Strong Ferromagnetic Exchange Coupling and Single-Molecule Magnetism in MoS$_4$ $^{3-}$-Bridged Dilanthanide Complexes

Lucy E. Darago,a,† Monica D. Boshart,b,‡ Brian D. Nguyen,b Eva Perlh,b Joseph W. Ziller,b Wayne Lukens,c Filipp Furche,b William J. Evans,$^{b,∗}$ and Jeffrey R. Long$^{d,e,∗}$

aDepartment of Chemistry, University of California, Berkeley, California 94720, United States
bDepartment of Chemistry, University of California, Irvine, California 94697, United States
cChemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
dDepartment of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
eMaterials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States

ABSTRACT: We report the synthesis and characterization of the trinuclear 4d-4f compounds [Co(C$_2$Me$_5$)$_3$]-[(C$_2$Me$_5$)$_3$-Ln[μ-S$_2$]Mo(μ-S)$_2$-Ln(C$_2$Me$_5$)$_3$]$_2$, 1-Ln (Ln = Y, Gd, Tb, Dy), containing the highly polarizable MoS$_3^-$-bridging unit. UV-Vis-NIR diffuse reflectance spectra and DFT calculations of 1-Ln reveal a low-energy metal-to-metal charge transition assigned to charge transfer from the singly-occupied 4d2 orbital of Mo$^{5+}$ to the empty 5d2 orbital(s) of the lanthanide (4d2 in the case of 1-Y), mediated by sulfur-based 3p orbitals. Electron paramagnetic resonance spectra collected for 1-Y in a tetrahydrofuran solution show large 89Y hyperfine coupling constants of $A_1 = 23$ MHz, and $A_2 = 26$ MHz, indicating the presence of significant yttrium-localized unpaired electron density. Magnetic susceptibility data support similar electron delocalization and ferromagnetic Ln–Mo exchange for 1-Gd, 1-Tb, and 1-Dy. This ferromagnetic exchange gives rise to an $S = 15/2$ ground state for 1-Gd and one of the largest magnetic exchange constants involving GdIII observed to date, with $J_{Gd-Mo} = +16.1(2)$ cm$^{-1}$. Additional characterization of 1-Tb and 1-Dy by ac magnetic susceptibility measurements reveals that both compounds exhibit slow magnetic relaxation. For 1-Dy, the extracted thermal relaxation barrier of $U_{th} = 68$ cm$^{-1}$ is the largest yet reported for a complex containing a paramagnetic 4d metal center. Together, these results provide a potentially generalizable route to enhanced nd-4f magnetic exchange, revealing opportunities for the design of new nd-4f single-molecule magnets and bulk magnetic materials.

INTRODUCTION

Single-molecule magnets, molecules that exhibit a well-isolated bistable magnetic ground state with a thermal barrier to relaxation of the magnetization, U, are of potential utility in applications such as high-density information storage and quantum information processing.1 However, to date even the most promising systems are hindered by low operating temperatures, with upper limits defined by the blocking temperature, T_b, of a given molecule. Below this temperature, the magnetization remains pinned along the molecular magnetic easy axis and is not susceptible to thermal fluctuations, akin to the magnetic polarization within bulk magnetic materials. One particularly successful strategy for generating single-molecule magnets with high blocking temperatures has been to design systems exhibiting strong magnetic exchange interactions between highly anisotropic lanthanide ions, as exemplified by the diterbium(HI) complex [[(Me$_3$Si)$_2$N]$_2$-Ln(THF)]$_2$[(μ-N$_2$)]$_2$. Here, the diffuse spin orbital of the N$_2^3-$ radical bridge is able to penetrate the core 4f magnetic orbitals to engender strong lanthanide-radical coupling, resulting in a highly anisotropic molecular species with a 100-s magnetic blocking temperature of 14 K, one of the highest known values for an exchange-coupled system. A blocking temperature of 20 K was subsequently observed for the related N$_2^3-$-bridged complex, [((C$_2$Me$_5$)$_3$-Y)Mo(μ-N$_2$)]$_2$, and in this and other exchange-coupled complexes the barrier to magnetic relaxation, which tracks to some extent with T_b, has been shown to be a function of the magnitude of the magnetic exchange coupling.3,4 While recent efforts to enhance crystal field splitting and axiality of magnetic excited states in single-ion lanthanide magnets has led to outstanding advances in 100-s magnetic blocking temperatures, up to 65 K,5 the combination of large magnetic anisotropy and large total angular momentum achieved via strong exchange between lanthanides remains a promising route to still higher blocking temperatures.

Radical-bridged lanthanide complexes offer the advantage of ligands with spin-carrying atoms directly coordinated to the lanthanide ion and therefore close enough to engage in direct exchange with the lanthanide spin density. In contrast, magnetic interactions between
lanthanides and other metal ions typically proceed via superexchange pathways across ligand atoms. As such, while lanthanide-transition metal pairings offer additional synthetic handles with which to design exchange-coupled single-molecule magnets, nd-4f single-molecule magnets typically exhibit very weak magnetic coupling, in most cases less than 5 cm⁻¹. This weak coupling in turn leads to slow magnetic relaxation that is single-ion in origin or prompts low-lying exchange-coupled excited states that preclude large relaxation barriers.

The heavier 4d and 5d transition metals have the potential to facilitate strong superexchange with lanthanides since their more diffuse d orbitals are more likely to have enhanced overlap with ligand orbitals. Furthermore, there is better energy matching of 4d/5d spin-containing orbitals with the spin-carrying 4f and empty 5d lanthanide orbitals, as compared to 3d transition metals. Nearly all lanthanide coordination compounds that incorporate 4d and 5d paramagnetic metal ions (M) utilize cyano-ligated building units, and all of these compounds have yet to yield M–Gd coupling magnitudes of greater than 1.6 cm⁻¹.

Considering candidate 4d bridging moieties with the potential for enhanced exchange strength, we turned to the MoS²⁻ (y = 2, 3) unit. The range of oxidation states available to molybdenum and the polarizability of the single-atom sulphide bridges render this moiety a promising ligand to facilitate strong magnetic communication. Herein, we report the synthesis and characterization of the MoS²⁻–bridged complex salts [Co₂(Me₅CN)₆][(C₅Me₃)₂L₂(Mo(S)₂L₂(C₅Me₃))₂](Ln = Y, Tb, Dy), 1-Ln, accessed via one-electron reduction of the neutral MoVs–bridged complexes (C₅Me₃)L₂(Mo(S)₂L₂(C₅Me₃))₂. Static magnetic susceptibility measurements reveal strong 4f/5d–4d ferromagnetic exchange coupling in 1-Gd, 1-Tb, and 1-Dy, which is proposed to occur via charge transfer from Mo⁷⁺ to Ln⁴⁺, as supported by electron paramagnetic resonance and UV-Vis-NIR spectroscopies. Moreover, slow magnetic relaxation is observed for 1-Tb and 1-Dy.

EXPERIMENTAL

General Information. All manipulations and syntheses described were conducted with rigorous exclusion of air and water using standard Schlenk line and glovebox techniques under an argon or nitrogen atmosphere. Solvents were sparged with UHP argon (Praxair) and dried by passage through columns containing 4–5 and molecular sieves prior to use. NMR solvents (Cambridge Isotopes Laboratory) were dried over NaK alloy, degassed by three freeze-pump-thaw cycles, and vacuum transferred before use. Reagents Co(C₅Me₃)₂ (Aldrich) and (NH₄)₂MoS₅ (M = Mo, W; Aldrich), were used as received. The lanthanide trichlorides LnCl₃ (Ln = Y, Gd, Tb, Dy) were dried according to literature procedures by heating a mixture of the hydrated trichloride with an excess of NH₄Cl. Potassium bis(trimethylsilyl)amide [(K[N(SiMe₃)]₂), Aldrich, 95%] was purified via toluene extraction before use. Pentamethycyclopentadiene, (C₅Me₅H, Aldrich, 95%) was dried over molecular sieves and degassed using three freeze-pump-thaw cycles before deprotonation with K[N(SiMe₃)]₂ to form the ligand KC₅Me₅. The precursor compounds (C₅Me₃)₂Y(C₅H₅), (C₅Me₃)L₂(Mo(S)₂L₂(C₅Me₃))₂, and (PPPh₃)MoS₅ were prepared using literature procedures. Proton NMR spectra were recorded on Bruker GNF00 or CRY0500 MHz spectrometers (10C (H) at 125 MHz) at 298 K, unless otherwise stated, and referenced internally to residual proto-solvent resonances.

Samples for IR spectrometric analysis were prepared as KBr pellets and spectra were obtained on a Jeol FT/IR-4700 or Varian 1000 spectrometer. EPR spectra were collected using an X-band frequency (9.3–9.8 GHz) on a Bruker EMX Spectrometer equipped with an ER041XG microwave bridge, and the magnetic field was calibrated with 2,2-diphenyl-1-picrylhydrazyl (DPPH) (g = 2.0036). UV-visible-NIR diffuse reflectance spectra were collected using a CAR Y 5000 spectrophotometer interfaced with Varian Win UV software. The samples were held in a Praying Mantis air-free diffuse reflectance cell. Barium sulfate powder was used as a non-adsorbing matrix. The Kubelka-Munk conversion (F(R) vs. wavenumber) of the raw diffuse reflectance spectrum (R vs. wavenumber) was obtained by applying the formula F(R) = (1 – R²)/2R. Elemental analyses were conducted on a Perkin-Elmer 2400 Series II CHNS elemental analyzer.

(C₅Me₃)₂Y(Mo(S)₂)Y(C₅Me₃)₂. A slurry of (PPPh₃)MoS₅ (0.043 g, 0.048 mmol) in 3 mL of THF was added to a solution of (C₅Me₃)₂Y(Mo(S)₂)BP₃ (0.135 g, 0.150 mmol) in 2 mL of THF. The solution immediately became dark brown/purple and cloudy. After stirring for 1 h, the mixture was centrifuged to produce a purple supernatant and dark grey insoluble material. The supernatant was collected by filtration and the THF solvent was removed under reduced pressure to yield a dark brown/purple solid. The brown/purple solid was dissolved in toluene (5 mL) and cooled for 24 h at −35 °C to yield dark purple crystals (0.018 g, 43%) suitable for single-crystal X-ray diffraction, which enabled identification of the compound as Mo⁵⁺-bridged (C₅Me₃)₂Y(Mo(S)₂)Y(C₅Me₃)₂. ¹H NMR (CD₂Cl₂): δ 2.09 (s, 5C₅Me₃), 13C¹H NMR 128.4 (C₅Me₃), 12.2 (C₅Me₃) IR (cm⁻¹): 2960m, 2900s, 2850s, 2720w, 1960w, 1440m, 1300m, 1020m, 800w, 730m, 700w, 490s. Anal Caled for C₅H₆S₂YMo: C, 50.97; H, 6.62. Found: C, 50.69; H, 6.52.

(C₅Me₃)₂Gd(Mo(S)₂)Y(C₅Me₃)₂Cd(C₅Me₃)₂C₅H₅O. This compound was prepared as described above for (C₅Me₃)₂Y(Mo(S)₂)Y(C₅Me₃)₂. (PPPh₃)MoS₅ (0.135 g, 0.133 mmol) and (C₅Me₃)₂Gd(Mo(S)₂)BP₃ (0.230 g, 0.307 mmol) were combined to yield dark purple solids of (C₅Me₃)₂Gd(Mo(S)₂)Gd(C₅Me₃)₂ (0.120 g, 83%). Crystals suitable for single-crystal X-ray diffraction were grown from a concentrated toluene solution stored at −35 °C for 24 h (IR cm⁻¹): 2901s, 2855s, 2724w, 2360m, 2341m, 2244m 2056w, 1435m, 1378m, 1022m, 732m, 698m, 493s, 469m. Multiple elemental analyses are consistent with the inclusion of a THF molecule. Anal Caled for C₅H₁₀S₂GdMoC₅H₅O: C, 45.89; H, 5.95. Found: C, 45.96; H, 5.96.

(C₅Me₃)₂Tb(Mo(S)₂)Tb(C₅Me₃)₂. This compound was prepared as described above for (C₅Me₃)₂Y(Mo(S)₂)Y(C₅Me₃)₂. (PPPh₃)MoS₅ (0.142 g, 0.157 mmol) and (C₅Me₃)₂Tb(Mo(S)₂)BP₃ (0.243 g, 0.323 mmol) were combined to yield the product as a purple powder (0.089 g, 55%). Crystals suitable for single-crystal X-ray diffraction were grown from a concentrated toluene solution stored at −35 °C for 24 h IR cm⁻¹: 2963s, 2900s, 2855s, 2725w, 2360m, 2341m, 2244m 2056w, 1435m, 1378m, 1022m, 732m, 698s, 478s, 478s. Anal Caled for C₅H₁₀S₂TbMo: C, 44.36; H, 5.58. Found: C, 44.51; H, 5.58.

(C₅Me₃)₂Dy(Mo(S)₂)Dy(C₅Me₃)₂. This compound was prepared as described above for (C₅Me₃)₂Y(Mo(S)₂)Y(C₅Me₃)₂. (PPPh₃)MoS₅ (0.142 g, 0.157 mmol) and (C₅Me₃)₂Dy(Mo(S)₂)BP₃ (0.243 g, 0.323 mmol) were combined to yield the product as a purple/brown powder (0.115 g, 67%). Crystals suitable for single-crystal X-ray diffraction were grown from a concentrated toluene solution stored at −35 °C for 24 h. IR cm⁻¹: 2963s, 2901s, 2854s, 2724w, 1434m, 1431m, 1378m, 1022m, 733m. Anal Caled for C₅H₁₀S₂DyMo: C, 44.07; H, 5.55. Found: C, 44.36; H, 5.41.
mmol) in 4 mL of THF. The solution changed from purple to red immediately. After 1 h, the solvent was removed under reduced pressure to produce a red solid. The solid was washed with toluene (3 × 2 mL) and dried under reduced pressure to yield the product as a red solid (0.077 g, 74%). Recrystallization of this solid from concentrated THF solutions at −35 °C for 24 h afforded red block-shaped crystals suitable for single-crystal X-ray diffraction. H NMR (THF-d8): δ 2.38 (s, br, 60H, C=CMe3). 2.26 (s, br, 30H, Co(C5Me5)2). IR (cm⁻¹): 2915, 2892, 2851, 2719, 1475m, 1447m, 1427m, 1376m, 1259w, 1066w, 1023m. Anal Calc for CoH90S5Mo(C5Me5)2: C, 51.15; H, 6.42. Found: C, 51.49; H, 6.62.

DISCUSSION

Synthesis and Structural Characterization. The tetrathiomolybdate unit, MoS₄²⁻, has previously been shown to bridge multiple metal centers in transition metal complexes containing Cu, Fe, and Nb, which have primarily found interest in nonlinear optics and as models for the Fe-Mo cofactor in the enzyme nitrogenase. The compound (PPh₃)₃[Mo(C₅H₅)₂S₄] has previously been shown to form dimers with S = ½ MoS₄²⁻ units bridging two Sm³⁺ centers, and has also been previously synthesized, demonstrating the ability of a MoS₄²⁻ unit to bridge two lanthanide(III) centers. Since the latter lanthanides are known to facilitate magnetic exchange and slow magnetic relaxation via their large magnetic moments and magnetic anisotropies, we chose to pursue analogous complexes with Gd, Tb, and Dy.

Toward this goal, the purple trinuclear Mo₃S₄³⁻ bridged complexes (C₅Me₅)₃Ln(μ-S)₃Mo(μ-S)₂Ln(C₅Me₅)₂ (Ln = Y, Gd, Tb, Dy) were synthesized according to the first step of Scheme 1. Single-crystal X-ray diffraction of these compounds revealed two Ln³⁺ centers, each capped by two pentamethylcyclopentadienyl ligands, bridged by a MoS₄²⁻ ion with a pseudo-tetrahedral, diamagnetic Mo³⁺ center (Table S1). One-electron reduction of these compounds using decamethylcobaltocene, Co(C₅Me₅)₂, −1.94 V vs.

Scheme 1. Synthesis of (C₅Me₅)₃Ln(μ-S)₃Mo(μ-S)₂Ln(C₅Me₅)₂ and 1-Ln (Ln = Y, Gd, Tb, Dy).
resulted in a red powder that could be isolated directly from the THF reaction mixture after removing the solvent under reduced pressure. Cooling a concentrated THF solution of this solid to −35 °C overnight afforded X-ray diffraction-quality crystals and enabled structural characterization of [Co(C₅Me₅)]⁺[(C₅Me₅)₂Ln(μ-MoS₂)]⁻. Lengths in several differences (Figure 1). While the Mo⋯Mo distance is 3.4378(3) Å upon reduction to 2.1906(12) Å in (C₅Me₅)₂Gd(μ-S)₂Mo(μ-S)₂Gd(C₅Me₅)₂, the average Gd⋯Gd distance is 3.4419(3) Å. Mo centers are inequivalent by symmetry, with two unique S₁ and S₂ cocrystallized. Relevant bond lengths in units of Å are overlaid. Maroon, cyan, purple, yellow, and grey spheres represent Y, Gd, Mo, S, and C atoms, respectively; H atoms and a [Co(C₅Me₅)]⁺ cation are omitted for clarity. C₅Me₅ substituents are faded to aid visualization of the Mo₆N₂ core.

In the structure of 1-Gd (Figure 1), the two Gd³⁺ centers are inequivalent by symmetry, with two unique Gd⋯Mo distances of 3.4378(3) and 3.4419(3) Å. The Mo–S bond lengths support the occurrence of a Mo-centered reduction, with the average Gd–S bond lengthening from 2.1906(12) Å in (C₅Me₅)₂Gd(μ-S)₂Mo(μ-S)₂Gd(C₅Me₅)₂ to 2.2278(10) Å upon reduction to 1-Gd. The tetrahedral MoS₄ unit is compressed along the Gd⋯Gd axis, resulting in S–Mo–S angles of 110.96(4)°, 110.72(4)°, 106.49(4)°, and 106.65(4)°. The axis and degree of distortion of the MoS₄ tetrahedron is consistent across the 1-Ln series. Comparing the structure of 1-Gd with that of 1-Y reveals several differences (Figure 1). While the Mo–S bond lengths in 1-Gd are all relatively similar, those of 1-Y exhibit distinct asymmetry. On one side of the molecule, long Mo–S bonds are observed, with an average bond length of 2.2391(13) Å, in addition to short Ln–S bond lengths, averaged to 2.7408(12) Å. On the opposite side, short Mo–S bonds, averaging to 2.2325(13) Å, and long Ln–S bonds, averaging to 2.7557(13) Å, are observed. This asymmetry may suggest some localization of the unpaired Mo⁷⁺ electron on one side of the molecule. Since the Mo⁷⁺-centered unpaired electron populates a Mo–S antibonding orbital, Mo–S bond lengths should increase on the side of the charge localization, while Ln–S bonds on the same side may be expected to decrease due to an Ln–Mo₆ bonding-type interaction. The structures of 1-Tb and 1-Dy are isostructural with that of 1-Y and show a similar asymmetry of the Mo–S and Ln–S bond lengths.

EPR Spectroscopy. The EPR spectrum for 1-Y collected at 77 K in frozen THF (Figure 2) shows a primary signal consistent with an S = ½ Mo⁷⁺ center (²⁷Mo, I = 0, 75% abundance; ⁹⁷Mo, I = ⁵/₂, 25% abundance). The spectrum can only be reasonably fit when including hyperfine coupling to a single ⁹⁷Y center (I = ½, 100% abundance), rather than coupling to both ⁹⁷Y centers. Three g values of gₓ = 1.972, gᵧ = 1.980, and gₐ = 1.988 were included in the fit, along with three ⁹⁷Mo hyperfine coupling constants, both sets of which are consistent with reported Mo⁷⁺ EPR spectra (Tables S3 and S4). In contrast, the ⁹⁷Y hyperfine coupling constants of Aₓ = 23 MHz, and Aᵧ = 26 MHz are substantially larger than previously observed yttrium-transition metal hyperfine couplings, suggesting a non-negligible electron delocalization from the MoS₄⁻ core onto one of the Y centers. Indeed, the divalent yttrium compound [K(2.2.2-cryptand)][(C₅H₁₁SiMe₅)₂Y] with a single electron localized in a 5d² orbital, exhibits an only four-fold higher hyperfine coupling of Aₓ = 102.6 MHz.

The observed charge transfer involving only a single yttrium center has at least two potential explanations. First is the disproportionation of 1-Y in THF solution to form a complex in which only a single [(C₅Me₅)₂Y]⁺ cation is bound to the (MoS₄)⁻ ligand, resulting in an EPR spectrum reflective of only one Mo⁷⁺–Y³⁺ interaction. Second is a charge localization on one half of the (MoS₄)⁻ ligand, potentially supported by the observed asymmetry of Mo–S and Y–S bond distances described above, leading to two distinct Mo–Y separations of 3.4320(5) Å and 3.4263(6) Å. The
Figure 2. X-band EPR spectrum of 1-Y in frozen THF solution, collected at 77 K. The dotted black line represents a fit to the data, shown as a maroon line, as described in the text and Supporting Information. Fitting parameters are shown in Table S3.

shorter Mo⋯Y distance corresponds to longer Mo–S and shorter Y–S average distances, potentially demarcating this side of the molecule as the charge transfer pathway (Figure 1).

Considering the character of the filled Mo\(^{5}\) orbital, and thus the mechanism of Mo–Ln charge transfer, the observation from the EPR spectrum that \(g_{z} > g_{x} > g_{y}\) suggests that the \(d_{z}^{2}\) orbital is populated.\(^{24}\) In principle, the crystallographic parameters for the MoS\(^{5}\) unit can be assessed to determine the nature and orientation of the \(d\) orbital. Here, if the \(d_{z}^{2}\) orbital is populated, the MoS\(^{5}\) unit should be elongated along the \(z\) axis due to a Jahn-Teller distortion away from \(T_{d}\) symmetry.\(^{25}\) Across the series 1-Ln, the MoS\(^{5}\) tetrahedron is elongated perpendicular to the Ln–Ln axis. However, the MoS\(^{5}\)–tetrahedra in (C\(_{5}\)Me\(_{5}\))\(_{2}\)Mo(\(\mu\)-S)\(_{2}\)Mo(\(\mu\)-S)\(_{2}\)Ln(C\(_{5}\)Me\(_{5}\))\(_{3}\) are distorted to a similar degree along the same axis, suggesting that any MoS\(^{5}\) distortion away from tetrahedral symmetry is a consequence of the coordination of two [(C\(_{5}\)Me\(_{5}\))\(_{2}\)Mo(\(\mu\)-S)\(_{2}\)Mo(\(\mu\)-S)\(_{2}\)Ln] units, rather than a Jahn-Teller perturbation. The Mo\(^{5}\) based unpaired electron can therefore be attributed to a \(d_{z}^{2}\) orbital with the \(z\) axis lying parallel to the Ln⋯Mo⋯Ln axis, in agreement with molecular orbital analysis of a known trinuclear MoS\(^{5}\)–bridged complex.\(^{16b}\)

Electronic Structure Calculations. To corroborate this assessment, all electronic structure calculations for the 1-Ln series were performed on Turbomole program suite version V7.4 using scalar-relativistic small-core effective core potentials for the lanthanide atoms and the TPSSH hybrid meta-GGA functional (see Supporting Information for details).\(^{26}\) Calculations were performed on compound 1-Ln as well as two simplified model complexes; here 1-Ln\(^{−}\) refers to the anionic model complex \([\text{C}_5\text{Me}_5]_2\text{Ln}(\mu-S)_2\text{Mo}(\mu-S)_2\text{Ln}(\text{C}_5\text{Me}_5)_3\) and 1-Ln\(^{−}\) refers to the further simplified anionic model complex \([\text{C}_5\text{H}_5]_2\text{Ln}(\mu-S)_2\text{Mo}(\mu-S)_2\text{S}_2\text{Ln}(\text{C}_5\text{H}_5)_3\)\(^{−}\). Compounds 1-Ln\(^{−}\) were all found to exhibit ground state equilibrium structures with \(C_2\) point group symmetry (Tables S16 and S17). The singly occupied A-symmetric HOMO of 1-Y, Figure 3, corresponds to an Mo\(^{4}\) 4d\(^{2}\) orbital parallel to the Y⋯Mo⋯Y axis, and coupled with 4d\(^{2}\).

Figure 3. HOMO of the \(C_2\) symmetry-optimized anionic 1-Y model complex (TPSSh-D3, def2-TZVP (Mo, Y, S), def2-SVP (C, H)) (see Supporting Information for further computational details). The calculated HOMO picture confirms the proposed primary magnetic coupling pathway in 1-Ln of Mo–4d\(^{2}\) to Ln–5d\(^{2}\). Color scheme: H=white, C=gray, S=yellow, Mo=light brown, Y=dark brown, isovalue=±0.025.

Figure 4. Normalized diffuse reflectance UV-Vis-NIR spectra for 1-Gd, 1-Tb, and 1-Dy, shown in purple, green, and blue, respectively. F(R) is a Kubelka-Munk conversion of the raw diffuse reflectance spectrum. Spectra are normalized with the strongest absorbance set to F(R) = 1.

orbitals of the Y atoms through bridging sulfur d orbitals (Tables S10 and S11). The totally symmetric HOMOs of 1-Gd\(^{−}\), 1-Tb\(^{−}\), and 1-Dy\(^{−}\) involve Ln 5d\(^{2}\) orbitals, but are otherwise similar to 1-Y (Figures S4-S10).

To explore the origin of the slight asymmetry observed in the experimental X-ray structures, the possibility of symmetry-breaking distortions was investigated computationally. All ground-states are non-degenerate, excluding the possibility of first-order Jahn-Teller distortion, whereas second-order (pseudo) Jahn-Teller distortion was ruled out by vibrational analysis (Table S9). Comparison to the simplified model system 1-Y...
was found to be 19.1 emu K/mol magnetic susceptibility times temperature, and Mo from 2 magnetic susceptibility measurements were performed potentials that permit isolation of derivatives with Ln ions which should have a decent ascribed to the highly reducing nature of the Mo ion is exceedingly rare, with other reported examples although the relative intensity of the MMCT band is 1 increases in energy to 5444 cm⁻¹ approximating the symmetry of the MoS³⁺ tetrahedron as T_d. In addition, an intense near-IR feature is observed at 5397 cm⁻¹, which is assigned to a metal-to-metal charge transfer transition (MMCT; Mo→Ln). The MMCT transition increases slightly in energy to 5444 cm⁻¹ and 5559 cm⁻¹ for 1-Tb and 1-Dy, respectively, and diminishes substantially in intensity from 1-Gd to 1-Tb to 1-Dy, trending with the decreasing size of the lanthanide ionic radii.

Time-dependent density functional calculations support this assignment. Simulated absorption spectra for [1-Ln] show all experimentally observed features, although the relative intensity of the MMCT band is underestimated, and the position is shifted to higher wavenumbers (Figures S11-S14 and Tables S18-21).

Metal-to-metal charge transfer involving a lanthanide ion is exceedingly rare, with other reported examples occurring at much higher energies with much lower intensity. The low energy of the MMCT transition can be ascribed to the highly reducing nature of the Mo³⁺ ion, which should have a decent energy match with the Ln³⁺/Ln²⁺ reduction potential. Further, strong-field cyclopentadienyl ligands have been shown to preferentially stabilize the lanthanide 5dₓ²ᵧ² orbital, and as such the 5dₓ²ᵧ² orbital in these organometallic complexes should be more accessible compared to complexes with Ln³⁺ ions in weaker ligand fields. The low-energy MMCT indicates that 1-Ln may have accessible Ln³⁺/Ln²⁺ reduction potentials that permit isolation of derivatives with Ln³⁺ centers; this avenue will be explored in future work.

Magnetic Measurements. Variable-temperature dc magnetic susceptibility measurements were performed from 2–300 K to investigate the presence and nature of magnetic communication between the lanthanide centers and Mo³⁺ in 1-Gd, 1-Tb, and 1-Dy. For 1-Gd, the product of magnetic susceptibility times temperature, $\chi M T$, at 300 K was found to be 19.1 emu K/mol under an applied field of 0.1 T (Figure 5). This value is higher than the expected 16.135 emu K/mol for two magnetically isolated $S = \frac{7}{2}$ Gd³⁺ centers and an $S = \frac{1}{2}$ Mo³⁺ center, suggesting the presence of significant ferromagnetic Gd-Mo exchange. Indeed, $\chi M T$ for 1-Gd rises steadily with decreasing temperature until reaching a maximum value of 31.6 emu K/mol at 6 K, in good agreement with the expected value of 31.875 emu K/mol for an $S = \frac{1}{2}$ ground state. The small downturn in the $\chi M T$ product below 6 K can be ascribed to Zeeman splitting of this high-spin ground state.

The nature and strength of the Gd-Mo magnetic coupling were evaluated by fitting the $\chi M T$ data²⁹ using the following Hamiltonian:

$$\mathbf{H} = -2J_{\text{Gd-Mo}}(\mathbf{S}_{\text{Mo}} \cdot (\mathbf{S}_{\text{Gd(1)}} + \mathbf{S}_{\text{Gd(2)}})) + \sum_{i=\text{Gd-Mo}} \mu_\beta \mathbf{S}_i \mathbf{H} \tag{1}$$

where $J_{\text{Gd-Mo}}$ is the Gd-Mo magnetic coupling constant. Good agreement between data and fit was obtained using a $J_{\text{Gd-Mo}}$ value of +16.1(2) cm⁻¹, along with a χ_{MM} contribution of 0.0053(2) emu/mol. Remarkably, the $J_{\text{Gd-Mo}}$ value represents one of the largest exchange constants observed to date between Gd³⁺ and another spin center. The record value of $J_{\text{Gd-Mo}} = +175(10)$ cm⁻¹ was recently determined for coupling between Gd³⁺ and a radical “trapped” in a metal-

![Figure 5. Plot of the magnetic susceptibility times temperature product ($\chi M T$) versus temperature for 1-Gd. Purple circles represent data collected under an applied magnetic field of 0.1 T, and the black line represents a fit to the data using the Hamiltonian in Equation 1.](image)

metal bonding-type orbital in Gd₂@C₇N₂, and is followed in magnitude by coupling constants of $J = -27$ cm⁻¹, determined for the interaction between Gd³⁺ and an N₂⁺ radical bridge. Notably, the extracted Gd-Mo coupling is the strongest yet observed between gadolinium and a transition metal center, superseding the previous record of +10.1 cm⁻¹ for a Gd–Cu complex. As expected for a strongly exchange-coupled complex, low-temperature magnetization versus applied magnetic field curves collected from 2–10 K agree well with simulated Brillouin...
curves for a $S = \frac{15}{2}$ ground state with $g = 2.05$ (Figure S15).

The strong Gd–Mo charge-transfer exchange interaction can be attributed to a number of factors. First and most simply, the more diffuse character of the 4d orbitals relative to those of the 3d transition metal series should promote enhanced orbital interactions with the empty 5d orbitals of the lanthanides, while the higher energy of the 4d orbitals should enable better energy matching with the lanthanide 4f orbitals. However, given the small Ln–Mo couplings observed for cyano-bridged complexes, the nature of the bridging thiometallate in 1-Gd must also be considered essential to achieving strong coupling. The close Gd-Mo distance of ~3.43 Å facilitated by the single-atom sulfide bridges is likely the primary aid in enhancing magnetic interactions. Indeed, GdIII-MoIV interactions across larger distances have been shown to be quite weak, as exemplified by a value of $J_{\text{loop-Mo}} = -0.68$ cm$^{-1}$ for an [GdIIIMoIV(CN)$_3$] chain compound with a Gd-Mo separation of 5.7 Å. The diffuse and polarizable nature of the S$^2-$ bridges should additionally enable enhanced spin polarization compared to cyanide ligands; the sulfide ligands of thiometallate units have been previously shown to support substantial charge and spin delocalization. Finally, despite the relatively short Gd-Mo distance in 1-Gd, the overlap integral between the MoIV 4d and LnIII 5d orbitals is still likely to be quite small, leading to an ideal scenario for charge-transfer driven ferromagnetic coupling—i.e., charge transfer from a SOMO of MoS$_4^{3-}$ to an empty GdIII 5d orbital, with minimal to no SOMO/SOMO overlap. At 300 K and under an applied field of 0.1 T, the $\chi M T$ product for 1-Tb is 25.35 emu K/mol, slightly higher than the expected value of 24.015 emu K/mol for two magnetically isolated TbIII centers and an $S = \frac{1}{2}$ MoV center.

![Figure 6](image_url)

Figure 6. Magnetic susceptibility times temperature products ($\chi M T$) versus temperature of 1-Tb and 1-Dy, represented by green triangles and cyan circles, respectively, collected under an applied magnetic field of 0.1 T. Inset: Magnetization versus applied magnetic field curve for 2-Tb collected at 2 K with a field sweep rate of 0.4 mT s$^{-1}$. This $\chi M T$ value, in conjunction with the steady rise in $\chi M T$ with decreasing temperature and corresponding absence of a local minimum, supports the presence of ferromagnetic interactions between spins, analogous to 1-Gd. However, $\chi M T$ increases only slightly to a maximum of 26.59 emu K/mol at 85 K, potentially indicating that Ln–Mo coupling is weak relative to that present in 1-Gd. Thermal depopulation of TbIII m_l levels is also expected to drive decreasing $\chi M T$ with decreasing temperature for 1-Tb, which may convolute any impacts of magnetic exchange on $\chi M T$. Similarly, $\chi M T$ at 300 K under an applied field of 0.1 T for 1-Dy is 28.82 emu K/mol, also close to the expected value of 28.615 emu K/mol for two magnetically isolated DyIII centers and an $S = \frac{1}{2}$ MoV center. The slightly higher than expected $\chi M T$ value again supports the presence of ferromagnetic interactions. Negligible increase in the $\chi M T$ product of 1-Dy with decreasing temperature indicates even further reduced strength of magnetic exchange relative to 1-Gd and 1-Tb. The inferred trend in magnetic exchange strength, $J_{\text{loop-Mo}} > J_{\text{Tb-Mo}} > J_{\text{Dy-Mo}}$, can be explained by the decrease in size of the lanthanide ion radii and thereby diminished strength of metal-ligand and metal-metal interactions, in agreement with the decrease in MMCT transition intensity observed from 1-Gd to 1-Dy in UV-Vis-NIR spectra. The decrease in $\chi M T$ observed for both 1-Tb and 1-Dy at low temperatures is attributed to thermal depopulation of exchange-coupled and crystal-field-split states.

Finally, 1-Tb and 1-Dy were investigated using ac magnetic susceptibility measurements to probe the possible presence of slow magnetic relaxation. We note that while magnetic coupling of metal centers can in principle generate a well-isolated, large-spin ground state conducive to slow magnetic relaxation under zero applied magnetic field, only a few 4$F_{5/2}$ ($n = 4, 5$) molecular complexes have actually been found to exhibit slow magnetic relaxation. Variable-temperature ac magnetic susceptibility data were collected for 1-Tb and 1-Dy under zero dc field using a 4-Oe field oscillating at frequencies ranging from 1 to 1500 Hz. Between 2 and 13 K, both 1-Tb (Figure S16) and 1-Dy (Figure 7, top) exhibit asymmetric peaks in the out-of-phase susceptibility, χ'', indicative of slow magnetic relaxation. Cole-Cole plots of the in-phase susceptibility, χ', versus the out-of-phase susceptibility, χ'', appear as broad and asymmetric semicircles, suggesting the overlap of more than one time regime for the magnetization relaxation and hence more than one relaxation process. The severity of this overlap precluded extraction of precise relaxation time data for distinct processes (Figure S17), and instead the Cole-Cole plot data for both compounds were approximately fit using a single modified Debye model, yielding values for the relaxation time, τ, at each temperature. Among the resulting fitted parameters is the α value, which provides a measure of the uniformity of relaxation and ranges from 0 to 1, with smaller values corresponding to relaxation dominated by a single process. Values of α as high as 0.4–0.5 at the lowest temperatures for both 1-Tb and 1-Dy confirm the presence of multiple relaxation processes.

To gain insight into the nature of the slow magnetic
relaxation exhibited by 1-Tb, we examined the temperature dependence of the natural log of the relaxation times (Figure S18) and found pronounced curvature instead of the Arrhenius behavior of a thermally-activated over-barrier relaxation process. The temperature dependence of τ was best fit using the expression $\tau^{-1} = CT^n$, with $C = 12.3 \, s^{-1} \, K^{-n}$ and $n = 2.5$ (Figure S18), indicating that at least one Raman relaxation mechanism, a spin-lattice relaxation process that occurs through virtual magnetic excited states, likely dominates in the examined temperature and frequency range. Under an applied field between 2 and 5 K, the relaxation time of 1-Tb is also sufficiently long to observe waist-restricted magnetic hysteresis (Figure 6, inset, and Figure S19).

In contrast, no magnetic hysteresis was observed for 1-Dy using the same field sweep rate and for temperatures as low as 2 K (Figure S22), although this compound exhibits ac peaks over a similar temperature and frequency range as 1-Tb (Figures 7, S20, and S21). Relaxation times extracted from ac magnetic susceptibility data suggest that slow magnetic relaxation for 1-Dy arises due to both Raman relaxation and thermally-activated Orbach relaxation. Accordingly, an Arrhenius plot of the relaxation times could be fit to the equation:

$$
\tau^{-1} = CT^n + \tau_0^{-1} \exp \left(-\frac{U_{\text{eff}}}{k_B T} \right)
$$

with $C = 10.2 \, s^{-1} \, K^{-n}$, $n = 2.2$, $\tau_0 = 5.7 \times 10^{-9} \, s$, and $U_{\text{eff}} = 68 \, cm^{-1}$ (Figure 7, bottom). It is possible that the barrier to magnetization reversal exhibited by 1-Dy derives from DyIII single-ion anisotropy, as opposed to the energy landscape of the total coupled system, although the present data do not allow for a definitive determination. Nevertheless, the barrier of $U_{\text{eff}} = 68 \, cm^{-1}$ is the highest yet observed for any complex containing a lanthanide ion and paramagnetic 4d metal center. Moreover, the barrier for 1-Dy is the highest for any complex simply containing a paramagnetic 4d metal center. We also note that a temperature-independent regime is not observed in the Arrhenius plot for either 1-Tb or 1-Dy, indicating the

Figure 7. Top: Variable-temperature out-of-phase magnetic susceptibility versus frequency data for 1-Dy, collected at temperatures ranging from 2 to 13 K under zero applied magnetic field. Colored symbols represent data points and lines represent fits of the data to a generalized Debye model. Bottom: Arrhenius plot of magnetic relaxation times, τ (log scale) versus temperature (inverse scale) for 1-Dy. Data are represented by cyan circles. Orange and maroon lines represent the Raman and Orbach components, respectively, of the fit to the data, while the black line represents the total fit to Equation 3, as described in the text, giving values of $C = 10.2 \, s^{-1} \, K^{-n}$, $n = 2.2$, $\tau_0 = 5.7 \times 10^{-9} \, s$, and $U_{\text{eff}} = 68 \, cm^{-1}$.
absence of any detrimental zero-field tunneling behavior, possibly inhibited by LnIII–MoV exchange.4a,35

The absence of large barriers to magnetic relaxation in both 1-Tb and 1-Dy likely arises due to the misalignment of magnetic anisotropy axes. Since the strongly donating (C5Me5)–1 ligands should define the magnetic axis of each lanthanide (assuming an oblate electronic state)46,37 and the (C5Me5)–1 ligands on each lanthanide in 1-Tb and 1-Dy are in planes roughly perpendicular to one another, the anisotropy axes of the lanthanide centers are likely close to perpendicular. Systems containing magnetic ions with non-collinear magnetic axes typically exhibit mixed-axiality ground states, which enable quantum tunneling of magnetization as well as low-lying excited states.38 Improved single-molecule magnet behavior could be achieved via rational synthesis of a molecule with collinear lanthanide anisotropy axes, in which both lanthanides can strongly engage in 4f/5d-nd interactions. With this in mind, we are now pursuing dilanthanide molecules incorporating octahedral or square planar 4d or 5d complexes with single-atom bridging ligands that should enable strong magnetic exchange.

CONCLUSIONS AND OUTLOOK
Mechanisms of nd-f magnetic exchange have long captivated the molecular magnetism community.39 The foregoing results demonstrate for the first time that 4d, and likely 5d, metal centers can achieve strong magnetic interactions with lanthanide ions in molecular complexes. Polarizable bridging ligands that facilitate charge and spin transfer and sufficiently short lanthanide-transition metal distances play crucial roles in the strength of magnetic exchange. Strong ferromagnetic coupling is observed for 1-Gd, giving rise to the largest molecular lanthanide-transition metal exchange coupling constant observed to date, J = +16.1(2) cm−1. Compounds 1-Tb and 1-Dy also exhibit slow magnetic relaxation, with the latter compound displaying a relaxation barrier of Ueff = 68 cm−1, the largest such value yet observed for both a 4f-4d complex and any 4d-metal-containing complex. Together, these results highlight new strategies with which to achieve strong magnetic exchange with the lanthanide ions, and suggest the possibility to access higher-barrier nd-f magnetic magnets via enhanced nd-f magnetic exchange.

SUPPORTING INFORMATION
The Supporting Information is available free of charge on the ACS Publications website. Additional experimental procedures, X-ray crystallographic information, additional spectroscopic and magnetic data, computational information. (PDF)

AUTHOR INFORMATION
Corresponding Authors
William J. Evans – Department of Chemistry, University of California, Irvine, California 94697, United States; orcid.org/0000-0002-0651-418X
Email: wevans@uci.edu

Jeffrey R. Long – Department of Chemistry, University of California, Berkeley, California 94720, United States; orcid.org/0000-0002-5324-1321
Email: jrlong@berkeley.edu

Authors
Lucy E. Darago – Department of Chemistry, University of California, Berkeley, California 94720, United States; orcid.org/0000-0001-7515-5558

Monica D. Boshart – Department of Chemistry, University of California, Irvine, California 94697, United States; orcid.org/0000-0002-5377-1322

Brian D. Nguyen – Department of Chemistry, University of California, Irvine, California 94697, United States; orcid.org/0000-0001-7713-1912

Eva Perlt – Department of Chemistry, University of California, Irvine, California 94697, United States; orcid.org/0000-0002-4670-0542

Joseph W. Ziller – Department of Chemistry, University of California, Irvine, California 94697, United States; orcid.org/0000-0001-7404-950X

Wayne Lukens – Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States; orcid.org/0000-0002-0796-7631

Filipp Furche – Department of Chemistry, University of California, Irvine, California 94697, United States; orcid.org/0000-0001-8520-3971

Author Contributions
†These authors contributed equally.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS
We thank the U.S. National Science Foundation for support of this research through grants CHE-1855328 (W.J.E) and CHE-1800252 (J.R.L.). E.P. gratefully acknowledges funding by the German Research Foundation (DFG) through Project No. 391320977. This material is based upon work supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Award Number DE-SC0018352. Computations were supported by the Research Cyberinfrastructure Center at the University of California, Irvine, under Grant No. CNS-1828779. Analysis of the EPR spectrum (W.W.L.) was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Biosciences, and Geosciences Division, Heavy Element Chemistry Program and was performed at Lawrence Berkeley National Laboratory under contract no. DE-AC02-05CH11231. Single-crystal X-ray diffraction data for 1-Gd were collected on Beamline 12.2.1 at the Advanced Light Source, which is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract no. DE-AC02-05CH11231. We thank the NSF Graduate Research Fellowship Program for support of L.E.D. We also thank Dr. Jason R. Jones, Michael K. Wojnar, and Ari Turkiewicz for assistance with X-ray crystallography, Professor Alan F. Heyduk and Alexandre Vincent for helpful discussions, and Dr. Katie Meilhaus for editorial assistance.

Jeffrey R. Long – Department of Chemistry, University of California, Berkeley, California 94720, United States; orcid.org/0000-0002-5324-1321
Email: jrlong@berkeley.edu.

Authors
Lucy E. Darago – Department of Chemistry, University of California, Berkeley, California 94720, United States; orcid.org/0000-0001-7515-5558

Monica D. Boshart – Department of Chemistry, University of California, Irvine, California 94697, United States; orcid.org/0000-0002-5377-1322

Brian D. Nguyen – Department of Chemistry, University of California, Irvine, California 94697, United States; orcid.org/0000-0001-7713-1912

Eva Perlt – Department of Chemistry, University of California, Irvine, California 94697, United States; orcid.org/0000-0002-4670-0542

Joseph W. Ziller – Department of Chemistry, University of California, Irvine, California 94697, United States; orcid.org/0000-0001-7404-950X

Wayne Lukens – Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States; orcid.org/0000-0002-0796-7631

Filipp Furche – Department of Chemistry, University of California, Irvine, California 94697, United States; orcid.org/0000-0001-8520-3971

Author Contributions
†These authors contributed equally.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS
We thank the U.S. National Science Foundation for support of this research through grants CHE-1855328 (W.J.E) and CHE-1800252 (J.R.L.). E.P. gratefully acknowledges funding by the German Research Foundation (DFG) through Project No. 391320977. This material is based upon work supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Award Number DE-SC0018352. Computations were supported by the Research Cyberinfrastructure Center at the University of California, Irvine, under Grant No. CNS-1828779. Analysis of the EPR spectrum (W.W.L.) was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Biosciences, and Geosciences Division, Heavy Element Chemistry Program and was performed at Lawrence Berkeley National Laboratory under contract no. DE-AC02-05CH11231. Single-crystal X-ray diffraction data for 1-Gd were collected on Beamline 12.2.1 at the Advanced Light Source, which is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract no. DE-AC02-05CH11231. We thank the NSF Graduate Research Fellowship Program for support of L.E.D. We also thank Dr. Jason R. Jones, Michael K. Wojnar, and Ari Turkiewicz for assistance with X-ray crystallography, Professor Alan F. Heyduk and Alexandre Vincent for helpful discussions, and Dr. Katie Meilhaus for editorial assistance.
REFERENCES

