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Biodiversity response to natural
gradients of multiple stressors on
continental margins

Erik A. Sperling1,†, Christina A. Frieder1,‡ and Lisa A. Levin1,2

1Integrative Oceanography Division, and 2Center for Marine Biodiversity and Conservation,
Scripps Institution of Oceanography, La Jolla, CA 92093-0218, USA

Sharp increases in atmospheric CO2 are resulting in ocean warming, acidifica-

tion and deoxygenation that threaten marine organisms on continental margins

and their ecological functions and resulting ecosystem services. The relative

influence of these stressors on biodiversity remains unclear, as well as the

threshold levels for change and when secondary stressors become important.

One strategy to interpret adaptation potential and predict future faunal

change is to examine ecological shifts along natural gradients in the modern

ocean. Here, we assess the explanatory power of temperature, oxygen and

the carbonate system for macrofaunal diversity and evenness along continental

upwelling margins using variance partitioning techniques. Oxygen levels have

the strongest explanatory capacity for variation in species diversity. Sharp

drops in diversity are seen as O2 levels decline through the 0.5–0.15 ml l21

(approx. 22–6 mM; approx. 21–5 matm) range, and as temperature increases

through the 7–108C range. pCO2 is the best explanatory variable in the Arabian

Sea, but explains little of the variance in diversity in the eastern Pacific Ocean.

By contrast, very little variation in evenness is explained by these three global

change variables. The identification of sharp thresholds in ecological response

are used here to predict areas of the seafloor where diversity is most at risk

to future marine global change, noting that the existence of clear regional

differences cautions against applying global thresholds.
1. Introduction
Continental margins cover approximately 11% of the ocean’s seafloor, but are

disproportionately important in providing goods and ecosystem services [1],

including the biggest percentage-wise increase in fisheries catch in the last three

decades [2]. Margins are also important to long-term carbon cycling as the largest

sink for carbon produced on land and the shelf [3]. Their biodiversity is the source

of these services, yet much of it remains unexplored [1]. Global analysis of deep-

sea benthic communities have demonstrated that as biodiversity decreases, there

can be concomitant declines in ecosystem functions including secondary pro-

duction, transfer efficiency of detritus to higher food webs and organic matter

recycling [4]—each with implications for fisheries and carbon-cycle processes.

Benthic organisms on continental margins are currently facing ocean acidifica-

tion, global warming and oxygen loss [5–7], ultimately resulting from increases

in atmospheric CO2. Rates of change are unprecedented, raising questions

about whether (and how) communities will adapt, and whether responses will

reflect synergistic interactions among multiple stressors [8–10].

Predicting how marine life may respond to future environmental change can

be approached by (i) examining past changes through the fossil and/or sedimen-

tary records [11–13], (ii) conducting controlled experiments that allow for

rigorous tests of specific mechanistic effects, and (iii) examining ecological

shifts along naturally occurring environmental gradients [14,15]. This third

approach can account for potential evolutionary adaptation and can examine

responses to multiple stressors over a range of conditions [10].

Many areas of the world’s oceans, such as enclosed seas, upwelling zones and

estuaries, have naturally or anthropogenically induced low oxygen and pH [16].
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On upwelling margins sharp, persistent natural gradients in

temperature, CO2 and oxygen allow study of adaptation to

these stressors [1]. The upper and lower boundaries of

oxygen minimum zones (OMZs) support strong zonation of

communities, with rapid shifts in faunal diversity that are

clearly responding to hydrographic changes, often in a

threshold-like manner [17,18]. In many instances, the resident

fauna have had long periods of time (millions of years [19])

to adapt to the extreme conditions found within

OMZs, although they can be dynamic on glacial/interglacial

(10 000 years) [20] or much shorter [12] time scales. In this

study, we exploit naturally occurring hydrographic gradients

across upwelling margins to examine the potential influence

of environmental variables on the community structure of

continental margin macrobenthos (polychaetes, crustaceans,

molluscs, echinoderms and other invertebrates). Data were

assembled for near-bottom hydrographic variables and sedi-

ment-dwelling macrofaunal organisms (those retained on a

0.3 mm sieve; a fundamental component of the food web and

the size class for which data are most abundant [17]) from 94

margin stations in the eastern Pacific Ocean and Arabian Sea

at depths ranging from 100 to 3400 m (median 800 m). Key to

using natural hydrographic gradients to understand the rela-

tive predictive power of different variables is the general lack

of correlation among environmental variables (including

depth) across different oceanographic domains. On a local

scale, there can be clear covariation between variables; for

example, oxygen and carbon dioxide covary due to aerobic res-

piration in a given water mass (e.g. [21–23]). These correlations

break down, though, when comparisons are made across

water masses—for instance, between North Pacific subarctic

and subtropical gyres [24], or between the northern and

southern California Current System [21]. Therefore, relatively

little covariation in environmental parameters exists among

sites that span multiple water masses and ocean basins, as in

this study (electronic supplementary material, figures S2–S4).

Here, we employ variance partitioning tools to consider

the following three questions. (i) What is the relative explana-

tory power of temperature, oxygen and the carbonate system

for diversity and evenness? (ii) Do threshold-type effects exist

and at what range of values? (iii) At what level of one predic-

tor does a secondary predictor become important? These

latter questions are particularly relevant as many ecological

responses appear to exhibit threshold-type effects at very

low oxygen levels [25–27]. These questions are addressed

with regression trees and random forests, two non-parametric

variance partitioning techniques well suited to determining

the relative contribution of multiple predictor variables in

situations where responses are nonlinear [28]. While the

environmental parameters investigated have physiological

significance, these analyses do not, of course, indicate that a

given environmental parameter is specifically (mechanisti-

cally) driving diversity dynamics. Nonetheless, such

analyses may usefully identify regions where communities

are at risk of substantial losses of diversity or evenness due

to relatively small-magnitude environmental changes.

2. Material and methods
(a) Dataset assembly
Paired environmental and macrofaunal data were collected from

published studies on upwelling margins from 78 sampling
stations, and combined with newly obtained environmental

and biological data from 16 stations on the Pacific margins of

Costa Rica, Mexico and the USA (electronic supplementary

material, table S1 and dataset 1). We focused on upwelling mar-

gins as these habitats are exposed to the sharpest environmental

gradients and because macrofaunal studies from non-upwelling

regions (e.g. North Atlantic) often do not publish associated

environmental data. All studies used a sieve size of 0.3 or

0.5 mm, a size that captures the majority of macrofaunal diver-

sity [29] (77 stations used a 0.3 mm sieve and 17 stations used

a 0.5 mm sieve). We note that the area of seafloor sampled at

each station differs between studies and even within studies

(electronic supplementary material, dataset 1), which could dif-

ferentially affect the accuracy of reported diversity metrics [30].

Where they are available, we have considered only in situ
environmental data rather than using gridded climatological data

such as from the World Ocean Atlas (WOA). While such climatolo-

gical data would allow for the standard deviation of a given

predictor variable across time to be included in the analysis, in
situ data are preferred because (i) the WOA is not especially precise

with respect to oxygen as it uses 18 grid cells; (ii) WOA averages

data over multiple years during which conditions are known to

have changed, and macrofaunal organisms are known to respond

to environmental change on timescales of less than 1 year [15,31];

and (iii) the included studies were published between 1991

and 2015, during which time there has been some global change

with respect to oxygen, temperature and pCO2, and thus the in
situ values are most relevant to the observed biological response.

We only considered stations at water depths greater than 100 m,

and consequently beneath the majority of wave mixing as well as

the calculated winter mixed-layer depth for all localities [32].

Further, the majority of our sites are considerably deeper

(median: 800 m) and thus expected to experience less variability

[15,31]. For instance, in a seasonal study of the Pakistan margin

[31], the 140 m station experienced relatively large changes to

oxygen, temperature and salinity, whereas the 300 m station and

below experienced variation that ranged from less than instrumen-

tal error to approximately 10%. CTD casts from that margin

indicate that inter-seasonal differences in environmental par-

ameters converge at more than 200 m depth [15], which is

common on most margins (e.g. [33]). In our dataset, only approxi-

mately 7% of stations are above 200 m depth, and thus the impact of

seasonal variability is expected to be limited.

In general, most environmental data in published studies

(including temperature, oxygen and per cent organic carbon)

were collected at the time of benthic faunal sampling. The excep-

tions to this are nine temperature measurements that were

calculated from climatological data (noted in electronic sup-

plementary material, dataset 1) and most carbonate system

parameters. In the past, it has not been routine to measure carbon-

ate system parameters during benthic faunal field programmes,

and thus this predictor variable must be estimated from global

databases. Direct measurements were used where available (elec-

tronic supplementary material, dataset 1), but for the majority of

the stations carbonate system parameters were obtained from the

dataset of Goyet et al. [32]. This dataset contains gridded climato-

logical fields for total dissolved inorganic carbon (DIC) and total

alkalinity (TA) below the mixed layer as a 18 � 18 � 32 vertical-

layer grid. For the Santa Barbara Basin, we used CalCOFI DIC

and TA measurements taken during July 2009 at station

081.8046.9. pH, pCO2 and saturation state (with respect to calcium

carbonate polymorphs) were calculated at in situ temperature, sal-

inity and pressure using the seacarb package in R. Direct

comparison between climatological [32] and measured [34] car-

bonate chemistry values at the same site suggests the level of

difference (less than 1%) at bathyal depths is negligible compared

with the wide range of values in the dataset (electronic supplemen-

tary material, figure S1).
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The degree of covariation between a given set of environ-

mental parameters was investigated by using bivariate plots

and calculating the coefficient of determination.

(b) Analytical procedures
Diversity metrics (H0(log2)) and J0) were calculated for each station

using the software PRIMER. For J0 analyses, three stations from

the Pakistan margin [15] with only one species present (J0 ¼ 0/0,

undefined) were removed. To maintain consistency, diversity

metrics were re-calculated from published datasets or from datasets

provided by the authors (all datasets used in this study are

compiled in the electronic supplementary material, dataset 1).

Regression trees recursively partition datasets based on an

exhaustive search across all variables for the split that maximizes

homogeneity of the two resulting subsets, with the model perform-

ance described by R2-values. Random forests build large numbers

of bootstrapped regression trees using random selections of predic-

tor variables at each node. The data not in the bootstrapped sample

(‘out-of-bag’ data) are used to estimate the percentage of variation

explained (pseudo-R2-values), with a negative or near-zero value

indicating a very poor fit. Relative importance (explanatory

capacity) of predictor variables is indicated by per cent change in

mean square error when a predictor variable is randomly per-

muted. Partial dependence plots show the marginal effect of a

given predictor variable on the response variable across the full

range of values. We note that the predictor variables used here

take different forms (e.g. linear and log units). While this would

be an issue for many statistical analyses, it is not a problem for

regression trees and random forests, as these analyses conduct

exhaustive searches for the split that maximizes homogeneity in

the two resulting subgroups and thus can accommodate all

forms of categorical and continuous data [28,35].

Regression tree analyses proceeded using the software pack-

age JMP. Regression trees can potentially be overfit, and thus we

conservatively stopped splitting after four splits. To test whether

this is still oversplit, we used the automatic stopping rule in

JMP, which continues splitting until the fivefold cross validation

R2-value is better than what the next 10 splits would obtain. For

no analysis was four splits found to be oversplit. Random forest

analyses proceeded using the package randomForest [36] in R

using ntree ¼ 1000 and mtry ¼ 2. While the focus of this paper is

on three major environmental parameters (oxygen, temperature

and pCO2) whose changes are often hypothesized to provide the

most pressing threats to marine life [6,37], a further random

forest analysis for diversity and evenness was run using a broader

range of possible predictor variables that included these three

global change variables, all other parameters of the carbonate

system, salinity, seafloor depth, mixed-layer depth, sieve size

and area of seafloor sampled.
3. Results and discussion
(a) Correlation of environmental variables
Tight correlation between pairs of environmental parameters

would inhibit the ability of variance partitioning techniques

to determine the relative predictive capacity of variables. Of

the three global change variables, temperature is most strongly

correlated with depth (R2 ¼ 0.42), especially within ocean

basins (eastern Pacific, R2 ¼ 0.61; Arabian Sea, R2 ¼ 0.77; elec-

tronic supplementary material, figure S2; all environmental

correlations with depth had p , 0.05). Oxygen and pCO2 are

moderately to poorly correlated with depth in the full dataset

(R2 ¼ 0.24 and 0.18, respectively) and eastern Pacific (R2 ¼

0.17 and 0.09, respectively; electronic supplementary material,

figures S2 and S3). These two variables are more strongly
correlated with depth in the Arabian Sea (R2 ¼ 0.55 and 0.47,

respectively; electronic supplementary material, figure S4),

consistent with the relatively smaller geographical area

and lower number of distinct water masses sampled. Overall,

sufficient variation exists to distinguish the influence of

depth from environmental variables, and depth was only

ranked 8th of 13 in predictive capacity for diversity when all

possible predictor variables were considered (electronic sup-

plementary material, figure S6). Depth was ranked first in

predictive capacity for evenness (electronic supplementary

material, figure S7) but the complete model only explained a

small percentage of variance (pseudo-R2 ¼ 0.06), suggesting

that the effect size of all investigated variables for evenness

is small. In summary, while depth is recognized as an impor-

tant correlate of diversity on non-upwelling margins and

across large depth ranges [30], environmental factors appear

to have more explanatory power across the strong hydro-

graphic gradients present at upper continental slope depths

on upwelling margins.

With respect to pairwise correlations between the three global

change variables, most variables were moderately to poorly cor-

related (e.g. R2 , 0.30), including all comparisons in the full

dataset (electronic supplementary material, figure S2)—not sur-

prising given the number of water masses considered. All

pairwise correlations except for temperature and pCO2 in the

full dataset and eastern Pacific, and temperature and oxygen in

the Arabian Sea, had p , 0.05. The only highly correlated

environmental variables were oxygen and pCO2 at the ocean

basin level, specifically R2 ¼ 0.57 for the eastern Pacific and

R2¼ 0.43 for the Arabian Sea. This relationship is to be expected

given the biogeochemical linkage between these variables dis-

cussed above. While this suggests some caution should be

applied to interpreting the differential effects of oxygen and

pCO2, considerable variation does remain, thus allowing the

individual effects to be discerned during variance partitioning.
(b) Diversity: full dataset
Machine learning methods for variance partitioning

(regression trees and random forests) were first applied to

better understand the potential for oxygen, temperature and

pCO2 to explain variation in diversity, which was estimated

with the Shannon diversity index (H0(log2)). In regression tree

analysis, all three variables (T, O2 and pCO2) explain much

of the variance in diversity (R2 on first three splits ¼ 0.59;

electronic supplementary material, figure S8). Oxygen concen-

tration is the predictor variable that best explains variance,

with diversity in communities living below 0.16 ml l21 O2

(7 mM) around half that at higher oxygen concentrations

(table 1; average H0 of 2.1 versus 4.0 in low- and high-O2

partitions). This oxygen level is similar—within available

precision—to macrofaunal oxygen thresholds identified in

the Pleistocene fossil record of the Santa Barbara Basin [12].

Further, this is the oxygen level identified on the Pakistan

margin below which foraminifera-dominated processing of

particulate organic matter occurs (relative to macrofauna),

pointing to potential direct or indirect functional links between

diversity and organic matter cycling [26]. It is emphasized

though that the specific causal link between oxygen and diver-

sity is unclear; it could be related to a direct physiological

control [38,39], feeding efficiency [26], predator–prey

dynamics [27], or a combination of these and other factors.

Above 0.16 ml l21 O2, the next recursive split in the regression
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Figure 1. Random forest analyses of macrofaunal diversity (H0) with respect to oxygen, temperature and pCO2. Predictive capacity (variable importance) analyses (a)
measure the percentage change in mean square error when a predictor variable is randomly permuted. Partial dependence plots (b – d ) show the marginal effect of
a given predictor variable on the response variable. Hash marks on the x-axis of partial dependence plots indicate the distribution of data (as deciles) across the
variable range; areas with low data coverage may be less accurate.

Table 1. Regression tree analyses of macrofaunal diversity (H0) and evenness (J0) with respect to temperature, oxygen and pCO2. Analyses were run for the full
dataset, the eastern Pacific Ocean and Arabian Sea, and for the full dataset with sedimentary organic carbon (TOC) included as a fourth predictor variable. For
each analysis, the predictor value for the first split is shown, as well as the average and standard deviation of the response variable for the subsets above and
below that value. The R2-value represents the value for the first split, followed by the predictor variable for the second split. Graphical representations of the
first four splits in regression trees and accompanying R2-values and cross-validated R2-values are shown in the electronic supplementary material, figure S8.

response dataset stations
first split predictor
value response value (above; below) R2 first split second split

diversity (H0) full 94 O2 0.16 ml l21 4.0+ 0.9; 2.1+ 1.2 0.44 T

diversity (H0) eastern Pacific 57 O2 0.098 ml l21 4.0+ 0.9; 1.9+ 0.8 0.45 T

diversity (H0) Arabian Sea 37 pCO2 1026 matm 1.1+ 0.9; 3.3+ 1.1 0.56 O2

diversity (H0) full with TOC 77 O2 0.17 ml l21 4.0+ 1.0; 2.1+ 1.2 0.42 O2

evenness (J0) full 91 T 9.88C 0.68+ 0.21; 0.82+ 0.10 0.17 pCO2

evenness (J0) eastern Pacific 57 T 10.28C 0.61+ 0.23; 0.81+ 0.10 0.23 T

evenness (J0) Arabian Sea 34 T 98C 0.74+ 0.16; 0.89+ 0.07 0.29 pCO2

evenness (J0) full with TOC 74 T 9.88C 0.67+ 0.21; 0.81+ 0.10 0.18 pCO2
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tree is for temperature, with stations less than 7.18C having

higher diversity than those at higher temperatures (full

regression tree in the electronic supplementary material,
figure S8). These results are consistent with hypotheses

suggesting that temperature may influence biodiversity differ-

entially at low, medium and high temperatures [40].
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These three variables also explain much of the variance

in diversity in random forest analyses (pseudo-R2 ¼ 0.49;

figure 1) Oxygen concentration is again the predictor variable

that best explains variance in the random forest (figure 1).

The partial dependence plot from the random forest (figure 1)

exhibits a sharp decrease through the same oxygen range

indicated by regression trees, and suggests that above approxi-

mately 0.5 ml l21 (22 mM) O2, oxygen plays little role in shaping

diversity. pO2 (matm) is a measure that accounts for effects of

pressure, temperature and salinity on oxygen availability to

organisms, and when pO2 (matm) was used instead of [O2]

(ml l21), a nearly identical result was obtained with a regression

tree first split at 6.6 matm and little relationship between of pO2

and diversity above approximately 20 matm (electronic

supplementary material, figures S10–S11).
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Figure 2. Random forest analyses of macrofaunal evenness (J0) with respect
to oxygen, temperature, and pCO2. Description of random forest plots as
in figure 1. Eastern Pacific and Arabian Sea random forest shown in the
electronic supplementary material, figure S9.
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(c) Diversity: eastern Pacific and Arabian Sea
The relative predictive power of temperature, pCO2 and O2 for

explaining variance in diversity is different between ocean

basins and regionally within the Pacific (figure 1; electronic

supplementary material, figure S16). While the explanatory

power of oxygen for diversity is high in both ocean basins,

the sharpest drop in H0 in partial dependence plots is at

approximately 0.17 ml l21 (7.5 mM) O2 in the eastern Pacific

and at approximately 0.5 ml l21 (22 mM) in the Arabian Sea.

Further, pCO2 emerges as the variable with the most predictive

power in the Arabian Sea—with threshold behaviour at

approximately 900 matm in partial dependence plots and a

first split at approximately 1000 matm in the regression tree.

By striking contrast, pCO2 appears less relevant to explaining

variation in continental margin macrofaunal diversity in the

eastern Pacific Ocean. Conversely, temperature has low predic-

tive ability for diversity in the Arabian Sea, but has high

predictive ability in the Pacific (figure 1).

To investigate the effect of the carbonate system further, a

separate random forest analysis was run using only pH, pCO2

and saturation states of calcium carbonate (V; aragonite and cal-

cite). While carbonate chemistry parameters can covary on a

local level, there is considerable variation based on differences

in temperature, depth and salinity (electronic supplementary

material, figure S5), allowing the effect of individual parameters

to be partitioned. Results indicate that in the Arabian Sea pCO2

(values from 444 to 1140 matm), and secondarily pH (values

from 7.60 to 7.88), best explain variance in diversity (electronic

supplementary material, figure S15). This suggests the possible

driver of low extant diversity may be the physiological effects

of increased pCO2 and decreased pH on organisms (through

acid-base regulation from disturbances in extracellular pH

[41]) rather than increased energetic costs of producing and

maintaining a carbonate skeleton at undersaturation (note also

both oceans are dominated by unmineralized polychaetes; elec-

tronic supplementary material, table S2). In the eastern Pacific,

pCO2 levels extend far higher, and undersaturation is more

extensive, yet the carbonate system parameters explain much

less of the variance in diversity than in the Arabian Sea

(figure 1; electronic supplementary material, figures S8 and S15).

Why, then, does pCO2 appear to have high explanatory

power for macrofaunal diversity in the Arabian Sea but not

the eastern Pacific Ocean? The major taxonomic composition

of the organisms is broadly similar (electronic supplementary

material table S2), suggesting wholesale faunal replacement

is not the cause. In the Pacific, long-term exposure of
organisms to naturally high-CO2 waters [22,42] may lead to

adaptations to high-CO2/low-pH conditions. By contrast,

the Arabian Sea is characterized by much lower background

pCO2 levels but higher temperatures. Here, the interaction of

elevated temperature, which increases metabolic rate, could

reduce tolerance to higher CO2 through energetic constraints

(achieving appropriate aerobic scope) [41,43,44].
(d) Evenness
We further examined the extent to which evenness, as esti-

mated by Pielou’s J0 metric, is explained by these three

global change variables. The regression tree indicates a first

temperature split at approximately 108C, with R2 ¼ 0.17

(table 1); clearly, evenness is less well explained by these vari-

ables than diversity. Random forest analysis returned a

negative pseudo-R2-value, although the analysis also finds

temperature to be the predictor variable that best explains

variance in evenness, and partial dependence plots also
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Figure 3. Continental margin depths most likely to experience macrofaunal biodiversity loss due to deoxygenation, increasing temperature and increasing pCO2 for
(a) eastern Pacific Ocean and (b) Arabian Sea. Depths along transects that are currently beyond the environmental threshold for the predictor variable with the most
explanatory power are shown in black (natural low diversity). Depths along the transect that are close to diversity thresholds for the predictor variable with the most
explanatory power—and most at risk of rapid diversity loss due to global change—are depicted in blue (eastern Pacific) and green (Arabian Sea). Depths close to
diversity thresholds for the predictor variable with the second best predictive power are depicted with cross-hatching. Note that while the regression tree and
random forest indicate decreases in diversity with respect to temperature at approximately 78C in the eastern Pacific Ocean, the partial dependence plot indicates
these effects are linear over a range of temperatures, and there may not be a specific threshold. Plotted diversity thresholds are based on figure resolution in
OCEAN DATA VIEW and the results of regression tree and random forest partial dependence plots. (Online version in colour.)
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show a sharp drop in evenness through the 8–108C range

(figure 2). In permutation tests, oxygen performs no better

than random. Thus, while temperature may have a small

impact on evenness, other factors such as food supply may

be equally important [25]. Notably, random forest analyses

on the 74 stations with data available for sedimentary total

organic carbon (a proxy for food) resulted in a positive,

albeit small, pseudo-R2-value of 0.07 (with temperature

remaining the variable with the best predictive capacity;

electronic supplementary material, figure S14).
(e) Predicting future ecological change
Based on analysis of macrobenthos response to environmental

gradients on modern continental upwelling margins, we pre-

dict disparate effects on ecosystem structure due to future

global change. Diversity is likely to drop in response to pro-

jected decreases in oxygen levels and increases in temperature

and pCO2, with variation between ocean basins depending on

current adaptations and interactions of stressors. On the other

hand, evenness may be relatively less affected by these investi-

gated variables; continued research is needed to understand
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possible controls on evenness. An important message arising

from these results is that while absolute thresholds can provide

a guide, specific laboratory or empirical thresholds derived

from one ocean basin may translate poorly to another. In par-

ticular, oxygen thresholds determined primarily from

laboratory experiments on Atlantic species [45] are unlikely to

be applicable to eastern Pacific species [46]; the same may

also hold true for temperature and pCO2. Finally, the compari-

son of the eastern Pacific and Arabian Sea suggests that

continental margin organisms may be well adapted to naturally

occurring environmental stressors, but more sensitive to

changes in stressors to which they are not normally exposed.

If so, we predict that the biodiversity of relatively well-oxyge-

nated and low-pCO2 North Atlantic margins (where the slight

OMZ is characterized by pCO2 levels of approx. 500 matm com-

pared to approx. 1200 matm in the North Pacific) will be

strongly affected by deoxygenation and ocean acidification.

Considering the basin-scale thresholds identified in this

study, and making the assumption of niche stability [47,48], it

is possible to predict areas of the seafloor most at risk of sharp

biodiversity loss and attendant changes to carbon-cycle pro-

cesses [4,26] by knowing stressor trajectories and identifying

areas where present conditions are close to threshold values

(figure 3). In general, upper to mid-slope depths (200–1500 m)

are most at risk; depths more than 1500 m are not near threshold

values of oxygen, temperature or pCO2. In the eastern Pacific,

areas vulnerable to synergistic temperature and oxygen

change are predicted for the southern tip of Baja to around

San Francisco along the California coast, where critical oxygen

and temperature levels co-occur in the approximately 400–

800 m range depending on latitude, and on the Peru margin at

approximately 600–800 m (figure 3a). In the Arabian Sea, large

areas of the upper to mid-slope between Somalia and Iran are

predicted to be vulnerable to increases in pCO2, with many

areas also at risk from declining oxygen. The outer shelf on the

Pakistan and Indian margins are also at considerable risk from

these combined stressors, as are upper to mid-slope depths on

the southwestern Indian margin (figure 3b). Diversity is of

course only one factor influencing ecosystem function. Other

responses such as identity and density of individual species, life-

styles, feeding modes, biomass or calcification may change at
different levels than these identified diversity thresholds, with

consequences for valued sediment services.
4. Conclusion
These analyses highlight the utility of modern ocean environ-

mental gradients in providing a natural laboratory to study

future oceans. Specifically, oxygen is identified as the variable

that best explains variance in macrofaunal diversity, and

suggests that continued research and forecasting efforts into

the multiple (and complex) drivers of oxygen dynamics on

upwelling margins [49–51] and the resulting ecophysiological

effects [39] should be a priority. This natural gradient approach

accounts for adaptive responses arising from the evolutionary

history of organisms, and illuminates responses over a complete

range of variable space for multiple stressors in a manner not

tractable in laboratory experiments. These results can also be

used to design more relevant laboratory experiments, allowing

a focus on threshold and vulnerable conditions. Together, the

study of modern environmental gradients, the fossil record

and targeted mechanistic experiments yield an integrated

approach to predicting future responses to global change.
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5. Bijma J, Pörtner H-O, Yesson C, Rogers AD. 2013
Climate change and the oceans—what does the
future hold? Mar. Pollut. Bull. 74, 495 – 505.
(doi:10.1016/j.marpolbul.2013.07.022)

6. Gruber N. 2011 Warming up, turning sour, losing breath:
ocean biogeochemistry under global change. Phil.
Trans. R. Soc. Math. Phys. Eng. Sci. 369, 1980 – 1996.
(doi:10.1098/rsta.2011.0003)

7. Doney SC et al. 2012 Climate change impacts on marine
ecosystems. Annu. Rev. Mar. Sci. 4, 11 – 37. (doi:10.
1146/annurev-marine-041911-111611)

8. Crain CM, Kroeker K, Halpern BS. 2008 Interactive
and cumulative effects of multiple human stressors
in marine systems. Ecol. Lett. 11, 1304 – 1315.
(doi:10.1111/j.1461-0248.2008.01253.x)
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