Title
The Influence of Metal Pollution on the Immune System A Potential Stressor for Marine Mammals in the North Sea

Permalink
https://escholarship.org/uc/item/55p4w9tj

Journal
International Journal of Comparative Psychology, 20(2)

ISSN
0889-3675

Authors
Kakuschke, Antje
Prange, Andreas

Publication Date
2007-12-31

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed
The Influence of Metal Pollution on the Immune System
A Potential Stresor for Marine Mammals
in the North Sea

Antje Kakuschke and Andreas Prange
GKSS Research Centre, Institute for Coastal Research, Germany

Marine mammals of the North Sea are loaded with metal pollutants. The environmental exposure induces concentrations bioavailable to immune cells high enough to affect their function. Such an imbalance of the immune system caused by pollutants may play a significant role in the incidence of infectious diseases in marine mammals. Metals influence the function of immunocompetent cells by a variety of mechanisms. Depending on the particular metal, its speciation, concentration and bioavailability, and a number of other factors, a continuous metal exposure will result in an immunosuppression or immunoenhancement effects. Both effects were demonstrated on the cellular level in animals of the North Sea. This article reviews metal concentrations in the North and Baltic Seas particularly in tissues of marine mammals, discusses pollutants effects on health and immune functions, and underlines the still existing problem of animals living in polluted coastal areas.

The harbor (or common) seal, Phoca vitulina, the grey seal, Halichoerus grypus and the harbor porpoise, Phocoena phocoena are the most prominent domestic marine mammals in the Wadden Sea. Beside these species several other marine mammals occur in the Wadden Sea and adjacent North Sea as stragglers or regular visitors such as harp seal, Phoca groenlandica, hooded seal, Cystophora cristata, ringed seal, Phoca hispida, bearded seal, Erignathus barbatus, walrus, Odobenus rosmarus, various species of dolphins as well as large cetaceans, e.g. the minke whale, Balaenoptera acutorostrata, and sperm whale, Physeter macrocephalus. Seals living in the coastal area are strongly influenced by anthropogenic activities such as fishery, off-shore activities, habitat destruction and environmental pollution.

Since 1978 The Netherlands, Germany and Denmark have been working together on the protection and conservation of the Wadden Sea, which results in the development of the “Trilateral Monitoring and Assessment Program” (TMAP). Within this agreement the seal population is supposed to serve as a bioindicator for the Wadden Sea ecosystem. Seals are considered as indicators for medium and long-term changes in the ecosystem due to their widespread distribution over the coastal areas, their high trophic level, which results in a bioaccumulation and biomagnification of chemicals in their tissues, their long-life span and relatively late maturity including a low reproduction rate. All these factors serve to qualify harbor seals as biomarkers of chemical exposure in the Wadden Sea.

In addition, the “Seal Agreement” has been adopted, which establishes terms of research and monitoring including the monitoring of pollution and investigations on the effects of substances e.g. organochlorine compounds, metals and oil on the seal population. These terms have been specified in the “Seal Management Plan for the Wadden Sea Seal Population” which utilizes parameters such as reproduction, mortality and health status to assess the seal population and includes e.g. immunological, physiological, toxicological, pathohistological and microbiological research.
The growth of the harbor seal population in the Wadden Sea was interrupted by a phocine distemper virus epizootic in 1988 and 2002. In this context, the influence of pollutants on the immune system has been repeatedly discussed.

Metals in the North and Baltic Seas

In the past, the North Sea ecosystem was highly loaded with both organic and metal pollutants introduced by various anthropogenic activities within the coastal zones. Until the middle of the eighties the yearly input of metal pollution caused by rivers, direct discharge, dumping at sea, atmospheric input and combustion at sea was around 340 tonnes Cd, 75 t Hg, 11.000 t Pb, 5.000 t Cr and 2,150 t Ni (Rachor & Rühl, 1990). A review on the pollution situation in the North Sea has been published by Kersten et al., 1988. Table 1 gives an overview of selected references dealing with environmental research on metals in the North and Baltic Sea.

Current studies have shown a diminishing trend in the input of pollutants into the ecosystem. The BLMP monitoring program (Bund-Länder-Messprogramm) confirmed this general tendency for metal pollutants, however it is necessary to consider this conclusion more detailed. The concentrations of Hg, Cd, Pb and Zn in water and sediment for example are still elevated compared to the “Background Reference Concentrations” which the Convention for the Protection of the Marine Environment of the North-East Atlantic (OSPAR) derived for the “Greater North Sea” (Schmolke et al., 2005).

The Quality Status Report of the TMAP concluded that major reductions in the input and the concentrations of metals in the Wadden Sea occurred mainly in the late 1980s until the early 1990s and continued moderately until 2002. However, local and metal specific elevated concentrations compared to the proposed background values were still frequently investigated (Bakker, van den Heuvel-Greve, & Vethaak, 2005).

Metal body burdens in the mammals of the North and Baltic Seas

Contaminants found in various marine mammal species in the North and Baltic Seas include organochlorine pollutants (Bruhn, Kannan, Petrick, Schulz-Bull, & Duinker, 1999; Hall et al., 1999; Holsbeek et al., 1999; Kleivane, Skaare, Bjorge, Deruiter, & Reijnders, 1995; Sormo, Skaare, Jussi, Jussi, & Jenssen, 2003; Troisi et al., 2000), polybrominated diphenyl ethers (Kalantzi, Hall, Thomas, & Jones, 2005; Law, Allechin, Bennett, Morris, & Rogan, 2002), perfluorinated sulfonates (Kannan et al., 2002; Van de Vijver et al., 2004) and metals (Table 2).
<table>
<thead>
<tr>
<th>Object of investigation</th>
<th>Element</th>
<th>Location</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fish</td>
<td>Cd, Cu, Hg, Pb, Zn</td>
<td>Baltic Sea</td>
<td>Perttilä et al., 1982a</td>
</tr>
<tr>
<td>Fish</td>
<td>Cd, Cu, Hg, Pb, Zn</td>
<td>Baltic Sea</td>
<td>Perttilä et al., 1982b</td>
</tr>
<tr>
<td>Fish</td>
<td>As</td>
<td>North Sea</td>
<td>Falconer et al., 1983</td>
</tr>
<tr>
<td>Water (surface water)</td>
<td>Al, Cd, Co, Cu, Mn, Ni</td>
<td>North Sea</td>
<td>Kremling & Hydes, 1988</td>
</tr>
<tr>
<td>Sediments</td>
<td>As, Cd, Cu, Hg, Pb, Zn</td>
<td>North Sea</td>
<td>Chapman, 1992</td>
</tr>
<tr>
<td>Fish, Shrimp, Mussel</td>
<td>Hg, Se</td>
<td>North Sea, Belgium</td>
<td>Guns & Vyncke, 1992</td>
</tr>
<tr>
<td>Fish, Mussel, Sediments</td>
<td>Ni</td>
<td>Baltic Sea Gdansk Bay</td>
<td>Skwarzec et al., 1994</td>
</tr>
<tr>
<td>Sediments</td>
<td>Ag, Al, Ca, Cd, Co, Cr, Cs, Cu, Fe, K, Li, Mg, Mn, Na, Ni, P, Pb, Rb, Sr, Zn</td>
<td>Baltic Sea Gdansk Bay</td>
<td>Szefer et al., 1996</td>
</tr>
<tr>
<td>Birds</td>
<td>Cd, Cu, Hg, Se, Zn</td>
<td>North Sea, German Bight</td>
<td>Wenzel et al., 1996</td>
</tr>
<tr>
<td>Fish, Birds, Sediments</td>
<td>Organo-Sn</td>
<td>Polish Coast Baltic Sea</td>
<td>Kannan & Falandydz, 1997</td>
</tr>
<tr>
<td>Water (dissolved fraction, particulate matter)</td>
<td>Cd, Co, Cu, Fe, Mn, Ni, Pb, Zn</td>
<td>Southern North Sea</td>
<td>Millward et al., 1998</td>
</tr>
<tr>
<td>Fish</td>
<td>Hg, Cu</td>
<td>North Sea</td>
<td>Broeg et al., 1999</td>
</tr>
<tr>
<td>Sediment</td>
<td>Cd, Cu, Pb, Zn</td>
<td>North Sea, Dutch coastal zone</td>
<td>Laane et al., 1999</td>
</tr>
<tr>
<td>Birds</td>
<td>Cd, Cr, Cu, Fe, Ni, Pb, Zn</td>
<td>North Sea, Belgian coast</td>
<td>Debacker et al., 2000</td>
</tr>
<tr>
<td>Water</td>
<td>Co, Cu, Fe, Zn</td>
<td>Baltic Sea, Skagerrak</td>
<td>Croot et al., 2002</td>
</tr>
<tr>
<td>Sediment, Suspended particulate matter</td>
<td>Al, Fe, K, Mn, Pb</td>
<td>North Sea, German Bight</td>
<td>Hinrichs et al., 2002</td>
</tr>
<tr>
<td>Water (coastal water, dissolved)</td>
<td>Co, Cu</td>
<td>Western North Sea</td>
<td>Achterberg et al., 2003</td>
</tr>
<tr>
<td>Sediments</td>
<td>Ba, Cd, Cr, Cu, Hg, Ni, Pb, V, Zn</td>
<td>North and Baltic Sea</td>
<td>Breuer et al., 2004</td>
</tr>
<tr>
<td>Asteroids, Sediments</td>
<td>Cd, Cu, Pb, Zn</td>
<td>North Sea, Southern Bight</td>
<td>Danis et al., 2004</td>
</tr>
<tr>
<td>Water (dissolved fraction, particulate matter, surface & deeper water)</td>
<td>Cd, Cu, Hg, Pb, Zn</td>
<td>Western and Central Baltic Sea</td>
<td>Dippner & Pohl, 2004</td>
</tr>
<tr>
<td>Fish</td>
<td>Cd, Cu, Mn, Pb</td>
<td>North Sea, Southern Bight</td>
<td>Henry et al., 2004</td>
</tr>
<tr>
<td>Asteroids</td>
<td>Cd, Cu, Pb, Zn</td>
<td>North Sea, Southern Bight</td>
<td>Danis et al., 2006</td>
</tr>
<tr>
<td>Mussel</td>
<td>Cd, Cu, Ni, Pb, Zn</td>
<td>German Wadden Sea</td>
<td>Jung et al., 2006</td>
</tr>
<tr>
<td>Air, Precipitation</td>
<td>Hg</td>
<td>North Sea Area</td>
<td>Wängberg et al., 2007</td>
</tr>
</tbody>
</table>
Table 2

Summary of studies on metal concentrations in tissues of marine mammals of the North and Baltic Seas.

<table>
<thead>
<tr>
<th>Species</th>
<th>Organ</th>
<th>Element</th>
<th>Location</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phocoena phocoena, Lagenorhynchus albirostris</td>
<td>B, L, M</td>
<td>Cu, Hg, Pb, Zn</td>
<td>Denmark</td>
<td>Andersen & Rebsdorff, 1976</td>
</tr>
<tr>
<td>Phoca vitulina</td>
<td>Br, K, L</td>
<td>Cd, Cu, Hg, Pb, Zn</td>
<td>German Wadden Sea</td>
<td>Drescher et al., 1977</td>
</tr>
<tr>
<td>Phoca vitulina, Phoca hispida, Halichoerus grypus, Hyperoodon ampullatus, Delphinapterus leucas</td>
<td>K, L, M</td>
<td>Cd, Cu, Hg, Pb, Zn</td>
<td>North and Baltic Coasts, Germany</td>
<td>Harms et al., 1978</td>
</tr>
<tr>
<td>Phoca vitulina</td>
<td>B, Br, He, K, L, PI, Sp</td>
<td>Cd, Cr, Cu, Fe, Mn, Pb, Zn</td>
<td>Dutch Wadden Sea</td>
<td>Duinker et al., 1979</td>
</tr>
<tr>
<td>Phocoena phocoena</td>
<td>Br, K, L</td>
<td>Br, Hg, Se</td>
<td>Wadden Sea</td>
<td>Reijnders et al., 1980</td>
</tr>
<tr>
<td>Phocoena phocoena, Tursiops truncates, Halichoerus grypus, Stenella coeruleoalba</td>
<td>Br, K, L</td>
<td>Cd, Cu, Hg, Pb, Zn</td>
<td>Scotland</td>
<td>Falconer et al., 1983</td>
</tr>
<tr>
<td>Phoca vitulina</td>
<td>B, L, M</td>
<td>Cd, Cr, Cu, Hg, Ni, Pb, Zn</td>
<td>Irish Sea</td>
<td>Morris et al., 1989</td>
</tr>
<tr>
<td>Phoca vitulina, Halichoerus grypus, Tursiops truncates, Lagenorhynchus albirostris, Lagenorhynchus australis, Delphinus delphis, Stenella coeruleoalba</td>
<td>L</td>
<td>As, Cd, Cu, Hg, Se, Zn</td>
<td>Norwegian</td>
<td>Skaare et al., 1990</td>
</tr>
<tr>
<td>Phocoena phocoena, Physeter macrocephalus, Delphinus delphis, Tursiops truncatus</td>
<td>K, L, M</td>
<td>Hg</td>
<td>Waters around British Isles</td>
<td>Law et al., 1991</td>
</tr>
<tr>
<td>Phoca vitulina, Halichoerus grypus, Phoca hispida</td>
<td>K, L</td>
<td>Al, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Ni, Pb, V, W, Zn</td>
<td>Denmark, Belgium</td>
<td>Joiris et al., 1991</td>
</tr>
<tr>
<td>Phocoena phocoena</td>
<td>H, S</td>
<td>Cd, Hg, Pb</td>
<td>Swedish waters</td>
<td>Frank et al., 1992</td>
</tr>
<tr>
<td>Phocoena phocoena, Halichoerus grypus</td>
<td>L</td>
<td>Organo-Sn</td>
<td>Polish Baltic Sea</td>
<td>Kannan & Faladysz, 1997</td>
</tr>
<tr>
<td>Physeter macrocephalus</td>
<td>L</td>
<td>Organo-Sn</td>
<td>Waters around British Isles</td>
<td>Law et al., 1998</td>
</tr>
<tr>
<td>Grampus griseus, Lagenorhynchus albirostris, Delphinus delphis, Stenella coeruleoalba, Globicephala melas, Lagenorhynchus australis, Kogia breviceps, Mesoplodon bidens, Mesoplodon densirostris, Hyperoodon ampullatus, Balaenoptera physalus, Balaenoptera acutorostrata</td>
<td>B, K, L, M</td>
<td>Cd, Cr, Cu, Fe, Hg, Ni, Pb, Se, Ti, Zn</td>
<td>Southern North Sea</td>
<td>Holsbeek et al., 1999</td>
</tr>
<tr>
<td>Phocoena phocoena, Lagenorhynchus albirostris</td>
<td>K, L, M</td>
<td>Hg</td>
<td>Waters around British Isles</td>
<td>Law et al., 1999</td>
</tr>
<tr>
<td>Phocoena phocoena, Lagenorhynchus albirostris</td>
<td>K, L, M</td>
<td>Hg</td>
<td>North and Baltic Coasts, Germany</td>
<td>Siebert et al., 1999</td>
</tr>
<tr>
<td>Species</td>
<td>Location</td>
<td>Authors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-----------------------------------</td>
<td>--------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phocoena phocoena</td>
<td>L Cd, Cr, Cu, Hg, Ni, Pb, Se, Zn</td>
<td>England, Wales</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phoca hispida</td>
<td>K, L, M Cd, Hg, Pb, Se</td>
<td>Baltic Sea, Svalbard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grampus griseus, Lagenorhynchus albirostris, Delphinus delphis, Stenella coeruleoalba, Globicephala melas, Lagenorhynchus acutus, Kogia breviceps, Mesoplodon bidens, Balaenoptera physalus, Balaenoptera acutorostrata</td>
<td>L Ag, As, Cd, Cr, Cu, Fe, Hg, Ni, Pb, Se, Zn</td>
<td>Waters around British Isles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phocoena phocoena</td>
<td>K, L, K Cd, Cr, Cu, Fe, Mn, Ni, Pb, Zn</td>
<td>Southern Baltic Sea, Danish and Greenland coastal waters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phoca hispida</td>
<td>B, Br, K, L, M, S, organo-Sn</td>
<td>Norwegian</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phocoena phocoena, Phoca vitulina, Phoca hispida</td>
<td>Organo-Sn</td>
<td>Berge et al., 2004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phocoena phocoena, Phoca hispida, Halichoerus grypus, Stenella coeruleoalba</td>
<td>L organo-Sn</td>
<td>Polish Baltic Sea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phocoena phocoena</td>
<td>K, L, M Cd, Cu, Fe, Hg, Se, Zn</td>
<td>Belgium, France, Germany (North and Baltic Sea), Denmark</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phocoena phocoena</td>
<td>L Hg, organo-Sn</td>
<td>Danish waters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phoca vitulina</td>
<td>Bl Ca, Cu, Fe, K, P, Rb, S, Se, Sr, Zn</td>
<td>German Wadden Sea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phocoena phocoena</td>
<td>L Hg, organo-Sn</td>
<td>Danish waters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phoca vitulina</td>
<td>Bl Ca, Cu, Fe, K, P, Rb, S, Se, Sr, Zn</td>
<td>German Wadden Sea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Halichoerus grypus</td>
<td>Bl Ca, Cu, Fe, K, P, Rb, S, Se, Sr, Zn</td>
<td>German Wadden Sea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phocoena phocoena</td>
<td>K, L Cd, Cu, Hg, Se, Zn</td>
<td>Southern North Sea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phoca vitulina</td>
<td>Bl Al, As, Be, Ca, Cd, Cr, Co, Cu, Fe, K, Pb, Mn, Mo, Ni, Pd, Pt, Pb, Se, Sp, Sn, He, Pl, H</td>
<td>German Wadden Sea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phoca vitulina</td>
<td>Bl Al, As, Be, Ca, Cd, Cr, Co, Cu, Fe, K, Pb, Mn, Mo, Ni, Pd, Pt, Rb, Se, Sn, Sr, Ti, V, Zn</td>
<td>German Wadden Sea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phoca vitulina</td>
<td>Bl Al, As, Be, Ca, Cd, Cr, Co, Cu, Fe, K, Pb, Mn, Mo, Ni, Pd, Pt, Rb, Se, Sn, Sr, Ti, V, Zn</td>
<td>German Wadden Sea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phoca vitulina</td>
<td>Bl Al, As, Be, Ca, Cd, Cr, Co, Cu, Fe, K, Mn, Mo, Ni, Pd, Pt, Rb, Se, Sn, Sr, Zn</td>
<td>German Wadden Sea</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B=blubber, Bl=blood, Br=brain, M=muscle, L=liver, K=kidney, S=skin, Sp=spleen, He=heart, Pl=placenta, H=hair

183
Most studies on metal body burdens focused on the investigation of metal concentrations in the liver, kidney or muscle, i.e. tissues available only through post-mortem examination. In living animals the choice of samples is mostly restricted to blood and hair. However, because of sampling difficulties, up to now only few studies have reported values for metals in the blood of marine mammals (Baraj et al., 2001; Caurant & Amiard-Triquet, 1995; Nielsen, Nielsen, Jorgensen, & Grandjean, 2000) and in particular for pinnipeds in the North Sea (Griesel et al., 2006; Kakuschke et al., 2005, 2006). Current studies suggested relatively high metal concentrations in living seals of the North Sea compared to human blood reference values as well as local differences in metal concentrations (Griesel, Kakuschke, Siebert, & Prange, 2008). Furthermore newborn seals in the North Sea showed high body burdens of selected metals, probably caused by a transplacental transfer from the mother to fetus or through the milk during the lactation period (Kakuschke, Griesel, & Prange, 2008a).

Metal pollutants and marine mammal health

Metals and their effects on marine mammals have been reviewed by Das, Debacker, Pillet, & Bouquegneau (2003), O’Shea (1999), and Reijnders, Aguilar, & Donovan, (1999). Nevertheless, apart from metal body burden data, only limited information is available, especially on the related health effects. Hyvärinen & Sipilä (1984) found a relationship between stillbirths of ringed seal (Pusa hispida saimensis) pups from Finland and the Ni concentrations in hair samples. Experimental intoxication of harp seal (Pagophilus groenlandicus) with methyl-Hg by daily oral intake (25mg/kg) was found to result in lethargy, weight loss and finally death (Ronald, Tessaro, Uthe, Freeman, & Frank, 1977). The corresponding blood parameters indicated renal failure, uremia and toxic hepatitis. Rawson et al. (1993) found an accumulation of lipofuscin in the liver cells of stranded Atlantic bottlenose dolphins (Tursiops truncatus) caused by a Hg induced inhibition of the activity of digestive enzymes, which finally results in an increased number of liver diseases. In a case study Shlosberg et al. (1997) described progressive liver damage and finally death of a bottlenose dolphin resulting from Pb intoxication. Studies on the adrenal and testicular steroidogenesis in the grey seal (Halichoerus grypus) and harp seals (Pagophilus groenlandicus) indicated altered biosyntheses caused by metal contaminants (Freeman, Sangalang, Uthe, & Ronald, 1975; Freeman & Sangalang, 1977). Methyl-Hg intoxicated harp seals showed a low level of damage of sensory cells of the organ of Corti (Ramprashad & Ronald, 1977).

Some researchers have used an indirect approach to investigate the prediction that metal pollutants result in lower resistance to diseases. The endangered population of belugas (Delphinapterus leucas) in the polluted estuary of the St. Lawrence River showed high concentrations of organochlorines, heavy metals, and benzo[a]pyrene in tissues as well as a high prevalence of tumors which suggests an influence of contaminants through a direct carcinogenic effect and/or a decreased resistance to the development of tumors (De Guise, Lagace, & Beland, 1994). Siebert et al. (1999) investigated Hg body burden and diseases in harbor porpoises (Phocoena phocoena) from the German Waters of the North and Baltic Seas. High Hg concentrations were associated with a prevalence of parasitic infections and pneumonia. Bennett et al. (2001) investigated harbor porpoises found dead along the coasts of
England and Wales that died as a consequence of physical trauma as well as infectious diseases. They found that the mean liver concentrations of Hg, Se, the Hg:Se molar ratio and Zn were significantly higher in the porpoises that died of infectious diseases in comparison to those who died because of a physical trauma. Similarly, Kannan, Agusa, Perrotta, Thomas, & Tanabe (2006) and Kannan, Guruge, Thomas, Tanabe, & Giesy (1998) investigated the concentrations of butyl-Sn residues and trace elements in sea otters (Enhydra lutris nereis) found dead along the California coastal waters. They studied otters that died due to infectious diseases as well as those that died because of other reasons. Otters that died because of infectious diseases indicated higher concentrations of butyl-Sn in comparison to those that died as a result of physical trauma. The concentrations of Mn, Co, Zn, and Cd were elevated in the diseased and emaciated sea otters relative to the non-diseased sea otters. An elevated accumulation of tributyl-Sn was also found in bottlenose dolphins (Tursiops truncatus) stranded along the Atlantic and Gulf coasts of Florida (Kannan et al., 1997). These relationships are substantiated by the fact that the pollution with metals may affect the immunocompetence and disrupt the immune homeostasis of free-ranging populations of marine mammals in many areas of the industrialized world.

Metal influences on immune functions

Metals influence the function of immunocompetent cells by a variety of mechanisms. Depending on the particular metal, its speciation, concentration and bioavailability, and a number of other factors, a continuous metal exposure will result in an immunoenhancement or immunosuppression effects. Reviews of immunomodulation by metals in humans or laboratory animals include those of Chang (1996), Dean, Luster, Munson & Kimber (1994), or Lawrence & McCabe (2002), but metal influences on marine mammals in relation to environmental contamination have been only poorly investigated.

Imune cells such as macrophages can incorporate and store metal components, e.g. Hg and Se in mineral granules, as described for various marine mammal species (Nigro & Leonzio, 1996). In *in vitro* experiments, a similar incorporation of Ti was shown for blood macrophages of harbor seals (Figure 1a). Depending on the concentration, metals can be cytotoxic for immune cells as well as inhibit or stimulate cell functions, the latter in all probability by binding to proteins.

Killer cell activity, phagocytosis and transformation of lymphocytes have been investigated in various marine mammal species and evidence for the immunosuppression function of metal pollutants has been provided. The mitogen-induced proliferation of immune cells was inhibited by butyl-Sn compounds in several marine mammals and humans (Nakata et al., 2002). Phagocytosis and lymphoblast transformation in grey seal pups were adversely affected by Hg *in vitro* (Lalancette, Morin, Measures, & Fournier, 2003). The effects of heavy metals on beluga whale splenocytes and thymocytes *in vitro* indicate functional impairment (De Guise, Bernier, Martineau, Beland, & Fournier, 1996). Pillet et al. (2000) found a sex-dependent effect of Zn on phagocytic activity. In a study on harbor seal pups from the North Sea, lymphocyte proliferation was especially inhibited by Be, Pb, Cd and Hg in newborn pups (Kakuschke et al., 2008c). Interestingly, the susceptibility to the toxic effects of metals seems to be decreased in infant pups.
Figure 1. Morphological analysis of Ti-induced (A) and Ni-induced (B) lymphocyte proliferation. In A: two lymphoblasts, one macrophage with ingested titanium particle, and several resting lymphocytes. In B: several lymphoblasts, one macrophage, and resting lymphocytes. C: Principal transformation of lymphocytes.

In addition to immunosuppression, metal pollutants may induce immunoenhancement leading to hypersensitivity and autoimmunity. Even though the metal input into the marine system appears to have been decreasing...
in recent years, low-level metal concentrations can modulate the immune system. The chronic intake of metal pollutants renders marine mammals candidates for developing hypersensitivity reactions. A lymphocyte transformation test for detecting antigen-specific metal sensitivities according to the MELISA® (memory lymphocyte immuno-stimulation assay) (Stejskal, Cederbrant, Lindvall, & Forsbeck, 1994; Valentine-Thon & Schiwara, 2003; Valentine-Thon, Sandkamp, Müller, Guzzi, & Hartmann, 2005) was used to investigate pinnipeds from the North Sea (Kakuschke et al., 2005, 2006). The method is based on the fact that lymphocytes, which have been sensitized by a certain metal (“memory cells”), transform into blasts and proliferate when they are re-exposed to this metal (Figure 1). Altogether 31 pinnipeds from the North Sea were investigated, including 13 pups and 17 adult harbor seals as well as one grey seal (Kakuschke, 2006). 13 of these 31 animals showed such a metal-specific delayed type hypersensitivity reaction. The frequency of sensitizing metals was in the order Mo > Ni > Ti > Cr, Al > Pb, Be, Sn. Furthermore, a relationship between the blood levels of metals and this immunological dysfunction was reported (Kakuschke et al., 2005).

In the case study of the grey seal the hypersensitivity reaction to Ni and Be could be validated by different approaches – the proliferation of memory lymphocytes as well as the altered cytokine pattern (Kakuschke et al., 2006). With the cytokines interleukin-2 (IL-2) and interleukin-4 (IL-4) it is possible to distinguish between T-helper 1 (Th1), IL-2 secreting cells and T-helper 2 (Th2), IL-4 producing cells (Elenkov & Chrousos, 1999). The impact of stress on the cytokine pattern was recently described for harbor porpoises from the North Sea (Fonfara, Siebert, Prange, & Colijn, 2007). Kakuschke et al. (2006) measured the mRNA-expression of IL-2 and IL-4 in grey seal lymphocytes co-cultivated with the sensitizing metals Ni and Be as well as the non-sensitizing metals Hg and Cd. Ni and Be induced the lowest cytokine expression compared to the other metals and the quotient IL2/IL4 was increased due to a strong down-regulation of the Th2 cytokine IL-4, which suggests an antigen-specific delayed-type hypersensitivity reaction with a Th1/Th2 polarization toward Th1 (Kidd 2003).

Summary

The environmental exposure with metals is believed to affect marine mammal health adversely. One mechanism whereby metals can alter the health status is through modulation of immune homeostasis. Metals may change the response repertoire by direct and indirect means, which include changes in cell proliferation, phagocytosis, protein expression or other cell functions. Some resulting effects may include immunosuppression or acute as well as chronic inflammatory processes leading to hypersensitivities or autoimmune diseases. The multiple influences of metals on the immune system underline the importance of metals pollution as a potential stressor for marine mammals.

References

