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ABSTRACT OF THE DISSERTATION 
 
 
 

Human Blood Glucose Dynamics 
 
 
 

by 
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Professor David Gough, Chair 
 
 
 

The control of blood glucose concentration has become central to the 

prevention of morbidity in diabetes. Currently sensors are becoming available to make 

available near continuous measurements of tissue glucose concentrations. Frequently 

measured values provide an opportunity to analyze the dynamics of these 

measurements in addition to statistical analysis. The dynamics can be used to verify 

sensor validity, to provide a physiologic control target, and serve as a tool to diagnose 

and monitor disease progression as well as therapeutic interventions. In this document, 

analysis methods from a diverse set of physical and engineering sciences are applied 

to blood glucose data that has been published in the literature, and measured in clinical 

xxiii 



 

studies, in humans. The objective is to evaluate the utility of different techniques for 

time-series analysis, as well as to pave the way towards more data intensive studies to 

further the applications mentioned above. Data from nondiabetics, type I diabetics, 

type II diabetics as well as other disease is presented and analyzed using methods 

which appeared most promising during the author’s research. Based on the limited 

available data, observations are made regarding the characteristics of dynamics in each 

population groups, and the potential utility of dynamic measurements in diagnosis and 

assessment of patient metabolic state are demonstrated. In particular, the utility and 

challenges associated with various methods of time-series analysis as applied to the 

human blood glucose signal are explored. It is hoped that this can provide a beginning 

to a very promising future of human glucose time-series analysis and that it will help 

in sensor and controller design.  
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Chapter I: Motivation, history and approach 

I.A Motivation 

Blood glucose values play a central role in the diagnosis and treatment of 

diabetes. Diabetes is comprised of a constellation of physiologic dysfunctions, which 

were first diagnosed historically by an increase in urine output and consequently thirst. 

It was later discovered that these symptoms were caused by uncontrolled increase in 

blood glucose values. The discovery of insulin led to the understanding that insulin is 

the primary molecule involved in stimulating cells to uptake glucose. As 

understanding of the underlying physiology has grown, it has been understood that 

diabetes can arise from multiple pathways including the loss of beta cells and loss of 

insulin function on the target cells.  

 

In type I diabetes, where loss of beta cells which are the primary producers of 

insulin lead to In both cases, blood glucose can become inappropriately high or low 

depending on the extent of control Currently, patients measure their blood glucose 2-4 

times a day and the dosage and timing of insulin administration is estimated based on 

personal experience as well as blood glucose samples and knowledge of food intake, 

and daily activities As a result, inappropriate insulin doses leads to life-threatening 

hypoglycemic episodes. 

1 
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Recently, an alarming rise in the rate of diagnosis and early onset of Non-

Insulin Dependent Diabetes Mellitus, the most common form of diabetes has been 

reported throughout the world. In some large demographic groups in the U.S, the 

prevalence of this condition has risen to nearly 25% of that population [1]. Trends 

towards increasing prevalence of NIDDM have been also noted in Europe [2] as well 

as in Japan [3, 4] previously thought to have been spared from the epidemic. This 

increase has been accompanied with a decrease in the age of onset of NIDDM, which 

was previously thought to be only present in the maturing adult population. Factors 

such as obesity, sedentary life style and family history have emerged as strong 

correlates of the phenomenon[1]. In addition to NIDDM, Insulin Dependent Diabetes 

Mellitus continues to be plague children, remaining one of the most prevalent chronic 

diseases of children. It is thus postulated that by 2010 the prevalence of diabetes will 

rise to 50 million individuals in North American and Europe, and 210 million 

worldwide [3]. 

 

Diabetes is all about control. While it has long been hypothesized that control 

plays an important part in the therapy of diabetes [5], The Diabetes Control and 

Complications Trial (DCCT), as well counterpart studies such as UKPDS, have 

demonstrated the central role of control in the prevention and inhibition of diabetic 

illness [6].  The results have led clinicians to the conclusion that regulation of blood 

glucose levels is of outmost importance in reducing incidence and progression of 

complications.  Armed with this knowledge, clinicians and scientists have developed, 
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over the past two decades, the concept of home glucose monitoring systems which 

allow patients to sample their blood glucose levels, generally a few times a day, and 

regulate their responses accordingly. Furthermore, long-term measurements of 

markers of glucose levels (see for example HbA1c) as well as advances in information 

technology have allowed clinicians to better assess the success of their clinical 

management.  

 

Until this point most treatment and assessment tools have relied on surrogates 

of blood glucose such as HbA1c which represents a long-term average of the 

individual’s glycemic state[7]. Frequent blood glucose measurements are rarely made 

and the standard of care calls for a few daily measurements to properly dose insulin 

usage and meal portions. Thus the control sought after in diabetes patients is in 

essence managed by a personal heuristic algorithm based on 3-4 daily glucose 

measurements. This has been in part due to the lack of availability of blood glucose 

sensors. In fact, even the availability of home-based multiple daily sampling has only 

been made possible in the last two decades. The diagram that follows (figure 1-1) 

shows the historical development of blood glucose sensors. 
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Figure 1-1:  A Time-line of some important developments relating to glucose sensors. 
 
 

As continuous glucose monitors begin to become clinically available, the 

question arises of what the output can be utilized for in addition to simply being a 

convenient measurement device. From an engineering perspective, knowledge of the 

signal content can be used for improving sensor behavior and design of controllers 

which can be used to inject insulin into the patient automatically. From a clinical 

standpoint, knowledge of the signal content can lead to screening tools, quantifiable 

methods of assessing the relative success of treatment and quantitative assessment of 

progression of disease over time. Additionally, the glucose signal may provide insights 

into the underlying physiologic processes governing human metabolism. 

 

 In anticipation of the increasing availability of frequently sampled glucose 

data, this dissertation takes a look at the range of dynamics observed in the blood 

glucose signal, explores possible ways of quantification of these behaviors and 
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potential uses of them. The methods are drawn from many disciplines of study which 

have faces a similar challenge, which is to extract as much information as possible 

from the signal available to them.  

 

I.B Defining the term “dynamics” 

The word dynamics is used in different fields with slightly altered meanings. 

Strictly speaking, the field of dynamics arises from physics where it is the study of the 

change in the state of the system over time. To properly study dynamics in the physics 

context, one must understand the state space (that is the possible states that can be 

assumed by the system) and the equations of motion (which describe the pathways and 

transitions between these states). The difficulty arises when certain variables necessary 

to construct this state space are not measurable or perhaps not even known. For 

example, the exact physiology of glucose metabolism depends on a myriad of known 

and unknown hormones, most which are unlikely to be continuously measured in the 

near future. This thesis focuses on the practical and clinical extreme in which the 

blood glucose time-series measurement, and possible a few other pieces of 

information (like meal times) are the only known data with which to study the system. 

At this extreme, the exact or perhaps even partial reconstruction of the state-space 

becomes improbable. 

 

Limiting ourselves to the knowledge contained in one single variable being 

measured, in this case glucose, the term dynamics refers to the way in which change 
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occurs in the variable being measured, in this case blood glucose. More specifically, it 

refers to the specific patterns that are encountered in the evolving signal being 

measured. It differs vastly from a statistical analysis, in that unlike a statistical 

interpretation in which variability is looked at with each sample being independent, 

dynamics require that sufficient measurements be made such that the all intermediate 

states the signal can assume between samples are captured. In practice, it requires that 

the sampling be sufficiently fast such that states do not sufficiently evolve between 

samples such that significant information about their transition is missing. This 

fundamental requirement arises in many forms when considering how to sample the 

variable in question, and the criterion depend on some level on the definition of the 

states, the degree of accuracy needed and the speed with which the state of the signal 

evolves.  

 

An additional requirement is that the variable is measured for long enough of a 

duration, and under variable conditions such that the system travels through all 

possible states. This requirement, which is more abstract, is much harder to implement 

in practice because checking for its fulfillment requires a priori knowledge of the 

system’s state space. In the simplest case, an impulse input into the system produces a 

response that is sufficient to characterize the system. In practice, however, the 

presence of nonlinearities and multivariate nature of physiologic systems prevents 

such a simple tests from being implemented. This leads to the heuristic algorithm 

often used in physiologic analysis that the system should be observed under as many 
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extreme conditions as possible in order to minimally delimit the boundaries of its 

behavior. 

 

This analysis attempts to gather together as many well sampled data sets under 

differing input conditions to reach a complete picture as possible, but with the 

understanding that this may fall short of the system’s true possible state. This 

however, points the way for further studies that may be required to reach a more 

complete picture.  

 

I.C The case for dynamics 

Blood glucose regulatory system is a dynamic system with multiple major 

organ systems involved in its control. These include the pancreatic islet cells (which 

produce insulin, glucagons and somatostatin), the liver (which stores and outputs 

glucose), the digestive system (which perturbs the system by adding glucose to the 

blood stream) and a host of neuro-endocrine modulators.   The rise and fall of blood 

glucose levels is deeply intertwined with other hormonal oscillations such as growth 

hormone and cortisol [8, 9]. Regardless of the evolution of the approaches to the 

treatment of diabetes, (e.g.. beta cell therapy, pharmaceuticals, mechanical controllers) 

it is desirable to restore complete normal control as treatment for diabetes. Markers 

such as HbA1c, though useful in assessing the mean and variance of glucose levels, do 

not include information about whether the system is behaving normally in a dynamic 
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sense. Thus by understanding the dynamics one can better assess degree of control and 

design new control approaches that better simulate the nondiabetic state.  

 

The case for dynamics can thus be summarized as follows: 

• To design and assess treatment methods (such as controllers or artificial beta 

cells) in such a way as to better resemble the nondiabetic state. 

• To develop clinical applications for emerging sensors such as screening 

diagnosis, finer assessment of degree of control, and patient education.  

• To better understand the underlying physiology of the system.  

I.D Previous work 

I.D.1 Underlying physiology 

Human blood glucose is regulated by the action of insulin as primary reducer 

of blood glucose. On the opposing side, meals, basal glucose production and the action 

of glucagons and other neuro-endocrine factors lead to the rise in the glucose level. 

The human insulin response consists of a basal as well as reactive (in response to 

meals) component. In response to a rise in the levels of glucose in the blood supply 

being exposed, the β-cell secretes insulin in a multiphasic manner, that is in multiple 

bursts following the initial event[10]. The net effect is the large-scale release of insulin 

that is directed to the portal vein and thus the liver.  The liver is the first organ to 

observe the insulin response, and as much as 60% of the release insulin is extracted by 

the liver before it enters peripheral circulation. The liver, which is the primary site of 
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glucose storage is responsible for a basal production of glucose and its input to the 

blood stream, and increases such production through a complex set of modulators. 

Insulin is enters the blood stream where it increases the uptake of glucose by target 

cells such as muscle cells and adipose tissue.  Production of insulin itself is also 

regulated by factors such as glucagon, which is released by the pancreatic islet alpha 

cells.  Complex interrelationships are described with oscillatory patterns of cortisol 

and growth hormone as well [9]. 

 

The cellular effect of insulin on most peripheral tissues includes the promotion 

of the uptake of glucose via pathways that include the increased translocation of 

glucose transporters to the cell surface [11]. Thus insulin essentially acts as a cellular 

“feeding” signal, promoting the uptake and storage of energy. Furthermore, insulin 

increases the rate of glycolysis in muscle tissue.    

 

I.D.2 Sampling rate and prediction 

Previous work by our group has used some limited data sets to show, using the 

autocorrelation function that the blood glucose signal contains determinism, and that 

this determinism can be used for the purposes of prediction. To this end, an Auto-

Regressive Moving Average model was constructed and used to predict blood glucose 

values into the future [12]. Markov models and Hidden Markov Models were also 

applied to the system with similar success in prediction of future blood glucose values 

[13].  Additionally, using spectral estimates of the frequency content of the data sets, it 
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was concluded that the Nyquist sampling period for the data available was on the 

order of 10-15 minutes [14].  

I.D.3 Mathematical modeling of system 

Because this analysis takes a time-series based view of the analysis of the data, 

an extensive review of the mathematical modeling of the physiologic system is not 

presented, though they were extensively reviewed by the author. An increasing 

number of mathematical models have been devised on the years to account for blood 

glucose dynamics. The models vary in their mathematical structure, the number of 

physiologic variables considered and the specific approach to determination of 

parameters. As an example, attempts have been made to measure beta cell 

functionality by continuous infusion of glucose and assessment using simple models 

leading to an estimate of beta cell function [15]  Simple indices of insulin resistance 

have been proposed and are assessed in a review paper on the subject  [16]. Four early 

mathematical models were assessed in one study using 182 patients [17] which serves 

as a good early introduction to the subjects.  

 

Of all the mathematical models, perhaps the one most often utilized is the 

Bergman model which deserves mention. The family of models developed by this 

group has served as a tool for better understanding the response of insulin to glucose 

input. Using various perturbations and “clamps” (that is an artificial system that keeps 

a variable at a steady state value), iterations of the “minimal models” have been 

developed to account for glucose and insulin dynamics. They are termed minimal 
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models in part because of attempt to create few observable values as the main 

variables. This is in contrast to multi-compartment models developed which contains a 

series of differential equations with many physiologic variables that are clinically 

difficult to assess. The reader is referred to this model as a good entrée point into the 

subjection of mathematical modeling of the glucose regulation system [18-21]. For a 

early review on the general approaches to modeling, the reader is referred to an early 

review on the subject[22].  

 

I.D.4 Responses to perturbations 

A long history of using meal as a perturbation to the glucose regulatory system 

exists within the field of endocrinology. The most developed of these is the glucose 

tolerance test (GTT), which has been, used heavily in the diagnosis of type II diabetes. 

In this instant, a fixed carbohydrate bolus is administered, generally after a fasting 

period [23] and the response of blood glucose is recorded. Though a tremendous body 

of literature exists on the subject, the quantity that has been traditionally used in the 

clinical setting has been the extent to which glucose values have returned to normal 

after a set period of time (frequently 2 hours). A tremendous body of literature exists 

on this subject and it has been thoroughly studied in various populations [24, 25].  

 

Because of the limitations in sensor development, long-term continuous 

monitoring of blood glucose levels has been very infrequent in comparison of other 

types of analysis performed on the diabetic population. However, some groups have 
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taken such data with small population groups for the purposes of studying various 

types of perturbations to the state of diabetics and nondiabetics. Multiple attempts 

have been made at measuring the variability in the time-series derived from diabetics 

that have led to the two measures, mean amplitude of glycemic excursions (MAGE) 

and the “M” coefficient of Schlichtkrull which is a measure of insulin efficiency [26-

30] 

 

Glucose dynamics have also been studied in the context of continuous enteral 

nutrition (nutrition delivered directly through a feeding tube at a constant rat), as well 

as through an intravenous route. In both cases oscillatory patterns of the scale ~1-2 

hours have been noted[8, 31]. Similarly, when given a glucose infusion with a 

sinusoidal rate of glucose delivery, the blood glucose levels display a phenomenon of 

entrainment, that is the system begins to oscillate at the same frequency as the input 

[32] . Both these phenomenon have been noted to be disturbed in patients with 

impaired glucose tolerance or type II diabetes. 

 

I.D.5 Summary of current knowledge 

(1) The glucose signal contains deterministic information that can be used for 

prediction of future values. Specifically, both ARMA and Hidden Markov 

Models can be utilized for this purpose.  
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(2) The Nyquist sampling requirement for blood glucose is closer to 10-15 minutes 

than the currently clinical practice of measuring blood glucose values a few 

times a day. 

(3) Metrics of dynamics such as MAGE and M values can be used to differentiate 

between patient groups with stable and unstable control. 

(4) Constant infusion of glucose leads to oscillations in blood glucose which are 

less robust in Type II and IGT patients. 

(5) Dynamic infusion of glucose leads to entrainment on multiple time-scales, and 

on those scales the entrainment is less robust in type II and IGT patients. 

  

I.E Thesis approach and objectives 

The purpose of this thesis is to extract information from the available collected 

data in such a way as to direct future research on the subject. The paucity of data along 

with difficulty in collection of new data that is currently being overcome make it 

difficult to make general population based statements on dynamics of blood glucose 

based on time-series data. But, the diversity of available data does permit an 

assessment of possible approaches to characterization of the dynamics and points the 

way to large population based studies that can support the observations based on 

limited data.  

 

The analysis approach is to look at the signal being produced at face value and 

without many assumptions about the underlying system. This approach is chosen in 
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part because it has the potential to produce useful engineering and clinical approaches 

that are based on the most likely signal available to clinicians and engineers in the 

foreseeable future and thus likely to find utility in the near future. Additionally, the 

condensation and extraction of salient features of blood glucose dynamics is likely to 

find utility in verification and design of mathematical models.  

 

 The thesis objectives are to apply methods of engineering to a diverse group of 

data and to assess the utility of such methods as applied to this type of data. While 

none of the data sets are from a large enough of a population to make population based 

claims, this thesis paves the way for methods involving larger subject groups. The 

methods are organized in order to answer the following three fundamental questions: 

• What is normal blood glucose dynamics? 

• Are there different classes of diabetic dynamics, and how do they differ from 

normal? 

• What maximal sampling interval that is acceptable for capturing dynamic 

information useful to answering the above questions? How does sampling 

duration effect various measures of dynamics? 

  

 

 

 

 

 



 

Chapter II: Data 

As mentioned in the introductory chapter, the number of data sets and 

frequency of sampling has generally been less than ideal in the datasets available in 

the literature. Nonetheless, a thorough search of the literature was undertaken and a 

number of data sets were found. The most impressive aspect of the data is the diversity 

of patient types and perturbations under which they were collected, but each individual 

type of data is often involves only a few subjects, limiting statistical, population based 

conclusions. Unlike the common scientific perception that glucose levels are fairly 

constant, a very rich variety of behaviors were found under differing perturbations to 

the system. An example of four data sets are shown in figure 2-1 
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Figure 2-1: Blood Glucose Time-Series from four nondiabetic subjects.  
Literature data from representing responses to different glucose challenges. 
Sampling was at regular intervals ranging from 5 to 15 minutes over 24-hour 
periods.  Data points are based on reverse digitization, and are connected by 
straight lines.  Note that the response to fasting contains a rapid, small amplitude 
signal with a slowly varying baseline.  The sinusoidal challenge had a period of 
128 minutes, an amplitude of 1/3 of the mean, and an average infusion rate of 6 
mg/kg per min. 
 

II.A Sources of data 

The literature was searched using pubmed (a service of the US National 

Library of Medicine) as an initial search path, and follow-up of the references 

included in the papers acquired from the search. The initial searches were based on 

keywords such as ‘blood glucose’ and authors known in the field to have studied this 

 



17 

subject. Based on references acquired from the resulting papers, new keywords and 

authors were then searched. After reviews of abstracts, approximately two hundred 

papers were evaluated for utility as a data sources. Most were rejected because they 

did not list data, did not sample frequently, did not use verified laboratory 

measurements, used experimental sensors, or displayed only average results between 

individuals.  

 

Over 30 references spanning 1963-1999 met the criteria for utility for our 

studies. In a few cases, a study showed only a single time-series. In such cases the data 

was digitized for possible use, although when larger datasets were available for the 

question at hand, the inclusion of a single time-series from an experiment had to be 

weighed against the difficulty with interpretation that comes from such meta-analysis.  

 

II.B Methods of data acquisition and conversion 

When possible, original electronic copies of the articles were acquired in the 

.pdf format. In all other cases, however, the location of the reference material required 

that they be photocopied and then subsequently scanned to create an image from 

which the data would be reconstructed.  

 

The scanning was performed by a brother MFC 9600 Copier and Scanner. The 

images were stored in a lossless .jpg format for further processing. Realizing that 

despite all attempts to make photocopies, there was a likelihood that the images would 
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be rotated and warped, a software algorithm was written and tested for the rotation of 

the images, and is described in more detail in Appendix A.  

 

The reconstruction of the data from the graph had to be tailored to the specific 

graph type available. The graphs could be divided into three categories: graphs 

consisting of straight lines, graphs containing individual data point symbols and 

graphs consisting of disconnected symbols not representing original data-points but in 

lieu of a solid line. Most graphs were of the first two kinds discussed above. 

 

Because of the importance of the data to the conclusions made in this document, 

multiple measures were taken to insure data quality. They are listed as follows and are 

further discussed in appendix A.  

1) Verification with respect to the image: The acquired data set was plotted on the 

original image from which it was acquired (including the possible rotations) 

and visually verified to correspond to the lines in the images.  

2) Verification with respect to the experimental results: In some cases statistical 

measures were also reported along with the data. In such cases, statistics for 

the acquired data was computed and checked against the reported values. A 

summary of these results can be found in the appendix A. No cases were found 

where there was a significant difference between the acquired data and the 

original reported statistics. 
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3) Repetition verification:  In some selected cases, the paper was rescanned, the 

image was rotated, digitized and data extracted and compared. Agreement 

between the two data sets was noted. 

 

II.C Summary of literature datasets 

The data sets can be placed in one of the following six categories, in terms of 

the type of study from which they were collected: 

• Data with multiple meals. This is the typical data set encountered and desirable 

for analysis because it most resembles the daily conditions of the patient. In 

some cases, exercise is included in the patient’s daily regimen while in others, 

the patient is kept in a hospital bed. For diabetics, this data also includes their 

course of treatment which in almost all the data sets is a set of insulin 

injections.  

• Fasting Data. This is data in which the subject is consumes a meal prior to the 

study. After that meal, a set period of time elapses and the investigators then 

begin measuring blood glucose levels.  

• Continuous Enteral Feeding. In these studies nutrition is given through the 

gastrointestinal tract but using a continuous infusion which flows prior to 

being absorbed. This is the basis for a constant input into the system, which 

goes through the same pathway as food normally does. 
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• Continuous IV Feeding. In these studies, nutrition is given through an 

intravenous route, at a constant level. This is similarly a constant input into the 

system but does not go through the pathway as normal feeding.  

• Dynamic IV Feeding. In these studies, nutrition is delivered intravenously but 

is modulated so that the input into the system is a sinusoid with a set period. 

• Continuous insulin input. In these studies insulin is intravenously delivered at a 

constant rate while nutrition is delivered simultaneously.  

 

Another way to think of the data is the state of the patient. Here the following groups 

are used to characterize subjects: 

• Nondiabetics. These are individuals who have not been diagnosed with 

diabetes and in the case of those with risk factors such as age and obesity, have 

been tested using the oral glucose tolerance test (OGTT) and have not met the 

criterion for impaired glucose tolerance (IGT) nor Type II diabetes. 

• Type I diabetics. These are individuals who have been diagnosed with type I 

diabetes characterized with childhood onset accompanied by complete or near 

complete loss of insulin production. In one specific data set, they are also 

further subcategorized as stable and unstable, with the stable individuals being 

easier to “manage” than the unstable ones. Difficulty of management is defined 

by the difficulty of achieving good diabetic regulation. 

• Individuals with impaired glucose tolerance (IGT). These are individuals who 

in response to an oral glucose tolerance test (OGTT) display abnormalities in 

 



21 

the form of elevated blood glucose for a longer period after the test than what 

is normal.  

• Individuals with Type II diabetes. These are individuals who either through an 

OGTT test and/or having developed diabetes at a later age and with the 

common constellation of symptoms (obesity) have been diagnosed with insulin 

resistance and type II diabetes. In most cases they are treated without insulin 

but in some cases insulin injections are included in the time-series period.  

• Individuals with a GCK deficiency. These individuals have a defect in the 

enzyme GCK which leads to essentially similar symptoms as type II diabetes 

but through a different pathway. 

• Individuals with insulin secreting tumors. These individuals experience 

abnormally low blood glucose because of abnormally high blood insulin levels. 

They are treated with frequent meals meant to counter the insulin levels, and 

ultimately with the removal of the insulin secreting tumor.  

  

A summary of these data sets are presented in table 2-1. Further descriptions of 

selected experiments can be found in Appendix B.  
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Table 2-1: A summary of the data sets used in this document. 
 
# Of 
Data 
Sets 

 Names Duration/Sampling Patients/Condition Refs 

Nondiabetics 
 
3 Sernorm1-3 48 Hrs/5 Minutes Nondiabetics, feeding, 

exercising 
[27] 

4 Vannorm6-9 24 Hrs/20 Minutes 2 Nondiabetics with 
different Meal 
Spacings 

[8] 

7 Mal1-7 24 Hrs/60 Minutes Nondiabetics W/ 
Meals 

[33] 

5 Mal8-12 13 Hrs/30 Minutes Nondiabetics W/ 
Meals 

[33] 

5 Mej1-5 24 Hrs/30 Minutes Nondiabetics W/ 
Meals 

[34] 

3 Shanorm1-3 24 Hrs/15 Minutes Nondiabetics Fasting [8] 
9 Simnorm1-9 24 Hrs/10 Minutes 

(3-6 3pt moving av) 
Nondiabetics W/ 
Continuous Enteral 
Feeding 

[31, 
35, 
36] 

6 Polnorm1-
3,9,10,12 

53 Hrs/ 20 Minutes, 9-
12 detrended 

Continuous IV 
Infusion 

[37, 
38] 

2 Polnorm6-7 20 Hrs/15 Minutes Continuous IV 
Infusion 

[8] 

5 Vannorm1-5 24 Hrs/15 Minutes Continuous IV 
Infusion (Different 
Rates) 

[8] 

1 Poldynnorm1 20 Hrs/15 Minutes Sinusoidal Infusion [39] 
9 Poldynnorm2-

10 
24 Hrs/10 Minutes Continuous Or 

Sinusoidal IV Infusion 
[40, 
41] 

4 Mealcha1-4 9 Hrs/4 Minutes Single Meal After 
Fasting 

[23] 

4 Mealcha5-8 14 Hrs/4 Minutes Single Meal After 
Fasting 

[23] 

4 Polinsul1-4 24 Hrs/ 15 Minutes Continuous or 
sinusoidal insulin 
infusion 

[32] 

1 Byrn1 12 Hrs/ 15 Minutes Sinusoidal Infusion [42] 
1  Pfenorm1 24 Hrs/ 1 Minutes Fed/IV Combo [43] 
1 polentrain1 12 Hrs/ 10 Minutes Sinusoidal Infusion [8] 
4 Polfat1-4 12 Hrs/ 15 Minutes Meals [44] 
1 Simvf1 8 Hrs/ 2 Minutes Single Meal [31] 
1 Polvf1 8 Hrs/ 2 Minutes Complete Fasting [45] 
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Table 2-1: A summary of the data sets used in this document (continued). 
 
Type I Diabetic Subjects 
  
15 Serone1-15 48 Hrs/ 5 Minutes Meals/Exercise/Insulin [27] 
4 Mir1-4 24 Hrs/ 1 Minute Meals/Insulin [26] 
3 Mir 5-7 24 Hrs/ 5 Minute Meals/Insulin [26] 
2 Mir 8-9 22-42 Hrs/ 5 Minutes Meals/Insulin [26] 
8 Sanpregone1-

8 
12-24 Hrs/ 1 Minute Pregnant, Some W/ 

Biostator 
[46] 

     
Impaired Glucose Tolerance and Type II Diabetics 
 
8 Polfat5-12 12 Hrs/ 15 Minutes Meals [44] 
5 Polentrain2-6 12 Hrs/ 10 Minutes Sinusoidal Infusion [8] 
1 Pfeniddm1 24 Hrs/ 1 Hour Meals [43] 
2 Simniddm1-2 12 Hrs/ 10 Minutes Constant Enteral Fed [47] 
3 Poldynigt1-3 24 Hrs/ 10 Minutes Dynamic IV Infusion [40] 
3 Poldynniddm

1-3 
24 Hrs/ 10 Minutes Dynamic IV Infusion [40] 

9 Shaniddm1-9 24 Hrs/ 15 Minutes Fasting [8] 
10 Sanpregtwo1-

10 
16-24 Hrs/ 1 Minute Pregnant, Some W/ 

Biostator 
[46] 

Insulinoma 
 
6 Vil1-6 28 Hrs/ 15 Minutes Meals (8 per) [48] 
GCK Deficiency 
 
1 Byrn2 12 Hrs/ 15 Minutes Sinusoidal Infusion [42] 
 

II.D Clinical datasets 

A unique, large data set that consisted of quasi-frequently sampled blood 

glucose was also obtained from the DirecNet study group. DirecNet (Diabetes 

Research in Children Network) was established in part to assess the accuracy of 

systems intended for continuous glucose monitoring in children. This was 

accomplished by using these devices (which at the time were not FDA approved for 
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insulin dosing but for assessment purposes only) in children while taking quasi-

frequent glucose measurements with accelerated sampling during times in which 

change was expected (during meals, insulin injections, etc..). The gold standard data 

(blood samples) were acquired from the group after gaining their permission and after 

all patient related data that would identify the patients was removed. The studies 

themselves are described in detail in [24, 49] and were focused on the sensors but 

produced this useful data as a byproduct.  

 

The difficulty with the DirecNet data set is that the sampling is not uniform 

and well above the limit set forth by assessing the Nyquist criterion previously 

described in the literature [14]. An example of the quality of data obtained from this 

dataset is shown in figure 2-2. Nonetheless, this data set represents a large number of 

patients and thus the data set was used to the extent possible by the constraints stated 

above. This was limited to the studies of rates of change. In particular, because of the 

recent nature of the data and the age of the other type I data being used, the rates of 

change obtained from this data set serve to confirm that observations on type I 

diabetics are not simply the result of outdated treatment approaches.  
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Figure 2-2: Two time-series from the DirecNet data set. Top: nondiabetic child. Bottom: Type I 
diabetic child. Note the difference in scales.  
 

 

 

 



 

Chapter III: Methods of analysis 

Dynamical system information in the form of time-series or spatial series (in 

the case of images) has been analyzed for over a century and a very diverse toolbox of 

such methods has been developed. A particular characteristic of the approaches to time 

series analysis is the high-level development of specific approaches by individual 

scientific and engineering communities. Thus when presented with a novel signal, it 

behooves the analyzer to draw from experiences with various fields of study. The 

methodologies presented have been developed in the fields of signal processing and 

have been applied to a diverse set of naturally occurring signals with the complexities 

present in the glucose time-series signal. In this section, they will be briefly reviewed 

as they form the basis of the examination of the data. 

 

III.A Types of methods considered 

 A very wide net was cast in the process of searching for ways to study the 

blood glucose time-series. Over the past few decades there has been a significant 

proliferation of approaches to time-series analysis and modeling, in particular those 

taking advantage of the processing powers of computers. The approaches may be 

loosely divided into three categories, in part based on the scientific communities using 

such approaches: 

26 
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1) Signal Decomposition 

2) Model Independent Signal Modeling 

3) Model Dependent Signal Modeling 

 

In signal decomposition, and attempt is made break the time-series down into 

components, in hopes that the components can be used to more succinctly describe the 

time-series, or that specific components can be then utilized in other analysis. These 

methods include Fourier analysis, parametric spectral estimations, time-frequency 

analysis (short time Fourier transform Wavelets, Wigner-Ville Distribution), and 

component analysis techniques such as empirical mode decomposition, principal 

component analysis, independent component analysis and singular value 

decomposition.  The resulting representation can be directly used to reach conclusions 

(such as by looking at the presence or absence of a component), or can be used itself 

as a components of a model using methods below. 

 

In model independent signal modeling, a model is constructed using the signal 

without making assumptions that come from other sources than the signal itself. 

Another words, if assumptions about the signal structure are made, they are derived 

from the signal, and not based on some physical insight into the functioning of the 

underlying system. Examples of such approaches include various flavors of auto-

regressive moving average models, Markov models, curve-fit based models, Statistical 

classification methods (neural networks, support vector machines),  Measures of 

determinism (autocorrelation function, mutual information, entropy), nonlinear state-
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space representations (correlation dimensions, phase space maps, Lyapunov 

exponents) as well as other single parameters that have been proposed over the years 

to reflect signal complexity (approximate entropy, sample entropy) The output of such 

models is generally a set of coefficients, an illustrative map or a single parameter 

which can then be used for the purposes of diagnosis, monitoring and design.  

 

In model dependent signal modeling, other information in addition to the 

signal itself are utilized to construct the model: an underlying governing set of 

equations, known physical mechanisms of certain components of the signal, the timing 

and extent of perturbations to the system generating the signal, and known physical 

limitations and boundaries to the value the data can assume.  The general class of such 

models encompass most of physical sciences and are too numerous to mention. 

Specific to the field of glucose monitoring, are single and multi-compartmental 

differential equation models of the human endocrine system, single compartmental 

differential equation models, differential equation models of blood glucose response to 

insulin and meals, parametric models of response to outside perturbations (requiring 

additional information in addition to the time-series). These models make many 

general assumptions about underlying physiology and almost universally require 

measurements of other substances such as insulin. Unlike glucose sensors, insulin 

sensors are not yet near clinical feasibility. For these reason, this type of modeling was 

not pursued in the studies in this dissertation. 
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III.B Constraints on applicable methods 

To limit the methods applied constraints of the thesis objectives and the 

properties of the data are considered. The following limitations, in particular, played a 

large role in the choice methods utilized. 

• Limited Length Of Tracings W/ Respect Time-Scales of Dynamics 

• Limited number of individuals in each subgroup 

• Multiple physiologic systems interacting through a complex mechanism 

 

For example, in the case of higher order statistics, sufficient samples are 

required to populate the distribution and thus measures such as skewness and kurtosis 

require larger number of samples for sufficiently accurate calculation. Measures using 

higher order cumulants require much more population in the distribution to yield 

stable results.  

 

Time-frequency analysis looks at the shift in the frequency characteristics of 

the signal as a function of time itself. The various methods of time-frequency analysis, 

discussed below provide varying degrees of tradeoffs between certainty in frequency 

versus time [50], as well as differing degrees of performance under specific data 

lengths and signal makeup. While discussions in the time-frequency community 

continue as to the optimal approach to time-frequency analysis that is generally 

applicable, each sub-community (defined generally by the type of signal of interest) 
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has adopted a subset of these for use, generally because of constraints imposed on the 

data. 

 

III.C Signal rate of change  

The most basic expression of a signal’s dynamics that is not conveyed by its 

statistics is the rates of change. The study of the signal’s rate of change, and how it 

evolves as a function of time is thus the one of the first approaches to time-series 

analysis. The simplest expression of this is the estimated signal derivative. In this 

analysis, a definition of derivative is used of the following form: 
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Where  denotes the sampling frequency. This is implemented as is except at the 

end-points where a one-sided version of the above is computed.  

sf

 

More complex estimates of derivatives using higher order splines are possible 

but may introduce artifacts and cannot be applied with the same generality to signals 

with varying sampling intervals. The result of the above simply generates another 

time-series for the purpose of analysis which in itself may not seem like a great 

simplification. However, the statistics of this new signal can be studied in addition to 

the statistics of the original time series. Thus this represents the simplest way of 

analyzing the dynamics in the system using the well described tools of statistics. 
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Because hypoglycemic detection and controller design are amongst the top priorities 

guiding this analysis, maximum rates of change and in particular fall of glucose are of 

great interest.  

 

The dynamics of a system can be studied in what is known as state space. A 

true state space reconstruction, however, requires an understanding of the underlying 

variables involved in the dynamics. Despite this limitation, there have been successful 

approaches at visualizing the evolution of the system having only the time series 

available. These generally involve the projection of the information from one 

dimension (the time series) to multiple dimensions. An example of such analysis is 

time-delay embedding (which will be discussed in the nonlinear time-series analysis 

section) and partial phase space reconstruction. The latter, when applied without the 

knowledge of the equations of motion, is generally an estimate of what the key 

variables might be. For example, in many mechanical systems position and momentum 

are used to describe the evolution of the state of the system. In simple cases, it can be 

shown that this represents a complete description of the phase space. In the case of a 

unknown system, a reasonable starting point may be the signal plotted against its rate 

of change. An example of this is shown displayed in figure 3-1. 
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Figure 3-1: Two phase portraits constructed by plotting the value of blood glucose against the 
rate of change. The first (top) is for a nondiabetic patient whereas the second (bottom) is for a 
type I diabetic patient with less than desired control.  
 

In many cases, this type of plot leads to insights about the evolution of the 

system. An example is shown below for a system implemented in our laboratory based 

on the chaotic Chua’s circuit. Measurements from two of the electrical components 

can be plotted against each other to reveal an intricate geometry with two regions 

around which the system “circulates”. These regions are called attractors because the 

state of the system seems to be “attracted” to them, and circulates around them. The 

transition between different behaviors in the system can be studied in terms of the 

number and exact geometry of these attractors [51]. This type of analysis is 
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particularly utilized in the case of nonlinear systems exhibiting chaos, which is a 

property where the exact evolution of the system seems to be very sensitive to initial 

conditions. An example of a plot from such a system designed from a circuit in our 

laboratory is shown in figure 3-2. This system, a Chua’s circuit, exhibits highly 

nonlinear dynamics and chaos in certain parameter regimes. Data from this system 

was used in addition to simulated data for the purpose of testing methods. 

 

Figure 3-2: An attractor geometry for time-series obtained from a Chua’s circuit, a circuit 
exhibiting highly nonlinear behavior and chaos. 
 
 

In the absence of clear attractor geometry, statistical methods can be used to 

analyze the geometry of this reconstruction. In this analysis a number of methods 

analyzing the density, shape and symmetry of these attractors as a way of 
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characterizing glucose dynamics are proposed. Difficulties arise due to digitization 

which causes samples to lie in the exact same point in this phase space. To make the 

analysis more systematic, a vector quantization approach is applied where samples are 

simply placed in a two dimensional histogram based on the value of the time-series 

and the derivative estimate. This is shown in figure 3-3. 
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Figure 3-3: Phase portraits from two different types of patients. A nondiabetic is shown on top 
and a diabetic is shown on bottom. Darkness corresponds to more samples falling in that square. 
 

This quantized phase-space estimate can then be analyzed. The first proposed 

step is to characterize the boundaries of the attractor. This is done by using a simple 

image processing algorithm whereby the image of the attractor is rotated and the first 

non-zero value is used as a “boundary”. The boundaries are then used to create a solid 

object, which represents the space of occupied by the system (figure 3-4). 

Characteristics of this object can then be used to define the system’s behavior. Of 

particular significance may be the size and asymmetry of the attractor.  
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Figure 3-4: The phase portrait and the extracted geometrical shape of the phase portrait, the 
boundary of which is used to determine the size of the attractor. 
 

On further analysis, however, it is clear that the same geometry can be 

distributed in different ways. For example, many of the samples may be concentrated 

at the center, or at the boundaries leading to the same geometric description. To make 

the analysis more thorough, additional considerations of the distribution must be 

considered. One simple consideration is density of the attractor object, or put another 

way its compactness. One simple approach is to form concentric rings of sample 

concentration in the attractor, but this requires an ellipsoid geometry with only one 

focal center where the values are concentrated which while present in nondiabetic 
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individuals, is not necessarily present in other time-series analyzed. To overcome this 

limitation a more general method is considered. The number of samples in the densest 

bin is added to the second densest bin and so on.  In a very dense attractor, very few 

bins account for most of the samples, and thus the curve is shifted to the left. To 

account for attractor size, the curve is normalized for the number of bins in the 

attractor. The number of bins required to account for 90% of the samples (arbitrarily 

chosen boundary for the purpose of comparison) divided by the total area of the 

attractor will be referred to as the attractor density.  

 

Another approach is to look at the center of the attractor object, and view all 

other samples from its perspective. This is achieved by using another image 

processing routine whereby the lines are drawn radiating away from the center of the 

attractor, and the distribution is sampled along this radial lines. This leads to a 

conversion from a circular geometry to one in which the attractor can be view from the 

perspective of excursions from the center. This can be then used to study the profile of 

such excursions. The degree of difference between what the radiating lines sample can 

be used to study the radial symmetry of the attractor. An example of such radiating 

sampling lines and the resulting portrait is shown in figure 3-5. 
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Figure 3-5: (Top) A set of radiating lines from the center of the attractor (center is chosen by 
locating the center of the geometric object containing the whole attractor) is used to sampled 
along various directions leading to the sample profile along those lines in different directions. The 
resulting sampling is shown in the bottom plot.   
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The profile generated from this radial sampling can then be studied by 

comparing the samples along each line. In a perfectly symmetric case, the number of 

samples would be the same along each line. This is measured by the finding the scaled 

range, defined by 

  
)Samples(#Maximum

Samples) Minimum(#-Samples) Maximum(#
 

This quantity can then be evaluated for each step away from the center of the attractor. 

Once this quantity is computed for each distance, they are averaged to yield a number 

which represents a rough estimate of the symmetry of the object. If the object is 

perfectly symmetric, then the value is zero and if it perfectly asymmetric, then the 

value will tend to one. The main weakness of this approach is the difficulty in defining 

a center and the computational intensity involved, which increases very rapidly as the 

radius of the attractor grows. 

 

In conclusion, the attractor geometry will be assessed by three measures: area, 

density and symmetry in hopes that these will help differentiate patients and 

subgroups. 

 

III.D Time-scales of dynamics  

Frequency spectrum attempts to capture the properties of signal by 

decomposing the signal in terms of a sum of sinusoids of various frequencies. This 

gives a direct interpretation in frequency domain in terms of time-scales of dynamics, 
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allows for the detection and removal of noise, and can be correlated to the time-scale 

of other physical phenomenon which can then be tied to the analysis.  In the most 

theoretical framework, these are composed of sinusoids of infinite duration and 

infinite number of such sinusoids can be used to construct a signal. In the digital 

world, signals are composed of finite number of samples and finite sampling intervals, 

limiting the construct in terms of its universality. However, it is still possible to 

approximate the ideal behavior of this decomposition using a variety of methods. Two 

general types of methods exist to this end: the first group utilize direct methods of 

computing the frequency decomposition using an implementation of the discrete 

Fourier transform which is defined by the following equation. 

 

∑
−

=

π=
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Where F represents the frequency domain representation of the signal and f represents 

the time domain, and N denotes the number of samples.  The second group creates a 

model for the signal and then studies the frequency response of the model. The former 

are called nonparametric methods and the latter are termed parametric methods 

because of the intermediate need to approximate the parameters of a model prior to the 

computation of the coefficients associated with each sinusoidal time-scale[52]. 

Because of the fundamental elegance of interpretation of the ideal approximation in 

terms of sinusoids which are essentially one of the best understood mathematic 

functions in physics and engineering, methods which attempt to decompose the signal 

in terms of such have been ubiquitous in physics and engineering, and thus analysis of 
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the frequency content of the signal has become synonymous with this type of 

decomposition. As a result dozens of computational methods have been developed for 

approximating this analysis from sampled, short and even noisy time-series. Each 

method is, in essence trying to capture the same underlying distribution but because of 

the realities associated with real signals (limited duration, limited samples per period 

at high frequencies and noise) end up approximating that distribution with different 

errors. The various approaches are then, in essence, a way to reduce specific types of 

errors in specific types of situations and thus no one method has been able to be shown 

superior to the others without considering the context. These impose fundamental 

limitations on the methods of analysis.  

 

 Limited duration of the signal leads to reduced ability to approximate the 

coefficients associated with each frequency. At higher frequencies (higher with respect 

to the signal length, such that many oscillations occur inside the length of the time-

series) the reduced resolution may come from reduced statistical strength, where is at 

the lower frequencies, because even a single oscillation is not complete, low frequency 

oscillations may not be defined and may simply serve as distortions. For this reason, 

the longest possible sequence of data is used when possible and mean and linear trends 

are removed prior to analysis, a practice followed for all frequency analysis in this 

document. The limitation of length also affects different algorithms differently. For 

example certain methods rely on decomposing the signal into eigen-modes which may 

require multiple periods to be detected whereas some parametric methods may be able 

to characterize the frequency response of the system by fitting a small amount of data. 
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Presence of noise, which can be defined in the most general sense as “signal 

which is not part of the information of interest” is detrimental to all analysis, but 

depending on the nature of the noise, affects different routines to different degrees. For 

example, if a long time-series is available, averaging methods can often eliminate 

normally distributed frequency nonspecific (“white”) noise, whereas pre-filtering may 

be more effective against frequency specific (“colored”) noise [53]. Parametric 

methods can often yield very good results if the a signal model is well understood and 

thus making the assumptions in the model estimating the parameters are highly valid, 

whereas the presence of nonlinearity and nonstationary behavior can effect parametric 

methods detrimentally.  

 

Both parametric and non-parametric methods of spectral analysis were applied 

to the human glucose time-series in order to study the frequency content of the signal. 

The result of such analysis is frequently expressed in a plot called a power spectrum, 

where the signal energy per unit of the frequency domain per sample is graphed 

against the frequency.  A set of such methods was explored for the purpose of spectral 

analysis, and a brief description of them is given in table 3-1. 
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Table 3-1: Various methods of estimating the frequency spectrum of a time-series.  
 
Routine Implementation      Comment 
FFT w/ windowing Author (using 

Matlab FFT) 
Simplest most general 
purpose approach 

FFT w/ windowing, incoherent 
averaging (50% segment overlap) 

Author (using 
Matlab FFT) 

Increased optimality at 
high frequencies, w/ loss of 
information at low.  

Multi-taper method MATLAB  Uses frequency domain 
windowing 

Eigenanalysis  MATLAB  
Covariance MATLAB  
Modified covariance MATLAB Slightly different (uses 

bidirectional prediction 
error) 

Burg model MATLAB Method of AR estimation 
Yule-AR MATLAB Method of AR estimation 
Direct AR Author (using 

Matlab ARMAX)
Box-Jenkins model 

Prony model Author (using 
Matlab Prony) 

Complex exponential 
model 

 

FFT spectral estimation is the most widely used method and is based on the 

Fast Fourier Transform, which is a computationally fast method of estimating the 

discrete Fourier transform of a uniformly sampled signal. The DFT and FFT are the 

most direct computational methods of moving from time to frequency domain without 

a change in the overall signal energy. As mentioned above, the shortness of the time-

series for the purpose of analysis introduces distortions at the end point where the 

signal abruptly ends. To overcome this, the signal is attenuated at the beginning and 

end using a windowing function which multiplies by the signal prior to processing. 

Care then has to be taken to take this multiplication into account in calculating signal 

energies. In essence windowing reduces the importance of the beginning and the end 

of the time-series to the calculation while emphasizing the middle. Each window, like 
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each method of spectral estimation has advantages and disadvantages and the same 

window, a rather general choice, the Kaiser window with a coefficient of 8.0 was used 

for all analysis for the purpose of consistency. 

Signal  energy in time-domain  Signal  energy in frequency domain 
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=

N

n
na

1

2

=

W

w
wa

1

2

FFT spectral estimation can be further refined by estimating the Fourier transform for 

smaller snippets of the data and averaging the resulting distribution. This can lead to 

an improved estimate of the higher frequency components of the signal, but because 

the lowest frequency estimated by the method is dependent on the total length of the 

signal, frequency estimates at lower frequencies are sacrificed for this purpose. Thus 

the data is divided into multiple snippets, with variable amount of overlap between the 

snippets. The overlap is useful because as discussed above, the windowing lessens the 

importance of parts of the snippets during the FFT process, and thus without 

overlapping, not all the information in the time-series is used optimally for the 

estimate. The use of multiple snippets does not warrant discontinuation of windowing 

as the algorithm still only sees and computes the FFT one snippet at a time and has no 

knowledge of the fact that the snippet end is not the end point in the full time-series. A 

typical value of 50% overlap was utilized for the purpose of the analysis. In averaging 

the resulting frequency domain representation, care has to be taken to average the 

energies in each band (termed incoherent averaging) and not the actual direct 

frequency coefficients (which are complex numbers) as phase cancellations in the 
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complex domain may lead to cancellation of frequency content (termed coherent 

averaging). 

 

The multi-taper method (MTM) performs a similar averaging and windowing 

(tapers in frequency domain) as the method described above in the frequency domain. 

Like the above two methods, it uses FFT at its core but modifies the FFT process 

using windowing and averaging of snippets but in the frequency domain instead of the 

time domain [54]. 

 

Another nonparametric approach to estimating the frequency content of the 

signal is by the assessment of the correlation matrix, computed from the signal [55]. 

The autocorrelation function, which can be derived from the signal, can be directly 

transformed using the FFT algorithm into the power spectrum estimate (this, however, 

in itself offers little advantage). However, analysis of the eigenvectors of the 

correlation matrix, and their translation into frequency domain estimates of signal 

energy generates what is known as the psudeospectrum. This approach is particularly 

advantageous in that in theory, eigenvectors associated with noise may be separated 

and not analyzed.  

 

Parametric approaches attempt to estimate a model for the signal and then 

study the frequency response of that model in order to estimate the frequency 

spectrum of the data. A simple model of the covariance matrix can be used to compute 

a model whose frequency response can be then be estimated. The covariance matrix 
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can be used to estimate the coefficients of a nth order autoregressive (all-pole) model. 

The pcov() routine in Matlab minimizes the forward prediction error (Least Square) 

while the modified covariance algorithm, pmcov() uses both the forward and 

backward prediction error to estimate the coefficients of the AR model. The power 

spectrum is then computed by studying the frequency response of the model. The 

Yule-Walker method can also be used to compute the AR coefficients pyulear(), as 

can the burg method which uses both forward and backward prediction errors to 

optimize the estimate of the AR model using the same solution technique (Levinson-

Durbin recursion), and is implemented in pburg(). Another approach to calculating the 

frequency response is by using models which generate both zero and pole coefficients. 

One such model is the Prony model. The Prony model is based on using complex 

exponentials as the basis for finding the frequency behavior of the system. Their use in 

a biological signal processing context is discussed in [56] 

 

To evaluate the utility of various methods was tested using simulated time-

series with known spectral content. Because the time-series in the data set are short 

relative to the slowest possible time-scales (such as circadian rhythms and meals) one 

of the key criterion of methods employed must be that they can make computations 

using short time-series. Additionally, noise and distortion must not excessively 

degrade the estimate. The spectral estimates using multiple methods were applied to a 

variety of different time-series under different sampling conditions to better 

understand the limitations of each routine. Three composite figures generated from 

such multiple approaches are shown in figures 3-6 to 3-8.  
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Figure 3-6: A demonstration of six of the methods discussed applied to a single sinusoid w/ a 
period of 6 minutes, with 240 minutes of data and sampling of 1 per minute. This represents an 
ideal data set. Model order of 100 minutes was used for AR models and 25 minutes for the 
covariance methods. 

 

Figure 3-7: A demonstration of six of the methods discussed applied to a single sinusoid w/ a 
period of 40 minutes, mixed with a sinusoid with nonlinearly varying frequency, 576 minutes of 
data and sampling of 1 per minute. This is meant to simulate data from constant infusion of 
glucose.  Model order of 50 minutes was used for AR models and the covariance methods. The 
Peig routine calculated a maximum of 10 eigenvectors.  
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Figure 3-8: A demonstration of six of the methods discussed applied to a single sinusoid w/ a 
period of 40 minutes, mixed with a sinusoid with nonlinearly varying frequency, 576 minutes of 
data and sampling of 4 per minute. This is meant to simulate data from constant infusion of 
glucose.  Model order of 200 minutes was used for AR models and the covariance methods. The 
Peig routine calculated a maximum of 10 eigenvectors.  
 

All methods performed well in this context in finding the peak related to the 

constant sinusoid, however, the multi-taper method tended to create a broader peak, 

the covariance and modified covariance tended to produce very similar results and the 

peig algorithm is very sensitive to the estimated number of sinusoids in the signal 

(which translates into the maximum eigenvectors decomposed). Because the analysis 

here is to be applied to a wide variety of signal, sensitivities to parameters are difficult 

to manage because they require a-priori knowledge of the signal and changing it 

depending on the tracing. The Yule-AR and the Burg AR also seem to perform 

similarly and in other tests performed that are not shown. Figures 3-9 and 3-10 show 
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some of the tests already discussed and new ones that were not in the previous figures. 

These include the Prony method based estimate as well as the averaged FFT method. 

 

 

Figure 3-9: A demonstration of six of the methods discussed applied to a single sinusoid w/ a 
period of 40 minutes, mixed with a sinusoid with nonlinearly varying frequency, 576 minutes of 
data and sampling of 1 per minute. This is meant to simulate data from constant infusion of 
glucose.  Model order of 50 minutes was used for AR models and the covariance methods.   
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Figure 3-10: A demonstration of six of the methods discussed applied to a tracing of nondiabetic 
blood glucose levels sampled every 5 minutes for 48 hours.. Model order of 350 minutes (70 
samples) was used for AR and a model order of 1400 minutes (280 samples) was used for the 
burg, Prony and  covariance methods.  

 

After an exhaustive search, three methods which seemed sufficiently 

“different” from each other were chosen and have been applied throughout this text. 

The burg model was chosen because of the ease of implementation and because other 

AR based methods did not seem to produce significantly different estimates in the 

range of samples and time-scales of interest. The Prony method was taken as a 

different model of frequency response and the simple windowed FFT was used as a 

nonparametric measure.  These three methods (along with two that were not used) are 

shown once again applied to a different type of signal from nondiabetics in figure 3-

11. 
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Figure 3-11: A demonstration of five of the methods discussed applied to a tracing of nondiabetic 
blood glucose levels during continuous feeding sampled every 10 minutes for 28 hours.. Model 
order of 350 minutes (70 samples) was used for AR and a model order of 1400 minutes (140 
samples) was used for the burg, Prony and  covariance methods.  
 

In order to look at multiple individuals, a method of looking at multiple spectra 

for the specific purposes of analyzing relative and mean distributions is to show each 

spectra as a single row of pixels with different intensities. Each power spectrum is re-

sampled in order to facilitate visual comparison between datasets. The sampling is 

determined by the lowest sampling frequency between all datasets. Furthermore, 

because the interest in this case is the relative distribution of energies, all spectral 

estimates are normalized to make comparison across data possible. They are displayed 

on a color scale ranging from white to black, denoting values from zero to one with 

one representing the highest peak in that spectrum, for that specific time series. These 
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are then averaged to yield a representative spectrum on the bottom of the colored map. 

An example of such a figure, demonstrating the effect of the model order on the burg 

estimator is shown in figure 3-12.  

 

 

Figure 3-12: The comparison of two nondiabetic subgroups with the spectrum estimated using a 
20th order (top) and an 80th order (bottom) Burg estimator. Note the increase in localization of the 
peaks.  
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III.E Time-frequency approaches 
 

The methods in the previous section assume that the frequency content of the 

signal is constant and thus assess the signal as a single entity. It is critical to realize 

that the relationship between time and frequency is governed by an uncertainty 

principle: the more exact one tries to localize the signal in the frequency domain, the 

less the resolution can be defined in the time domain [50]. This uncertainty principle is 

a consequence of the properties of Fourier transform pairs, a class to which time and 

frequency belong to. In the case of spectral analysis, the time resolution is fully 

“traded” in return for maximizing the resolution in the frequency domain. Thus to 

study the frequency behavior of the signal over time, loss of frequency resolution is a 

necessary cost. 

 

The results from time-frequency approaches are shown in a time-frequency 

plot where signal energy is denoted by color, the vertical axis represents some 

measure of frequency (or period, time-scale, length-scale) and the horizontal axis 

represents the progression of the window in time. The difference in the approaches, in 

essence amounts to approach taken to define frequency and the specific trades that are 

made in time-frequency analysis. The short time Fourier transform, for example, 

directly trades resolution in frequency for time at the same scale for all frequencies 

whereas wavelet decomposition makes a different trade depending on the frequency 

scale of the analysis. The methods are summarized in the table 3-2. 
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Table 3-2: A short list of the general class of time-frequency approaches considered for this 
analysis. They are discussed individually in the following sections. 
 

 Basis Advantages Disadvantages 

Short Time Fourier 
Transform 

Fourier 
Series 

Ease of 
Interpretation 

Poor Resolution 

Wavelets Wavelet 
Library 

 Hard to Interpret, 
dependent on 
wavelet chosen 

Wigner-Ville and 
Pseudo-Wigner-Ville 
Distributions 

None Simple, gives a 
possible 
“instantaneous 
frequency” 

Distortions 
resulting from 
cross terms  

Emperical Mode 
Decomposition 

Derived 
from the data

Decomposes 
signal into 
modes, gives a 
possible 
instantaneous 
frequency 

Hard to interpret  

 

III.E.1 Short-time Fourier transform 

 This is the classical approach to time-frequency analysis, which involves a 

moving window which is short in comparison to the time-series, and in which the 

Fourier transform is computed. Essentially, each column represents a spectral estimate 

with the window starting at that time-point. Clearly, the resolution in time is thus 

further limited (in addition to constraints of the fundamental uncertainty discussed 

above) by the resolution of the spectral estimates 
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III.E.2 Wavelet decomposition 
 
 Wavelet decomposition is similar to Fourier decomposition in that the signal is 

decomposed into a set of coefficients by taking the inner product of the signal with a 

basis function. But unlike the Fourier transform where the basis set consists of 

sinusoids which extend towards infinity towards both directions, the basis set of 

wavelet transform consist of functions which are localized in time and tend to zero in 

either directions of infinity. Each new basis is derived by moving in time (translation) 

and rescaling of the original wavelet function. An example of such a decomposition is 

shown in figure 3-13. 
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Figure 3-13: The representation of a signal with variable time-frequency components represented 
in time-frequency domain using various wavelet basis sets. 

 



57 

In theory, the more compact the wavelet representation is, the more the 

wavelet is able to capture the signal and hence it is considered optimal for that signal. 

The strength of wavelets in their diversity also then leads to their main drawback 

which is that the optimal wavelet for a given signal is highly dependent on the signal 

in question, and in particular is sensitive to sampling periods and data length[57].   

 

An algorithm was devised to systematically search through a library of 

continuous wavelet transforms to search for a compact wavelet representation. This 

algorithm did not find a wavelet basis that was universally produced a compact 

representation. Thus two wavelets were chosen for the purpose of analysis. They were 

chosen because they represented two very different types of wavelets. The first one, a 

first order Daubechies wavelet was chosen because of the very compact support (that 

is high time-localization) whereas the Gaussian wavelets provide non-compact support 

but are symmetric. Both these were implemented in the Matlab wavelet toolbox 

(Matlab 6.5.1). 

 

 The resulting plot from a time-frequency representation can be informative 

about the different shifts in time-scales in the signal. However, when trying to reach 

population based conclusions, it becomes necessary to be able to represent the time-

frequency in terms of a few parameters. To this end a method was devised which 

would locate the “center” of signal energy concentration in each time point. This was 

achieved by taking a weighted (by signal energy) average of the location of the top 

signal energy contributors for that time. In the case of wavelets time points during 
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which no dense signal energy concentration was detected (which is a side-effect of the 

nature of wavelets) were not included in the analysis.   The location of these central 

points were tracked and averaged to yield a mean frequency peak. The variations 

about this mean were taken as the primary surrogate for time-frequency variability.  

An example such a plot for the STFT and wavelet decomposition is shown in figure 3-

14 and 3-15. 

 

Figure 3-14: Dark squares superimposed on the gray scale image of the time-frequency response 
computed using the short-time Fourier transform indicate the “center” of energy localization in 
the time-frequency plot. 
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Figure 3-15: The center of energy localization shown by the very dark squares superimposed on 
the time-frequency plot, for a sinusoid with a wavelength of ~20.  

 

III.E.3 Empirical mode decomposition and Hilbert-Huang transform. 

Empirical mode decomposition represents an attempt to decompose the signal 

into different time-scales without the use of any predefined basis function. In other 

words, the time-scales upon which the data is projected in order to decompose the 

signal are not predetermined but are rather derived from the signal itself. In this way, 

this method (and other basis independent methods such as Singular Value 

Decomposition and Eigen-analysis), fundamentally differ from the ones discussed so 

far because they make no assumption about the nature of the time-scales that the 

signals being decomposed into. This provides these methods with a tremendous 

advantage in terms of analyzing time-series generated from signals containing 
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nonlinearities and possible nonstationarities. The tradeoff comes in the form of 

uniqueness and interpretation. Even a slight change in the make of the time-series (for 

example phase related changes) may lead to an alternative though albeit correct 

decomposition. This makes the interpretation of the results difficult in particular for 

the purpose of comparison between individual tracings. Additionally, the 

interpretation of the modes themselves can be difficult, because they are not related to 

each other in a strict sense (although there is a progression in the time-scale of each 

mode with the latter modes containing slower oscillations). 

 

The process of generating the EMD is discussed thoroughly in multiple 

references [58] but can be summarized as follows: lower and upper envelopes are 

computed for the signal by interpolation of lines connecting the maxima and minima 

of the signal. The mean envelope is then computed between these two envelopes and 

is subtracted from the signal. This is repeated until a mean envelope of nearly zero 

results from the signal. This new signal is called a mode. The mode is then subtracted 

from the signal and the process is repeated to the resulting signal with the mode 

removed. The decomposition is terminated after a few repetitions or when the only 

remaining mode has few if any oscillations. An example of such decomposition, 

applied to the nondiabetic time series using code implemented by the author is shown 

in figure 3-16. 
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Figure 3-16: A time-series from a nondiabetic is decomposed into three modes and a residual 
using an implementation of the EMD.  Notice that the time-scales of each mode become 
progressively longer.  
 
 

Aside from not relying on any external definition of a basis set, the EMD can 

be used, after conversion to an analytic signal, to calculate an instantaneous frequency. 

An In signal terms, this means that the signals have zero signal energy in the negative 

frequencies, which result when using the Fourier transform to translate most real 

signal into frequency domain. An analytic signal is created by taking the real 

component and adding, in quadrature the Hilbert transform of the signal [59] . 

Analytic signals have the critical property that the negative frequency components 

vanish, permitting the computation of the concept of instantaneous frequency.  

 

 

 

 



62 

The Hilbert transform is defined by: 

H(t) = s(t) + τ
τ−

τ
π ∫

∞

∞−
d

t
)(s1i  

The quantity H(t) represents the analytical signal obtained by taking the Hilbert 

transform, which combined with the EMD processing is termed the Hilbert-Huang 

transform. This is performed on each separate EMD signal component individual. The 

phase component of this analytic signal fluctuates in a manner such that its derivate 

represents a quantity with the dimensions of frequency and significant literature debate 

exists as to whether this represents a real quantity. However, it has been proposed that 

this frequency like component represents a good estimate of the instantaneous 

frequency as there is no negative frequency component and thus a single frequency 

like number is computer per each unit time. Applying this to each component of the 

EMD yields a group of instantaneous frequency plots which represent the frequency 

fluctuations of each of the empirical modes.  

 

As mentioned, difficulty with interpretation persists as the main problem with 

this method. Because a significant amount of the signal energy is concentrated in the 

meal events, insufficient meal events in a 48 hour period exist to really take advantage 

of this and other “independent mode” decompositions which rely on many wave 

iterations to separate signal components. Additionally, the instantaneous frequency 

component did not yield insights not available with the simpler short-time Fourier 

transform approaches discussed above. Thus while promising, this method was not 

used in the final analysis, but may promise to be a useful tool in the prediction or 
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categorization of signals with larger datasets and may offer superior results in the 

context of large-scale data analysis.  

 

III.E.5 Pattern finding in time-frequency analysis 

Another approach to looking at the temporal evolution of signals, and in 

particular ones which contain pulsatile behavior is to identify the pulses in the signal 

using the peaks of the signal and subsequently analyze the properties of these signals. 

These were implemented on certain time-series which exhibited pulsatile behavior 

which was specifically of interest. Peaks were detected by looking at maxima in the 

time-series which were significant and not in the near neighborhood of other maxima 

to prevent “false” detection. In reality, because no truth-table exists, it is very hard to 

judge the performance of such pulse detectors in terms of detecting all the pulses in 

the signal. However, the pulses that are detected can be characterized very well in 

terms of their temporal characteristics. This method, in essence is a time-frequency 

based method in which certain singularities (peaks) are used to gain very good 

temporal resolution, but require knowledge about the specific features that are of 

interest.  
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Figure 3-17: the top of pulses are marked by looking for points where the signal changes 
direction. To avoid marking small fluctuations, certain limits (such as distance from the previous 
pulse are used to reject some of the candidate points. The distance between these points forms the 
basis for pulse width analysis.  
 

 As shown in figure 3-17, by varying parameters such as the required rate of 

change and the inhibition of pulses in the vicinity of each other (as discussed above), 

good agreement, at least with visual perception is reached. The distribution, in terms 

of the number of pulses per unit time is then used to characterize the time-series.  
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III.F Information half-life 

Though intimately related to the time-scales of dynamics, another approach to 

better understanding the signal is to look at the information content of the signal. A 

metric of interest is the rate at which information disappears with time. That is, how 

much does the information at current time predict the future values of the signal. This 

rate of disappearance is intimately related to the way information is extracted from the 

signal. To this end, three different approaches are used to assess information 

dissipation with time. These are based on the average mutual information, 

autocorrelation function and the difference in sample energies. The autocorrelation 

function, which will be revisited in multiple contexts throughout this document is 

defined by the following equation: 

}xx{E)m(R nmnxy +=  

where E denotes the expectation value. The average mutual information is similar to 

the autocorrelation function but instead of simply looking at the product of the 

samples, looks at the correlation between the vector quantized states of the system. 

Strictly speaking, the mutual information of two discrete independent variables X and 

Y is given by the following equation:  

   

where p(X;Y) is the joint probability density function of the two variables  while p(X) 

and p(Y) are the marginal probability density functions of each variable. In applying 

this to a time series, he process of vector quantization is used to create discrete states 
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using which the probability densities are calculated between the variable at time t and 

t-n. The average mutual information at lag n is the amount of information known 

about the variable at time t based on the distribution at time t-n. Much like the 

autocorrelation function, this is a measure of the information content of the signal 

framed in terms of time. Looking at the way in which this value changes as the delay 

between the samples increases gives us another way of looking at the information half-

life which is more based on the information contents of the signal rather than a linear 

correlation. 

 

Finally, the simple difference in energies can be used as the simplest energy 

based measurement of the change of the time-series value. The energy at time t and t-n 

are calculated and the time delay n is compared to the change in the signal energy 

during that time. Combined, these three measurements and the corresponding 

calculation of information half-life (That is the time required for the value to change 

of these metrics to be reduced by 50%) can be used to assess the time-scales of change 

of the information content of the signal.  

 

III.G Entropy, Approximate Entropy and Sample Entropy 

Vector quantization is a process by which continuous values are assigned 

discrete “bins”. The simplest form of vector quantization is the generation of 

histogram, in which case evenly sized bins are used to summarize the data. Most 

forms of vector quantization contain loss in information as the data is reduced in 
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dimensionality. Nonlinear complexity measures such as entropy use vector 

quantization to describe the complexity of a signal [60, 61] 

 

Approximate entropy uses the concept of patterns to measure the “regularity” 

of a time-series. Patterns are defined by their length and the tolerance of difference 

between patterns that can fall into a category.  This method has been successfully 

developed and applied in assessing physiological dynamics in the human 

cardiovascular system [62] and in particular in terms of disease processes [10]. 

 

In a similar way as approximate entropy, sample entropy creates bins based on 

a similarity parameter r, which is a percentage difference between two values [63, 64]. 

If the percentage difference between the two values is less than r, then they are 

considered to be in the same bin. Sample entropy procedures rely on finding the 

patterns of m consecutive bin transitions that are similar and comparing the frequency 

of similar transitions to each other. For example, with m = 2 and the time-series 

starting with the value of 100 and then 80, the routine will count the number of times a 

value of 90-110 is followed by a value of 72-88 (two bins of +10% and -10% around 

the value of 90 and 100 respectively). This will constitute a pattern and the number of 

these cases will be counted. The next two values in the time-series are then evaluated 

as a pattern template and the number of times similar transitions are detected are 

noted. Thus, in time-series where similar transitions exist between bins, the counts will 

be high. The procedure is then repeated with three sample long patterns. The relative 

number of patterns detected at different pattern lengths form the basis for the entropy 
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calculation. Approximate entropy provides a good dynamic measure of complexity as 

it is not sensitive to the simple mean and standard deviation of the time-series as 

compared to the standard information theoretic entropy measurement (table 3-3). 

 

Table 3-3: Some values of entropy and approximate entropy calculated for some test signals. The 
signals are detrended and normalized based on their range, and the entropy is recalculated. 
Approximate entropy does not change because of the rescaling of the time-series.   
   
 Entropy Detrended & 

Normalized 
Apen Detrended & 

normalized 
Gaussian 
Noise 

2.98 1.42 1.37 1.37 

Sines W/ 
Nonlinearly 
varying 
frequency 

3.5 1.33 .44 .45 

Chaotic Series 
(Chuas) 

3.0 1.3 .61 .61 

Chaotic Series 
(Chuas 2) 

3.08 1.2 .49 .49 

Sine + Noise 4.5 1.41 1.42 1.45 
Two Sines 4.2 1.31 .17 .18 
Single Sine 3.33 .87 .20 .21 
Sine Shifted 3.43 .94 .20 .21 
 

 

III.H Study of the underlying system 

 Biological systems tend to contain many nonlinear elements, a characteristic 

discussed extensively in the literature ([60, 61, 65]). The presence of nonlinear signal 

structure has strong implications for development of models and also the validity of 

linear approaches to treating the signal. The sources of nonlinearity may result from 

the underlying physiology, transport of glucose as well as measurement techniques 
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(which presumably play a negligible part in the data sets in question). Testing for 

nonlinear behavior in signals is not a very well developed field for many reasons 

which include lack of approaches to signal processing once the nonlinearity has been 

detected, lack of computational power, and increased complexity in defining 

nonlinearity and separating it from noise, measurement distortions and artifacts. The 

approaches to testing signals for nonlinear content have been largely developed by the 

physiology and economics communities which both deal with very complex time-

series. Much of the algorithms and simulations have been proposed and implemented 

in the past two decades, and largely rely on simulated data (as opposed to real, noisy 

data). For this reason interpretation of these tests must be taken with the awareness 

that they may suggest nonlinear signal contents rather than proving it. This is not 

simply caused by the weakness of the test statistics but rather by the fundamental 

computational implementation and its susceptibility to error, in particular with smaller 

data sets and with operator input of parameters which must be estimated using human 

intervention.  These difficulties, as will be discussed, also reappear in the nonlinear 

time-series analysis after nonlinearities are suspected. The only prescribed remedy, it 

appears, is to approach the problem using multiple tools and interpret the evidence in a 

holistic sense.  

 

III.H.1 Tests for presence of nonlinearity 

Multiple tests were examined for the purposes of testing the degree of 

nonlinearity in the signal content. An introduction to these methods can be found in a 
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single reference [66] where they were used in a blind comparison on simulated data in 

order to determine whether the data was generated by a nonlinear system of equation.  

Two tests which were not used are described below to illustrate the diversity of 

approaches to this problem. 

 

The Hinich bispectrum test uses higher order statistics to test for nonlinearity 

and gaussian profile. The term higher order statistics, derives from the equations that 

give rise to the common statistical descriptors of distributions such as the mean and 

standard deviation. The power spectrum can be computed by taking the Fourier 

transform of the autocorrelation function and similarly, the bispectrum can be 

computed by taking the Fourier transform of the higher order cumulants. The output is 

a two dimensional relationship between the frequency in the data. Properties of this 

result can be used to test for Gaussian distribution and by extension for the presence of 

a Gaussian linear process. This test suffers from lack of specificity in terms of the null 

hypothesis as well as requiring a significant number of samples to compute the higher 

order cumulants.  

 

 The BDS method does not provide a direct test for nonlinearity or chaos, as the 

sampling distribution of the test statistic is unknown. The test statistics are 

characterized, however, for a null hypothesis of independence of samples. Thus, if for 

example all linearity is removed from the signal by fitting of a general purpose linear 

model (like an ARMA model) then the remaining signal dependence, which can be 

tested using BDS may be attributed to nonlinearities. This off course leads to the 
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challenge of completely removing all linear dependence, or linear pre-whitening. In 

one implementation, an ARMA model estimated using the Box-Jenkins method was 

used to pre-filter the signal. This method was not implemented because it relies 

heavily on having optimized a linear model  

 

 The methods that seemed most promising with smaller data sets were based on 

the method of surrogates. Here the goal is to create alternative signals, which are 

statistical equivalents of the original signal and examine various forms of determinism 

in these signals. In the case of detecting nonlinearities, the objective is to reject the 

null hypothesis that the signal is a deterministic linear signal (assuming determinism is 

based on a non-rapidly falling autocorrelation function). Since the determinism in a 

linear signal is “carried” in the autocorrelation function, surrogate signals with the 

same autocorrelation functions should contain the same amount of determinism. Thus 

the test amounts to construction of linear-equivalent surrogates and searching to see if 

determinism is significantly reduced. If it is not, then the null hypothesis cannot be 

rejected, because a linear surrogate to the time-series can be constructed that contains 

the same degree of determinism. The Kaplan delta-epsilon test was used for the 

purpose of assessing determinism. This test is well described extensively in multiple 

references [67]. Briefly, a test statistic for determinism is computed in multiple 

dimensions using time-delay embedding. This test statistic, generated by the Kaplan 

delta-epsilon method is then compared to the test statistic generated for the linear 

surrogates. If there is a linear surrogate that has a similar degree of determinism to the 
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original signal as displayed by the K statistic, then the linearity of the signal cannot be 

rejected. 

 

 This type of analysis has a clear interpretation and framework but relies 

heavily on the correct construction of surrogates and a good test for determinism that 

does not involve simple linear predictions (these predictors, would, after all only see 

the linear determinism to begin with). Two different codes for linear surrogate 

generation were used as well two different tests of determinism. Creation of linear 

equivalent surrogates is achieved by shuffling the phase in the Fourier domain without 

changing the signal energy at each frequency, which changes the essence of the signal 

without changing the autocorrelation function. A glucose signal and its linear 

equivalent surrogate are shown below in figure 3-18. 

 
Figure 3-18: A glucose time-series and a linear surrogate with equivalent autocorrelation 
function.  
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Five models were used as described in [66], for the purposes of validating the 

tests for nonlinearity. Additionally, other signals with known but diverse set of 

properties were utilized. These include time series from simulations of the Lorenz 

attractor, simulate sine waves and normally distributed noise, as well as 

experimentally designed Chua’s circuits (described in appendix C). These models are 

summarized in the table 3-4, and the Kaplan delta-epsilon test as applied to these 

models is shown in table 3-5. 
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Table 3-4: Core models utilized to test nonlinearity using various tests.  
 

Model Name Model Type Equation Initial 
Condition 

# Samples 

Model 1 Feigenbaum 
Chaotic  

Y(t) = 3.57y(t-1)(1-

y(t1)) 

 

 y(0) = .7; 2000 

Model 2 GARCH 
process 

Y(t) = h(t)1/2 u(t) 

H(t) = 1 + .1y(t-1)2 +.8h(t-

1) 

None 2000 

Model 3 Nonlinear 
ARMA 

Y(t) = u(t) + .8u(t-1)u(t-2) None 2000 

Model 4 ARCH 
Process 

Y(t) = (1+.5y2(t-1))1/2 u(t) 

 

y(0)= 0; 2000 

Model 5 Linear 
ARMA 

Y(t) = .8y(t-1)+.15y(t-2) + 

u(t) + .3u(t-1) 

y(0) = 1 and 
y(1) = .7 

2000 

Sinusoid Sinusoid 
(Nonlinear) 

Y(t) = sin(2* π*t/100) None 1440 

Noise Gaussian 
Noise 

Matlab Randn()  None 576 

Lorenz Chaotic 
Nonlinear 

See appendix C  1250 

Chuas1 Chaotic 
Nonlinear 

Experimental Circuit (See 

Appendix C) 

None 1250 

Chuas2 Chaotic 
Nonlinear 

Experimental Circuit 

(See Appendix C) 

None 1250 
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Table 3-5: Delays were estimated for the various test signals including the models described 
above. The mean and minimum values of the test statistic K is shown for various dimensions, for 
200 surrogates and the time-series. If the time series has a k smaller than the minimum surrogate 
K, then the null hypothesis of linearity can be rejected.   
 
 
 

Delay Mean 
Surrogate 
K 

Min 
Surrogate 
K 

Std Dev 
Surrogate 
K 

Time 
Series K 

Dims Result 

Model 1  3 .1 .05 .02 1e-4 1 Strongly 
Reject 
Linearity 

  .05 .03 .008 1.3e-4 2  
  .04 .03 .008 7.8e-5 3  
  .04 .02 .007 3e-5 4  
        
Model 2  2 3.5 3.5 .02 3.5 1 Weakly 

Reject 
Linearity 

  3.5 3.3 .05 3.2 2  
  3.6 3.3 .08 2.9 3  
  3.5 3.2 .09 2.7 4  
        
        
Model 3  3 1.4 1.4 .008 1.4 1 Weakly 

Reject 
Linearity 

  1.4 1.4 .02 1.3 2  
  1.4 1.3 .03 1.2 3  
  1.4 1.3 .04 1.1 4  
        
Model 4 3 1.5 1.5 .008 1.4 1 Weakly 

reject 
Linearity 

  1.5 1.5 .02 1.3 2  
  1.5 1.4 .03 1.2 3  
  1.5 1.4 .04 1.1 4  
        
Model 5 
 

36 1.2 1.2 .03 1.1 1 Cannot 
Reject 
Linearity 

  1.2 1.0 .05 1.0 2  
  1.0 .8 .06 .9 3  
  .8 .7 .07 .8 4  
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Table 3-5: Delays were estimated for the various test signals including the models described 
above. The mean and minimum values of the test statistic K is shown for various dimensions, for 
200 surrogates and the time-series. If the time series has a k smaller than the minimum surrogate 
K, then the null hypothesis of linearity can be rejected (Continued). 
 
Sinusoid 100 .09 .07 .007 .04 1 Cannot 

reject 
linearity 

  .05 .03 .007 .04 2  
  .03 .01 .08 .04 3  
  .03 .001 .01 .04 4  
        
        
Noise 1 5.4 5.2 .1 5.4 1 Cannot 

Reject 
Linearity 

  5.3 4.8 .2 5.4 2  
  5.4 4.8 .2 5.6 3  
  5.4 4.6 .3 5.7 4  
        
Lorenz 32 1.4 1.2 .08 1.0 1 Reject 

Linearity 
  .8 .5 .1 .5 2  
  .4 .1 .1 .01 3  
        
        
Chuas 1  55 .16 .15 .003 .14 1 Reject 

Linearity 
  .13 .1 .005 .1 2  
  .12 .1 .07 .07 3  
  .1 .09 .008 .06 4  
  .1 .06 .01 .05 5  
  .08 .05 .009 .03 6  
  .06 .03 .01 .04 7  
        
Chuas 2 49 .9 .8 .03 .6 1 Reject 

Linearity 
  .9 .7 .06 .5 2  
  .9 .7 .06 .5 3  
  .9 .7 .08 .4 4  
  .8 .6 .09 .4 5  
  .7 .5 .09 .4 6  
  .6 .4 .1 .3 7  
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As shown in table 3-5, the Kaplan delta-epsilon test performs very well in 

extreme cases (such as noise, model 1 (highly nonlinear and chaotic), Chua’s (highly 

nonlinear and chaotic) but has more trouble with intermediate systems which are 

linear but complex.  

 

III.H.2 Nonlinear time-series analysis 

An essential first step in nonlinear time series analysis is the concept of the 

dimensionality of the data. The underlying idea is that the time-series is a projection to 

a single dimensional data set from a multidimensional evolutionary pathway. This 

concept was discussed briefly in the earlier section on rates of change and attractor 

reconstruction, where the single dimensional data (time-series) was re-embedded into 

two dimensions to study the evolution of the system. Visualization is generally limited 

in 2 or 3 dimensions, but in reality, the system may require more dimensions to fully 

“unfold” the attractor structure. To “unfold” the attractor is essentially to reverse the 

process of the projection to one dimension. This process is known as embedding the 

data set in multiple dimensions [68]. Many methods exist for embedding the data (that 

is recreating the multidimensional data set that was projected into one dimension to 

create the time-series), but the first step is to estimate how many dimensions are 

required to achieve this. Two general approaches exist for this: one is to embed the 
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time-series in multiple dimensions and study the quantity known as the correlation 

integral. The second relies on the concept of false nearest neighbors.  

 

 All methods however, rely on a good estimate of a delay parameter. This is a 

rough estimate, based on the time-series of the duration, in samples, of one excursion 

of the system around the multidimensional attractor discussed above. Two methods 

have been proposed [68] and utilized in the literature to estimate this parameter. The 

first relies on the well-understood concept of the autocorrelation function, which can 

be used, and will be used later in this text, to estimate the dissipation of information 

with time. In theory, the ability to predict the future values of the time-series, at least 

using linear methods, falls off as the autocorrelation function decreases in magnitude. 

The delay can be roughly estimated using the point at which the predictability reaches 

the level of randomness. In this case, data were detrended to remove slow varying 

estimation biases, and the threshold was set at the autocorrelation function reaching 

5% of its maximum, or within 5% of the minimum (in cases where residual estimation 

ability exist because of long-timescale oscillations). Another approach proposed for 

estimating this delay is based on the average mutual information. Here, a nonlinear 

correlation between information (after vector quantization of the data) is used to 

generate a similar curve to the autocorrelation function with similar implications in 

terms of dissipation of information and predictability, but in this case, the nonlinearity 

of the information contents is taken into account. In this case similar criterion for the 

crossing and delay estimation (5% of maximum, or within 50% of the value of the 

minimum itself) were used. Estimates of these delays and subsequent embedding 
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dimensions are shown in table 3-6 for a few of the time-series, using various 

dimension estimators [69]. Note that noise is theoretically infinite dimensional.  

 

 

 

 Table 3-6: Lags and various estimators of a sufficient embedding dimension. 
  
 Lag  

(Autocorrelation)
Lag 
(AMI) 

False 
Nearest 
Neighbor’s 
Embedding 
Dimensions

Embedding 
dimensions 
using 
Cao’s 
Method 

Taken’s 
Dimension 
Estimator 

Noise 2 2 None >5 3.1 
Lorenz 67 33 3 3 3.64 
Chuas1 20 55 4 6 4.5 
Chuas2 32 49 5 6 38 

 

The Lyapunov (also spelled Liapunov in some texts) exponent quantifies the 

degree of divergence of the system along a trajectory in its state space given a shift in 

the initial vector specifying the state of the system. This can be stated by the following 

equation: 

|||)(| 0ZetZ tλδ =  

λ  is a group of exponents, one for each dimension of the phase space, each which 

account for the evolution from the initial vector Z  of the trajectory in phase space. 

Thus if 

0

λ  is less than zero, initial perturbations of along that vector in phase space 

eventually disappear. Similarly, positive Lyapunov exponents denote instability that is 

the growth of the initial perturbation along that trajectory. Stable systems, contain a 

balance of Lyapunov exponents such that their total is negative or zero. Otherwise, 
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perturbations can exist which lead the system into a continuous growth in phase space 

and thus instability. In practice, the largest positive Lyapunov exponent is often used 

as a metric of stability, as having large positive Lyapunov exponents hint at a direction 

of instability in phase space (though in reality this should be tempered with the 

knowledge of the full spectrum, which is difficult to calculate). Two different methods 

were used to calculate the Lyapunov exponent [70], with the results compared in table 

3-7. While the numbers are different, their relative magnitudes are fairly similar for 

these data sets. 

 

Table 3-7: Two different methods used to calculate the largest positive Lyapunov exponent. 
 

 Largest  
Lyapunov 
Exponent 
(Max 
Estimate) 

Largest 
Lyapunov 
Exponent 
(Mean 
Estimate) 

Largest  
Lyapunov 
Exponent 
(Max 
Estimate) 
Method 2 

Largest 
Lyapunov 
Exponent 
(Mean 
Estimate) 
Method 2 

Noise 1.1 .16 1.08 .46 
Lorenz .03 .015 .06 .034 
Chuas1 .11 .054 .072 .048 
Chuas2 .087 .034 .069 .034 

 

III.I Meal models and process models 

Meals, as shall be discussed, represent the most omnipresent event in the time-

series of nondiabetic time series. The meal event will be analyzed in part by 

computing the signal energy, which is the signal amplitude squared (with the mean 

removed) during meal events and non-meal events. In the time-series where meal 
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times are known, the meal event is defined by the two hours period immediately 

following a meal perturbation (figure 3-19). The signal energy during these periods is 

summed and compared to the signal energy during the other periods of the time-series.  

 

Figure 3-19: An example of a glucose time-series with meals denoted by vertical lines marked by 
dots. In this example, this represents dynamics from a nondiabetic.  
 

 

Additionally, meals can be averaged to yield a meal profile. The only 

significant difficulty comes from averaging meals from time-series, which are sampled 

differently, which in this analysis are avoided. Another small problem arises because 

the meals are of different lengths (some meal profiles are interrupted by another meal 

after which the meal profile is cut short). Thus different parts of the meal profile (after 

the first two hours) use different number of meals in the average. This can lead to 

spike-like discontinuities which though small can be misinterpreted as events. To 

lessen this effect, discontinuities in the averages are shifted to create a smooth meal 
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profile. The meal profile can then be computed for an individual, across individuals at 

the same meal and between populations. The rate of change of the glucose values 

during the meal event can be used to view the dissipation of the meal disturbance over 

time.  

 

Various metrics of the meal response can be then quantified. These include the 

time to maxima, maximum rates of rise and fall and other metrics. Because there are 

many of them, they will be discussed in the section with the results, along with the 

method of meal detection. Automated detection of the meal event, while not strictly a 

method of analysis, highlights both the potential in utilizing dynamics and the singular 

nature of the meal event which lends it to detection without significant effort.  

 

Going beyond the whole meal event, one can look at the processes underlying 

the events themselves: the rise of glucose values and the fall. Looking at these two 

different processes is one of the few places where physiologic insight enters the 

analysis: the knowledge that the rise and fall of glucose values are governed by 

interjections from two different underlying physiologic mechanisms. This is true both 

in the case of meals (gut absorption versus beta cell response), fasting (liver generated 

glucose versus beta cell response) and continuous input into the system either through 

the gut or direct IV injection. The breaking of meals into process models is the simple 

process of dividing the meal event into the rise and subsequent fall. In the case of the 

other time-series were events are not clearly denoted (fasting), events are divided into 
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rises and falls based on snippets of the time-series where there is a sustained rise or 

fall in the glucose values (figure 3-20). 

 

 

Figure 3-20: Two meal process models from averaged from 5 meals in a nondiabetic. The process 
is shown by stars. The line consisting of circles is a simple line provided for comparison.  
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III.J Sampling requirements 

 The methods for degrading sampling are twofold: one involves resampling the 

signal at a lower sampling rate, while the other simply drops samples. The former has 

the advantage of generating more continuous study of sampling rate while the latter is 

confined to successive halving of the sampling rate. However, it is impossible to 

resample the signal at lower frequencies without making fundamental assumptions 

about the underlying signal structure. This is caused by the need to fit successive data 

points in order to interpolate what a supposed sample would be between them. In order 

to minimize the complexity of the assumption in signal structure, simple linear 

interpolation and/or zero-order hold (where the interpolated sample is simply the 

previous sample) are employed, but although while simple, these also contain 

assumptions about signal structure. Thus when possible, both methods (interpolation 

and halving of the sampling rate) are utilized in under-sampling the signal.  

 

 Once the signal is undersampled, simulating the condition where fewer 

samples are collected from the same system, various metrics can be deployed to study 

the effect on degradation of dynamic measurements. Because the rate of change is the 

simplest expression of the underlying dynamics that is not simply a function of signal 

statistics, the effect of undersampling on the estimate of the signal derivative is used as 

a first approach. This is presumably the single most important expression of the signal 

dynamic information contents and thus subsequently effects most other measurements 

indirectly.  
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Specific examples of performance degradation are explored but not simply in 

the context of error but rather in the degradation of the utility of the measure. This 

type of analysis complements, rather than replaces, the previous work measuring the 

Nyquist sampling requirement, which is the most commonly used and global 

measurement of sampling requirement.  

 

 

 

 

 

 

 

 

 

 

 

 



 

Chapter IV: Nondiabetics 

 In the introduction, the importance of understanding normal physiology to the 

long-term development of therapies for metabolic dysfunction was described. Briefly, 

the study of nondiabetic subjects not only enhances our understanding of the 

underlying physiology, but also can be a key in ingredients in enhanced diagnosis and 

monitoring of patients. Perhaps most importantly, it also allows for a more complete 

set of parameters that describe normoglycemia as well as setting more physiologically 

precise control targets. These insights can be applied regardless of the methods of 

therapy employed in the future, which may include modalities such as beta cells, 

electronics or pharmaceuticals.  Significantly larger number of data sets representing 

individuals from a diversity of genetic and environmental backgrounds is necessary to 

come to a consensus definition of normoglycemia, if in fact such a consensus can be 

reached. But the methods described and their applications to the limited data may 

suggest possible avenues to pursue in the path towards defining normoglycemia.  
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IV.A Rates of change  

As mentioned in the methods section, the rate of change is the simplest 

byproduct arising from the dynamic analysis. It has implications for sensors (in terms 

of the effects of sensor lag and sampling), controllers (in terms of their speed of 

response) as well as being a potential clinical tool that captures the simplest aspect of 

dynamics. Rates of change can be most simply analyzed by looking at the distribution 

of these rates of change (that is the statistics of rates of change). Therefore, in this 

section the statistical distribution of the rates of change and in particular the maximum 

rates of change in the glucose signal are studied. A 2D histogram comparing blood 

glucose values and the rates of change are then used, a tool developed specifically for 

this application as a way to quantify estimated phase space projection geometry.  

These methods were discussed in chapter three of this document.  

 

IV.A.1 Nondiabetics eating meals and exercising 

Three nondiabetic subjects were sampled every 5 minutes for up to 48 hours 

during which they ate 10 meals and were forced to exercise. These three time-series 

represent the most clinically relevant data set because they may most resemble a 

typical nondiabetic blood glucose series. Additionally, 4 other data sets were multiple 

meals were administered are available, but suffer from more idealized patient 

situations (non-mobile) and also infrequent (~30 minutes) and/or non-uniform (in the 

case of the DirecNet dataset) sampling. Knowing that the latter data sets are less than 
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ideal, they are treated separately but are included because they add a large number of 

subjects to the analysis and can serve as confirmatory observations.  

 

For the sernorm1-3 data set, the maximal rates of change were slightly 

asymmetric depending on the direction, but were between 1.5-3 mg/dl per minute. The 

figure that follows shows a single distribution and then the combined distribution for 

all three individuals in the group (figure 4-1). 

 

 

Figure 4-1: Top: Sample Distribution from a single nondiabetic. Bottom, distribution from three 
nondiabetics combined. 
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A characteristic asymmetry is noted in the distribution, specifically in that the 

negative derivatives seem to have a wider distribution close to the center of the 

histogram, but both sides do contain a number of outliers which seem evenly 

distributed. Table 4-1 summarizes this analysis. 

 

 

 Table 4-1: Statistical Analysis of rates of change in three nondiabetic subjects. All non 
dimensionless results are expressed in mg/dl per minute.  
 
Patient ID Max (-) 

Rate 
Max (+) 
Rate 

Mean Rate Skewness Kurtosis 

Sernorm1 -2.6 2.9 .39 .9 7.6 
Sernorm2 -2.5 3.1 .28 1.3 12.7 
Sernorm3 -1.6 1.5 .25 -.4 6.9 
 
 

In the case of the vannorm6-9 datasets, which contain far fewer samples, 

similar distributions and numerical results are also noted. The distributions and 

observed statistics are shown in figure 4-2 and table 4-2.  
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Figure 4-2: Distribution of rates of change for two patients with two different days of testing 
where the number of meals was varied (4 data sets total). A similar pattern is seen in this set to 
the previous one. 
 
 
 
 
 
 
 
Table 4-2: Statistical analysis of rates of change for two patients on two different days with 
varying meal timing. All non dimensionless results are expressed in  mg/dl per minute. 
 
 

Tracing ID Max (-) 
Rate 

Max (+) 
Rate 

Mean Rate Skewness Kurtosis 

Vannorm6 -.7 .9 .15 .9 7.2 
Vannorm7 -.7 1.2 .17 1.6 9.4 
Vannorm8 -1.1 2.0 .2 2.4 13.8 
Vannorm9 -1.5 2.2 .33 1.4 7.6 

 

 

Unfortunately, the relative lack of data points in the remaining data sets 

significantly reduces the accuracy of derivative estimation and makes statistical 

analysis less meaningful, particularly in the case of higher order statistics. To make 

use of the data, the derivative estimates from the three data sets are pooled into one 
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large data set containing 31 different individuals (mal1-12, mej1-5 and DirecNet set). 

The summary of these data are shown in figure 4-3 and table 4-3. 

 

 

Figure 4-3: The distribution of the rates of change from 31 Subjects sampled ~30 minutes with 
multiple meals.  
 

Table 4-3: Statistical measures of rates of change from 31 subjects from three different studies. 
 
Measure Max (-) 

Rate 
Max (+) 
Rate 

Mean Rate Skewness Kurtosis 

Mal1-12 (356 Samples) -2.3 3.8 .02 .9 9.3 
Mej1-5  (239 Samples) -1.6 1.7 0 .9 7.5 
Direcnet (436 Samples) -2.13 2.0 -.01 0 9.3 
Combined (Above) -2.3 3.8 0 .86 11.6 
All 39 data set combined 
(1871 Samples) 

-2.5 3.8 0 .9 11 
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It is important, in interpreting these results to consider the fact that these rates 

of change are likely to be linked significantly to the diet status of the individual, which 

may account for differences between subgroups. Additionally, in the last group where 

sampling was less than ideal, estimates of the derivative are likely to underestimate 

maximal rates of change. From this analysis the following observations are made for 

nondiabetics: 

1) Non diabetic maximal rates of change range between -.7 to -2.6 on drop 

and .9 to 3.1 on the rise 

2) The distribution of the rates of change from the  seven “ideal” data sets 

containing meals and activities contain a positive skewness (6 out of 7) 

3) The maximal rate of rise in 39 data sets was 3.8 mg/dl*min and the 

maximum rate of fall was -2.5 mg/dl*min. Skewness remained positive or 

zero for various groups of data combined.  

4) The rates of change in a nondiabetic are below 1 mg/dl per min during 

most samples obtained, and rarely exceed 2 mg/ml per min in either down 

or up directions. 

5) In most cases, the maximum positive rate of change is larger than the 

maximum rate of change in the negative direction. 

6) The distributions are slightly asymmetric with a very long “tail”and a 

significant concentration of samples near zero. 

 

The asymmetry in the distribution is likely to be a result of the fact that the 

process of ingestion and absorption are physiologically different than the process of 
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insulin production and glucose uptake by the cells. That is to say, the distribution 

under study is fundamentally a result of two very different processes. This perhaps 

makes the relative lack asymmetry surprising. There also appears to be limits on the 

rates of change in both processes. The long tail in the distribution is largely due to the 

meal process, during which the dynamics of the system become more pronounced.  

 

After considering the rates of change as a single variable, one can combine it 

with the value at which the rate of change was computed. Plotted against each other, 

as discussed in the methods section, this phase space representation attempts to give a 

two dimensional representation of the relationship between two important variables in 

the system, the glucose levels and the rates of change. This object is often called an 

“attractor” because of its tendency in dissipative systems to be confined in a limited 

region, although strictly speaking this term is much more specific to certain dynamic 

behaviors. Here one can use a 2D histogram to quantify the distribution of points in 

the attractor geometry.  The plot for the five data sets is shown in figure 4-4, 4-5, 4-6, 

4-7 and 4-8.  
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Figure 4-4: Two Dimensional Histogram representation of the rates of change and the values at 
which they are computed. Darker squares indicate that a higher number of samples fall into that 
location.  

 

Figure 4-5: Two Dimensional Histogram representation of the rates of change and the values at 
which they are computed. Darker squares indicate that a higher number of samples fall into that 
location.  
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Figure 4-6: Two Dimensional Histogram representation of the rates of change and the values at 
which they are computed. Darker squares indicate that a higher number of samples fall into that 
location.  
 

 

Figure 4-7: Two Dimensional Histogram representation of the rates of change and the values at 
which they are computed. Darker squares indicate that a higher number of samples fall into that 
location.  
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Figure 4-8: Two Dimensional Histogram representation of the rates of change and the values at 
which they are computed. Darker squares indicate that a higher number of samples fall into that 
location.  
 

Looking at these plots, much of the insight gained by looking at the histogram 

in the previous section is confirmed: the distributions are highly concentrated but 

contain a significant number of outliers. They are also not symmetric. The asymmetry 

(about the zero rate of change axis) is additionally dependent on the value of glucose. 

As would be expected, high rates of positive change occur more often at lower glucose 

values and higher rates of drop occur more often at higher glucose values. This makes 

sense from  control standpoint were it is expected that physiologic mechanisms would 

counter high rates of change at both ends of the control target region when these 

would act to move the system further away from control.  
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Quantifying the geometry of the attractor, metrics discussed in the methods 

section will be utilized. The size of the attractor (in number of bins), the compactness 

(the number of  bins accounting for 90% of the samples, and the attractor radial 

symmetry calculated by sampling the distribution along radial lines from the center of 

the attractor.  These tests were once again applied to each of the ideal data sets and the 

collective subsets of less than ideal data, shown in table 4-4 and 4-5.  

 

Table 4-4: Attractor geometrical descriptions for the ideal data sets with multiple meals.  
 

Data Set Attractor Area Compactness  Symmetry 
Sernorm1 665 1.8% .6 
Sernorm2 683 2.8% .7 
Sernorm3 309 7.8% .9 
Vannorm6 126 3% .7 
Vannorm7 136 4% .6 
Vannorm8 263 2% .4 
Vannorm9 400 1% .4 
Average 369 3.2% .6 

 

 

Table 4-5: Attractor geometrical descriptions, applied to pooled data from less than ideal data 
sets containing multiple meals.  
 

Data Set Attractor Area Compactness  Symmetry 
Sernorm1-3 743 4.4% 1.0 
Vannorm6-9 513 3.3% .6 
Mej1-5 449 4.4% .9 
Mal1-12 671 3.4% .7 
Direcnet 564 4.1% .6 

 

 A few preliminary considerations must be applied before making observations 

on these results. Both the compactness and area are functions of the bin size and thus 

these numbers are only truly useful in terms of comparisons using exact same 
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algorithmic applications. Thus the true test for the utility of these measurements is in 

comparison to the other groups discussed in the coming chapters. Having set these 

factors as constant, it is observed that 90% of the samples fall within 2%-5% of the 

attractor area. That is to say the system spends majority of its time inside a small area 

within its attractor. This is not surprising, however, it allows us to quantify what is 

known intuitively about this system: the majority of the time is spent in a confined 

glycemic boundary. The symmetry measurement used appears to vary widely between 

datasets and thus is likely to be a poor differentiating tool and requires further study.  

 

IV.A.2 Continuous feeding, infusion and fasting 

Continuous enteral feeding removes the meal perturbation as a large factor in 

the dynamics of blood glucose control. IV infusion removes most of the influence of 

the GI system on the glucose values altogether. Looking at the rates of change (figure 

4-9, 4-10, table 4-6) a much more compact distribution is noted where a range of 

approximately -2 to 2 is observed (in comparison to the normal feeding range of -2.3 

to 3.8 (table 4-3 and figure 4-3 ). Notably, despite the fact that meals are removed 

from set of perturbations, the rates of change, and in particular the maximal rates of 

fall are not as different as one might have expected.  
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Figure 4-9: Distribution of rates of change in continuously infused nondiabetics. Note the relative 
symmetry in the distribution. Also note that despite the fact that the large perturbations from 
meals are absent, occasional fast rates of fall and rise are still nonetheless present. 
 
 
 
 
 
 

 

 
Figure 4-10: Distribution of rates of change in 9 nondiabetics with continuous enteral nutrition. 
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Table 4-6: Summary statistics for continuous nutrition administered through two different routes 
at differing rates, as well as fasting nondiabetics.  
 
Measure Max (-) 

Rate 
Max (+) 
Rate 

Mean Rate Skewness Kurtosis 

IV Infused  
13 Sets 
1569 Samples  

-1.3 1.1 0 -.3 4.9 

Enteral Feeding 
9 Sets 
1276 Samples 

-3.2 2.3 0 -.2 4.6 

Fasting  
3 sets 
282 Samples 

-.4 .5 0 .6 5.1 

 
 

Furthermore, the observation can be made that the skewness for the 

infusion/enteral feeding sets are now negative whereas in the fasting state the 

distribution remains positively skewed for rates of change. This is markedly different 

than the data sets containing meal and exercise responses. Looking at the phase space 

geometry (figure 4-11, 4-12 and table 4-7) it is noted that the compactness of the 

attractor has remained fairly high with most samples falling within 7% of the attractor 

size, despite containing a significant amount of data. 
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Figure 4-11: attractor portrait for 9 nondiabetics with continuous enteral feeding.  
 
 
 
 
 

 
Figure 4-12: attractor portrait for 14 IV fed nondiabetics.  
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Table 4-7: Relative comparison of attractor geometry between two different modes of continuous 
nutrition delivery.  
 

Data Set Attractor 
Area 

Compactness  Symmetry 

Continuous Enteral 
Feeding 

706 6% .8 

IV Feeding 585 7% .5 

 

IV.B Time-scales of dynamics 

 Time scales define the expected time over which significant changes or 

repetitions are observed. In the simplest case of a sinusoid, the signal can be defined 

by two scales, amplitude and the frequency, the latter representing the time-scale of 

the evolution of the signal. As signals become more complex, it is harder to divorce 

these two scales and analyzing one leads to insights about the other. Nonetheless, in 

the previous section the rates of change of the signal and their relationship to the 

amplitude of the signal were analyzed. In this section,  the time-scale, an in specific 

the time-scales of repetition, as analyzed in the frequency domain will be studied. 

Because of the awareness in the literature of multiple time-scales, and the realization 

that nonlinear dynamics cannot be ruled out at this point, multiple tools are utilized to 

analyze the signal in an attempt to gain insight into the time-scales that are evident, 

under different perturbations to the system.    
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IV.B.1 Why is time-scales of dynamics important? 

The time-scales over which the signal evolves, is the most fundamental 

constituent of the understanding of the signal because it dictates sampling frequency 

and duration of observation necessary to characterize the system. Additionally, it 

provides insight into possible mechanisms underlying the dynamics of the system. For 

example, hormonal cycles with periods of 24 hours can often be connected to 

rhythmic variations tied to other physiologic variables (circadian rhythms). 

Significantly different time-scales of dynamics within a signal may also suggest 

multiple quasi-independent mechanisms generating and contributing to the signal. As 

mentioned circadian rhythms in the glucose signal may have a fundamentally different 

origin than the dynamics associated with pulsatile insulin release. Attempting to model 

both processes using the same model type, let alone the same model, may be 

suboptimal as the underlying generating process may be different.  

 

Most importantly, understanding fundamental time-scales of dynamics, affect 

the approach and validity of any time-series analysis technique. For example, various 

tests require that the time-series being analyzed include a complete or multiple 

complete evolutions of the system through its prescribed state space. This makes 

intuitive sense: in order to characterize the behavior of the system, one needs to 

observe it for long enough in order to be able to categorize the various behaviors the 

system is capable of. This question of “long enough” is critical to the approach of 

dynamical system analysis both in terms of how frequently the system has to be 

sampled but also how long it needs to be observed to characterize certain behaviors. 
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The distribution of signal energy in the various bands of time-scales has implication 

for analysis, filter design as well as estimation/control algorithms. In this section the 

time-scales of change based on available signals from nondiabetics will be studied and 

comment on the implications of these observations based on the limited data will be 

made.  

IV.B.2 Very fast time-scales  

   Dynamics on the order 5-15 minutes have been reported in the way in which 

beta-cells secrete insulin ([71]). These oscillations in insulin release have been the 

subject of intense study, and may be reflected in the glucose signal. Most data sets in 

the literature and in this study are not sampled frequently enough to capture such 

perturbations. In order to ascertain possible contribution of very high frequency signal 

dynamics, data sets which are sampled at 2 or 4 minute intervals were studied for their 

high-frequency content. Two differing methods were utilized to study the relative 

contribution of the high-frequency band to the overall signal. One arose from the 

computation of the spectral estimate using FFT algorithm.  The other arose from high-

pass filtering of the signal so as to isolate these components. In both cases the time-

scale considered to be high-frequency was that with period shorter than 30 minutes. In 

the case of spectral method, all energies with a period of greater than 30 minutes were 

summed. The 10th order high pass Butterworth filter was designed with corner period 

of 30 minutes. The results are shown in table 4-8 and 4-9. 
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Table 4-8.  Contribution of High Frequency Oscillation Component to Total Blood Glucose Signal  
energy (mean and linear trend removed). 
 

 

Reference 

Sampling 
Period, 
min 

Conditions Signal energy in 
<  30 min 
Component 

Total 
Signal 
energy 

% of Total 
Signal 
energy 

Polonsky et al 
[45]   2 

Fasting 
120 700 16.8% 

Simon et al 
[31] 2 

Continuous 
Infusion 500 20000 2.5% 

Simon et al 
[23] 4 

Meal Challenge
290 7240 4.0% 

#2 4 Meal Challenge 120 5880 2.0% 
#3 4 Meal Challenge 850 22300 3.8% 
 
#4 4 

Meal Challenge
820 24100 3.4% 

#5 4 Meal Challenge 270 27500 1.0% 
#6 4 Meal Challenge 920 32700 2.8 
#7 4 Meal Challenge 160 43400 0.4% 
#8 4 Meal Challenge 430 94500 0.5% 
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Table 4-9: Percentage of signal energy in the very high frequency component of the signal (short 
time-scale).  Notice that in the first two signals, the nature of the perturbation to the system 
(fasting and continuous infusion) exclude the high signal energy meal response and thus the high 
frequency components account for a larger percentage of the signal  energy.  
 

Reference 

Sampling
Period, 

min 

Conditions 
Total Signal 
energy in High 
Pass Signal 

Total Signal 
energy 

% of 
Total 
Signal 
energy 

Polonsky et al 
[45]   2 

Fasting 
180 700 26% 

Simon et al 
[31] 2 

Continuous 
Infusion 2600 20100 13% 

Simon et al 
[23] 4 

Meal Challenge
1200 7200 16% 

#2 4 Meal Challenge 1100 5900 19% 
#3 4 Meal Challenge 2400 22000 11% 
#4 4 Meal Challenge 1200 24000 5% 
#5 4 Meal Challenge 2400 27000 9% 
#6 4 Meal Challenge 2100 33000 6% 
#7 4 Meal Challenge 1000 43000 2% 
#8 4 Meal Challenge 2100 94000 2% 

 

 
 

Note that total signal energy is dependent on the number of samples in the data 

set, and thus a percentage was used to study the relative signal energy content. Based 

on these results, it can be concluded that the very high frequency oscillations 

constitute a very small portion of the signal energy content, particularly in the context 

of the presence of larger perturbations such as meals and infusions. The average signal 

energy of high-pass signal, in the units of mg /dl  is given in the table 4-10.  2 2
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Table 4-10: The average signal energy in the very high frequency component of the glucose signal. 
Units of signal energy, in this context are in mg /dl . 2 2

 
 

Reference 
Sampling 

Period, min

Average Signal 
energy in High 
Pass Signal 

Polonsky et al 
[45]   2 .75 
Simon et al [31] 2 11 
Simon et al [23] 4 9.4 

#2 4 8.7 
#3 4 19 
#4 4 9.5 
#5 4 13 
#6 4 10 
#7 4 5.3 
#8 4 10 

 

 

 

 

 

 

 

 

The implications of the very-high frequency component will be revisited in 

subsequent chapters in terms of loss of signal energy due to lower sampling rates. 

 

IV.B.3 Normal feeding 

 Seven ideal data sets were considered for the analysis of the frequency content 

3 of these data sets were sampled every five minutes for durations of nearly 50 hours 

and 4 were sampled every 20 minutes and were followed for 24 hours. Spectral 

Analysis was undertaken for these data sets using the three techniques discussed in the 

methods sections.  
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Figure 4-13: FFT Spectral Estimates from seven nondiabetic subjects. A Kaiser window with a 
parameter of 8.0 was used.  
 

 

Figure 4-14: Prony spectral estimate using a Prony estimator of order 60 (300 minutes) for three 
nondiabetic subjects sampled every 5 minutes for 48 hours.  
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Figure 4-15: Spectral estimate using Burg’s parametric method with an order of 80 (400 minutes) 
of three nondiabetic subjects sampled every 5 minutes for 48 hours. 
 

Analysis of the frequency content of the best sampled sets shows three distinct 

peaks (Figures 4-13, 4-14, 4-15 and table 4-11). The smallest peak, near 100 minutes 

as well as the peak near 120-150 minutes, may represent intrinsic oscillations having 

similar in nature to the ones observed in the case of continuous nutrition. These are 

likely to be the result of glucose production and insulin production cycles not having 

to do with meals, which are seen also in fasting. Another possible source for these 

peaks is the meal pulse length, which is on the order of ~120 minutes. This is likely to 

contribute to the second peak, which is located at that range.  The largest peak, 

however, occurs at a period of 5-7 hours. This peak is very likely to reflect the spacing 
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of the meals, most of which are spaced 4-8 hours apart. In essence, the frequency 

study of the time-series is capturing the timing and spacing of the meals, in part 

because the size of the meal pulse is relatively short in the nondiabetics, making the 

meal event (which is the signal energy containing event as shall be discussed next) 

appear like narrow pulse and thus the spacing between the meals a large component of 

the frequency estimate. 

 

Table 4-11: Summary of peak spectral estimates using three methods for estimating the frequency 
spectrum, in three nondiabetic subjects sampled every 5 minutes for 48 hours. 

 
Data Set FFT Estimate Prony Estimate Burg Estimate 
Sernorm1 400 370 320 
Sernorm2 350 430 430 
Sernorm3 400 310 320 

 
 
 

Looking at the signal energy distribution in the signal (recalling that signal 

energy is the square of the amplitude with the mean removed in this case), the meal 

period is defined to be the 2 hours subsequent to the commencing of the ingestion of 

the meal. Looking at the signal energy during the meal period versus the non-meal 

period, one can clearly see the meal period accounts for a significant portion of the 

signal energy. One can quantify this with the ratio of the energy accounted for by the 

meal periods to the time accounted for by meal periods (table 4-12). This ratio appears 

to be significantly greater than one, ranging from 1.8 to 4.9, which one summarize by 

stating that the meal periods contain about 2-5 times as much energy as would be 

expected given their duration.  
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Table 4-12: Percentage of energy during mealtimes computed for nondiabetics. In the second 
column, the percentage of time which is considered “meal time” is calculated by considering 
mealtime as the two hour interval after each meal event. The percent of signal energy (defined by 
the mean subtracted amplitude squared) during this period is shown in the third column, and the 
same quantity is shown in the fourth column for the nonmeal times. The last column shows a 
ration of the former versus the latter.  Note that the % signal energy in the meals is systematically 
larger than the % time of the meals.  
 
Data Set % Time Meals 

(2 hr horizon) 
% Signal 
energy Meals 

% Signal 
energy Not 
Meals 

Ratio (Meal 
Vs. Nonmeal) 

Sernorm1 42% 77% 23% 3.3 
Sernorm2 40% 69% 31% 2.2 
Sernorm3 40% 71% 29% 2.5 
Vannorm1 18% 79% 21% 3.7 
Vannorm2 29% 78% 22% 3.5 
Vannorm3 18% 82% 18% 4.5 
Vannorm4 27% 83% 17% 4.9 
Mejnorm1 51% 69% 31% 2.3 
Mejnorm2 51% 65% 35% 1.8 
Mejnorm3 63% 75% 25% 3.0 
Mejnorm4 40% 77% 23% 3.0 
Mejnorm5 47% 80% 20% 3.9 
 
 
 

Looking at the evolution of the various components of the signal, one can turn 

to the time-frequency methodologies described in the methods section. By this point it 

is expected that on some time-scale, the signal will have varying frequency 

components because the largest component of the signal is the meal event which itself 

can vary in duration timing and content.  A short Fourier transform map of a sample 

meal is shown in figure 4-16. Note that time encompasses a two-day period. The solid 

black squares represent centers of the frequency distribution as discussed in the 

methods section. 
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Figure 4-16: An example of a time-frequency representation of 48 hours of data from a 
nondiabetic. Note the changes in frequency content having to do with the meal events.  
 

In order to facilitate analysis, and because most of the signal energy and thus 

changes in signal energy distribution are meal related, time-frequency analysis was 

performed on the three longest best sampled data sets. As mentioned in the methods 

section, two wavelet basis were chosen because of the different properties they 

exhibit. The wavelet analysis shows a wide variety of frequency components and great 

variations. This in part leads to the conclusion that significant frequency content 

variation does exist in the time-series (table 4-13). However, as mentioned before, this 

suffers from the fact that the time-series contains relatively large time-scale 

components which are not sampled often (as the time-series is short in duration). This 
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does, however, point to the requirement for further analysis of longer time-series to 

characterize exact nature of such variations and whether they can all be accounted for 

by differences in the timing and size of meals and activities. 

 

Table 4-13: Summary of time-frequency observations on nondiabetics consuming 10 meals over a 
two day period. Note that significant deviation exists in the detected time-scales of the centers of 
signal energy concentration.  This is because of the differences between different basis ability to 
focus on a certain frequency components of the signal.  
 
Patient STFT 

Mean 
STFT 
STD 

DB 2 
Wavelet 
Mean 

DB 2 
Wavelet 
STD 

 GAU 3 
Wavelet 
Mean 

GAU 3 
Wavelet 
STD 

Sernorm1 398 216 500 362 224 147 
Sernorm2 353 175 438 316 211 151 
Sernorm3 478 237 823 482 932 356 
 

IV.B.4 Fasting 

During fasting, which constitutes a constant zero external perturbation state, 

two intrinsic dynamic time-scales are high-lighted. These consist of the oscillatory 

intrinsic dynamics on a time-scale similar to those seen during continuous infusion, 

and a long-term circadian component. Two methods were used to extract these 

circadian rhythms from the original data. The first was a 40 point (in this case 

equivalent to 480 minutes or 8 hours) moving average, with adjustments to the 

endpoints (less points used in moving average at the edges of the signal). A circadian 

rhythm of amplitude of approximately 20 mg/dl is observed in all three subjects 

(figure 4-17 and 4-18).  
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Figure 4-17: Extracted circadian rhythms from three fasting nondiabetics using a moving average 
process.  
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Figure 4-18: Extracted circadian rhythm using a butterworth digital low pass filter.  
 

Spectral and time-frequency analysis was performed only on the high-

frequency components removed by applying the low-pass filter described above to the 

three available data sets (4-19). The resulting pulses were very small in amplitude as 

expected, since fasting represents the zero input state and it has already been observed 

that decreased continuous infusion reduces the pulse amplitude in these cases.  
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Figure 4-19: FFT based spectral analysis of the fasting nondiabetic signal. The circadian 
component is the most prevalent source of signal energy but the ultradian oscillations are also 
noted. 
 

Results of pulse width analysis yielded a set of pulses with widths that are 

similar to the ones observed in continuous feeding (see the next section) but with a 

relatively small amplitude and are displayed in table 4-14. 

 

Table 4-14: Pulse-width analysis of fasting time-series from nondiabetic individuals.  
 

 Number of Full 
Pulses 

Mean 
Pulse 
Width 

Mean Pulse 
Amplitude 

Shanorm1 9 147 5.7 
Shanorm2 9 128 5.0 
Shanorm3 11 117 4.2 

 

The pulse widths noted are well within the range of those noted with 

continuous IV and enteral nutrition. This is not surprising as fasting can be thought of 

as a constant zero input, and considering the continued release of glucose into the 

blood stream by the liver during fasting, similarities may be shared in the dynamics.  
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IV.B.5 Continuous enteral feeding & IV infusion 

As mentioned in the data section, in the presence of constant input into the 

system, either by continuous infusion through the gut or through the blood stream, 

oscillatory behavior is noted. In this section data collected through various studies are 

pooled together and the nature of this oscillatory behavior is quantified. At first one 

glance the methods applied in the previous section to these data sets. In order to isolate 

the high-frequency component related to the oscillations in question, the data is first 

filtered using a moving average filtering scheme with a period of half a day in order to 

remove circadian influences. The results for continuous enteral feeding are shown in 

figure 4-20 while the results for intravenous feeding is shown in figure 4-21. 
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Figure 4-20: Three different methods are used to perform a spectral estimate of nondiabetics with 
continuous enteral feeding. A large peak at around 100 minutes is noted corresponding to the 
very evident oscillations in the signal.  
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Figure 4-21: Three different methods are used to perform a spectral estimate of nondiabetics with 
continuous Intravenous feeding. The peaks are far more distributed and less robust than enteral 
feeding. Because of the nature of the experiments, it is difficult to ascertain whether the 
differences arise from the mode of feeding alone or if other experimental conditions play a part in 
the differences, but clearly medium scale dynamics are present in the intravenous case in addition 
to the pulses which are observed. 
 
 

Looking at the spectral content of both subgroups a few observations can be 

made. One is that in the case of the continuous enteral feeding experiments (all of 
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which were performed by the same group, but over multiple experiments) appear to 

have a stronger relative peak in the region of the expected oscillatory behavior. The IV 

data, on the other hand, appears to have strong mid-scale dynamics (~6-12 hours) in 

addition to the oscillatory behavior. In fact, while many of the absolute energy peaks 

in the case of the continuous enteral feeding correspond to the oscillatory infusion, the 

IV case is generally dominated by the longer time-scales as shown in table 4-15 which 

summarizes the spectral observations using three different methods. 

 
 
Table 4-15: The time-scales estimated using three methods for different types of continuous 
feeding including continuous enteral nutrition as well as IV feeding.  Simnorm1-9 are continuous 
enteral feeding while the rest of the data sets represent continuous IV feeding. 
 

Patient Peak 
Period 
(FFT) 

Peak 
Period 
(Prony) 

Peak 
Period 
(Burg) 

Simnorm1 480 93 512 
Simnorm2 90 85 116 
Simnorm3 109 473 512 
Simnorm4 1410 470 512 
Simnorm5 473 406 102 
Simnorm6 95 95 95 
Simnorm7 111 115 111 
Simnorm8 120 95 116 
Simnorm9 110 57 98 
Polnorm1 1590 1060 1024 
Polnorm2 166 790 732 
Polnorm3 226 903 732 
Polnorm6 1185 593 549 
Polnorm7 555 555 226 
Polnorm9 158 162 165 
Polnorm10 290 262 256 
Polnorm12 395 372 366 
Vannorm1 480 262 256 
Vannorm2 1440 960 960 
Vannorm3 1440 960 480 
Vannorm4 720 720 768 
Vannorm5 1455 224 549 
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Pulse-width analysis performed by pulse detection can be used to characterize 

the oscillatory behavior of the time-series. This is chosen to analyze the data set 

because of the contamination with larger-scale dynamics mentioned above, and the 

fact that given the limited size of the data, frequency analysis can often be misleading 

as the similarity between these time-scales in frequency terms is difficult to 

distinguish using short time-series. Mean pulse-width varies from 76 to 175 minutes 

and interestingly varies between experiments, while amplitude varies from 7-16 mg/dl 

and is much more spread out between the experiments (table 4-16). The correlation 

between the size of the pulse and its width is not strong. 

  
Table 4-16: Pulse analysis of IV infused Nondiabetic. Once pulses were detected using the peaks 
and valleys, their width (in minutes) and amplitude was determined and recorded for each time-
series.  Note the variability within each experiment and between experiment. The second group of 
experiments (vannorm1-5) show much faster pulse width. 
  

 Number of Full Pulses Mean Pulse Width 
(min) 

Mean Pulse 
Amplitude 
(mg/dl) 

Polnorm1 23 (53 Hour Period) 127  9.2 
Polnorm2 23 (53 Hour Period) 127 15.9 
Polnorm3 17 (53 Hour Period) 173 16.3 
Polnorm6 9  117 14.9 
Polnorm7 9 83 14.7 
Polnorm9 20 (53 Hour Period) 135 7.2 
Polnorm10 22 (53 Hour Period) 175 7.8 
Polnorm12 14 (53 Hour Period) 135 6.8 
Vannorm1 14 81 7.2 
Vannorm2 12 95 9.2 
Vannorm3 15 83 7.8 
Vannorm4 12 99 10.7 
Vannorm5 17 76 8.6 
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Time-frequency analysis of the continuous feeding scenarios reveals a 

pronounced change in the signal frequency content in the larger time-scale. An 

example is shown in figure 4-22. 

 

Figure 4-22: The time-frequency representation of two days worth of dynamic data from an IV 
continuous infusion. The circadian rhythm can be clearly noted in this analysis.   
 

 

In fact, this is noted by the investigators in the case of continuous enteral 

feeding, but is noted in the form of amplitude modulation and not a change in 

frequency. Of particular interest is the appearance and disappearance of longer-time-

scale energies. As mentioned in the methods section, to summarize the magnitude of 

this effect, the energy centers were located and their position measured in time-scale 

units for each of the methods used (Short-Time Fourier Transform, Wavelets). The 

resulting statistics of the location of these peaks are reported in the table 4-16. 

 



123 

Significant inter-individual differences as well as the large standard deviations in the 

centers point to the observation that although these time-series clearly do contain 

oscillatory behavior, these pulses are not fixed in wavelength, and are accompanied by 

other time-scales of dynamics that remain unstudied in terms of mechanism (table 4-

17).  

 
 
Table 4-17: Results of various methods of time-frequency analysis applied to the continuous input 
data sets. 
 
Patient STFT 

Mean 
STFT 
STD 

DB 2 
Wavelet 
Mean 

DB 2 
Wavelet 
STD 

CGAU 
Wavelet 
Mean 

CGAU 
Wavelet 
STD 

Simnorm1 167 119 741 404 434 220 
Simnorm2 129 78 444 355 322 250 
Simnorm3 259 111 596 280 263 144 
Simnorm4 297 98 577 245 289 134 
Simnorm5 211 131 726 335 379 179 
Simnorm6 183 115 504 366 278 179 
Simnorm7 237 126 643 309 314 163 
Simnorm8 181 105 575 405 420 263 
Simnorm9 186 132 1084 159 564 122 
Polnorm1 780 88 1021 211 774 364 
Polnorm2 520 320 1126 355 753 261 
Polnorm3 709 217 997 278 709 304 
Polnorm6 251 86 702 178 246 89 
Polnorm7 272 41 689 112 176 59 
Polnorm9 251 188 302 198 259 159 
Polnorm10 249 37 237 163 265 261 
Polnorm12 310 105 632 588 369 300 
Vannorm1 275 121 511 292 263 124 
Vannorm2 330 72 870 109 447 99 
Vannorm3 330 69 734 206 344 123 
Vannorm4 287 104 690 235 354 115 
Vannorm5 283 105 763 359 380 151 
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IV.B.6 Constant insulin infusion 
 

As can be seen in figure 4-23, and similar to glucose infusion case, constant 

insulin infusion appears to stimulate similar periodic behavior in blood glucose. One 

data set with four subjects was acquired and analyzed using both spectral and pulse 

analysis methods. 

 
Figure 4-23: Glucose time-series with constant infusion of insulin in a nondiabetic subject.  
 

 Table 4-18 shows the results of the pulse analysis, delineating pulses which 

are very similar in period to the ones observed in enteral and IV feeding and similar in 

amplitude. An example of a spectral estimates derived from the data is shown in figure 

4-24. Here, as before a high-pass filter with a corner frequency of 720 minutes was 

applied to remove circadian rhythms. Note that once again a significant portion of the 

signal energy is concentrated in slower time-scales of dynamics. 
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Table 4-18: Pulse analysis of the insulin infusion time-series 

 

 Number of Full Pulses Mean Pulse 
Width (min) 

Mean Pulse 
Amplitude (mg/dl) 

Polinsul1 15 77 8.3 
Polinsul2 16 83 9.6 
Polinsul3 15 85 7.4 
Polinsul4 10 99 10.1 

 Spectral analysis of the high-pass filtered data yields a similar pattern to the IV 

infused individuals with a significant localization of energy in the longer time-scales 

near 600-700 minutes, while a peak is present in the vicinity of the pulsatile behavior 

(figure 4-24).  

 

Figure 4-24: 80th order burg spectral estimate of the high-passed filtered (to remove circadian 
components) signal. Despite the oscillations, much of the signal energy is concentrated in the long-
term fluctuations. 
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IV.B.7 Entrainment to glucose and insulin infusion 

Entrainment describes a phenomenon in which a system begins oscillating in 

phase and at the same frequency as an input signal. Studies have been performed to 

look at this phenomenon in particular as a tool for diagnosis of insulin resistance, 

which is hypothesized to lead to the loss of entrainment. Six 24 hour time-series with a 

constant frequency infusions were extracted from the literature ([40, 41].  To assess 

degree of entrainment, simulated data was created with the same sampling frequency 

and infusion characteristics. Degree of entrainment can be quantified by consideration 

of the correlation between the simulated signal or in frequency domain using the 

coherence function. Difficulty arises, however, because both of these functions 

consider the phase in the input and resulting signal and even slight phase differences 

can lead to underestimating the degree to which the system is responding to the input. 

An FFT based spectral estimate of the simulated data (which represents 100% 

entrainment) was studied and the significant signal energy band delimited. The times-

series with infusion from the patient was then also analyzed using the same technique 

and the percentage of signal energy contained in the same significant band was 

measured. This percentage was termed the degree of entrainment. An example of such 

a study is shown in figure 4-25. 
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Figure 4-25: FFT Spectral estimate of simulated data with the same frequency as the dynamic 
input (top) and the FFT spectral estimate of the blood glucose values in the patient with dynamic 
infusion. The percentage of signal energy contained in the band that is significant in the simulated 
data is utilized as a marker for entrainment.  
 

 

 This analysis was performed for the available datasets and is summarized in 

table 4-19. Significant entrainment was noted in the nondiabetic patients and is 

reduced in the progression toward impaired glucose tolerance and diabetes.  
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Table 4-19: Table showing the percentage of entrainment in different patients. Patients 1-3 are 
nondiabetic, patient 4 has impaired glucose tolerance (IGT) and patient 5 has type II diabetes.  
 

Patient ID # Series “Wavelength” 
of Infusion 
Sinusoid 

% Entrainment 

1 Poldynnorm3 144 min 79% 
1 Poldynnorm4 96 min 55% 
2 Poldynnorm6 192 min 52% 
2 Poldynnorm7 128 min 81% 
3 Poldynnorm9 144 min 58% 
3 Poldynnorm10 96 min 37% 
4 Poldynigt2 144 min 50% 
4 Poldynigt3 96 min 23% 
5 Poldynnidm2 144 min 41% 
5 Poldynnidm3 96 min 16% 

 
 

IV.C Measures of signal complexity 

 Many approaches have been proposed for quantification of signal complexity.  

This concept has evaded an agreement on the exact general definition but has found 

utility in time-series analysis in specific fields. Such measures have arisen from the 

field of information theory (Signal Entropy), nonlinear dynamics and physiologic 

time-series analysis of cardiodynamics [10] In general it is agreed that complexity is a 

measure of the multiple time scales in which information exists in the signal, such that 

a complexity random signal (white noise) is extremely complex whereas a simple 

signal like a sinusoid is “regular” and thus not complex.  

  

The advantage of such methods is that they produce a signal number that 

communicates essential characteristics of the signal. The disadvantage is, however, 

rooted in the inherent difficulty of summarizing an entire time-series in a single 
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number, which in essence forces many undesirable qualities on such measures. These 

include lack of uniqueness (meaning that two different time-series can produce the 

same number) and difficulty with interpretation. Also the sensitivity to changes in 

uninteresting signal parameters (such as sampling rate) are not very well described in 

the literature.  

 

For these reasons such measurements have found their utility in comparing 

signals with a single variable in the system changed, that is comparing the “relative” 

entropy between two similar signals.  In this section some of these tests are applied to 

the blood glucose time-series. The objective is to capture, using a single parameter, the 

complexity and regularity of the time-series. The results are shown in table 4-20 and 

4-21. These shall be revisited in the context of comparison to other subjects.  

 

Table 4-20: Entropy and measures of complexity described for three nondiabetic, ideally sampled 
subjects. 
 

Data Set Entropy Apen Median 
Sampent 

Sernorm1 3.9 .35 .21 
Sernorm2 3.6 .36 .24 
Sernorm3 3.5 .51 .36 
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Table 4-21: Entropy and measures of complexity described for nondiabetics during continuous 
enteral feeding.  
 

Data Set Entropy Apen Median 
Sampent 

Simnorm1 3.7 .78 5.2 
Simnorm2 3.6 .81 5.3 
Simnorm3 3.7 .76 5.3 
Simnorm4 3.7 .77 5.3 
Simnorm5 4.0 .60 4.9 
Simnorm6 3.6 .71 5.3 
Simnorm7 3.5 .69 4.9 
Simnorm8 3.3 .61 .9 
Simnorm9 3.4 .64 5.5 

 

IV.D Evidence for nonlinear determinism 

As mentioned in the previous chapter, testing of time-series for the presence 

nonlinearity is a complex and highly debated topic. As discussed, one can choose to 

approach the problem using the method of surrogate construction. Briefly, this is a 

method in which linear surrogates (that is, time-series which have the same linear 

autocorrelation structure as the data) are created. These surrogates are tested for 

degree of determinism. The logic is that if the system is a linear one, linear equivalent 

systems should be able to capture the determinism stored in the autocorrelation 

function. If after generating a “sufficient” number of surrogates the determinism in the 

signal remains higher than the surrogates then the null hypothesis of linearity is 

rejected.  

 

The most complex aspect of such tests is that they must measure determinism 

in a way that is beyond linear measures of determinism, as by design, the surrogates 
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should have the same autocorrelation function. This generally requires embedding the 

time-series in multiple dimensions and performing nonlinear analysis, itself which is 

complex and involves multiple estimation steps. Further difficulty arises with the 

proper construction of linear-stochastic surrogates: because the signal may be non-

stationary on some time-scales, generation of surrogates with proper auto-correlation 

functions become difficult as non-stationarity can give rise to a changing 

autocorrelation function. However, focusing on small regions may in effect serve as a 

“linear” approximation thus limiting the utility of assessment of smaller, stationary 

time-scales. Because of the lower sampling period and the limited number of meals 

included in the vannorm6-9 datasets they were not used for this analysis.  

 

Two methods of measuring determinism were utilized. One is the Kaplan 

delta-epsilon test and the other was a nonlinear predictor. Both are described in the 

methods section. The results for the Kaplan test are shown in table 4-22. The K 

statistic is the result of the test, which tends to zero as the degree of determinism 

increases.  In the latter two tables, the maximally different K values are shown 

between the 100 surrogates and the data.  
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Table 4-22: The results of the Kaplan delta-epsilon test to nondiabetic time-series and 100 linear 
surrogates. The second column contains the delay computed from the autocorrelation in order to 
perform time-delay embedding. The dimensions (third column) represent the dimensions of 
embedding. In the fourth column the minimum K statistic (the most deterministic linear 
surrogate) is shown and compared to the data in column five. For certain dimension parameters, 
linearity can be rejected, particularly for the third data set. The results, however, are highly 
dependent on the choice of delay and embedding dimension considered.   
 
 
Data Set AMI based 

estimated  Delay 
Dimensions Min Surrogate K Data K 

Sernorm1 18 1 2.6 2.1 
  2 1.2 1.5 
  3 .6 1.0 
Sernorm2 23 1 2.1 1.5 
  2 1.3 1.2 
  3 .7 1.5 
     
Sernorm3 13 1 1.9 1.6 
  2 1.2 .9 
  3 .6 .9 
  4 .2 .4 
     
 Autocorrelation 

based estimated   
Delay 

   

Sernorm1 12 1 2.5 2.1 
  2 1.4 1.4 
  3 .6 1.6 
Sernorm2 15 1 2 1.6 
  2 1.2 .9 
  3 .9 1.1 
  4 .5 1.5 
Sernorm3 20 1 1.9 1.6 
  2 1.1 1.0 
  3 .7 .7 
  4 .1 .6 
     
 Physiologic  

based estimated 
Delay 

   

Sernorm1 50 1 2.5 2.1 
  2 1.3 1.1 
  3 .4 .2 
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Table 4-22: The results of the Kaplan delta-epsilon test to nondiabetic time-series and 100 linear 
surrogates. The second column contains the delay computed from the autocorrelation in order to 
perform time-delay embedding. The dimensions (third column) represent the dimensions of 
embedding. In the fourth column the minimum K statistic (the most deterministic linear 
surrogate) is shown and compared to the data in column five. For certain dimension parameters, 
linearity can be rejected, particularly for the third data set. The results, however, are highly 
dependent on the choice of delay and embedding dimension considered (Continued)   
 
 
Sernorm2 50 1 2.1 1.6 
  2 1.0 1.1 
     
     
Sernorm3 50 1 1.8 1.6 
  2 1.1 .6 
  3 .4 .13 
     
     
 

Note that dimensions were omitted as insufficient samples led to incoherent 

results (such as negative values). In the case of physiologic delay, the null hypothesis 

can be rejected for Sernorm1 and Sernorm3, as no higher dimensional linear surrogate 

had a smaller K than the nonlinear model. This could however be the result of not 

being able to go to higher dimensions based on sample insufficiency. Based on these 

preliminary observations, the null hypothesis of linearity cannot be rejected as the 

choice of delay remains critical to the outcome, and as the system has shifting 

frequency contents, this method of detecting nonlinearities may not be easily applied 

in this case.  While the null hypothesis cannot be strictly rejected, it is also clear that 

this does not imply that the system is linear as the null hypothesis can in fact be 

rejected depending on certain delay choices (such as the arbitrarily chosen 50 minutes 

based on physiologic insight derived from time-scale analysis). In conclusion evidence 

 



134 

for nonlinearity exists in two of the time-series studied but the conclusion cannot be 

made based on firm computational grounds. 

IV.E Nonlinear time-series analysis 

 The presence, quantification and understanding of the nature of nonlinearity 

present in the system can suggest further signal processing approaches and possible 

approaches to controlling the system. Nonlinear time-series methods are both difficult 

to implement in a consistent manner and also difficult to interpret. Unfortunately, in 

the biological realm there is generally good reason to look for nonlinearities as most 

biological systems contain bounds and thresholds, which introduce these nonlinearities 

into the system.  

 
The procedure most often followed for nonlinear time-series analysis, and 

described in the methods section was applied to a selected number of data sets from 

nondiabetics. Briefly, this involves the determination of the lag using either 

autocorrelation function or average mutual information (both are included, the AMI 

was used in subsequent computations). This lag is then used to embed the time-series 

in multiple dimensions and various tests are used to determine whether the number of 

dimensions is “sufficient”. These include the method of false nearest neighbors as well 

as Cao’s method. Taken’s dimension estimator may be used to confirm the data’s 

dimensionality. The results are shown in table 4-23. Unfortunately, limited agreement 

exists between the different dimensional estimators. Some computations yielded 

erroneous results perhaps due to lack of data in the time-series. The problem, as 
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anticipated once the time-scales of dynamics are known is that the system does not 

have enough orbits around its attractor because of limited duration of sampling.  

 
Table 4-23:  two different time lag estimates using autocorrelation function and average mutual 
information is shown in columns two and three for different nondiabetics under different 
perturbation regimes. The lag computed from AMI is used to embed the time-series and 
determination of proper dimensionality of the dynamics is made using multiple methods.  
 
 Autocorrelation 

Lag (Samples) 
AMI Lag 
(Samples)

Embedding 
Dimensions 
(False 
Nearest 
Neighbors) 

Embedding 
Dimensions 
(Cao’s 
Method) 

Taken’s 
Dimension 
Estimator 

Sernorm1 12  13 5 4 5.0 
Sernorm2 15 13 4 3 3.7 
Sernorm3 13 14 4 4 6.3 
Simnorm1 8 4 N/A 4 5.6 
Simnorm2 6 4 N/A 3 2.5 
Simnorm3 9 4 N/A 3 7.7 
Simnorm4 8 5 N/A 4 N/A 
Simnorm5 15 4 N/A 3 6.5 
Simnorm6 8 4 N/A 3 N/A 
Simnorm7 15 4 N/A 3 2.6 
Simnorm8 9 4 N/A 3 3.8 
Simnorm9 14 5 N/A 4 3.8 
Polnorm1 14 10 N/A 4 N/A 
Polnorm2 14 6 N/A 4 N/A 
Polnorm3 13 5 N/A 3 2.1 
Polnorm9 11 3 N/A 3 3.0 
Polnorm10 18 3 N/A 3 1.9 
Polnorm12 25 3 N/A 3 3.5 
 

 

Most of the data sets did not have sufficient number of points to attempt the 

calculation of the dominant Lyapunov exponent. The Lyapunov exponents represent 

the degree to which the system evolves in each dimension of its state in an exponential 

sense. Thus negative exponents represent a shrinking in energy in that dimension. 

 



136 

Systems with a more negative Lyapunov profile tend to be dissipative, whereas if too 

many large positive Lyapunov exponents exist, the system tends to grow in volume in 

state space and “blow up”.  The most positive Lyapunov exponent then can be 

interpreted as the representation of the degree of instability in the least stable 

dimension. These were calculated for the three nondiabetics and the results are shown 

in table 4-24. These will be compared to the diabetic counterparts in chapter V.  

 

 

Table 4-24: Lyapunov exponent estimation for three nondiabetics.  
 False Nearest 

Neighbor’s 
Dimensions 

Cao’s Method 
Embedding 
Dimension 

Largest  
Lyapunov 
Exponent 
(Max 
Estimate) 

Largest 
Lyapunov 
Exponent 
(Mean 
Estimate) 

Sernorm1 5 4 .53 .32 
Sernorm2 4 3 .47 .24 
Sernorm3 4 4 .34 .20 
 

IV.F Meal event detection and analysis 

V.F.1 Meal detection 
 

In the normal subject, the meals are accompanied by a very pronounced change 

in glucose value. In particular, as discussed, the rate of change of glucose values 

undergoes significant positive increase. This can be used to detect meals automatically 

from an existing time-series from nondiabetics. Two approaches were used to test this 

process. 
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The first approach relies on the concept of dividing the signal into “runs” that 

is, continuous segments where the signal derivative does not change sign. These runs 

can then be analyzed in terms of their length (both in time and amplitude) as well as 

other characteristics such as maximum velocity during the run.  A program can then 

analyze such runs and based on characteristics, determine if they are likely to have 

been caused by a meal event. In this case, the amplitude of the positive runs and the 

maximum velocity were selected and kept the same throughout the process although it 

is likely that an optimal parameter can be estimated for each individual to yield 

maximum detection. For non-diabetics a maximum velocity of .5 mg/dl*min and a 

minimum run-depth of 10 mg/dl was used. For diabetics, a maximum velocity of .25 

mg/dl*min and a minimum run-depth of 20 mg/dl was used. 

 

The second method is based on a similar concept except that run detection is 

performed using a rolling ball algorithm. Briefly, a physical simulation of a rolling 

ball being effected by gravity and friction is used to detect peaks and valleys in the 

time-series. The advantage of this method is that as the ball gains momentum, it is able 

to overcome small “bumps”, that is small reversals in the derivative of the signal. 

Thus, larger runs are not simply terminated by small reversals that are temporary. This 

method was originally developed by our group to detect vessels in images and was 

modified for use in this context. Examples are shown in figure 4-26 and results are 

summarized in table 4-25. 
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Figure 4-26: Two meal detection sessions. The very top panel shows a time-series with meals 
marked with vertical lines. The second panel shows the detected meals and the average error. The 
third and fourth panel demonstrates an attempt on another data set where false meals were 
detected. 
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Table 4-25: Summary of meal detection success in a group of time-series. The first column 
represents the fraction of meals correctly detected. The second column shows the number of 
spurious meals detected. In the case where meals were correctly detected and no spurious meals 
were detected, the mean absolute error is given.  
 
 Meals 

Correctly 
Detected 
(Approach 
#1) 

False 
Positives 

Mean 
Absolute 
Error) 

Meals 
Correctly 
Detected 
(Approach 
#2) 

False 
Positives 

Mean 
Absolute 
Error 

Sernorm1 10/10 0 15 min 10/10 0 10 min 
Sernorm2 9/10 0 - 10/10 0 25 min 
Sernorm3 8/10 0 - 8/10 0 - 
Serone1 10/10 0 27 min 10/10 0 33 min 
Serone2 7/9 0 - 8/9 0 - 
Serone3 10/10 0 26 min 10/10 0 20 min 
Serone4 9/10 1 - 8/10 2 - 
Serone5 7/10 3 - 10/10 1 - 
Serone6 10/10 0 37 min 10/10 0 26 min 
Serone7 10/10 1 - 10/10 1 - 
Serone8 9/10 0 - 7/10 0 - 
Serone9 10/10 2 - 10/10 2 - 
Serone10 10/10 2 - 10/10 2 - 
Serone11 8/10 1 - 7/10 2  
Serone12 10/10 1 - 9/10 2 - 
Serone13 8/10 2 - 10/10 2 - 
Serone14 7/10 1 - 9/10 0 - 
Serone15 10/10 1 - 10/10 1 - 
       
 

 

For each specific case, meal detection could be improved by specifically 

modifying the constants in the program. This suggests that individual dynamic 

constants may be extractable to train systems to correctly identify meals. Doing so, 

however, is likely to require monitoring without standardized meals and significant 

data for training such an algorithm. These routines demonstrate the potential that 
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exists in event detection based on study of dynamics which can be ultimately 

incorporated into analysis and control algorithms. 

 

IV.F.2 Multiple meals 
 

Most meals in normal individuals are not conducted after long periods of 

fasting, are of different sizes, are consumed at different speeds, and are often followed 

by movement and exercise.  Thus while the fasting state can give us insight into the 

meal response process, it is not necessarily a good representation of the individual’s 

typical dynamics.  For this reason, an analysis of the meals in the context of multiple 

meals events and in some cases exercise was performed. Seven parameters were 

chosen primarily because they were easy to understand, compute and seemed to best 

capture the meal event. The first two capture the amplitude of the meal perturbation. 

The rise is computed as the difference between the glucose value prior to the meal and 

the maximum value during the next four hours or prior to the next meal if that meals 

occurs before four hours. During this rise, the maximum rate of change is the 

maximum rise velocity. The time it takes to reach the maximum value is the time to m 

value. Similarly, the fall is the difference between the maximum glucose value and the 

minimum glucose value prior to the next meal, or in the next four hours. The 

maximum fall velocity is the rate of fall during that period of time between the 

maximum and minimum glucose values. The other two variables, time to maximum 

velocity and time to minimum velocity, measure the time between the start of the rise 

and fall process, and when the maximum speed is reached in those processes.  
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Table 4-26: Various meal parameters (see text) are listed for the various meals for three 
nondiabetics with non-identical meals.  
 
Subject Rise Fall Time to 

Max 
Max 
Rise 
Vel 

Max 
Fall Vel 

Time to 
Max RV 

Time to 
Max FV 

Sernorm1        
Supper 47 62 40 1.4 1.5 25 25 
Breakfast 33 49 25 2.2 1.7 20 35 
Lunch 47 54 30 2.7 1.2 15 35 
Snack 42 51 40 2.3 2.4 25 25 
Dinner 59 73 35 2.5 1.9 15 15 
Supper 47 52 70 1.7 .6 20 70 
Breakfast 56 66 40 2.8 2.1 25 20 
Lunch 41 47 40 1.9 .7 20 85 
Snack 25 29 30 1.3 .9 15 20 
Sernorm2        
Supper 42 52 95 .8 .7 70 45 
Breakfast 36 50 35 1.4 1.0 15 30 
Lunch 24 29 45 1.2 .4 20 85 
Snack 29 27 45 1.4 .6 20 20 
Dinner 28 28 40 1.4 .6 30 30 
Supper 45 52 45 1.6 .6 25 100 
Breakfast 56 76 55 3 2.4 45 25 
Lunch 16 21 45 .7 .3 25 15 
Snack 19 21 40 .8 .4 25 55 
Sernorm3        
Supper 25 20 25 1.4 .9 15 10 
Breakfast 10 37 25 .7 1.4 5 15 
Lunch 18 31 35 .9 1.4 15 20 
Snack 6 9 20 .4 .3 10 15 
Dinner 14 20 25 1.1 .7 15 20 
Supper 22 20 105 .4 .4 65 25 
Breakfast 20 33 45 1.3 1.6 35 20 
Lunch 23 30 35 .9 .6 10 55 
Snack 8 9 30 .3 .4 15 15 
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The following observations are made from table 4-26. One striking observation 

is the variations in the same person, given the same exact meal during two consecutive 

days. This outlines the difficulty associated with generalizing the results from a single 

oral glucose tolerance test to the general reaction of the system in a nondiabetic 

individual.    

 

Analysis of the differences between specific meals is not possible as the meals 

were non-identical in this data set, but quite a variation exists between the extent of 

the meal process, the height of the excursion and the maximum rates of change within 

the same person as well. The fall process tends to exceed in amplitude the rise process, 

which is not surprising because after a meal a gradual rise in blood glucose is often 

seen prior to the next meal. In two of the subjects the rise process systematically has a 

higher maximal rate highlighting the spike like effect of meal ingestion. On average 

the time to maximal fall velocity is greater than the time to the maximum rise velocity, 

highlighting that the rise of glucose is a “faster” process.  This is once again clearly 

observed in the first two subjects but not the third. The peak value of the meal is 

reached within 40-60 minutes of the initiation of the meal. 

 

The vannorm6-9 datasets result from two patients with identical meals spaced 

at different intervals (2 meals the first day after fasting and three meals the second day 

after fasting). These data sets are much less frequently sampled (20 min) and thus do 
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not yield the same precision particularly in regards to the parameters having to do with 

time.  These results are shown in table 4-27. In some cases the rate of fall was 

maximal immediately after the peak value of glucose and thus the time to maximal fall 

velocity is zero.  Once again, falls are clearly larger and the rises reach a higher 

maximum than the falls do. There exist significant difference between the 

characteristics of the meals within the same individual, which is even more 

pronounced considering that the meals are all identical. 

 
Table 4-27: Meal parameters extracted from vannorm6-9 which represents two individuals with 
two identical meals and then three identical meals. These data sets where sampled every 20 
minutes which limits the resolution of the analysis. 
 
 
Tracing Tag Rise Fall Time to 

Max 
Max 
Rise 
Vel 

Max 
Fall Vel 

Time to 
Max 
RV 

Time to 
Max FV 

Vannorm6        
Meal One 24 33 40 .7 .7 40 0 
Meal Two 39 42 60 .9 .4 20 60 
Vannorm7 
(Same 
Subject as 
Vannorm6) 

       

Meal One 11 15 40 .3 .3 40 0 
Meal Two 28 31 60 .6 .3 40 40 
Meal Three 46 52 60 .9 .6 20 20 
Vannorm8        
Meal One 52 59 40 1.8 1.0 40 0 
Meal Two 57 59 40 2 .5 20 0 
Vannorm9 
(Same 
Subject as 
Vannorm8) 

       

Meal One 30 53 20 1.5 1.5 20 0 
Meal Two 62 85 40 2.2 .8 20 40 
Meal Three 76 80 60 1.8 .9 40 60 
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One can also consider not the amplitude or timescale of the meal but rather the 

general shape of the progression. A simple approach, in this case, where the meal can 

be divided into a rise portion and a fall portion, is to select each of these processes 

(rise and fall) and then subsequently rescale them so their range in time and energy 

goes from zero to one. These processes can be averaged to yield an average shape of 

rise and fall of glucose, which can then be compared between subgroups. The average 

rise process is shown in a single individual and three individuals in figure 4-27. Notice 

the characteristic shape of the meal rise process yielding and S shaped curve below the 

linear line. The fall process is shown in figure 4-28 where averages from a single 

nondiabetic, three nondiabetics and nondiabetics from a different study are shown for 

comparison. Note that the fall process also maintains a sigmoid profile, which is 

observed in all three panels. This is to be expected as the initial insulin pulse is 

integrated leading to a S-shaped curve. 
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Figure 4-27: the average normalized rise process from a single nondiabetic individual and 
averaged between three nondiabetics. The process has a characteristic deviation with respect to 
the linear process shown for comparison.  
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Figure 4-28: the fall process from a single nondiabetic (top), three nondiabetics (middle) and 2 
nondiabetics from a different dataset (bottom).  The process follows the same type of deviation 
from the linear reference line in each case. 
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 The shape of the meal process will be revisited in the chapter on type I diabetes 

where it will be contrasted between the two groups.  

 

IV.G Individual dynamics 

One key question that is pertinent particularly to design of sensors and 

controllers is whether individuals within a subgroup have their own dynamic 

signatures, which can be used to develop individualize therapies for them. Given the 

limited duration of datasets, the best analysis can ask this simple question: is the day 

to day variation of dynamic measurements the same in the same person given identical 

(or in some cases different) conditions? If not, is the variability less than the variability 

in the group? 

 

In the case of nondiabetics, sernorm1-3 presented two days of data under the 

same conditions. Vannorm6 and Vannorm7 were repeated using a different meal 

frequency in the same two individuals. Additionally, six of the continuously IV fed 

data sets were of a greater than 48 hour duration. Thus data sets were split into two in 

order to compare signal characteristics in the same individual under identical, and in 

the case of two of the data sets, different conditions.  

 

Looking at spectral analysis, the peak of the power spectrum was calculated for 

both days in nine nondiabetic subjects under differing condition (normal feeding, 
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continuous feeding). The power spectrum peaks for each day was computed for the 

nine nondiabetic subjects. These spectra are shown in figure 4-29.  
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Figure 4-29. Spetra from nine nondiabetic subjects from two consecutive days. Note similar 
patterns of power distribution in each subject (denoted by the tracing number #) and the 
resulting average spectra.  
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Looking at the correlation between the full spectrum shows a varying relative 

correlation in frequency space, otherwise known as the coherence function. The 

coherence appears on average > 50% for the non-diabetics studied (Table 4-28). This 

is very limited and further studies, using multiple days are required to further examine 

the significance of this correlation.  

 

Table 4-28: Correlation coefficient between the two spectra from each day for each subject. This 
is the “coherence” of the two time-series with respect to each other.  
 

Subject Coherence  
Sernorm1 .68 
Sernorm2 .49 
Sernorm3 .21 
Polnorm1 .93 
Polnorm2 .31 
Polnorm3 .32 
Polnorm9 .37 
Polnorm10 .96 
Polnorm12 .45 

 
 
 

Other measurements of dynamics such as the rate of change and its statistics 

can be calculated for different days of the data. In table 4-29, various statistics of rates 

of change are shown for the different days of the data sets. A look at the similarities of 

the values reveals good agreement between values in most of the individuals. Notably, 

those whose values did not agree, had significant disagreements throughout the 

various statistical measures. While a positive correlation does exist, the number of 

measurements is not sufficient to lead to a statistical conclusion. However, it can be 

said that at least in certain individuals, the variation between the two days are 
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minimal. Table 4-30 shows a similar trend with certain individuals (the same ones as 

in table 4-29) showing very similar characteristic attractor values while other 

individuals show differing dynamic characteristics between the two days.  

 
 
Table 4-29: Statistical analysis of the rate of change as compared between two days in nine 
nondiabetic subjects.  
 
Set Max 

ROC 
day I 

Max 
ROC 
day II 

Min 
ROC 
day I 

Min 
ROC 
day II 

Skew 
ROC 
day I 

Skew 
ROC 
day II 

Kurt 
ROC 
day I 

Kurt 
ROC 
day II 

Sernorm1 2.8 2.9 -2.5 -2.2 .8 1.0 7.4 7.8 
Sernorm2 1.5 3.1 -1.0 -2.5 1.1 1.3 5.9 13 
Sernorm3 1.4 1.5 -1.6 -1.6 -.5 -.4 7.1 6.8 
Polnorm1 .5 .8 -.5 -.80 -.1 .30 2.7 5.2 
Polnorm2 .8 .4 -1.1 -.7 -.4 -.5 .2 2.5 
Polnorm3 .5 .5 -.8 -.7 -.4 -.5 2.9 3.1 
Polnorm9 .4 .4 -.3 -.3 .1 0.0 2.8 2.9 
Polnorm10 .2 .3 -.5 -.3 -1.1 -.1 4.6 2.9 
Polnorm12 .3 .4 -.4 -.4 -.3 -.1 3.8 3.1 
 
 
Table 4-30: Statistical analysis of the attractor geometry as compared between two days in nine 
nondiabetic subjects.  
 
Set Attractor 

Area 
Day I 

Attractor 
Area 
Day II 

Attractor 
Concentration 
Day I 

Attractor 
Concentration 
Day II 

Attractor 
Symmetry 
Day I 

Attra
ctor 
Sym
metr
y 
Day 
II 

Sernorm1 650 543 .04 .04 .9 .9 
Sernorm2 281 683 .11 .04 1.0 .8 
Sernorm3 198 284 .17 .13 .8 .9 
Polnorm1 142 110 .20 .25 1.0 .8 
Polnorm2 162 77 .16 .27 1.0 1.0 
Polnorm3 190 142 .08 .2 .75 .81 
Polnorm9 30 34 .53 .56 .89 .89 
Polnorm10 31 25 .61 .64 .83 1 
Polnorm12 44 36 .30 .5 .75 1 
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Similarly, other measures of complexity and information can be looked at from 

one day to the next. Table 4-31 shows an example of these characteristics over two 

day period. Intra-day variations remain small compared to the intra-data-set variations 

in approximate entropy, underlying the importance of sampling and experimental 

conditions to such complex measures which are sensitive to these changes.  However, 

the first minimum of the average mutual information and autocorrelation function do 

not exhibit these properties and appear widely different between the samples.  

 
Table 4-31: Three chosen variables tracked across multiple days in three nondiabetics with 
normal meals and six nondiabetics with continuous intravenous infusion. A correlation does exist 
between the two days within individuals but the correlation coefficient is not very strong.    
 
 Apen 

(Day I) 
 
 (Day II) 

Autocorrelation 
1st minimum 
(Day I) 

 
 
(Day II) 

AMI 1st 
minimum 
(Day I) 

 
 
(Day II) 

Sernorm1 .30 .32 40 min 60 min 45 min 65 min 
Sernorm2 .39 .28 65 min 70 min 55 min 70 min 
Sernorm3 .43 .44 70 min 55 min 45 min 65 min 
Polnorm1 .58 .62 95 min 45 min 140 min 160 min 
Polnorm2 .58 .55 55 min 15 min 80 min  120 min 
Polnorm3 .54 .63 70 min 50 min 120 min 80 min 
Polnorm9 .48 .64 25 min 10 min 80 min 100 min 
Polnorm10 .45 .50 10 min 10 min 60 min 60 min 
Polnorm12 .65 .59 10 min 35 min 140 min 60 min 

 

IV.H Summary of observation 

• The attractor geometry is asymmetric, and contains possible structures that can 

be studied with larger numbers of similar data sets. For example, there appear 

to be higher negative rates of change at higher glucose levels and higher 

positive rates of change at lower glucose levels. This confirms the fundamental 
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nonlinear nature of the dynamics which try to restore the value to the 

equilibrium, and do so with greater “effort” as values reach the extremes.  

• We observe that 90% of the samples fall within 2%-5% of the attractor area. 

That is to say the system spends majority of its time inside a small area within 

its attractor. This again is not surprising, however, it allows us to quantify what 

is known intuitively about this system: the majority of the time is spent in a 

confined glycemic boundary. The symmetry measurement used appears to vary 

widely between datasets and thus is likely to be a poor differentiating tool and 

requires further study. 

• Looking at the rates of change in continuous feeding without meal 

perturbations(figure 4-9, table 4-5), a much more compact distribution is noted. 

A range of approximately -2 to 2 is observed (in comparison to the normal 

feeding range of -2.3 to 3.8 (table 4-3 and figure 4-3 ). Notably, despite the fact 

that meals are removed from set of perturbations, the rates of change, and in 

particular the maximal rates of fall, are not as different as one might have 

expected. 

• Furthermore, the observation can be made that the skewness for the infusion 

sets are now negative whereas in the fasting state the distribution remains 

positively skewed for rates of change. This is markedly different than the data 

sets containing meal and exercise responses. Looking at the phase space 

geometry (figure 4-11 and table 4-6) we see that the compactness of the 

attractor has remained fairly high with most samples falling within 7% of the 

attractor size, despite containing a significant amount of data. 
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• Time-scale analysis of data sets with very high sampling rates (2 mins) leads to 

the conclusion that very high frequency oscillations constitute a very small 

portion of the signal  energy content, particularly in the context of the presence 

of larger perturbations such as meals and infusions. 

• Time-scale analysis yields multiple peaks, including a peak in the time scale of 

meals (~6 hours), a peak corresponding to the duration of the meal perturbation 

(~120-150 minutes) and a peak at ~100 minutes which may come from 

intrinsic oscillatory behavior as seen in constant infusion or fasting.  

• We can quantify this with the ratio of the energy accounted for by the meal 

periods to the time accounted for by meal periods. This ratio appears to be 

significantly greater than one, ranging from 1.8 to 4.9, which we summarize by 

stating that the meal periods contain about 2-5 times as much energy as would 

be expected given their duration. 

• The frequency content is not constant in the time-series including meals (easily 

explained by the nonconstant frequency of meals and activities) but also in the 

constant feeding which is a bit more surprising.  

• A circadian component with an amplitude of approximately 20 mg/dl is 

observed in fasting in nondiabetics. 

• An ultradian component with a frequency of approximately ~100 minutes can 

be observed with a small amplitude in fasting (~5 mg/dl). 

• Continuous infusion of IV glucose contains larger scale dynamics in addition 

to the ~100 min time-scale observed in the continous enteral feeding case.  
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• These larger time-scales can be removed yielding pulses of significantly 

varying duration 76-175 minutes and amplitude of 7-16 mg/dl. 

• Insulin infusion shows similar findings to the IV infusion with two time-scales 

of dynamics, on a pulsatile behavior of 77-99 minutes and another nearly 600-

700 minutes.  

• Entrainment with pulsatile infusion is noted an ranges from 40-80% of the 

energy band.  

• Evidence for nonlinearity exists in two of the time-series studied but the 

conclusion cannot be made based on firm computational grounds. 

• Nonlinear dynamics analysis will require significantly longer samplings to 

allow for attractor characterization.  

• Meals can be detected using simple algorithms with fairly good accuracy.  

• Significant variation exists between meal parameters even in the same 

individual with the same meal between two days.  

• One average, the time to maximum rise velocity in the meals is shorter than the 

time to maximum fall velocity. 

• The average meal profile presents a sigmoid rise and fall process.  

• Correlation between the time-scales of dynamics existed between day one and 

day two of time-series from nondiabetics, but the degree of the correlation was 

inconsistent. This correlation was computed in the frequency space using the 

coherence function.  
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• Statistics of rates of change showed differences between individuals with some 

individuals showing good intra-day correlation while others did not. The same 

inconsistency was seen in the statistics of the shapes of the attractors.  

• Measures of complexity were inconsistent between individuals from day one to 

day two.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Chapter V: Type I diabetes 

 Type I diabetes is characterized by a generally rapid loss of beta cell function 

leading to little or no insulin being secreted in response to elevated blood glucose. 

Without treatment, these individuals will generally perish from unchecked high 

glucose concentration. With insulin injections and proper diet and monitoring, they 

can often live fairly long lives but the impact in terms of difficulty of life is 

tremendous[72]. The DCCT established that the occurrence and rate of progression of 

the complications associated with diabetes are highly correlated with the control of 

blood sugars as estimated using HbA1c. From the curve associating complications and 

HbA1c levels, it appears that there is no point at which the benefit of lowering blood 

glucose is not realized, thus essentially setting the target as glucose levels as “low as 

possible”[73, 74] . Attempts to realize aggressive treatment are almost always 

universally blocked by increased incidence of hypoglycemia[75-79]. Hypoglycemia is 

accompanied by loss of awareness and coma, and is very much a deterrent to 

aggressive treatment. This matter is made more complex by the tendency for decrease 

sensitivity and the reduction of the person’s awareness of oncoming hypoglycemia, 

making the likelihood of acute events more pronounced after a few years of treatment. 

All these problems lay as a barrier to the effective control of type I diabetic patients 

(and to some extent type II diabetic patients, particularly ones who have insulin 

injections). 

156 
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V.A Rates of change 

A look at the phase portraits of the type I diabetic subjects reveal larger 

excursions of blood glucose as would be expected, in comparison to nondiabetic 

subjects (figure 5-1) . This is reflected in the number of samples in the higher glucose 

values in the phase portrait. Additionally, points are also distributed in a wider space 

in the rate of change axis. Overall, the type I diabetic occupies a larger “space” in the 

phase portrait in both dimensions. Interestingly, while the well controlled diabetic 

subgroup does show larger excursions in the value of blood glucose, the distribution of 

the rates of change are comparable to the nondiabetics (Table 4-1). Also of note, as 

shall be examined next, the maximum rates of change in nondiabetics and non-well 

controlled diabetics are similar. Similar observations are not noted in the DirecNet 

data set (Figure 5-2), which represents the clinical data set composed of many children 

(see chapter 2 for a detailed explanation of the data set). Based on figure 5-1 it appears 

that diabetic subjects have a larger range of values but not necessarily consistently 

larger rates of change, and that the well controlled diabetic subjects have lower rates 

of change than the either nondiabetics or poorly controlled diabetics.  The direcnet 

data, however, does not support the conclusion of similarities in rates of change 

between nondiabetics and type I diabetic children. It remains unclear what differences 

(including age, sampling, experimental set-up, population) may have led to this 

difference.  
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Figure 5-1: A phase portrait from three nondiabetic individuals (upper left corner) and three 
phase portraits for stable type I diabetics, unstable type I diabetics and the same six unstable type 
I diabetics with a four insulin doses instead of two (more spread out insulin injections).  The 
maximal rates of change remain fairly bounded, while the distribution changes characteristics.  
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Figure 5-2: A phase portrait from the type I diabetic children from the DirecNet Study (top) and 
the nondiabetic children (bellow). Note the similarity in the differences between these two groups 
versus the literature data sets. 
 

The rates of change are expected to be elevated for type I diabetics as it has 

been noted that diabetic dynamics include larger excursions of blood glucose. 

Surprisingly, however, in the data sets analyzed, there was not a systematic, 

significant increase in the maximal rates of change in the type I diabetic subgroup as 

compared to the nondiabetic subjects (table 5-1). In the DirecNet data, however, there 
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was a very large difference between the two population groups, with maximal rates of 

change well into the range of 10 mg/dl*min. Another visible finding when comparing 

each subgroup is the decrease in the Kurtosis of the rate of change (compare to Table 

4-1) between the nondiabetic subjects, the well controlled diabetic subjects and the 

poorly controlled subjects. This Kurtosis reflects the “flatness” of the distribution. 

Once again, in the DirecNet data set, this relationship is reversed (compare to Table 4-

2 and 4-3). Skewness of the rate of change remains positive for type I diabetic data-

sets as it was in the nondiabetic data sets.   
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Table 5-1: Rates of change characteristics from multiple type I diabetics, including pregnant type 
I diabetics (sanpregone2,6,8) as well as the clinical DirecNET data which spans 73 children with 
type I diabetes). 
 
Data Set Max (-) 

Rate 
Max (+) 
Rate 

Mean Rate Skewness Kurtosis 

Serone1 -1.0 2.7 .4 1.7 7.0 
Serone2 -1.5 2.6 .4 1.1 6.6 
Serone3 -1.6 3.1 .4 1.0 5.7 
Serone4 -3.4 3.3 .7 .05 4.3 
Serone5 -2.6 2.3 .6 -.2 4.2 
Serone6 -1.8 3.0 .6 .7 4.0 
Serone7 -1.2 2.4 .5 1.2 4.9 
Serone8 -1.9 2.6 .5 .3 3.8 
Serone9 -4.9 3.7 .9 .15 4.2 
Serone10 -2.2 3.3 .7 .9 3.8 
Serone11 -1.8 3.1 .5 .7 4.8 
Serone12 -2.2 3.2 .6 .8 4.9 
Serone13 -1.9 2.1 .5 .2 3.5 
Serone14 -2.2 2.1 .6 .3 3.3 
Serone15 -4.4 4.4 1.1 .6 3.4 
Mir1 -3.9 4.1 .9 .7 3.9 
Mir2 -3 4.3 .8 .7 4.7 
Mir3 -3 2.6 .7 -.6 3.6 
Mir5 -3 3.3 1.0 .4 2.5 
Sanpregone2 -2.3 3.2 .6 .8 3.9 
Sanpregone6 -3.4 7.8 .6 2.2 14.5 
Sanpregone8 -3.7 2.0 .3 -.7 11.2 
DirecNet (3701 
Samples) 

-13.2 25.8 .3 1.8 15.3 
 
 

All Sets (95 sets, 
22193 samples) 

-13.2 25.8 .05 2.3 32 
 
 

Mal1-12 (356 
Samples) 

-2.3 3.8 .02 .9 9.3 

Mej1-5  (239 
Samples) 

-1.6 1.7 0 .9 7.5 

Direcnet (436 
Samples) 

-2.1 2.0 -.01 0 9.3 

Combined 
(Above) 

-2.3 3.8 0 .86 11.6 

All 39 data set 
combined (1871 
Samples) 

-2.5 3.8 0 .9 11 
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 Attractor characteristics are significantly different between type I diabetics and 

nondiabetics. In particular, the area of the attractor is significantly larger for type I 

diabetics versus nondiabetics in all data-sets, as would be expected. Interestingly, not 

all the contribution comes from the increased range of glucose values (the y-axis) in 

the case of the DirecNet data as noted. Once again the progression between well 

controlled diabetics (serone1-3) and poorly controlled diabetics are noted. 

Interestingly, the compactness is highest in the well-controlled type I data set, 

reflecting the restricted range for rates of change. Symmetry failed to show consistent 

changes between subgroups. 

Table 5-2. Summary of the attractor geometric characteristics for the various data sets from type 
I diabetics including pregnant type I diabetics. 
 

Data Set Attractor 
Area 

Compactness  Symmetry 

Serone1 909 4.40% 0.88 
Serone2 876 6.10% 0.82 
Serone3 943 5.80% 0.94 
Serone4 3658 1.20% 0.82 
Serone5 2835 1.20% 0.77 
Serone6 2751 1.50% 0.83 
Serone7 2029 1.70% 0.8 
Serone8 1976 2.60% 0.88 
Serone10 1663 3.10% 0.78 
Serone11 1468 4.00% 0.95 
Serone12 1586 3.50% 1 
Serone13 2456 1.40% 0.86 
Serone14 3768 1.20% 0.8 
Serone15 4302 1.50% 0.73 
Mir1 3307 1.40% .66 
Mir2 3325 .8% .52 
Mir3 2779 1.40% .7 
Mir5 654 8.5% 1 
Sanpregone2 2039 2.20% .92 
Sanpregone6 610 12% 1 
AVERAGE: 2200 3.3% .833 

 



163 

V.B Time-scales 

The spectral estimates were computed for groups of type I diabetics. The type I 

diabetics from the Service experiment (serone1-15) were analyzed using the FFT 

algorithm. The results are shown in figure 5-3. In the case of serone1-serone3 data 

sets, which are well controlled diabetics, spectral content contains the peaks near 2 

hours and 5 hours just as the nondiabetic dynamics. The small peak near 100 is not as 

apparent, as would be expected because the lack of beta cell function would lead to the 

cessation of the ultradian dynamics discussed in chapter IV.  Serone10-serone15 

represent six diabetic patients characterized as unstable by their physician, with four 

insulin injections throughout the days and showing less wings in blood glucose values. 

Serone4-serone9, displays the same patients but with only two injections. A 

progression is seen in the shifting of the time-scales of dynamics towards longer 

periods from the nondiabetic individual, to the type I diabetic individual with poor 

control and only two insulin shots. This is well illustrated in figure 5-3, which is 

summarized in figure 5-4.  

 

 

 

 

 



164 

 

 

 

 

Figure 5-3: FFT based spectral estimates of nondiabetic (top), well controlled diabetic (second 
panel), poorly controlled diabetic (third panel) and poorly controlled diabetics with increased 
number of insulin injects (bottom). A progression is noted towards slower time-scales with partial 
restoration in the last panel where more insulin shots are used to improve control.  
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Figure 5-4: Summarized results from figure 5-3. The top panel shows average of the FFT 
Spectrums from the three nondiabetics in the Service data set (sernorm1-3), the middle panel 
shows the same for three well-controlled diabetics and the bottom panel reflects six poorly 
controlled (“unstable) diabetics.  Note the progression towards longer time-scales.  
 
 

V.C Complexity and nonlinear analysis  

The measures of complexity were taken for a group of type I diabetics and are 

shown in the table 5-3. Measures of entropy ranged from 3.5 to 3.9 for nondiabetic 

subjects but was much higher for diabetic subjects (4.6-5.6). This difference may be 

cause largely by the statistical difference in the signals as discussed in the methods 

section. Looking at approximate entropy and sample entropy, which are much less 

statistically driven (See methods), the nondiabetic approximate entropy ranged from 

.35-.51 while the diabetics ranged from .22 to .40. Unfortunately, the limited size of 

the nondiabetic population prevents significant generalization of the results (Because 
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of the fact that entropy measurements are easily effected by sampling periods, it is not 

generally recommended to compare measures between different experiments). 

However, it appears that the signal complexity is increased in the nondiabetic 

individual as a population group. The same observation is noted in the case of the 

median sample entropy where the nondiabetic range is .21-.36 whereas the diabetic 

range is from .16 to .29.  This data is noted in table 5-3.  

Table 5-3: Three different measures of entropy as a way of assessing signal complexity, applied to 
data collected from a single experimental protocol involving normals and type I diabetics. The 
first three data sets are normals and the rest are type I diabetics with various degrees of control. 
The first column shows the entropy of the signal, while the other two columns show the 
approximate entropy which is another form of entropy measurement and the median sample 
entropy which is yet another measurements.  
 
 

Data Set Entropy Apen Median 
Sampent 

Sernorm1 3.9 .35 .21 
Sernorm2 3.6 .36 .24 
Sernorm3 3.5 .51 .36 
Serone1 4.7 .33 .24 
Serone2 4.7 .31 .23 
Serone3 4.6 .38 .27 
Serone4 5.6 .23 .17 
Serone5 5.3 .21 .2 
Serone6 5.3 .25 .18 
Serone7 5.1 .3 .23 
Serone8 5.3 .22 .16 
Serone9 5.6 .34 .19 
Serone10 5.2 .37 .26 
Serone11 5.1 .3 .22 
Serone12 5.0 .4 .25 
Serone13 5.2 .29 .22 
Serone14 5.5 .16 .18 
Serone15 5.6 .37 .29 
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Estimates of dimension show a very subtle decrease in the average dimensional 

estimates of the less controlled type one diabetics versus nondiabetics, particularly in 

the case of Cao’s embedding dimensional estimates (table 5-4).  Estimates of the 

largest Lyapunov exponents are markedly different for type I diabetics and 

nondiabetics (table 5-5), with both the maximum estimate and the mean estimate being 

significantly different. Notably, unlike in the rates of change, the well controlled 

diabetics are not as similar to the nondiabetics as they appear in rates of change and 

time-scale analysis. This is likely to reflect the multi-scale presence of dynamics in the 

healthy, nondiabetic time-series.  
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Table 5-4: Dimensional estimates for type I diabetics. Average mutual information (AMI) was 
used to measure a lag. This was done by measuring the first delay in the firsm minimum of the 
cross mutual information between the series and itself.   The embedding dimensions (columns 3 
and 4) are computed using two different methods. The last two columns list the estimates of the 
lyapunov exponents (both the max and the mean) based on the previous columns values.   
 

 AMI False Nearest 
Neighbor’s 
Dimensions 

Cao’s 
Method 
Embedding 
Dimension 

Sernorm1 18 4 3 
Sernorm2 23 3 4 
Sernorm3 13 3 5 
Serone1 20 3 3 
Serone2 14 2 3 
Serone3 18 3 4 
Serone4 30 3 3 
Serone5 24 3 4 
Serone6 21 3 3 
Serone7 22 3 3 
Serone8 25 3 3 
Serone9 36 3 2 
Serone10 15 3 4 
Serone11 20 3 3 
Serone12 12 3 3 
Serone13 15 3 3 
Serone14 18 3 3 
Serone15 15 4 3 
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Table 5-5: Two estimates of the largest Lyapunov exponent one based on the  maximum and the 
other based on the mean slope of the error estimate along the fastest direction of error growth, 
once the time-series has been embedding using the number of dimensions required (in this case 
using cao’s estimate).  
  

 Largest  
Lyapunov 
Exponent 
(Max 
Estimate) 

Largest 
Lyapunov 
Exponent 
(Mean 
Estimate) 

Sernorm1 .53 .32 
Sernorm2 .47 .24 
Sernorm3 .34 .20 
Serone1 .17 .06 
Serone2 .16 .07 
Serone3 .38 .18 
Serone4 .9 .05 
Serone5 .41 .2 
Serone6 .42 .19 
Serone7 .24 .1 
Serone8 .05 .03 
Serone9 .26 .13 
Serone10 .16 .07 
Serone11 .12 .06 
Serone12 .15 .08 
Serone13 .09 .04 
Serone14 .08 .04 
Serone15 .19 .1 
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V.D Meals 

An analysis of the importance of the meal event to the signal energy in type I 

diabetics can be performed in a similar way as was performed in the case of 

nondiabetics. The results can be seen in table 5-6. Although the amount of time that is 

spent in the meal episode is similar to the ones observed in nondiabetics, the signal 

energy content during those meal periods no longer accounts for as significant of the 

total signal energy content. This is likely to occur in part because of the increase in 

length of the system’s response to the meal and in part because of the introduction of 

the time-scales of insulin dynamics into the system.  
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Table 5-6. Percentage of energy during meal-times computed for type I diabetics. In the second 
column, the percentage of time which is considered “meal time” is calculated by considering meal 
time as the two hour interval after each meal event. The percent of signal energy (defined by the 
mean subtracted amplitude squared) during this period is shown in the third column, and the 
same quantity is shown in the fourth column for the non meal times. The last column shows a 
ration of the former versus the latter.   
 
Data Set % Time Meals % Signal 

energy Meals 
% Signal 
energy Not 
Meals 

Ratio (Meal 
Vs. Nonmeal) 

Serone1 39% 36% 64% .56 
Serone2 40% 46% 54% .85 
Serone3 41% 49% 51% .94 
Serone4 44% 30% 70% .44 
Serone5 43% 58% 42% 1.38 
Serone6 41% 59% 41% 1.44 
Serone7 39% 51% 49% 1.06 
Serone8 44% 37% 63% .59 
Serone9 39% 40% 60% .66 
Serone10 40% 39% 61% .64 
Serone11 42% 58% 42% 1.37 
Serone12 40% 49% 51% .98 
Serone13 39% 36% 64% .57 
Serone14 40% 36% 64% .56 
Serone15 41% 39% 61% .65 
Mir5 36% 22% 78% .28 
Mir6 36% 49% 51% .95 
Mir8 28% 39% 61% .63 
Average 40% 43% 57% .81 
 

 

The progression for the meal event behaving as a pulse of signal energy to the 

meal event being less and less clear as the major contributor of dynamics can be 

visualized in the progression shown in figure 5-5.  

  

 



172 

 

 

 

Figure 5-5: Meals are less localized and accompanied by other time-scales of dynamics in type one 
diabetes (middle and bottom tracing) as compared to a nondiabetic. The bottom figure represents 
an unstable diabetic while the middle figure represents a stable one.  
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 Both the amplitude and the time-scale of the meal are thus increased. An 

average of the signal following a four hour period (or less if another meal occurred 

within 4 hours) is shown in figure 5-6, for nondiabetics, stable diabetics and unstable 

diabetics. Both the amplitude as well as the time-scale of meal response are increased 

as the degree of control is lessened in these cases. 

 

 

Figure 5-6: the response to a meal in terms of blood glucose values as well as the rate of change 
assessed in three patient groups.  
 

 As was done with the nondiabetic case, one may also examine the normalize 

shape of the rise and fall of the glucose values during the time series. As was done in 

the previous sections, the time-series were scanned for large rise and falls in glucose 
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values. These are then averaged and normalized to yield a characteristic 

nondimensional representation of the rise and fall of glucose values. The results are 

shown in figure 5-7. The rise and fall process has lost a significant amount of 

similarity to an s-shaped process and now appears to be much more linear.  
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Figure 5-7: Meal process analysis for nondiabetic individuals (solid line) and three type I 
diabetics (stars). A straight line (circles) is provided as a linear reference. The diabetic process is 
much less similar to the S curve of the nondiabetic than a simple line.  
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V.E Individualized dynamics 

It is once again of interest to question whether measures of dynamics remain 

similar in an individual from day to day. This can be assessed by looking at the 

relationship between the measurements between two days.  Figure 5-8 shows two 

time-scale analysis plots for each day in 15 type I diabetic subjects from the Service 

data set.  The summed spectrum appears similar as do many of the specific strips, but 

noticeable differences are apparent with a cursory glance.  
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Figure 5-8: FFT spectral estimates for 15 diabetics on day one (top) and day two (bottom). Notice 
the similarities between the overall profile though it is clear that certain individuals display 
significant variations in their daily frequency content.  

 

One method to quantify the similarities is to calculate the correlation 

coefficient in the frequency space, a function otherwise known as the coherence. The 

result of this analysis is shown in table 5-7. As was noted in the case of nondiabetic 

individuals, significant correlation exists between the two frequency contents but there 

are significant variations between individuals in the extent of this correlation which 

does not appear to be different for different subgroups.  
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Table 5-7: Frequency dimension correlation coefficient between each day of the time-series from 
type I diabetics, computed by FFT. This is otherwise known as the coherence function. Significant 
agreement exists for most data-sets, though some show notable differences (Serone8 and 
Serone5). 
 
Serone1 .99 
Serone2 .85 
Serone3 .73 
Serone4 .91 
Serone5 .57 
Serone6 .83 
Serone7 .86 
Serone8 .50 
Serone9 .98 
Serone10 .79 
Serone11 .74 
Serone12 .66 
Serone13 .93 
Serone14 .76 
Serone15 .80 

 
 

In looking at the measures of complexity (table 5-8), as was the case in 

nondiabetics, little consistency was noted in the measurements of information 

dissipation such as the autocorrelation function or the AMI between each day. Values 

for approximate entropy, however, showed fairly good agreement from day to day in 

most of the individuals. The significance of this agreement in the light of the general 

variability of the information loss functions is unclear.  
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Table 5-8: Comparison of three metrics in two different (consecutive) days in type I diabetics.  
 
 Apen 

(Day I) 
 
 (Day II) 

Autocorrelation 
1st minimum 
(Day I) 

 
 
(Day II) 

AMI 1st 
minimum 
(Day I) 

 
 
(Day II) 

Serone1 .57 .61 95 min 75 min 90 min 70 min 
Serone2 .55 .52 105 min 120 min 65 min 75 min 
Serone3 .54 .62 85 min 80 min 55 min 75 min 
Serone4 .49 .60 230 min 140 min 85 min 80 min 
Serone5 .43 .49 225 min 85 min 70 min 75 min 
Serone6 .62 .57 135 min 155 min 80 min 80 min 
Serone7 .30 .35 120 min 130 min 55 min 75 min 
Serone8 .28 .31 170 min 110 min 90 min 110 min 
Serone9 .38 .34 90 min 80 min 85 min 60 min 
Serone10 .25 .38 100 min 85 min 65 min 85 min 
Serone11 .40 .31 175 min 105 min 60 min  70 min 
Serone12 .22 .28 75 min 95 min 70 min 70 min 
Serone13 .29 .32 90 min 140 min 75 min 90 min 
Serone14 .2 .26 110 min 135 min 95 min 125 min 
Serone15 .36 .36 90 min 100 min 45 min 65 min 
 
 
 

Finally, table 5-9 and 5-10 show the rates of change and attractor 

characteristics for the same group from the Service data set. Once again, although 

some correlations exist between some of the metrics (in particular maximal rates of 

change, and attractor area) the correlation between the values is fairly inconsistent, as 

was the case in the nondiabetics.  
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Table 5-9: Statistics of rates of change from fifteen type I diabetic subjects between two different 
days.    
 
Set Max 

ROC 
day I 

Max 
ROC 
day II 

Min 
ROC 
day I 

Min 
ROC 
day II 

Skew 
ROC 
day I 

Skew 
ROC 
day II 

Kurt 
ROC 
day I 

Kurt 
ROC 
day II 

Serone1 2.2 2.7 -.8 -1.0 1.6 1.9 6.0 8.0 
Serone2 2.6 1.6 -.8 -1.5 1.9 0.0 8.4 3.6 
Serone3 1.8 3.1 -1.0 -1.6 1.0 1.0 3.9 6.1 
Serone4 2.7 3.3 -3.4 -2.6 -.3 .2 5.8 3.3 
Serone5 2.3 2.2 -1.5 -2.6 .4 -.4 3.8 3.9 
Serone6 2.8 3.0 -1.6 -1.8 .7 .7 4.0 4.0 
Serone7 2.3 2.4 -1.2 -1.1 1.0 1.5 4.2 5.7 
Serone8 2.2 2.6 -1.9 -1.5 .2 .5 3.4 4.3 
Serone9 3.0 3.7 -2.8 -5.0 .6 -.2 3.0 4.7 
Serone10 3.2 3.0 -2.2 -1.6 .5 1.2 3.7 3.8 
Serone11 3.1 2.4 -1.8 -1.6 .7 .7 4.4 4.9 
Serone12 2.8 3.2 -2.2 -1.8 .6 1.0 5.3 4.5 
Serone13 2.0 2.1 -1.9 -1.9 .3 .2 3.2 3.8 
Serone14 1.9 2.1 -1.8 -2.2 .1 .6 3.6 3.3 
Serone15 3.8 4.4 -2.6 -4.4 .6 .6 2.7 3.9 
 
 
Table 5-10: Characteristics of the phase portrait from fifteen type I diabetic subjects between two 
different days.    
 
Set Attractor 

Area  
Day I 

Attractor 
Area 
Day II 

Attractor 
Concentration 
Day I 

Attractor 
Concentration 
Day II 

Symm 
Day I 

Symm 
Day II 

Serone1 158 228 .20 .12 1 1 
Serone2 188 159 .14 .21 1 1 
Serone3 159 268 .26 .14 1 1 
Serone4 583 511 .05 .07 1 .9 
Serone5 650 373 .04 .11 .9 .9 
Serone6 669 527 .03 .07 .9 .9 
Serone7 287 309 .11 .11 1 .9 
Serone8 480 380 .07 .07 1 .9 
Serone9 792 1214 .04 .03 .8 .9 
Serone10 348 464 .50 .07 .4 .9 
Serone11 413 273 .87 .15 .9 1 
Serone12 343 346 .10 .13 .9 1 
Serone13 328 336 .11 .11 1 .9 
Serone14 436 466 .05 .60 1 1 
Serone15 781 881 .04 .77 .9 .8 
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V.F Summary of observations 

 
• In one experiment set, rates of change of blood glucose are more confined  in 

well-control type I diabetics than in nondiabetic subjects, while they are 

similar between nondiabetics and non-well controlled diabetics. 

• The DirecNet data sets, for unclear reasons shows much increased rates of 

change as high as 13 mg/dl * min. This may be due to populational 

characteristics, infrequent irregular sampling and different experimental set-

ups.  

• There is an overall decrease in the Kurtosis of the rate of change from 

nondiabetics to well controlled diabetics and finally to poorly controlled 

diabetics.  

• Attractor size is increased from nondiabetic to well controlled diabetic to 

poorly controlled diabetic.  

• Time-scales of dynamics are shifted towards longer time-scales of insulin 

injection, with well controlled diabetics showing faster time-scales of 

evolution.  

• Measurements of complexity show decreased complexity in the nature of the 

signal from diabetics. This is exhibited in the measurements of approximate 

entropy which is the entropy measurement least effected by sampling and 

signal statistics as described in chapter 3.  

• Nonlinear time-series analysis shows a decrease in the estimates of the largest 

positive Lyapunov exponent in the type I diabetics. 
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• Meals are larger, last longer and account for less of the total energy in the 

signal in type I diabetics, presumably because of the increased contribution of 

insulin dynamics to the signal intensity. 

• Meal process models in type I diabetics show an increased linear profile in 

both the rise and fall of blood glucose levels in comparison to the S-shaped 

curves generated by nondiabetic profile. 

• As was noted in the case of nondiabetic individuals, significant correlation 

exists between the signal time-scale content from one day to the next, but there 

is significant variations between individuals in the extent of this correlation 

which does not appear to be different for different subgroups.  

• Little consistent correlation existed between measures of information half-life 

from day to day, but approximate entropy did show good correlation day to 

day. Statistics of rates of change and attractor geometry remain inconsistent 

between each day in type I diabetic subjects.  

 

 

 

 

 

 

 

 



 

Chapter VI: Type II diabetes and other altered states 

Type I diabetes amounts to the destruction of the insulin producing machinery 

in the human body. In type II diabetes, however, a gradual progression is noted which 

begins with decreased action of insulin at the target sites (cells uptaking glucose) [80]. 

This is thought to progress to a state high-insulin resistance coupled with 

hyperinsulinemia. Eventually the beta cells, which are the primary producers of insulin 

are thought to “burn out” and insulin production eventually falls off. Towards the 

latter stage of the disorder, insulin production may cease and type II diabetes may 

become more similar to type I diabetes except that it is generally accompanied by 

insulin resistance and associated dyslipidemias [81]. For a variety of reasons including 

the recent food supply increase in the western world, type II diabetes was not, until 

recently, a major problem but has now reached epidemic levels. For this reason the 

history of data collection and study of type II diabetes is much less well developed 

than type I diabetes. In the sections that follow the tools developed in the previous 

chapters will be used to study this disorder as well as a few other rare disorders. As the 

data is extremely scant, the analysis is particularly limited and is best thought of as 

illustrative of the methods described more so than any other part of this document.  

VI.A Obesity, impaired glucose tolerance and aging 

The study of the effect of aging and obesity on glucose dynamics is 

complicated by the correlation between aging, obesity and insulin resistance. Many
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 possible explanations exist as to this inter-relationship  but at least in the case of aging 

and developing insulin resistance they are thought to be correlated in the general 

population outside of the diabetic subgroup. Additionally, some postulate that many 

consequences of uncontrolled diabetes essentially can be considered as accelerated 

aging. Obesity, while not always present, is also well correlated through multiple 

pathways with aging and impaired glucose tolerance. Increasing insulin resistance that 

occurs with aging and obesity is thought to be a central mediator of this correlation. 

Taking this point of view, individuals with high indices of obesity were also studied in 

terms of their glucose profile prior to and after weight loss [44]. Impaired glucose 

tolerance is diagnosed and defined by increased amount of time for the blood glucose 

to return to baseline levels following the administration of a standardized meal. In this 

way IGT is very similar to type II diabetes and differs only by the magnitude of the 

severity of the post-meal elevated glucose levels.  It is also generally agreed [80, 82] 

that IGT is a pre-diabetic state and is part of the progression towards full pathogenesis 

of type II diabetes.  

 

A data set was studied in which six individuals were monitored prior to and 

after weight loss under continuous IV glucose infusion for 12 hours. The sampling 

period of 15 minutes combined with short duration of the signal collection limited the 

utility of this data group. Two of the individuals were nondiabetic, while two were 

diagnosed with impaired glucose tolerance (IGT) and two had met criteria for type II 

diabetes.  Results of two analysis methods, the analysis of time-scales and of rates of 

change are shown in figures 6-1 and 6-2. The phase space attractor portrait shows a 
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consistent reduction in blood glucose levels in the IGT and Type II with no such a 

change in the nondiabetic cases. There does appear to be an increase in the 

compactness of the attractor in the center which would be interesting to quantify. 

Maximal rates of change are not affected. There are no consistent findings in the time-

scale analysis although at least in one nondiabetic subject (#2) a clear increase in the 

fast time-scale is noted, resulting in an increase in the ultradian peak near 100 minutes. 

Other strips show a variation in their response.  
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Figure 6-1: Phase space attractor profiles for three subject groups before and after weight loss. 
Note a general shift towards lower blood glucose values in both IGT and NIDDM groups but no 
change in the normal subjects.   
 

 



187 

Tr
ac
in
g #

Six Individuals Prior to Weight Loss 

 

 #1

#2

#3

#4

#5

#6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100
0

0.5

1

Log Time Scale (Minutes)N
or
m
al
iz
ed
 E
ne
rg
y

 

Tr
ac
in
g #

Six Individuals After Weight Loss

 

 #1

#2

#3

#4

#5

#6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100
0

0.5

1

Log Time Scale (Minutes)N
or
m
al
iz
ed
 E
ne
rg
y

 

Figure 6-2: Time scale analysis of six individuals before (top panel) after weight loss (bottom 
panel).  The first two strips in each panel are nondiabetics with the subsequent two strips 
obtained from IGT and the last two strips obtained from type II diabetics individuals.    
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Looking at the effect of age on the profiles of six nondiabetics with continuous 

enteral feeding, phase portraits of the two groups is shown in figure 6-3, and figure 6-4 

shows the FFT based time-scale analysis.  At least in these six subjects, there appears 

to be a decrease in the size of the attractor, as well a decrease in the long time-scales in 

the older subjects. As mentioned significant controlled data sets are lacking to make 

conclusions beyond sparking curiosity for further data. 

 

 

 

 

 

 

 

 

 

 

 

 

 



189 

mg/dl*min

m
g/
dl

Three Nondiabetic Subjects In Their Twenties

  -2 -1.2 -0.4  0.4  1.2    2
  0

 40

 80

120

160

200

 

mg/dl*min

m
g/
dl

Three Nondiabetic Subjects Ages 59-63

  -2 -1.2 -0.4  0.4  1.2    2
  0

 40

 80

120

160

200

 

Figure 6-3: Phase space attractor profile for three nondiabetic subjects in their twenties receiving 
continuous IV glucose (top) and similar subjects who are older (bottom).  
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Figure 6-4: FFT based spectral components for three individuals in their twenties (top) and three 
older individuals (bottom). 

 

VI.B Type II diabetes 

 Type II diabetes is characterized by loss of sensitivity to insulin and 

subsequent elevation of blood glucose. This leads to hyperinsulinemia and a feedback 

system of increased insulin production coupled by decreased sensitivity to insulin 
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([83]). In the end-progression of the disease state, insulin levels begin to drop as the 

beta cells are thought to “burn-out” in an attempt to produce more insulin to counter 

rising glucose levels. At this juncture in the disease progression, type II diabetics 

require insulin.  

VI.B.1 Fasting 
 
 Nine subjects were observed during a twenty four hours of fasting, four of 

which begun their fast at a different time of the day. An example of the time-series 

generated is shown in figure 6-5. Trends were extracted as described in the section on 

the time-scales of nondiabetic dynamics, using a moving average process. These are 

shown in figure 6-6. The circadian rhythm is clearly present and is disturbed when the 

fasting occurs in a different time of the day. In two of the shifted subjects, the 

circadian rhythm is simply shifted accordingly and in two others it appears to be 

disturbed but present. A clear difference between these data sets and the nondiabetic 

case is the amplitude of the excursions in which such circadian rhythms had an 

amplitude of 20 mg/dl.   
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Figure 6-5: an example of a time-series from a type II diabetic fasting. This time-series is run 
through a moving average filter to create the circadian rhythms. 
 

 

 

 

 

 

 

 

 



193 

 

 

Figure 6-6: Trends extracted from 9 type II diabetics under fasting conditions. The first group 
(top) follows standard timing (8am to 8am the next day) whereas the second group (bottom) was 
tested with a six hour shift. Note that in the second group the circadian rhythm is disturbed and 
off phase, showing its relationship to the time of the day. Also note the magnitude of this circadian 
component is ~40-80 mg/dl whereas in the nondiabetic case the change was more on the order of 
20 mg/dl.  
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VI.B.2 Constant input 

 In constant input into the system, specifically intravenous delivery of glucose, 

oscillations are noted as discussed in the previous chapters. The degree of contribution 

of these oscillations to the overall signal energy is decreased in the two data sets 

available from individuals with decreased insulin response: a patient with impaired 

glucose tolerance and one with type II diabetes.  A look at the FFT based time-scale 

analysis yields decreased fast time-scale dynamics and increased long time-scale 

dynamics as would be expected.  This is described as the loss of ultradian cycles in the 

case of impaired glucose tolerance . The finding itself is shown in figure 6-7. 

 

 

Figure 6-7: comparison of the average power spectrum evaluated via the FFT method, for 
seventeen nondiabetics at various intravenous infusion rates and two individuals with different 
degrees of insulin resistance (IGT and type II diabetes). 
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VI.B.3 Dynamic input 

 As in the case of nondiabetics, dynamic input can be used to observe the 

phenomenon of entrainment. In the case of insulin resistance and Type II diabetes, it 

has been observed that entrainment is less robust than in the case of nondiabetics. It is 

important to note that the original intent of these studies, and where the entrainment 

was mostly monitored was the insulin signal (which was also measured in these 

studies), and that the degree of entrainment is much more pronounced in the insulin 

signal. Table 6-1 and 6-2 described the % of entrainment. The methods for computing 

this were discussed in chapter 3. Table 6-1 described multiple nondiabetics and one 

patient with IGT and another with type II diabetes. As the disease state progresses, 

there is a clear decrease in the % of entrainment in the signal. In table 6-2 another 

experiment is shown in which a normal patient was compared with a type II diabetic 

patient who was then given medication. Another patient was treated with Placebo. In 

this case medication increased the percentage of entrainment but placebo did not. This 

particular experiment is included to highlight the possible utility of such 

measurements for assessing therapeutic utility.  Such studies, if implemented on larger 

groups may be useful in assessing the therapeutic benefits of drugs meant to treat type 

II diabetes, as is shown in the case of patient #3. Without significantly more data, 

however, these results themselves cannot be generalized.  
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Table 6-1: Comparison of three normal patients (ID #1-#3) being infused at two different 
wavelengths of infusion and the percent entrainment noted. The % entrainment is the amount of 
signal energy that falls in the frequency bands associated with the input sinusoid. This percentage 
is lowered for the IGT (#4) and Type II patient (#5). 
 

Patient ID # Series “Wavelength” 
of Infusion 
Sinusoid 

% Entrainment 

1 Poldynnorm3 144 min 79% 
1 Poldynnorm4 96 min 55% 
2 Poldynnorm6 192 min 52% 
2 Poldynnorm7 128 min 81% 
3 Poldynnorm9 144 min 58% 
3 Poldynnorm10 96 min 37% 
4 Poldynigt2 144 min 50% 
4 Poldynigt3 96 min 23% 
5 Poldynnidm2 144 min 41% 
5 Poldynnidm3 96 min 16% 

 
 
 
 
Table 6-2: Percentage of entrainment resulting from sinusoidal infusion in three patients, one 
normal, and two pre and post treatment with a drug and placebo respectively. 
 
Patient ID # Series “Wavelength” of 

Infusion Sinusoid 
% Entrainment 

1 Normal Polentrain1 144 min 89% 
3 (Pre Treatment) Polentrain3 144 min 77% 
3 (Post Treatment) Polentrain4 144 min 96% 
4 (Pre Treatment) Polentrain5 144 min 95% 
4 (Post Placebo) Polentrain6 144 min 90% 
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VI.B.4 Normal meals/ pregnancy 

Unfortunately, no frequently sampled time-series of a type II diabetic 

individual that includes meals and exercise were found. This is in part because of the 

strong focus, until the recent epidemic, of research on type I diabetics, and the 

tendency for type I diabetics to require closer monitoring of glucose values, yielding a 

greater interest in the subject. This is truly unfortunate because type II diabetes is 

quickly becoming one of top health challenges facing western civilization [3].  

 

The data sets that were found are of pregnant women with type II diabetes. 

Several such sets, in which the diabetes was controlled by diet and medications (but 

not insulin) were analyzed.  The results for meal process models are shown in figure 

6-8. Here, the loss of curvature of the fall model as was the case in the general 

comparison of type I diabetics and nondiabetics is noted. Differences between type I 

pregnant diabetics and type II pregnant diabetics is not as noticeable.  
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Figure 6-8: Meal process models for nondiabetics, type I diabetics and pregnant type II diabetics. 
In the upper panels, pregnant type II diabetics (stars) are compared with nondiabetics (solid line). 
In the lower panels the comparison is made between pregnant type II diabetics (stars) and 
pregnant type I diabetics (solid line). In both cases a line is provided for comparison (circles).  
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 The time-scale analysis of the two different types of diabetes does not reveal a 

consistent significant difference between each other, but does show a shift towards the 

slower time-scale than the nondiabetic comparisons (figure 6-9). This is consistent 

with the observations made in the previous chapter and with the physiologic insight 

that insulin action is slowed in type II diabetics, and thus slower dynamics are 

expected particularly when insulin injections are not utilized.  As before, multiple 

peaks are noted around the time-scale of meals and the natural oscillatory time-scale. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



200 

Tr
ac
in
g #

Three Pregnant Type Two Diabetics

 

 #1

#2

#3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100
0

0.5

1

Log Time Scale (Minutes)N
or
m
al
iz
ed
 E
ne
rg
y

Tr
ac
in
g #

Three Pregnant Type One Diabetics

 

 #1

#2

#3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100
0

0.5

1

Log Time Scale (Minutes)N
or
m
al
iz
ed
 E
ne
rg
y

 

 

Figure 6-9: Time-scale spectral portraits based on FFT spectrum for pregnant type II diabetics, 
pregnant type I diabetics and nondiabetics (bottom).  
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 A look at the statistics of the rate of change shows a consistent difference in 

the maximal rates of change for type I diabetics and type II diabetics. This is evident 

in both the rise and the fall maximal rates. This is as would be expected as insulin 

dynamics are greatly dampened by insulin resistance in the case of type II diabetics, 

leading to decreased maximal fall rate. The decreased rate of rise may be due to 

delayed insulin action in type I diabetes which may not “kick in” until well into the 

meal, whereas the type II diabetic has an immediate albeit dampened response as the 

meal is consumed. Skewness and kurtosis were not consistently changed, but attractor 

area for type I diabetics is significantly larger, again because of the increased speeds 

of rise and fall.  These observations are summarized in table 6-3. 

 
Table 6-3:  Statistics of rates of change and its attractor for diabetic pregnant subjects. Maximal 
rates of change (in both directions) are larger for type I diabetics than type II diabetic subjects, as 
is the combined area of their attractors.  
 
Subject Max Rise Max Fall Skewness Kurtosis Attractor 

Area 
(combined) 

Sanpregone 3.2 -2.3 .8 3.9  
Sanpregone 7.8 -3.4 2.2 14.5  
Sanpregone 3.2 -2.2 -.7 11.2 1852 
Sanpregtwo 2.3 -1.7 .7 5.4  
Sanpregtwo 1.7 -2.0 -.1 6.1  
Sanpregtwo 2.6 -1.3 1.3 4.7 536 
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VI.C GCK deficiency 

 The enzyme GCK (Glucokinase) plays a role in the metabolism of glucose in 

the liver, as well as in the pancreatic beta cells, and is thought to be a key step in the 

glucose sensing abilities of the pancreatic beta cells [84]. Patients are characterized by 

mild fasting hyperglycemia. GCK deficiency provides a unique opportunity to study 

the effect of the exact mechanism of glucose imbalance on dynamics and further 

studies are necessary to extract information from such patients. In particular studies 

such as those discussed in the nondiabetic case would help differentiate the effect of 

dysfunction in this system on glucose dynamics as opposed to other mechanisms 

which do not involve beta cell loss (such as insulin resistance) 

 

Six subjects with elevated fasting glucose levels and GCK mutations were 

studied, along with six normoglycemic controls. The insulin response of the GCK 

deficient subjects was tested and the first phase response was found to be the same as 

the controls, but abnormalities were noted in the insulin secretion rates (ISR). The data 

set obtained was from an IV infusion using a sinusoidal infusion at a frequency of 144 

min. The last 12 hours of the infusion were recorded at fast intervals.  Unfortunately 

this was the only data set available. The results for a normal and GCK deficient 

subject are shown in figure 6-10.  
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Figure 6-10: Comparison of a normal patient and a GCK deficient patient. The top two panels 
represent the time-scale analysis of the input signal in each case and the resulting signal in the 
patient is shown in the bottom two panels. The degree of entrainment measured was 92% in the 
normal patient and 20% in the GCK deficient patient.  
 

VI.D Insulinoma 

 Tumors secreting insulin lead to metabolic imbalance, frequent episodes of 

hypoglycemia and side-effects resulting from hyperinsulinization of the body [85].  

The course of therapy includes the surgical removal of the insulin secreting tumor. A 

study was performed which included frequent sampling of four individuals with a 

tumor secreting insulin. This is a very interesting subgroup in that it provides yet 

another disease state perturbation to the system.  

 

 



204 

 Figure 6-11 shows a comparison of the phase space portraits for two patients 

before and after surgery. In both group an increase in compactness of the attractor is 

noted. Interestingly, the range of blood glucose values is not affected in the same way 

in both patients, with one patient showing a significant increase in blood glucose 

values while the other showing an unchanged maximum but an increased minimum. 

The range of rates of change is not significantly affected.  Figure 6-12 shows the time-

scale analysis of the same two pairs, showing a shift to the faster time-scales of 

dynamics. These two observations illustrate the potential use of these techniques to 

evaluation of the affect of procedures to the dynamics and may find utility in 

comparison of outcomes in the future.  
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Figure 6-11:  Before and after phase portraits for two patients with insulinomas prior to and after 
surgery to remove the tumor. Note a shrinking of the attractor size in both glucose values and 
rates of change.  
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Figure 6-12: The combined spectral content of the time-series from two patients with insulinoma, 
prior to surgery (black line) and after surgery (gray line). A shift to faster time-scales in energy is 
noted.  
 

 

VI.E Summary of observations 

 

• In the few individuals studied, weight loss affected the compactness of the 

attractors in nondiabetic, patients with IGT and type II diabetic subjects but did 

not significantly alter the maximal rates of change.  

• In the few individuals studied, time-scales were not affected in a consistent 

manner by the weight loss. 

• Aging similarly showed an increase in the compactness of the attractor while 

increasing the energy in the shorter time-scales.  
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• The small number of data sets prevents generalization of these observations on 

aging and weight loss but illustrate the potential utility of these methods for 

assess impact on blood glucose dynamics. 

• Fasting circadian rhythms are increased in amplitude in patients with type II 

diabetes, up to ~40-80 mg/dl as opposed to ~20 mg/dl in nondiabetic 

individuals. This effect is still present even if the sleep-wake cycle is altered, 

and is synchronized with the sleep-wake cycle rather than the time of the day. 

• Constant input yielded decreased energy in the ultradian (~100min) time scale 

and an overall shift to the slower time-scale in comparison to nondiabetic 

subjects.  

•  Dynamic sinusoidal input showed decreased % of entrainment in IGT and 

Type II diabetics. In one case available there was an increase in an individual’s 

% entrainment after medical treatment. 

• Meal process models for type I and type II diabetic pregnant women showed 

similar linear process models as seen in type I diabetics in comparison to the S-

shaped response of nondiabetics. 

• Slower time-scales of dynamics were noted in both type I and type II diabetic 

pregnant women, as would be expected.  

• Maximum rise and fall rates of change were lower in type II diabetic pregnant 

women and type I pregnant diabetic women. In type I diabetics this can be a 

result of slower insulin dynamics. In type II diabetics, it can be attributed to the 

damping effect of insulin resistance.   
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• Patients with GCK deficiency show an overall deceased % entrainment to 

ultradian time-scale sinusoidal input.  

• Patients with removal of insulin secreting tumors display an increase in the 

compactness of the phase space portrait as well as a shift to faster time-scales 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Chapter VII: Sampling rate and dynamic distortions 

The most common approach to understanding sampling requirements is set 

forth by the need to prevent aliasing, a phenomenon in which under-sampled high 

frequency components are reflected back into the lower frequencies and cause 

distortions to the signal. The frequency necessary to avoid aliasing effects is set forth 

by the Nyquist sampling period. It roughly states that a signal should be sampled at 

twice the highest frequency component. This has been studied in the case of blood 

glucose dynamics [14]. The motivation behind extending this analysis further is 

twofold: 

(1) To illustrate to clinical researchers not familiar with the Nyquist criterion 

the importance of frequent sampling using different dynamic results 

(2) The Nyquist criterion may not be a sufficiently strong criterion in certain 

applications and may affect various dynamic parameters differently.  

 

In doing so, a few different approaches will be taken to the analysis of the 

sampling requirement for dynamic analysis.  One is to look at the reconstruction error. 

Simply put, if an attempt is made to replace the missing samples by using simple 

geometric fits, one can measure the error encountered in this reconstruction. While it 

is unlikely that this will be done directly in clinical applications, data points are often 

connect with lines on graphs and if not so, will be looked at in this way in the

209 
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 clinician’s mind. Thus here an attempt is made to capture the error that is introduced 

by “looking” at data points that represent an under-sampling of the actual signal.  

 

A different approach is taken by extending the Nyquist concept using nonlinear 

information analysis. Here, the concept of mutual information is introduced as another 

measure of information. Information loss is then looked at as the samples become 

further and further along. The information “half-life” is defined as the sampling period 

after which half of the information has dissipated from the last sample. This is another 

approach to understanding the time-frame of information loss in the system and its 

relationship to the need for sampling.  

 

Finally, the effect of sampling is discussed on two dynamic measures that 

serve as the underpinning for much of our previous discussions: the rate of change and 

the spectral estimate.  

 

VII.A Sampling rate and reconstruction error 

One of the simplest methods of assessing the degradation of signal information 

content is the relative success with which the original signal can be reconstructed from 

the undersampled signal. A simple linear interpolator is used to reconstruct the 

original (more frequently sampled) signal from the undersampled signal. In effect, the 

simple linear interpolator over estimates the success of reconstruction compared to the 

current algorithm often used clinically, which is to assume that the last value is valid 
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until the next measurement is made (a zero order hold). Other, more complex 

interpolation schemes in essence begin to introduce more model-based assumptions 

about the system and require further investigation and optimization. To accomplish 

this, the signal is undersampled and the reconstructed signal is compared with the 

original (frequently sampled) signal. For each resampled time-series, absolute 

maximum error is calculated. This measure gives a reasonable sense of the kinds of 

errors that would be expected in reconstructing data sets from undersampled data, and 

in particular highlights the possible worst-case scenario errors. This maximum error is 

averaged for each patient groups and  the results are shown for the combined data sets 

sernorm1-3 and serone1-15 in figure 7-1. These data sets were chosen because they 

were from similarly collected experiments and measurements were taken every five 

minutes.   
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Figure 7-1: the maximum reconstruction error, expressed in mg/dl as a function of sampling 
period in 3 nondiabetics (sernorm1-3, top) and 15 diabetic time-series (bottom). Note that the 
diabetics time-series are of a larger amplitude which may explain the difference between the two 
subgroups.  
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 Figure 7-1 shows a significant increase in error, even in the range of sampling 

below an hour. An average maximum error of approximately 30 mg/dl is seen in both 

data sets when attempting to reconstruct the data set from hourly sampled blood 

glucose values, a significant error in a clinical sense. Of interest is the observation that 

because of the slower time scales of dynamics in type I diabetics, coupled with the 

larger amount of signal energy in this group, the rate of increase of the error is 

comparable between the two groups as sampling increases to an hour, but levels off 

for the nondiabetics and continues to rise for the diabetics as the distance between 

samples increase. This highlights the fact that despite the large swings in diabetic 

time-series, significant error can be introduced into both signals if sampling intervals 

are increased, likely due to the faster dynamics in nondiabetics.  

 

VII.B Sampling rate and information loss 

As discussed in previous chapters, the dynamic information content of the 

signal becomes zero when samples do not share any information and thus are 

independent from each other.  Two methods, the autocorrelation function and the 

average mutual information as ways of quantifying the sample to sample information 

cross-over were also discussed. Autocorrelation utilized the linear correlation 

(product) of samples to assess the common information between samples. This is 

plotted against the distant in time between the samples and the first minimum 

represents the sufficient time between samples to make them relatively independent. 

Similarly, mutual information uses a nonlinear vector quantized representation of the 
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signal to compare the common information between the samples and produces a 

similar output that allows us to estimate the amount of time that causes samples to 

become relatively independent of each other. Figure 7-2 shows two such curves for a 

single data set. It can be seen that both measures fall rather quickly to near zero as 

expected, because the information from a sample dissipates as time goes forward. 

Each measure approaches zero in a different manner, but the approximate time-scale is 

similar between the two measures.  

 

Figure 7-2: Information dissipation as a function of time is estimated using the autocorrelation 
function  and the average mutual information.   
 
 

Here, in addition to the above two metrics, another measure of similarity is 

used, which is the difference between the signal energy in each sample with respect to 

the other which serves as another comparison. Additionally, one can introduce the 

concept of information half-life. This is the time required for half of the information in 

each sample to disappear, which allows for a simple characterization of these curves 
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using a single number.  The results applied to one complete data set that includes 

nondiabetics and various types of type I diabetics is shown in table 7-1.  

 

Table 7-1: Various measures of information half-life computed for nondiabetics (sernorm1-
sernorm3), stable type I diabetics (serone1-serone3) and unstable diabetics (serone4-serone15). 
Note that while the time-scales of information dissipation are longer on average for diabetics, 
some diabetics have relatively short information half-lives.  The information half-life based on 
mutual information has the fastest decay rate in almost all the cases, owing in part to the way 
information is defined in this case.  
 
Information Half-
Lives (minutes) 
Calculated By: 

Mutual 
Information 

Auto-Correlation % Change In 
Signal energy 
Value 

Sernorm1 10 30 15 
Sernorm2 15 35 14 
Sernorm3 10 30 20 
Serone1 20 65 35 
Serone2 20 80 30 
Serone3 15 55 29 
Serone4 30 150 97 
Serone5 25 130 32 
Serone6 25 90 23 
Serone7 25 80 41 
Serone8 30 130 103 
Serone9 20 70 58 
Serone10 20 65 37 
Serone11 25 85 29 
Serone12 15 60 35 
Serone13 25 85 51 
Serone14 35 190 84 
Serone15 15 65 46 

 

 
Table 7-1 summarizes information dissipation for the most complete data set 

available in this thesis. Despite the different measures of information half-life, two 

common observations can be made. One is that the information dissipation is 

significantly faster for the nondiabetics and the well-controlled diabetics, and thus for 
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monitoring purposes, sampling must be fast enough to be well within these limits. 

Second, it can be noted that depending on the measurement of information, different 

criteria arise for the information dissipation. This highlights the importance of a priori 

knowledge of the dynamic metrics in calculating an optimal sampling frequency.  

VII.C Sampling rate and rates of change 

As mentioned before, the rate of change is the simplest expression of the 

underlying dynamics of the system. Thus the degradation of the estimate of the rate of 

change can serve as a good estimate of how undersampling is likely to effect all 

measurements derives from rates of change.  An example such a study applied to 

nondiabetic and diabetic time-series is shown below in figure 7-3. 
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Figure 7-3: The mean error in the estimate of the derivative as a percentage of mean absolute 
value of the derivative estimates, from sernorm1-3 (top) and serone1-15 (type I diabetics). In the 
former, filter of period 40 minutes, there is a 50% error in the derivative estimate highlighting 
the importance of frequent sampling. In the case of the type I diabetics, the rate of degradation is 
significantly reduced, but nonetheless reaches unacceptable levels rather quickly.  
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As can be seen in figure 7-3, there is significant degradation of the estimate of 

the derivative as sampling periods are lengthened. In fact, for hour long sampling 

errors approach or exceed 50% of the value of the derivative estimate, on average. 

This highlights the loss of information in undersampling and its effect on the simplest 

aspect of dynamics, the rate of change.  

 

VII.D Sampling rate and spectral estimate 

The phenomenon of aliasing which is the central side-effect of sampling below 

the Nyquist frequency is best observed in the frequency analysis of the time-series and 

comparing it with the undersampled case. As was discussed, previous work by our 

group studied the Nyquist period and determined it to be near 10-15 minutes for most 

rapidly changing datasets. It is of key importance to recognize that sampling below the 

Nyquist frequency introduces distortions in the spectral estimate and does not simply 

make information in that frequency unavailable. This is important as there is an urge 

to undersample time-series in clinical settings with the rationalization that the fast 

time-scales are not of interest, which as discussed is not a sufficient cause for 

undersampling because of the distortions introduced in the slower time-scales. This is 

an extensively discussed topic in the literature [86] and in this section a simple 

example is given for illustration purposes in figure 7-4. Here, the top strip (#1) shows 

the spectrum calculated from the original data set. The resampled spectrum calculated 

from the less frequently sampled data is shown in strips 2-5. Note that not only does 

the peak in the spectrum becomes wider, but other peaks also disappear and a 

 



219 

significant shift of the energy to the slow time-scales occurs which indicates aliasing. 

This illustrates the detrimental effect of undersampling on time-scale energy 

estimations.  

 

 

Figure 7-4: The gradual shift and degradation of the spectral estimate at sampling rates of  10, 20, 
40, 60 and 120 minutes for tracing number 2-5 respectively. The first tracing represents the 5 
minute sampled time-series.  
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VII.E Summary of observations 
 

• Attempts at signal reconstruction using hourly samples leads to errors as large 

as 30mg/dl.  

• The information half-life may serve as a more intuitive concept for 

understanding the need to sample and its effect on actual deterioration of signal 

dynamic concept. It was found to be smaller for nondiabetics and well 

controlled diabetics, an observation in agreement with the Nyquist frequency 

measurements in previous work.  

• Estimates of rates of change are particularly sensitive to undersampling. In 

nondiabetics, 40minute sampling leads to a 50% error in rates of change 

estimates. In diabetics this error  is closer to 30% 

• As expected there is a gradual degradation of the time-scale analysis with 

decreasing signal frequency.  

 

 

 

 

 

 

 

 

 

 



 

Chapter VIII: Conclusion & future directions 

The objective of this thesis was to explore methods of analysis of dynamics 

developed in other disciplines of physics and engineering, and apply them to the 

limited amount of data currently available to provide tentative hypothesis and 

directions of further work. The objective was to improve the utility of this signal to the 

diagnosis and monitoring of disease processes, helping define various measures of 

“normal” dynamics as a target for therapy, and define dynamics that can be utilized to 

guide device characteristics. To the extent that numerical understanding of the 

dynamics leads into insight about the underlying system generating the signal was 

considered a possible added benefit. Thus, care was taken to minimize the number of 

assumptions about the underlying model generating the dynamics, which are sampled 

using the single blood glucose measurement. As mentioned, whether a single variable 

such as blood glucose can accurately capture the dynamics of the system is itself 

subject to debate. The goal then becomes to characterize, with minimal assumptions 

about the underlying model, as much of the dynamic behavior of the underlying 

system as possible in order to extend the utility of the signal beyond a statistical 

interpretation. To this end, methods of time-series analysis were explored thoroughly.  

 

The simplest methods, relying on the statistical analysis of rates of change, 

which are the simplest expression of dynamics were used. Multiple statistics were 

used to accomplish this: mean rate of change, maximum rates of change in either 

direction, and the Skewness/Kurtosis measures that characterize, to some extent, the
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 shape of the distributions. Additionally, by plotting the value of blood glucose against 

its rate of change, a phase portrait is generated. Because values of glucose are 

governed by physiology that attempts to restore equilibrium, there is a tendency for 

clustering of values around a region, which creates what is termed an attractor. The 

path of the system around this geometric object is its “orbit”. We proposed a few 

measures to characterize this geometry in hopes that considering both values at the 

same time would lead to new insights not available by looking at the distribution of 

each measurement alone.  

 

 We then looked at the time-scales of dynamics. We chose the word time-scales 

instead of frequency because it is more intuitive for clinical purposes to consider time 

instead of frequency, particularly when the common units for frequency are on the 

order of 1 second whereas blood glucose dynamics evolves on minutes to hours. We 

explored various methods of time-scale energy estimation and used them to find time-

scales of dynamics in different groups that were considered. We further observed that 

these time-scales are themselves subject to change and used time-frequency analysis to 

better understand their evolution. Methods such as pulse extraction or circadian 

rhythm extraction were utilized when these were the primary time-series “structures” 

available.  

 

 Methods borrowed from information theory, such as measures of signal 

complexity or entropy was applied as a way to study the signal from an information 

theoretical perspective. Tests of nonlinearity were examined in order to ask whether 
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nonlinearity in the system generating the signal could be detected by time-series 

analysis. Methods of nonlinear time-series analysis were themselves applied to the 

signals. Methods of testing and analyzing nonlinearity met both difficulty with 

application (signals were very short and did not go through sufficient orbits to 

characterize dynamics) and interpretation, which without an underlying mathematical 

model can be difficult.  

 

 We then turned to the meal event, a characteristic perturbation in the time-

series whose timing was known in some of the time series. By introducing this 

additional component to the time-series, we examined whether the events themselves 

could be detected, what percentage of the signal energy they constitute, and whether 

their shape and characteristics could be better understood. We proposed extents both 

in values and time to characterize the meal, and also averaged the “shapes” of the 

meals to for a “meal process model”.  

 

One characteristic of a dynamically useful measure as a way to categorize 

individuals is to require that dynamic characteristics remain stable for the same 

person. In data sets that contained two subsequent days of dynamics, we decided to 

measure some of the methods discussed above to see if dynamics were variable from 

day to day. Finally, we observed the degradation of various methods mentioned so far 

as the sampling frequency was lowered.  
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 To test the above methods, we gathered data that was published in the 

literature. We also incorporated data from a clinical trial of sensors that included direct 

blood glucose measurements from diabetic and nondiabetic children. We used only 

direct measurements of blood glucose. It was assumed that these measurements reflect 

a similar dynamic system. Measurements using sensors that indirectly measure 

glucose in the subcutaneous tissue were not used because the tissue introduces its own 

complex dynamics, which remains to be characterized completely. These data were 

“extracted” using digitization of published figures with acceptable accuracy which 

were tested in multiple ways. Fortunately, the data sets included a multitude of 

patients with various conditions at various ages, under various perturbations. 

Unfortunately, many of these data sets did not include enough individuals even for a 

preliminary conclusion that can be generalized to a larger general subgroup. They did 

provide a way, however, to assess the utility of tools in application towards future, 

larger data sets.  

 

 In searching for a dynamic definition of “normoglycemia”, rates of change 

appear very promising. The attractor geometry, looking at the compactness of the 

distribution of both blood glucose levels and their rate of change reveals 

characteristics that may be useful for defining normoglycemia. We observe that 90% 

of the samples fall within 2%-5% of the attractor area. That is to say the system 

spends majority of its time inside a small area within its attractor. The size of the 

attractor and its compactness were useful consistent characteristics that were 

similar between subjects in the same experiments. The attractor geometry is 
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asymmetric, and contains possible structures that can be studied with larger numbers 

of similar data sets. For example, there appear to be higher negative rates of change at 

higher glucose levels and higher positive rates of change at lower glucose levels. This 

confirms the fundamental nonlinear nature of the dynamics, which try to restore the 

value to the equilibrium, and do so with greater “effort” as values reach the extremes. 

The concept of symmetry as measured in this analysis failed to produce consistent 

results.  

 

Time-scale analysis of data sets with very high sampling rates (2 mins) 

leads to the conclusion that very high frequency oscillations constitute a very 

small portion of the signal energy content, particularly in the context of the 

presence of larger perturbations such as meals and infusions. 

 

The meal is the dominant source of signal energy in the blood glucose 

time-series. In nondiabetics we find that the period following a meal contains 2-5 

times as much energy as the rest of the time-series. In fact, these periods account for a 

significant portion of the signal.  This combined with the observation of energy in the 

time-scale of meals leads to the conclusion that in the an attribute of normoglycemia is 

the lack of other dominate time-scales and signal energy contributions from other 

events. Without knowledge of the meal event timing, large meals could be 

successfully detected from the time-series itself, increasing the utility of this type of 

analysis in real-time devices or clinical settings. 
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In nondiabetics consuming meals, time-scale analysis using a variety of 

methods including signal modeling and FFT based estimations show four time-

scales of dynamics: The circadian rhythm (~24 hours), the meal spacing (~4-6 

hours), the meal length (~2-3 hours) and faster time-scales possibly from 

background ultradian pulses (~100 mins). These observations were fairly consistent 

between the limited data available. The assigned causative source of these energy 

time-scales, is off course a matter of conjecture to a large extent. Time-series 

generated with complex perturbation regimes can lead to a more causative model of 

these contributions. We also demonstrated, by bringing together the data collected 

from these different types of experiments that various time-scale can be highlighted 

using a different perturbation regime to the system. 

 

In the absence of meals, ultradian oscillations and a circadian component 

dominate the signal energy. The ultradian pulses have a range of length scales 

based on the individual or the experiment but repeat about every 100 minutes. 

The other time-scales of dynamics can be observed in the absence of meal 

perturbations. In fasting, two dominant time-scales expose themselves: the circadian 

rhythm, and a pulsatile “ultradian” rhythm, which seems to centered around 100 

minutes. The same ultradian time-scale is noted when individuals are placed under 

continuous enteral feeding, continuous IV glucose infusion, or even continuous insulin 

infusion. The exact period of these ultradian pulses varies between experiments and 

individuals, and based on our time-frequency analysis, may even vary from pulse to 

pulse. Infusion of glucose in a pulsatile manner near this frequency leads to 
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entrainment, a phenomenon in which phased lock synchronization occurs, and blood 

glucose levels oscillate at the infusion frequency.  Interestingly, despite the removal of 

meals from the perturbations, the maximal rates of change are not as different as one 

might have expected between time-series without meals and those with them. There 

was, however, a change in the shape of the distributions of rates of change, noted in 

the skewness of the distribution.  

 

In fasting, a circadian component (~20 mg/dl) and an ultradian component 

similar to the continuous infusion experiments (~5mg/dl) becomes apparent.  

 

Time-frequency analysis shows that there are changes in the frequency 

components of the nondiabetic regardless of the type of perturbation. In the case 

of multiple meals, these can be explained by the differences between the meal 

response itself, and in the case of constant input, these can be attributed in part to 

intermediate frequency processes which are not at the same frequency as the 

oscillatory behavior observed. These seem to be particularly pronounced in the case of 

intravenous infusion. Infusion of the nondiabetic subject with an oscillatory input 

within the same vicinity as the oscillatory frequency leads to entrainment, which 

means that the blood glucose values begin to oscillate at the same frequency as the 

input. In the nondiabetic, the meal process appears to be asymmetric, with a faster 

rising process, which can reach a maximal velocity of 2-3 mg/dl per minute. The fall 

process tends to reach a smaller maximum velocity but overall tends to be larger than 

the rise process. In addition no “shoulder” is observed in the rise process whereas a 
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shoulder is often noted in the fall process owing in part to the biphasic response of 

insulin. 

 

Evidence for nonlinearity exists in two of the time-series studied but the 

conclusion cannot be made based on firm computational grounds. Nonlinear 

dynamics analysis will require significantly longer samplings to allow for 

attractor characterization. In hindsight, this observation is completely consistent 

with the finding of larger time-scales of dynamics (circadian rhythms), the 

nonstationary and highly nonlinear process of meal spacing and size, as well as 

changes between day-to-day responses to the same perturbations. That is to say, if 

there is something to be gained by nonlinear time-series analysis, it will require 

significantly larger time-series if it is to include perturbations such as meals.  

 

The analysis of the meal event itself yields some consistent observations, 

including a sigmoid fall and rise process as well as the observation that on 

average, the time to maximum rise velocity in the meals is shorter than the time 

to maximum fall velocity. Further study of this technique is warranted, and in 

particular, parametric fitting of these curves may find future use.  

 

Aside from a more complete characterization of normoglycemia, time-series 

analysis would not be clinically valuable unless is able to detected differences between 

dynamics in altered states. Due in part to historical significance of type I diabetes as 

the best studied example of such altered state, a significant amount of effort was 
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dedicated in this analysis to comparing data from type I diabetics to nondiabetics. 

Overall, the methods that found utility in the analysis of nondiabetics also found 

similar successes in this population. However, the differences between each 

experiment and each individual grew more significant. This is at least in part due to 

the introduction of yet another “extrinsic” dynamic factor, mainly the injection of 

insulin which varies tremendously in its dynamic characteristic as many different 

treatment types and regimens exist. Key observations are summarized below. 

 

In the experiments with the best sampling and duration, rates of change of 

blood glucose are more confined  in well-control type I diabetics than in 

nondiabetic subjects, while they are similar between nondiabetics and non-well 

controlled diabetics. The DirecNet data sets, for unclear reasons shows much 

increased rates of change as high as 13 mg/dl * min. This may be due to populational 

characteristics, infrequent irregular sampling and different experimental set-ups. There 

is an overall decrease in the Kurtosis of the rate of change from nondiabetics to well 

controlled diabetics and finally to poorly controlled diabetics. Attractor size is  

increased from nondiabetic to well controlled diabetic to poorly controlled diabetic. 

  

In the frequency domain, the increased rates of change do not translate into a 

higher frequency behavior. Rather, they represent larger, wider pulses that result from 

the interaction of meals and insulin injections. Time-scales of dynamics are shifted 

towards longer time-scales of insulin injection as well as the meals, with well 

controlled diabetics showing faster time-scales of evolution.  
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Methods of signal characterization such as measures of complexity and 

nonlinear time-series analysis show differences between the type I diabetics and 

nondiabetics. Signal complexity is decreased in the type I diabetics, as shown in a 

decrease in the approximate entropy of the signal.  Nonlinear time-series analysis 

shows a decrease in the estimates of the largest positive lyapunov exponent in the type 

I diabetics. 

 

Meals are larger, last longer and account for less of the total energy in the 

signal in type I diabetics, and are shaped less like a sigmoid and more like a line if 

they are averaged together. This is presumably caused by the increased role of 

insulin injection as opposed to the biphasic, fast physiologic response available in 

nondiabetics.   

 

It is very important to note that while these observations regarding type I 

diabetics are interesting, they cannot necessarily be attributed fully to the disease 

process, in the sense that the dynamics of type I diabetics, while clearly less dependent 

on meal timing is now more dependent on insulin timing and dosage. Thus the 

analysis performed is relevant only in the context that provides examples as it relates 

to this specific data set and the parameters of the treatment. 

 

Insulin resistance, type II diabetes, obesity, pregnancy, GCK deficiency as well 

as tumors that secrete insulin provide challenges and opportunities to study the 
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glucose regulatory system and its dynamics. Data in these domains were difficult to 

find. This is unfortunate, as insulin resistance and type II diabetes have reached 

epidemic proportions in western societies and now eclipse type I diabetes as cause of 

morbidity and mortality. Very limited data exists in these domains, however 

significant work has been done in limited perturbation regimes in some of the cases 

described.  

 

For example, oscillatory behavior at the ultradian time-scale has been 

extensively studied in IGT, Type II diabetes as well as obesity. Fasting blood glucose 

dynamics is found to be markedly altered between nondiabetics and type II 

diabetics in the form of an increased amplitude of a sleep dependent circadian 

rhythm. Fasting circadian rhythms are increased in amplitude in patients with type II 

diabetes, up to ~40-80 mg/dl as opposed to ~20 mg/dl in nondiabetic individuals. Type 

I diabetics during pregnancy reproduce findings noted in type I diabetics who are not 

pregnant, such as increased time-scales of dynamics as well as an expansion of the 

phase space attractor. Meals were altered in the same ways as type I diabetics studied. 

Pregnant type II diabetics showed similar increase in time-scales of dynamics but have 

less marked changes to the maximal rates of change than their type I counterparts. 

Maximum rise and fall rates of change were lower in type II diabetic pregnant women 

and type I pregnant diabetic women. In type I diabetics this can be a result of slower 

insulin dynamics. In type II diabetics, it can be attributed to the damping effect of 

insulin resistance.   
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Throughout the analysis, it is generally found that ultradian oscillations are 

mixed with slower time-scales as disease states progress, presumably as a result of a 

less robust regulatory system. Entrainment, the process of time-scale and phase 

synchronization with an input signal is found to deteriorate in disease related 

conditions. For example Dynamic sinusoidal input showed decreased % of 

entrainment in IGT and Type II diabetics. In one case available there was an increase 

in an individual’s % entrainment after medical treatment. Both of the above mentioned 

findings provide consistent observations, which may serve as a diagnostic and 

assessment tool. Methods of treatment including removal of tumors, weight loss and 

drug treatments show changes in dynamic parameters in the few data sets available of 

this kind.  Methods of time-series analysis applied to these observations allow 

quantification of these observations, though the specific optimal method must be 

further refined by considering larger population based studies. Few data sets that 

characterized age and weight status were also studied. In the few individuals studied, 

weight loss affected the compactness of the attractors in nondiabetic, patients with 

IGT and type II diabetic subjects but did not significantly alter the maximal rates of 

change. Aging similarly showed an increase in the compactness of the attractor while 

increasing the energy in the shorter time-scales.  

 

Some of the more pronounced observations are shown in figures 8-1 through 

8-3. The first two figures, using the Service data set which included frequently 

sampled data from nondiabetics, clinically easy to control type I diabetics (“stable”) 

and difficult to control diabetics (“unstable”), shows the characteristics each subgroup 
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in terms of rates of change and time-scales of dynamics. Figure 8-3 shows a variety of 

situations in which time-scales of dynamics can be used to distinguish between two 

groups in an experiment. These observations, once applied to larger population groups 

appear promising in terms of diagnosis and monitoring of disease states.  

 

Differences as well as correlations were found between each day of two 

day experiments, even though the perturbations to the system remained the same 

between each day. Correlation between the time-scales of dynamics existed between 

day one and day two of time-series from nondiabetics, but the degree of the correlation 

was inconsistent. This correlation was computed in the frequency space using the 

coherence function. Statistics of rates of change showed differences between 

individuals with some individuals showing good intra-day correlation while others did 

not. The same inconsistency was seen in the statistics of the shapes of the attractors. 

Significant variation exists between meal parameters, as measured using the methods 

described, even in the same individual with the same meal between two days. 

Measures of signal complexity were inconsistent between individuals from day one to 

day two.  

 

Despite the differences between each day in the analysis, in general, variations 

between individuals in two consecutive days are less than the variations between 

individuals suggesting the system has deterministic reaction structure that can be 

further explored. This implies that certain dynamic measures may be more stable as a 

way to derive a personal “signature” of the individual’s dynamic response. These 
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differences must be further characterized in order to reliably characterize the expected 

day-to-day variance and can in a way be a method of defining the expected “error” in 

using each dynamic analysis method for a short period time-series (1 day). 

 

In type I diabetics, similar observations were made about the day to day 

variations as was the case in nondiabetics. Time-scales show day to day correlations 

that vary between individuals. Little consistent correlation existed between measures 

of information half-life from day to day, but approximate entropy did show good 

correlation day to day. Statistics of rates of change and attractor geometry remain 

inconsistent between each day in type I diabetic subjects.  

 

As expected, dynamic information degrades significantly with less 

frequent sampling. Estimates of rates of change are particularly sensitive to 

undersampling. In nondiabetics, 40 minute sampling leads to a 50% error in rates of 

change estimates. In diabetics this error is closer to 30%. As expected there is a 

gradual degradation of the time-scale analysis with decreasing signal frequency. 

Attempts at signal reconstruction using hourly samples lead to errors as large as 

30mg/dl. The concept of the information half-life was introduced and explored as a 

framework for better communicating the importance of frequent sampling within each 

population. Its value was found to be smaller for nondiabetics and well controlled 

diabetics, which is in agreement with the Nyquist frequency measurements in previous 

works.  
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Figure 8-1: Three different subgroups of the same experiment shown in phase space attractor 
form. The darker the squares, the more samples fall in that two dimensional square. This view 
allows a concurrent visualization of values and their rates of change. Notice the difference in the 
shapes and sizes of the attractors. Maximal rates of change are not as affected as one may have 
expected between each group.  
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Figure 8-2: Time-scales of dynamics in the same three subgroups as in figure 8-1.  Here the 
progression from faster time-scales and extent of the disease process are clearly visible.  
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Figure 8-3: Time-scale analysis applied to four different situations where two subgroups exist. 
The first panel (top left) shows the time-scales of dynamics compared between nondiabetics and 
type 2 diabetics. In the top right, the time-scales between nondiabetics and those with IGT/Type 2 
Diabetes are shown. Lack of entrainment is noted in type 2 diabetic individuals in comparison to 
nondiabetic individuals in the lower left panel. Finally, the same subjects are shown prior to and 
after surgery, removing an insulin secreting tumor.  
 

 

. 
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Figure 8-4: An individualized dynamic profile that includes multiple views of the time-series 
acquired from a two day frequently sampled blood glucose data set. Each panel represents a 
different piece of information derived from the top left panel. 
 

 

Future directions in this study clearly require more data, particularly of the 

kind contained in the Service data set which include multiple days, frequent sampling, 

meals and exercise which are similar to the daily routine of individuals. It is the 

author’s intention to continue to optimize and make available the software used to 

analyze these time-series as a way to stimulate further investigation into the subjects 

discussed. It is hoped that by a synergistic design of future experiments to collect 

appropriate data, while analytic tools are further developed to better analyze that data, 

the study of dynamics and assume a useful role in the diagnosis and treatment of 

metabolic disorders. This development may ultimately lead to a comprehensive 

glucose profile, which is a snapshot of the individual’s glucose dynamics. An example 
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of such a snapshot is shown in the final figure of this document. The author looks 

forward to exciting future developments of tools associated with this new window into 

human metabolic dynamics.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Appendix A: Acquisition and verification of data-sets 
 

Images are recovered either from computerized files in the .pdf format 

readable from Adobe Acrobat computer software, or from scanned in photocopies of 

the original journals. The .pdf format allows the selection of the image of the graph 

directly. The image is selected and saved as a .jpg file with. All images acquired in 

this manner were correctly aligned and did not require any rotation.  

 

In the papers not available electronically, photocopies of the original journals 

were scanned in at 1200 X 1200 dpi. In most cases, the geometry of the book, the error 

of photocopying and subsequent scanning can introduce rotation in the graph. The 

angle of this rotation was calculated by using one of the axes of the graphs to measure 

the angle of rotation, based on the assumption that in the original the axes are either 

horizontal or vertical. The axes chosen was based upon the length of the axes, using 

the assumption that the longer the axis, the better the estimate of the rotation. The 

rotation angle was then used to re-rotate the image using the imrotate() function in 

MATLAB, and in specific using bicubic interpolation.  

 

In all image types various points in the axis tick-marks were registered  and 

recorded for use in the quantification of the final results.   Once a time-series was 

generated, it was normalized to reflect the actual units of time and mg/dl based on 

measurements of the original axis of the graph. These allowed for a conversion 
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between pixels and relevant units. Units other mg/dl were converted to mg/dl using the 

appropriate conversion factors.  

 

There were three different types of image processing necessary for digitization, 

each which was dictated by the way the data was graphed. All methods were verified 

visually as well as numerically to the extent possible and an estimate of the time and 

value uncertainty was computed. These values are available with the data set 

download by contacting the author. A description of the methods follows.The points 

sampled were then replotted against the original image in order to verify the integrity 

of the acquisition. This was performed in all cases and was visually verified. In the 

few cases were slight visual disagreement was clear, the pages were rescanned and the 

process repeated until discrepancy was minimized.  

 

Type 1: Exact data points marked on graph, connected by lines 
 

In these data sets, the exact data point is marked by small circles connected by 

a line. This gives the opportunity to closely approximate the actual original data used 

to generate the graph. Automated determination of the data point center was 

examined, but human determination performed well and was more time-efficient than 

creating an exact routine. Thus the center point of these circles was determined 

visually and marked by a single dot with different pixel color than the black circle 

background. A routine was then developed to extract the data. All registration and 

rotation algorithms were carried out in the same way as the other two techniques. An 

example of this conversion is shown below in figure A-1. 
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(A) 

 

(B) 

(C) 

Figure A-1: (a) Original image scanned and rotated from publication. (b) a subsection showing 

the marking of the center point. (c) The final data displayed in time-series analysis program 

(TSV) 

 

 Error in these cases was computed by the size of the marker used to denote the 

data point. This was expected to lead to both a horizontal (time) as well as a vertical 

(value) error. Data points were re-sampled to correspond to uniform sampling using 
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interpolative methods, but no significant deviation in timing of the samples was noted 

that would lead to concern about the introduction of distortions.  

Type 2: Continuous line drawing 
 
 These data sets were acquired from graphs containing one continuous line-

drawing of the graph, presumably from connecting samples that were taken. Here, an 

automated program was developed to mark the “center” of the line segment after 

cropping and rotation were performed as mentioned above. In this method, applied to 

graphs containing continuous lines, the value at each horizontal pixel was recorded by 

moving a MXN window and finding the “center of mass” of the non-white pixels. N 

was generally the length of the smallest rectangle able to enclose all non-white pixels 

for the M columns. M was either 3 in the case of very finely measured graphs or 1 in 

the case of graphs with smaller resolution. In graphs with poor resolution (in 

comparison to the ones above) not enough samples exist per column to justify the 

averaging methods. Thus the darkest pixel for each column was selected to be the 

value pixel and it was quantified. . 

 

 This then created a single point estimate of the value in time from the graph. 

Generally the spacing between the pixels represented a shorter time than the spacing 

between the original samples used to generate the graph, so the time-series was re-

sampled at the original slower frequency. There were no cases where the resulting 

time-series had to be up-sampled. It is critical to recognize that this particular 

approach amounted to linear interpolation between the original samples (used to 
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generate graph by the plotter/printer), and then phase incongruent re-sampling of the 

time-series at the original sample. This is expected to introduce a distortion in the very 

high frequencies in which very little energy presumably exists to begin with because 

only frequently sampled data were used. The other distortion is one associated with 

detecting the middle of the line, which becomes particularly difficult when there is a 

significant rate of change and thus significant vertical range in per a given time. An 

estimate of the maximum possible error can be made based on the range of the vertical 

line segment at that time. An example of these values is shown in figure A-4. The 

estimation of the error was based on the square root of these values. That these errors 

did not actually occur is discussed in the sections to follow as these types of data sets 

also included some pre-calculated statistics that allowed verification of the extracted 

data. Figure A-2 and A-3 show the progression from a scanned image, to a rotated and 

cleaned image, to the selection of the central points (zoomed in a section) and the 

ultimate time-series generated (prior to normalizing based on the original graph grid). 

The average estimate of the error (keeping in mind that the error was calculated for the 

worst sample for each time-series) was ~ 3mg/dl averaged between all time-series. 

The maximum was ~6 mg/dl for a single sample in one of the time-series, keeping in 

mind that this is a worst-case scenario error.  
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Figure A-2 : An example of the conversion of line graphs to data. (upper left) the  original rotaed 
image.  The axis denote pixels and not time or glucose values. (upper right) the cleaned line 
image. (lower left) a subsection showing the line center estimation technique. (lower right) final 
data displayed prior to conversion actual time and concentrations.  
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Figure A-3 : A second example of the conversion of line graphs to data. (upper left) the  original 
rotaed image.  The axis denote pixels and not time or glucose values. (upper right) the cleaned line 
image. (lower left) a subsection showing the line center estimation technique. (lower right) final 
data displayed prior to conversion actual time and concentrations.  
 

 

Figure A-4: Estimates of the maximum width of a line during the center estimation technique. 
Peaks correspond to areas of maximal rates of change where determining the exact sample point 
has a larger maximum possible error associated with it. These errors severely overestimate 
possible error as seen in data sets where values were verified using published statistics of the data 
set.  
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Type 3: Dashed and dotted lines 

 
Few of the data sets fell into the categories where dashes or squares were used 

to denote data points which do not lend themselves to as logical of a data extraction 

approach as would be desired. These were treated by direct connection of the markers 

by computer based drawing which was then treated in a similar way as the line-center 

approach described above. The progression from the original scanned item to the data 

plotted is shown in figure A-5.  
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Figure A-5. The progression from a scanned figure connected by dashes (gray) in the first panel, 
to a hand-connected image which is then sampled and regenerated in the bottom panel. Very few 
such data sets existed in this analysis, but they were included by using this approach.  
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Verification with respect to reported experimental results 
 

In some cases, means and standard deviations were reported in the paper. The 

agreement between the data and reported values are shown in table A-1. In general 

there was fairly good agreement between the two. 

Table A-1: Reported and acquired data sets are compared and show good agreement based on 
their mean and standard deviation.  
 
Set Reported Mean 

(mg/dl) 
Data Set Mean 
(mg/dl) 

Reported SD Data SD 

Sernorm1 79.7 82.4  N/A  N/A 

Sernorm2 82.7 80.4  N/A  N/A 

Sernorm3 78.1 77.1  N/A  N/A 

Serone1 110.7 112.9  N/A  N/A 

Serone2 110.0 108.6  N/A  N/A 

Serone3 114.6 114.6  N/A  N/A 

Serone4 195.8 197.3  N/A  N/A 

Serone5 170.5 168.9  N/A  N/A 

Serone6 149.2 146.7  N/A  N/A 

Serone7 146.2 142.7  N/A  N/A 

Serone8 207.8 210.3  N/A  N/A 

Serone9 244.1 240.3  N/A  N/A 

Serone10 113.3 110.2  N/A  N/A 

Serone11 101.1 97.7  N/A  N/A 
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Table A-1: Reported and acquired data sets are compared and show good agreement based on 
their mean and standard deviation (Continued). 
 
Serone12 118.8 119.2  N/A  N/A 

Serone13 140.9 138.6  N/A  N/A 

Serone14 144.8 143.5  N/A  N/A 

Serone15 152.0 147.9  N/A  N/A 

Vannorm1 113 113 7 6.3 

Vannorm2 140 140 17 17.0 

Vannorm3 121 121 10 9.4 

Vannorm4 144 143 13 12.9 

Vannorm5 114 114 13 12.5 

 

 

 

 

 

 

 

 

 

 

 

 



 

Appendix B: Description and Notes on Selected Data 

Sets. 

Description of Chua’s Circuit and Lorenz data set  
 

 The Lorenz Attractor was first described by Edward N. Lorenz in the 

description of atomospheric dynamics [87, 88]. It has since been often used as an 

investigational model for theoretical study of nonlinear dynamics and chaos. It is 

described by the coupled set of three differential equations: 

 

 

Chua’s circuit was introduced by Leon O. Chua in the 1980’s as an 

experimental instance of a nonlinear system capable of transition to chaos[89]. It is 

described by the following equations:  
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Nondiabetics with normal meals and exercise 

Mal1-mal12 

A total of 12 male subjects were involved in this investigation. Some were 

sampled every 30 mins and others every hour using direct blood draw. Patients were 

allowed to rest the night before. Plasma cortisol was measured 6 times as well. Meals 

were controlled. Some received identical meals others varying meals. Feeding times 

were all the same.Insulin was additionally measured. 

Average Age: 

 Group A: 29.3 +/- 2.5 

 Group B: 23 +/- 1.2 

Average Weight: 68 KG for both groups, all were male. 
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Sernorm1-3 

Multiple representations of the data allows for testing the digitization 

algorithm. 

Testing seems to have begun around 19:30 for all three cases. 

Note the presence of exercise.. 

Breakfast at 8:00 

Lunch at 13:00 

Snack at 16:00 

Dinner at 18:00 

Supper at 21:00 

Fasting data  

Shanorm1-3 
 

Shapiro et al (ref) present data representing three nondiabetics and nine type II 

diabetics from a group with matched Body Mass Indices (BMI). Those w/ type II 

diabetes were being treated with diet and or hypoglycemic agents. Subjects 

discontinued hypoglycemic agents two weeks prior to the study. The subjects were 

fasting ten hours prior to the beginning of the data sets. They were kept in a recumbent 

position throughout the studies. Four of the type II diabetes subjects were studied 

during different times of the day. The 24hr period of study started at 1400 instead of 

800, with the fasting taking place at the same 10 hour period prior to examination 

(figure B-1).  
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Figure B-1: Two time-series from fasting data. The top panel shows a nondiabetic fasting patient, 
while the bottom panel shows a type II diabetic patient fasting but whose sleeping cycle has been 
modified. 

 

Vannorm1-5 

 This study was meant to look at decreased glucose tolerance during the night. 

It did so by looking at the nocturnal amplitude of the glucose pulses during continuous 

glucose infusion. Two rates of infusion 5 g/kg and 8 g/kg (per 24 hour period) were 

administered for 30 hours and glucose was measured during the last 24 hour period 

every 15 minutes.  The subjects were nonobese healthy volunteers aged 18-25, with 
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BMI ranging from 18.1-24.4 kg/m2. The subjects fasted for 12 hours prior to the 

infusion. The samples were analyzed using a Technicon autoanalyzer. The group 

applied ULTRA (a pulse analysis program) to the data in order to study the amplitude 

of the pulses and their correlation with the time of the day. The results were significant 

and pointed to increased amplitude during nocturnal periods, as well as increased 

amplitude of oscillations with increased infusion rates.  

Polnorm1-3 

Here the objective was to study the effect of aging on the changes in the pulses 

generated by continuous glucose infusion during sleep and wakefulness. In particular 

growth hormone was studied during sleep and correlated to the behavior of the time-

series during sleep. There was a 57 hour infusion of 5 g/kg min (per 24 hour period) 

that started six hours after breakfast. 53 hours of monitoring sampled at 20 min 

intervals was initiated. Two periods of sleep were carried on, one from 11PM to 7AM 

and the latter, after skipping a night of sleep, from 11 AM to 7 PM. This was meant to 

tease out the effect of sleep as opposed to darkness on the glucose amplitude of the 

oscillations. The study found increase in amplitude of the oscillations correlates with 

sleep and not with time of the day, as have other studies, but additionally showed that 

aging effected the insulin response to this increase.  

Polnorm6,7 

This was one of the first studies geared towards detected and characterizing the 

oscillatory behavior of blood glucose levels during continuous infusions of glucose. 
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Eight subjects 21-33 yrs old were studied after a 10h overnight fast, for 24 hours and 

were sampled every 15 minutes. The infusion was at a rate of 4.5 mg/kg min, for a 

period of 24 hours. The study found that there was significant number of pulses in the 

glucose and insulin profiles.  

DirecNet 

Characteristics 

Original Data Set Size: 112 

Usable Subjects:  97 

Age Ranges For Diabetics: 3-17, mean 9.4  

11 Normals, 86 IDDM 

 

Totals: 

 4837 Sampling Periods 

 1689 less than 15 minutes (35%) 

3680 less than 36 minutes (76%) 

4712 less than 62 minutes (97.5%) 

15 durations of 2 hours or more 

 

In scanning the valid data sets, 15 sample lengths of 2 hrs or more were found and 

they are as follows: 

ID 19, 1:30-4 AM No data available 

ID 19, 10AM-1PM No data available 
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ID 23, 7PM-9PM, Data Taken but marked NA 

ID 35, 7PM-9PM, Data Taken but marked NA 

ID 37, 12-2 PM, Data taken but marked NA at 1PM. QC value is available 

ID 44, 5:30-8AM, No data available 

ID 44, 8 AM-11 AM (IV insulin test and "other data point") 

ID 51, 6PM-8PM, Data Taken but marked NA 

ID 74, 1AM-5AM, No data available 

ID 75, 6PM-8PM, Data Taken but marked NA, QC value is available, also first data pt 

ID 85, 9AM-12:17, No data available after meal  

ID 85, 7AM-9AM, Calibration/Other only thing available. END OF DATA SET 

ID 85, 9AM-12AM, Calibration/Other only thing available, END OF DATA SET 

ID 101, 6PM-8PM, Calibration Only available, Beginning of Dataset 

ID 111, 7PM-9PM, No data available 

ID 23, 1140-1260 mins, data was removed., END OF DATA SET  

 

Summary Of literature data: 

Lengths: 

  A Total of 185 Tracings 

  174 tracings 12 hours or longer 

  134 tracings 24 hours or longer 

References: 

  Drawn from 33 references spanning 1963-1999. 
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Data Available: 

• In many cases age, weight, height, sex and insulin schedule of patient is 

known. 

• 51 data sets contain simultaneous insulin tracing, additional 35 contain ISR 

• Additionally, a number of cortisol, and GH tracings are also available. 

 Sampling: 

  147 data sets sampled at 15 mins or less 

  167 data sets sampled at 30 mins or less 

 

Tracing Types: 

• 71 Tracings from Normals. 

• 52 Tracings from IDDMs 

• 18 Tracings from NIDDM 

• 18 tracing from pregnant diabetics (IDDM and NIDDM) 

• 9 patients with Imparied Glucose Tolerance (IGT) 

• 4 patients with insulinomas 

• 1 GCK deficiency  

   

“Ideal” Data Sets 

 Data sets that are sampled at least every 20 minutes, for at least 20 hours, and 

are done under either normal diet/exercise, continuous enteral nutrition, IV nutrition or 

fasting: 
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• 43 Normals. 

• 35 IDDMs 

• 10 NIDDMs 

• 5 IGTs 

• 11 Pregnant Subjects with NIDDM and IDDM 

Overall Data Set: 

• Total of 282 tracings. 

• 82 of them from normal individuals under various testing conditions 

 

 

 

 

 

 

 

 

 

 



 

Appendix C: Selected verification of analysis methods 

What follows are selected verifications that were not directly discussed in the 

methods section in order to keep focus on higher-level discussion of methods.  

 

Spectral estimation techniques 

 Spectral estimation techniques were verified using sinusoids with known 

frequency content. The verification of the application of the methods to the more 

complex time-series was done by confirmatory estimation using other methods, as 

mentioned in the text. Spectral estimates were made using three methods: AR based 

model estimation, Prony spectral estimation and FFT based spectral estimation.  The 

results of one such test is shown in figure C-1. Sinusoids of multiple frequency, as 

well as noise, chaotic time-series and signals with changing frequencies were also 

applied and agreed with expected results.  These are shown in figure C-2.  
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Figure C-1: Three different methods applied to the same time-series with known frequency. A 
prominent peak is noted in the expected frequency. 
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Figure C-2: Test signals with known behaviors tested in the FFT-based spectral analyzer. The set 
begins with sines with  single frequency (#1-4), multiple frequencies (#5-7), changing frequencies 
and highly nonlinear behavior (#8-11) and ends with noise (#12). 

 

Time-frequency methods 

The Short-Time Fourier Transform (STFT) was implemented using the Matlab 

routine specgram(). A FFT length of ¼ of the length of the signal was used with 

almost no total overlap (in order to move the window only one sample at a time). A 

kaiser window of 8.0 was used. The routine was tested with sinusoids of known period 

and also signals with changing frequency content, including all the signals mentioned 

in the spectral analysis section preceding this one. An example of these techniques 
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applied to a signal with fixed frequency content are shown in figure C-3, which shows 

a constant diffuse band around the correct frequency. It is important to keep in mind 

that there is a loss of frequency resolution which occurs in trading frequency certainty 

for time certainty as discussed in the methods chapter. 

 

Figure C-3: Example of a sinusoid with a period of ~7 minutes (top) and 100 minutes (bottom). 
Analyzed using the STFT function. Note the constant but spread out nature of the peak, which is 
characteristic of all time-frequency analysis where certainty in the time scale domain is 
exchanged for certainty in the time domain.  
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 Two changing frequencies were then tested and the results are shown in figure 

C-4. In this case, there is a slow changing high frequency component combined with a 

fast changing low frequency component.  

 
Figure C-4: STFT analysis of two combined signals both with changing 
frequencies.(tfchanging2.txt) 
 

The same signals were used to test the functionality of wavelet based time-

frequency analysis methods. As mentioned in the methods section, the wavelet based 

methods are largely dependent on the wavelet basis chosen and allow more flexible 
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“trading” of time and frequency localization. Figures C-5 shows a two constant 

frequency signals. The second faster frequency signal in particular illustrates the 

“ringing” of harmonics at lower frequencies as well as the distortions on the beginning 

and end of the time-series. The changing frequency used in figure C-4 is also shown as 

the third panel. Clearly, in this case the wavelet basis used is not as optimal as the 

STFT in showing the frequency progression in time but the irregularity in the signal 

results in much more of a localized effect (near time = 200) than in the STFT case 

illustrating the trade-off between frequency and time localization.  
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Figure C-5: Examples of wavelet based time-frequency analysis using the Debauchie wavelet basis 
of order 1. The first to panels represent constant frequency signals whereas the last panel is the 
same signal used in figure C-4. Loss of frequency localization as compared to the STFT is noted 
but the localized event of the two frequencies intersecting leads to a more pronounced distortion.  

 
 
 
 
 



267 

Meal analysis methods 
 

Meals as discussed were analyzed by a priori knowledge of the meal time 

provided by the investigators, although as demonstrated meals could be automatically 

detected with significant success. When meals were averaged, they were “aligned” on 

the beginning. A meal event was taken to be a set period after the initiation of the 

meal. In cases where a second meal prevented the full length of a meal event to be 

utilized, the meal time-series snippet was cut short. This led to averaging between 

time-series of differing length, such that generally the first two hours were result of all 

meals averaged but the remaining meal profile was an average of progressively fewer 

time-series. In general, this did not lead to significant discontinuities in the profile, but 

a linear estimator was used to “patch” the a few noted discontinuities in the resulting 

time-series, by adjusting the running average to correspond between segments with 

differing number of meals utilized to compute the average.  

 

Individual meal analysis was performed using simple measures described in 

the methods section and using the same definition of derivative in order to arrive at 

rates of change as used throughout this document. All meal analysis was tested and 

verified using artificially constructed glucose time-series with meal perturbations 

containing pre-defined maximal velocities, distributions and asymmetries. An example 

of some of the tools applied to two artificial data sets are shown in table C-1.  
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Table C-1: Two artificially constructed examples are shown below, with expected results from the 
construction of the data-set. (one with 20 minute and the latter w/ 30 minute sampling) 
 
 Rise 

(mg/dl) 
Fall 
(mg/dl)

Time 
to 
Max 
(mins)

Time 
to 
Max 
Rise 
Rate 
(mins)

Time 
to 
Max  
Fall 
Rate 
(mins)

Max 
Fall 
Rate 
(mg/dl) 

Max 
Rise 
Rate 
(mg/dl) 

Normfake1   
 

    

Meal1 89 66 60 20 0 1.3 1.8 

 89 66 60 20 0 1.3 1.8 

Meal2 83 122 40 20 0 1.65 3.8 

 83 122 40 20 0 1.65 3.8 

Meal3 66 96 20 20 80 3.3 .7 

 66 96 20 20 80 3.3 .7 

Normfake4        

Meal1 61 62 30 30 60 .4 2 

 61 62 30 30 60 .4 2 

Meal2 66 73 30 30 30 .4 2.2 

 66 73 30 30 30 .4 2.2 

Meal3 84 32 30 30 60 .5 2.8 

 84 32 30 30 60 ? 2.8 

Meal4 55 101 90 60 60 .9 .75 

 55 101 90 60 60 .9 .75 
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