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Phase transitions and critical behavior in hadronic transport
with a relativistic density functional equation of state

Agnieszka Sorensen∗
Department of Physics and Astronomy, University of California, Los Angeles, CA 90095, US

Volker Koch
Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, US

We develop a flexible, relativistically covariant parametrization of the dense nuclear matter equa-
tion of state suited for inclusion in computationally demanding hadronic transport simulations.
Within an implementation in the hadronic transport code SMASH, we show that effects due to bulk
thermodynamic behavior are reproduced in dynamic hadronic systems, demonstrating that hadronic
transport can be used to study critical behavior in dense nuclear matter, both at and away from
equilibrium. We also show that two-particle correlations calculated from hadronic transport simula-
tion data follow theoretical expectations based on the second-order cumulant ratio, and constitute
a clear signature of the crossover region above the critical point.

I. INTRODUCTION

Uncovering the phase diagram of QCD matter is one
of the major goals of heavy-ion collision research, and
the founding reason behind the ongoing Beam Energy
Scan (BES) program at the BNL Relativistic Heavy Ion
Collider (RHIC). Current understanding of the evolution
that QCD matter undergoes at extreme conditions is fa-
cilitated by numerous experimental and theoretical ad-
vancements to date. The importance of quark and gluon
degrees of freedom for the dynamics of very high-energy
collisions is strongly supported by comparisons of exper-
iment to theoretical models [1, 2], and suggests that the
quark-gluon plasma (QGP) is produced in these events.
Collective behavior of matter created in such collisions
has been measured [3] and reproduced in hydrodynam-
ics simulations [4, 5], indicating that for a considerable
fraction of a heavy-ion collision’s evolution, it can be
thought of as a thermal system described by an equa-
tion of state (EOS). The exact nature of the transition
between the QGP and a hadron gas is studied within a
number of approaches. At finite temperature and neg-
ligible baryon chemical potential, first-principle calcula-
tions in lattice QCD (LQCD) predict a transition of the
crossover type [6]. This result has been further supported
with a Bayesian inference approach [7], where the range
of equations of state most consistent with experimental
data at high energies has been identified and shown to
include the LQCD EOS. On the other hand, numerous
chiral effective field theory models predict that at finite
baryon number density the transition between hadronic
and quark-gluon matter is of the first order [8]. If this is
the case, the phase diagram of QCD matter contains a
QGP-hadron coexistence line, ending in a critical point.

The search for signatures of the QCD critical point is
premised on the ability to experimentally uncover a num-
ber of effects born out in systems of immense complexity.

∗ agnieszka.sorensen@gmail.com

Some of these predicted signatures involve light nuclei
production [9, 10], enhanced multiplicity fluctuations of
produced hadrons [11–13], the slope of the directed flow
[14, 15], or Hanbury-Brown-Twiss (HBT) interferometry
measurements [16], and their dependence on the beam
energy. Often, the magnitudes of these effects and their
interaction with various other experimental signals, as
well as the influence of the finite time of the collision
or baryon number conservation remain elusive to purely
theoretical predictions. In consequence, a clear interpre-
tation of the experimental data will have to be supported
by comparisons with results of dynamical simulations of
heavy-ion collisions, developed to correctly account for
the complex evolution of relevant observables.

Modern heavy-ion collision simulations consist of mul-
tiple stages, starting with an initial state model, through
relativistic viscous hydrodynamics utilizing a chosen EOS
to describe the bulk behavior of QGP from thermal-
ization until particlization, and ending with a hadronic
transport code [17, 18]. Notably, with a few excep-
tions (see e.g. [19]), hadronic afterburners typically ne-
glect hadronic potentials, which means that the role of
many-body interactions in the hadronic stage is largely
unexplored. This raises the possibility that transport
simulations may be missing effects likely to become in-
creasingly important at higher baryon densities, where
both the mean-field effects and the time that the system
spends in a hadronic state are substantial. In partic-
ular, mean-field hadronic interactions may significantly
influence the system’s evolution, including the diffusion
dynamics which is a relevant factor in the propagation of
signals for the existence of the critical point [20].

Furthermore, since the correct QCD EOS at finite
chemical potential is not known from first principles,
it needs to be inferred from systematic model compar-
isons with experimental data. A consistent treatment of
the entire span of a hybrid heavy-ion collision simulation
requires employing hadronic interactions that reproduce
properties of a particular EOS used in the hydrodynamic
stage, such as the position of the QCD critical point.
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While there is a strong theoretical effort to model dif-
ferent variants of the QCD EOS with criticality [21, 22],
intended for use in hydrodynamic simulations, often the
hadronic part of a heavy-ion collision simulation, if it at
all takes hadronic potentials into account, includes only
mean-field interactions corresponding to the behavior of
ordinary nuclear matter without the possible QGP phase
transition [19]. As a result, there is a need for a flexible
hadronic EOS that on one hand can be easily parameter-
ized to reflect a desired set of properties of the modeled
QCD phase transition, and on the other identifies cor-
responding relativistic single-particle dynamics that can
be feasibly implemented in an afterburner.

Here we propose an approach to this problem in which
the EOS of nuclear matter and the corresponding single-
particle equations of motion are both obtained from a
relativistic density functional with fully parameterizable
vector-current interactions. Besides the obvious require-
ments of Lorentz covariance and thermodynamic con-
sistency, the constructed model is constrained to agree
with the known behavior of ordinary nuclear matter.
Therefore each of the obtained EOSs includes the nu-
clear liquid-gas phase transition with its experimentally
observed properties, in addition to a possible phase tran-
sition at high baryon density. The flexibility of the con-
structed family of EOSs enables systematic studies (e.g.
using Bayesian analysis) of effects of different dense nu-
clear matter EOS on final state observables, facilitating
meaningful comparisons of simulation results with exper-
imental data.

Furthermore, we implement our mean-field model in
the hadronic transport code SMASH [23], and verify that
the obtained single-particle equations of motion repro-
duce bulk behavior expected from the underlying EOS.
In particular, we study the evolution of systems under-
going spontaneous separation inside the spinodal region
of the phase transition and in the vicinity of the critical
point, and we investigate observables carrying signals of
collective behavior as well as the effect of finite number
statistics on particle number distributions.

This paper is organized as follows: Sections II and
III give a pedagogical presentation of the model and the
corresponding theoretical results. Section IV briefly re-
views the implementation of the model in the hadronic
transport code SMASH, while Sec. V discusses the anal-
ysis methods used. Section VI presents and discusses
results of simulations under various conditions. Finally,
Sec. VII provides a summary and an outlook to future
developments.

II. FORMALISM

A. Background

Studying nuclear matter requires knowledge of
nucleon-nucleon and, more generally, hadronic interac-
tions, which currently cannot be obtained from first

principle calculations. In view of this, phenomenolog-
ical approaches are employed, in which the behavior
of nuclear matter is described in terms of effective de-
grees of freedom. A large class of these approaches uses
self-consistent models based on density functional the-
ory (DFT). Such models are a starting point for numer-
ous Skyrme-like potentials of varying degree of complex-
ity which are successfully applied in low-energy nuclear
physics [24].

Alternatively, one can employ Landau Fermi-liquid
theory [25], which can be shown to lead to the same re-
sults as various phenomenological models at the mean-
field level (see e.g. [26, 27]), and which combines certain
desirable features of other approaches. On one hand,
similarly as in DFTs, in Landau Fermi-liquid theory the
relevant physics is entirely encoded in the postulated en-
ergy density of the system. The theory then allows one to
describe the system’s deviations from equilibrium (such
as energy of an excitation or particle-particle interac-
tions) as well as corresponding bulk properties, encoded
in phenomenological parameters. On the other hand, as
in many Lagrangian-based, self-consistent approaches at
the mean-field level, the main degrees of freedom of the
theory are quasiparticles. This means that the role of
interactions is embedded in the properties of quasiparti-
cles (which can be thought of as dressed nucleons) and
in the quasiparticle distribution function (for a definition
of the quasiparticle distribution function as well as its
limitations, see Appendix A).

The Landau Fermi-liquid theory is a very convenient
starting point for a phenomenological approach to the
nuclear matter EOS, and in particular for applications
to hadronic transport simulations, where we want to de-
velop a model that is at the same time flexible and nu-
merically efficient. In constructing our framework, we are
additionally guided by the following requirements: First,
we need a formalism in which the baryon number density,
a natural variable for hadronic transport simulations, is
a dynamical variable of the theory (as opposed to theo-
ries in which the baryon chemical potential is evolved in
time). Moreover, we are guided by the fact that vector-
type interactions are more convenient for numerical eval-
uation of mean-field potentials than, for example, scalar-
type interactions, which require solving a self-consistent
equation at each point where mean-fields are calculated.
Finally, we want to obtain a family of EOSs that on the
one hand reproduces the known properties of ordinary
nuclear matter, and on the other allows one to postulate
and explore critical behavior in dense nuclear matter over
vast regions of the phase diagram. The former will en-
sure that the model takes into the account the known
experimental behavior of nuclear matter, while the latter
will allow us to meaningfully compare the influence of
different EOSs on observables. Such comparisons can be
made, among others, through Bayesian analysis [28, 29].
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B. Relativistic vector density functional (VDF)
model

With the aforementioned goals in mind, we adopt the
relativistic Landau Fermi-liquid theory [30] with vector-
density–dependent interactions as the basis for construct-
ing a vector density functional (VDF) model of the dense
nuclear matter EOS. Starting from a postulated energy
density of the system, we will derive the single-particle
equations of motion, the energy-stress tensor, and the
corresponding thermodynamic relations. To simplify the
notation, we will introduce a VDF model with a single
number-current–dependent interaction term; however, it
is straightforward to generalize to a model with multi-
ple interaction terms of the same kind, which we do at
the end of this subsection. Some of the details of the
derivation can be found in Appendix B.

We introduce the energy density E(1)(x) of a system
composed of one species of fermions, interacting through
a single mean-field vector interaction term,

E(1)(x) = g

∫
d3p

(2π)3
εkin fp + C1

(
jµj

µ
) b1

2 −1(
j0
)2

−g00 C1

(
b1 − 1

b1

)(
jµj

µ
) b1

2 , (1)

where g is the degeneracy, εkin is the kinetic energy of a
single particle,

εkin =

√(
p− C1

(
jµjµ

) b1
2 −1

j

)2

+m2 , (2)

j and j0 are the spatial and temporal component of the
number current jµ, given by

j(x) = g

∫
d3p

(2π)3

p− C1

(
jµj

µ
) b1

2 −1
j

εkin
fp (3)

and

j0(x) = g

∫
d3p

(2π)3
fp , (4)

respectively,m is the particle mass, fp is the quasiparticle
distribution function, and finally C1 and b1 are constants
specifying the interaction, as of yet undetermined. The
energy density, Eq. (1), is constructed as the 00 com-
ponent of the energy-momentum tensor and transforms
accordingly. The interaction terms depend both on the
local frame number density j0 and the relativistic invari-
ant jµjµ = n2, where n denotes the rest frame number
density. The quasiparticle energy, defined in the Landau
Fermi-liquid theory as the functional derivative of the
energy density, is given by (see Appendix B 1)

εp ≡
δE(1)

δfp
= εkin + C1

(
jµj

µ
) b1

2 −1
j0 . (5)

Note that the quasiparticle energy is equivalent to the
single-particle Hamiltonian, εp = H(1).

To simplify the notation, we introduce a vector field,

Aλ(x;C1, b1) ≡ C1

(
jµj

µ
) b1

2 −1
jλ . (6)

In the following derivation we will suppress the depen-
dence on C1 and b1 and refer to this variable simply as
Aλ(x), which allows us to concisely write

εp =

√(
p−A

)2
+m2 +A0 (7)

and

E(1)(x) = g

∫
d3p

(2π)3
εp fp − g00

(
b1 − 1

b1

)
Aλj

λ .(8)

Given Eq. (7), the equations of motion follow immedi-
ately from Hamilton’s equations,

dxi

dt
≡ −

∂H(1)

∂pi
= −∂εp

∂pi
=
pi −Ai

εkin
, (9)

dpi

dt
≡
∂H(1)

∂xi
=
∂εp
∂xi

=
(pk −Ak)

εkin

∂Ak
∂xi

+
∂A0

∂xi
. (10)

Inserting Eqs. (9) and (10) into the Boltzmann equation
gives

∂fp
∂t
− ∂εp
∂pi

∂fp
∂xi

+
∂εp
∂xi

∂fp
∂pi

= Icoll , (11)

where Icoll is the collision term. Multiplying both sides of
Eq. (11) by X = {1, εp, pj} and integrating over g

∫
d3p

(2π)3

yields the conservation laws for particle number (X = 1),
energy (X = εp), and momentum (X = pj). In particu-
lar, one notices that the particle number conservation,

∂

∂t
g

∫
d3p

(2π)3
fp + ∂i g

∫
d3p

(2π)3

pi −Ai

εkin
fp = 0 , (12)

confirms that the baryon number current and density,
Eqs. (3) and (4), are correctly defined. The obtained
conservation laws for energy and momentum allow us
to identify the energy-momentum tensor, whose compo-
nents are density and flux of energy and momentum in
spacetime,

T 00 = E(1) , (13)

T 0i = g

∫
d3p

(2π)3
εp
pi −Ai

εkin
fp , (14)

T i0 = g

∫
d3p

(2π)3
pi fp , (15)

T ij = g

∫
d3p

(2π)3
pi
pj −Aj

εkin
fp

+ gij
(
E(1) − g

∫
d3p

(2π)3
εp fp

)
. (16)

One can show that Tµν has the correct transformation
properties under a Lorentz boost (details of this calcula-
tion, for a general case of the relativistic Landau Fermi-
liquid theory without a specified form of the interactions,
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can be found in [30]). Additionally, energy and momen-
tum conservation, ∂νTµν = 0, is ensured by construction.
Using Eq. (3), it can be readily verified that T 0i = T i0.

Having derived the properties of the VDF model with
one interaction term, we can easily extend the formalism
to an arbitrary number of interaction terms. Here, we are
dealing with multiple vector fields labeled by the index
n,

Aλn(x;Cn, bn) ≡ Cn
(
jµj

µ
) bn

2 −1
jλ , (17)

in terms of which the energy density is given by

E(N)(x) = g

∫
d3p

(2π)3
ε(N)
p fp

−g00
N∑
n=1

(
bn − 1

bn

)
Aλnjλ. (18)

We note that taking N = 1, b1 = 2 leads to the form of
the vector interaction known well, e.g., from the Walecka
model [31, 32], corresponding to the mean-field approxi-
mation of a two-particle interaction mediated by a vector
meson. (In fact, an alternative description of the mean-
field approximation to the Walecka model in terms of the
relativistic Landau Fermi-liquid theory is given in [26].)
Similarly, evaluating (18) in the rest frame and taking
N = 2, b1 = 2, and b2 = 3 (b2 = 13

6 ) results in the inter-
action of the same form as a commonly used stiff (soft)
parametrization of the Skyrme model (see e.g. [33]). In-
deed, in postulating the form of the energy density, Eq.
(1) or Eq. (18), we took inspiration from the form of the
energy density in models mentioned above, and we made
sure that our expression reproduces the terms appearing
in these models when particular coefficients and powers
of the interaction terms are used. In contrast to these ap-
proaches, however, our model allows for arbitrary inter-
action parameters, including the number of interaction
terms as well as powers of number density characteriz-
ing the interactions, that remain unspecified until a later
time when we fit them to match chosen properties of nu-
clear matter.

The generalization of the remaining parts of the VDF
model is straightforward, and in particular we arrive at
the quasiparticle energy,

ε(N)
p =

√√√√(p− N∑
n=1

An

)2

+m2 +

N∑
n=1

A0
n , (19)

and the equations of motion,

dxi

dt
=
pi −

∑N
n=1(An)i

ε
(N)
kin

, (20)

dpi

dt
=

(
pk −

∑N
n=1(An)k

)
ε
(N)
kin

( N∑
n=1

∂(An)k
∂xi

)

+

N∑
n=1

∂A0
n

∂xi
. (21)

We stress that the generalization to N interaction terms
preserves the conservation laws and the relativistic co-
variance of the Tµν tensor.

Finally, the equations of motion, Eqs. (20) and (21),
can be rewritten in a manifestly covariant way. First, we
rewrite Eq. (19) as

εp −
N∑
n=1

A0
n = p0 −A0 =

√√√√(p− N∑
n=1

An

)2

+m2 . (22)

It is then natural to define a quantity known as the ki-
netic momentum Πµ [34],

Πµ ≡ pµ −
N∑
n=1

Aµn , (23)

which by construction satisfies

Π0 =
√

Π2 +m2 . (24)

Using the kinetic momentum, one can rewrite the equa-
tions of motion as (see Appendix B 2 for details)

dxµ

dt
=

Πµ

Π0
, (25)

dΠµ

dt
=
∑
ν

Πν

Π0

N∑
n=1

(
∂µ(An)ν − ∂ν(An)µ

)
. (26)

We note that the force term in Eq. (26) has a form analo-
gous to that known from the covariantly formulated elec-
trodynamics, except that in our case there are multiple
vector fields.

C. Thermodynamics and thermodynamic
consistency

Let us consider the thermodynamic properties of the
VDF model. Taking the entropy density to have the same
functional dependence on the distribution function, fp,
as in the case of the ideal Fermi gas leads to fp having
the Fermi-Dirac form (for details, see Appendix B 3),

fp =
1

eβ(εp−µ) + 1
, (27)

where β = 1/T and µ is the chemical potential, with T
denoting the temperature.

In the rest frame the energy-momentum tensor has the
form Tµν = diag

(
E , P, P, P

)
, and the spatial components

of the current vanish, ji = 0, while jµjµ = n2. Then the
pressure is given by

P(N) =
1

3

∑
k

T kk
∣∣∣∣ rest
frame

(28)

= g

∫
d3p

(2π)3
T ln

[
1 + e−β(εp−µ)

]
+

N∑
i=1

Ci
bi − 1

bi
nbi . (29)
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We note that in an equilibrated system, vector-density–
dependent interactions can be described in terms of a
shift of the chemical potential µB . Using Eq. (19), we
can always write

εp − µB =
√
p2 +m2 − µ∗ = εkin − µ∗ , (30)

where we have introduced the effective chemical poten-
tial, µ∗ = µB −

∑N
i=1A

0
n. Consequently, the dependence

of the thermal part of the pressure, Eq. (29), on temper-
ature T and effective chemical potential µ∗ is just like
that of an ideal Fermi gas.

The grand canonical potential is related to the pressure
through Ω(T, µ, V ) = −PV , and we can immediately cal-
culate the entropy density,

s ≡ − 1

V

(
dΩ

dT

)
V,µ

= (31)

= g

∫
d3p

(2π)3

(
ln
[
1 + e−β(εp−µ)

]
+
εp − µ
T

fp

)
, (32)

and the number density,

n ≡ − 1

V

(
dΩ

dµ

)
V,T

= g

∫
d3p

(2π)3
fp , (33)

where the latter equation proves the correct normaliza-
tion of our distribution function. Calculating the energy
density using E ≡ sT − P + µn yields Eq. (18) evalu-
ated in the rest frame, thus confirming that the model is
thermodynamically consistent.

III. THEORETICAL RESULTS

A. Parametrization

To apply the VDF model to studies of heavy-ion
collisions, it needs to describe hadronic matter whose
phase diagram contains two first-order phase transi-
tions. The first of these is the experimentally observed
low-temperature, low-density phase transition in nuclear
matter, sometimes known as the nuclear liquid-gas tran-
sition. The second is a postulated high-temperature,
high-density phase transition that is intended to corre-
spond to the QCD phase transition.

We want to stress that while the latter may, in princi-
ple, coincide with the location of the phase transition in
the real QCD phase diagram, its nature is fundamentally
different. This is because within Landau Fermi-liquid
theory, unlike in QCD, the degrees of freedom do not
change across the phase transition. This is also the case
in some other approaches to the QCD EOS, for exam-
ple in models based on quarkyonic matter [35], where
the active degrees of freedom at the Fermi surface re-
main hadronic even after quark degrees of freedom ap-
pear; however, to which extent such dynamics may be
captured in the VDF model remains to be seen. The na-
ture of the phase transition that we can simulate in the

VDF model is that of going from a less organized to a
more organized state. This is easily visualized in the case
of the transition from gas to liquid (nucleon gas to nuclear
drop). In the case of the high-temperature, high-density
phase transition, we may think of it as a transition from
a fluid to an even more dense, and more organized, fluid
(nuclear matter to quark matter). This interpretation is
supported by the functional dependence of entropy per
particle on the order parameter, which decreases across
the phase transition from a less dense to a more dense
state (for an extended discussion, see [36]).

For brevity, in the following we will refer to the high-
temperature, high-density phase transition within the
VDF model as “QGP-like” or “quark-hadron” phase tran-
sition, with the expectation that it is understood as a
useful moniker rather than a statement on the nature of
the described transformation. In addition, we emphasize
that the degrees of freedom present in the VDF model
agree with those expected after hadronization. Since ul-
timately we intend to use the VDF model in the hadronic
afterburner stage of a heavy-ion collision simulation, the
issue of hadronic degrees of freedom present above the
QGP-like phase transition will never arise in realistic
calculations. At the same time, in parts of the phase
diagram close to the critical region, the hadronic sys-
tems studied will display behavior typical for systems
approaching a phase transition.

In the present, rather simplified version of the VDF
model, we chose the degrees of freedom to be those of
isospin symmetric nuclear matter, that is nucleons with
nucleon mass mN = 938 MeV and degeneracy factor
gN = 4. In the case where thermally induced ∆ reso-
nances are included as well (which can be easily done
through a substitution gfp → gNf

(N)
p + g∆f

(∆)
p , where

gN , g∆, f (N)
p , and f

(∆)
p are the degeneracy factors and

distribution functions corresponding to the nucleons and
Delta resonances, respectively), their mass is taken to be
m∆ = 1232 MeV and the degeneracy factor is g∆ = 16.
We note that the model can be easily extended to arbi-
trarily many baryon resonances, however, we leave the
study of the corresponding effects for a future work. In a
system that undergoes two first-order phase transitions,
the pressure exhibits two mechanically unstable regions
(known as spinodal regions), defined by the condition
that the first derivative of the pressure with respect to
the order parameter is negative [37, 38]. In a minimal
model realizing such behavior, the pressure needs to be
a four-term polynomial in the order parameter, and thus
we adopt a version of the VDF model in which we uti-
lize four interaction terms. (We note that to describe
only one of the phase transitions mentioned above, it is
enough to adopt a model with two interaction terms. In
the case of the nuclear liquid-gas phase transition, the
resulting model will be not unlike many Skyrme-based
parametrizations of the EOS.)

The energy density, Eq. (18), is easily adapted to in-
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clude N = 4 interaction terms. In the rest frame,

E
∣∣ rest
frame

= g

∫
d3p

(2π)3
εkin fp +

4∑
i=1

Ci
bi
nbiB , (34)

where nB ≡
√
jµjµ is the rest frame baryon number

density. As mentioned in the introduction to the VDF
model (Sec. II A), our goal is to construct an EOS with a
general QGP-like phase transition properties while en-
suring that the known properties of ordinary nuclear
matter are well reproduced. To that end, we choose
the following constraints to fix the eight free parameters
{b1, b2, b3, b4, C1, C2, C3, C4} in the VDF model:
1) the position of the minimum of the binding energy of
nuclear matter at the saturation density nB = n0,

d
(
E(4)
nB
−mN

)
dnB

∣∣∣∣
T=0
nB=n0

= 0 , (35)

2) the value of the binding energy at the minimum,

E(4)

nB

∣∣∣∣
T=0
nB=n0

−mN = E0 , (36)

3, 4) the position of the critical point
(
T

(N)
c , n

(N)
c

)
for

the nuclear liquid-gas phase transition,

dP

dnB

(
T = T (N)

c , nB = n(N)
c

)
= 0 , (37)

d2P

dn2
B

(
T = T (N)

c , nB = n(N)
c

)
= 0 , (38)

5, 6) the position of the critical point
(
T

(Q)
c , n

(Q)
c

)
for the

quark-hadron phase transition,

dP

dnB

(
T = T (Q)

c , nB = n(Q)
c

)
= 0 , (39)

d2P

dn2
B

(
T = T (Q)

c , nB = n(Q)
c

)
= 0 , (40)

7, 8) the position of the lower (left) and upper (right)
boundaries of the spinodal region, ηL and ηR, for the
quark-hadron phase transition at T = 0,

dP

dnB

(
T = 0, nB = ηL

)
= 0 , (41)

dP

dnB

(
T = 0, nB = ηR

)
= 0 . (42)

The set of quantities (n0, E0, T
(N)
c , n

(N)
c , T

(Q)
c , n

(Q)
c , ηL, ηR)

is referred to as the characteristics of an EOS.
We choose the properties of the ordinary nuclear mat-

ter, encoded in conditions (35-38), based on experimen-
tally determined values [39, 40]:

n0 = 0.160 fm−3 , E0 = −16.3 MeV , (43)

T (N)
c = 18 MeV , n(N)

c = 0.06 fm−3 . (44)

TABLE I. Example characteristics
(
T

(Q)
c , n

(Q)
c , ηL, ηR

)
of the

QGP-like phase transition: critical temperature T (Q)
c , criti-

cal baryon number density n
(Q)
c , and the boundaries of the

spinodal region at T = 0, ηL and ηR. The corresponding
parameter sets can be found in Appendix C. Characteristics
in sets I-V are obtained based on systems composed only of
nucleons, while in set VI we consider a system composed of
nucleons and thermally produced ∆-resonances. We also show
the incompressibility at saturation density and zero temper-
ature, K0, calculated for the parameterized EOSs.

set T (Q)
c [MeV] n

(Q)
c [n0] ηL[n0] ηR[n0] species K0[MeV]

I 50 3.0 2.70 3.22 N 260

II 50 3.0 2.85 3.12 N 279

III 50 4.0 3.90 4.08 N 280

IV 100 3.0 2.50 3.32 N 261

V 100 4.0 3.60 4.28 N 271

VI 125 4.0 3.60 4.28 N + ∆ 277

On the other hand, the properties of dense nuclear mat-
ter, nB � n0, are only weakly constrained by experiment
at this time. We are then in a position to create a family
of possible EOSs based on a number of different postu-
lated characteristics (39-42), while ensuring that nuclear
matter properties are preserved. The resulting family of
EOSs encompasses QGP-like phase transition character-
istics spanning vast regions of the dense nuclear matter
phase diagram. This allows for a systematic comparison
with experimental data, with the goal of constraining the
number of allowed EOSs to a small subfamily with qual-
itatively similar properties.

In the remainder of this paper, we illustrate properties
of the VDF model by discussing key results for a few
representative EOSs which reproduce sets of the QGP-
like phase transition characteristics

(
T

(Q)
c , n

(Q)
c , ηL, ηR

)
listed in Table I. The corresponding parameter sets can
be found in Appendix C.

B. Results: Pressure, the speed of sound, and
energy per particle

The left panel in Fig. 1 shows pressure versus baryon
number density at three significant temperatures (T = 0,
nuclear critical temperature T (N)

c , and quark-hadron crit-
ical temperature T (Q)

c ) for an EOS with characteristics
from set I (see Table I). On the same plot, we also in-
dicate the location of key points that determine the fit
parameters. At temperature T = 0, conditions (35) and
(36) are applied at the saturation density of nuclear mat-
ter, denoted with a blue circle. Also at T = 0, conditions
(41) and (42) fix the positions of the lower (left) and
upper (right) boundary of the high density spinodal re-
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FIG. 1. (Color online) Pressure versus baryon number density. In the legend, the critical temperature of the QGP-like phase
transition T (Q)

c is given in MeV, while the critical density, n(Q)
c , and the boundaries of the spinodal region at T = 0, ηL and

ηR, are given in units of saturation density, n0 = 0.160 fm−3. Left panel: Illustration of the fitting procedure. Pressure is
plotted at three significant temperatures (T = 0, nuclear critical temperature T (N)

c , and quark-hadron critical temperature
T

(Q)
c ) for an EOS with characteristics from set I, see Table I. Specific points at which the parameters of the EOS are fixed

are indicated on the plot as follows: a blue dot represents the equilibrium point of ordinary nuclear matter; blue diamonds
denote the left and right boundary of the QGP-like spinodal region; a green square denotes the critical point of the nuclear
phase transition; a red star denotes the critical point of the QGP-like phase transition. Right panel: Pressure is plotted at
temperature T = 0 for all sets of characteristics listed in Table I. All obtained EOSs describe the same physics in the region
nB . 1.5n0, where the behavior of nuclear matter is relatively well known. The hardness of the EOSs is noticeable for densities
above the quark-hadron transition regions, and is a consequence of employing interaction terms with high powers (bi > 2) of
baryon number density nB (see text for details).

gion, ηL and ηR; these are denoted with blue diamonds.
At the critical point of nuclear matter, T = T

(N)
c and

nB = n
(N)
c , denoted with a green square, conditions (37)

and (38) are enforced. Finally, conditions (39) and (40)
are applied to set the position of the QGP-like critical
point

(
T

(Q)
c , n

(Q)
c

)
, denoted with a red star.

The right panel in Fig. 1 shows pressure versus baryon
number density at zero temperature, where the curves
correspond to all sets of characteristics listed in Table I.
While most of the results are calculated in the presence
of nucleons only, the thin dotted red line shows pres-
sure for a system with both nucleons (protons and neu-
trons) and thermally excited ∆ resonances. As already
emphasized, all of the EOSs display the same behavior for
baryon number densities corresponding to ordinary nu-
clear matter, and only start differing from each other in
regions currently not constrained by experimental data,
nB & 1.5n0.

A few regularities are apparent in the behavior of the
pressure curves at zero temperature in regions corre-
sponding to the QGP-like phase transition. Let us focus
on the value of the pressure at the lower boundary of the
spinonal region P (ηL) (which is directly related to the av-
erage value of the pressure across the transition region),
and compare its values for sets of characteristics between

which only one property of the QGP-like phase transition
changes substantially. First, P (ηL) increases with critical
baryon number density n(Q)

c , which can be seen by com-
paring the pressure curves for the second and third sets
of characteristics (delineated with medium dashed green
and thin dashed magenta lines, respectively). Second,
P (ηL) decreases with critical temperature T (Q)

c , as evi-
denced by pressure curves for the first and fourth sets of
characteristics (delineated with thick dashed orange and
solid purple lines, respectively). Third, P (ηL) decreases
with the width of the spinodal region, ∆η = ηR − ηL,
which can be seen by comparing pressure curves for the
first and second sets of characteristics (thick dashed or-
ange and medium dashed green lines, respectively). Fur-
thermore, the magnitude of the drop in the pressure
across the spinodal region, ∆P = P (ηR) − P (ηL), in-
creases with the critical temperature, as seen by compar-
ing curves for the first and fourth sets of characteristics
(thick dashed orange and solid purple lines, respectively).
These features, in fact, create a physical bound on which
QGP-like transitions are allowed in the VDF model. A
transition with a wide spinodal region, with a critical
point at a relatively low baryon number density but a rel-
atively high critical temperature can often be excluded,
as it leads to such a significant drop in the pressure across
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FIG. 2. (Color online) The isothermal speed of sound squared
at T = 0 versus baryon number density, plotted for all sets
of characteristics listed in Table I. In the legend, the critical
temperature of the QGP-like phase transition T

(Q)
c is given

in MeV, while the critical density, n(Q)
c , and the boundaries

of the spinodal region at T = 0, ηL and ηR, are given in
units of saturation density, n0 = 0.160 fm−3. It is apparent
that the speed of sound becomes acausal for relatively large
baryon number densities above the quark-hadron transition
region, which is a consequence of the hardness of the equa-
tion of state in the same region (see the right panel on Fig. 1).
This pathological behavior of the EOS is expected outside of
the region in which its parameters are fitted, and it does not
pose an issue for uses in afterburner simulations: by construc-
tion, these deal with systems below the quark-hadron phase
transition, where the behavior of the speed of sound is typical
(for more details, see text).

the spinodal region that the pressure becomes negative in
some parts of the quark-hadron coexistence region, which
would correspond to an unphysical “QGP bound state”.
This is because at T = 0 the pressure is given by

P ≡ n2
B

d

dnB

(
E
nB

)
, (45)

and locally negative pressure implies that there exists a
baryon density for which d

dnB

(
E
nB

)
= 0 and d2

dn2
B

(
E
nB

)
>

0, corresponding to a local minimum in energy per par-
ticle, EnB

. While such a minimum is in fact expected in
the region of the phase diagram corresponding to ordi-
nary nuclear matter, where d

dnB

(
E
nB

)
= 0 at the nuclear

saturation density, it is forbidden for large baryon num-
ber densities, where it would correspond to a metastable
or even stable state of QGP. For example, most obtained
phase transitions with n(Q)

c = 2.5n0 and T (Q)
c ≥ 125 MeV

are rejected based on this argument.
Next, it is easy to notice that the pressure rises rapidly

after leaving the quark-hadron transition region. This
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FIG. 3. (Color online) The binding energy at T = 0 versus
baryon number density, plotted for all sets of characteristics
listed in Table I. In the legend, the critical temperature of
the QGP-like phase transition T

(Q)
c is given in MeV, while

the critical density, n(Q)
c , and the boundaries of the spinodal

region at T = 0, ηL and ηR, are given in units of saturation
density, n0 = 0.160 fm−3. As shown also in previous figures,
all obtained EOSs describe the same physics in the region
nB . 1.5n0, where the behavior of nuclear matter is relatively
well known; in particular, all curves reproduce the value of
the chosen binding energy at nuclear matter saturation as
well as the location of the saturation density. The degree of
the softening in energy per particle at high baryon number
density is directly related to the width of the spinodal region
of a given EOS (see text for more details).

hardness of the EOS is a general feature of models based
on high powers of baryon number density (specifically,
with exponents higher than 2), and is ubiquitous among
various Skyrme-type models (see e.g. [41]). In fact, it can
be shown that any relativistic Lagrangian with vector-
type interactions leading, in the mean-field approxima-
tion, to terms of the form nαB , where α > 2, results
in acausal phenomena at high baryon number densities
[42]. Indeed, Fig. 2 shows the isothermal speed of sound
squared

(
cT
c

)2 at T = 0 for the chosen sets of phase tran-
sition characteristics (Table I). (We note that at T = 0,
the isothermal and isentropic speeds of sound are identi-
cal.) The speed of sound squared is negative within the
spinodal region, as expected for a first-order phase tran-
sition [38], while for large baryon number densities above
the quark-hadron phase transition it eventually becomes
acausal. Although this behavior is non-ideal, it is en-
tirely to be expected that a fitted function will behave
pathologically outside of the region in which it is con-
strained. Moreover, because we intend to use the VDF
model in a hadronic afterburner, its main application is
for matter at densities below the quark-hadron coexis-
tence region, where this problem does not arise (though
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in some of the studied phase transitions the conformal
bound of

(
cT
c

)2 ≤ 1
3 can still be violated; it is presently

unclear if this bound is satisfied in dense nuclear matter;
see for example [35, 43–45]). With this issue in mind, in
creating parameter sets we make sure that the speed of
sound preserves causality for all baryon number densities
below the upper boundary of the quark-hadron coexis-
tence region.

Finally, in Fig. 3 we show the binding energy at T =
0, which is the energy per particle minus the rest mass
E(4)/nB −mN , versus baryon number density, obtained
for EOSs corresponding to all sets of characteristics listed
in Table I. As expected, all curves reproduce the value of
the chosen binding energy at nuclear matter saturation
as well as the location of the saturation density, Eq. (43).
On the other hand, at high densities the binding energy
displays a softening related to the postulated QGP-like
phase transition, which is different for each considered
EOS. We note that the extent of this softening is directly
related to the width of the spinodal region of a given
EOS. This can again be seen from the fact that at zero
temperature the pressure is given by Eq. (45), from which
it immediately follows that the curvature of the energy
density,

(
d2E
dn2

B

)
, must be negative in the spinodal region;

consequently, the region over which (d2E/dn2
B) < 0 holds

is related to (ηL, ηR).
Although we have only shown results corresponding

to a few possible QGP-like phase transitions, arbitrarily
many versions of the dense nuclear matter EOS can be
obtained in the VDF model. While they vary widely in
the high baryon density region, by construction they all
reproduce the same physics in the range of baryon num-
ber densities corresponding to ordinary nuclear matter.
In fact, fitting the VDF model to reproduce the experi-
mental values of the saturation density, the binding en-
ergy, and the nuclear critical point gives a remarkably
good prediction for the value of pressure at the nuclear
critical point, Pc, and the value of incompressibility, K0,
as compared with experiment and against other models
(summarized in Table II). This is partially expected, as
the value of the incompressibilityK0 depends strongly on
critical temperature [46]. Nevertheless, it is noteworthy
that the minimal VDF model, based on a few characteris-
tics taken at their experimentally established values (here
n0, E0, T

(N)
c , n(N)

c ), leads to predictions for other prop-
erties of nuclear matter agreeing remarkably with exper-
imental data. Apparently, constraining four properties
of the EOS is enough to reproduce the thermodynamic
behavior of nuclear matter in the fitted region. The same
could be true in the case of nuclear matter at high baryon
number density. We may be hopeful that postulating
QGP-like phase transition characteristics that happen to
lay close to their true QCD values will lead to a VDF
model parametrization correctly describing other prop-
erties of dense nuclear matter in the transition region.
We expect that this correct description would manifest
itself through agreement of simulation results with ex-

perimental data.

C. Results: Phase diagrams

The phase diagrams for the EOSs corresponding to the
characteristics listed in Table I are shown in Fig. 4. Solid
and dashed lines represent the boundaries of the coexis-
tence and spinodal regions, respectively. The coexistence
and spinodal regions of the nuclear phase transition, de-
picted with black lines, are common for all used EOSs by
construction.

It is immediately apparent that the QGP-like coexis-
tence curves on the phase diagrams all look alike. This is
a consequence of our choice to employ only interactions
depending on vector baryon number density, as in this
case the dependence of the thermal part of the pressure
on temperature T and effective chemical potential µ∗ is
just like that of an ideal Fermi gas, as can be seen from
Eq. (30). Consequently, all VDF EOSs display similar be-
havior with increasing temperature T . This can be espe-
cially easily seen on the T -µB phase diagram (right panel
of Fig. 4), where the coexistence lines exhibit the exact
same curvature. An exception from this behavior shown
on the plot is the curve calculated for a system with both
nucleons and thermally produced ∆ resonances (denoted
with a red line), which bends more forcefully towards the
µB = 0 axis as the temperature increases. This is to be
expected as including an additional baryon species low-
ers the value of the baryon chemical potential for a given
baryon number density. Including more baryon species
would strengthen this effect.

TABLE II. Comparison of values of the nuclear phase tran-
sition critical temperature T (N)

c [MeV], the critical baryon
number density n

(N)
c [fm−3], pressure at the critical point

Pc [MeV fm−3], and incompressibility K0 [MeV] as obtained
in experiment [40] and in various models, where “W” denotes
the Walecka model [31], “QVdW” denotes the quantum Van
der Waals model [47], “VDF N” denotes the VDF model with
nuclear phase transition only (two interaction terms), and
“VDF N+Q” denotes the VDF model with both nuclear and
quark-hadron phase transitions (four interaction terms). For
the last case, the values of Pc and K0 are given as averages
calculated across all obtained EOSs for quark-hadron critical
temperatures T (Q)

c ∈ {50, 100, 125} [MeV] and critical baryon
number densities n(Q)

c ∈ {3.0, 4.0, 5.0} [n0]. Values marked
with an asterisk are input parameters of the models.

Experiment W QVdW VDF N VDF N+Q

T
(N)
c 17.9± 0.4 18.9 19.7 18* 18*

n
(N)
c 0.06± 0.01 0.070 0.072 0.06* 0.06*

Pc 0.31± 0.07 0.48 0.52 0.311 0.3066± 0.0014

K0 230-315 553 763 282 273.5± 5.1
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FIG. 4. (Color online) Phase diagram in the T -nB (left panel) and T -µB (right panel) planes for sets of characteristics listed in
Table I. Solid and dashed lines represent the boundaries of the coexistence and spinodal regions, respectively. In the legend, the
critical temperature of the QGP-like phase transition T (Q)

c is given in MeV, while the critical baryon number density n(Q)
c and

the boundaries of the spinodal region, ηL and ηR, are given in units of saturation density, n0 = 0.160 fm−3. The coexistence
and spinodal regions of the nuclear phase transition, depicted with solid black and dashed black lines, respectively, are common
to all sets of characteristics. Also shown are chemical freeze-out points obtained in experiment and a parametrization of the
freeze-out line from [48].

Another feature, easily discerned on the T -nB phase di-
agram (left panel of Fig. 4), is that the spinodal regions
[ηL, ηR] (and likewise the coexistence regions [nL, nR])
are always approximately centered around the critical
baryon number density, n(Q)

c . This is again an effect re-
lated to having only the ideal-gas–like contribution to the
thermal pressure in case of vector-like interactions (for
details see Appendix D). As a result, the critical baryon
number density, n(Q)

c , and the boundaries of the spinodal
region, ηL and ηR, are not independent. In consequence,
we have effectively one less free parameter. For example,
once we set the ordinary nuclear matter properties, the
critical point of the quark-hadron phase transition, and
the lower spinodal boundary at T = 0, ηL, the upper
spinodal boundary at T = 0, ηR, is practically fixed.

We expect that all these regularities in the behavior
of the spinodal and coexistence lines would not be as
prominent if other types of interactions were included,
rendering the thermal part of the pressure non-trivial. In
particular, we expect that adding scalar-type interactions
would allow us to obtain coexistence regions bending to-
wards the nB = 0 axis in the T -nB plane, which would
correspond to an even stronger tendency to bend towards
the µB = 0 axis in the T -µB plane. This expectation is
based on the fact that, typically, scalar interactions re-
sult in a small effective mass, which in addition decreases
with temperature, and that in turn produces a relatively
larger thermal contribution to the pressure for a given nB
and T . As a result, such phase transitions would more

significantly affect the region of the phase diagram cov-
ered by the BES program. Extensions of the VDF model
leading to such effects are planned for the near future.

D. Results: Cumulants of baryon number

In analyses of heavy-ion collision experiments, consid-
erable attention has been paid to cumulants of the baryon
number distribution. In the grand canonical ensemble,
the jth cumulant of the baryon number, κj , can be cal-
culated from

κj = T j
dj

dµjB
lnZ(T, V, µB) , (46)

where Z(T, V, µB) is the grand canonical partition func-
tion. Because the logarithm of the partition function is
related to the pressure P through

lnZ(T, V, µB) =
PV

T
, (47)

we can also write Eq. (46) as

κj = V T j−1 d
jP

dµjB
. (48)

The explicit volume dependence of the cumulants, which
is typically divided out in theoretical calculations, is diffi-
cult to control in experiment. Therefore, it is customary
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FIG. 5. Contour plots of cumulant ratios κ2/κ1 (upper row), κ3/κ2 (middle row), and κ4/κ2 (lower row) in both T -nB and
T -µB plane (left and right column, respectively), for the EOS identified by the fourth (IV) set of characteristics listed in Table
I. Black lines denote coexistence regions, while yellow lines denote spinodal regions; critical points are indicated with yellow
dots. White regions correspond to values of cumulant ratios close to the Poissonian limit, κi/κj = 1± 0.03. Grey color signifies
regions of the phase diagram in which either the cumulant calculation is invalid (left column: inside the spinodal region, which
is unstable), or where data has not been produced (right column: regions with extremely small values of the baryon number
density nB). The legend entries denote upper (lower) boundaries of ranges of positive (negative) values of cumulant ratios.
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to consider ratios of cumulants, most commonly

σ2

µ
=
κ2

κ1
, Sσ =

κ3

κ2
, κσ2 =

κ4

κ2
, (49)

where µ denotes the mean, σ2 denotes variance, S de-
notes skewness, and κ denotes excess kurtosis.

The values of cumulants are expected to be influenced
by enhanced fluctuations of conserved charges in the
vicinity of the critical point, rendering them a signal for
the existence of the critical point and a first-order phase
transition in QCD [11–13]. In particular it is argued that,
for systems crossing the phase diagram close to and above
the critical point, the sign of the third-order cumulant,
κ3, will change [49], while the fourth-order cumulant, κ4,
will exhibit a nonmonotonic behavior [50]. Because cu-
mulants of the baryon number distribution can be mea-
sured in experiment, they provide one of the strongest
links between theoretical predictions and experimental
data. Preliminary results from the Beam Energy Scan
indeed suggest that the fourth-order cumulant ratio, κ4

κ2
,

exhibits non-monotonic behavior with the collision en-
ergy [51].

In this as well as in the following sections, we will fo-
cus on results for the fourth (IV) set of characteristics
listed in Table I. The choice of this set is arbitrary and
does not reflect any preference for the location of the
QCD critical point, but simply serves as an illustration of
the properties of the VDF model which are qualitatively
comparable for all obtained EOSs. In Fig. 5, we plot
the cumulant ratios (49) in the T -nB and T -µB planes.
Dramatic increase in magnitudes of cumulant ratios as
well as sudden changes in sign, observed in regions close
to and above the critical point, agree with the expecta-
tions mentioned above. Interestingly, the effects of the
nuclear phase transition are clearly present even at very
high temperatures (as has been also observed in [52]).
This raises the question to what extent the presence of
the nuclear phase transition affects the interpretation of
experimental data, either by damping the signal origi-
nating at the QGP phase transition, or by acting as an
imposter. Such questions could be answered by compar-
ing outcomes of simulations utilizing a VDF EOS with
either nuclear phase transition only, or both nuclear and
quark-hadron phase transitions. Studies of this type are
planned for future research.

IV. IMPLEMENTATION IN SMASH

We implemented the VDF equations of motion, Eqs.
(25) and (26), in the hadronic transport code SMASH
[23], version 1.8 [53], where simulating hadronic non-
equilibrium dynamics is achieved through numerically
solving the Boltzmann equation, in this context often
also called the Vlasov equation, the Boltzmann-Uehling-
Uhlenbeck (BUU) equation, or the Vlasov-Uehling-
Uhlenbeck (VUU) equation. The specification comes

from solving the Boltzmann equation for the time evolu-
tion of the phase-space density f(t,x,p) in the presence
of the mean-field U(x,p),[

∂

∂t
+
∂H(1)

∂p
∇p −

∂H(1)

∂x
∇p

]
f(t,x,p) = Icoll , (50)

where the single-particle Hamiltonian is given by H(1) =√
p2 +m2 + U(x,p), and Icoll denotes the collision in-

tegral. Usually, the term Vlasov equation is reserved for
the case with no collisions, Icoll = 0.

The time evolution in hadronic transport is realized
within a numerical approach known as the method of test
particles [54], where the continuous phase-space distribu-
tion of a system of A particles, f(t,x,p), is approximated
by the distribution of a large number N of discrete test
particles with phase space coordinates

(
xi(t),pi(t)

)
,

f(t,x,p) ≈ 1

NT

N∑
i=1

δ
(
x− xi(t)

)
δ
(
p− pi(t)

)
. (51)

Here, NT is the number of test particles per nucleon and
N = NTA. Each test particle carries a charge of the cor-
responding real particle divided by NT (for example, the
baryon number of a “nucleon test particle” is 1

NT
), so that

the total charge in the simulation equals that of a system
of A particles. Propagating the test particles according
to equations of motion governing the system, together
with performing decays and particle-particle collisions,
effectively solves Eq. (50). In SMASH, the equations of
motion propagate the kinetic momentum of particles; see
Eq. (23). An alternative approach, in which the canon-
ical momenta are propagated, is possible [55]. For more
technical details on the method of test particles, see Ap-
pendix E.

In practice, there exist two ways of realizing the
method of test particles in hadronic transport. Within
the first approach, one initializes a system with NTA
test particles, which are then propagated according to
the equations of motion. Scatterings are performed ac-
cording to cross sections that are scaled as σ/NT , where
σ is the physical cross section, which ensures that an av-
erage number of scatterings is the same as in a system of
A particles. Because each test particle carries a fraction
1/NT of the charge of a corresponding real particle, the
resulting mean field will be a smoothed out version of the
mean field corresponding to A particles. This approach
is sometimes referred to as the “full ensemble”.

An alternative approach is known as “parallel ensem-
bles” [56]. In this paradigm, NT instances of a system
of A particles are created. Particles in each instance are
propagated according to the equations of motion, and
scatterings are performed using the physical cross sec-
tion σ. Each test particle carries a fraction 1/NT of the
charge of a corresponding real particle, and the test par-
ticle densities (and consequently the mean fields) are cal-
culated by summing contributions from all NT instances
of the system. Evolving the NT systems with mean fields
calculated in this fashion means that the systems are not
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in fact independent, and their evolution due to the mean
fields is shared. At the same time, this approach is com-
putationally much more efficient, as collision searches are
performed only within individual instances of the system,
thus reducing the numerical cost by a factor of N2

T .
It can be checked that these two simulation paradigms

lead to the same results in typical cases [57]. In this
study we utilized the full ensemble approach to the test
particle method.

V. ANALYSIS

In this paper we investigate simulations of nuclear mat-
ter in SMASH [23] realized in a box with periodic boundary
conditions. Such studies are best suited for testing the
thermodynamic behavior following from equations of mo-
tion with mean-field interactions, as well as for exploring
observables sensitive to critical phenomena in a scenario
in which matter is allowed to equilibrate. While admit-
tedly systems considered here cannot be reproduced in
the laboratory, insights gained in this study will provide
a useful stepping stone to understanding results of sim-
ulations of heavy-ion collisions utilizing the VDF EOS,
planned for future work.

In contrast to heavy-ion collision experiments, semi-
classical hadronic transport simulations have an access
to the positions of individual particles. Consequently,
observables that can be used as a measure of the col-
lective behavior of the system include the spatial pair
correlation function and the distribution of particles in
coordinate space. We describe the details of extracting
these observables below.

A. Pair distribution function

The radial distribution function g(r) gives the proba-
bility of finding a particle at a distance r from a reference
particle. While in select simple cases it can be calculated
analytically, in practice, given a distribution of particles,
g(r) is obtained by determining the distance between the
reference particle and all other particles and constructing
a corresponding histogram. Thus for finding the radial
distribution about the ith (reference) particle at a given
distance r, we count all particles within an interval ∆r
around r, which can be written as

gi(r,∆r) =

N∑
j=1
j 6=i

θ
(
r + ∆r −Rij

)
θ
(
Rij − (r −∆r)

)
.(52)

Here, the sum is performed over all particles (with the
exception of the ith particle) which we index by j, N is
the total number of particles, θ is the Heaviside theta
function, and Rij = |ri − rj |, where ri is the position
of the reference particle and rj is the position of the jth
particle. The role of the Heaviside theta functions is to

only allow contributions from particles whose positions
are within a distance Rij ∈ (r − ∆r, r + ∆r) from the
reference particle. The obtained histogram is then nor-
malized with respect to an ideal gas, whose radial dis-
tribution histogram is that of completely uncorrelated
particles, g0(r) ∝ n 4πr2 dr, where n denotes density.

We can also define the radial distribution function of
all distinct pairs in the system (which we also call the
pair distribution function),

g̃(r,∆r) = N
N∑
i=1

gi(r,∆r)

=
N
2

N∑
i=1

N∑
j=1
j 6=i

θ
(
r + ∆r −Rij

)
θ
(
Rij − (r −∆r)

)
,(53)

where the factor of 1/2 appears to avoid counting any
of the particle pairs twice, and where N is a normal-
ization factor, so far unspecified (as already mentioned
above, in practice the radial distribution function is com-
pared to that of an ideal gas, in which case the normal-
ization factors cancel out). The pair distribution func-
tion in an ideal gas, g̃0(r), is related to g0(r) through
g̃0(r) ≈ (N/2)g0(r), where N is the total number of par-
ticles in the system, which stems directly from the fact
that the total number of distinct pairs in the system is
equal N(N − 1)/2. For simulations in a box with peri-
odic boundary conditions, however, this relationship be-
comes more complicated for distances r > L/2, where L
is the side length of the box, due to geometry effects (see
below). For this reason and because in simulations pre-
sented in this work we initialize the systems uniformly, in
our analysis we use the t = 0 histogram as the reference
pair distribution function, g̃0 = g̃(t = 0).

We stress that taking the pair distribution function of
a uniform system as the reference ensures that the nor-
malized pair distribution function, g̃/g̃0, is sensitive to
density fluctuations in the system. A prominent exam-
ple here is the spinodal breakup, where a spontaneous
separation into two coexistent phases with different den-
sities occurs. If the system is confined to some constant
volume V , then the average density of the system is the
same before and after the spinodal decomposition takes
place. However, local fluctuations in the number of par-
ticles will be visible in the pair distribution function, as
more particle pairs reside inside a high density region as
compared to a low density region.

While the spinodal decomposition is the most obvious
example of a situation where g̃/g̃0 6= 1, the normalized
pair distribution function deviates from unity for any sys-
tem in which the interactions between the particles affect
their collective behavior. In particular, at small r, the
normalized pair distribution function satisfies g̃/g̃0 > 1
for correlated particles and g̃/g̃0 < 1 for anti-correlated
particles (see Appendix F for details), which corresponds
to attractive and repulsive interactions between the parti-
cles, respectively. Since the number of particles and thus
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the number of pairs is conserved, one sees an opposite
trend at intermediate to large distances.

We note that in our simulations the range of r over
which g̃(r)/g̃0(r) deviates from 1 significantly is related
to the range of the interaction, which is determined by
the smearing range in the density calculation (for more
details see Appendix E).

Importantly, for a system with periodic boundary con-
ditions the radial distance between two particles R is not
uniquely defined. This is because for any reference par-
ticle the distance to any other particle can be calculated
using the position of that other particle in the original
box or in any of its 26 equivalent images. We adopt a
prescription in which the smallest distance between par-
ticles is used in calculating the pair distribution function
g̃ (known as the minimum image criterion). This small-
est distance can range from Rmin = 0 to Rmax =

√
3L
2 ,

where L is the side length of the box. That said, even
for a uniform and uncorrelated system the geometry of
the problem affects the number of particles that can be
encountered at the maximal distance Rmax. Specifically,
the only points for which it is possible to have R = Rmax
are points on the diagonal of the box; for any points sepa-
rated by Rmax that are not on the diagonal, there exists
a smaller R obtained by using the position of the sec-
ond particle from one of the equivalent box images. This
problem also affects, to a proportionally lesser extent,
inter-particle distances R in the range L

2 < R < Rmax.
Only in the case of particles which are L

2 or less apart
the geometry of the box never affects the pair distribu-
tion function.

This influence of finite size effects can be clearly seen
in the left panel of Fig. 7, which shows the pair distri-
bution function for a box of side length L = 10 fm at
initialization (t = 0), when the system is uniform and
the particles are uncorrelated. In infinite matter, the
pair distribution function of uncorrelated particles grows
like r2. However, finite geometry effects described above
introduce an effective cut on the distribution starting at
L
2 = 5 fm, explaining the shape of the presented distri-
bution. Similarly, geometry and periodic boundary con-
ditions play a role in the shape of the normalized pair
distribution function for r > L

2 at t > 0. In our simu-
lations, nuclear spinodal decomposition at T = 1 MeV
results in a nuclear drop surrounded by a nearly perfect
vacuum. (Here we note that the number of drops that
form during spinodal decomposition depends on the size
of the box, and the size of a drop depends on the smear-
ing range used in density calculation; for more details on
the latter, see Appendix E.) The diameter of the nuclear
drop turns out to satisfy D > L

2 , which means that for
some of the particles belonging to that drop, the smallest
distance to some of the other particles in that same drop
will be “across the vacuum”, to one of the equivalent mir-
ror images of these particles. This explains the rise in the
normalized distribution function for r > L

2 on the right
panel in Fig. 7. The magnitude of this effect depends on
the drop diameter D.

The artifacts produced by the geometry of the prob-
lem and periodic boundary conditions do not present a
significant complication in analyzing critical behavior if
we resolve to only probe the system at length scales L

2 or
smaller.

One may ask whether calculating a pair distribution
function in hadronic transport is justified in view of the
fact that the BUU equation explicitly evolves a one-body
distribution function which does not carry any informa-
tion about the two-body distribution, usually employed
in the description of two-particle correlations. While this
may appear to be problematic, a closer look reveals that
such analysis is correct. First, one needs to note that
hadronic transport simulations only solve the Boltzmann
equation exactly in the limit of an infinite number of
test particles per particle NT . The finite number of test
particles employed in simulations leads to intrinsic nu-
merical fluctuations. These numerical fluctuations are of
statistical nature, similarly to variances of microscopic
observables, and likewise, through both scattering and
mean fields, they can become a seed for collective behav-
ior such as spontaneous spinodal decomposition. Such
effects have been described, e.g., in [58] (see also [59, 60]),
where fluctuation observables calculated using hadronic
transport with the method of test particles agree with
both theoretical predictions and experimental results.
Additionally, it was established that for large enough NT
(which the authors of that particular study found to be
NT & 40) the numerical noise intrinsic to the method
of test particles is negligible, while the correct statistical
fluctuations are preserved.

It is possible to construct a Boltzmann-Langevin ex-
tension of the standard BUU equation, which ensures
that the simulated fluctuations are physically correct
(see, e.g., [61]). However, it has been found that, for ex-
ample, in the case of the nuclear spinodal fragmentation
the source of the noise seeding the spinodal decomposi-
tion is not essential, and it is possible to develop good ap-
proximations to the Boltzmann-Langevin equation that
are numerically favorable, including the method of test
particles [38].

We note here that a particular problem that arises in
the method of test particles is that the fluctuations in the
events, simulating the evolution of NTNB test particles,
are suppressed by a factor of NT . The authors of [58]
dealt with this issue by employing the method of parallel
ensembles at final simulation times, that is a posteriori,
which allows one to obtain events with the number of test
particles corresponding to the physical baryon number
NB (we briefly describe this method in Sec. IV, while
Appendix G explains the a posteriori application of the
method).

Based on the above it is apparent that the distribu-
tion function obtained through hadronic transport sim-
ulations, and in particular through the method of test
particles, contains information not only about the mean
of the distribution function 〈fp〉, but also about its fluctu-
ations. Consequently, calculating fluctuation observables
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such as the pair distribution function is well-defined in
hadronic transport. Some questions regarding the quan-
titative behavior of fluctuation observables obtained in
simulations using the number of test particles NT > 1
remain, in particular regarding the specific methods used
to connect fluctuations in systems evolving NTNB parti-
cles as compared to systems evolving NB particles. For
that reason we refrain from making quantitative state-
ments at this time, and focus on the qualitative behavior
of the pair distribution functions. Future work will be
devoted to a quantitative analysis of this problem, and
in section VIC we give a short overview of the effects due
to this issue.

B. Number distribution functions

A complementary method of analyzing the collective
behavior in a simulation utilizes coordinate space num-
ber distribution functions. To calculate number distribu-
tion functions, we divide the simulation box into C cells
of side length ∆l (also referred to as cell width), and
construct a histogram of the number of cells in which
the number of particles lies in a given interval Ni ±∆N ,
where Ni is the central value of the ith bin. We note that
we scale the entries by the total number of cells C so that
the resulting histogram is a properly normalized repre-
sentation of the corresponding probability distribution.
We also note that in the subsequent parts of the paper
we scale the histogram entries by the volume of the cells
(∆l)3 in order to obtain the histogram as a function of
number density.

The test-particle evolution in SMASH is governed by the
mean field, which depends on the underlying continuous
baryon number density for a given baryon number NB ,

nB(x;NB) = g

∫
d3p

(2π)3
f(x,p) . (54)

Formally, hadronic transport can give access to
nB(x;NB) through solving the Boltzmann equation, Eq.
(50), in the limit of infinitely many test particles per
particle, and substituting the obtained quasiparticle dis-
tribution function f(x,p) in Eq. (54). Below, we present
three number distribution functions accessible in practice
given the finite number of test particles used.

1. Test-particle-number distribution function

Hadronic transport simulations of nuclear matter are
realized through evolving N = NBNT test particles in
space and time (where NB is the baryon number in the
simulation and NT is the number of test particles per
particle), giving a direct access to a discrete test-particle-
number distribution function. This distribution can be
written as a probability of obtaining a cell contributing to
the ith bin of the histogram with a center value Ni (that

is, a cell with N ∈ (Ni −∆N,Ni + ∆N) test particles),

PN (Ni) = P
(
Ni, N(NB , NT ),∆l

)
= (55)

=
N

(i)
c

(
N(NB , NT ),∆l

)
C

. (56)

Here, C is the total number of cells used and N (i)
c is the

number of cells containing a number of test particles N
within the range Ni ± ∆N . We note that the number
of test particles in any given cell depends both on the
baryon number evolved in the simulation, NB , and the
number of test particles per particle, NT . We also stress
that the distribution PN depends on the scale (chosen
cell width ∆l) at which the system is analyzed.

2. Continuous baryon number distribution function

The discrete test particle distribution function, Eq.
(55), can be thought of as having been obtained through
sampling from the underlying continuous baryon number
distribution function with a finite number NTNB of test
particles. Given access to the underlying baryon number
distribution, one could use it directly to create a corre-
sponding histogram. Indeed, the number of baryons at a
cell at position xk is given by the integral of the contin-
uous baryon number density, Eq. (54),

B(xk) =

∫
Vk=(∆l)3

dV nB(x, NB) , (57)

where k indexes the histogram cells. Adding contribu-
tions from all cells yields the total baryon number in the
system, B. We can then construct a probability distribu-
tion function for encountering a cell with a given number
of baryons Ni,

PB(Ni) =
N

(i)
c

(
Ni, B,∆l

)
C

, (58)

where N (i)
c is the number of cells containing a number of

baryons N within the range Ni ±∆N .
For a large number of test particles per particle NT ,

statistical observables calculated using the test-particle-
number distribution, with the number of test particles in
a given sample scaled by 1

NT
, are a very good approxi-

mation to the underlying continuous baryon number dis-
tribution [62]. That is, it can be shown that

PB(Ni) = lim
NT→∞

P

(
Ni,

N(NB , NT )

NT
,∆l

)
. (59)

Given that in our simulations we use sufficiently large
numbers of test particles per particle NT , we will refer
to histograms constructed through the prescription on
the right-hand side of Eq. (59) as the continuous baryon
number distribution function (or just baryon number dis-
tribution function) PB(Ni), with the understanding that
it is only exact in the limit NT →∞.
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3. Physical baryon number distribution function

Both the test particle and the continuous baryon
number distribution functions, Eqs. (55) and (59), are
markedly different from the physical baryon number dis-
tribution function corresponding to a discrete baryon
number NB . Here we can intuitively think of the physical
baryon number distribution function as obtained through
sampling from the underlying continuous baryon number
distribution with NB test particles,

PNB
(Ni) = P

(
Ni, N(NB , NT = 1),∆l

)
. (60)

Strictly speaking, the physical baryon number distribu-
tion function could be obtained in transport by solving
the Boltzmann equation in the limit of infinitely many
test particles per particle, thus obtaining the underly-
ing continuous baryon number distribution function, Eq.
(54), and sampling nB(x, NB) with NB particles. Natu-
rally, this is a numerically feasible but tedious approach.
Alternatively, one can turn to the concept of parallel en-
sembles (introduced in Sec. IV). It can be shown that
the test particle distribution obtained within a paral-
lel ensembles mode serves as a proxy for the physical
baryon number distribution. To reiterate, within the
concept of parallel ensembles, a simulation correspond-
ing to NB baryons with NT test particles per baryon
is divided into NT events with NB test particles each.
These NT events are not independent, as they share a
common mean field. Nevertheless, at the end of the
simulation we have access to NT events with the test
particle number exactly corresponding to the baryon
number in the “real” system. That is, each of the NT
events is described by the probability distribution func-
tion PNB

(Ni) = P
(
Ni;N(NB , NT = 1); ∆l

)
. Observ-

ables calculated using PNB
(Ni) are probably the closest

to those one would find in an experiment if one could
measure positions of the particles. We postpone a rigor-
ous derivation of this result and corresponding investiga-
tions to a future work.

VI. INFINITE MATTER SIMULATION
RESULTS

To simulate isospin-symmetric infinite nuclear matter,
we initialize equal numbers of proton and neutron test
particles in a box with periodic boundary conditions.
The side length of the box is taken to be L = 10 fm;
this is informed by the fact that with periodic boundary
conditions, the box can be kept relatively small with no
significant finite-size effects. The time step used in the
simulation needs to be small enough to resolve all gradi-
ents occurring during the evolution (intuitively speaking,
a test particle should not "jump over" a potential gradi-
ent within a single time step). We found that a time step
of ∆t = 0.1 fm/c is small enough to satisfy this condition,
and it correctly solves the equations of motion, Eqs. (25)
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FIG. 6. (Color online) Baryon number distribution, scaled by
the volume of the cell and shown in units of the saturation
density of nuclear matter, n0 = 0.160 fm−3. The cell width is
chosen at ∆l = 2 fm. Histograms delineated with red curves
correspond to distributions at initialization (t = 0), while his-
tograms delineated and shaded with blue curves correspond
to distributions at the end of the evolution, t = tend. Upper
panel: Nuclear matter initialized at the saturation density n0

and temperature T = 1 MeV, evolved until tend = 200 fm/c.
The system, initialized at equilibrium, remains in equilibrium
at tend. Lower panel: Nuclear matter initialized inside the
spinodal region of the nuclear phase transition, at baryon
number density nB = 0.25n0 and temperature T = 1 MeV,
evolved until tend = 100 fm/c. The system, initialized in a me-
chanically unstable region of the phase diagram, undergoes a
spontaneous separation into a (very dilute) nucleon gas and
a nuclear liquid drop with a central density nB ≈ n0.

and (26), using the leapfrog algorithm. The mean-field
is calculated on a lattice with lattice spacing a = 1 fm,
which has been tested to be sufficiently fine for accu-
rately resolving mean-field gradients. To ensure smooth
density and density gradient calculations, we utilize a
large number of test particles per particle, specifically,
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FIG. 7. (Color online) Time evolution of the pair distribution function for a system initialized inside the nuclear spinodal
region (at baryon number density nB = 0.25 n0 and temperature T = 1 MeV). The t = 0 plot (left) shows the distribution at
initialization, while plots at t = 50 and 100 fm/c (middle and right, respectively) show normalized distributions. Spontaneous
spinodal decomposition occurs at t > 0 and leads to a formation of a nuclear drop surrounded by a near-perfect vacuum,
resulting in a strong correlation between particles clustered within the drop. See Sec. VA for a discussion of the influence of
finite-size effects on the shape and large-distance behavior of the pair distribution function.

we use NT = 200 for ordinary nuclear matter (Sec. VIA)
and NT = 50 for dense nuclear matter (Secs. VIB and
VIC). Using different numbers of test particles in these
two cases is justified by the fact that smooth density and
density gradient calculations are ensured when the aver-
age number of test particles encountered in a cell of the
lattice, Navg, is large enough. As an example, within the
described setup, this number will be equal to Navg = 8
for ordinary nuclear matter at nB = 0.25 n0, and equal
to Navg = 24 for dense nuclear matter at nB = 3 n0. We
choose Navg to be bigger in the case of dense nuclear mat-
ter as mean-fields encountered in that region of the phase
diagram are significantly larger and require an even more
smooth gradient computation.

For studying the thermodynamic behavior of nuclear
matter, we are simulating systems in which all collision
and decay channels are turned off. We have checked that
the thermodynamic effects described here persist when
collisions are allowed, and in this work we choose to omit
them because our goal is to study mean-field dynamics.
As in Sec. IIID, we are considering only one of the many
EOSs accessible within the VDF model, namely, the one
corresponding to the fourth (IV) set of characteristics
listed in Table I. The choice of this set is arbitrary and
serves as an illustration of the properties of the VDF
model which are qualitatively comparable for all obtained
EOSs.

A. Ordinary nuclear matter

We investigate the behavior of systems initialized at
temperatures and baryon number densities specific to or-
dinary nuclear matter to validate the implementation of
the VDF model in SMASH [23]. For illustrative purposes,
we discuss results for a single simulation run, that is one
event. Remarkably, the thermodynamic behavior of the

system is apparent already for this minimal statistics.
This is a consequence of the large number of test par-
ticles per particle used (NT = 200), as well as the fact
that the investigated effects are characterized by large
fluctuations, which result in clear signals.

To start, we initialize symmetric nuclear matter at sat-
uration density nB = n0, which for the box setup de-
scribed above corresponds to the number of protons and
neutrons Np = Nn = 80, and at temperature T = 1 MeV.
Except for a slight increase in temperature from the de-
generate limit, which is not significant enough to intro-
duce any relevant changes, this is the equilibrium point
of nuclear matter. We let the simulation evolve until
tend = 200 fm/c and investigate whether the equilib-
rium is preserved by hadronic transport. To address this
question, we examine the continuous baryon number dis-
tribution function (for details, see Sec. VB), which we
calculate using the cell width ∆l = 2 fm; we scale the
histogram entries by the volume of the cell to obtain the
distribution in units of the baryon number density, and
further scale the results to express them in units of the
saturation density, n0 = 0.160 fm−3. As expected for
matter in equilibrium, the baryon number distribution
remains unchanged throughout the evolution, as can be
seen in the upper panel of Fig. 6. We also find that
throughout the simulation, the binding energy per par-
ticle agrees with the theoretically obtained value within
0.1% (for more details on energy evolution, see Appendix
H). An in-depth discussion of the mean-field response
to fluctuations around nuclear saturation density, com-
paring the results from several transport codes including
SMASH utilizing the VDF model, can be found in [63].

Next, we model nuclear matter inside the spinodal re-
gion of the nuclear phase transition. Specifically, we ini-
tialize the system with the number of protons and neu-
trons Np = Nn = 20, corresponding to a baryon number
density nB = 0.25 n0, at temperature T = 1 MeV. We
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FIG. 8. (Color online) Time evolution of the baryon number distribution, scaled by the volume of the cell and shown in units
of the saturation density of nuclear matter, n0 = 0.160 fm−3, for a system initialized inside the quark-hadron spinodal region
(at baryon number density nB = 3 n0 and temperature T = 1 MeV), averaged over Nev = 500 events. The cell width is chosen
at ∆l = 2 fm. Histograms delineated with red curves correspond to the baryon distribution at initialization (t = 0), while
histograms delineated and shaded with blue curves correspond to baryon distributions at a chosen time during the evolution
(t = {25, 50} fm/c). The system, initialized in a mechanically unstable region of the phase diagram, undergoes a spontaneous
separation into a less dense and a more dense nuclear liquid (see Sec. IIIA for more discussion), resulting in a double-peaked
baryon number distribution. The green arrows point to values of baryon number densities corresponding to the boundaries of
the coexistence region at T = 1 MeV, nL = 2.13 n0 and nR = 3.57 n0.

let the system evolve until tend = 100 fm/c. The spin-
odal region is both thermodynamically and mechanically
unstable, and so we expect that local density fluctua-
tions will drive the matter to separate into two coexist-
ing phases: a dense phase, also known as a nuclear drop,
and a dilute phase which is a nucleon gas. That this
indeed happens can be seen on the lower panel in Fig.
6, which shows the change in the baryon number distri-
bution function due to the system’s separation into two
coexisting phases. The distribution, initially centered at
nB = 0.25 n0, at the end of the evolution has a large
contribution at nB ≈ 0 and a long tail reaching out to
nB ≈ n0, which corresponds to the center of the nuclear
drop.

We then proceed to calculate the pair distribution
function (for details, see Sec. VA) for the system initial-
ized in the spinodal region of nuclear matter. The results
are shown in Fig. 7. Here, the three panels correspond
to three time slices of the evolution: t = 0, 50, 100 fm/c.
The t = 0 plot (left) shows the pair distribution function,
Eq. (53), at initialization g̃0(r,∆r), while plots at t = 50
and 100 fm/c (middle and right, respectively) show nor-
malized pair distribution functions g̃(r,∆r)/g̃0(r,∆r).
The time evolution of the pair distribution function shows
that during the spinodal decomposition the test particles
cluster into the nuclear drop. The half width at half
maximum of the pair distribution function is about 2 fm,
which corresponds to the density smearing range used
(see Appendix E for more details). The influence of the
periodic boundary conditions on the shape and behavior
of the pair distribution function at large inter-particle
distances is discussed in Sec. VA.

All of the results presented above demonstrate that
the VDF equations of motion implemented in SMASH re-
produce the expected bulk behavior of ordinary nuclear

matter.

B. Dense nuclear matter and the QGP-like phase
transition

For simulations of critical behavior in dense symmet-
ric nuclear matter, we run Nev = 500 events and average
the results, calculated event-by-event. We first initial-
ize the system at nB = 3 n0, which corresponds to the
number of protons and neutrons Np = Nn = 240, and
at temperature T = 1 MeV. It can be seen in Figs. 4
and 5 that this corresponds to initializing dense nuclear
matter inside the spinodal region of the QGP-like phase
transition described by the EOS employed (the fourth
(IV) set of characteristics listed in Table I). We evolve
the system until tend = 50 fm/c, which is sufficient for
reaching equilibrium after a spinodal decomposition at
high baryon number densities, since due to considerably
larger values of the mean-field forces on test particles the
density instabilities develop more rapidly.

In Fig. 8, we show the evolution of the baryon number
distribution (see Sec. VB2). The cell width is chosen
at ∆l = 2 fm, and the histogram entries are scaled by
the volume of the cell in order to be given in units of
the baryon number density; we then further scale the re-
sults to express them in units of the saturation density,
n0 = 0.160 fm−3. In the figure, the red curve corresponds
to the distribution at time t = 0, while the blue curves
delineate the distribution at times t > 0. At t = 0,
the distribution is peaked at the initialization density
nB = 3 n0, with its width reflecting the finite number
statistics. In the course of the evolution the system sep-
arates into two coexisting phases, a “less dense” and a
“more dense” nuclear liquid (see section IIIA for more
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FIG. 9. (Color online) Time evolution of the pair distribution function for a system initialized inside the QGP-like spinodal
region (at baryon number density nB = 3.0 n0 and temperature T = 1 MeV), averaged over Nev = 500 events. The t = 0
plot (first panel) shows the pair distribution at initialization, while plots at t = 10, 20, 30 fm/c (second, third, and fourth
panels) show normalized pair distributions. Spontaneous spinodal decomposition occurs at t > 0 and leads to a formation of
two coexisting phases: a less dense and a more dense nuclear liquid. The increased relative concentration of particles in the
more dense phase results in an elevated normalized pair distribution at small distances.

discussion). As a result, the baryon distribution displays
two peaks largely coinciding with the theoretical values
of the coexistence region boundaries, nL = 2.13 n0 and
nR = 3.57 n0, indicated by the green arrows. We find
that the prominence of the peaks depends slightly on the
choice of the EOS. For example, an equation of state
with the same value of critical density n(Q)

c and the same
spinodal region (ηL, ηR), but a higher critical tempera-
ture T (Q)

c will correspond to a more negative slope of
the pressure in the spinodal region and, correspondingly,
to stronger mean-field forces inside the spinodal region,
leading to more prominent peaks.

Next, in Fig. 9 we show the evolution of the pair dis-
tribution function. Similarly as in the case of nuclear
spinodal decomposition, the “hadron-quark” spinodal de-
composition leads to a pair distribution function indi-
cating the formation of two phases of different densities.
Unlike in nuclear spinodal decomposition, where drops of
a “nuclear liquid” form in vacuum, in this case we have
drops of a “more dense liquid” submerged in a “less dense
liquid” (for a detailed discussion, see section IIIA). Con-
sequently, the absolute values of the normalized pair dis-
tribution function, g̃(r)/g̃0(r), are much smaller for the
case of the “hadron-quark” spinodal decomposition, as
the difference between the number of test particle pairs
occupying the dense and dilute regions is less pronounced
in this case. Nevertheless, the effect, although small, is
clearly distinguishable and statistically significant.

We note here that a phase separation is such a distinct
behavior of the system that the baryon distribution func-
tion and the pair distribution function as shown in Figs.
8 and 9, respectively, can be largely recovered even in the
case of minimal statistics, that is for one event. However,
effects at and around the critical point, as discussed be-
low, are much more subtle and require a relatively large
number of events.

To conclude our study of dense nuclear matter in
SMASH, we want to investigate the behavior of systems ini-
tialized at various points of the phase diagram above the

critical point, inspired by possible phase diagram trajec-
tories of heavy-ion collisions at different beam energies.
Specifically, we initialize the system at one chosen tem-
perature and a series of baryon number densities

T = 125 MeV, nB ∈ {2.0, 2.5, 3.0, 3.5, 4.0} n0 . (61)

In contrast with most of the previous examples, systems
initialized in this region of the phase diagram are ther-
modynamically stable, and there are specific predictions
for the behavior of thermodynamic observables such as
ratios of cumulants of baryon number (see Fig. 5). In the
upper panel of Fig. 10, we show values of the second-order
cumulant ratio, κ2

κ1
, as calculated from the VDF model,

both in the T -nB and the T -µB plane. The dots on the
cumulant diagrams mark the points at which we initial-
ize the system, specified in Eq. (61), and are intended to
guide the eye toward the corresponding normalized pair
distribution plots at the end of the evolution, t = tend,
displayed in the lower panel of the same figure. The de-
viation of values of the normalized pair distributions at
small distances from 1 (where 1 corresponds to a system
of non-interacting particles) directly follows the deviation
of values of the second-order cumulant ratio κ2

κ1
from the

Poissonian limit of 1,

g̃ (0,∆r)

g̃0(0,∆r)
> 1 ⇔ κ2

κ1
> 1 , (62)

g̃ (0,∆r)

g̃0(0,∆r)
< 1 ⇔ κ2

κ1
< 1 . (63)

We show a detailed derivation of this fact in Appendix F.
It is clear that a two-particle correlation corresponds to
a value of the cumulant ratio κ2

κ1
> 1, and a two-particle

anticorrelation corresponds to a value of the cumulant
ratio κ2

κ1
< 1. This behavior is exactly reflected in Fig.

10.
We want to stress that the pair distributions shown in

Fig. 10 develop relatively fast. In Fig. 9, where we ex-
plored the behavior of a system initialized at a temper-
ature T = 1 MeV, one can see by comparing the second
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FIG. 10. (Color online) Comparison of the cumulant ratio κ2/κ1, calculated within the VDF model, and normalized pair
distribution function at t = 30 fm/c, for a series of chosen initialization points. The description of the cumulant diagrams
(upper panel) is the same as in Fig. 5. The dots on the cumulant diagrams mark the points at which we initialize the system,
specified in Eq. (61), and are intended to guide the eye toward the corresponding normalized pair distribution plots (lower
panel). The deviation of the normalized pair distributions from the normalized pair distributions of a perfectly uncorrelated
system (red line) directly follows the deviation of values of the cumulant ratio κ2/κ1 from the Poissonian limit of 1. See text
for more details.

and the fourth panels that already at t = 10 fm/c a sig-
nificant part of the pair distribution has developed. This
effect is further magnified at higher temperatures, where
relatively larger momenta of the test particles result in a
faster propagation of effects related to mean fields. For
systems shown in Fig. 10, we have verified that the major-
ity of the pair distribution function development occurs
within ∆t = 3 fm/c.

These results show not only that hadronic transport is
sensitive to critical behavior of systems evolving above
the critical point, but also that this behavior is exactly
what is expected based on the underlying model. More-
over, we note that the behavior of both the second-order
cumulant and the pair distribution function across the
region of the phase diagram affected by the critical point
is remarkably distinct. It is evident that an equilibrated
system traversing the phase diagram through the series of
chosen points, Eq. (61), follows a clear pattern: first dis-
playing anticorrelation, then correlation, and then again
anticorrelation. Thus already the second-order cumulant
ratio presents sufficient information to explore the phase
diagram, and, provided that correlations in the coordi-
nate space are transformed into correlations in the mo-

mentum space during the expansion of the fireball, this
pattern may be utilized to help locate the QCD criti-
cal point, in addition to signals carried by the third- [49]
and fourth-order [50] cumulant ratios. This may prove to
be especially important given that the quantity observed
in heavy-ion collision experiments is not the net baryon
number, but the net proton number. In calculations of
the net baryon number cumulants based on the net pro-
ton number cumulants, the higher order observables are
increasingly more affected by Poisson noise [64]. In view
of this, the second-order cumulant ratio (or equivalently
the two-particle correlation) could be considered among
the key observables utilized in the search for the QCD
critical point, and it remains to be seen if this somewhat
smaller signal (as compared to higher order cumulant ra-
tios) is nevertheless noteworthy due to the much higher
precision with which it can be measured in experiments.

C. Effects of finite number statistics

Qualitative and quantitative features of observables
are influenced by the finite number of particles in an-
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FIG. 11. (Color online) Time evolution of the continuous
baryon number distribution, scaled by the volume of the cell
and shown in units of the saturation density of nuclear mat-
ter, n0 = 0.160 fm−3, for the same system as described in
Fig. 8, averaged over Nev = 500 events. Here, cell width is
chosen at ∆l = 1 fm. The histogram delineated with the red
curve corresponds to the baryon distribution at initialization
(t = 0), while the histogram delineated and shaded with the
blue curve corresponds to the distribution at the end of the
evolution (tend = 50 fm/c). Nuclear matter, initialized in a
mechanically unstable region of the phase diagram, under-
goes a spontaneous separation into a less dense and a more
dense nuclear liquid (see Sec. IIIA for more discussion). Cor-
respondingly, the distribution function becomes wider with
time; however, due to the size of the binning cell, the average
number of test particles in a cell is small and consequently
the double-peaked structure, clearly seen on the right panel
in Fig. 8, is washed out by Poissonian fluctuations. See text
for more details.

alyzed samples. When analyzing observables such as the
baryon distribution, one has to keep in mind that fluctu-
ations due to finite number statistics may wash out the
expected signals. This is not only a numerical problem
but, as we shall discuss below, is also an issue relevant
for experiments.

First, we discuss this subject in the context of the
choice of binning width. In particular, the double-peak
structure in the baryon number distribution shown in the
right panel of Fig. 8 depends on the size of the cell used
to construct the histogram, chosen to be ∆l = 2 fm. In
this case, the Poissonian finite number statistics superim-
posed on the underlying baryon distribution is character-
ized by a certain width σ(2 fm). If we reduce the cell width
∆l by a factor of 2, the average number of particles in a
cell is reduced by a factor of 8. Consequently, the width of
the Poissonian fluctuations will be σ(1 fm) = 2

√
2σ(2 fm),

which is considerably larger than previously and which in
fact washes out the double-peak structure. This can be
seen in Fig. 11, where we show the baryon number dis-
tribution for a sampling cell width of ∆l = 1 fm for the
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FIG. 12. (Color online) Time evolution of the continuous
baryon distribution, scaled by the volume of the cell and
shown in units of the saturation density of nuclear matter,
n0 = 0.160 fm−3, for the same system as described in Figs. 8
and 11, but calculated using the parallel ensembles method;
the results are averaged over N (parallel)

ev = NT ×Nev = 25, 000
events. Cell width is chosen at ∆l = 2 fm. The red curve
corresponds to the distribution at initialization (t = 0), while
the blue curve corresponds to the distribution at the end of
the evolution (tend = 50 fm/c). Nuclear matter, initialized in
a mechanically unstable region of the phase diagram, under-
goes a spontaneous separation into a less dense and a more
dense nuclear liquid (see Sec. IIIA for more discussion). Cor-
respondingly, the distribution function becomes wider with
time; however, small numbers of particles in cells used to con-
struct the histogram and corresponding finite number statis-
tics effects wash out the structure clearly seen on the right
panel in Fig. 8. See text for more details.

same events as used to create Fig. 8; the red and blue
lines correspond to the distribution at time t = 0 and
tend = 50 fm/c, respectively. For the system at hand, the
Poissonian widths in the two cases, in terms of baryon
density, were σ(2 fm) = 0.22 n0 and σ(1 fm) = 0.62 n0.
If we then estimate the full width at half maximum as
approximately given by 2.355σ (the full width at half-
maximum of a normal distribution), it is clear that in
the case of the cell width ∆l = 1 fm, the full width is
comparable with the separation of the peaks given by the
width of the coexistence region, nR − nL = 1.44n0. As a
result, the two-peak structure cannot be resolved for this
sampling statistics. Let us note here that decreasing the
volume of the cells, (∆l)3, can be done without penalty if
one proportionally increases the number of test particles
per particle, NT . Conversely, decreasing the number of
test particles per particle NT exacerbates the effects of
finite number statistics.

While this discussion may appear to be of purely nu-
merical nature, experimental data are similarly affected
by finite number statistics. In experiments, one always
deals with exactly NB particles per event, which in our
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FIG. 13. (Color online) Pair correlation function at t =
30 fm/c for a system initialized inside the quark-hadron spin-
odal region (at baryon number density nB = 3.0 n0 and
temperature T = 1 MeV), calculated within the parallel en-
sembles method; the results are averaged over N (parallel)

ev =
NT ×Nev = 25, 000 events. Spontaneous spinodal decompo-
sition leads to a formation of two coexisting phases: a “less
dense” and a “more dense” nuclear liquid. The increased rel-
ative concentration of particles in the “more dense” phase re-
sults in an elevated normalized pair correlation at small dis-
tances. The correlation is exactly the same as shown on the
rightmost panel in Fig. 9. See text for more details.

simulations corresponds to NT = 1. Naturally, it must
lead to a distribution in which any possible peaks are even
more washed out. This can be seen in Fig. 12, where we
show results for the case of NT = 1 and ∆l = 2 fm; the
red and blue lines correspond to the distribution at time
t = 0 and tend = 50 fm/c, respectively. Here, in order
to ensure that we are comparing systems with identical
dynamics, we used the same simulation data as in Figs.
8 and 11, but this time we accessed the baryon number
distribution corresponding to NT = 1 using the parallel
ensembles method (for details, see Sec. IV and Appendix
G). Not surprisingly, the signal is almost entirely washed
out and only a slight broadening of the distribution is dis-
cernible. We note that increasing the number of events
does not resolve this issue, as the resolution is determined
by Poissonian fluctuations in individual events. Conse-
quently, one needs to devise other methods to extract
the information about the underlying baryon distribu-
tion, one of which will be presented in a forthcoming
work.

Finally, we note that the pair distribution function is
less affected by finite number statistics. In Fig. 13, we
show the pair distribution function calculated within the
parallel ensembles method, which is nearly identical to
the pair distribution function calculated in the full en-
semble, Fig. 9. Indeed, the normalized pair distribution
function is not determined by the total number of test

particles in an event or in a given subvolume of the sys-
tem, but by relations between any two test particles.
The only difference between the pair distribution func-
tions obtained within the two methods is in the error
bars, which are larger in the parallel ensembles case due
to smaller statistics: the number of pairs in the full en-
semble is given by Nev(NBNT )2, while in the parallel
ensembles it’s equal NTNev(NB)2. Obtaining the same
pair distribution function demonstrates that the physics
accessible in the full ensemble and the parallel ensembles
approach is the same.

VII. SUMMARY AND OUTLOOK

In this paper we have presented a flexible vector den-
sity functional (VDF) model, which allows one to con-
struct a parameterized dense nuclear matter EOSs (Sec.
II). The model, based on the relativistic Landau Fermi-
Liquid theory, obeys Lorentz covariance, preserves con-
servation laws, and is shown to be thermodynamically
consistent. The constructed family of EOSs describes
two first-order phase transitions: the experimentally ob-
served nuclear liquid-gas phase transition, and a postu-
lated high-temperature, high-density phase transition in-
tended to model the QGP phase transition (Sec. III).

To study the dynamical evolution of dense nuclear mat-
ter, the model has been implemented in the hadronic
transport code SMASH [23] through solving the relativis-
tic mean-field equations of motion derived from the VDF
EOS (Sec. IV). For investigating the qualitative features
of the behavior of dense nuclear matter, we have con-
centrated on one specific realization of the dense matter
EOS, keeping in mind that the ultimate motivation be-
hind creating the VDF model and its supporting frame-
work within SMASH is to enable large-scale comparisons
between experimental data and simulations spanning a
broad family of EOSs.

Results from simulations in SMASH (Sec VI) demon-
strate that critical behavior in dense nuclear matter
can be studied within a hadronic transport approach
equipped with interactions corresponding to a chosen
EOS. In particular, we have shown that systems initial-
ized in unstable regions of the phase diagram undergo
spontaneous spinodal decomposition, followed by an evo-
lution towards an equilibrated mixture of two coexisting
phases with compositions matching the predictions from
the underlying EOS. Likewise, an investigation of equili-
brated uniform nuclear matter in the vicinity of a critical
point shows that the thermodynamic behavior expected
from the underlying theory is reproduced. The correct
description of both thermodynamics and non-equilibrium
phenomena implies that hadronic transport can be used
as a tool with unique capabilities to investigate the dy-
namic evolution of matter created in heavy-ion collisions.

We have also shown that for systems initialized at var-
ious points of the phase diagram, the pair distribution
functions calculated from hadronic transport simulation
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data follow theoretical expectations based on the second-
order cumulant ratio, κ2

κ1
(Sec. VIB). In particular, as the

baryon number density (and, consequently, baryon chem-
ical potential) is increased in the region of the phase dia-
gram affected by the critical point, the pair distribution
function follows a clear pattern: displaying first anticor-
relation, then correlation, and then again anticorrelation.
This behavior of two-particle correlations (and, on the
theoretical side, of the second-order cumulant ratio κ2

κ1
)

is a clear signature of crossing the phase diagram above
the critical point. This is especially important in view
of the experimental search for the QCD critical point, as
lower order statistical observables, such as κ2

κ1
, are more

likely to be measured with accuracy sufficient for discern-
ing signals of critical behavior.

Multiple future research directions are possible, with a
couple of them considered below.

To start, possible generalizations of the VDF model in-
clude adding interactions of scalar type, which will allow
for an even greater flexibility in postulating the position
of the QCD critical point. While such interactions will
be computationally much more demanding, their addi-
tion will ultimately allow for a more robust comparison
with experimental data. This generalization of the VDF
model is a subject of an ongoing work.

Further, finite number statistics affects both the quali-
tative and quantitative features of statistical observables.
We have shown that within two complementary simula-
tion paradigms, hadronic transport gives access to both
the continuous baryon number distribution, employed in
theoretical calculations, and the physical baryon num-
ber distribution relevant to experimental results (Secs. IV
and VB). Though driven by the same physics, these dis-
tributions lead to starkly different values for integrated
statistical observables (Secs. VIB and VIC). A direct
link between these two simulation paradigms and its con-
sequence for comparisons with experimental data is the
subject of an ongoing work.
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Appendix A: The quasiparticle distribution function

Quasiparticles are understood as emergent phenom-
ena occurring when a microscopically complex system of
“real” particles can be described as if it was made of dif-
ferent, weakly interacting “quasiparticles” in free space.
This concept is well known, among others, when applied
to the behavior of an electron traveling through a semi-
conductor, which can be described as a motion of a free
electron with a different, “effective” mass.

The bulk behavior of a system of quasiparticles is
described by a quasiparticle distribution function, con-
structed based on a one-to-one correspondence between
quasiparticles and “real” particles. In the non-relativistic
limit, this correspondence can be understood as follows
(for a more complete introduction see [65]). One begins
by considering an ideal Fermi gas (neglecting spin), in
which the dispersion relation is

εfreep =
p2

2m
. (A1)

The state of the system as whole can be specified by giv-
ing the number of particles Np = {0, 1} in each of the
single-particle states defined by a specific value of the
momentum p. Thus, for example, in the ground state
each of the states with momenta less than the Fermi mo-
mentum, pF , is occupied (Np = 1), and all other states
are empty (Np = 0). One can then imagine that inter-
actions in the system are slowly turned on in such a way
that the process is adiabatic. Quantum mechanics shows
that while such an adiabatic change will lead to a distor-
tion of the energy levels, it will preserve their number.
This means that the distribution function Np, while also
smoothly distorted, preserves its functional form. Now,
however, the dispersion relation εintp takes interactions
into the account, and it is different than that of a free
particle, Eq. (A1).

We stress that the construction of the quasiparticle
distribution is based on the assumption that there ex-
ists a one-to-one correspondence between quasiparticles
and “real” particles. This means, for example, that this
formalism is not appropriate for describing phenomena
in which the number of particles in the system changes
throughout the evolution, such as formation or dissolu-
tion of bound states.

For describing the macroscopic properties of a Fermi
liquid, it is sufficient to use a mean or smoothed quasi-
particle distribution function, often denoted by fp, which
is an average of Np over a group of neighboring single-
particle states. While Np is a discontinuous function of
p, fp and is a smooth function of p.



24

Appendix B: Model derivations

1. Quasiparticle energy

To obtain the quasiparticle energy, we calculate a func-
tional differential of the energy density, δE(1), where E(1)

is given by Eq. (1). Taking into the account that the ki-
netic energy εkin, Eq. (2), is also a functional of the quasi-
particle distribution function through the dependence of
εkin on baryon current, we get

δE(1) = −C1 (b1 − 2)
(
jµj

µ
) b1

2 −2
jµδj

µ j · j

− C1

(
jµj

µ
) b1

2 −1
j · δj

+ g

∫
d3p

(2π)3
εkin δfp

+ C1 (b1 − 2)
(
jµj

µ
) b1

2 −2
jµδj

µ
(
j0
)2

+ 2C1

(
jµj

µ
) b1

2 −1
j0δj

0

+ C1

(
b1 − 1

)(
jµj

µ
) b1

2 −1
jµδj

µ , (B1)

where in the first two terms we have used the definition
of the vector baryon current j, Eq. (3). The first, fourth,
and sixth terms can be combined using j0j0−j ·j = jµj

µ,
so that

δE(1) = −C1

(
jµj

µ
) b1

2 −1
jµδj

µ

− C1

(
jµj

µ
) b1

2 −1
j · δj

+ g

∫
d3p

(2π)3
εkin δfp

+ 2C1

(
jµj

µ
) b1

2 −1
j0δj

0 . (B2)

Then we also note that jµδjµ = j0δj
0−jδj, which further

reduces the above equation to

δE(1) = g

∫
d3p

(2π)3
εkin δfp

+ C1

(
jµj

µ
) b1

2 −1
j0δj

0 . (B3)

Using the definition of baryon density j0, Eq. (4), we
arrive at

δE(1) = g

∫
d3p

(2π)3

[
εkin + C1

(
jµj

µ
) b1

2 −1
j0

]
δfp ,(B4)

from which we immediately obtain the quasiparticle en-
ergy,

εp ≡
δE
δfp

= εkin + C1

(
jµj

µ
) b1

2 −1
j0 . (B5)

2. Relativistic covariance of the equations of
motion

With the definition of the kinetic momentum Πµ, Eq.
(23), the Hamilton’s equations, Eqs. (9) and (10), can be

rewritten as
dxi

dt
=

Πi

Π0
(B6)

and
dpi

dt
=

∑
k Πk

Π0

∂Ak

∂xi
+
∂A0

∂xi
. (B7)

Using the fact that H(1) = εp = p0, we can see that for
the temporal component of xµ we have trivially

dx0

dt
=
∂H(1)

∂p0
= 1 =

Π0

Π0
, (B8)

which allows us to write Eqs. (B6) and (B8) together as

dxµ

dt
=

Πµ

Π0
. (B9)

For the temporal part of pµ we can likewise write

dp0

dt
=
dp0

dx0
=

∑
k Πk

Π0

∂Ak

∂x0
+
∂A0

∂x0
, (B10)

where on the right-hand side we have simply carried out
the differentiation with respect to x0, and it follows that
Eqs. (B7) and (B10) can be jointly written as

dpµ

dt
=

∑
k Πk

Π0

∂Ak

∂xµ
+
∂A0

∂xµ
=

=

∑
k Πk

Π0

∂Ak

∂xµ
+

Π0

Π0

∂A0

∂xµ
=

=
∑
ν

Πν

Π0

∂Aν

∂xµ
. (B11)

Let us note that from the definition of the kinetic mo-
mentum Πµ we have

dΠµ

dt
=
dpµ

dt
− dAµ

dt
. (B12)

Using Eq. (B11), the above equation becomes

dΠµ

dt
=
∑
ν

Πν

Π0

∂Aν

∂xµ
− dAµ

dt
. (B13)

We can always write

dAµ

dt
=
∂Aµ

∂xν
dxν

dt
=
∂Aµ

∂xν
Πν

Π0
, (B14)

so that in the end
dΠµ

dt
=
∑
ν

Πν

Π0

∂Aν

∂xµ
− Πν

Π0

∂Aµ

∂xν

=
∑
ν

Πν

Π0

∂Aν

∂xµ
− Πν

Π0

∂Aµ

∂xν

=
∑
ν

Πν

Π0

(
∂µAν − ∂νAµ

)
=
∑
ν

Πν

Π0
Fµν , (B15)

where Fµν is defined similarly as the field strength in
EM.

Both Eq. (B9) and Eq. (B15) are written in a relativis-
tically covariant form.
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TABLE III. Parameter sets corresponding to the EOSs reproducing sets of the QGP-like phase transition characteristics(
T

(Q)
c , n

(Q)
c , ηL, ηR

)
, listed in Table I.

set b1 b2 b3 b4 C̃1 [MeV] C̃2 [MeV] C̃3 [MeV] C̃4 [MeV]

I 1.7614679 3.8453863 4.4772660 6.7707861 -8.315987×101 6.144706×101 -3.108395×101 3.127069×10−1

II 1.8033077 3.0693813 7.9232548 10.7986978 -9.204350×101 3.968766×101 -1.306487×10−1 2.434034×10−3

III 1.8042024 3.0631798 6.6860893 20.7276154 -9.224000×101 3.986263×101 -1.066766×10−1 2.160279×10−11

IV 1.7681391 3.5293515 5.4352787 6.3809823 -8.450948×101 3.843139×101 -7.958557 1.552593

V 1.7782362 3.4936863 4.2528897 10.3240297 -8.627959×101 4.786488×101 -1.406946×101 1.182795×10−4

VI 1.7989835 3.1098389 6.3017683 8.0937872 -9.101665×101 3.899891×101 -4.856681×10−1 1.935808×10−2

3. Form of the quasiparticle distribution function

To obtain the functional form of the quasiparticle dis-
tribution function fp of a thermal Fermi system, we use
fundamental thermodynamic relations. We know that
any variation in the energy density is connected to a
variation in entropy density, s, and particle density, n,
through

δE = T δs+ µ δn , (B16)

where T is the temperature and µ is the chemical po-
tential. We already know that the dependence of δE on
the distribution function is given by the definition of the
quasiparticle energy εp, δE ≡ εp δfp, but we need to
establish the dependence of δs and δn on fp.

It is possible to calculate the entropy of a given state of
the system by combinatorial considerations only, and in
view of the one-to-one correspondence between the states
of the Fermi liquid and the free Fermi gas (see Appendix
A), it is natural to assume that the entropy density must
have the same form as in the case of the free Fermi gas,

s = − 1

V

∑
p

[
fp ln fp + (1− fp) ln(1− fp)

]
.(B17)

(We note that we use the natural units in which the
Boltzmann constant kB = 1.) Consequently,

δs = − 1

V

∑
p

[
δfp ln

fp
1− fp

]
. (B18)

The number of quasiparticles in the interacting system
directly corresponds to the number of particles in the cor-
responding state of the free Fermi gas. Furthermore, the
interaction between the particles conserves the particle
number, and so the total number of particles in a state
of the interacting system must be the same as in the non-
interacting system. In consequence, we can express the
quasiparticle density using the quasiparticle distribution
function,

n =
1

V

∑
p

fp , (B19)

from which we have

δn =
1

V

∑
p

δfp . (B20)

With all this, we can rewrite Eq. (B16) as
1

V

∑
p

εp δfp = −T
V

∑
p

ln
fp

1− fp
δfp

+
µ

V

∑
p

δfp , (B21)

which can be further rearranged as

1

V

∑
p

[
εp + T ln

fp
1− fp

− µ
]
δfp = 0 . (B22)

The above equality will hold for any variation δfp if and
only if the term in the square bracket vanishes for any
p, and we can immediately use this fact to solve for the
quasiparticle distribution function,

fp =
1

exp
(
εp−µ
T

)
+ 1

. (B23)

Note that, because the quasiparticle energy εp itself de-
pends on the quasiparticle distribution fp, the above
equation is in fact a rather complicated implicit equa-
tion for fp, in contrast to the free Fermi gas case.

Appendix C: Parameter sets

Here we provide parameters corresponding to the EOSs
reproducing sets of the QGP-like phase transition char-
acteristics

(
T

(Q)
c , n

(Q)
c , ηL, ηR

)
, listed in Table I. It is im-

portant to note that the values of the coefficients of the
interaction terms, {C1, C2, C3, C4}, depend on a chosen
system of units. Here, we adopt a convention used in
many Skyrme-like parametrizations, in which the single-
particle potential is written in the form

U =

N∑
i=1

C̃i

(
nB
n0

)bi−1

, (C1)
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where n0 is the saturation density, so that C̃i must have
a dimension of energy. Naturally, C̃i and Ci are related
by

Ci =
C̃i

nbi−1
0

. (C2)

In Table III, we list coefficients {C̃1, C̃2, C̃3, C̃4} in
units of MeV. Note that in particular, the sum of all coef-
ficients yields the (rest frame) value of the single-particle
potential at nB = n0,

∑N
i=1 C̃i = −52.484 MeV.

Appendix D: Symmetric spinodal regions

The spinodal region is the range of baryon number den-
sities between two local extrema of pressure, a maximum
at ηL and a minimum at ηR, with ηL < ηR. A curve
exhibiting two extrema will most naturally have an in-
flection point approximately in between them. We can
see this by considering the following polynomial:

f(x) = ax3 + bx2 + cx+ d , (D1)

which is a “minimal” polynomial needed to produce two
local extrema. The condition for an extremum at some
point x0 is

df

dx

∣∣∣∣
x=x0

= 3ax2 + 2bx+ c

∣∣∣∣
x=x0

= 0 . (D2)

We can solve this equation to yield the positions of the
extrema xL and xR,

xL =
−b−

√
b2 − 3ac

3a
, (D3)

xR =
−b+

√
b2 − 3ac

3a
. (D4)

The position of the inflection point is established through
the condition

d2f

dx2

∣∣∣∣
x=xinfl

= 6ax+ 2b

∣∣∣∣
x=xinfl

= 0 , (D5)

from which we get

xinfl = −−b
3a

. (D6)

It is immediately apparent that

xinfl =
xL + xR

2
, (D7)

placing the inflection point exactly in the middle between
the two extrema. This result is only exact for a third-
order polynomial, and will be changed if the polynomial
includes additional terms with which one is able to ma-
nipulate the behavior of the curve between the extrema.

We will now argue that in a model with vector-type in-
teractions only, the inflection point of the pressure curve
at zero temperature,

d2P (T = 0)

dn2
B

∣∣∣∣
nB=ninfl

= 0 , (D8)

will coincide with the location of the critical point on the
nB axis. Let us first write the pressure as a sum of an
ideal gas term and an interaction term,

P = Pideal + Pint . (D9)

In particular, at T = 0 the ideal part of the pressure
is given by the ideal Fermi gas, Pideal(T = 0) = PFG

0 .
Because the Fermi gas at zero temperature depends on
the baryon density as PFG

0 ∝ n4/3
B , for large densities we

can safely assume that
d2PFG

0

dn2
B

=
4

9
n
−2/3
B ≈ 0 . (D10)

It then follows that at the inflection point we must have
d2Pint
dn2

B

∣∣∣∣
nB=ninfl

≈ 0 . (D11)

At the same time, the condition for the position of the
critical point at some location (Tc, nc) leads to

d2Pint
dn2

B

∣∣∣∣
nB=nc

= −d
2Pideal
dn2

B

∣∣∣∣nB=nc
T=Tc

. (D12)

For large enough temperatures, the ideal Fermi gas is
well approximated by the ideal Boltzmann gas, and we
can write the ideal part of the pressure as

Pideal ≈ TnB . (D13)

As a result, Eq. (D12) becomes

d2Pint
dn2

B

∣∣∣∣
nB=nc

= 0 , (D14)

which immediately confirms that in this case, the location
of the critical density nc coincides with the location of the
inflection point ninfl of the pressure at zero temperature.
Moreover, going beyond the approximation used in Eq.
(D10), we see that at zero temperature the pressure at
nB = nc will have a very small and positive curvature,
which means that the critical density is somewhat larger
than the inflection point density, nc & ninfl.

The VDF model largely reproduces the behavior de-
scribed above. First, due to the fact that the pressure fits
in the VDF model are “minimal” fits reproducing (among
other constraints) two local extrema, a maximum at ηL
and a minimum at ηR, the inflection point of the pressure
lies roughly in the middle between ηL and ηR. Second,
due to the thermal part of the pressure being just like
that of an ideal gas, the location of the critical point nc
and the location of the inflection point of the pressure
at zero temperature ninfl are related by nc = ninfl + δn,
where δn is a small positive correction. This explains
why in the VDF model the critical baryon number den-
sity nc lies roughly in the middle of the spinodal region
(ηL, ηR).
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Appendix E: The method of test particles

The function f(t,x,p) is a continuous distribution
function for a given total number A of nucleons. Solving
the Boltzmann equation is equivalent to obtaining the
time evolution of the distribution function. Numerically,
given the initial condition in form of the distribution
function at some time t0, f(t0,x0,p0), we solve for the
distribution f(t,x,p) at a slightly later time t = t0 + δt,
and repeat the process until a final time t = tend is
reached. In more detail, the numerical solution of the
VUU equation is achieved through the method of test
particles [54], which is based on the assumption that the
continuous f(t,x,p) distribution can be approximated
by the distribution of a large number N of discrete test
particles with phase space coordinates

(
xi(t),pi(t)

)
, see

Eq. (51). If we demand that these test particles are prop-
agated according to

dx

dt
=
∂H(1)

∂p
,

dp

dt
= −

∂H(1)

∂x
, (E1)

then the Vlasov equation, which is the left-hand side of
Eq. (50), immediately follows from the Liouville theorem.

For an evolution without mean-fields, it is most natural
to take the number of test particles exactly corresponding
to the actual number of nucleons present in the system,
N = A, NT = 1. However, employing mean-fields depen-
dent on local density and its gradients requires adopting
an approach in which statistical noise due to a finite num-
ber of test particles is suppressed. This is especially im-
portant in the case of models with competing repulsive
and attractive potentials of large magnitudes (as is often
the case in relativistic models), where relatively small
numerical fluctuations can produce significant errors in
the mean-field potential calculations. Thus, for example,
for studies of nuclear matter with average density around
the saturation density n0, a number of test particles per
nucleon NT = 100 is often used.

The local baryon current is then defined on a lattice,
where at a given lattice point, the current is a sum of con-
tributions from all test particles which are in the volume
element Vi corresponding to that lattice point,

jµ(ri) =
1

NT

1

Vi

∑
k∈Vi

Πµ(k)

Π0(k)
. (E2)

This prescription naturally reproduces the baryon num-
ber in a given volume element,

B(i) = j0(i)Vi =
N(i)

NT
, (E3)

where N(i) is the number of test particles in Vi. In prac-
tice, in order for the local densities and currents to be
smooth enough, a prescription is used in which currents
at a given lattice point i are weighted sums of contri-
butions from all test particles in some chosen volume Vs

around the lattice point i, which is larger than the vol-
ume element Vi, Vs > Vi,

jµ(ri) =
∑
k∈Vs

Πµ(k)

Π0(k)
S(ri − rk) , (E4)

where the weight S(ri − rk) is known as the smearing
function, normalized such that

Vi
∑
i

S(ri − rk) =
1

NT
. (E5)

Various smearing functions are being employed in exist-
ing transport codes. In our approach, we employ a tri-
angular smearing function, originating from the lattice
Hamiltonian method of solving nuclear dynamics [66].

Appendix F: Pair distribution function and the
second-order cumulant

The procedure to compute the radial distribution func-
tion gi(r), given by Eq. (52), can be generalized to the
case of a continuous system described by a particle den-
sity distribution n(r′),

gi(r,∆r) =

∫
dr′

(
n(r′)− 1 δ(ri − r′)

)
× θ

(
r + ∆r − |ri − r′|

)
θ
(
|ri − r′| − (r −∆r)

)
, (F1)

where care must be taken to subtract the self-
contribution from the reference particle. Similarly, the
pair distribution function g̃(r), Eq. (53), can be rewrit-
ten as

g̃(r,∆r) =
N
2

∫
dr′
∫
dr′′ n(r′)

(
n(r′′)− δ(r′ − r′′)

)
× θ

(
r + ∆r − |r′ − r′′|

)
θ
(
|r′ − r′′| − (r −∆r)

)
=
N
2

∫
dr′
∫
dr′′ n(r′)n(r′′)

× θ
(
r + ∆r − |r′ − r′′|

)
θ
(
|r′ − r′′| − (r −∆r)

)
− N

2

∫
dr′ n(r′) θ

(
∆r − r

)
. (F2)

We note that the second term is only non-zero when
r < ∆r, which is correct given that the self-contribution
only needs to be subtracted if we consider the pair dis-
tribution function within a distance ∆r around the ref-
erence particles.

It is possible to establish a connection between the pair
distribution function and the second-order cumulant κ2.
For this, we consider the pair distribution function g̃(r)
at distances close to the reference particle, that is we put
r = 0, by means of which Eq. (F2) becomes

g̃(0,∆r) =
N
2

[ ∫
dr′
∫
dr′′ n(r′)n(r′′)

× θ
(

∆r − |r′ − r′′|
)
−
∫
dr′ n(r′)

]
. (F3)
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Let us assume that ∆r is small and that within the
distance ∆r from r′ the density is smooth enough for
n(r′′) ≈ n(r′) to hold, in which case

g̃(0,∆r) =
N
2

[ ∫
dr′

[
n(r′)

]2
×
∫
dr′′ θ

(
∆r − |r′ − r′′|

)
−
∫
dr′ n(r′)

]
=
N
2

[
V∆

∫
dr′

[
n(r′)

]2 − ∫ dr′ n(r′)

]
, (F4)

where V∆ = (4/3)πr3
∆. Furthermore, let us divide

the volume of the system V into cubes of volume V∆,
Ncubes = V/V∆, and assume that we can safely dis-
cretize the remaining integrals in Eq. (F4) according to∫
dr′ f(r′) →

∑Ncubes
i=1 V∆f(ri), where ri points to the

center of each cube. With this and taking the number
of particles in the i-th cube to be Ni(ri) ≡ V∆n(ri), Eq.
(F4) becomes

g̃(0,∆r) ≈ N 1

2

[
Ncubes∑
i=1

[
N(ri)

]2 − Ncubes∑
i=1

N(ri)

]
. (F5)

Since the normalization can be freely chosen given that
ρ̃(0,∆r) should be compared to a reference distribution
for an ideal gas ρ̃0(0,∆r), in particular we can take N =
2/Ncubes, so that finally

g̃(0,∆r) =
1

Ncubes

[
Ncubes∑
i=1

[
N(ri)

]2 − Ncubes∑
i=1

N(ri)

]
,(F6)

where Ncubes is determined by ∆r.
It is clear from Eq. (F6) that the radial distribution

function of all distinct particle pairs at distances close to
the reference particles is

g̃(0,∆r) = M2 −M1 = F2 = 〈N(N − 1)〉 , (F7)

where Mi and Fi are moments and factorial moments
of the distribution, respectively. Moreover, assuming
that the pair distribution function for uncorrelated pairs
g̃0(0,∆r) is described by the Poisson distribution, for
which 〈N〉 = λ and 〈N2〉 = λ2 +λ (where λ is the mean),
we have

g̃0(0,∆r) = 〈N〉2 . (F8)

Let us consider the deviation of the behavior of the
pair distribution function g̃(0,∆r) from the ideal case of
g̃0(0,∆r), which can be conveniently done by considering
the measure

R =
g̃ (0,∆r)

g̃0(0,∆r)
− 1 . (F9)

Using Eqs. (F7) and (F8) we can immediately rewrite
this as

R =
〈N2〉 − 〈N〉 − 〈N〉2

〈N〉2
=
κ2 − κ1

κ2
1

. (F10)

In particular, provided that κ1 > 0, we immediately
obtain that R is bigger (smaller) than 0 if and only if
the second-order cumulant ratio κ2/κ1 is bigger (smaller)
than 1, which can be alternatively expressed as in Eqs.
(62) and (63).

We would like to stress that the above relations hold
for an arbitrary distribution of particles, without any
assumptions on the underlying physics, provided that
the corresponding uncorrelated system can be described
by the Poisson distribution. In any such system the
sign of [g̃(r,∆r)/g̃0(r,∆r)] − 1 at r → 0 is the same
as the sign of (κ2/κ) − 1. In particular, it follows that
g̃(r,∆r)/g̃0(r,∆r) < 1 for systems where a repulsive in-
teraction dominates at short distances (leading to a dis-
tribution more uniform than that of an ideal gas), while
g̃(r,∆r)/g̃0(r,∆r) > 1 for systems where an attractive
interaction dominates at short distances (which leads to
a distribution that is less uniform than that of an ideal
gas).

Appendix G: Parallel ensembles in SMASH

The version of SMASH that we used did not have the
option to run in a parallel ensembles mode (this option
has been recently added to SMASH and is currently being
tested). However, for simulations with all collision and
decay channels turned off (such as we study in this pa-
per), we can still employ the concept of parallel ensembles
a posteriori, that is at the analysis stage. Specifically, in
each event we divide the NTNB test particles obtained
from a full ensemble SMASH simulation (where NB is the
baryon number evolved in the simulation and NT is the
number of test particles per particle) into NT separate
groups. We then treat these groups as separate events.
Each of these a posteriori constructed events is governed
by PNB

(Ni) (see Sec. VB3).
We note that for a SMASH simulation run in the full

ensemble mode with Nev events and NT test particles
per particle, the corresponding calculation in the parallel
ensembles mode will be characterized by NTNev events
with NT = 1 test particles per particle.

Appendix H: Energy evolution

Theory predicts that the total (binding) energy per
particle at the saturation point should be EB =

E
nB

∣∣∣∣
T=1 [MeV]
nB=n0

− mN = −16.23 MeV, on average. Fur-

ther, conservation of energy demands that the total en-
ergy in the system, and consequently the total energy
per particle, be conserved. In Fig. 14, we show the en-
ergy evolution of a system initialized at the saturation
density of nuclear matter, nB = n0, and temperature
T = 1 MeV. The left panel shows the kinetic energy
per particle, the middle panel shows the mean-field en-
ergy per particle, and the right panel shows the total
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FIG. 14. Time evolution of kinetic energy per particle (left panel), mean-field energy per particle (middle panel), and total
(binding) energy per particle (right panel) for a system initialized at nuclear saturation density n0 = 0.160 fm−3 and temperature
T = 1 MeV. The binding energy per particle at initialization, EB(t = 0) ≈ −16.218 MeV, is within 0.1% from the value expected
from model calculations, and the readout of these quantities from the mean-field lattice. The mean-field energy oscillates slightly
throughout the evolution, reflecting local fluctuations in density, but its average value remains the same. The increase in kinetic
energy per particle in time, which also causes the increase of total energy per particle in time, is an unwanted feature of the
simulation. Slight violation of the conservation of energy is a common feature of many hadronic transport codes, and is
connected to the choice of the integration method for the equations of motion, as well as to details of density and density
gradient calculations (see text for more details).

(binding) energy per particle. The binding energy per
particle at initialization is found to be within 0.1% from
the expected value, EB(t = 0) ≈ −16.218 MeV. The
mean-field energy is found to oscillate slightly through-
out the evolution, reflecting local fluctuations in density,
but its average value remains the same, which is what
we expect. An unwanted feature of the simulation is the
increase in kinetic energy per particle in time, which is
also what causes the increase of total energy per parti-
cle in time. This unphysical gain in energy is a feature
of many hadronic transport codes, and is connected to
the choice of the integration method for the equations of
motion, as well as to details of density and density gradi-
ent calculations, and the readout of these quantities from
the mean-field lattice. The spurious contributions to the
kinetic energy depend particularly strongly on statistical
noise fluctuations in the magnitude of local density gra-
dients, and one of the main reasons for using a significant
number of test particles per particle, NT , is suppressing
unphysical density fluctuations due to the finite number
of particles. While there exist methods of ensuring ex-
act energy conservation in non-relativistic systems [67],
we are unaware of generalizations of such methods ap-
plicable to relativistic transport codes. In view of this,
some level of energy conservation violation will always be
present in our simulations.

The degree of energy conservation violation shown in
Fig. 14 is negligible; this is the case because the system
in question is initialized in equilibrium, where mean-field
forces are small. However, in general the issue can be-
come much more troublesome. A summary of average
unphysical gains in energy per particle, ∆

(
E
N

)
, for sim-

ulations pertaining to different points on the phase dia-
gram, is included in Table IV. Generally, contributions to
∆
(
E
N

)
are larger for systems initialized in regions of the

phase diagram where forces acting on test particles are
large, e.g., inside the spinodal region of a phase transition
(and especially in the spinodal region of the nuclear phase
transition, where density gradients tend to be very large).
Conversely, energy conservation is very satisfactory when
forces acting on test particles are small, e.g., in regions
of the phase diagram where nuclear matter is thermo-

TABLE IV. A summary of average unphysical gains in energy
per particle, ∆

(
E
N

)
, for infinite matter simulations pertaining

to different points on the phase diagram. For each simulation,
the side length of the box was set at L = 10 fm and the
lattice spacing was chosen at a = 1 fm. The results were
averaged over ten events. The dependence of ∆

(
E
N

)
on the

initialization point is evident. Additionally, the number of
test particles per particle NT and the time step ∆t are also
shown to play a role. See text for more details.

nB [n0] T [MeV] tend [fm/c] NT ∆t [fm/c] ∆
(
E
N

)
[MeV]

0.25 1 200 20 0.1 2.291

0.25 1 200 200 1.0 1.516

0.25 1 200 200 0.1 1.411

0.25 1 200 200 0.01 1.393

0.25 1 200 500 1.0 1.315

0.25 25 200 200 1.0 1.135×10−4

1.0 1 200 200 1.0 5.684×10−6

3.0 1 50 10 0.1 1.615

3.0 1 50 50 0.1 0.542

3.0 1 50 100 0.1 0.420

3.0 125 50 50 0.1 1.373×10−4



30

dynamically stable, and in particular at the saturation
point of nuclear matter. Additionally, ∆

(
E
N

)
depends

on the number of test particles NT and time step ∆t.
In general, a larger number of test particles per particle

and a smaller time step lead to a better energy conserva-
tion; however, they also lead to a significant increase in
the simulation time. Thus greater accuracy needs to be
balanced with practical considerations.
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