregivers. This 
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report includes cross-sectional data only from 24 children with ASD and 23 TD participants, 

matched at the group level on age and gender distribution (see Table 2.1).  

Diagnostic and Developmental Assessment 

Upon enrollment, diagnoses of ASD (or clinical best estimate (Ozonoff et al., 2015) in 

children younger than age 3 years) were established in all participants in the ASD group in a 

specialty clinic (SDSU Center for Autism and Developmental Disorders) based on the DSM-5 

(American Psychiatric Association, 2013) criteria, supported by the Autism Diagnostic 

Observation Schedule-Second Edition (ADOS-2; Lord et al., 2012) administered by research-

reliable clinicians, the Autism Diagnostic Interview-Revised (ADI-R; Lord, Rutter, & Le 

Couteur, 1994), in children older than 36 months), and expert clinical judgment (by two senior 

authors). Developmental skills were assessed in all TD and ASD participants with the Mullen 

Scales of Early Learning (MSEL) (Mullen, 1995), a clinician-administered assessment of 

cognitive, language, and motor development. Parents also completed the Social Communication 

Questionnaire (SCQ, Current form; Lord & Rutter, 2003), a screener for autism spectrum 

disorders, with no TD participants exceeding the cut-off score of 15 (all TD scores ≤ 10; see 

Table 2.1). 

MRI Data Acquisition 

MRI data were collected during natural nocturnal sleep on a GE Discovery MR750 3T 

MRI scanner at the UCSD Center for Functional Magnetic Resonance Imaging, using a Nova 

Medical 32-channel head coil. A multiband multi-echo planar imaging (EPI) sequence allowing 

simultaneous acquisition of multiple slices was used to acquire two fMRI runs (400 volumes per 

each 6-minute run) with high spatial resolution and fast acquisition (TR=800ms, TE=35ms, flip 

angle=52°, 72 slices, multiband acceleration factor=8, 2mm isotropic voxel size, 
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matrix=104x104, FOV=20.8cm). Two separate 20s spin-echo EPI sequences with opposing 

phase encoding directions were also acquired using the same matrix size, FOV and prescription 

to correct for susceptibility-induced distortions. High-resolution anatomical images were 

acquired with a fast 3D spoiled gradient recalled (FSPGR) T1-weighted sequence (0.8mm 

isotropic voxel size, NEX=1, TE/TI=min full/1060ms, flip angle=8°, FOV=25.6cm, 

matrix=320x320, receiver bandwidth 31.25hz). Motion during anatomical scans was corrected in 

real-time using three navigator scans and real-time prospective motion correction (PROMO) 

(White et al., 2010), and images were bias corrected using the GE PURE option.  

In preparation for the scan night, and to optimize MRI data acquisition, a comprehensive 

habituation protocol was implemented. An individualized scan night sleep strategy (e.g., time of 

arrival, approximating home-like sleeping arrangements, including access to a double MRI bed 

for co-sleeping families, rocking chair, modular playpen mounted on the MRI bed, lighting in the 

MRI suite, etc.) was developed for each child, based on the typical bedtime routines and habits 

assessed in advance with an in-house Sleep Habits Questionnaire. To habituate the child to the 

scanning environment, the parents were instructed to practice nightly inserting soft foam child-

size earplugs after the child had fallen asleep, and to play an mp3 file containing the MRI sounds 

of the scan sequences employed in the study at progressively louder volumes for a week. On the 

night of the scan, noise protection was achieved with MRI compatible sound reducing 

headphones and earplugs. In an attempt to standardize sleep stage during scans, scanning always 

commenced after approximately 15-30min of sleep. 

Data Analysis 

MRI data pre-processing  
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MRI data were preprocessed with FMRIB’s Software Libraries (FSL v5.0.10) (Smith et 

al., 2004), Matlab 2015b (Mathworks Inc., Natick, MA, USA) using SPM12 (Wellcome Trust 

Centre for Neuroimaging, University College London, UK), and the CONN toolbox v17f 

(Whitfield-Gabrieli & Nieto-Castanon, 2012; http://www.nitrc.org/projects/conn). Preprocessing 

steps included correction for susceptibility-induced distortions using the two spin-echo EPI 

acquisitions with opposite phase encoding directions and FSL’s TOPUP tools; motion correction 

using rigid-body realignment as implemented in SPM12; spatial smoothing using a 6mm 

Gaussian kernel at full-width half maximum; outlier detection using the Artifact Detection 

Toolbox as installed with CONN v17f (ART; https://www.nitrc.org/projects/artifact_detect) to 

identify outlier volumes with frame-wise displacement (FD) >0.5mm and/or changes in signal 

intensity >3 standard deviations; nuisance regression including censoring of outliers detected by 

the ART toolbox, regression of the 6 motion parameters and their derivatives, and the first five 

PCA components derived from the CSF and white matter compartments using aCompCor 

(Behzadi, Restom, Liau, & Liu, 2007); and band-pass temporal filtering (0.008-0.08 Hz).   

The structural images were co-registered to the mean functional image, segmented and 

normalized to the Montreal Neurological Institute (MNI) atlas space using non-linear registration 

and the default tissue probability maps included with SPM12 (see Supplementary Methods for 

details). The white matter (WM) and CSF probability maps obtained from segmentation of the 

structural image for each subject were thresholded at 0.95 and eroded by 1 voxel. These 

thresholded and eroded masks were applied to functional images to extract WM and CSF time 

courses, which were submitted to a principal component analysis with aCompCor (Behzadi et al., 

2007) for subsequent nuisance regression. Functional images were directly normalized to MNI 

space with the same non-linear registration as used for the structural images.  
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In order to ensure that the findings were not affected by group differences in motion, 

ASD and TD groups were matched, at the group level, on mean head motion indexed by root 

mean square of displacement (RMSD) across two fMRI runs, calculated from rigid-body 

realignment of the raw data prior to TOPUP correction, on the percentage of censored volume 

across two fMRI runs, and on the mean temporal signal to noise ratio (tSNR) across two fMRI 

runs (Table 2.1). Mean RMSD was also included as a covariate for all imaging analyses.   

Independent component analysis 

 Preprocessed fMRI data (concatenated across two runs) from all ASD and TD 

participants combined were entered into group independent component analysis (ICA) using 

CONN’s ICA implementation (Calhoun, Adali, Pearlson, & Pekar, 2001) to generate maximally 

independent intrinsic functional networks. Each subject contributed 800 volumes (across two 

runs) to the group ICA for a total of 37,600 3D volumes. Twenty independent components (ICs) 

were extracted, and each component’s spatial distribution and time course were visually 

inspected by two raters. ICs identified as noise (Beckmann, 2012) (i.e., motion, cerebral spinal 

fluid pulsations, signal from large blood vessels) were excluded from further analyses. The 

remaining ICs were compared to the 20 components generated by Smith et al. (2009) and the 8 

components generated from the Human Connectome Project Consortium’s 500 Subjects Release 

(https://db.humanconnectome.org/data/projects/HCP_500), both based on adult data, as well as 

to published pediatric RFNs (Manning, Courchesne, & Fox, 2013; Thornburgh et al., 2017). This 

resulted in 10 ICs being classified as RFNs and retained for functional connectivity analyses (for 

details on the three-step IC identification and selection process, see Supplementary Methods).  

Functional connectivity analyses  
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 The retained ICs were thresholded at z>3.0 and extracted as group RFN maps. Within 

these thresholded RFN maps clusters exceeding 200 voxels (see Supplementary Table S1 for 

detailed cluster description) were extracted as regions of interest (20 ROIs) and entered into 

ROI-to-ROI connectivity analysis. Specifically, for each participant, the average time series of 

all voxels within each ROI was computed and then correlated with the average time series 

computed for every other ROI. The resulting Pearson’s correlation coefficients (190 ROI-to-ROI 

pairs: (20x19)/2) were converted to normally distributed z values (using Fisher r-to-z 

transformation) and entered into two-sample t-tests (including RMSD as covariate) to examine 

between-group (ASD vs. TD) functional connectivity patterns. Two-sided cluster-level False 

Discovery Rate (FDR) correction implemented in the CONN toolbox was applied (corrected 

pFDR<.05).  

Correlations with developmental and diagnostic indices 

 Pearson’s partial correlation analyses were conducted to examine relationships between 

connectivity indices emerging from the above FC analysis and autism symptoms (ADOS-2), 

controlling for head motion and overall developmental level indexed by MSEL Early Learning 

Composite. Due to the limited range and ordinal scale of the ADOS-2 Calibrated Severity Scores 

(CSS), not suited for correlational analyses, ADOS-2 Total scores yielding a wider range and 

more continuous distribution were utilized in behavioral correlations, while controlling for 

ADOS-2 Module.     

Results 

Participant demographic, diagnostic, and behavioral characteristics are presented in Table 

1.1. As expected, groups differed on indices of cognitive, language, and, motor development 

measured with MSEL, with significantly lower scores observed in toddlers and preschoolers with 
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ASD. No TD participants had a MSEL Early Learning Composite score < 80, which is 

equivalent to no more than 1.3 SD below the normative mean.  

Resting-state functional networks (RFNs) identified in the combined ASD-TD sample 

 The 10 ICs classified as non-artifact functional networks (RFNs) largely resembled the 

previously reported networks in adults and children, including the visual, sensorimotor, auditory, 

multimodal-sensory, and salience networks (see Figure 1.1 for spatial maps and Supplementary 

Table S1 for detailed clusters description).   

Group differences in functional connectivity 

 Connectivity matrices of mean ROI-to-ROI connectivity (z values) within TD and ASD 

groups are shown in Figure 1.2A. Direct group comparisons revealed significantly greater 

connectivity (corrected pFDR <0.05) between ROIs in visual and sensorimotor networks in the 

ASD group compared to the TD group, after controlling for RMSD (see Figure 1.2B). Because 

the ASD group included two children born prematurely (see Table 1.1), these analyses were 

repeated after excluding these two participants, with the results remaining largely unchanged. In 

order to further examine iFC differences, detection of which may have been impeded by the 

large number of comparisons, a post-hoc analysis grouping RFNs and corresponding ROIs into 

five overarching functional domains (visual, sensorimotor, auditory, multimodal-sensory, and 

salience; see Supplementary Figure S1) was conducted. Direct group comparisons of the within-

domain network connectivity, calculated as the mean iFC within all-domain ROIs, and between-

domain network connectivity, calculated for all between-domain pairs (10 between-domain 

comparisons: (5x4)/2), revealed no significant group differences after FDR correction (at 

pFDR<.05; see Supplementary Figure S1), although greater connectivity between all-visual and 
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salience networks in the ASD group was observed at an uncorrected p = 0.057 with medium 

effect size (Cohen’s d = 0.55).  

Between-network connectivity and its links with developmental and clinical indices 

Given that both ROI-ROI analyses and comparisons at the level of functional domains 

pointed to group differences in between-network connectivity involving visual, sensorimotor and 

salience networks (Figure 1.2 and Supplementary Figure S1), partial correlational analyses were 

conducted to examine whether between-network iFC was associated with developmental 

outcomes within the ASD group. Because, as expected in young children with ASD, there was a 

significant, negative correlation between autism symptoms measured with the ADOS-2 Total 

score and the overall developmental level indexed with the MSEL Early Learning Composite 

(ELC) score (r = -0.53, p = 0.008), partial correlation analyses between 10 between-domain 

network connectivity indices (mean z-scores for 10 between-domain comparisons: Vis-SM, Vis-

Aud, Vis-MSen, Vis-SN, SM-Aud, SM-MSen, SM-SN, Aud-MSen, Aud-SN, MSen-SN) and 

autism symptomatology were conducted while controlling for ELC (as well as for RMSD and 

ADOS-2 module). Results revealed a significant positive correlation between autism symptoms 

(ADOS-2 Total scores) and iFC between visual and sensorimotor domains (r = 0.60, pFDR 

<0.05), controlling for RMSD, MSEL ELC, and ADOS-2 module, such that greater visual-

sensorimotor between-domain connectivity was associated with greater ASD symptoms (see 

Figure 2.3). Results of the supplementary correlational analyses between iFC and MSEL 

developmental indices are depicted in Supplementary Figures S2 and S3.  

Age-related effects on between-network iFC 

 Partial correlation analyses of between-domain network connectivity and age, in months, 

were performed to examine whether age moderated between-group iFC effects, controlling for 
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head motion. In children with ASD, a negative correlation with age was observed for the 

connectivity between visual and auditory networks after controlling for RMSD (r = -0.54, p = 

0.01), with visual-auditory between-domain iFC weakening with age (Supplementary Figure S4). 

This relationship was not present in TD toddlers (r = -0.22, p = 0.33), and there was no 

significant group by age interaction.  

Discussion 

We used resting-state fMRI data acquired during natural sleep to examine large-scale 

resting-state functional networks in toddlers and preschoolers with ASD compared to matched 

TD controls. A set of RFNs, identified through data-driven group-ICA, largely corresponded 

with RFNs previously reported in studies of older children and adults (e.g., visual, auditory, 

sensorimotor, salience networks). Functional connectivity analyses of within- and between-

network connectivity revealed increased between-network connections in the ASD group, 

specifically between regions in the visual and sensorimotor networks. Critically, among the 

children with ASD, greater connectivity between the visual and sensorimotor functional domains 

was associated with increased autism symptomatology, while controlling for the overall 

developmental level. 

Overconnectivity between sensory circuits in the first years of life in ASD  

The finding of overconnectivity observed between visual and sensorimotor networks in 

young children with ASD is remarkable in the context of sensory processing abnormalities and 

multisensory integration deficits frequently reported in ASD. Prevalence estimates of abnormal 

sensory processing in children with ASD range from 60 to 96% (Dawson & Watling, 2000; 

Dunn, Myles, & Orr, 2002; Klintwall et al., 2011; Lane, Dennis, & Geraghty, 2011) and sensory 

disturbances are now recognized as part of the core symptoms of ASD in the DSM-5. Besides 
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hypo- and/or hyper-sensitivity to sensory stimuli within single modality (e.g., visual, auditory, 

tactile, olfactory), children with ASD often exhibit impairments in integrating sensory 

information across different modalities (Baum, Stevenson, & Wallace, 2015; Iarocci & 

McDonald, 2006; Stevenson, Siemann, Schneider, et al., 2014; Stevenson, Siemann, 

Woynaroski, et al., 2014). These sensory symptoms typically manifest early in development 

(Baranek et al., 2013; Estes et al., 2015; Germani et al., 2014), as early as infancy, as 

demonstrated with prospective studies of infant siblings with high familial risk for ASD 

(Ozonoff et al., 2010). The early emerging sensory abnormalities are likely to have cascading 

effects on higher-order cognitive, social and communicative impairments in ASD (Thye, 

Bednarz, Herringshaw, Sartin, & Kana, 2018) because of the close interconnections between 

motor, cognitive, social, and language development at this age (Oudgenoeg-Paz, Leseman, & 

Volman, 2015; Oudgenoeg-Paz, Volman, & Leseman, 2012; Walle & Campos, 2014).  

Functional connectivity involving primary sensorimotor networks has been implicated in 

the development of motor skills as well as core symptoms of ASD (e.g., social deficits and 

restricted and repetitive behaviors) in prospective studies of infant siblings. Specifically, 

functional connectivity within and between motor and DMN networks was correlated with 

walking onset and gross motor function (Marrus et al., 2018), while connectivity between visual 

and higher-order networks, including dorsal attention network and posterior DMN, was 

associated with initiation of joint attention (Eggebrecht et al., 2017). Finally, functional 

connectivity between visual and DMN as well as frontoparietal control network appeared to be 

related to certain aspects of restricted and repetitive behaviors (McKinnon et al., 2019). Although 

highlighting the role of primary sensory networks in the emergence of key developmental skills, 

including those associated with core symptoms of ASD (e.g., joint attention, restricted and 
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repetitive behaviors), these findings are not specific to children with ASD, having been observed 

across both high- and low-risk infants. In a cohort more similar to ours (i.e., preschoolers with 

ASD, albeit somewhat older, with mean age reported as 3.5 years), Shen and colleagues (2016) 

observed reduced connectivity between primary visual cortex and sensorimotor regions that was 

related to sensory hypersensitivity in preschoolers with ASD. While at first this appears 

inconsistent with our finding of atypically increased connectivity between visual and 

sensorimotor networks, the disparity can likely be attributed to methodological differences 

between the studies, with ours focusing on comparisons at broader, network- and functional-

domain levels, vs. more targeted, seed-based analyses spotlighting connectivity of primary visual 

cortex, the earliest cortical area to process incoming visual information (in contrast to all primary 

and visual association cortices, with manifestly different connectivity fingerprints). This 

distinction, nonetheless, further highlights the scarcity of published data in this age group, and 

the need for additional studies on brain network development and organization at this critical 

stage in young children with ASD.   

There is some evidence that functional connectivity involving visual, motor, and 

somatosensory networks is decreased (Nebel et al., 2016; Oldehinkel et al., 2019), rather than 

increased in older (school-age) children and young adults with ASD. In line with this evidence, 

we have detected an age-related effect showing that, among young children with ASD, 

connectivity between visual and auditory circuits is decreasing with age (albeit cross-sectionally) 

across the sampled age range. Because this age-related decrease in iFC was absent in the TD 

group, these results may indicate a distinct developmental trajectory of sensory network 

maturation and differentiation in ASD, with greater “cross-talk” between different sensory 

networks early in life, followed by a more protracted weakening of the between-network 



32 
 

functional connectivity, as compared to neurotypical trajectories. While direct comparisons 

between brain morphometric and iFC indices are, at best, tenuous, this trajectory of early 

functional overconnectivity followed by later underconnectivity appears to echo the account of 

the accelerated early brain overgrowth observed in autism during infancy and toddler years, 

reflecting disrupted neurodevelopmental pathways manifest across different scales and 

measurements of brain structure and function.  

Early between-network overconnectivity in ASD associated with poorer developmental outcomes 

and increased symptomatology  

The relationship observed between visual-sensorimotor overconnectivity and greater 

autism symptoms suggests that brain connections between primary sensory and motor circuits 

may play an important role in the development of early behavioral skills and autism 

symptomatology in children with ASD. There is extensive evidence that multisensory processing 

is crucial for developing fundamental communication and social skills. For example, the ability 

to integrate auditory and visual information on multisensory perceptual tasks has been linked to 

greater communication and social skills in children with ASD (Mongillo et al., 2008; 

Woynaroski et al., 2013). Thus, greater connectivity between visual and sensorimotor networks 

may indicate inadequate integration of visual and somatosensory input into the socio-affective 

circuits, as shown in older, school-age children with ASD (Green, Hernandez, Bookheimer, & 

Dapretto, 2016). Overall, the increased cross-talk between visual and sensorimotor networks in 

the first years of life and its links to greater autism symptomatology may signify that 

dysfunctional connectivity within primary sensory circuits has broad effects and may be 

implicated in the emerging autism symptomatology.  

Potential limitations  
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One limitation of the present study is its relatively small sample size (due to the 

challenges of acquiring usable imaging data in this age group), and the use of cross-sectional 

data to investigate age-related FC effects. In the future, the analyses presented here may be 

extended to longitudinal data to elucidate within-subject trajectories of functional network 

development and its relationship with symptoms and developmental skills. Another limitation of 

the study is the lack of appropriate measures of sensory processing abnormalities in ASD. 

Finally, because fMRI data were acquired during natural sleep and sleep stage was not monitored 

with EEG, potential differences in sleep stage between ASD and TD groups could not be ruled 

out. Although precise sleep staging would be desirable, it is not feasible in this age group without 

risk of severe data loss; indeed, no studies to date have reported sleep staging with EEG during 

sleep MRI scanning in young children.  

Lastly, it is also worth noting that, outside of the observed differences pertaining to the 

increased connectivity between visual and sensorimotor circuits in children with ASD, the 

patterns of functional connectivity within and between other networks examined in this study 

were largely comparable in the two groups. While this could be interpreted as evidence of 

broadly “typical” neurodevelopment of functional brain networks in young children with ASD, a 

more plausible explanation involves a number of other neurobiological mechanisms not captured 

by BOLD signal but likely at play, reflecting atypical brain maturation processes in autism. 

Finally, it is worth considering that the additional fundamental group differences in network 

connectivity may have been masked by differential maturational trajectories across the sampled 

age range characterizing typically developing children and those with ASD (as evidenced by at 

least one connectivity effect with divergent age-related trajectories in ASD and TD children; see 

Supplementary Figure S4).    
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Conclusions 

Taken together, our results are the first to characterize the large-scale resting-state 

functional networks in toddlers and preschoolers with ASD and to demonstrate increased 

connectivity between visual and sensorimotor networks in the first years of life in ASD. This 

greater between-network connectivity involving visual and sensorimotor networks was 

correlated with less favorable clinical outcomes (i.e., greater autism symptoms), highlighting the 

role of primary sensory circuits in the emergence of autism symptomatology.   
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Table 1.1 Participant Characteristics 

  
ASD  

(n = 24) 
TD 

(n = 23) ASD vs. TD 

  
Mean ± SD  
(Min - Max) 

Mean ± SD  
(Min - Max) 

t/Χ2   p value 

Age (months)  30.0 ± 7.3 
(18 - 45) 

28.9 ± 8.5 
(17 - 44) 

t(45) = 0.45 0.65 

Gender (M/F)a 15/9 14/9 χ2(2) = 0.01 0.91 

Ethnicity (Hispanic/Non-Hispanic)a 12/12 5/18 χ2(2) = 4.06 0.04 
Race (White/Black/More-than-
one/Asian/Unknown) 13/0/8/1/2 14/2/4/2/1 -- -- 

Gestational Age (weeks)b 38.7 ± 2.4  
(31 - 43) 

39.5 ± 1.3 
(37 - 42) 

t(43) = -1.45 0.16 

Birth Weight (grams)c 3429 ± 617 
(2098 - 4600) 

3410 ± 342 
(2806 - 4026) 

t(42) = 0.12 0.90 

Mullen Scales of Early Learning (MSEL)     

     Visual Reception, T-Score 41.3 ± 16.0 
(20 - 69) 

56.9 ± 11.8 
(36 - 79) t(45) = -3.78 <0.001 

     Visual Reception, Age Equivalent  25.4 ± 11.1 
(11 - 57) 

31.6 ± 9.2 
(16 - 50) 

t(45) = -2.06 0.05 

     Fine Motor, T-Score 35.0 ± 11.1 
(20 - 54) 

51.3 ± 13.0 
(23 - 80) 

t(45) = -4.63 <0.001 

     Fine Motor, Age Equivalent 23.2 ± 7.0 
(13 - 45) 

28.7 ± 9.7 
(16 - 47) 

t(45) = -2.22 0.03 

     Receptive Language, T-Score 32.4 ± 13.5 
(20 - 61) 

54.9 ± 9.3 
(30 - 76) 

t(45) = -6.63 <0.001 

     Receptive Language, Age Equivalent 20.0 ± 10.9 
(7 - 44) 

30.8 ± 7.7 
(15 - 47) 

t(45) = -3.91 <0.001 

     Expressive Language, T-Score 32.6 ± 12.1 
(20 - 62) 

49.3 ± 10.2 
(28 - 68) 

t(45) = -5.10 <0.001 

     Expressive Language, Age Equivalent 18.9 ± 10.2 
(4 - 47) 

28.0 ± 9.7 
(13 - 42) 

t(45) = -3.14 0.003 

     Early Learning Composite, Standard 
Score 

74.5 ± 19.8 
(49 - 111) 

106.4 ± 16.3 
(80 - 136) 

t(45) = -6.02 <0.001 

Social Communication Questionnaire 
(SCQ) 

17.5 ± 8.0 
(3 - 35) 

5.1 ± 2.6 
(0 - 10) 

t(41) = 6.77 <0.001 
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Table 1.1 Participant Characteristics – continued  

  
ASD  

(n = 24) 
TD 

(n = 23) ASD vs. TD 

  
Mean ± SD  
(Min - Max) 

Mean ± SD  
(Min - Max) 

t/Χ2   p value 

ADOS-2     
    Toddler Module, Totald 17.6 ± 5.2 

(9 - 25) -- -- -- 

  
Mean ± SD  
(Min - Max) 

Mean ± SD  
(Min - Max) 

t/Χ2   p value 

    Module 1, Totald 13.4 ± 4.9 
(7 - 21) 

-- -- -- 

    Module 2, Totald 12.7 ± 4.2 
(8 - 16) 

-- -- -- 

    Calibrated Severity Score (across 
Modules) 

6.75 ± 2.0 
(3 - 10) 

-- -- -- 

fMRI motion and SNR indicese     

    Mean RMSDe 0.12 ± 0.04 
(0.05 - 0.21) 

0.10 ± 0.03 
(0.05 - 0.18) t(45) = 1.46 0.15 

    % of Volumes Censorede 2.41 ± 2.72 
(0 - 8.63) 

1.41 ± 1.64 
(0 - 5.50) 

t(45) = 1.49 0.15 

    Mean temporal SNRe 30.2 ± 4.4 
(20.0 - 36.5) 

30.8 ± 4.1 
(18.2 - 37.8) 

t(45) = -0.56 0.58 

Note: M = male; F = female; ADOS-2 = Autism Diagnostic Observation Schedule, 2nd Edition; 
RMSD = root mean squared displacement; SNR = signal to noise ratio  
a Values denote counts and corresponding χ2 p values. Remaining comparisons reflect two-sample t-
tests and corresponding p values. 
b Gestational age data are missing for 1 ASD participant. Two ASD participants were born before 36 
weeks of gestation (at 31 and 35 weeks). 
c Birth weight data are missing for 1 TD and 2 ASD participants.  
d Because the choice of ADOS-2 Module depends on the child's age and language level, 14 ASD 
participants completed the ADOS-2 Toddler Module; 7 completed the ADOS-2 Module 1; 3 
completed the ADOS-2 Module 2.  
e Mean RMSD, # of volumes censored, and mean temporal SNR were calculated across two fMRI 
runs.  
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Figure 1.1 Intrinsic functional connectivity networks in toddlers with and without ASD 
Results of the 20-dimensional group ICA; images are z statistics thresholded at z=3.0 (p<.001) grouped 
into functional domain categories as depicted. IC labels: Vis1=Occipital pole visual, Vis2=Medial visual, 
Vis3=Lateral visual, Vis4=Higher order visual, SM1=Primary motor, SM2=Lateral sensorimotor, 
SM3=Medial sensorimotor, Aud=Auditory, MSen=Multimodal-sensory, SN=Salience. Images are 
presented in the Montreal Neurological Institute (MNI) space, in neurological convention (with the left 
side of the brain represented on the left). 
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Figure 1.2 Connectivity matrices between RFN cluster time courses 
(A) Normalized pairwise ROI-ROI (RFN clusters) correlation coefficients (z-values) are presented 
separately for the ASD (upper triangle) and TD (lower triangle) groups. Both axes represent the 20 RFN 
clusters (see Supplementary Table S1 for detailed cluster description). Pixel color of each cell represents 
the magnitude of correlation for each region of interest (ROI) pair, with warmer colors indicating greater 
correlation coefficient values. (B) Difference connectivity matrix for ASD vs. TD (ASD>TD) 
comparison. ★ denotes ROI-ROI pairs with significantly stronger connections at FDR corrected p<0.05, 
after controlling for mean RMSD. 
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Figure 1.3 Relationship between autism symptomatology and visual-sensorimotor connectivity in 
the ASD group  
Partial correlation between connectivity (z scores) between all visual and sensorimotor networks and 
ADOS-2 Total scores (pFDR <0.05). Increasing ADOS-2 Total values indicate greater symptom count 
and, hence, greater impairment. The values on the X and Y axes reflect residuals of ADOS-2 and z scores, 
respectively, after controlling for RMSD, MSEL ELC, and ADOS-2 module. 
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ABSTRACT 

Intracortical myelin is thought to play a significant role in the development of neural 

circuits and functional networks, with consistent evidence of atypical network connectivity in 

children with autism spectrum disorders (ASD). However, little is known about the development 

of intracortical myelin in the first years of life in ASD, during the critical neurodevelopmental 

period when autism symptoms first emerge. Using T1-weighted (T1w) and T2-weighted (T2w) 

structural magnetic resonance imaging (MRI) in 21 young children with ASD and 16 typically 

developing (TD) children, ages 1.5 to 5.5 years, we demonstrate the feasibility of estimating 

intracortical myelin in vivo using the T1w/T2w ratio as a proxy. The resultant T1w/T2w maps 

were largely comparable with those reported in prior T1w/T2w studies in typically developing 

children and adults, and revealed no group differences between TD children and those with ASD. 

However, differential associations between T1w/T2w and age were identified in several early 

myelinated regions (e.g., visual, posterior cingulate, precuneus cortices) in the ASD and TD 

groups, with age-related increase in estimated myelin content across the toddler and preschool 

years detected in TD children, but not in children with ASD. The atypical age-related effects in 

intracortical myelin, suggesting a disrupted myelination in the first years of life in ASD, may be 

related to the aberrant brain network connectivity reported in young children with ASD in some 

of the same cortical regions and circuits.  
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Introduction 

Although symptoms of autism spectrum disorder (ASD) emerge early in postnatal life 

(Pierce et al., 2011) and can be reliably identified during the second year of life (Corsello, 

Akshoomoff, & Stahmer, 2013; Ozonoff, Heung, Byrd, Hansen, & Hertz-Picciotto, 2008; 

Ozonoff et al., 2015; Pierce et al., 2019; Sacrey et al., 2018), most children with ASD are not 

diagnosed until they are 4-5 years old (Maenner et al., 2020), in large part due to the lack of 

clinically meaningful biomarkers. The implications of delayed identification are significant, 

given the positive impact of early interventions on both behavior and the developing brain 

(Dawson et al., 2012; Estes et al., 2015; Landa, 2018). The current consensus on the underlying 

neurobiology is that ASD originates prenatally, affecting early building blocks of brain circuit 

development and function, such as protein synthesis and cellular metabolism, with cascading 

effects on neuronal proliferation and migration, synaptogenesis and synaptic signaling, 

myelination, and network formation (Courchesne et al., 2019; Gordon & Geschwind, 2020). 

However, the current understanding of these fundamental neurodevelopmental processes (e.g., 

synaptic pruning (Spear, 2013) or myelination (Abrahám et al., 2010; Chapman & Hill, 2020) is 

limited by the scarcity of brain imaging studies in young children with ASD (before 4-5 years of 

age). This is in part due to the known practical and methodological challenges of acquiring high 

quality imaging data early in life (Turesky, Vanderauwera, & Gaab, 2021). 

Although much of the developmental neurobiology of ASD remains unknown, a few 

consistent findings have emerged from the relatively limited but growing number of MRI studies 

in infants and toddlers at risk for, or with first symptoms of autism, including prospective studies 

of infant siblings of older children with ASD. The most consistently reported finding to date is 

enlargement of brain volume early in life (Courchesne et al., 2001; Hazlett et al., 2005; Hazlett et 
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al., 2011; Nordahl et al., 2011). This early brain overgrowth appears to reflect accelerated growth 

rate particularly between one and two years of age (Hazlett et al., 2011), affecting both white and 

gray matter volumes (Hazlett et al., 2005), and being possibly driven by cortical surface area 

hyper-expansion between 6 and 12 months of age (Hazlett et al., 2017). Additionally, a number 

of cross-sectional and longitudinal diffusion-weighted imaging studies have reported increased 

structural connectivity (indexed by greater fractional anisotropy [FA]) across multiple white 

matter tracts (e.g., corpus callosum, cingulum, arcuate fasciculus) in infants and toddlers who 

either have been or are later diagnosed with ASD (Conti et al., 2017; Solso et al., 2016; Wolff et 

al., 2012; Xiao et al., 2014). The early increase in structural connectivity – contrasted with 

broadly reduced structural connectivity (i.e., lower FA) in older children and adults with ASD 

(Travers et al., 2012) – is thought to indicate an accelerated white matter growth in the first years 

of life in ASD, consistent with the aforementioned accelerated trajectory of volumetric growth. 

While these findings provide indirect evidence of altered brain maturation early in life in 

ASD, our understanding of the specific neurodevelopmental processes contributing to atypical 

early growth and structural connectivity remains limited. Among such fundamental processes 

shaping the brain structure and function is myelination which is essential for efficient neural 

communication (Liu, Li, Zhu, Li, & Liu, 2019), as myelinated axons allow for rapid and reliable 

propagation of neuronal signals across the brain. Equally critical for brain maturation and 

connectivity is intracortical myelination found predominately in the deeper cortical layers 

(Fields, 2014), in part due to spread of the white matter myelin into the periphery of cortical 

neuropil (Shaw et al., 2008; Sowell et al., 2004). Intracortical myelination is essential for 

establishing and maintaining neural circuitry, as it contributes to fine-tuning the timing and 

synchrony of neural networks (Haroutunian et al., 2014). In typical development, the 
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maturational timing of intracortical myelination, which commences at or near birth (Arnold & 

Trojanowski, 1996), follows a general primary-to-association cortices gradient (Sydnor et al., 

2021), with unimodal primary sensory and motor cortices being highly myelinated by 1 year of 

age, and transmodal association areas in frontal and temporal cortices exhibiting more protracted 

myelination, continuing at least through the third decade of life (Deoni, Dean, Remer, Dirks, & 

O'Muircheartaigh, 2015; Grydeland et al., 2019; Rowley et al., 2017; Shafee, Buckner, & Fischl, 

2015). Critically, this maturational principle parallels the development of brain network 

connectivity in healthy development (Chen, Linke, Olson, Ibarra, Kinnear, et al., 2021; Dong, 

Margulies, Zuo, & Holmes., 2021; Gao et al., 2015), with recent evidence suggesting that the 

timing of functional network maturation and differentiation may be disrupted in toddlers with 

ASD (Chen, Linke, Olson, Ibarra, Reynolds, et al., 2021).  

Although no neuroimaging techniques allow direct measurement of myelin in the human 

brain in vivo, advanced MRI acquisition methods permit estimation of myelin content through 

either quantitative imaging, such as voxel-wise mapping of longitudinal or transverse relaxation 

times (Bock et al., 2013; Geyer, Weiss, Reimann, Lohmann, & Turner, 2011), or semi-

quantitative ratio of T1-weighted (T1w) and T2-weighted (T2w) signal intensity (Glasser et al., 

2013; Glasser & Van Essen, 2011). The T1w/T2w ratio has been shown to successfully map the 

regional differences in myelin content (Glasser & Van Essen, 2011) and has been incorporated in 

the multimodal minimal preprocessing pipelines for the Human Connectome Project (Glasser et 

al., 2013). Investigating the change in the T1w/T2w-estimated myelin content over much of the 

human life span in a large cross-sectional cohort of neurotypical children and adults between 

ages 8 to 83 years, Grydeland et al. (2013) reported linear increases in the T1w/T2w-estimated 

intracortical myelin content through the late 30s, followed by about 20 stable years and a gradual 
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decline from the late 50s. The T1w/T2w ratio has also been associated with cognitive 

performance, especially on tasks of cognitive control (Grydeland, Walhovd, Tamnes, Westlye, & 

Fjell, 2013; Grydeland, Westlye, Walhovd, & Fjell, 2016). Thus, the T1w/T2w ratio may be a 

well-suited MRI-accessible proxy for investigating the development of intracortical myelin in 

young children with ASD, which, to our knowledge, has yet to be evaluated.  

To enhance our understanding of early neurodevelopment in autism, the current study set 

out to examine age-related effects in intracortical myelin in young children with ASD, compared 

to typically developing (TD) age-matched peers, using both T1w and T2w structural MRI data 

acquired during natural nocturnal sleep. Given the lack of previous studies using the T1w/T2w 

ratio in young children with ASD, we expected to find main effects of diagnosis, but had no a 

priori hypotheses regarding the direction of potential effects.   

Methods 

Participants 

This study includes data from young children enrolled in the San Diego State University 

(SDSU) Toddler MRI Project, an ongoing longitudinal study of early brain markers of ASD. 

Children between the ages of 18 and 42 months with a diagnosis of ASD (or behavioral concerns 

consistent with ASD symptoms) were referred to the study from specialty autism clinics, state-

funded early education and developmental evaluation programs, local pediatricians, service 

providers, and community clinics, and are being followed up through age 5 years. TD children 

were recruited from the community, including early head start programs, and via print and social 

media advertisements. Participants in either group were screened and excluded for any co-

occurring neurological disorders (e.g., cerebral palsy), history of perinatal CNS infection or gross 

CNS injury, non-febrile seizures, and contraindications for MRI. Participants with known 
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syndromic forms of ASD (e.g., fragile X or Rett syndrome), as ascertained from parent report, 

were also excluded. To limit known risk factors for developmental delays among children 

enrolled in the TD group, TD participants were also screened and excluded for prematurity (<36 

weeks of gestation), family history (in first-degree relatives) of ASD, intellectual disability, or 

other heritable psychiatric or neurological disorders. The research protocol was approved by the 

institutional review boards of SDSU and University of California San Diego (UCSD), and the 

County of San Diego Health and Human Services Agency. Written informed consent was 

obtained from the caregivers.  

This report includes cross-sectional data from 21 children with ASD and 16 TD 

participants, ages 1.5 - 5 years, for whom high quality T1w and T2w anatomical MRI data 

acquired in the same session (during natural sleep; see MRI Data Acquisition below for details) 

were available. While 32 children with ASD and 23 TD children had completed the full imaging 

protocol, data from 11 children with ASD and 7 TD children were excluded following stringent 

data quality assessment, as detailed below in MRI Data Preprocessing and Quality Assessment. 

Participants with ASD and TD children were matched at the group level on age and gender 

distribution (see Table 3.1 for demographic characteristics of the sample). 

Diagnostic and Developmental Assessment 

Upon enrollment, diagnoses of ASD (or clinical best estimate (Ozonoff et al., 2015) in 

children younger than age 3 years) were established at a specialty clinic (SDSU Center for 

Autism and Developmental Disorders) using standardized measures in combination with clinical 

judgment, in accordance with the current recommendations by the American Academy of 

Pediatrics and Society for Developmental and Behavioral Pediatrics (Weitzman & Wegner, 

2015). Only participants who met diagnostic criteria for ASD, or clinical best estimate, on the 
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DSM-5 (APA, 2013) were included in the ASD group. Because diagnostic evaluation is repeated 

at follow-up visits in the context of the larger longitudinal study, only data from children with 

confirmed diagnosis were included in the current dataset. The diagnoses were supported by the 

Autism Diagnostic Observation Schedule-Second Edition (Lord et al., 2012) administered by 

research-reliable clinicians, the Social Communication Questionnaire (Lord & Rutter, 2003) or 

the Autism Diagnostic Interview-Revised (Lord, Rutter, & Le Couteur, 1994) administered to 

caregivers of children 36-month-old and older, and expert clinical judgment (by two senior 

authors). Developmental skills were assessed in all TD and ASD participants with the Mullen 

Scales of Early Learning (Mullen, 1995), a clinician-administered standardized assessment of 

cognitive, language, and motor development. The Vineland Adaptive Behavior Scales, 2nd 

Edition, Survey Interview (Sparrow, Cicchetti, & Balla, 2005), a semi-structured interview, was 

administered to caregivers to assess the child’s adaptive development skills demonstrated at 

home and other settings; the Vineland scores were utilized to support the diagnostic and 

developmental classification, and are not used as variables of interest in the current analyses. The 

Social Communication Questionnaire (Lord & Rutter, 2003), a screener for autism spectrum 

disorder, was administered to caregivers of all participants, with no TD participants exceeding 

the clinical cut-off score of 15 (all TD scores ≤ 10; see Table 3.1).  

MRI Data Acquisition 

MRI data were collected during natural nocturnal sleep on a 3T GE Discovery MR750 

MRI scanner, using a Nova Medical 32-channel head coil. Whole-brain high-resolution 

anatomical images were obtained using a fast 3D spoiled gradient recalled (FSPGR) T1-

weighted sequence (voxel size=0.8mm3, NEX=1, TE/TI=min full/1060ms, flip angle=8°, 

FOV=25.6cm, matrix=320x320, receiver bandwidth 31.25htz) and Cube T2-weighted sequence 
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(voxel size=0.8mm3, NEX=1, TR=3200ms, TE=minimum, FOV=25.6cm, matrix=320x320, 

bandwidth 125htz). Motion during T1w and T2w scans was corrected in real-time using three 

navigator scans and prospective motion correction (White et al., 2010), and images were bias 

corrected using the GE PURE option. Other MRI data, including functional and diffusion MRI, 

were also acquired but are not included in this study. 

In preparation for the scan night, and to optimize MRI data acquisition, a comprehensive 

habituation protocol was implemented. An individualized scan night sleep strategy (e.g., time of 

arrival, approximating home-like sleeping arrangements, including access to a double MRI bed 

for co-sleeping families, rocking chair, modular playpen mounted on the MRI bed resembling a 

crib, lighting in the MRI suite, etc.) was developed for each child, based on the typical bedtime 

routines assessed in advance with an in-house Sleep Habits Questionnaire. To habituate the child 

to the scanning environment, the parents were instructed to practice nightly inserting soft foam 

child-size earplugs after the child had fallen asleep, and to play an mp3 file containing the MRI 

sounds of the scan sequences employed in the study at progressively louder volumes for a week. 

On the night of the scan, noise protection was achieved with MRI compatible headphones (MR 

Confon) and earplugs. Scanning commenced after approximately 30-50 minutes of sleep, with 

the T1w sequence acquired about 15 minutes into the scanning session and the T2w scan being 

the last sequence acquired approximately 40 minutes after the start of scanning. 

MRI Data Preprocessing and Quality Assessment 

All structural images were visually inspected for motion-related and other artifacts. 

Whole-brain average gray/white contrast-to-noise ratio (CNR) was calculated for each 

participant’s T1w image (see Table 3.1). The Human Connectome Project minimal 

preprocessing structural pipelines (PreFreeSurfer, FreeSurfer, and PostFreeSurfer) were 
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employed to perform cortical reconstruction and to generate cortical myelin maps (Glasser et al., 

2013). Briefly, the PreFreeSurfer pipeline was used to correct for gradient nonlinearity 

distortion, to align the T1w and T2w images with a 6 degrees of freedom rigid body 

transformation, and to correct for intensity inhomogeneity, including correction for B1-bias and 

some B1+bias in the T1w and T2 images by estimating the bias field F from the square root of 

the product of the T1w and T2w images after thresholding out non-brain tissues. 

The FreeSurfer pipeline used a modified FreeSurfer’s (v.5.3.0-HCP) recon-all pipeline 

(Dale, Fischl, & Sereno, 1999; Fischl, Sereno, & Dale, 1999; Fischl, Sereno, Tootell, & Dale, 

1999) to perform brain extraction, automated tissue segmentation, surface topology correction, 

and white and pial surface generation on the distortion- and bias-corrected T1w images in native 

volume space derived from the PreFreeSurfer pipeline. The T2w to T1w registration was further 

improved using FreeSurfer’s BBRegister (Greve & Fischl, 2009).  

Surface myelin maps were generated with the PostFreeSurfer pipeline, using the methods 

described in Glasser & Van Essen (2011) and Glasser, Goyal, Preuss, Raichle, & Van Essen 

(2014). The T1w/T2w ratio images were obtained by dividing the T1w images by the aligned 

T2w images, and were sampled at mid-thickness between the white and pial surfaces as a proxy 

of intracortical myelin. Residual bias field in the T1w/T2w images was corrected by modeling 

the expected low spatial frequency distribution of T1w/T2w intensities across the surface and 

subtracting it from the individual T1w/T2w-estimated myelin maps (Glasser & Van Essen, 2011; 

Glasser, Goyal, Preuss, & Van Essen, 2014).  

 All T1w and T2w images and FreeSurfer outputs were examined slice-by-slice by two 

independent raters to assess overall image quality and identify any inaccuracies in surface 

placement. Of the 32 datasets from children with ASD and 23 datasets from TD children with 
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both T1w and T2w images available, data from 10 ASD and 7 TD children were excluded due to 

major artifacts in the T1w or T2w image, such as ghosting and ringing, and/or surface placement 

inaccuracies on the FreeSurfer output of the T1w image. All T1w/T2w-estimated myelin maps 

were also visually inspected and whole brain mean T1w/T2w ratio was calculated for each 

participant. Data from one child with ASD with the whole brain mean T1w/T2w ratio greater 

than two standard deviations above the group mean was identified as an outlier and excluded 

from the analysis. The excluded children (n = 18) did not significantly differ from those included 

in the study with regard to their age (p = 0.63), sex distribution (p = 0.73), overall developmental 

skills (p = 0.33) or, among children with ASD, autism symptom severity (p = 0.27). 

Statistical Analysis 

Regions of interest  

The average T1w/T2w ratio values were extracted from 34 cortical regions of interest 

(ROIs) per hemisphere from the Desikan-Killiany atlas (Desikan et al., 2006). In order to reduce 

the number of comparisons, we focused on the regions known to undergo rapid myelination in 

the first years of life (Deoni et al., 2015). Thus, only ROIs with the T1w/T2w ratio greater than 

the average whole-brain T1w/T2w for this cohort (T1w/T2w ratio > 2.2) were selected for 

subsequent analyses, resulting in 11 ROIs. These highly myelinated cortical regions included 

pericalcarine, cuneus, lingual, isthmus cingulate, transverse temporal, lateral occipital, 

postcentral, posterior cingulate, paracentral, precentral, and precuneus cortices, encompassing 

the primary somatosensory, motor, visual, auditory, and posterior parts of the cingulate cortices. 

Given the similar rate of myelin development in the left and right hemisphere reported in a large 

cohort of 1-to-6-year-old children (Deoni et al., 2015), we averaged between the left and right 

homologous ROIs to calculate the mean T1w/T2w ratio for each ROI.  
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T1w/T2w ratio analyses 

  Linear regression models were used with T1w/T2w ratio as the outcome variable and 

diagnostic group, age, and age by group interaction as predictors, for each of the selected ROIs. 

Sex, gray/white CNR, and total brain volume (TBV) were included as covariates in all regression 

models during model specification state, and retained only if revealed to be significant 

predictors. Gray/white CNR did not differ between groups (see Table 3.1) nor accounted for 

significant variance (ps > 0.2) in any of the models; as a result, it was removed from the final 

models. Corrections for multiple comparisons were conducted using Benjamini-Hochberg False 

Discovery Rate (FDR) at q < 0.1. Follow-up partial correlations were calculated between age and 

T1w/T2w ratio for each group for those ROIs with significant age by group interactions, while 

controlling for covariates revealed to be significant predictors.  

Correlations with autism symptoms  

Associations between estimated myelin content and autism symptoms (in children with 

ASD only) were examined with linear regression models with T1w/T2w ratio as the outcome 

variable, and ADOS-2 Calibrated Severity Scores (CSS, an index of ASD symptom severity, 

which allows comparisons across ages and language abilities) as predictor, controlling for age, 

sex, and MSEL Early Learning Composite (ELC, a standard score indexing child’s overall 

developmental level). These models were only applied for the ROIs showing significant 

diagnostic group, or age by group interaction effects in the main analysis. Benjamini-Hochberg 

FDR at q < 0.1 was used to correct for multiple comparisons. 

Results 

 The resultant T1w/T2w maps for the ASD and TD groups are shown in Figure 3.1A. 

Overall, the T1w/T2w spatial patterns and distribution were very similar for children in the ASD 
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and TD groups, with the motor/somatosensory strip in the central sulcus, visual cortex in the 

occipital lobe, primary auditory areas in Heschl’s gyrus, and posterior aspects of the cingulate 

cortex showing the highest T1w/T2w values. Regions with the lowest myelination included the 

temporal pole, medial prefrontal cortex, and the anterior cingulate cortex. These patterns are 

highly consistent with those reported in adults (Glasser & Van Essen, 2011) and in typically 

developing young children in the same age range (obtained with a different myelin mapping 

method; Deoni et al., 2015). 

Group comparisons and age-related effects on T1w/T2w ratio  

Results of the regression analyses revealed no significant group differences (ASD v. TD) 

in the average T1w/T2w ratio in the selected 11 ROIs (Figure 3.1B, 3.1C). However, significant 

age by group interaction effects (q < 0.1) were identified in 7 out of the 11 ROIs (including the 

pericalcarine, cuneus, lingual, isthmus cingulate, lateral occipital, posterior cingulate, and 

precuneus cortices), with a consistent pattern of positive associations between T1w/T2w and age 

in TD children (correlation coefficients r = [0.32 to 0.58]) and a general lack of such relationship 

with age in the ASD group (correlation coefficients r = [–0.28 to –0.04]; see scatterplots in 

Figure 3.2). Sex and TBV did not account for significant variance in these models.  

Links with autism symptoms 

 There were no significant associations between estimated myelin content (T1w/T2w 

ratio) and autism symptoms (ADOS-2 CSS) after controlling for age, sex, and overall 

developmental skills (Mullen ELC) in the 7 ROIs identified in the main analyses.  

Post-hoc examination of links between T1w/T2w ratio and other morphometric indices of 

cortical maturation  
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 Given the rapid brain volume growth and prominent morphometric changes in the first 

years of life (Gilmore et al., 2012; Li et al., 2013; Lyall et al., 2015), we conducted post-hoc 

analyses to explore whether T1w/T2w ratio relates to gray matter volume in the cortical ROIs 

showing significant age by group interaction effects in the main analysis. Linear regression 

models with T1w/T2w ratio as the outcome variable, and diagnostic group, cortical volume, and 

group by volume interaction as predictors, while controlling for age, sex, and TBV were 

employed (cortical volumes were automatically calculated at each FreeSurfer surface vertex 

during preprocessing, and were averaged across all vertices within each ROI). Corrections for 

multiple comparisons were conducted using Benjamini-Hochberg FDR at q < 0.1. 

These analyses revealed significant group by volume interaction effects in the cuneus, 

isthmus cingulate, and precuneus cortices, after correcting for multiple comparisons (q < 0.1). 

Age, sex, and TBV did not account for significant variance in any of these models. Follow-up 

correlational analyses between T1w/T2w and ROI volume in each group revealed a significant 

positive association between T1w/T2w and volume in the cuneus in the TD group (r = 0.74, p < 

0.001), indicating that the two indices of cortical maturation co-vary in young TD children, while 

such relationship was not present in the ASD group (see Figure 3.3). Because cortical volume is, 

by and large, a product of cortical thickness and surface area, we conducted an additional 

exploratory analysis to examine whether the atypical relationship between cortical myelin and 

gray matter volume observed in the ASD group may be related to atypical cortical thinning or 

surface area expansion (thought to have different genetic origins and distinct developmental 

trajectories; Wierenga, Langen, Oranje, & Durston, 2014). Follow-up correlational analyses 

between T1w/T2w and surface area/cortical thickness conducted for the three ROIs (cuneus, 

isthmus cingulate, and precuneus) revealed no significant relationships between T1w/T2w ratio 
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and cortical thickness, in either the ASD or TD groups. However, positive associations between 

T1w/T2w and surface area were identified in all 3 ROIs in the TD but not in the ASD group, 

mirroring the relationship between T1w/T2w and cortical volume in the same ROIs (Figure 3.3).  

Discussion 

To our knowledge, this is the first study to examine intracortical myelin in toddlers and 

preschoolers with ASD. Our primary aim was to test the feasibility of using the T1w/T2w ratio 

as an estimate of intracortical myelin content in young children with ASD, and to examine the 

age-related effects on T1w/T2w across early childhood in ASD (cross-sectionally), as compared 

to typical development. We also set out to explore whether, in children with ASD, estimated 

intracortical myelin content in the rapidly myelinated regions was associated with autism 

symptoms, and whether it was related to other indices of cortical maturation. Results revealed 

that the overall spatial patterns of intracortical myelin distribution estimated with T1w/T2w in 

young children with ASD were largely comparable to the patterns observed in the TD group, as 

well as to those reported in prior studies in TD children (Deoni et al., 2015) and adults (Glasser 

& Van Essen, 2011). Although direct between-group comparisons revealed no group differences 

in T1w/T2w between TD children and those with ASD, differential associations with age in the 

early-myelinated areas, including visual, posterior cingulate, and precuneus cortices, were 

observed in the ASD and TD groups. Specifically, a consistent pattern of positive associations 

between intracortical myelin in these regions and age was detected in the TD group (cross-

sectionally), indicating age-related increase in estimated myelin content across the toddler and 

preschool years. In contrast, such age-related effects were generally absent in the ASD group. 

Furthermore, differential relationships between intracortical myelin and cortical volumes and 

surface area in posterior cortices were detected in the ASD and TD groups, with estimated 
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myelin content positively associated with volume and surface area in TD children, whereas such 

relationship was not present in young children with ASD. Finally, no significant association 

between cortical myelin and symptoms of autism was detected among children with ASD.  

Our finding of aberrant age-related trajectories of estimated intracortical myelin content 

in young children with ASD, relative to TD children, suggests that this fundamental 

neurodevelopmental process is altered in the first years of life in autism. Although no diagnostic 

group differences (ASD v. TD) in intracortical myelin content were detected, significant group 

by age interaction effects observed across several posterior cortical regions indicate that the 

developmental timing of myelination may be disordered in young children with ASD, in 

comparison to TD children who showed expected age-related increase in intracortical 

myelination. Across the human lifespan, intracortical myelination follows an inverted U-shape 

trajectory with an initial increase in intracortical myelin across most of the cortex continuing 

through at least the middle of the third decade of life, with the first wave of maturation in 

primary sensory and motor cortices followed by a second wave of maturation in association, 

limbic, and insular cortices (Grydeland et al., 2019; Grydeland et al., 2013; Rowley et al., 2017; 

Shafee et al., 2015). Based on our findings, albeit in a relatively modest-size sample, this 

trajectory appears to be mis-timed (as assessed with cross-sectional design) in early childhood in 

ASD. 

Although T1w/T2w had not been previously investigated in young children with ASD, a 

recent report (Darki, Nyström, McAlonan, Bölte, & Falck-Ytter, 2021) described lower 

T1w/T2w values in 5-month-old infants at familial risk for ASD in both white and gray matter in 

broadly distributed brain regions, compared to infants with no familial risk. Notably, some of the 

gray matter regions where significant group differences in T1w/T2w were observed in infants at 
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risk for ASD overlap with the ROIs with significant group by age interaction effects in our 

cohort, including the cingulate, precuneus, and lateral occipital cortices. However, considerable 

methodological differences between the two studies preclude any further inferences (e.g., a 

volume-based approach for tissue segmentation, which limits the accuracy of delineation of gray 

and white matter, and voxel-wise calculation of T1w/T2w across the cortex, limiting the 

specification of the underlying neurobiological processes, used by Darki and colleagues, vs. a 

surface-based approach for tissue segmentation and estimation of T1w/T2w at mid-thickness 

between the white and pial surfaces used in the current study). Additionally, it is unclear if these 

findings are specific to children with ASD given the lack of subsequent diagnostic confirmation 

for infants at familial risk. Nonetheless, considered together with these results, our findings 

highlight the developmental significance of the T1w/T2w ratio as an index of aberrant 

neurodevelopment characterizing young children with, or at risk for autism spectrum disorders.         

Notably, studies using other methodologically-related MRI metrics (also dependent on 

image intensity variations and contrast, similarly to T1w/T2w) in ASD have shown blurring of 

the boundary between cerebral gray and white matter, where intracortical myelin is 

predominately found. Andrews and colleagues (2017) first reported reduced gray-white matter 

boundary contrast (GWC) in adults with ASD, consistent with earlier postmortem histological 

findings (Avino & Hutsler, 2010). The reduced GWC values in adults with ASD were driven 

primarily by increased gray matter intensity (GMI) across the cortical layers at different depths 

into the cortical sheet. This is pertinent because increased GMI may be driven by atypical 

myelination (Sowell et al., 2004) and/or differences in cytoarchitectural organization (Casanova, 

Buxhoeveden, Switala, & Roy, 2002). A subsequent study investigating age-related changes of 

GWC in youth and young adults with ASD (ages 7-25 years) found that the most prominent 
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changes in GWC occur during childhood (Mann et al., 2018), suggesting that the disrupted GWC 

in ASD may not be exclusively driven by atypical gray matter cytoarchitecture (which is largely 

set around birth) but rather reflects ongoing, age-dependent changes in myelination. Finally, a 

recent longitudinal study in toddlers with familial risk of ASD reported that atypically increased 

GWC in the second year of life (in the context of the normative increase observed at this age in 

typical development) was associated with ASD diagnosis and symptom severity at age 3 years 

(Godel et al., 2021). Overall, although the GWC index is not specific to myelin content, its 

methodological interdependence with estimated myelin content (through similar reliance on 

image intensity variations and contrast in estimating the gray-white cortical boundary, where 

intracortical myelin is predominately found) makes these findings relevant to the pattern of 

results observed in young children with ASD in our study.  

Broadly, the early disruption in intracortical myelination is significant in the context of its 

effects on the development of brain circuits and functional networks, including the inhibitory 

effects of myelin on axon sprouting and synapse formation and dendritic plasticity (McGee, 

Yang, Fischer, Daw, & Strittmatter, 2005; Tomassy et al., 2014) thought to help stabilize the 

architecture of developing neural networks. The cortical regions where atypical age-related 

effects in intracortical myelin were observed in our cohort encompassed visual cortices (i.e., 

pericalcarine, cuneus, lingual, lateral occipital) and posterior nodes of the Default Mode Network 

(DMN; Buckner, Andrews-Hanna, & Schacter, 2008; Raichle et al., 2001) (i.e., isthmus 

cingulate, posterior cingulate, precuneus), with consistent reports of atypical functional 

connectivity in those circuits in ASD (Assaf et al., 2010; Keehn, Shih, Brenner, Townsend, & 

Müller, 2013; Wang et al., 2021; Yerys et al., 2015). The aberrant brain connectivity and 

network organization involving visual and DMN networks have been reported in young children 
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with (or at risk for) ASD in particular, with atypical connectivity linked to autism symptoms or 

early behavioral signs of ASD (e.g., joint attention or core autism symptoms; Chen, Linke, 

Olson, Ibarra, Reynolds, et al., 2021; Eggebrecht et al., 2017; McKinnon et al., 2019).  

Further, the atypical relationships between T1w/T2w ratio and gray matter volume / 

surface area in young children with ASD, as compared to TD children, revealed in the post-hoc 

analyses, suggest that the early disruption in intracortical myelination may be one of several 

aberrant cortical maturational processes underlying the atypical neurodevelopment in the first 

years of life in ASD. Namely, we found that, in posterior midline cortices, including posterior 

cingulate, precuneus, and cuneus, estimated intracortical myelin content and cortical volumes / 

surface area are robustly linked within individuals in TD children, suggesting effectively 

concomitant maturation of these indices of neurodevelopment. However, intracortical myelin and 

cortical volumes / surface area were not associated in children with ASD, indicating that the two 

may be uncoupled in early development in autism. As briefly discussed in the introduction, early 

accelerated growth in gray matter volume, possibly driven by surface area hyper-expansion, has 

been consistently reported in young children with ASD (Hazlett et al., 2017). Our findings 

expand on this literature by highlighting an additional aspect of atypical cortical development in 

autism, intracortical myelination, that can inform our understanding of the neurobiology of the 

ASD.  

Limitations and Perspectives  

While this work reports the first in vivo description of intracortical myelination in young 

children with ASD, some methodological limitations need to be acknowledged. The primary 

limitation is that the T1w/T2w ratio is not a direct measure of intracortical myelin content but 

rather a proxy that has been shown to successfully map the myeloarchitectonic properties in 
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adults and typically developing children. Other factors can also contribute to the T1w/T2w 

measure such as iron content, which affects MRI signal contrast (Fukunaga et al., 2010), head 

motion affecting image quality which can indirectly affect the accurate placement of the cortical 

surface, as well as maturation of the local white matter (e.g., Giedd 2004). Given the rigorous 

quality assurance of all structural images and exclusion of scans with major motion artifacts or 

surface placement inaccuracies, and the use of gray/white CNR as a measure of the overall image 

quality (which did not account for significant variance in any of the analyses), head motion is 

unlikely to be a major contributor for the current results. Additionally, although HCP 

preprocessing pipeline includes an ad-hoc correction method to minimize the residual B1+ bias 

in the T1w/T2w maps, this method works well for localizing cortical areas in individual scans, 

but may potentially attenuate individual differences and reduce sensitivity for detecting cross-

participant differences (Ganzetti et al., 2014). An improved method for B1+ transmit field 

correction on the T1w/T2w-estimated myelin maps may be needed in future studies utilizing the 

T1w/T2w ratio measure. Other limitations include the relatively modest sample size limiting our 

study to an exploratory purpose only and the use of cross-sectional data to explore age-related 

effects. Future studies with larger samples and longitudinal data are necessary to map the 

developmental trajectories of intracortical myelination in the first years of life in ASD.  

 Critically, while the current study design does not allow inferences about whether the 

observed atypical maturational trajectories of intracortical myelin in young children with ASD 

reflect causation (i.e., pertain to the underlying etiology) or compensatory effects, these findings 

are nonetheless crucial for translational efforts given the recent evidence of adaptive 

myelination, modifiable by environmental experience (Fields, 2015; Forbes & Gallo, 2017). 

Specifically, the prolonged plasticity of intracortical myelin, especially in transmodal, 
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association cortices, provides an extended window of opportunity for modifications, through 

early interventions or other critical changes in an individual’s socioemotional, educational, and 

other environmental experiences, to promote experience-dependent plasticity early in life in 

children with ASD (e.g., Rosen, Amso, & McLaughlin, 2019).  

Acknowledgements 

 This research was supported by the National Institutes of Health (R01 MH107802 to IF). 

The funding sources had no role in study design, writing of the report, or the decision to submit 

the article for publication. The authors are grateful to Chris Fong, M.A. and Lisa Mash, Ph.D., of 

San Diego State University, and Tiffany Wang, M.S., of University of California, San Diego, for 

invaluable assistance with data collection. The authors’ strongest gratitude goes to the children 

and families who so generously dedicated their time and effort to this research. 

 Chapter 2, in full is a reprint of the material as it appears in Developmental Neurobiology, 

2022. Chen, B., Linke, A., Olson, L., Kohli, J., Kinnear, M., Sereno, M., Müller, R. A., Carper, 

R., and Fishman, I., Wiley, 2022. The dissertation author was the primary investigator and author 

of this paper. 

  



68 
 

Table 2.1 Participant Characteristics 

  
ASD  

(n = 21) 
TD 

(n = 16) ASD vs. TD 

  
Mean ± SD  
(Min - Max) 

Mean ± SD  
(Min - Max) t/Χ2 p value  

Age at scan (months)*  42.7 ± 12.8 
(21 - 62) 

41.8 ± 15.4 
(20 - 65) 

t(35) = 0.19 0.85 

Gender (M/F) 16/5 9/7 χ2(1) = 1.65 0.20 
Ethnicity (Hispanic/Non-Hispanic)a 9/10 6/10 χ2(1) = 0.35 0.56 
Race (White/Black/More-than- 
     one/Asian)b 

16/0/3/1 13/2/0/0 -- -- 

Gestational age (weeks)c 39.1 ± 1.9 
(35 - 43) 

39.6 ± 1.2 
(37 - 42) 

t(34) = -1.09 0.29 

Birth weight (grams)d 3276.2 ± 583.1 
(2098 - 4394) 

3451.6 ± 363.0 
(2863 - 4082) 

t(33) = -1.04 0.30 

Delivery method (Vaginal/C-section) 13/8 13/3 χ2(1) = 1.63 0.20 
Maternal education level (%)  

    

     High school or some college credit,   
          but <1 year 

38% 6% -- -- 

     Associate degree 10% 0 -- -- 
     Bachelor's degree  10% 44% -- -- 
     Master's degree 29% 44% -- -- 
     Professional degree (MD, PhD, JD)  14% 6% -- -- 
MSEL Early Learning Composite,  
     Standard Score 

75.3 ± 17.6 
(49 - 105) 

103.1 ± 16.1 
(80 - 136) 

t(35) = -4.95 <0.00
1 

SCQ Total Scoree 14.3 ± 9.2 
(3 - 35) 

4.7 ± 2.4 
(1 - 9) 

t(33) = 4.02 <0.00
1 

ADOS-2 Calibrated Severity Score 5.9 ± 2.2 
(2 - 9) 

-- -- -- 

Total Brain Volume (cm3) 1099.8 ± 99.5 
(910.0 - 
1282.7) 

1052.5 ± 100.9 
(813.9 - 
1202.3) 

t(35) = 1.42 0.16 

Gray/White CNR 2.0 ± 0.2 
(1.7 - 2.5) 

1.9 ± 0.1 
(1.7 - 2.1) 

t(35) = 1.50 0.14 

Note: M = male; F = female; MSEL = Mullen Scales of Early Learning; SCQ = Social Communication 
Questionnaire; ADOS-2 = Autism Diagnostic Observation Schedule 2nd Edition; CNR = contrast-to-
noise ratio.    
*MRI data were acquired within 3 weeks of the diagnostic and behavioral evaluation. 
aEthnicity data are missing for 2 ASD subjects  
bRace data are missing for 1 ASD and 1 TD subjects 
cGestational age data are missing for 1 ASD subject 
dBirth weight data are missing for 2 ASD subjects 
eSCQ data are missing for 2 ASD subjects  
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Figure 2.1 Group comparisons of estimated myelin content  
(A) Average T1w/T2w ratio maps in the ASD and TD groups. Group average T1w/T2w ratio projected 
on the inflated surface. In all medial surface panels, the medial wall is masked. The color palette reflects 
T1w/T2w ratio percentile rank indexing lightly myelinated cortex in purple and more highly myelinated 
cortex in red. (B, C) Estimated myelin content (T1w/T2w ratio, averaged across hemispheres) for the 11 
regions of interest (ROIs), in the ASD and TD groups. The 11 ROIs with the highest estimated myelin 
content (T1w/T2w ratio greater than the average whole-brain T1w/T2w ratio for the whole cohort) 
include pericalcarine, cuneus, lingual, isthmus cingulate, transverse temporal, lateral occipital, 
postcentral, posterior cingulate, paracentral, precentral, and precuneus cortices. Panel B shows average 
T1w/T2w ratio per group, and panel C shows distribution of the T1w/T2w values within each group, for 
each ROI. 
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Figure 2.2 Correlations between estimated myelin content and age 
Scatterplots of correlations between T1w/T2w ratio and age, in 7 out of 11 ROIs where significant age by 
diagnostic group interaction effects were detected. r values denote bivariate (zero-order) correlation 
coefficients for the ASD and TD groups, with significant within-group correlations indicated in bold font. 
Bivariate correlations are presented because covariates (sex, CNR, and TBV) did not account for 
significant variance in these models. 
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Figure 2.3 Correlations. Between estimated myelin content and morphometric indices of brain 
maturation 
Scatterplots of correlations between T1w/T2w ratio and gray matter volume (top panel), surface area 
(middle panel), and cortical thickness (bottom panel) in 3 out of 7 ROIs where significant T1w/T2w by 
volume by diagnostic group interaction effects were detected (cuneus, isthmus cingulate, and precuneus 
cortices). r values denote correlation coefficients for the ASD and TD groups, with significant within-
group correlations indicated in bold font. 
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CHAPTER 3: STUDY 3 
 
 

The content within this section, titled “Chapter 3: Study 3,” reflects material from a paper 

that has been submitted for publication. The citation is as follows:  

 

Chen, B., Olson, L., Rios, A., Salmina, M., Linke, A., & Fishman, I. (under review). Reduced 

covariation between brain morphometry and local spontaneous activity in young children with 

autism spectrum disorder.   
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ABSTRACT  

 While disruptions in brain maturation in the first years of life in ASD are well 

documented, little is known about how brain structure and function are related in young children 

with ASD compared to typically developing peers. We applied a multivariate pattern analysis to 

examine covariation patterns between brain morphometry and local brain spontaneous activity in 

38 toddlers and preschoolers with ASD and 31 typically developing children using T1-weighted 

structural magnetic resonance imaging (MRI) and resting-state functional MRI data acquired 

during natural sleep. The results revealed significantly reduced brain structure-function 

correlations in ASD. The resultant brain structure and function composite indices were 

associated with age among typically developing children but not in those with ASD, suggesting 

mistiming of typical brain maturational trajectories early in life in autism. Additionally, the brain 

function composite indices were associated with overall developmental and adaptive behavior 

skills in the ASD group, highlighting the neurodevelopmental significance of early local brain 

activity in autism.   
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INTRODUCTION 

While the current consensus is that autism spectrum disorder (ASD) originates prenatally 

affecting early fetal neurodevelopment (Courchesne, Gazestani, & Lewis, 2020), the clinical 

diagnosis of ASD cannot be made before behavioral symptoms fully manifest (with the median 

age at diagnosis in the US currently being 49 months (Maenner et al., 2023)), substantially 

limiting our ability for early identification. The implications of delayed detection and 

identification are significant given the profound impact of early interventions on the developing 

brain, especially in the first years of life, during the critical window of rapid brain maturation and 

peak experience-dependent neuroplasticity (Tau & Peterson, 2010).  

Although cumulative neuroimaging evidence has shown alterations in both structural 

(i.e., neuroanatomy) and functional development of the brain in ASD, these studies are largely 

based on older children and adolescents, with only a few consistent findings emerging from 

neuroimaging studies in infants and toddlers at risk for, or with early diagnosis of autism. 

Multiple studies have reported early brain overgrowth, including enlarged brain volumes and 

head circumferences, accelerated surface area expansion, and increased structural connectivity 

across white matter tracts in the first years of life in young children with ASD, at a group level, 

when compared to typically developing age peers (Courchesne et al., 2001; Hazlett et al., 2005; 

Hazlett et al., 2011; Solso et al., 2016; Wolff et al., 2012; Xiao et al., 2014). Besides these early 

structural brain findings in ASD detected with anatomical and diffusion MRI, a small but 

growing number of studies have examined functional brain organization and connectivity in 

infants and toddlers with (or at risk for) ASD using functional MRI acquired during natural 

sleep. Earlier studies have primarily focused on brain function in putative language regions and 

reported reduced fMRI activation in response to speech sounds, absent or reversed hemispheric 
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lateralization for speech processing, and diminished inter-hemispheric connectivity between 

language regions in young children with ASD (Dinstein et al., 2011; Eyler, Pierce, & 

Courchesne, 2012; Lombardo et al., 2015). More recent studies have investigated whole brain 

intrinsic functional connectivity (iFC) and functional networks in infants with high familial risk 

for ASD (due to having an older sibling with autism) who were followed prospectively 

(Eggebrecht et al., 2017; Emerson et al., 2017; Marrus et al., 2018; McKinnon et al., 2019). 

While these prospective studies provided unique opportunities to study neurodevelopment before 

behavioral symptoms of ASD emerge, this sampling design is inherently biased given the 

exclusive focus on children from families with a significant familial risk (while most individuals 

with ASD do not have older siblings with the disorder (Szatmari et al., 2016)). More recent 

studies examining resting-state functional connectivity in toddlers diagnosed with ASD (ages 1.5 

to 3.5 years) found disruptions in multi-sensory circuitry, including atypically increased iFC 

between visual and sensorimotor networks (B. Chen et al., 2021) and between thalamus and 

sensory cortices (Linke et al., 2023), which were associated with greater autism symptoms and 

poorer clinical outcomes, such as sleep disturbances.   

 Critically, a vast majority of neuroimaging studies in ASD, including those in toddler 

and preschool years reviewed above, have examined brain structural and functional indices 

separately using MRI data from a single modality (e.g., fMRI or anatomical MRI), with patterns 

of covariation between brain structural and functional development largely overlooked. With 

regard to neuroanatomy or morphometric brain development, both cortical thickness (CT) and 

surface area (SA) contribute to the cortical volume growth, albeit each following distinct, non-

overlapping maturational trajectories (Brown et al., 2012; Wierenga, Langen, Oranje, & Durston, 

2014) rooted in distinct neurobiological processes, including distinctive genetic underpinnings 
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(Panizzon et al., 2009; Strike et al., 2019). The normative developmental trajectories of CT and 

SA have been extensively studied, with cortical thinning and surface area expansion shown 

across most of the brain during toddler and preschool years (Bethlehem et al., 2022; Frangou et 

al., 2022; Remer et al., 2017). As noted above, the limited evidence available on the brain 

volumetric and morphometric development in early childhood in ASD suggests that these 

trajectories may be accelerated (i.e., have an earlier peak) in young children with ASD 

(Courchesne et al., 2001; Hazlett et al., 2005; Hazlett et al., 2011; Schumann et al., 2010; Xiao et 

al., 2014). The first years of life is also a period of rapid development of brain functional 

organization and activity, which can be estimated with blood oxygenation level-dependent 

(BOLD) signal using fMRI. Although resting-state fMRI data have been primarily used – 

whether in general population, in ASD, or in other clinical populations – to examine large-scale 

functional connectivity patterns based on the strength of the correlations between BOLD signal 

fluctuations in spatially distant brain regions (Biswal, Yetkin, Haughton, & Hyde, 1995; Fox & 

Raichle, 2007), resting-state fMRI data can also be used to quantify local spontaneous brain 

activity within a given brain region. For example, regional spontaneous brain activity can be 

characterized with fractional amplitude of low-frequency fluctuation (fALFF) metric, which 

measures the relative contribution of low frequency BOLD signal fluctuations to the entire 

frequency range detectable by BOLD-optimized MRI sequences (Zou et al., 2008; Zuo et al., 

2010). Only a handful of studies have investigated local spontaneous activity in ASD, with 

evidence of disrupted local activity observed in school-aged children, adolescents and adults, 

albeit with mixed, region- and age-specific pattern of results (Di Martino et al., 2014; Guo et al., 

2017; Itahashi et al., 2015; Karavallil Achuthan, Coburn, Beckerson, & Kana, 2023). However, 

no published study to date has investigated local spontaneous activity in the first years of life in 
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ASD, limiting our knowledge of the maturational aspects and early developmental trajectories of 

local spontaneous brain activity in ASD.  

Motivated by the dearth of research leveraging multimodal MRI data in early childhood 

in ASD and aiming to improve our understanding of the multivariate relationships between brain 

structure and function in early neurodevelopment in ASD, this study set out to examine the 

covariation patterns between brain morphometry and local spontaneous activity in young 

children with ASD as compared to typically developing (TD) age-matched peers, using both 

structural MRI and resting-state functional MRI data acquired during natural sleep. We utilized 

canonical correlation analysis (CCA), a statistical method allowing investigation of joint 

multivariate relationships, to identify a set of brain morphometric and local spontaneous activity 

measures that are maximally correlated (indicating co-maturation) in typical development and to 

compare this brain structure-function covariation pattern to that observed in the ASD cohort. We 

hypothesized that young children with ASD would exhibit reduced brain structure-function 

correlations when compared to TD children. 

METHODS 

Participants 

This study includes data from participants enrolled in the San Diego State University 

(SDSU) Toddler MRI Project, a longitudinal study of early brain markers of ASD. Children 

between 18 and 42 months with a diagnosis of ASD or behavioral concerns consistent with ASD 

symptoms were referred to the Project from multiple sources, including specialty autism clinics, 

state-funded early education and developmental evaluation programs, local pediatricians, 

community clinics, and autism service providers, and have been followed longitudinally through 

5 years of age. TD children were recruited from the community via digital and social media 
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advertisement in and around the San Diego County. Co-occurring neurological disorders (e.g., 

cerebral palsy), history of perinatal CNS infection or gross CNS injury, non-febrile seizures, and 

contraindications for MRI served as exclusionary for children in either group. Participants with 

known syndromic forms of ASD (e.g., fragile X or Rett syndrome), as ascertained from parent 

report, were also excluded. In order to limit known risk factors associated with developmental 

delays among children enrolled in the TD group, TD participants were further screened and 

excluded for prematurity (<36 weeks of gestation), family history (in first-degree relatives) of 

ASD, intellectual disability, or other heritable psychiatric or neurological disorders. The research 

protocol was approved by the institutional review boards of SDSU, University of California San 

Diego (UCSD), and the County of San Diego Health and Human Services Agency. Written 

informed consent was obtained from the caregivers.  

This study includes cross-sectional data (from one of the longitudinal study visits 

completed between 2016 and early 2020) from 38 young children with ASD and 31 TD children, 

ages 1.5 – 5.5 years, for whom both high-quality T1 (anatomical) and two runs of resting-state 

functional MRI data acquired during natural sleep were available. Participants with ASD and TD 

children were matched at the group level on age (see Table 1 for demographic and 

developmental characteristics of the sample).   

Diagnostic and Developmental Assessment 

Diagnoses of ASD or clinical best estimate (Ozonoff et al., 2015) in children younger 

than 3 years of age were established upon enrollment using standardized measures in 

combination with expert clinical judgement, in accordance with the current recommendations by 

the American Academy of Pediatrics and Society for Developmental and Behavioral Pediatrics 

(Lipkin & Macias, 2020; Weitzman & Wegner, 2015). Because diagnostic evaluation is repeated 
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at follow-up visits in the context of the larger longitudinal Project, only data from children with 

confirmed diagnosis, based on the DSM-5 (American Psychiatric Association, 2013) diagnostic 

criteria, were included in the current study. ASD diagnoses were supported by the Autism 

Diagnostic Observation Schedule-Second Edition (Lord et al., 2012) administered by research-

reliable clinicians, the Social Communication Questionnaire (Lord & Rutter, 2003) or the Autism 

Diagnostic Interview-Revised (Lord, Rutter, & Le Couteur, 1994) administered to caregivers of 

children older than 36 months, and expert clinical judgment. Developmental skills were assessed 

in all (TD and ASD) participants with the Mullen Scales of Early Learning (MSEL; Mullen, 

1995), a clinician-administered standardized assessment of cognitive, language, and motor 

development. Total developmental quotient (DQ) was calculated as an average of four 

developmental quotients (for each MSEL subscale: Receptive Language, Expressive Language, 

Fine Motor, and Visual Reception) derived by dividing the subscale age-equivalence score by the 

child’s chronological age and multiplying by 100 (Messinger et al., 2013). The DQ metric was 

utilized to avoid the relatively common floor effect of the MSEL Early Learning Composite 

Standard Score, which was observed in 7 out of 38 children in the ASD cohort (consistent with 

other reports in cohorts of young children with ASD (Lord et al., 2006; Munson et al., 2008)). 

The Vineland Adaptive Behavior Scales, 2nd Edition, Survey Interview (Vineland-II; Sparrow, 

Cicchetti, & Balla, 2005), a semi-structured interview, was administered to caregivers to assess 

the child’s adaptive development skills demonstrated at home and other settings. The Vineland-II 

Adaptive Behavior Composite (ABC) score was used in the analysis. For inclusion and retention 

in the TD group, children had below-clinical cutoff scores on the ASD screener, the SCQ (all TD 

scores ≤ 10; see Table 1), and demonstrated developmental skills falling no more than 1.5 SD 
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below the normative mean for their age on measures of early learning and development (the 

MSEL subscales). 

MRI Data Acquisition 

MRI data were collected during natural nocturnal sleep on a GE Discovery MR750 3T 

MRI scanner at the UCSD Center for Functional Magnetic Resonance Imaging, using a Nova 

Medical 32-channel head coil. First, a multiband multi-echo planar imaging (EPI) sequence 

allowing simultaneous acquisition of multiple slices was used to acquire two fMRI runs (400 

volumes per each 6-minute run) with high spatial resolution and fast acquisition (TR=800ms, 

TE=35ms, flip angle=52°, 72 slices, multiband acceleration factor=8, 2mm isotropic voxel size, 

matrix=104x104, FOV=20.8cm). Two separate 20s spin-echo EPI sequences with opposing 

phase encoding directions were also acquired using the same matrix size, FOV and prescription 

to correct for susceptibility-induced distortions. High-resolution anatomical images were 

acquired next with a fast 3D spoiled gradient recalled (FSPGR) T1-weighted sequence (0.8mm 

isotropic voxel size, NEX=1, TE/TI=min full/1060ms, flip angle=8°, FOV=25.6cm, 

matrix=320x320, receiver bandwidth 31.25hz). Motion during anatomical scans was corrected in 

real-time using three navigator scans and real-time prospective motion correction (PROMO) 

(White et al., 2010), and images were bias corrected using the GE PURE option.  

In preparation for the scan night, and to optimize MRI data acquisition, a comprehensive 

habituation protocol was implemented. An individualized scan night sleep strategy (e.g., time of 

arrival, approximating home-like sleeping arrangements, including access to a double MRI bed 

for co-sleeping families, rocking chair, modular playpen mounted on the MRI bed resembling a 

crib, ambient lighting in the MRI suite, etc.) was developed for each child, based on the typical 

bedtime routines assessed in advance with an in-house Sleep Habits Questionnaire. To habituate 
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the child to the scanning environment, the parents were instructed to practice nightly inserting 

soft foam child-size earplugs after the child had fallen asleep, and to play an mp3 file containing 

the MRI sounds of the scan sequences employed in the study at progressively louder volumes for 

a week. On the night of the scan, noise protection was achieved with MRI compatible 

headphones (MR Confon) and earplugs. Scanning commenced after approximately 30-50 

minutes of sleep. 

MRI Data Preprocessing and Quality Assessment 

T1 anatomical MRI images were processed for automated cortical reconstruction using 

FreeSurfer version 5.3.0 recon-all (https://surfer.nmr.mgh.harvard.edu), which generated pial and 

white matter surfaces for each individual. All T1 anatomical images were visually inspected for 

motion-related and other artifacts and FreeSurfer outputs were examined slice-by-slice by two 

independent raters to identify any inaccuracies in surface placement. Whole-brain average 

gray/white contrast-to-noise ratio (CNR) was calculated for each participant’s T1 image. 

Functional MRI data were preprocessed with FMRIB’s Software Libraries (FSL v5.0.10) 

(Smith et al., 2004), Matlab 2015b (Mathworks Inc., Natick, MA, USA) using SPM12 

(Wellcome Trust Centre for Neuroimaging, University College London, UK), and the CONN 

toolbox v17f (Whitfield-Gabrieli & Nieto-Castanon, 2012; http://www.nitrc.org/projects/conn). 

Preprocessing steps included correction for susceptibility-induced distortions using the two spin-

echo EPI acquisitions with opposite phase encoding directions and FSL’s TOPUP tools; motion 

correction using rigid-body realignment as implemented in SPM12; spatial smoothing using a 

6mm Gaussian kernel at full-width half maximum; outlier detection using the Artifact Detection 

Toolbox as installed with CONN v17f (ART; https://www.nitrc.org/projects/artifact_detect) to 

identify outlier volumes with frame-wise displacement (FD) >0.5mm and/or changes in signal 
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intensity >3 standard deviations; and nuisance regression including censoring of outliers detected 

by the ART toolbox, regression of the 6 motion parameters and their derivatives, and the first 

five PCA components derived from the CSF and white matter compartments using aCompCor 

(Behzadi, Restom, Liau, & Liu, 2007). The structural images were co-registered to the mean 

functional image, segmented and normalized to the Montreal Neurological Institute (MNI) atlas 

space using non-linear registration and the default tissue probability maps included with SPM12. 

The white matter (WM) and CSF probability maps obtained from segmentation of the structural 

image for each subject were thresholded at 0.95 and eroded by 1 voxel. These thresholded and 

eroded masks were applied to functional images to extract WM and CSF time courses, which 

were submitted to a principal component analysis with aCompCor (Behzadi et al., 2007) to be 

used for nuisance regression. Functional images were directly normalized to MNI space with the 

same non-linear registration as used for the structural images. Mean head motion was indexed by 

root mean square of displacement (RMSD) across two fMRI runs, calculated from rigid-body 

realignment of the raw data prior to TOPUP correction.  

Brain Structural and Functional Variables and Statistical Analyses 

Two brain morphometric measures, surface area (SA) and cortical thickness (CT), were 

extracted for each participant from 34 regions of interest (ROIs) per hemisphere from the 

Desikan-Killiany atlas implemented in FreeSurfer (Desikan et al., 2006). Local spontaneous 

activity was indexed with the fALFF measure extracted from the fMRI data in each voxel and 

averaged within the same ROIs. FALFF is calculated as the power within the low frequency 

range (0.01 – 0.1 Hz) divided by the total power of the entire frequency spectrum, using the 

implementation included with the CONN toolbox:  



91 
 

𝑓𝐴𝐿𝐹𝐹 = &
∑ (ℎ(𝑡) ∗ 𝐵𝑂𝐿𝐷(𝑥, 𝑡))!"

∑ 𝐵𝑂𝐿𝐷(𝑥, 𝑡)!"
 

The SA, CT, and fALFF variables of interest were submitted to linear regressions to exclude 

potential confounds; namely, CNR and total brain volume were regressed out of the two 

morphometric measures (SA and CT) and head motion indexed by mean RMSD across two 

fMRI runs was regressed out of the local spontaneous activity measure (fALFF).  

In order to investigate the covariation patterns between brain structure (SA and CT) and 

function (local spontaneous activity, fALFF), sparse canonical correlation analysis (SCCA) was 

implemented using the ‘PMA’ package in R (Witten, Tibshirani, & Hastie, 2009). Canonical 

correlation analysis (CCA) is a multivariate statistical technique that identifies linear 

combinations of two sets of variables – such as brain morphometry and local spontaneous 

activity measures – with maximal correlation between them (Hardoon, Szedmak, & Shawe-

Taylor, 2004). CCA is particularly suited to identifying the source of common statistical 

variation among data from multiple modalities (such as brain anatomical and functional 

variables), without assuming any directionality (Zhuang, Yang, & Cordes, 2020). To avoid 

model overfitting and enhance interpretability of the structure-function covariation, SCCA, a 

variant of CCA, was used because it identifies parsimonious sources of variation by setting a 

maximum number of variables with minimal contribution to interpretable linear combinations, or 

canonical variates, to exactly zero (thereby inducing sparsity on canonical coefficients). A pair of 

canonical variates (structural CV and functional CV) capturing the highest brain structure-

function correlation among TD children was extracted from SCCA. In order to examine whether 

young children with ASD show comparable structure-function covariation pattern to that 

observed in neurotypical development, corresponding canonical vectors derived from the TD 

data were applied to the ASD data. Significance of the difference in canonical correlations (or 
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correlations between canonical variates generated with the SCCA) between the TD and ASD 

groups was determined with permutation testing. Specifically, bootstrapping was carried out by 

randomly splitting the whole (combined ASD and TD) sample in half, with 1000 iterations, and 

calculating the difference in canonical correlations by applying the canonical vectors derived 

from half of the sample to the other half. The group difference in canonical correlation was 

determined to be statistically significant at p<0.05 on the bootstrapping distribution. 

Associations between age and the canonical variates capturing maximally correlated 

brain morphometry and local activity variables were examined with linear regressions conducted 

separately in the TD and ASD groups. Finally, associations between canonical variates and 

overall developmental and adaptive behavior skills were examined with linear regression models, 

with structural CV or functional CV as predictors and MSEL Total DQ or Vineland-II ABC as 

outcome variables, controlling for age and sex (with separate regression models in the ASD and 

TD groups).  

RESULTS 

The results of the SCCA performed on the TD data revealed a significant, positive 

canonical correlation between brain morphometry and local spontaneous activity (r = 0.81, p < 

0.001; see Figure 1A). Structural and functional canonical variates (CVs) contributing to this 

canonical correlation are presented in Figure 2, which depicts canonical coefficients illustrative 

of the relationship between the initial variables (i.e., SA, CT, fALFF) and the CVs, for each ROI 

in the left (top panel) and right (bottom panel) hemispheres. As can be seen in Figure 2, this pair 

of canonical variates was characterized by generally reduced SA and greater CT being associated 

with lower fALFF, with only one exception of higher fALFF in the right cuneus cortex. 

Specifically, the structural CV implicated lower SA in bilateral orbitofrontal, anterior cingulate, 
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and inferior frontal cortices, and greater CT in bilateral caudal middle frontal, lateral 

orbitofrontal, and inferior frontal cortices, and cuneus, precuneus, pericalcarine, and 

supramarginal cortices (see Figure 2 legend for a detailed list of ROIs). Together, lower SA and 

higher CT in these regions covaried with lower fALFF in left inferior frontal, caudal and rostral 

middle frontal, superior frontal, and supramarginal cortices and right orbitofrontal cortex, and 

higher fALFF in cuneus.  

After applying the canonical vectors derived from the TD data to the ASD group, the 

structure-function canonical correlation found in the ASD group was reduced (r = 0.25, p = 

0.136; see Figure 1B). To determine whether this difference between the canonical correlations 

observed in the TD and ASD groups was significant, permutation testing with 1000 iterations 

was conducted to estimate the bootstrapping distribution by randomly splitting the dataset in half 

and calculating the difference in structure-function canonical correlations by applying the 

canonical vectors derived from half of the sample to the other half. Permutation testing (see 

Figure 1C) determined that the structure-function correlation in the ASD group was significantly 

reduced (p<0.05).  

Testing for links between the canonical variates of brain morphometry and local activity 

and child’s age, linear regressions revealed that both structural and functional CVs were 

significantly, negatively correlated with age in the TD (r=-0.72 and -0.75, respectively), but not 

in the ASD group (r=-0.26 and -0.25, respectively; see Figure 3), with significant diagnostic 

group by age interactions for both structural CV (p=0.01) and functional CV (p=0.005).  

Finally, linear regression models testing for relationships between canonical variates and 

overall developmental and adaptive behavior skills among children with ASD revealed 

significant associations between functional CV and overall developmental skills (Mullen Total 



94 
 

DQ; partial r=-0.43, p=0.009) and adaptive functioning (Vineland-II ABC; partial r=-0.37, 

p=0.026) after controlling for age (see Figure 4). No significant associations with behavioral 

indices were found for the structural CV, and there were no relationships between structural or 

functional CVs and developmental or adaptive skills in TD children.  

DISCUSSION 

 We used both structural and functional MRI data acquired during the same scanning 

session to examine the covariation patterns between brain morphometry and local spontaneous 

activity in young children with ASD compared to age-matched TD children. A multivariate 

statistical approach – canonical correlation analysis – was implemented to identify a pair of 

canonical variates or linear combinations of brain morphometric (SA, CT) and local spontaneous 

activity measures (fALFF) that maximally covary in typical development, indicating co-

maturation. The CCA revealed a general covariation pattern of lower SA and higher CT 

associated with overall lower fALFF in children who are typically developing. This pattern of 

structure-function covariation (between brain structural metrics and local brain activity) was 

found to be significantly reduced in children with ASD, as determined with permutation testing. 

We also set out to examine whether the canonical variates capturing maximally correlated brain 

morphometry and local activity variables are associated with age as well as overall 

developmental and adaptive behavior skills in children with ASD and in TD peers. Age-related 

analyses revealed that while the canonical variates of brain structure and function were 

significantly associated with age, cross-sectionally, in TD children, these age relationships were 

not observed in the ASD group. Furthermore, among young children with ASD, the functional 

canonical variate capturing local spontaneous activity across the brain (which covaries with brain 
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structural metrics) was significantly associated with indices of general development and adaptive 

behavior skills. 

Weaker brain structure-function coupling early in life in autism 

Most notably, these results provide initial evidence of reduced brain structure-function 

correlation in young children with ASD relative to TD children, suggesting that the covariation 

or close dependence between brain morphometry and local spontaneous activity in ASD deviates 

from typical neurodevelopment during early childhood. Although the covariation between brain 

structure and function have not been previously studied in young children, with or without 

autism, a recent study (Qi et al., 2020) reported results of a fusion analysis between fALFF and 

gray matter (GM) volume in school-age children and adults with ASD. Utilizing the ABIDE 

datasets (Di Martino et al., 2017; Di Martino et al., 2014), the authors reported findings linking 

autism symptoms with patterns of covariance between greater fALFF in broadly distributed 

cortical regions (e.g., dorsolateral prefrontal, inferior frontal, superior/middle temporal gyrus) 

but reduced fALFF in subcortical regions (e.g., thalamus and caudate) and greater GM volumes 

in partially overlapping cortical areas such as dorsolateral prefrontal and superior/middle 

temporal gyrus. Also using the ABIDE dataset from school-age children, Chen and colleagues 

identified atypical concordance patterns between the function (measured with ALFF) in GM and 

white matter (WM) regions, with higher GM/WM functional covariance observed in children 

with ASD and linked with autism symptoms (H. Chen, Long, Yang, & He, 2021). While these 

results are not directly comparable to the present findings due to considerable methodological 

differences and disparate age range, they highlight the need for multimodal neuroimaging studies 

utilizing multivariate statistical methods, which allow modelling complex neurodevelopmental 

processes jointly and examining how they co-develop across time and individuals in ASD. Our 
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study also contributes to the broader literature on the development of structure-function coupling 

in human brain networks and how it relates to cognitive development and psychopathology 

(Baum et al., 2020). Overall, our finding of the weaker brain structure-function coupling in 

children with ASD suggests that the fundamental aspects of brain development may be 

uncoupled early in life in autism, likely contributing to the disrupted circuit formation, with 

distributed effects on brain function and connectivity across the entire lifespan. 

Atypical age-related effects: evidence of mistimed brain development trajectories in autism   

 The importance of studying developmental trajectories jointly across different brain 

maturation indices, especially during early childhood, is further supported by the differential age-

related effects (albeit observed cross-sectionally) in both brain morphometry and local 

spontaneous activity detected in our study. Namely, we found that the structural and functional 

canonical variates (underlying the brain structure-function coupling) were significantly 

associated with age in typical development, but such relationship was absent among children 

with ASD. This suggests that maturational trajectories of covariation between brain structure and 

function may be mistimed in early childhood in ASD. This observation is in line with other 

findings of atypical age-related effects observed in unimodal studies examining maturation of 

functional network connectivity and cortical myelination across early childhood in ASD (B. 

Chen et al., 2021; B. Chen et al., 2022). These findings extend the notion of atypical 

neurodevelopment and mistimed brain maturational trajectories in autism to early childhood. 

Given the profound brain maturational changes, peak neuroplasticity, and remarkable advances 

in cognitive, behavioral, and socio-emotional development characterizing the first years of life 

(Bornstein, 2014; Tau & Peterson, 2010), it is critical to examine brain maturation and its timing 

in autism during this developmental period, rather than making inferences from neuroimaging 
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studies in older children and adolescents (cf. (He et al., 2020; Uddin, Supekar, & Menon, 2013)). 

It is possible that the variable (distinct from neurotypical) brain maturational trajectories, 

including atypical brain structure-function coupling, in young children with autism contribute to 

variable treatment response among children with autism (Vivanti, Prior, Williams, & 

Dissanayake, 2014) despite the robust evidence of efficacy of early interventions (Landa, 2018). 

Critically, the links between canonical variate capturing brain local spontaneous activity and 

overall developmental and adaptive behavior skills detected in the ASD group suggest that brain 

function, specifically local spontaneous activity, may be a meaningful neurobiological feature 

that is related to developmental and behavioral outcomes in ASD.  

Potential limitations 

While this study is the first known investigation of the multivariate relationship between 

brain morphometry and local spontaneous activity in the first years of life in ASD, interpretation 

of its results is somewhat limited by the moderate sample size due to known challenges of 

acquiring high quality multimodal MRI data in young children, and in particular in children with 

neurodevelopmental disorders (Hendrix & Thomason, 2022; Nordahl et al., 2016; Turesky, 

Vanderauwera, & Gaab, 2021). As such, we applied a parsimonious multivariate model (SCCA) 

to extract composite indices that capture maximally correlated brain morphometry and local 

activity variables. This data-driven approach allowed for examination of the overall structure-

function covarying patterns with simultaneous data reduction, which is most appropriate for 

high-dimensional data with a moderate sample size. However, CCA also comes with some 

limitations; for instance, the relationship between the two modalities (sets of variables) is 

assumed to be linear and the directionality of the linear relationship (or canonical correlations) 

identified with CCA are indeterminate (Zhuang et al., 2020). Additionally, this approach is not 
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suitable for identifying region-specific abnormalities in ASD. Future larger-scale and 

longitudinal studies are needed to examine the age-related trajectories of brain structure-function 

covariation patterns longitudinally. Finally, as with any correlational approach, the identified 

function-structure covarying patterns do not infer causation. Hence, we cannot discern if the 

reduced brain structure-function correlation in ASD originates from atypical brain morphometry, 

local spontaneous activity, or other neurodevelopmental processes not directly examined in this 

study. However, the observed links with developmental and adaptive behavior skills suggest that 

brain function (local spontaneous activity) may be particularly clinically relevant at this age.  

Conclusions 

 To our knowledge, this study is the first to characterize the brain structure-function 

covariation, using multimodal MRI measures acquired during the same scanning session and a 

multivariate pattern analysis, in the first years of life in ASD. The overall brain structure-

function correlation was significantly reduced in young children with ASD compared to typically 

developing children, and the neurotypical age-related relationship in the structural and functional 

indices capturing maximally correlated brain morphometry and local activity measures was 

absent in the ASD group, suggesting mistimed developmental trajectory of the brain structure-

function coupling. Furthermore, the identified association between the index of local 

spontaneous activity and overall developmental and adaptive behavior skills in the ASD cohort 

highlights the importance of local brain activity in early developmental outcomes.  
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Table 3.1 Participant Characteristics 

  
ASD  

(n = 38) 
TD 

(n = 31) ASD vs. TD 

  
Mean ± SD  
(Min - Max) 

Mean ± SD  
(Min - Max) t/Χ2 p value  

Age at scan (months)  44.6 ± 14.8 
(18 - 69) 

44.2 ± 13.7 
(18 - 65) 

t(67) = 0.14 0.89 

Gender (M/F) 30/8 16/15 χ2(1) = 5.74 0.02 
Ethnicity (Hispanic/Non-Hispanic)a 16/18 9/22 χ2(1) = 2.23 0.14 
Race (White/More-than-
one/Black/Asian)b 

21/8/0/2 22/4/3/0 -- -- 

Gestational age (weeks)c 38.6 ± 2.4 
(31 - 43) 

39.6 ± 1.1 
(37 - 42) 

t(59) = -2.00 0.05 

Birth weight (grams)d 3230.0 ± 571.8 
(2041 - 4394) 

3511.2 ± 366.7 
(2863 - 4082) 

t(59) = -2.26 0.03 

Delivery method (Vaginal/C-section)e 24/11 21/9 χ2(1) = 0.02 0.90 
Maternal education level (%)f 

    

     High school or some college credit,   
          but <1 year 

34% 6% -- -- 

     Associate degree/vocational school 11% 6% -- -- 
     Bachelor's degree  11% 35% -- -- 
     Master's degree 24% 42% -- -- 
     Professional degree (MD, PhD, JD)  11% 10% -- -- 
MSEL Total Developmental Quotientg 74.8 ± 23.0 

(14 - 107) 
103.5 ± 13.2 

(71 - 134) 
t(66) = -6.15 <0.001 

Vineland-II Adaptive Behavior 
Composite 

75.8 ± 10.6 
(55 - 100) 

106.1 ± 12.7 
(80 - 127) 

t(66) = -10.75 <0.001 

SCQ Total Scoreh 16.3 ± 7.9 
(3 - 35) 

4.0 ± 2.9 
(0 - 10) 

t(58) = 7.79 <0.001 

ADOS-2 Calibrated Severity Score 6.3 ± 2.1 
(2 - 10) 

-- -- -- 

RMSD (mm) 0.13 ± 0.04 
(0.05 - 0.21) 

0.10 ± 0.03 
(0.05 - 0.18) 

t(67) = 3.28 0.002 

Total Brain Volume (cm3) 1095.4 ± 98.5 
(787.9 - 1298.9) 

1067.2 ± 105.2 
(813.9 - 1293.5) 

t(67) = 1.15 0.26 

Gray/White CNR 2.1 ± 0.2 
(1.7 - 2.5) 

2.0 ± 0.2 
(1.3 - 2.3) 

t(67) = 1.86 0.07 

Note: M = male; F = female; MSEL = Mullen Scales of Early Learning; Vineland-II = Vineland Adaptive 
Behavior Scales, 2nd Edition; SCQ = Social Communication Questionnaire; ADOS-2 = Autism 
Diagnostic Observation Schedule, 2nd Edition; RMSD = root mean square displacement; CNR = contrast 
to noise ratio.    
aEthnicity data are missing for 4 ASD participants; bRace data are missing for 5 ASD and 1 TD 
participants; cGestational age data are missing for 4 ASD and 1 TD participants; dBirth weight data are 
missing for 2 ASD participants; eDelivery method data are missing for 3 ASD and 1 TD participants; 
fMaternal education data are missing for 3 ASD participants; gMSEL Total Developmental Quotient data 
is missing for 1 ASD participant; hSCQ data are missing for 6 ASD and 3 TD participants  
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Figure 3.1 Canonical correlations between brain structural and functional indices  
Scatterplots representing canonical correlations between structural and functional CVs 
(canonical variates) in the TD (A) and ASD (B) groups. (C) Bootstrapping distribution of the 
difference in canonical correlations after randomly splitting the whole sample in half and 
applying the canonical vectors derived from one half of the sample to the other half (1000 
iterations); red arrow indicates the difference in canonical correlations depicted in panels A and 
B (rTD – rASD = 0.57).   
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Figure 3.2 ROIs of highest brain structure-function correlation in TD children 
Canonical vectors of surface area (SA), cortical thickness (CT), and fALFF from bilateral regions of 
interest (ROIs) with maximized structure-function correlation in typically developing (TD) children, 
derived from sparse canonical correlation analysis (SCCA). Top and bottom panels depict ROIs from left 
and right hemisphere, respectively. ROIs contributing to each structural and functional canonical vectors 
are: for SA, L pars orbitalis, L lateral orbitofrontal, R pars orbitalis, R lateral orbitofrontal, R rostral 
anterior cingulate; for CT, L cuneus, L precuneus, L pars opercularis, L caudal middle frontal, L rostral 
middle frontal, L pericalcarine, L supramarginal, R lateral orbitofrontal, R pars triangularis, R caudal 
middle frontal, R pars orbitalis; for fALFF, L caudal middle frontal, L pars triangularis, L rostral middle 
frontal, L superior frontal, L pars orbitalis, L lateral orbitofrontal, L supramarginal, R cuneus, R medial 
orbitofrontal. L=left; R=right. 
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Figure 3.3 Correlations between brain indices and age and developmental skills  
A: Correlations between structural and functional canonical variates (CVs) and age, plotted separately in 
the TD (top) and ASD (bottom panel) groups. B: Partial correlations* between functional CV and 
MSEL Total DQ (top) and Vineland-II ABC (bottom) in children with ASD (*controlling for age; values 
on the X and Y axes represent residuals). 
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INTEGRATED SUMMARY 
 

Although behavioral signs of ASD emerge early in life and can be reliably identified 

during the second year of life, relatively little is known about the developmental trajectories of 

brain structure and function in ASD during this critical neurodevelopmental period. This is in 

great part due to the known challenges associated with conducting neuroimaging studies in early 

childhood especially with young children with developmental disabilities. The three studies 

described above aimed to enhance our understanding of early brain development in ASD by 

examining multiple aspects of neurodevelopment which are distinct and complementary to each 

other. Each study provided new insights into how critical neurodevelopmental processes in ASD 

deviate from typical developmental trajectories in the first years of life. Specifically, this 

dissertation examined functional network organization and connectivity, intracortical 

myelination, and covariation between brain morphometry and local spontaneous activity using 

multimodal MRI data (i.e., structural and functional MRI) acquired during natural sleep from 

young children with and without ASD.  Study 1 found atypically increased functional 

connectivity between visual and sensorimotor networks in young children with ASD and this 

overconnectivity was linked with greater autism symptoms. Study 2 reported differential age-

related trajectories in an MRI-proxy of intracortical myelin between children with ASD and TD 

children, although no group differences in intracortical myelin content were identified. Finally, 

Study 3 showed reduced brain structure-function correlation between brain morphometric 

measures (surface area and cortical thickness) and local spontaneous activity in our ASD cohort 

using a multivariate pattern analysis, with the resultant local spontaneous activity index 

associated with general developmental and adaptive behavior skills in children with ASD. 
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Altogether, these three studies highlight the importance of integrating multimodal data 

and examining distinct but complementary anatomical and functional brain measures to elucidate 

the trajectories of postnatal brain development during the first years of life when ASD behavioral 

symptoms first manifest. While the three studies apply distinct methodological and analytical 

approaches, some convergent themes in the results have emerged. One somewhat unexpected 

finding is that little or no group differences were identified in functional network connectivity 

and intracortical myelin content between the ASD and TD groups in Studies 1 and 2. At the same 

time, differential age-related trajectories were consistently found in young children with ASD as 

compared to maturational trajectories observed in the TD cohort. This pattern of results suggests 

that fundamental neurodevelopmental processes may be mistimed in ASD, with potentially 

greater inter-individual variability of brain maturational trajectories found among children with 

ASD. Similarly, Study 3 identified absence of neurotypical age-related effects in covarying brain 

morphometric and local spontaneous activity indices, which may have contributed to the overall 

reduced brain structure-function correlation observed in the ASD cohort. The atypical 

trajectories of brain development in ASD identified across all three studies are generally 

consistent with the current understanding that the ASD phenotype is the result of cascading 

neurodevelopmental effects that commence very early in development (Constantino, Charman, & 

Jones, 2021; Courchesne et al., 2019; Wolff, Jacob, & Elison, 2018). The results of the three 

studies also provide substantial evidence that several early building blocks of brain structural and 

functional development are implicated in the first years of life in ASD, highlighting the notion 

that there is not a single neurobiological process, but rather a confluence of multiple 

neurodevelopmental factors that contribute to the ASD phenotype. Hence, our understanding of 

how these processes interact over time and how they differentially relate to later developmental 
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and clinical outcomes are important questions to answer. Finally, several of the indices identified 

as having atypical neurodevelopmental trajectories in children with ASD (e.g., multisensory 

functional connectivity in Study 1 or local spontaneous activity correlated with brain 

morphometry in Study 3) were associated with clinical and developmental indices (including 

autism symptom severity and overall developmental skills), suggesting that the neurobiology 

underlying these measurable brain indices contributes to the ASD phenotype.   

Limitations and Future Directions 

While atypical age-related trajectories were identified using cross-sectional data, future 

studies are needed to confirm these relationships longitudinally. Our results also need to be 

replicated in other independent samples of young children with and without ASD. The sample 

sizes across the three studies, while somewhat variable, were relatively moderate limiting our 

ability to meaningfully examine heterogeneity and sex differences in brain development in young 

children with ASD. Nevertheless, this ASD cohort exhibited a full range of developmental skills 

and autism symptom severity, largely due to the concerted effort to recruit a representative 

sample as well as due to implementation of sleep MRI protocol. One of the biggest criticisms in 

autism neuroimaging research is that the majority of past studies have reported somewhat biased 

results because they primarily included children and adolescents with ASD with relatively high 

level of functioning, given the need to cooperate with scanning requirements (i.e., being able to 

stay still inside the MRI scanner for 30-60 minutes without sedation). This essentially precluded 

participation from children younger than 5 years of age and those representing the entire range of 

abilities on the autism spectrum, including children with severe autism symptoms. Scanning 

young children with ASD during natural sleep has shown promise in studying the developing 

brain across the entire autism spectrum. We anticipate that more neuroimaging studies with 



113 
 

young children will adopt this approach in the future with efforts to share best practices in MRI 

acquisition strategies, habituation procedures, scanning protocols, and analytical approaches in 

the infant and toddler neuroimaging community (Chen, Linke, Olson, Ibarra, Kinnear, et al., 

2021; Gilmore et al., 2018; Hendrix & Thomason, 2022). Lastly, the three studies largely relied 

on group-level comparisons between ASD and TD due to lack of power to detect individual 

differences or potential subgroups or subtypes of ASD. Moving beyond group-level analysis, 

studies examining neural correlates of individual variability and developmental trajectories are 

necessary to parse the behavioral heterogeneity of ASD (Lord, Bishop, & Anderson, 2015), 

which can be particularly useful for developing and refining existing targeted intervention 

strategies, and measuring the impact of interventions on brain structural and functional 

maturation.  

Conclusions  

 Despite these limitations, to our knowledge, this is the first series of studies to 

comprehensively characterize multiple neurodevelopmental processes in toddlers and 

preschoolers with ASD. This dissertation demonstrates the potential of multimodal neuroimaging 

methods to reveal the maturational pathways of critical brain structural and functional changes 

that characterize the first years of life in ASD. These three studies provide initial evidence that 

the age-related trajectories of functional network connectivity, intracortical myelin, brain 

morphometry, and local spontaneous activity differ from neurotypical trajectories, and are 

related to autism symptoms and overall developmental skills. However, many important 

questions remain about the mechanistic interactions among these processes, individual variability 

in the neurodevelopmental trajectories, and how these early brain abnormalities relate to later 

outcomes. Future multimodal longitudinal studies aimed at clarifying the relationships between 
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multiple neurodevelopmental processes and parsing the neural and behavioral heterogeneity of 

ASD are essential in moving the research forward. Ultimately, knowledge gained from these 

studies may aid with the search for reliable biomarkers, which could be potentially identified 

prior to the emergence of behavioral symptoms. This is particularly meaningful for early 

detection and intervention and can contribute to the development of more targeted prevention 

and intervention programs.  

Reflections on Autism Research 

As the field of autism research moves forward, the research community has come to 

realize the importance of engaging key stakeholders such as individuals with ASD and their 

families in the design, execution, and interpretation of results for research studies. The SDSU 

Toddler MRI Project has made concerted efforts in engaging families from a wide range of 

communities in Southern California and accommodating their needs throughout their study 

participation. For instance, research visits, including behavioral evaluations and scanning 

sessions, were offered on weekends, after hours, and school holidays or breaks, to expand 

accessibility of research participation. This is particularly important for the families with limited 

socioeconomic resources (e.g., access to childcare, paid time off). The research team members 

offered to provide childcare for siblings of participants as needed during research visits, to help 

remove financial constraints associated with participation. Furthermore, as part of the research 

protocol, brief summaries of the evaluations including testing results, diagnostic impressions, 

and recommendations were provided to participants’ parents or guardians who often find the 

reports useful for initiating interventional services or accommodations at schools. Providing this 

benefit to the families at no cost has allowed the Project to target under-served populations who 

may not seek diagnostic evaluations due to cost, or experience additional delays in accessing 
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resources. The implementation of these measures has allowed us to promote more equitable 

participation in research by families from under-resourced and traditionally under-represented 

communities and to maintain long-term cooperative relationship with these families.  

Overall, upon reflection, besides understanding the etiology of ASD, it is also critical to 

consider the translational value of our work and how neuroimaging research can contribute to 

improving the quality of life of people with ASD and supporting their families. Although this 

dissertation only includes cross-sectional data collected from one time point or study visit, 

ongoing longitudinal data collection is under way in the context of the SDSU Toddler MRI 

Project, following up these children when they turn 5 years of age. With the knowledge gained 

from this dissertation in early brain development in ASD, I hope to continue to explore how 

deviations in early neurodevelopmental processes relate to later developmental outcomes 

including ASD symptoms, cognitive and adaptive functioning, and other co-occurring conditions 

(such as ADHD) assessed at school-entry age. Broadly, in addition to developing 

pharmacological and behavioral intervention programs for individuals with ASD whose health 

and overall wellbeing are significantly impacted by the core symptomatology or related 

challenges associated with ASD, we need to also consider how to influence policy making and 

public perception and attitudes towards neurodiverse populations (Lord et al., 2022) in order to 

create a more inclusive and equitable society that allows full participation and contribution by 

neurodiverse as well as neurotypical individuals. 

  



116 
 

 

 

REFERENCES 
 
 
Abrahám, H., Vincze, A., Jewgenow, I., Veszprémi, B., Kravják, A., Gömöri, E., & Seress, L. 

(2010). Myelination in the human hippocampal formation from midgestation to 
adulthood. Int J Dev Neurosci, 28(5), 401-410. doi:10.1016/j.ijdevneu.2010.03.004 

Almli, C. R., Rivkin, M. J., & McKinstry, R. C. (2007). The NIH MRI study of normal brain 
development (Objective-2): newborns, infants, toddlers, and preschoolers. Neuroimage, 
35(1), 308-325. doi:10.1016/j.neuroimage.2006.08.058 

Andrews, D. S., Avino, T. A., Gudbrandsen, M., Daly, E., Marquand, A., Murphy, C. M., . . . 
Ecker, C. (2017). In Vivo Evidence of Reduced Integrity of the Gray-White Matter 
Boundary in Autism Spectrum Disorder. Cereb Cortex, 27(2), 877-887. 
doi:10.1093/cercor/bhw404 

APA. (2013). Diagnostic and statistical manual of mental disorders (DSM-5®): American 
Psychiatric Pub. 

Arnold, S. E., & Trojanowski, J. Q. (1996). Human fetal hippocampal development: I. 
Cytoarchitecture, myeloarchitecture, and neuronal morphologic features. J Comp Neurol, 
367(2), 274-292. doi:10.1002/(sici)1096-9861(19960401)367:2<274::Aid-
cne9>3.0.Co;2-2 

Avino, T. A., & Hutsler, J. J. (2010). Abnormal cell patterning at the cortical gray-white matter 
boundary in autism spectrum disorders. Brain Res, 1360, 138-146. 
doi:10.1016/j.brainres.2010.08.091 

Barbas, H. (2015). General cortical and special prefrontal connections: principles from structure 
to function. Annu Rev Neurosci, 38, 269-289. doi:10.1146/annurev-neuro-071714-033936 

Beckmann, C. F. (2012). Modelling with independent components. Neuroimage, 62(2), 891-901. 
doi:10.1016/j.neuroimage.2012.02.020 

Bethlehem, R. A. I., Seidlitz, J., White, S. R., Vogel, J. W., Anderson, K. M., Adamson, C., . . . 
Alexander-Bloch, A. F. (2022). Brain charts for the human lifespan. Nature, 604(7906), 
525-533. doi:10.1038/s41586-022-04554-y 

Biswal, B., Yetkin, F. Z., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the 
motor cortex of resting human brain using echo-planar MRI. Magn Reson Med, 34(4), 
537-541. doi:10.1002/mrm.1910340409 

Bornstein, M. H. (2014). Human infancy…and the rest of the lifespan. Annu Rev Psychol, 65, 
121-158. doi:10.1146/annurev-psych-120710-100359 



117 
 

Brown, T. T., & Jernigan, T. L. (2012). Brain development during the preschool years. 
Neuropsychol Rev, 22(4), 313-333. doi:10.1007/s11065-012-9214-1 

Brown, T. T., Kuperman, J. M., Chung, Y., Erhart, M., McCabe, C., Hagler, D. J., Jr., . . . Dale, 
A. M. (2012). Neuroanatomical assessment of biological maturity. Curr Biol, 22(18), 
1693-1698. doi:10.1016/j.cub.2012.07.002 

Casanova, M. F., Buxhoeveden, D. P., Switala, A. E., & Roy, E. (2002). Neuronal density and 
architecture (Gray Level Index) in the brains of autistic patients. J Child Neurol, 17(7), 
515-521. doi:10.1177/088307380201700708 

Chapman, T. W., & Hill, R. A. (2020). Myelin plasticity in adulthood and aging. Neurosci Lett, 
715, 134645. doi:10.1016/j.neulet.2019.134645 

Chen, B., Linke, A., Olson, L., Ibarra, C., Kinnear, M., & Fishman, I. (2021). Resting state 
functional networks in 1-to-3-year-old typically developing children. Dev Cogn Neurosci, 
51, 100991. doi:10.1016/j.dcn.2021.100991 

Chen, B., Linke, A., Olson, L., Ibarra, C., Reynolds, S., Müller, R. A., . . . Fishman, I. (2021). 
Greater functional connectivity between sensory networks is related to symptom severity 
in toddlers with autism spectrum disorder. J Child Psychol Psychiatry, 62(2), 160-170. 
doi:10.1111/jcpp.13268 

Chen, B., Linke, A., Olson, L., Kohli, J., Kinnear, M., Sereno, M., . . . Fishman, I. (2022). 
Cortical myelination in toddlers and preschoolers with autism spectrum disorder. Dev 
Neurobiol, 82(3), 261-274. doi:10.1002/dneu.22874 

Constantino, J. N., Charman, T., & Jones, E. J. H. (2021). Clinical and Translational Implications 
of an Emerging Developmental Substructure for Autism. Annu Rev Clin Psychol, 17, 
365-389. doi:10.1146/annurev-clinpsy-081219-110503 

Conti, E., Mitra, J., Calderoni, S., Pannek, K., Shen, K. K., Pagnozzi, A., . . . Guzzetta, A. 
(2017). Network over-connectivity differentiates autism spectrum disorder from other 
developmental disorders in toddlers: A diffusion MRI study. Hum Brain Mapp, 38(5), 
2333-2344. doi:10.1002/hbm.23520 

Corsello, C. M., Akshoomoff, N., & Stahmer, A. C. (2013). Diagnosis of autism spectrum 
disorders in 2-year-olds: a study of community practice. J Child Psychol Psychiatry, 
54(2), 178-185. doi:10.1111/j.1469-7610.2012.02607.x 

Courchesne, E., Karns, C. M., Davis, H. R., Ziccardi, R., Carper, R. A., Tigue, Z. D., . . . 
Courchesne, R. Y. (2001). Unusual brain growth patterns in early life in patients with 
autistic disorder: an MRI study. Neurology, 57(2), 245-254.  

Courchesne, E., Pramparo, T., Gazestani, V. H., Lombardo, M. V., Pierce, K., & Lewis, N. E. 
(2019). The ASD Living Biology: from cell proliferation to clinical phenotype. Mol 
Psychiatry, 24(1), 88-107. doi:10.1038/s41380-018-0056-y 



118 
 

Damoiseaux, J. S., Rombouts, S. A., Barkhof, F., Scheltens, P., Stam, C. J., Smith, S. M., & 
Beckmann, C. F. (2006). Consistent resting-state networks across healthy subjects. 
Proceedings of the National Academy of Sciences of the United States of America, 
103(37), 13848-13853. doi:10.1073/pnas.0601417103 

Dawson, G., Jones, E. J., Merkle, K., Venema, K., Lowy, R., Faja, S., . . . Webb, S. J. (2012). 
Early behavioral intervention is associated with normalized brain activity in young 
children with autism. J Am Acad Child Adolesc Psychiatry, 51(11), 1150-1159. 
doi:10.1016/j.jaac.2012.08.018 

de Bie, H. M., Boersma, M., Wattjes, M. P., Adriaanse, S., Vermeulen, R. J., Oostrom, K. J., . . . 
Delemarre-Van de Waal, H. A. (2010). Preparing children with a mock scanner training 
protocol results in high quality structural and functional MRI scans. Eur J Pediatr, 
169(9), 1079-1085. doi:10.1007/s00431-010-1181-z 

Dean, D. C., 3rd, Dirks, H., O'Muircheartaigh, J., Walker, L., Jerskey, B. A., Lehman, K., . . . 
Deoni, S. C. (2014). Pediatric neuroimaging using magnetic resonance imaging during 
non-sedated sleep. Pediatr Radiol, 44(1), 64-72. doi:10.1007/s00247-013-2752-8 

Deoni, S. C., Dean, D. C., 3rd, Remer, J., Dirks, H., & O'Muircheartaigh, J. (2015). Cortical 
maturation and myelination in healthy toddlers and young children. Neuroimage, 115, 
147-161. doi:10.1016/j.neuroimage.2015.04.058 

Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., . . . Killiany, 
R. J. (2006). An automated labeling system for subdividing the human cerebral cortex on 
MRI scans into gyral based regions of interest. Neuroimage, 31(3), 968-980. 
doi:10.1016/j.neuroimage.2006.01.021 

Di Martino, A., O'Connor, D., Chen, B., Alaerts, K., Anderson, J. S., Assaf, M., . . . Milham, M. 
P. (2017). Enhancing studies of the connectome in autism using the autism brain imaging 
data exchange II. Sci Data, 4, 170010. doi:10.1038/sdata.2017.10 

Di Martino, A., Yan, C. G., Li, Q., Denio, E., Castellanos, F. X., Alaerts, K., . . . Milham, M. P. 
(2014). The autism brain imaging data exchange: towards a large-scale evaluation of the 
intrinsic brain architecture in autism. Mol Psychiatry, 19(6), 659-667. 
doi:10.1038/mp.2013.78 

Dinstein, I., Pierce, K., Eyler, L., Solso, S., Malach, R., Behrmann, M., & Courchesne, E. (2011). 
Disrupted neural synchronization in toddlers with autism. Neuron, 70(6), 1218-1225. 
doi:10.1016/j.neuron.2011.04.018 

Dosenbach, N. U., Nardos, B., Cohen, A. L., Fair, D. A., Power, J. D., Church, J. A., . . . 
Schlaggar, B. L. (2010). Prediction of individual brain maturity using fMRI. Science, 
329(5997), 1358-1361. doi:10.1126/science.1194144 

Eggebrecht, A. T., Elison, J. T., Feczko, E., Todorov, A., Wolff, J. J., Kandala, S., . . . Pruett, J. 
R., Jr. (2017). Joint Attention and Brain Functional Connectivity in Infants and Toddlers. 
Cereb Cortex, 27(3), 1709-1720. doi:10.1093/cercor/bhw403 



119 
 

Emerson, R. W., Adams, C., Nishino, T., Hazlett, H. C., Wolff, J. J., Zwaigenbaum, L., . . . 
Piven, J. (2017). Functional neuroimaging of high-risk 6-month-old infants predicts a 
diagnosis of autism at 24 months of age. Science translational medicine, 9(393), 
eaag2882. doi:10.1126/scitranslmed.aag2882 

Estes, A., Munson, J., Rogers, S. J., Greenson, J., Winter, J., & Dawson, G. (2015). Long-Term 
Outcomes of Early Intervention in 6-Year-Old Children With Autism Spectrum Disorder. 
J Am Acad Child Adolesc Psychiatry, 54(7), 580-587. doi:10.1016/j.jaac.2015.04.005 

Eyler, L. T., Pierce, K., & Courchesne, E. (2012). A failure of left temporal cortex to specialize 
for language is an early emerging and fundamental property of autism. Brain, 135(Pt 3), 
949-960. doi:10.1093/brain/awr364 

Fair, D. A., Cohen, A. L., Dosenbach, N. U., Church, J. A., Miezin, F. M., Barch, D. M., . . . 
Schlaggar, B. L. (2008). The maturing architecture of the brain's default network. 
Proceedings of the National Academy of Sciences of the United States of America, 
105(10), 4028-4032. doi:10.1073/pnas.0800376105 

Fields, R. D. (2014). Neuroscience. Myelin--more than insulation. Science, 344(6181), 264-266. 
doi:10.1126/science.1253851 

Fishman, I., Datko, M., Cabrera, Y., Carper, R. A., & Müller, R. A. (2015). Reduced integration 
and differentiation of the imitation network in autism: A combined functional 
connectivity magnetic resonance imaging and diffusion-weighted imaging study. Ann 
Neurol, 78(6), 958-969. doi:10.1002/ana.24533 

Fishman, I., Keown, C. L., Lincoln, A. J., Pineda, J. A., & Müller, R. A. (2014). Atypical cross 
talk between mentalizing and mirror neuron networks in autism spectrum disorder. JAMA 
Psychiatry, 71(7), 751-760. doi:10.1001/jamapsychiatry.2014.83 

Fishman, I., Linke, A. C., Hau, J., Carper, R. A., & Müller, R. A. (2018). Atypical Functional 
Connectivity of Amygdala Related to Reduced Symptom Severity in Children With 
Autism. J Am Acad Child Adolesc Psychiatry, 57(10), 764-774.e763. 
doi:10.1016/j.jaac.2018.06.015 

Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with 
functional magnetic resonance imaging. Nat Rev Neurosci, 8(9), 700-711. 
doi:10.1038/nrn2201 

Frangou, S., Modabbernia, A., Williams, S. C. R., Papachristou, E., Doucet, G. E., Agartz, I., . . . 
Dima, D. (2022). Cortical thickness across the lifespan: Data from 17,075 healthy 
individuals aged 3-90 years. Hum Brain Mapp, 43(1), 431-451. doi:10.1002/hbm.25364 

Fransson, P., Skiöld, B., Horsch, S., Nordell, A., Blennow, M., Lagercrantz, H., & Åden, U. 
(2007). Resting-state networks in the infant brain. Proceedings of the National Academy 
of Sciences, 104(39), 15531-15536.  



120 
 

Gao, W., Alcauter, S., Elton, A., Hernandez-Castillo, C. R., Smith, J. K., Ramirez, J., & Lin, W. 
(2015). Functional Network Development During the First Year: Relative Sequence and 
Socioeconomic Correlations. Cereb Cortex, 25(9), 2919-2928. 
doi:10.1093/cercor/bhu088 

Gao, W., Alcauter, S., Smith, J. K., Gilmore, J. H., & Lin, W. (2015). Development of human 
brain cortical network architecture during infancy. Brain Struct Funct, 220(2), 1173-
1186. doi:10.1007/s00429-014-0710-3 

Gilmore, J. H., Knickmeyer, R. C., & Gao, W. (2018). Imaging structural and functional brain 
development in early childhood. Nat Rev Neurosci, 19(3), 123-137. 
doi:10.1038/nrn.2018.1 

Gilmore, J. H., Shi, F., Woolson, S. L., Knickmeyer, R. C., Short, S. J., Lin, W., . . . Shen, D. 
(2012). Longitudinal development of cortical and subcortical gray matter from birth to 2 
years. Cereb Cortex, 22(11), 2478-2485. doi:10.1093/cercor/bhr327 

Gordon, A., & Geschwind, D. H. (2020). Human in vitro models for understanding mechanisms 
of autism spectrum disorder. Mol Autism, 11(1), 26. doi:10.1186/s13229-020-00332-7 

Griffanti, L., Douaud, G., Bijsterbosch, J., Evangelisti, S., Alfaro-Almagro, F., Glasser, M. F., . . 
. Smith, S. M. (2017). Hand classification of fMRI ICA noise components. Neuroimage, 
154, 188-205. doi:10.1016/j.neuroimage.2016.12.036 

Guo, X., Chen, H., Long, Z., Duan, X., Zhang, Y., & Chen, H. (2017). Atypical developmental 
trajectory of local spontaneous brain activity in autism spectrum disorder. Scientific 
reports, 7, 39822. doi:10.1038/srep39822 

Hardoon, D. R., Szedmak, S., & Shawe-Taylor, J. (2004). Canonical Correlation Analysis: An 
Overview with Application to Learning Methods. Neural Computation, 16(12), 2639-
2664. doi:10.1162/0899766042321814 

Haroutunian, V., Katsel, P., Roussos, P., Davis, K. L., Altshuler, L. L., & Bartzokis, G. (2014). 
Myelination, oligodendrocytes, and serious mental illness. Glia, 62(11), 1856-1877. 
doi:10.1002/glia.22716 

Haynes, L., Ip, A., Cho, I. Y. K., Dimond, D., Rohr, C. S., Bagshawe, M., . . . Bray, S. (2020). 
Grey and white matter volumes in early childhood: A comparison of voxel-based 
morphometry pipelines. Dev Cogn Neurosci, 46, 100875. doi:10.1016/j.dcn.2020.100875 

Hazlett, H. C., Gu, H., Munsell, B. C., Kim, S. H., Styner, M., Wolff, J. J., . . . Piven, J. (2017). 
Early brain development in infants at high risk for autism spectrum disorder. Nature, 
542(7641), 348-351. doi:10.1038/nature21369 

Hazlett, H. C., Poe, M., Gerig, G., Smith, R. G., Provenzale, J., Ross, A., . . . Piven, J. (2005). 
Magnetic resonance imaging and head circumference study of brain size in autism: birth 
through age 2 years. Arch Gen Psychiatry, 62(12), 1366-1376. 
doi:10.1001/archpsyc.62.12.1366 



121 
 

Hazlett, H. C., Poe, M. D., Gerig, G., Styner, M., Chappell, C., Smith, R. G., . . . Piven, J. 
(2011). Early brain overgrowth in autism associated with an increase in cortical surface 
area before age 2 years. Arch Gen Psychiatry, 68(5), 467-476. 
doi:10.1001/archgenpsychiatry.2011.39 

Hendrix, C. L., & Thomason, M. E. (2022). A survey of protocols from 54 infant and toddler 
neuroimaging research labs. Dev Cogn Neurosci, 54, 101060. 
doi:10.1016/j.dcn.2022.101060 

Hoff, G. E., Van den Heuvel, M. P., Benders, M. J., Kersbergen, K. J., & De Vries, L. S. (2013). 
On development of functional brain connectivity in the young brain. Front Hum 
Neurosci, 7, 650. doi:10.3389/fnhum.2013.00650 

Hull, J. V., Dokovna, L. B., Jacokes, Z. J., Torgerson, C. M., Irimia, A., & Van Horn, J. D. 
(2016). Resting-State Functional Connectivity in Autism Spectrum Disorders: A Review. 
Front Psychiatry, 7, 205. doi:10.3389/fpsyt.2016.00205 

Huttenlocher, P. R., & Dabholkar, A. S. (1997). Regional differences in synaptogenesis in 
human cerebral cortex. J Comp Neurol, 387(2), 167-178.  

Itahashi, T., Yamada, T., Watanabe, H., Nakamura, M., Ohta, H., Kanai, C., . . . Hashimoto, R. 
(2015). Alterations of local spontaneous brain activity and connectivity in adults with 
high-functioning autism spectrum disorder. Mol Autism, 6, 30. doi:10.1186/s13229-015-
0026-z 

Johnson, M. H. (2001). Functional brain development in humans. Nat Rev Neurosci, 2(7), 475-
483. doi:10.1038/35081509 

Johnson, M. H., Gliga, T., Jones, E., & Charman, T. (2015). Annual research review: Infant 
development, autism, and ADHD--early pathways to emerging disorders. J Child Psychol 
Psychiatry, 56(3), 228-247. doi:10.1111/jcpp.12328 

Johnson, M. H., Grossmann, T., & Farroni, T. (2008). The social cognitive neuroscience of 
infancy: illuminating the early development of social brain functions. Adv Child Dev 
Behav, 36, 331-372. doi:10.1016/s0065-2407(08)00008-6 

Jones, E. J., Gliga, T., Bedford, R., Charman, T., & Johnson, M. H. (2014). Developmental 
pathways to autism: a review of prospective studies of infants at risk. Neurosci Biobehav 
Rev, 39(100), 1-33. doi:10.1016/j.neubiorev.2013.12.001 

Knickmeyer, R. C., Gouttard, S., Kang, C., Evans, D., Wilber, K., Smith, J. K., . . . Gilmore, J. 
H. (2008). A structural MRI study of human brain development from birth to 2 years. J 
Neurosci, 28(47), 12176-12182. doi:10.1523/jneurosci.3479-08.2008 

Kolb, B., & Gibb, R. (2011). Brain plasticity and behaviour in the developing brain. J Can Acad 
Child Adolesc Psychiatry, 20(4), 265-276.  



122 
 

Landa, R. J. (2018). Efficacy of early interventions for infants and young children with, and at 
risk for, autism spectrum disorders. Int Rev Psychiatry, 30(1), 25-39. 
doi:10.1080/09540261.2018.1432574 

Li, G., Nie, J., Wang, L., Shi, F., Lin, W., Gilmore, J. H., & Shen, D. (2013). Mapping region-
specific longitudinal cortical surface expansion from birth to 2 years of age. Cereb 
Cortex, 23(11), 2724-2733. doi:10.1093/cercor/bhs265 

Li, G., Wang, L., Shi, F., Lyall, A. E., Lin, W., Gilmore, J. H., & Shen, D. (2014). Mapping 
longitudinal development of local cortical gyrification in infants from birth to 2 years of 
age. J Neurosci, 34(12), 4228-4238. doi:10.1523/jneurosci.3976-13.2014 

Lin, W., Zhu, Q., Gao, W., Chen, Y., Toh, C. H., Styner, M., . . . Gilmore, J. H. (2008). 
Functional connectivity MR imaging reveals cortical functional connectivity in the 
developing brain. AJNR Am J Neuroradiol, 29(10), 1883-1889. doi:10.3174/ajnr.A1256 

Liu, S., Li, A., Zhu, M., Li, J., & Liu, B. (2019). Genetic influences on cortical myelination in 
the human brain. Genes Brain Behav, 18(4), e12537. doi:10.1111/gbb.12537 

Lombardo, M. V., Pierce, K., Eyler, L. T., Carter Barnes, C., Ahrens-Barbeau, C., Solso, S., . . . 
Courchesne, E. (2015). Different functional neural substrates for good and poor language 
outcome in autism. Neuron, 86(2), 567-577. doi:10.1016/j.neuron.2015.03.023 

Lord, C., Bishop, S., & Anderson, D. (2015). Developmental trajectories as autism phenotypes. 
Am J Med Genet C Semin Med Genet, 169(2), 198-208. doi:10.1002/ajmg.c.31440 

Lord, C., Charman, T., Havdahl, A., Carbone, P., Anagnostou, E., Boyd, B., . . . McCauley, J. B. 
(2022). The Lancet Commission on the future of care and clinical research in autism. 
Lancet, 399(10321), 271-334. doi:10.1016/s0140-6736(21)01541-5 

Lord, C., Elsabbagh, M., Baird, G., & Veenstra-Vanderweele, J. (2018). Autism spectrum 
disorder. Lancet, 392(10146), 508-520. doi:10.1016/s0140-6736(18)31129-2 

Lord, C., Risi, S., DiLavore, P. S., Shulman, C., Thurm, A., & Pickles, A. (2006). Autism from 2 
to 9 years of age. Arch Gen Psychiatry, 63(6), 694-701. doi:10.1001/archpsyc.63.6.694 

Lord, C., Rutter, M., DiLavore, P. C., Risi, S., Gotham, K., & Bishop, S. L. (2012). Autism 
Diagnostic Observation Schedule, Second Edition (ADOS-2). Torrence, CA: Western 
Psychological Services. 

Lyall, A. E., Shi, F., Geng, X., Woolson, S., Li, G., Wang, L., . . . Gilmore, J. H. (2015). 
Dynamic Development of Regional Cortical Thickness and Surface Area in Early 
Childhood. Cereb Cortex, 25(8), 2204-2212. doi:10.1093/cercor/bhu027 

Maenner, M. J., Shaw, K. A., Baio, J., Washington, A., Patrick, M., DiRienzo, M., . . . Dietz, P. 
M. (2020). Prevalence of Autism Spectrum Disorder Among Children Aged 8 Years - 
Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 
2016. MMWR Surveill Summ, 69(4), 1-12. doi:10.15585/mmwr.ss6904a1 



123 
 

Makropoulos, A., Counsell, S. J., & Rueckert, D. (2018). A review on automatic fetal and 
neonatal brain MRI segmentation. Neuroimage, 170, 231-248. 
doi:10.1016/j.neuroimage.2017.06.074 

Mann, C., Bletsch, A., Andrews, D., Daly, E., Murphy, C., Murphy, D., & Ecker, C. (2018). The 
effect of age on vertex-based measures of the grey-white matter tissue contrast in autism 
spectrum disorder. Mol Autism, 9, 49. doi:10.1186/s13229-018-0232-6 

Marrus, N., Eggebrecht, A. T., Todorov, A., Elison, J. T., Wolff, J. J., Cole, L., . . . Pruett, J. R., 
Jr. (2018). Walking, Gross Motor Development, and Brain Functional Connectivity in 
Infants and Toddlers. Cereb Cortex, 28(2), 750-763. doi:10.1093/cercor/bhx313 

McCauley, J. B., Elias, R., & Lord, C. (2020). Trajectories of co-occurring psychopathology 
symptoms in autism from late childhood to adulthood. Dev Psychopathol, 32(4), 1287-
1302. doi:10.1017/s0954579420000826 

McKinnon, C. J., Eggebrecht, A. T., Todorov, A., Wolff, J. J., Elison, J. T., Adams, C. M., . . . 
Pruett, J. R., Jr. (2019). Restricted and Repetitive Behavior and Brain Functional 
Connectivity in Infants at Risk for Developing Autism Spectrum Disorder. Biol 
Psychiatry Cogn Neurosci Neuroimaging, 4(1), 50-61. doi:10.1016/j.bpsc.2018.09.008 

Merz, E. C., Wiltshire, C. A., & Noble, K. G. (2019). Socioeconomic inequality and the 
developing brain: Spotlight on language and executive function. Child Development 
Perspectives, 13(1), 15-20. doi:10.1111/cdep.12305 

Messinger, D., Young, G. S., Ozonoff, S., Dobkins, K., Carter, A., Zwaigenbaum, L., . . . 
Sigman, M. (2013). Beyond autism: a baby siblings research consortium study of high-
risk children at three years of age. J Am Acad Child Adolesc Psychiatry, 52(3), 300-
308.e301. doi:10.1016/j.jaac.2012.12.011 

Munson, J., Dawson, G., Sterling, L., Beauchaine, T., Zhou, A., Elizabeth, K., . . . Abbott, R. 
(2008). Evidence for latent classes of IQ in young children with autism spectrum 
disorder. Am J Ment Retard, 113(6), 439-452. doi:10.1352/2008.113:439-452 

Nordahl, C. W., Lange, N., Li, D. D., Barnett, L. A., Lee, A., Buonocore, M. H., . . . Amaral, D. 
G. (2011). Brain enlargement is associated with regression in preschool-age boys with 
autism spectrum disorders. Proceedings of the National Academy of Sciences of the 
United States of America, 108(50), 20195-20200. doi:10.1073/pnas.1107560108 

Nordahl, C. W., Mello, M., Shen, A. M., Shen, M. D., Vismara, L. A., Li, D., . . . Amaral, D. G. 
(2016). Methods for acquiring MRI data in children with autism spectrum disorder and 
intellectual impairment without the use of sedation. Journal of neurodevelopmental 
disorders, 8, 20-20. doi:10.1186/s11689-016-9154-9 

Olafson, E., Bedford, S. A., Devenyi, G. A., Patel, R., Tullo, S., Park, M. T. M., . . . Chakravarty, 
M. M. (2021). Examining the Boundary Sharpness Coefficient as an Index of Cortical 
Microstructure in Autism Spectrum Disorder. Cereb Cortex. doi:10.1093/cercor/bhab015 



124 
 

Ozonoff, S., Young, G. S., Landa, R. J., Brian, J., Bryson, S., Charman, T., . . . Iosif, A. M. 
(2015). Diagnostic stability in young children at risk for autism spectrum disorder: a baby 
siblings research consortium study. J Child Psychol Psychiatry, 56(9), 988-998. 
doi:10.1111/jcpp.12421 

Palomo, R., Belinchon, M., & Ozonoff, S. (2006). Autism and family home movies: a 
comprehensive review. J Dev Behav Pediatr, 27(2 Suppl), S59-68.  

Panizzon, M. S., Fennema-Notestine, C., Eyler, L. T., Jernigan, T. L., Prom-Wormley, E., Neale, 
M., . . . Kremen, W. S. (2009). Distinct genetic influences on cortical surface area and 
cortical thickness. Cereb Cortex, 19(11), 2728-2735. doi:10.1093/cercor/bhp026 

Petersen, S. E., & Sporns, O. (2015). Brain Networks and Cognitive Architectures. Neuron, 
88(1), 207-219. doi:10.1016/j.neuron.2015.09.027 

Pfefferbaum, A., Mathalon, D. H., Sullivan, E. V., Rawles, J. M., Zipursky, R. B., & Lim, K. O. 
(1994). A quantitative magnetic resonance imaging study of changes in brain morphology 
from infancy to late adulthood. Arch Neurol, 51(9), 874-887. 
doi:10.1001/archneur.1994.00540210046012 

Pierce, K., Carter, C., Weinfeld, M., Desmond, J., Hazin, R., Bjork, R., & Gallagher, N. (2011). 
Detecting, studying, and treating autism early: the one-year well-baby check-up 
approach. J Pediatr, 159(3), 458-465.e451-456. doi:10.1016/j.jpeds.2011.02.036 

Pierce, K., Gazestani, V. H., Bacon, E., Barnes, C. C., Cha, D., Nalabolu, S., . . . Courchesne, E. 
(2019). Evaluation of the Diagnostic Stability of the Early Autism Spectrum Disorder 
Phenotype in the General Population Starting at 12 Months. JAMA Pediatr. 
doi:10.1001/jamapediatrics.2019.0624 

Power, J. D., Fair, D. A., Schlaggar, B. L., & Petersen, S. E. (2010). The development of human 
functional brain networks. Neuron, 67(5), 735-748. doi:10.1016/j.neuron.2010.08.017 

Qi, S., Morris, R., Turner, J. A., Fu, Z., Jiang, R., Deramus, T. P., . . . Sui, J. (2020). Common 
and unique multimodal covarying patterns in autism spectrum disorder subtypes. Mol 
Autism, 11(1), 90. doi:10.1186/s13229-020-00397-4 

Raichle, M. E. (2010). Two views of brain function. Trends Cogn Sci, 14(4), 180-190. 
doi:10.1016/j.tics.2010.01.008 

Raschle, N., Zuk, J., Ortiz-Mantilla, S., Sliva, D. D., Franceschi, A., Grant, P. E., . . . Gaab, N. 
(2012). Pediatric neuroimaging in early childhood and infancy: challenges and practical 
guidelines. Ann N Y Acad Sci, 1252, 43-50. doi:10.1111/j.1749-6632.2012.06457.x 

Raznahan, A., Shaw, P., Lalonde, F., Stockman, M., Wallace, G. L., Greenstein, D., . . . Giedd, J. 
N. (2011). How does your cortex grow? J Neurosci, 31(19), 7174-7177. 
doi:10.1523/jneurosci.0054-11.2011 



125 
 

Redcay, E., & Courchesne, E. (2008). Deviant functional magnetic resonance imaging patterns 
of brain activity to speech in 2-3-year-old children with autism spectrum disorder. Biol 
Psychiatry, 64(7), 589-598. doi:10.1016/j.biopsych.2008.05.020 

Remer, J., Croteau-Chonka, E., Dean, D. C., 3rd, D'Arpino, S., Dirks, H., Whiley, D., & Deoni, 
S. C. L. (2017). Quantifying cortical development in typically developing toddlers and 
young children, 1-6 years of age. Neuroimage, 153, 246-261. 
doi:10.1016/j.neuroimage.2017.04.010 

Reynolds, J. E., Long, X., Paniukov, D., Bagshawe, M., & Lebel, C. (2020). Calgary Preschool 
magnetic resonance imaging (MRI) dataset. Data Brief, 29, 105224. 
doi:10.1016/j.dib.2020.105224 

Rowley, C. D., Sehmbi, M., Bazin, P. L., Tardif, C. L., Minuzzi, L., Frey, B. N., & Bock, N. A. 
(2017). Age-related mapping of intracortical myelin from late adolescence to middle 
adulthood using T(1) -weighted MRI. Hum Brain Mapp, 38(7), 3691-3703. 
doi:10.1002/hbm.23624 

Sandin, S., Lichtenstein, P., Kuja-Halkola, R., Hultman, C., Larsson, H., & Reichenberg, A. 
(2017). The Heritability of Autism Spectrum Disorder. Jama, 318(12), 1182-1184. 
doi:10.1001/jama.2017.12141 

Shaw, P., Kabani, N. J., Lerch, J. P., Eckstrand, K., Lenroot, R., Gogtay, N., . . . Wise, S. P. 
(2008). Neurodevelopmental trajectories of the human cerebral cortex. J Neurosci, 
28(14), 3586-3594. doi:10.1523/jneurosci.5309-07.2008 

Shen, M. D., Li, D. D., Keown, C. L., Lee, A., Johnson, R. T., Angkustsiri, K., . . . Nordahl, C. 
W. (2016). Functional Connectivity of the Amygdala Is Disrupted in Preschool-Aged 
Children With Autism Spectrum Disorder. J Am Acad Child Adolesc Psychiatry, 55(9), 
817-824. doi:10.1016/j.jaac.2016.05.020 

Smith, S. M., Fox, P. T., Miller, K. L., Glahn, D. C., Fox, P. M., Mackay, C. E., . . . Beckmann, 
C. F. (2009). Correspondence of the brain's functional architecture during activation and 
rest. Proceedings of the National Academy of Sciences of the United States of America, 
106(31), 13040-13045. doi:10.1073/pnas.0905267106 

Solso, S., Xu, R., Proudfoot, J., Hagler, D. J., Jr., Campbell, K., Venkatraman, V., . . . 
Courchesne, E. (2016). Diffusion Tensor Imaging Provides Evidence of Possible Axonal 
Overconnectivity in Frontal Lobes in Autism Spectrum Disorder Toddlers. Biol 
Psychiatry, 79(8), 676-684. doi:10.1016/j.biopsych.2015.06.029 

Sowell, E. R., Thompson, P. M., Leonard, C. M., Welcome, S. E., Kan, E., & Toga, A. W. 
(2004). Longitudinal mapping of cortical thickness and brain growth in normal children. 
J Neurosci, 24(38), 8223-8231. doi:10.1523/jneurosci.1798-04.2004 

Spear, L. P. (2013). Adolescent neurodevelopment. J Adolesc Health, 52(2 Suppl 2), S7-13. 
doi:10.1016/j.jadohealth.2012.05.006 



126 
 

Szatmari, P., Chawarska, K., Dawson, G., Georgiades, S., Landa, R., Lord, C., . . . Halladay, A. 
(2016). Prospective Longitudinal Studies of Infant Siblings of Children With Autism: 
Lessons Learned and Future Directions. J Am Acad Child Adolesc Psychiatry, 55(3), 179-
187. doi:10.1016/j.jaac.2015.12.014 

Tau, G. Z., & Peterson, B. S. (2010). Normal development of brain circuits. 
Neuropsychopharmacology, 35(1), 147-168. doi:10.1038/npp.2009.115 

Thomason, M. E., Dassanayake, M. T., Shen, S., Katkuri, Y., Alexis, M., Anderson, A. L., . . . 
Romero, R. (2013). Cross-hemispheric functional connectivity in the human fetal brain. 
Science translational medicine, 5(173), 173ra124. doi:10.1126/scitranslmed.3004978 

Tierney, A. L., & Nelson, C. A., 3rd. (2009). Brain Development and the Role of Experience in 
the Early Years. Zero Three, 30(2), 9-13.  

Travers, B. G., Adluru, N., Ennis, C., Tromp do, P. M., Destiche, D., Doran, S., . . . Alexander, 
A. L. (2012). Diffusion tensor imaging in autism spectrum disorder: a review. Autism 
Res, 5(5), 289-313. doi:10.1002/aur.1243 

Turesky, T. K., Vanderauwera, J., & Gaab, N. (2021). Imaging the rapidly developing brain: 
Current challenges for MRI studies in the first five years of life. Dev Cogn Neurosci, 47, 
100893. doi:10.1016/j.dcn.2020.100893 

van den Heuvel, M. P., & Hulshoff Pol, H. E. (2010). Specific somatotopic organization of 
functional connections of the primary motor network during resting state. Hum Brain 
Mapp, 31(4), 631-644. doi:10.1002/hbm.20893 

Walhovd, K. B., Fjell, A. M., Giedd, J., Dale, A. M., & Brown, T. T. (2017). Through Thick and 
Thin: a Need to Reconcile Contradictory Results on Trajectories in Human Cortical 
Development. Cereb Cortex, 27(2), 1472-1481. doi:10.1093/cercor/bhv301 

Weitzman, C., & Wegner, L. (2015). Promoting optimal development: screening for behavioral 
and emotional problems. Pediatrics, 135(2), 384-395. doi:10.1542/peds.2014-3716 

Wierenga, L. M., Langen, M., Oranje, B., & Durston, S. (2014). Unique developmental 
trajectories of cortical thickness and surface area. Neuroimage, 87, 120-126. 
doi:10.1016/j.neuroimage.2013.11.010 

Witten, D. M., Tibshirani, R., & Hastie, T. (2009). A penalized matrix decomposition, with 
applications to sparse principal components and canonical correlation analysis. 
Biostatistics, 10(3), 515-534. doi:10.1093/biostatistics/kxp008 

Wolff, J. J., Gu, H., Gerig, G., Elison, J. T., Styner, M., Gouttard, S., . . . Piven, J. (2012). 
Differences in white matter fiber tract development present from 6 to 24 months in 
infants with autism. Am J Psychiatry, 169(6), 589-600. 
doi:10.1176/appi.ajp.2011.11091447 



127 
 

Wolff, J. J., Jacob, S., & Elison, J. T. (2018). The journey to autism: Insights from neuroimaging 
studies of infants and toddlers. Dev Psychopathol, 30(2), 479-495. 
doi:10.1017/s0954579417000980 

Xiao, Z., Qiu, T., Ke, X., Xiao, X., Xiao, T., Liang, F., . . . Liu, Y. (2014). Autism spectrum 
disorder as early neurodevelopmental disorder: evidence from the brain imaging 
abnormalities in 2-3 years old toddlers. J Autism Dev Disord, 44(7), 1633-1640. 
doi:10.1007/s10803-014-2033-x 

Zhuang, X., Yang, Z., & Cordes, D. (2020). A technical review of canonical correlation analysis 
for neuroscience applications. Hum Brain Mapp, 41(13), 3807-3833. 
doi:10.1002/hbm.25090 

Zöllei, L., Iglesias, J. E., Ou, Y., Grant, P. E., & Fischl, B. (2020). Infant FreeSurfer: An 
automated segmentation and surface extraction pipeline for T1-weighted neuroimaging 
data of infants 0-2 years. Neuroimage, 218, 116946. 
doi:10.1016/j.neuroimage.2020.116946 

Zou, Q. H., Zhu, C. Z., Yang, Y., Zuo, X. N., Long, X. Y., Cao, Q. J., . . . Zang, Y. F. (2008). An 
improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for 
resting-state fMRI: fractional ALFF. J Neurosci Methods, 172(1), 137-141. 
doi:10.1016/j.jneumeth.2008.04.012 

Zuo, X. N., Di Martino, A., Kelly, C., Shehzad, Z. E., Gee, D. G., Klein, D. F., . . . Milham, M. 
P. (2010). The oscillating brain: complex and reliable. Neuroimage, 49(2), 1432-1445. 
doi:10.1016/j.neuroimage.2009.09.037 

 




