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Abstract

People can reliably understand images that vary in visual
abstraction—from detailed illustrations to schematic icons.
To what degree are current vision algorithms robust to such
variation when attributing meaning to abstract images? We
first obtained > 90K human-generated sketches produced
under different time limits (4s, 8s, 16s, 32s; N=5,563
participants) and AI-generated sketches (Vinker et al., 2022)
produced under different ink limits (4, 8, 16, 32 strokes)
of 2,048 real-world object concepts spanning 128 categories
from the THINGS dataset (Hebart et al., 2019). We then
evaluated how well 12 state-of-the-art vision algorithms could
(1) predict which concept each sketch was intended to convey
and (2) match human performance and response patterns when
presented with the same sketches. We found that models
achieving generally higher recognition accuracy also tracked
human error patterns better, although there remains a sizable
gap between human and machine sketch understanding. We
also found that, on average, different models expressed similar
uncertainty about sketches of the same concept across different
levels of abstraction. We hope that public release of this dataset
and evaluation protocol will lead to algorithms that display
more human-like visual abstraction.
Keywords: concepts; drawing; perception; computer vision;
benchmark

Introduction
Humans can use pictures to convey what they perceive
and know at varying levels of abstraction—from detailed
illustrations to simple sketches. Indeed, the ability to abstract
away from the particulars of any given experience to highlight
the most important elements is inherent in the act of creating
any effective visualization (Viola & Isenberg, 2017; M. Chen,
Hauser, Rheingans, & Scheuermann, 2020; McCloud &
Manning, 1998; Mi, DeCarlo, & Stone, 2009; Nan et al.,
2011). Line drawings present an especially important case
study in the capacity for visual abstraction, as demonstrated
by the Spanish artist Pablo Picasso in his renown work, The
Bull (1945), which contains 11 lithographs of bulls, each
successively more abstract than the last (Fig. 1). Despite
striking variation in their degree of fidelity to the real world,
understanding what even the most abstract of these images
represent feels effortless for most human viewers.

Such variation is manifest in works of art, but is also
pervasive across many domains of human activity. Not only
do most cultures produce drawings (Gombrich, 1995), the
ability to produce line drawings that capture key aspects of
the real world also emerges early in development (Karmiloff-
Smith, 1990; Dillon, 2021; Long, Fan, Chai, & Frank,

Figure 1: Pablo Picasso. The Bull, 1945.

2021), and the visual properties of these drawings have
been linked to children’s developing conceptual knowledge
(Tversky, 1989; Huey & Long, 2022). Additionally, failures
to produce and understand pictures of objects at different
levels of abstraction is associated with semantic dementia
(Bozeat et al., 2003; Rogers & Patterson, 2007), suggesting
links between a robust capacity for visual abstraction and the
functional organization of semantic knowledge in the brain.
What are the core visual computations that support this ability
to grasp the meaning of pictures across so many different
levels of visual abstraction?

The past several years have seen remarkable progress
in uncovering the mechanisms by which the human visual
system achieves a robust understanding of the visual world
(Yamins et al., 2014; Kriegeskorte, 2015; Zhuang et al., 2021;
Konkle & Alvarez, 2022). These mechanistic models now
often take the form of trainable neural networks combining
several architectural motifs inspired by the primate ventral
visual stream (Gross, Rocha-Miranda, & Bender, 1972;
Goodale & Milner, 1992; Malach, Levy, & Hasson, 2002;
Hung, Kreiman, Poggio, & DiCarlo, 2005). These advances
have also recently been applied to the problem of sketch
understanding, revealing both the value of these approaches
for learning general-purpose perceptual representations to
model human visual abstraction (Fan, Yamins, & Turk-
Browne, 2018; Yu et al., 2017; Kubilius, Bracci, & Op de
Beeck, 2016), as well as persistent challenges in achieving the
capacity for robust understanding of visual inputs that vary in
their degree of visual abstraction (Baker & Kellman, 2018;
Singer, Seeliger, Kietzmann, & Hebart, 2022; Fan, Hawkins,
Wu, & Goodman, 2020).

Despite these great strides in the development of high-
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Figure 2: Human sketchers & CLIPasso generated > 90K sketches under different production constraints: drawing time &
number of strokes, respectively.

performing vision models, it remains unclear to what degree
the specific models that have been proposed so far achieve
human-like understanding of such a broad range of visual
inputs, from natural images to human-generated drawings
and symbols. Evaluating this question has been especially
challenging given that, while there are several widely
used benchmark sketch datasets (Eitz, Richter, Boubekeur,
Hildebrand, & Alexa, 2012; Jongejan, Rowley, Kawashima,
Kim, & Fox-Gieg, 2017; Sangkloy, Burnell, Ham, & Hays,
2016), none of them systematically vary the degree of detail,
a salient axis differentiating depictions of specific instances
from more abstract illustrations.

In this paper, we take two major steps towards closing
this gap: (1) we develop a large dataset containing human
(N=5,563 participants) and AI-generated sketches varying in
detail, for a representatively wide variety of visual object
concepts varying in their degree of abstraction; and (2)
we systematically evaluate how well 12 diverse state-of-
the-art vision models, varying in their architectures and
training methods, represent semantic information in these
sketches by benchmarking their recognition performance
against human behavior. We build on a growing body of
research leveraging a global image dataset generated by
the THINGS initiative (Hebart et al., 2019) by sampling
2,048 real-world objects spanning 128 concepts as referents
for drawings in our dataset. Our main goals were to
test the consistency between models and humans in their
ability to recognize the concepts depicted in our sketch
dataset, as well as the alignment between distributions
of human-generated soft labels (N=3,190 participants) and
distributions underlying model classification performance
(Collins, Bhatt, & Weller, 2022; Peterson, Battleday,
Griffiths, & Russakovsky, 2019). Taken together, our work
aims to contribute an informative benchmark of human
and machine generated sketches spanning varying multiple
levels of abstraction. We hope that publicly releasing
our datasets and proposed methods for investigating sketch
understanding will generate opportunities for future research
avenues towards building better computational models of
human visual abstraction.

Method

Our first goal was to generate two parallel large-scale drawing
datasets spanning varying levels of abstraction: one produced
by humans under varying time limits (4s, 8s, 16s, and 32s),
and the other by automatic machine generation varying in the
number of strokes per drawing (4, 8, 16, and 32 strokes),
using CLIPasso (Vinker et al., 2022) (see Fig. 2 for example
sketches). Next, to estimate recognizability of the drawings
in both datasets, we conducted an independent recognition
study in which participants provided one or more labels for a
representative sample of human and machine drawings.

Stimuli To generate a diverse large-scale stimulus set of
object concepts, we systematically sampled 128 concepts
from the database of the THINGS initiative, a global database
of 1,854 object concepts (e.g., “lion”, “banjo”, “car”) and
naturalistic object images aimed at developing a multi-varied
cognitive neuroscience and behavioral metrics on a shared set
of objects (Hebart et al., 2019). Building on prior work by
Yang and Fan (2021) investigating visual abstraction across
different contexts, we selected concepts based on similar
parameters spanning four main axes of variation: familiarity,
artificiality, animacy, and size. Within each object concept,
we randomly sampled 16 object images. Our final stimuli set
included 2,048 object images that were used as referents for
the human and machine sketching tasks.

Human Sketch Production Task

Participants 5,563 participants (2,870 male; Mage = 36.7
years) were recruited from Prolific to produce a series of
sketches on a web-based drawing platform. We excluded 104
data sessions from participants, who experienced technical
difficulties. In this and all subsequent tasks, participants
provided informed consent in accordance with the UC San
Diego IRB.

Procedure We randomly assigned participants to one of
four conditions, each varying in the amount of time that
they were permitted to use to generate their drawings: 4, 8,
16, or 32 seconds (Fig. 2, left). Each participant produced
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Figure 3: Stroke distributions. Vertical lines indicate means.

16 drawings of different object concepts. During each
trial, participants were presented with an object label, a
corresponding object photograph (500px x 500px) to give
participants a concrete example of what the object looks like,
and a drawing canvas (500px x 500px). They were instructed
to produce a drawing of the general concept represented by
the label, and that, they should not include details specific
to the instance of the object in the provided photograph.
Next to the canvas, participants were given a countdown
timer indicating how many seconds they had left to produce
their drawing. A trial ended when the timer ran out or
when the participant pressed the “Continue” button if they
finished their sketch with time remaining, although they were
instructed to try to use as much time as they needed to
accurately represent the prompted concept. Participants were
were instructed not to include any background context (e.g.,
grass in a drawing of a “horse”), arrows, or text. Participants
also completed a practice trial before the test drawing trials to
familiarize themselves to the drawing platform, including the
ability to undo their most recent stroke or completely clear
their canvas if needed.

Machine Sketch Generation
We leveraged CLIPasso (Vinker et al., 2022), a recently
developed sketch generation algorithm, to also generate
sketches of the same 2,048 object images. CLIPasso
generates sketches by optimizing the parameters of a set of
curves (strokes) to align to a latent representation of an image
of an object computed by CLIP (Radford et al., 2021), a
neural network model trained on a large corpus of text-image
pairs. For each image, we generated sketches at four levels
of abstraction using 4, 8, 16, and 32 strokes (Fig. 2, right) as
an approximately parallel manipulation of the time-restriction
paradigm of our human production task.

Human Sketch Recognition Task
We next aimed to develop a recognizability baseline for each
sketch to compare to model classification performance. To
accomplish this, we designed a web-based recognition study
to crowdsource object labels associated with each sketch in
order to capture its perceived meaning. Critically, because
sketches often capture a range of semantic meaning that can
bring to mind many possible concepts during viewing (Fig. 5,
left), we allowed participants to submit up to 5 object labels
per sketch in order to account for this polysemous property

of sketches. Here, we sampled a subset of 8,192 sketches
from both our human sketch and CLIPasso sketch datasets.
Across the 128 object classes, each had 64 different sketches
per dataset with 16 sketches at each level of abstraction.

Participants 1,709 Prolific participants (776 male; Mage
= 39.2 years) were recruited to make judgments about
the human sketch dataset and 1,481 Prolific participants
(730 male; Mage = 41.05 years) were recruited to make
judgments about the CLIPasso sketch dataset. We excluded
28 data sessions from participants who experienced technical
difficulties. Data collection stopped when each sketch from
both datasets had 12 judgments.
Procedure Each participant was presented with a random-
ized series of 64 sketches (300px x 300px) from either the
human dataset or CLIPasso dataset. On every trial, they
were presented with a single drawing and a text box and
asked to provide a label that best represented the drawing
by typing their response into the box. Upon beginning to
type, participants were presented with a drop-down menu
that displayed a subset of the 1,854 THINGS object concepts
that had string matches to the participant’s typed response.
Each label also had words within parentheses to eliminate
ambiguity (e.g. mouse (animal) was a different label than
mouse (computer)). The participant could choose from one of
these options to label the sketch. Participants could also add
additional text boxes to submit multiple labels if they believed
a sketch was representative of multiple object concepts,
but were not permitted to submit custom label options not
included in the 1,854 labels. Prior to test trials, participants
completed a practice trial to familiarize themselves with the
labeling interface. To assess whether participants were fully
engaged with the task, they also completed an attention-check
trial in the middle of the experiment that was of the same
practice drawing.

Formalizing abstraction in vision models

Which state-of-the-art vision models display human-like
understanding of visual concepts at varying levels of
abstraction as seen in sketches? To make progress towards
answering this question, we first curated a set of vision
models with varied architectural commitments and training
procedures. Next, we designed an evaluation protocol such
that models’ performance could be directly compared to
human behavior.
Models We evaluated 12 vision models spanning multiple
architectures and training paradigms (see Table 1), all
of which have demonstrated high performance for object
recognition on standard datasets like ImageNet (Deng et
al., 2009). We performed all downstream computations
on latent features extracted from the deepest (non-fully-
connected) layers of these models, which amounted to
extracting activation patterns at either the model’s final
convolution or attention layer.
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Figure 4: Top-1 recognition accuracy by models of human sketches (left) and CLIPasso sketches (right). Note that human
accuracy reflects performance on a 1854-way classification task, rather than on the 128-way task performed by models.

Evaluation Protocol Due to the varied dimensionality
and characteristics of the latent model features (outputs of
convolution vs. attention layers vs. linear layers), to
fairly assess the semantic information decodable from these
features, we fit a series of regularized logistic classifiers
predicting the class labels of each sketch from the latent
features. Classifiers were fit separately to each neural
network using 5–fold stratified cross-validation to predict the
class label of the sketch. For each sketch, when presented in
the test fold, we preserved the full vector of class probabilties
corresponding to the 1,854 THINGS object classes.1 Next,
to compare these model data against human recognition,
we leveraged the label data generated from our recognition
study to compute the number of times each of the 1,854
labels was assigned to a given sketch. By summing these
label counts across participants and normalizing them, we
generated a human recognition “response” vector for each
sketch, representing a distribution over the 1,854 labels as a
measure of its perceived polysemy. Importantly, this provided
an analogous baseline of comparison to the class probability
vectors extracted from the classifiers.

Models Architecture Training Paradigm
VGG-19 (Simonyan & Zisserman, 2014) VGG-19 supervised
Inception-V3 (Szegedy, Vanhoucke, Ioffe, Shlens, & Wojna, 2016) Inception-V3 supervised
ResNet-50 (He, Zhang, Ren, & Sun, 2016) ResNet-50 supervised
ViT-B (Dosovitskiy et al., 2020) ViT-B supervised
Swin-B (Liu et al., 2021) Swin-B supervised
MLPMixer-B (Tolstikhin et al., 2021) MLPMixer-B supervised
MoCo-v3 (X. Chen, Xie, & He, 2021) ViT-B self-supervised
DINO (Caron et al., 2021) ViT-B self-supervised
MAE (He et al., 2022) ViT-B self-supervised
CLIP (Radford et al., 2021) ViT-B self-supervised
Noisy Student (Xie, Luong, Hovy, & Le, 2020) EfficientNet-b4 semi-supervised
SWSL (Yalniz, Jégou, Chen, Paluri, & Mahajan, 2019) ResNet-50 semi-supervised

Table 1: Evaluated models and their network architecture
backbone and training paradigm.

Results
Our final drawing dataset contained over 90,000 unique draw-
ings (90,922 human-produced sketches; 8,191 CLIPasso-
generated sketches2).

1Human and machine sketches were generated from only 128
classes, thus many class probability values of the full 1,854 THINGS
label set were 0.

2We removed one blank sketch from the CLIPasso dataset.

Shorter drawing times yield sketches with fewer strokes.
To validate our manipulation of drawing duration during
human sketch production, we counted the number of unique
strokes in a drawing as a measure of detail (Fig. 3) and
then fit a mixed-effects linear regression model with random
intercepts for category predicting number of strokes as a
function of time allotted per drawing. We found that drawings
produced under the 4s limit contained the fewest strokes,
whereas those produced under the 32s limit contained the
most strokes (β = .29, SE = 4.95× 10−3, p < .001). These
results help confirm that the time-restriction manipulation
elicited meaningful differences in detail across drawing
conditions.

Production constraints on sketch production impact
sketch recognition. How well do people and vision models
recognize the object concepts represented in sketches? And
to what extent is the ability to reliably decode the semantic
content in a given sketch impacted by the level of abstraction
as measured by stroke complexity or time taken to draw it? To
evaluate these questions, we fit mixed-effect linear regression
models predicting the mean top-1 recognition accuracy in
humans and vision models as a function of draw duration
for human sketches and number of strokes for CLIPasso
sketches. We included model-type as an additional fixed
effect to test for performance differences between the vision
models. Finally, we included by-concept intercepts and
random slopes for draw duration or number of strokes. We
found a significant effect of draw duration and number of
strokes for both human (βdraw duration = 5.66× 10−3, SE =
5.92× 10−4, p < .001; βstrokes = 6.74× 10−3, SE = 7.17×
10−3, p < .001) and model (βdraw duration = 9.16 × 10−3,
SE = 4.21× 10−4, p < .001; βstrokes = 1.21× 10−2, SE =
3.83× 10−4, p < .001) recognition performance, indicating
that greater amounts of detail in sketches correspond to higher
recognition performance by both humans and vision models
(Fig. 4). Additionally, we found an effect of model-type
when coding for CLIP as the reference category indicating
that not all models are equally performant when discerning
the semantic structure in both human (χ2(11) = 2712.50, p <
.001) and CLIPasso (χ2(11) = 5759.4, p < .001) sketches.
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Figure 5: Left: Example of sketch polysemy at different levels of abstraction. Middle: Proportion of variance explained
in top-1 human recognition accuracy by model top-1 accuracy. Right: Proportion of variance explained in human response
distribution entropy by model class probability entropy. Inset scatterplots show the distribution of entropy values between
human judgements and CLIP.

Vision models vary in their degree of consistency with
human recognition performance and response patterns.
Next, we conducted finer-grain analyses to identify which
vision models are most consistent with human recognition
performance by: (1) comparing the degree of alignment
between model and human recognition accuracy; and (2)
comparing the degree of alignment between model and
human recognition uncertainty. First, we fit mixed-effect
linear regression models predicting mean human top-1
accuracy from vision model top-1 accuracy and model-type
with by-concept random slopes and intercepts to account
for variability within concepts. We found that model
performance was a significant predictor of human recognition
performance ( βhuman sketches = 2.96×10−1 SE = 2.36×10−2,
p < .001; βmachine sketches = 2.97× 10−1, SE = 2.34× 10−2,
p < .001). Furthermore, model comparisons revealed a
significant effect of model-type for human (χ(11) = 552.92,
p < .001) and machine sketches (χ(11) = 741.51, p <
.001), adding additional support that some vision models
are more consistent with human recognition performance
than others (Fig. 5, middle). Specifically, these analyses
revealed that CLIP explains the greatest amount of variance in
human recognition accuracy, while MLP-Mixer explains little
variance. While there is some discrepancy between which
models are more accurate when comparing performance on
human sketches vs. CLIPasso sketches, we generally saw
that models that have better recognition performance across
both datasets (Fig. 4) are also more consistent with human
recognition performance.

Second, we computed the entropy of the distributions
over object labels for each of the 8,192 sketches across
both human sketch and CLIPasso sketch datasets, using the
normalized label counts and classifier class probabilities,
respectively (Fig. 5, right). Next, we fit mixed-effect
models predicting human response entropy from model

class probability entropy and model-type with by-concept
random slopes and intercepts for entropy. Similar to
model comparisons to human recognition accuracy, we found
that model entropy significantly predicted human response
entropy (βhuman sketches = 2.04×10−1, SE = 6.57×10−3, p <
.001; βmachine sketches = 2.09× 10−1, SE = 7.90× 10−3, p <
.001). Additionally, model comparisons revealed a significant
effect of model-type for both human (χ2(11) = 1241.30, p <
.001) and machine (χ2(11) = 1509.00, p < .001) sketches,
although CLIP was found to be the highest performing
model for both human and CLIPasso sketches when using
this metric. These evaluations of accuracy and uncertainty
reveal that both state-of-the-art model performance and the
distributions underlying that performance is predictive of
the same constructs for human recognition performance to
varying degrees, with some models being more consistent
with human behavior than others.

Sketch recognition behavior is generally consistent
across vision models. To what degree are state-of-the-
art vision models consistent in their sensitivity to the
semantic information conveyed by sketches containing
varying amounts of detail? To evaluate this question, we
looked at how consistent different models were in their
patterns of average uncertainty over the sketches belonging
to each of the 128 object classes and whether this consistency
changed as function of stroke count or draw duration. For
each model, we first computed 128-dimensional entropy
vectors to capture the uncertainty expressed by the model
for each of the object classes. Each resulting entry in this
vector was the average response distribution entropy across
sketches for one of the classes. If two models shared
similar entropy vectors, it would indicate similar patterns
of uncertainty across sketches of each class. To measure
how consistent models are across each production constraint
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Figure 6: Mean correlation between response entropy vectors
across models at different abstraction levels.

We found a high average correlation between entropy
vectors across models for each production constraint level
and for both sketches generated by human sketchers and
CLIPasso (Fig. 6), suggesting that all the models appeared
to represent semantic uncertainty in a generally similar
manner when classifying sketches of different object classes.
Additionally, we conducted model comparisons between two
linear regression models predicting response correlation, one
with a factor for draw duration and one without. We found
that a factor for draw duration did not explain significantly
unique variance in the model relative to the intercept-only
model (F(260,3) = 1.78, p = .15). These results indicate
that models were equally consistent in their uncertainty when
generating classifications of human sketches of different
object classes. For sketches generated using CLIPasso, we
also compared an intercept-only model to a model with a
factor for number of strokes and found a significant effect
of number of strokes (F(3,260) = 3.19, p < .05). Thus,
for machine generated sketches, there did appear to be an
effect of stroke number on the consistency between models
in their expressed semantic uncertainty with models being
less consistent in their classifications of sketches with more
strokes. Taken together, these results suggest that sketch
recognition behavior is generally consistent across these
12 state-of-the-art vision models, particularly for sketches
produced by humans and despite being drawn at varying
levels of detail.

Discussion
There has been incredible progress in the development of
high performing vision models over the past several years–
and recently, reaching enough variation in model architecture
and training to prime cognitive psychology research with
the opportunity to begin explore the extent to which specific
models have achieved human-like understanding of abstract
symbolic representations, like sketches. To evaluate this
expansive range of state-of-the-art vision models and their
ability to extract meaning from sketch representations,

we introduce a new large-scale drawing dataset of over
90K sketches based on 2,048 real-world objects spanning
128 diverse concept categories. Our dataset combines
both human-made and AI-generated sketches produced
under varying production constraints (limitations in drawing
duration for human sketchers, and limitations in number of
strokes for CLIPasso (Vinker et al., 2022)). By systematically
varying the level of abstraction produced by these different
production constraints, our dataset provides a rich testbed
to investigate human and machine visual understanding of
human and machine sketches.

In an era where it is becoming increasingly difficult
to adjudicate between state-of-the-art vision models in
terms of their relevance to human cognition, our dataset
provides a novel substrate to tease apart which models are
more human-like than others (Golan, Raju, & Kriegeskorte,
2020). We provide initial benchmarking of a representative
set of vision models spanning architectures and training
techniques against human generated soft-label distributions
for a representative set of sketches from both datasets. Across
a battery of model evaluations, we broadly find that the
models that we investigated are sensitive to the variation in
the semantic information produced by different production
constraints and that some models, like CLIP, are more
consistent with human recognition of sketches than others,
like MLP-Mixer. We also found that models generally
agree in their expressed uncertainty over object classes when
recognizing sketches and that this uncertainty remains largely
consistent across varying levels of abstraction and detail, but
with models being less consistent across abstraction levels
over their uncertainty in machine generated sketches. This
points to an intriguing yet critical gap in the fidelity of sketch
production algorithms to human sketch behavior, and we
hope results such as ours will help open avenues for closing
this gap in human-machine sketch production.

Within our present work, we offer object concept
classification as an initial benchmarking protocol to evaluate
different models. However, we predict future work will
seek to benchmark a wider variety of models including those
inspired by cognitive neuroscience (H. Chen et al., 2022;
Zhuang et al., 2021; Kubilius et al., 2019) and will seek to
build more robust metrics of abstraction beyond those tied to
classification-based accuracy.

Our work complements ongoing efforts to understand how
different components of current AI vision models give rise
to their classification behavior (Hermann & Lampinen, 2020;
Nguyen, Raghu, & Kornblith, 2020; Schott et al., 2021;
T. Chen, Luo, & Li, 2021) and where limitations might arise
in mapping model performance to human cognition (Zhou
& Firestone, 2019; Bowers et al., 2022; Mahowald et al.,
2023). In the long run, progress along these research fronts
may shed light upon the computational basis of humans’
ability to produce highly abstract but nonetheless meaningful
representations, as well as invented symbolic systems for
encoding abstract knowledge in pictorial form.
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Tsvetkov, C., Biscione, V., . . . others (2022). Deep
problems with neural network models of human vision.
Behavioral and Brain Sciences, 1–74.

Bozeat, S., Lambon Ralph, M. A., Graham, K. S., Patterson,
K., Wilkin, H., Rowland, J., . . . Hodges, J. R. (2003).
A duck with four legs: Investigating the structure of
conceptual knowledge using picture drawing in semantic
dementia. Cognitive neuropsychology, 20(1), 27–47.

Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J.,
Bojanowski, P., & Joulin, A. (2021). Emerging properties
in self-supervised vision transformers. In Proceedings of
the ieee/cvf international conference on computer vision
(pp. 9650–9660).

Chen, H., Venkatesh, R., Friedman, Y., Wu, J., Tenenbaum,
J. B., Yamins, D. L., & Bear, D. M. (2022).
Unsupervised segmentation in real-world images via
spelke object inference. In Computer vision–eccv 2022:
17th european conference, tel aviv, israel, october 23–27,
2022, proceedings, part xxix (pp. 719–735).

Chen, M., Hauser, H., Rheingans, P., & Scheuermann, G.
(2020). Foundations of data visualization. Springer.

Chen, T., Luo, C., & Li, L. (2021). Intriguing properties
of contrastive losses. Advances in Neural Information
Processing Systems, 34, 11834–11845.

Chen, X., Xie, S., & He, K. (2021). An empirical
study of training self-supervised vision transformers. In
Proceedings of the ieee/cvf international conference on
computer vision (pp. 9640–9649).

Collins, K. M., Bhatt, U., & Weller, A. (2022). Eliciting
and learning with soft labels from every annotator. In
Proceedings of the aaai conference on human computation
and crowdsourcing (Vol. 10, pp. 40–52).

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei,
L. (2009). Imagenet: A large-scale hierarchical image
database. In 2009 ieee conference on computer vision and
pattern recognition (pp. 248–255).

Dillon, M. R. (2021). Rooms without walls: Young children
draw objects but not layouts. Journal of Experimental
Psychology: General, 150(6), 1071.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D.,
Zhai, X., Unterthiner, T., . . . others (2020). An image is
worth 16x16 words: Transformers for image recognition at
scale. arXiv preprint arXiv:2010.11929.

Eitz, M., Richter, R., Boubekeur, T., Hildebrand, K., &
Alexa, M. (2012). Sketch-based shape retrieval. ACM
Transactions on graphics (TOG), 31(4), 1–10.

Fan, J. E., Hawkins, R. D., Wu, M., & Goodman, N. D.
(2020). Pragmatic inference and visual abstraction
enable contextual flexibility during visual communication.
Computational Brain & Behavior, 3(1), 86–101.

Fan, J. E., Yamins, D. L., & Turk-Browne, N. B. (2018).
Common object representations for visual production and
recognition. Cognitive science, 42(8), 2670–2698.

Golan, T., Raju, P. C., & Kriegeskorte, N. (2020).
Controversial stimuli: Pitting neural networks against each
other as models of human cognition. Proceedings of the
National Academy of Sciences, 117(47), 29330–29337.

Gombrich, E. H. (1995). The story of art (Vol. 12). Phaidon
London.

Goodale, M. A., & Milner, A. D. (1992). Separate
visual pathways for perception and action. Trends in
Neurosciences, 15(1), 20–25.

Gross, C. G., Rocha-Miranda, C. d., & Bender, D. (1972).
Visual properties of neurons in inferotemporal cortex of the
macaque. Journal of Neurophysiology, 35(1), 96–111.

He, K., Chen, X., Xie, S., Li, Y., Dollár, P., & Girshick, R.
(2022). Masked autoencoders are scalable vision learners.
In Proceedings of the ieee/cvf conference on computer
vision and pattern recognition (pp. 16000–16009).

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual
learning for image recognition. In Proceedings of the ieee
conference on computer vision and pattern recognition (pp.
770–778).

Hebart, M. N., Dickter, A. H., Kidder, A., Kwok, W. Y.,
Corriveau, A., Van Wicklin, C., & Baker, C. I. (2019).
Things: A database of 1,854 object concepts and more
than 26,000 naturalistic object images. PloS one, 14(10),
e0223792.

Hermann, K., & Lampinen, A. (2020). What shapes
feature representations? exploring datasets, architectures,
and training. Advances in Neural Information Processing
Systems, 33, 9995–10006.

Huey, H., & Long, B. (2022). Developmental changes in the
semantic part structure of drawn objects. In Proceedings of
the 44th annual meeting of the cognitive science society.

Hung, C. P., Kreiman, G., Poggio, T., & DiCarlo, J. J.
(2005). Fast readout of object identity from macaque
inferior temporal cortex. Science, 310(5749), 863–866.

Jongejan, J., Rowley, H., Kawashima, T., Kim, J., & Fox-
Gieg, N. (2017). The quick, draw! dataset.

Karmiloff-Smith, A. (1990). Constraints on representational
change: Evidence from children’s drawing. Cognition,
34(1), 57–83.

Konkle, T., & Alvarez, G. A. (2022). A self-supervised

3586

https://github.com/cogtoolslab/visual_abstractions_benchmarking_public2023/
https://github.com/cogtoolslab/visual_abstractions_benchmarking_public2023/
https://github.com/cogtoolslab/visual_abstractions_benchmarking_public2023/
https://github.com/cogtoolslab/visual_abstractions_benchmarking_public2023/


domain-general learning framework for human ventral
stream representation. Nature Communications, 13(1), 1–
12.

Kriegeskorte, N. (2015). Deep neural networks: a
new framework for modelling biological vision and brain
information processing. biorxiv, 029876.

Kubilius, J., Bracci, S., & Op de Beeck, H. P. (2016). Deep
neural networks as a computational model for human shape
sensitivity. PLoS computational biology, 12(4), e1004896.

Kubilius, J., Schrimpf, M., Kar, K., Rajalingham, R., Hong,
H., Majaj, N., . . . others (2019). Brain-like object
recognition with high-performing shallow recurrent anns.
Advances in neural information processing systems, 32.

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., . . .
Guo, B. (2021). Swin transformer: Hierarchical vision
transformer using shifted windows. In Proceedings of the
ieee/cvf international conference on computer vision (pp.
10012–10022).

Long, B., Fan, J., Chai, Z., & Frank, M. C. (2021).
Parallel developmental changes in children’s drawing and
recognition of visual concepts.

Mahowald, K., Ivanova, A. A., Blank, I. A., Kanwisher, N.,
Tenenbaum, J. B., & Fedorenko, E. (2023). Dissociating
language and thought in large language models: a cognitive
perspective. arXiv preprint arXiv:2301.06627.

Malach, R., Levy, I., & Hasson, U. (2002). The topography
of high-order human object areas. Trends in Cognitive
Sciences, 6(4), 176–184.

McCloud, S., & Manning, A. (1998). Understanding comics:
The invisible art. IEEE Transactions on Professional
Communications, 41(1), 66–69.

Mi, X., DeCarlo, D., & Stone, M. (2009). Abstraction of
2d shapes in terms of parts. In Proceedings of the 7th
international symposium on non-photorealistic animation
and rendering (pp. 15–24).

Nan, L., Sharf, A., Xie, K., Wong, T.-T., Deussen, O., Cohen-
Or, D., & Chen, B. (2011). Conjoining gestalt rules for
abstraction of architectural drawings. ACM Transactions
on Graphics (TOG), 30(6), 1–10.

Nguyen, T., Raghu, M., & Kornblith, S. (2020). Do wide
and deep networks learn the same things? uncovering how
neural network representations vary with width and depth.
arXiv preprint arXiv:2010.15327.

Peterson, J. C., Battleday, R. M., Griffiths, T. L., &
Russakovsky, O. (2019). Human uncertainty makes
classification more robust. In Proceedings of the ieee/cvf
international conference on computer vision (pp. 9617–
9626).

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., . . . others (2021). Learning transferable visual
models from natural language supervision. In International
conference on machine learning (pp. 8748–8763).

Rogers, T. T., & Patterson, K. (2007). Object categorization:
reversals and explanations of the basic-level advantage.
Journal of Experimental Psychology: General, 136(3),

451.
Sangkloy, P., Burnell, N., Ham, C., & Hays, J. (2016). The

sketchy database: learning to retrieve badly drawn bunnies.
ACM Transactions on Graphics (TOG), 35(4), 1–12.
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