
UCLA
UCLA Previously Published Works

Title
Stochastic Epigenetic Mutations Influence Parkinson's Disease Risk, Progression, and 
Mortality.

Permalink
https://escholarship.org/uc/item/55m3t0x5

Journal
Journal of Parkinson's Disease, 12(2)

ISSN
1877-7171

Authors
Chen, Gary K
Yan, Qi
Paul, Kimberly C
et al.

Publication Date
2022

DOI
10.3233/jpd-212834
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/55m3t0x5
https://escholarship.org/uc/item/55m3t0x5#author
https://escholarship.org
http://www.cdlib.org/


Stochastic Epigenetic Mutations Influence Parkinson’s Disease 
Risk, Progression, and Mortality

Gary K. Chena, Qi Yanb, Kimberly C. Paulc, Cynthia D.J. Kustersd, Aline Duarte Folleb, 
Melissa Furlonge, Adrienne Keenerc, Jeff Bronsteinc, Steve Horvathd,f, Beate Ritzb,*

aIndependent Researcher

bDepartment of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA

cDepartment of Neurology, David Geffen School of Medicine, Los Angeles, CA, USA

dDepartment of Human Genetics, David Geffen School of Medicine, University of California Los 
Angeles, Los Angeles, CA, USA

eDepartment of Community, Environment and Policy, University of Arizona Mel and Enid 
Zuckerman College of Public Health, Tucson, AZ, USA

fDepartment of Biostatistics, Fielding School of Public Health, University of California Los 
Angeles, Los Angeles, CA, USA

Abstract

Background: Stochastic epigenetic mutations (SEM) reflect a deviation from normal site-

specific methylation patterns. Epigenetic mutation load (EML) captures the accumulation of SEMs 

across an individual’s genome and may reflect dysfunction of the epigenetic maintenance system 

in response to epigenetic challenges.

Objective: We investigate whether EML is associated with PD risk and time to events (i.e., death 

and motor symptom decline).

Methods: We employed logistic regression and Cox proportional hazards regression to assess 

the association between EML and several outcomes. Our analyses are based on 568 PD patients 

and 238 controls from the Parkinson’s disease, Environment and Genes (PEG) study, for whom 

blood-based methylation data was available.

Results: We found an association for PD onset and EML in all genes (OR = 1.90; 95% CI 

1.52–2.37) and PD-related genes (OR = 1.87; 95% CI 1.50–2.32). EML was also associated with 

time to a minimum score of 35 points on the motor UPDRS exam (OR = 1.28; 95% CI 1.06–1.56) 

and time to death (OR = 1.29, 95% CI 1.11–1.49). An analysis of PD related genes only revealed 

five intragenic hotspots of high SEM density associated with PD risk.

*Correspondence to: Beate Ritz, UCLA, Epidemiology, Box 951772, Los Angeles, CA 90095, USA. britz@ucla.edu. 
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Conclusion: Our findings suggest an enrichment of methylation dysregulation in PD patients in 

general and specifically in five PD related genes. EML may also be associated with time to death 

and motor symptom progression in PD patients.

Keywords

Parkinson’s disease; epigenetics

INTRODUCTION

Parkinson’s disease (PD), the second most common neurodegenerative disorder after 

Alzheimer’s disease, affects approximately 2% of individuals over 60 years of age [1]. PD 

is clinically characterized by motor symptoms such as rigidity, resting tremor, bradykinesia, 

and postural instability, but little is known about factors that influence symptom worsening 

[2]. Neuropathology in PD is marked by the loss of dopamine producing neurons in the 

substantia nigra pars compacta. While evidence for genetic contributions to PD risk has 

been accumulating over decades [3–5], research on epigenetic processes and their role in 

PD etiology is still incomplete [6–8]. There is also mounting evidence that the environment 

and its interplay with genetic variation and susceptibility plays a role in increasing PD 

risk and some of this may be through epigenetic mechanisms that affect protein expression 

levels. For example, epigenetic processes involving methylation of cytosine nucleotides 

can suppress transcription of genes to proteins. Epigenetic mutations have previously been 

shown to be useful biomarkers of biological aging which in turn potentially contributes to 

both risk and progression of neurodegenerative disease [9]. Based on the hypothesis that 

methylation patterns across the genome play a role in biologic mechanisms that contribute 

to aging and disease risk, investigators have conducted epigenome-wide association studies 

(EWAS) to map regions to traits of interest [10]. The EWAS approach is predicated on the 

notion that expression levels for a limited number of genes are primary drivers for disease 

risk, possibly mediated by environmental factors. Our group as well as others who have 

investigated links between PD and methylation patterns have employed EWAS to map loci 

that confer risk for PD [7, 8, 11]. For example, Chuang et al. identified 82 CpGs and 5 CpGs 

in blood and saliva respectively that were either hyper or hypomethylated in PD cases when 

compared to controls [7].

Complementary work has suggested that overall dysregulation of methylation levels, rather 

than changes in methylation levels at a specific set of loci, are important drivers for 

outcomes such as aging [12], pre-term birth [13], or cancer [14]. Recently, a metric 

known as a SEM (stochastic epigenetic mutation) has been suggested as one approach 

for quantifying dysregulation at a particular genomic site [15, 16]. SEM reflects the 

accumulation of epigenetic maintenance machinery failures (stochastic mutations) and the 

number of SEMs increases exponentially with chronological age [12]. As an example of the 

applicability of this metric in earlier work, we aggregated SEM status across all methylation 

sites into a genome-wide score we called EML (epigenetic mutation load) to investigate the 

relationship between methylation levels and biological clocks [17]. Here, we employ this 

measure (denoted in this paper as EMLgenome) to improve our understanding of PD etiology 

and progression. Additionally, we devise a new measure called EMLPD that is purely 
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composed of methylation sites that map to a set of curated genes previously linked to PD 

risk. Our primary objective is to assess whether (log-transformed) EMLgenome and EMLPD 

scores are associated with PD risk, motor symptom progression, and/or time-to-death.

MATERIALS AND METHODS

Study population

We draw on blood samples from participants of the Parkinson’s disease, Environment and 

Genes (PEG) study, including 511 individuals of European ancestry (292 PD patients and 

219 controls) and 61 individuals of Hispanic ancestry (42 PD patients and 19 controls). 

PEG was designed to investigate links between environmental factors and PD in agricultural 

regions of central California [18, 19]. Eligible patients recruited via community outreach, 

local neurologists, and clinics were enrolled into the PEG study in two waves, denoted 

in this paper as PEG1 and PEG2. Analyses related to PD progression were restricted to 

either patients (PEG1 and PEG2 combined) or PEG1 controls (for comparison purposes). 

Standardized interviews were used for collecting information such as demographic and 

lifestyle factors, comorbidities, and medication use. PD patients enrolled in PEG1 were 

recently diagnosed (within 3 years) and in PEG2 on average 4 years before they were 

examined by UCLA movement disorder specialists (JB, AK) at least once (i.e., at baseline). 

Patients and controls were ascertained from Kern, Tulare, and Fresno counties (2001–2007 

for PEG1 and 2011–2015 for PEG2). PEG1 patients were identified by neurologists, large 

medical groups, or public service announcements. PEG2 patients were identified through the 

California PD Registry operating in the same counties.

Of 1,167 PD patients initially invited in PEG1, 563 patients were eligible based on the 

threshold of diagnosis of 3 years or less. 363 PEG1 patients were confirmed as having 

probable idiopathic PD through examination by movement disorder specialists. At first 

re-contact for follow-up examination, 83 (22.9%) of the 363 patients were deceased, 25 

(6.9%) withdrew, 9 (2.5%) could not be found, and 4 (1.1%) were too ill to participate. For 

follow-up, 242 (66.6%) were re-examined with 6 patients participating by mail/phone only 

(no in-person follow-up exam and therefore not contributing to this analysis) and 3 patients 

were re-classified by us during follow-up as not having idiopathic PD. Of 233 patients 

re-examined and confirmed to have idiopathic PD, 178 (76.4%) were seen twice and 55 

were seen only once during follow-up (21 were deceased prior to and 14 pending a second 

exams, 8 were too ill to participate, 4 could not be located, 3 withdrew, and 5 participated by 

mail/phone only).

From 2011 to 2015, 734 PD patients were eligible at first screening for entry into the 

PEG2 cohort. Of these, 85 potential PEG2 patients refused to participate, 47 could not be 

examined by UCLA movement disorder specialists at a local clinic, and 119 were excluded 

after an exam as they did not have idiopathic PD, leaving a baseline of 483 PD patients 

who met our enrollment criteria Of the 227 patients with methylation data available, 134 

(59%) provided some follow-up data (124 of whom have motor symptom data), while 59 

(26%) were deceased, 10 (4%) refused to participate, 17 (8%) could not be found, 5 (2%) 

are pending to have a second exam, and 2 (1%) were too ill to participate.
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Population controls from PEG1 from the same communities were randomly sampled from 

Medicare lists (before HIPAA enactment) and through residential tax assessor’s records as 

well as through community outreach. The controls for PEG2 only contributed saliva samples 

for DNA extraction and thus are not part of this investigation. PD risk analysis was restricted 

to n = 806 participants (n = 238 controls, n = 341 PD patients from PEG1, n = 227 PD 

patients from PEG2) for whom we currently have quality control validated blood-based 

DNA methylation data available.

Methylation data

DNA methylation data were obtained from peripheral blood samples. Methylation 

status was measured in bisulfite-treated genomic DNA using the Illumina Infinium 

HumanMethylation-450 assay. For the main analyses assessing the relationship between 

EML and all PD outcomes, we included all participants from PEG1 and PEG2, controlling 

for study wave status. To assess robustness of our inferences, we also conducted a 

sensitivity analysis, limiting to only PEG1 cases for the following reasons. We computed 

the distribution of our predictor of interest (i.e., the SEM score as defined in the following 

sections) based on our reference group, i.e., the community controls sampled along cases in 

PEG1 only, because only PEG1 required control subjects to provide a blood sample while 

controls for PEG2 only provided a saliva sample. Furthermore, we observed differences in 

the overall methylation levels at certain sites between PEG1 and PEG2 patients, possibly 

indicating either technical artifacts (e.g., a batch effect) or biological differences (e.g., 

differences in age, environmental factors between the two birth cohorts), which could 

potentially skew distributions of methylation events between PEG1 and PEG2 cases. 

Therefore, we present results for the whole study population and also for PEG1 only.

Quality control

Raw signal intensities were retrieved from Illumina iDat format files using the function 

read.metharray.exp of the R package minfi from the open-source library Bioconductor 
[20], followed by linear dye bias correction, noob background correction, and BMIQ 

normalization using the same R package [21–23]. The β-values, determined by calculating 

the ratio of intensities between methylated and unmethylated sites, were used for all 

analyses. Probes on the array were excluded based on the following criteria: 845 probes 

that were statistically likely to be detected above the background signal level regardless of 

methylation status (based on alpha-level p < 0.05), 645 probes with bead counts less that 3 

in at least 5% of the samples, 11,334 probes mapping to sex chromosomes, 7,306 probes 

that included a known SNP within the CpG interrogation site, and 27,332 probes that were 

cross-reactive. In total, 438,050 remaining probes were included for downstream analyses.

Outcomes

In this paper, we examined the relationship between methylation pattern and four outcomes: 

first, overall risk of PD, then disease progression and time to death in PD patients. PD 

diagnosis was determined by UCLA movement disorder specialists as described above 

and we compared cases to our community controls. Patients were examined clinically 

while not receiving PD medications, i.e., being functionally in an ‘off’ state (82% at the 

baseline examination and 80% at follow-up). For patients whom we could only examine 

Chen et al. Page 4

J Parkinsons Dis. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



on medication, we estimated an off-score by adding the difference of the whole study 

population’s mean off- and mean on- scores at the time of exam to the patient’s on-score, as 

described in previous work [24]. Second, we modelled time to death as a continuous variable 

indicating the number of years from the baseline exam to death. The last two outcomes were 

based on two complementary measures, capturing PD symptom progression that have been 

widely used in PD research: the Unified Parkinson’s Disease Rating Scale part 3 (motor – 

mUPDRS) and Hoehn & Yahr staging [25], rated by UCLA movement disorder specialists 

who conducted physical examinations at each examination to assess PD progression. We 

used time to a score of 35 or higher on the mUPDRS to indicate progression to more severe 

PD motor symptoms, as we did in previous analyses [26]. A mUPDRS score ≥ 35 (higher 

score represents worse motor function) was chosen as a meaningful threshold for motor 

progression because it represents, on average, motor progression to a stage where patients 

start presenting some dependency for functional activities, equivalent to a HY stage 3 and 

to 60% on the Schwab and England scale [27]. In our analysis, we considered time to 

conversion to mUPDRS>=35 and time to conversion to Hoehn & Yahr stage 3 or greater 

(HY3).

PD-specific gene set

The Parkinson’s UK Annotation Initiative has provided the research community a free 

resource in the form of a list of 811 curated genes involved in over 4,500 GO annotations 

that relate to processes relevant to PD [28]. Based on this data, we hypothesized that 

methylation patterns at these genes may be informative and would be associated with PD 

disease risk. We intersected this list of 811 curated genes to probes annotated with the same 

gene symbols based on a methylation probe descriptor file provided by Illumina, resulting in 

747 candidate regions.

Metrics for assessing methylation dysregulation: SEM and EML

After exclusion criteria were applied on methylation probes that failed quality control, at 

each subject-probe datapoint across 438,050 probes and 806 study subjects, we computed 

its SEM status as a binary score. Specifically, at each locus, we first determined the 

interquartile range (IQR) among all 238 controls. Relying on a previously published 

definition, a SEM is observed for a given person at a specific CpG site if an individual’s 

methylation level is more than three times the interquartile range (IQR) lower than the 25th 

percentile (Q1 – 3×IQR), or more than three times the IQR higher than the 75th percentile 

(Q3 + 3×IQR) [12].

We assessed whether downstream statistical inferences would remain stable when using 

different threshold criteria via sensitivity analyses. Namely, we also considered two 

generalized scores, SEMα and SEMβ, defined as:

SEMα = I x < Q1 − α ∗ IQR ∪ x > Q3 + α ∗ IQR (1)

SEMβ = I 1 − β x < Q1 − 3 ∗ IQR
∪ β x > Q3 + 3 ∗ IQR (2)
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where we re-fit all our logistic regression models for predicting PD risk after varying values 

of α and β.

Based on the SEM scores defined at each locus, for each subject, we constructed three EML 

scores to capture the overall burden of SEM counts for selected sets of valid methylation 

probes for each subject [17]. We denote these EML measures as the EMLgenome, EMLPD, 

and EML<window> scores. The EMLgenome score is equivalent to the definition introduced 

in Yan et al. (2020), i.e., the EML taken over all available probes spanning the genome. A 

subset of probes that map to the 747 genes from the PD geneset described earlier are used 

to construct the EMLPD score. We hypothesized that the EMLPD score may also predict PD 

disease risk and compared results of analyses using both EML scores. Finally, we applied a 

sliding window approach in order to consider the possibility that there are certain hotspots, 

defined as regions mapped to a subgroup of probes within the PD geneset that are most 

strongly associated with PD risk. We define notation for this measure as EML<window>, 

where the subscript <window> (e.g., EMLChr5 : 100502-120000) represents the physical base 

pair coordinates of the start and end boundaries of the sliding window.

Figure 1 suggests a strong right skewing in the distribution of the EMLgenome score. 

This was confirmed based on a Kolmogorov-Smirnov (KS) test, comparing to a normal 

distribution, for both EMLgenome and EMLPD (deviance of 1.0 (p < 1e-16)). Hence, for 

regression models, a log transformation was applied to all EML definitions to ameliorate 

violations to normality in regression model residuals. To aid in interpretation of the unit 

size of regression coefficients, we further applied a second transformation, mapping all 

log-transformed EML scores to a Z-score.

Statistical analyses

To study the relationship between our EML measures and PD status or disease severity (i.e., 

time-to-event as described above), we constructed logistic regression models to estimate 

odds ratios in cases and controls, and Cox proportional hazards models for estimating 

hazard ratios among PD cases only. We also conducted additional analyses, stratified 

by gender. All regression models were adjusted for potential confounding variables: 

age (continuous variable with 31–99), sex (binary), ethnicity (white/non-white), and five 

quantities that estimated blood cell composition since methylation is tissue cell type 

composition dependent. For the time to event (Cox) models, to minimize confounding on 

methylation due to disease duration, we also included a variable measuring the number of 

years between diagnosis and the baseline interview date. The cell composition variables 

distinguish between naïve CD8 cells, CD8 + CD28-CD45RA-T cells, plasma blasts, CD4 

T cells, and granulocytes. These variables were estimated from an online tool (https://

horvath.genetics.ucla.edu/html/dnamage/), based on methods described by Horvath [29].

To assess robustness of the results, as a sensitivity analysis we added three additional 

variables based on knowledge gleaned from previous work investigating potential factors for 

methylation changes: educational attainment, smoking status, and a biomarker measuring 

epigenetic age acceleration. An EWAS of 4152 participants demonstrated an education-

related gradient of methylome changes that reflect cigarette smoke exposure signatures [30]. 

For this study, we encoded years of educational attainment and smoking status as categorical 
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variables: (educational attainment: less than 12, 12, or greater than 12 years of education and 

smoking status: ever smoked, never smoked, or quit smoking). Previous studies have shown 

that a biomarker known as extrinsic epigenetic age acceleration (EEAA) was associated with 

increased mortality [31], PD risk [32], and EML [17]. Thus, given its association with EML, 

we considered EEAA as a potential confounder. We compared regression results from the 

standard adjusted model (i.e., with all control variables described above) to a model with the 

added continuous variable measuring EEAA, and two categorical measures of educational 

attainment and smoking status in the sensitivity analysis.

In models of disease severity (i.e., time to death and PD symptom progression), we 

also included total levodopa equivalent dosage (LED) reported at the baseline exam as 

levodopa medication may potentially affect methylation levels, and patients with more 

severe symptoms of PD may be prescribed a more aggressive levodopa regiment. Previous 

analyses suggested that methylation levels confer a risk of developing PD, and it has been 

shown that methylation is affected by genes, i.e., that the average heritability of DNA 

methylation sites is 18.7% [33]. Thus, we also included as a covariate in our models a 

polygenic risk score (PRS) to control for any heritable variation. The PRS was constructed 

as a weighted sum of allele counts, where the weights are effect estimates from known PD 

risk SNPs [34].

For the purpose of testing associations between PD and EML<window> (i.e., window-specific 

EML scores), we applied the R package wgscan to test a series of candidate sliding 

windows, comprising contiguous methylation probes, for association with either PD disease 

status or disease severity. The wgscan program, which was originally applied for mapping a 

contiguous set of rare SNPs to a given outcome [35], can be applied to other measures (e.g., 

CNV, methylation counts) under the assumption that a cluster of variation at neighboring 

sites is relevant to the trait. Methods for rare variant analysis in general apply either a 

burden test (i.e., scores are summed) or a test of overdispersion in the variance of the 

effect sizes on a selected set of contiguous variants, where the latter test can potentially 

be more powerful than the former if variants within a window do not share the same 

directionality of effects [36]. In the context of our analysis, we treat SEM calls at each 

methylation probe as the variant of interest. The program applies a sliding window approach, 

systematically considering various window sizes. Candidate window sizes can be configured 

by the user, and significance levels are adjusted for the increased type 1 error due to 

the large number of windows (hypotheses) being tested. For each window tested against 

the trait of interest (PD), we included in the model the standard set of control variables 

described above. At each window in the provided region, the program reports p-values for 

the burden and overdispersion tests. A global region-specific significance level, adjusted 

for the number of windows tested is also reported to the user. Finally, we computed a 

genome-wide significance level αglobal to correct for the number of regions tested. For k 
regions (genes), this threshold is defined as αglobal = 1/(1/αgene-1 + 1/αgene-2 + …1/αgene-k) 

where the region-specific significance levels (e.g., αgene-1) is computed to account for the 

multiple comparisons inherent in testing multiple sliding windows.
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RESULTS

Table 1 summarizes the characteristics of the 806 subjects included in this study whose 

quality checked methylation data were available for analyses.

Distribution of SEM frequency across loci

Inspection of the distribution of SEM frequency across all methylation probes showed that 

the probability of a SEM event at any particular locus was rare. A histogram of SEM counts 

at each methylation probe is depicted in Supplementary Figure 1. The median frequency at a 

given site was 0.74% (6/806) with a range of 0–211.

Estimated effects of EMLgenome on PD risk

A visual comparison of the distributions of the EMLgenome score between cases and 

controls, as depicted in the violin plot of Fig. 1, suggests that EML levels are higher in 

cases than controls. Furthermore, the large range in scores for the full dataset appears to 

be driven more strongly by female cases. To test our hypothesis that overall methylation 

dysregulation is enriched in PD cases, we fitted regression models with PD status as the 

outcome of interest.

Table 2 summarizes results from logistic regression models for all PEG1/PEG2 subjects and 

men and women separately. For comparison, we also present results after excluding PEG2 

subjects as part of a sensitivity analysis. As expected, for effects estimated with different 

case inclusion or exclusion criteria (i.e., all PEG waves versus PEG1 subjects only), the 

directionality of effects was consistent, with somewhat diminished effect sizes for the latter 

comparison. To quantify differences in the distribution of EML scores between the two 

datasets, we regressed the EML measures on PEG wave status, controlling for the same 

confounding variables in the logistic regression models. We did not observe any formally 

statistically significant heterogeneity of effects as indicated in Supplementary Table 1.

Risk of PD was statistically significantly associated with both EML scoring criteria when 

comparing all cases to controls (EMLgenome: OR = 1.90; 95% CI (1.52–2.37); EMLPD: 

OR = 1.87; 95% CI (1.50–2.32). The EMLgenome variable exhibited the strongest estimated 

effect size on PD risk for female cases only (all subjects: OR = 2.28; 95% CI 1.59–3.25; 

PEG1 only: OR = 2.05; 95% CI 1.45–2.92). The association between EMLgenome and PD 

risk was weaker in males (all subjects: OR = 1.66; 95% CI 1.22–2.24; PEG1 only: OR 

= 1.46; 95% CI 1.08–1.97). The magnitude of the estimated effect size of PD risk was 

smaller with EMLPD than with EMLgenome, but the direction of the effect was consistent, 

with females always showing a stronger association than males. To assess the possibility of 

sex specific heterogeneity, we fitted models after adding an interaction term between sex 

and either EML variable. Based on this interaction term, we observed moderate evidence 

of heterogeneity by sex for EMLgenome (OR = 1.53; 95% CI 1.03–2.26; p = 0.0338) and 

weaker evidence for EMLPD (OR = 1.41; 95% CI 0.96–2.06; p = 0.0787), suggesting a 

stronger joint effect of female sex and EMLgenome than expected.

We conducted additional sensitivity analyses on the full dataset to assess the robustness of 

our findings. First, adding the potential confounders EEAA age acceleration, educational 
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attainment, and smoking status did not change our results (Supplementary Table 2). Second, 

when we defined EML according to SEMα and SEMα odds ratio estimates remained very 

similar (Supplementary Table 3).

Mapping of EML<window> to PD risk

We split the genome-wide methylation dataset into 747 regions, each of which corresponds 

to a gene that has previously been associated with PD and received a GO annotation as listed 

on the Parkinson’s UK Annotation Initiative website. A total of 9400 windows ranging from 

size 5 kB to 50 kB were tested across this subset of the genome.

We did not find any formally statistically significant associations between the EML<window> 

scores and the continuous outcomes measuring disease severity. However, burden and 

dispersion tests indicated that five of these EML<window> scores were associated with 

PD risk, based on the genome-wide significance level αglobal of 3e−7, as shown in Table 

3. Notably, these regions map to the genes encoding for proteins that are related to 

cellular stress response (e.g., STK39), endocytosis (e.g., NEDD4), ER protein trafficking 

(e.g., PI4KA), and neuronal/microglia function (e.g., P2Y12). Although we configured the 

program to construct candidate window sizes ranging from 5kB to 50 kB, none of the scores 

corresponding to windows greater than 5 kB in size were significantly associated with PD 

risk. The Manhattan scatter plot in Supplementary Figure 2 depicts the landscape of -log10 

p-values of window-specific burden (shown in red) and dispersion (shown in blue) tests.

Effect of EMLgenome/EMLPD on PD progression and mortality

Next, we assessed whether either EMLgenome or EMLPD were associated with measures 

of disease progression in PD cases only, applying a Cox proportional hazards ratio time 

to event model for each of the three outcome variables. We did not observe statistically 

significant associations between the EML measures and the HY3 time to event variable. For 

the time to a mUPDRS score of 35 or greater, we estimated increased hazard ratios and 

their confidence intervals were formally statistically significant for all cases (EMLgenome 

HR = 1.28, 95% CI 1.06–1.56 and EMLPD HR = 1.20, 95% CI 1.08–1.56) and the female 

subset of cases (EMLgenome HR = 1.43, 95% CI 1.10–1.86 and EMLPD HR = 1.41, 95% CI 

1.10–1.86), as indicated in Table 4. Neither EMLgenome nor EMLPD were associated with 

time to a HY stage>=3 (EMLgenome HR = 1.13, 95% CI 0.94–1.37 and EMLPD HR = 1.13, 

95% CI 0.94–1.36).

Likewise, hazard ratios were increased for time to death for all cases (EMLgenome HR = 

1.29, 95% CI 1.11–1.49 and EMLPD HR = 1.29, 95% CI 1.12–1.48) and the female subset 

(EMLgenome HR = 1.33, 95% CI 1.07–1.64 and EMLPD HR = 1.31, 95% CI 1.07–1.60), 

also presented in Table 4. Effect sizes did not change substantively in models including 

different sets of control variables (Supplementary Table 4). To assess whether this result was 

specific to PD cases, we also assessed time to death between EMLgenome and EMLPD in 

controls. While we did not observe associations in controls that were formally statistically 

significant, the effect estimates were above the null value of one (EMLgenome HR = 1.21, 

95% CI 0.85–1.74 and EMLPD HR = 1.22, 95% CI 0.86–1.73).
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DISCUSSION

We investigated whether dysregulation of blood cell methylation plays a role in PD etiology 

and contributes to mortality in patients with PD in a population-based study of patients 

and their community controls from California’s Central Valley. For these participants, we 

have been able to gather a rich set of outcome data with patients followed for progression, 

and all participants for mortality over decades. Using a high-density assay from Illumina, 

we queried over 450 k probes after extensive QC filtering to assess SEM, a surrogate 

for measuring methylation dysregulation. Our findings suggest an increase ranging from 

66–128% in risk of PD for each standard deviation of EML, with a stronger estimated effect 

size in women than in men. Although our analyses were based on pooled cases from two 

different birth cohorts (PEG1 and PEG2) compared against only one reference group (PEG1 

controls), our sensitivity analyses (as indicated in the Table 2 and Supplementary Table 

1) suggest that our findings are robust against confounding due to a cohort effect in that 

effect sizes were diminished in the smaller case control set but generally findings and trends 

remained the same (i.e., EMLgenome had stronger associations than EMLPD, and females 

showed stronger associations than males).SEM events in blood cells are stochastic in nature, 

affect the genome overall, and are driven by some external process but seem to nevertheless 

not only affect PD risk but also motor decline especially among female patients as well 

as time to death in all patients. Similar to PD risk, for time to death and motor symptom 

progression, we observed positive associations with both EML measures (i.e., EMLPD and 

EMLgenome).

Using an agnostic sliding window analysis, where only contiguous probes within a window 

were used to construct a score called EML<window> from all PD risk genes previously 

identified, several hotspots of dysregulation emerged as genome-wide statistically significant 

according to both a burden and a dispersion test for the region. Stochastic epimutations 

in and around five PD risk genes were identified as associated with PD risk. The serine/

threonine kinase (STK39) phosphorylates alpha-synuclein, and a hyperphosphorylated state 

has been implicated in PD [37]. NEDD4 protein, which attaches ubiquitin chains to alpha 

synuclein, is critical to marking potential synuclein aggregates for degradation by the 

lysosomal machinery [38]. Deficiency in expression of this gene may be a driving factor 

in the alpha-synuclein inclusions that are a hallmark of PD. Knockout experiments in 

mice of the phosphoinositide kinase PI4KA resulted in diminished myelination in Schwann 

cells [39]; notably the authors noted that these mice displayed a neurodegenerative-like 

phenotype. The PI4KA enzyme can also play an important role in the immune system, 

where it critically binds to the CD7 glycoprotein to participate in proper intracellular 

signaling that modulates T cell functionality [40]. Injured neurons, which release nucleotides 

(purines), normally trigger an inflammatory response where microglia migrate toward 

the source of these nucleotides, mediated via the purinergic receptor P2Y12 [41]. Since 

neurodegenerative diseases such as PD are characterized by pro-inflammatory responses 

[42], over-expression of P2Y12 may be a driver of disease risk and/or progression. The 

Dickkopf-related protein 3 (DKK3), which is involved in the Wnt receptor signaling path-

way, has been suggested as a therapeutic target for PD [43]. Both the ‘classic’ (through 

β-catenin) and ‘non-classical’ pathways play roles in dopaminergic cell development 
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and synaptic function. PD-associated proteins encoded by PARK2 (protein: parkin) and 

LRRK2 have been shown to modify classic Wnt signaling [44]. While our study did not 

find evidence for epigenetic modifications in these PD genes, we identified other genes 

(APC and AXIN1) involved in classic Wnt signaling in enrichment analysis. Interestingly, 

decreased Wnt signaling has also been reported in AD [45]. CALM2 is one of the AD-

related genes we associated in blood based methylation analysis with PD status [7] and it 

has a function in calcium ion binding which is important in the non canonical Wnt signaling 

pathway [46].

We note some caveats to our results and interpretations. Reported p-values for the various 

regression models were not corrected for the number of outcomes tested as these outcomes 

are highly correlated as measures of disease progression/risk and applying a Bonferroni 

correction may be too stringent. Although we estimated relatively strong effect sizes for 

PD risk, the heterogeneity in effect sizes between sexes and their wide confidence intervals 

need to be addressed in further studies with a larger sample size. For example, a lack 

of a statistically significant association between EML and time to death in controls may 

have been due to the small sample size relative to cases. To consider the possibility of 

heterogeneity between cases and controls, we fitted a time to event model for cases and 

controls that included an interaction term between case status and EML and the interaction 

term was not statistically significant (p > 0.5). We should note that not all PEG patients 

with methylation data had follow-up data for mUPDRS scores (time to death follow-up data 

was complete however). For this reason, we considered the possibility that hazard ratios 

estimated for time to an increase of 35+ in the UPDRS score may have been biased, as 

our outcome of interest (EMLgenome) was associated with probability of follow-up based 

on a logistic regression. After computing case weights based on the inverse probability 

censoring weights method, we refit our Cox proportional hazards model that incorporated 

these weights. The revised hazard ratios for this model, however, remained stable at 1.28 

(95% CI: 1.0451–1.564) at a precision of 3 significant figures. Independent replication will 

be crucial in determining whether and how blood methylation dysregulation contributes to 

PD risk, motor symptom progression, and/or time to death. Notably, as these signatures of 

methylation dysregulation were measured in blood and not brain tissue, they may suggest 

the involvement of peripheral organs such as the immune system in progression and time 

to death in PD. Also, as methylation patterns were assessed at only one time point in 

our study after PD onset, we cannot determine directions of action, i.e., whether disease 

onset caused these blood cell methylation changes or whether the methylation dysregulation 

contributed to PD risk representing a potential biomarker of processes leading up to PD. 

It is plausible that SEMs could accumulate in higher density in certain regions (e.g., the 

five regions identified in the sliding window analysis) in blood and other tissues of patients 

if certain repair mechanisms fail. Indeed, it has been shown that epigenetic fingerprints in 

blood can reflect upstream epigenetic changes in other tissues [47, 48]. We have previously 

observed a significant increase in DNA methylation age in PD patients compared to controls, 

as assessed by measures of both intrinsic and extrinsic epigenetic age acceleration of blood 

[32]. In our recent study using the same methylation dataset, we found evidence for a 

correlation between EML and dysfunction of the epigenetic maintenance system as captured 

by various measures of methylation age [17].
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Given the mounting evidence that methylation plays a major role in aging and aging-related 

diseases, findings from this study provide interesting implications for potential mechanisms 

contributing to PD onset, which represent an interplay between genes and the environment. 

Our results suggest that certain dysfunctions in epigenome repair mechanisms affecting PD 

gene methylation and pathways may not only be critical in keeping the blood methylome 

stable but may also influence motor symptom progression in women and time to death in all 

PD patients.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Distribution of EMLgenome comparing cases (PD status = 1) and controls (PD status = 0) for 

PEG study wave 1 and 2.
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Table 3

Mapping of EML<windows> to PD risk

Region* Gene description Suggested function Start 
position

Dispersion Burden

p-value p-value

2.STK39 serine/threonine kinase 39 this kinase may serve as an intermediate in the 
response to cellular stress 169079247 2.38E-07 2.38E-07

3.P2RY12 Purinergic Receptor P2Y12

chemoreceptor for adenosine diphosphate (ADP)[5]
[6] that belongs to the Gi class of a group of 
G protein-coupled (GPCR) purinergic receptors. In 
the central nervous system, this receptor has been 
found expressed exclusively on microglia, where 
it is necessary for physiological and pathological 
microglial actions, such as monitoring neuronal 
functions and microglial neuroprotection

151055545 1.86E-07 1.74E-08

11.DKK3 Dickkopf-related protein 3 involved in embryonic development through its 
interactions with the Wnt signaling pathway 12026850 7.22E-09 6.11E-08

15.NEDD4 E3 ubiquitin-protein ligase
regulates a large number of membrane proteins, 
such as ion channels and membrane receptors, via 
ubiquitination and endocytosis;

56282277 4.61E-08 2.78E-08

22.PI4KA 1-phosphatidylinositol 4-
kinase

Responsible for biosynthetic trafficking of two 
different classes of proteins from the ER to the Golgi 
complex.

21138859 4.58E-08 5.90E-08

*
Chromosome.GeneSymbol
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