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Abstract

Background: Large-scale brain networks such as the default mode network (DMN) are often 

disrupted in Alzheimer’s disease (AD). Numerous studies have examined DMN functional 

connectivity in those with mild cognitive impairments (MCI), a presumed AD precursor, to 

discover a biomarker of AD risk. Prior reviews were qualitative or limited in scope or approach.

Objective: We aimed to systematically and quantitatively review DMN resting state fMRI studies 

comparing MCI and healthy comparison (HC) groups.

Methods: PubMed was searched for relevant articles. Study characteristics were abstracted and 

the number of studies showing no difference vs hyper- vs hypo-connectivity in MCI was tallied. A 

voxel-wise (ES-SDM) meta-analysis was conducted to identify regional group differences.

Results: Qualitatively, our review of 57 MCI vs HC comparisons suggests substantial 

inconsistency; 9 showed no group difference, 8 showed MCI>HC and 22 showed HC>MCI across 

the brain, and 18 showed regionally-mixed directions of effect. The meta-analysis of 31 studies 

revealed areas of significant hypo- and hyper-connectivity in MCI, including hypoconnectivity in 
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the posterior cingulate cortex/precuneus (z = −3.1, p< 0.0001). Very few individual studies, 

however, showed patterns resembling the meta-analytic results. Methodological differences did not 

appear to explain inconsistencies.

Conclusions: The pattern of altered resting DMN function or connectivity in MCI is complex 

and variable across studies. To date, no index of DMN connectivity qualifies as a useful biomarker 

of MCI or risk for AD. Refinements to MCI diagnosis, including other biological markers, or 

longitudinal studies of progression to AD, might identify DMN alterations predictive of AD risk.

Keywords

Mild cognitive impairment; functional connectivity; default mode network; posterior cingulate 
cortex; resting state functional magnetic resonance imaging; Alzheimer’s disease

The disease process in Alzheimer’s Disease (AD) begins decades before dementia onset, 

making early identification of risk factors of great importance[1, 2]. Examining individuals 

diagnosed with mild cognitive impairment (MCI), who have a high risk of progressing to 

AD[3], can help identify such risk factors. This is analogous to cardiovascular disease, 

where the primary emphasis is on addressing subsyndromal risk factors (e.g., hypertension) 

rather than heart attack or congestive heart failure.

Researchers have suggested that functional neuroimaging may be particularly valuable for 

detecting early, preclinical signs of AD[4, 5]. Images collected at rest, rather than during a 

cognitive task, may be preferred in clinical settings and for impaired patients. Neuroimaging 

techniques sensitive to spatial patterns of blood flow or blood oxygenation are important 

tools for investigating the large-scale functional organization of the human brain[6]. Among 

the functionally-coordinated networks studied to date, the default mode network (DMN) is 

one of the best characterized[7]. The DMN was first described by Raichle and colleagues in 

an effort to account for task-related activation decreases in neuroimaging studies[8]. The 

DMN has increasingly been defined as a network of increased response during a passive 

state[8] rather than a pattern of regional signals observed in the absence of any task. In this 

review, DMN is broadly operationalized as described by Buckner and colleagues[9] as a 

network of brain regions that are reliably correlated during the resting state. This 

characteristic set of brain regions demonstrate correlated fluctuations of low-frequency 

activity. Although these correlations do not necessarily indicate functional connectivity, we 

adopt the term here given its widespread use in the literature. The DMN is generally 

conceptualized as comprising posterior cingulate and precuneus, inferior parietal lobules, 

lateral temporal cortex, medial prefrontal/anterior cingulate cortex, and hippocampus[8, 9], 

although the role of the hippocampus in the DMN is the subject of some debate[10].

Many studies provide evidence of disease-related disruption of the DMN, with some of the 

strongest evidence coming from studies of AD[7]. Multiple reviews have summarized 

findings on functional connectivity in AD and MCI[7, 10–23]. Functional connectivity 

within the DMN tends to decrease with normal aging, with accelerated decreases in AD[7, 

24]. Previous reviews of DMN connectivity in MCI have been qualitative and focused on the 

general pattern of results without systematically cataloging discrepancies (e.g., which 

connections are affected and in which direction) or study characteristics (e.g., pre-processing 
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steps or connectivity metrics) that might explain variability of findings[10–17, 20–22, 24, 

25]. Results were inconsistent in a recent systematic review and meta-analysis of resting 

state networks in AD[23]: relative to comparison participants, those with MCI exhibited 

both hypo- and hyper-connectivity in network-based meta-analyses and no difference using 

voxel-based activation likelihood estimation. The findings were based on 15 resting state 

studies, not all of which focused on the DMN, and the authors did not systematically address 

possible sources of heterogeneity of findings. In addition, the techniques used for meta-

analysis in this review[23] could not accommodate studies with null findings or consider 

directionality of differences, therefore running the risk of overestimating true group 

differences and obscuring inconsistency in the direction of differences. An older review did 

use meta-analytical techniques that could accommodate null, positive, and negative findings 

to analyze 11 resting state DMN studies comparing MCI to HC[26]. Mostly hypo-, but some 

hyper-activations were found; examination of potential heterogeneity within these studies 

was limited.

Here we sought to overcome previous limitations by comprehensively and systematically 

reviewing the literature through February 2018 regarding the extent to which resting 

function and intercorrelations in the DMN can differentiate individuals with MCI from HC 

individuals. We elected to focus on the DMN because this network is most often studied in 

the context of AD-related abnormalities[23]. We aimed to discover if there were any 

measures of resting functional magnetic resonance imaging (fMRI) activity in the DMN that 

were consistently different between these groups and in a consistent direction, thereby 

suggesting a potential biomarker of AD risk. We first used a tallying method to evaluate this 

literature, because there is high variability of analytic methods across studies. We 

hypothesized that there would be hypo-connectivity in the DMN in MCI, as a precursor to 

such deficits in AD.

Next, we conducted a voxel-based meta-analysis of group differences in DMN-related 

connectivity to identify regions of consistent hypo- or hyper-connectivity in MCI compared 

to healthy individuals. We also examined the consistency of effects within the identified 

clusters across studies, and whether variation in study characteristics or analytic approach 

explained heterogeneity in these effects.

Methods

Using the PubMed search engine in February 2018, we searched articles using the following 

string: (“mild cognitive impairment” OR MCI) AND (“default mode network” OR DMN) 

AND (“resting state” OR “resting-state” OR rest). This search yielded 131 primary English-

language articles; 196 additional articles were found through references listed in primary 

articles. We excluded conference abstracts and unpublished studies.

Inclusion/Exclusion of Studies

We identified 56 published studies (reporting 57 group comparisons) that met the following 

criteria: 1) primary articles examining a sample of individuals with MCI, and 2) using fMRI 

to measure DMN functional connectivity during a resting state. Of the total 327 records, 233 

were excluded initially based on screening of abstracts; 39 further articles were excluded 
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following full-text reviews. Reasons for exclusion and numbers of articles meeting exclusion 

criteria at each stage are shown in Figure 1. We contacted the authors of the two studies with 

unclear direction of results, but received no response, so these studies were excluded. We did 

not exclude studies based on quality, but rather recorded various aspects of the study in order 

to examine their relationship to the findings.

Procedures

The following data were extracted by co-authors (SG, AM, SH, JE, and LE) from the 

remaining studies: numbers and characteristics of participants; criteria for defining MCI; 

neuroimaging method; if and how researchers controlled for motion in the scanner; 

acquisition time of the fMRI scan; whether global signal regression was included in the 

analysis; neuroimaging analysis approach; exclusion criteria; and general findings. We 

summarized the brain regions that each study analyzed using resting state functional 

connectivity measures. We categorized results into three primary directions: greater resting 

state functional connectivity or nodal signal in MCI compared to HC individuals 

(MCI>HC); reduced resting state functional connectivity or nodal signal in MCI compared 

to HC individuals (HC>MCI); or, no significant between-group difference (MCI≈HC). If 

authors mentioned brain regions in their analysis section but did not report group differences 

in these regions, it was assumed that there were no significant differences therein.

We then used effect size seed-based d mapping (ES-SDM[27, 28]) to further examine 

whether there were consistent patterns of hypo- or hyper-connectivity across studies. This 

method takes into account location and effect size of peak activations within reported 

clusters from voxel-based studies and their sample sizes to summarize areas of significantly 

overlapping findings. We chose ES-SDM over similar methods because of its incorporation 

of effect sizes, ability to account for both direction of effects (hypo- and hyper-connectivity), 

and ability to incorporate null findings[27]. We elected to include only seed-based, 

independent components analysis (ICA), and region-of-interest (ROI) studies in this analysis 

(n=38) since these were most similar in examining correlations between separate DMN 

regions. Of these, we could only include studies that performed voxel-based analysis and 

reported coordinates for clusters of group difference or a null finding (n=31). Seven studies 

were excluded for not doing voxel-based analyses or only showing figures of group 

differences[29–35]; 2 found MCI>HC, 3 found MCI<HC, and 2 found no group difference. 

Built-in functions for translation between different coordinate systems were used. We 

calculated maps of mean group differences and used the built-in permutation procedures 

(n=10) to calculate p-values for the observed clusters. The mean map was thresholded at 

p≤0.005, minimum cluster size of 20, and all Z values within the cluster >1.0. This protects 

a whole-brain p-value of approximately p=0.025[27]. To further examine the reliability of 

the clusters, we performed post-hoc jackknife analyses to examine in how many leave-one-

study-out subsamples a particular cluster remained significant. This indicates whether some 

clusters are being driven by only one or two studies, such that when one of these is removed 

from the analysis, the cluster is no longer significant. Since only one study is left out of the 

analysis at a time, however, the jackknife analysis does not speak to the consistency of 

findings across studies within that region.
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Thus, to examine the degree of consistency of results between studies, we extracted the 

mean effect size in each study within each of the clusters of group difference identified by 

the meta-analysis. For each cluster, we counted how many studies showed a non-zero group 

difference in the same direction as indicated by the meta-analysis. This is analogous to a 

follow-up analysis in a clinical trial that counts how many individual patients showed 

improvement for a measure that showed a significant intervention group effect. If the 

beneficial treatment effect was driven by a small number of patients showing robust 

improvements while other patients remained unchanged or went in the opposite direction, 

then it indicates that the treatment cannot be recommended for everyone. Similarly, if there 

is heterogeneity between imaging studies within the meta-analytic clusters, this suggests that 

the observed cluster connectivity deficits are not universally indicative of MCI. In addition, 

to further illustrate heterogeneity, we mapped, at each voxel, the number of studies with non-

zero effect sizes (as determined by the ES-SDM algorithm for translating coordinates to 

spatial effect size maps).

We also examined associations between individual study findings and the following study 

characteristics: analysis type (seed-based vs. ICA vs. other), mean age of MCI and HC 

groups, gender ratio of groups, resting state scan length, whether individuals were excluded 

for excessive motion, and whether global signal regression was performed. We opted to 

examine these factors individually, instead of creating a global quality score, in order to 

understand which methodological elements, if any, related to the magnitude and direction of 

observed effects. We specifically compared studies that reported a non-zero, directionally-

consistent effect to studies that did not show a difference within any meta-analytic clusters in 

which at least 5 studies showed an effect. This binary approach was used because the mean 

effect sizes within the meta-analytic clusters were generally not normally distributed across 

studies, so assumptions underlying a continuous meta-regression approach were not met. T-

tests were used to compare studies showing versus not showing an effect on continuous 

measures; χ2 tests were used for discrete measures. Only in one cluster, where there were 16 

studies showing a non-zero effect in the same direction, were we able to correlate continuous 

study characteristics to the mean effect size or compare effect sizes between discrete study 

characteristics. Finally, we calculated for each study a “similarity score” which indexed in 

how many of the meta-analytic clusters non-zero effects were observed in that study. The 

“similarity score” is thus a measure of the degree to which the distributed, regional patterns 
of hypo- and hyper-connectivity seen in each study matched the apparent pattern of hypo- 

and hyper-connectivity that emerged from the voxel-based meta-analysis across studies. We 

then tested the relationship of this score to study characteristics, to understand if there were 

factors that predisposed individual studies to observe a pattern of results most like those of 

the overall meta-analysis.

Results

Study Characteristics

Study characteristics and results for all 56 reviewed studies are shown in Supplementary 

Table 1; summary statistics are presented in Supplementary Table 2. The average sample 

size for MCI groups was 26 (range: 6–129) and 28 for HC groups (range: 8–114). We 
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considered 18 studies (32%) to have “large” samples based on a total sample size greater 

than 50. The total N across all studies was 1457 for MCI and 1577 for HC.

The mean age was 70.0 years for MCI samples and 68.5 years for HC samples. Average 

male:female ratios were 1.11 for MCI and .86 for HC groups. Typical exclusion criteria 

included presence/history of: psychiatric/psychological disorders, behavioral disorders, or 

intellectual disabilities (n=43); neurological disorder (n=39); and medical disease/disorder 

(n=38). All but six studies[34–39] used Petersen Criteria to determine MCI status[40]. 

Petersen Criteria include a change in cognition, impairment in at least one cognitive domain 

relative to age and education norms, preserved independence in functional activities, and 

absence of dementia. Most studies included amnestic MCI, i.e., deficits in episodic memory 

were required, often in addition to deficits in other domains.

Average acquisition time for resting state fMRI scans was 7 minutes 20 seconds. Thirty 

studies censored fMRI images for motion; five excluded time points and 28 excluded 

participants. In 24 studies reporting such information, an average of 8% of participants were 

excluded for motion. Most studies (n=40) did not include global signal regression, which 

may artificially induce negative correlations[41, 42] (but see[43, 44]).

Analytic approaches used (and the number of studies) were: ICA (n=25), voxel-wise seed-

based analysis (n=10), graph theory (n=5), regional homogeneity/amplitude of low 

frequency fluctuations/coefficients of spontaneous low frequency (n=7), ROI analysis (n=6), 

Granger causality (n=2), sparse statistical parametric mapping (n=1), and voxel-based 

functional connectivity strength (n=1).

Study Results

Directionality: Nine of the 57 comparisons found no MCI-HC differences in resting state 

signal or functional connectivity in any regions examined or for any measure[29, 33, 45–50] 

(Supplementary Table 1). Of those reporting differences, 30 studies found consistent 

directionality for all DMN regions or measures reported as significantly different; 13 studies 

reported no null results in any regions (although 11 did not state explicitly all regions or 

voxels tested, making it difficult to be confident that there were no regions of null results); 

17 reported some null results in addition to the unidirectional ones. Among these studies, 

MCI>HC was observed in eight[36, 51–57]; MCI<HC in 22[30, 32, 35, 38, 48, 54, 58–72]. 

The remaining studies (n=18) found significant group differences in both directions; six 

found more clusters of MCI>HC than MCI<HC[22, 73–77] and for 11, the opposite was 

found[31, 37, 48, 78–84]. Finally, one study found higher intensity but lower cluster size in 

MCI compared to HC in the posterior cingulate cortex[34].

Effect size seed-based d mapping (ES-SDM): Coordinates and t-values of peak 

voxels in above-threshold clusters of group difference from a subset of 31 studies (indicated 

by an * in Supplementary Table 1) were analyzed with the ES-SDM program[27, 28]: total 

N=678 MCI and 784 HC. This review thus analyzed double and triple the number of studies 

included in previous meta-analyses[23, 26]. A map of the peak voxels from these studies 

colored by direction of effect (red=MCI>HC, blue=HC>MCI), with dot size indicating 

relative study sample size, is presented in the Supplementary Figure. The meta-analysis 
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revealed several clusters of significant group difference in both directions across studies. 

Figure 2 shows the significant clusters. Table 1 gives the location and size of the clusters, 

mean effect size, and significance.

The largest and most significant group difference cluster was in midline posterior cingulate 

gyrus/precuneus with reduced DMN connectivity in MCI compared to HC. This was the 

most consistent cluster across studies; 52% showed this effect. Another cluster of HC>MCI 

was found in the left lenticular nucleus/putamen. MCI>HC clusters were also observed, with 

the strongest and most consistent results found in inferior (BA11) and superior (BA32) 

medial prefrontal cortex, and in a small region within the left angular gyrus. Only 16–19% 

of studies showed any evidence of MCI>HC in these regions, however. Four additional 

clusters of MCI>HC in the left inferior temporal gyrus, left postcentral gyrus (inferior and 

superior), and right precentral gyrus were significant in the meta-analysis but only observed 

in <15% of studies. We further examined degree of consistency versus heterogeneity of the 

meta-analytic findings across studies by mapping the number of studies exhibiting a non-

zero effect size in each voxel (Figure 3). The maximum number of studies showing a non-

zero group difference in the same voxel was 19 (61%), in the peak of the identified posterior 

cingulate cortex cluster. In most other voxels, including those within significant meta-

analytic clusters, only a handful of studies showed significant group differences.

Finally, we examined the degree to which the whole-brain regionally-distributed pattern of 

hypo- and hyper-activations observed in the group analysis was also observed in individual 

studies. For each study, we masked the study’s effect size map by the meta-analytic cluster 

mask, and counted the number of clusters in which the mean effect was non-zero and in the 

same direction as the meta-analysis. With 9 significant clusters, this similarity score could be 

0–9 for a given study. The mean similarity score was 1.5 (SD=1.5), with a minimum of 0 (7 

studies) and a maximum of 5 (3 studies) clusters in the expected direction of non-zero effect 

within a study. Only three studies showed the meta-analytic pattern of both HC>MCI in the 

large posterior cingulate cluster and MCI>HC in the large medial prefrontal cortex cluster.

Sources of heterogeneity (See Supplementary Table 3): In general, we found very 

few characteristics that distinguished among the studies in which results were or were not 

different between groups in agreement with the meta-analysis. There was some evidence that 

studies finding a non-zero MCI>HC group difference had smaller HC sample sizes and 

shorter scan lengths. No sample or design characteristics differed between studies that did or 

did not show effects within the two HC>MCI clusters. In 16 studies finding non-zero 

HC>MCI effects in the posterior cingulate cortex, the size of the effect was related only to 

the male:female ratio of the sample. Studies with more MCI women showed smaller HC-

MCI differences (r (13)=−.55, p=0.03). Finally, we examined correlates of the similarity 

score (i.e., the number of meta-analytic regions in which a given study showed evidence for 

group differences in the correct direction). Studies that better matched the meta-analysis 

result used shorter scan lengths (r (28)=−0.40, p=0.03); other study characteristics were 

unrelated to similarity score.
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Discussion

Our qualitative review and meta-analysis suggests a far more mixed picture than reported by 

other reviews. The meta-analytic map based on voxel coordinates of group differences in 31 

studies shows 7 regions with MCI>HC and 2 with HC>MCI. However, a proportion of the 

clusters are not reliably observed in jack-knife analyses, and, in most clusters, only a handful 

of studies are contributing to the effect. Importantly, the pattern of results of most individual 

studies do not look like the pattern of results of the meta-analysis, averaging significant 

effects in only 17% of the observed clusters. Only three showed group differences in at least 

5 of the 9 significant regions and the meta-analytic pattern of posterior cingulate/precuneus 

hypoconnectivity along with medial prefrontal cortex hyperconnectivity.

Thus, evidence is weak for a single predictive biomarker of AD risk from DMN resting-state 

connectivity that will replicate across studies, or more importantly, be observed reliably at 

the individual subject level. Within AD, indices that combine regions of hypo- and hyper-

connectivity together have been examined, but effect sizes are low compared to other 

neuroimaging measures[85]. Our findings suggest the same is likely to be true for such an 

index when applied to MCI samples. Similarly, a mega-analysis included in our review[39] 

found hypo-connectivity in MCI relative to HC, but effect sizes were only small-to-medium 

and were not observed reliably within individual samples. They estimated that studies would 

need 140–600 participants in order to observe similar effects.

Our systematic review revealed much more inconsistency than would be expected given the 

repeated conclusions of qualitative reviews[10–17, 20–22, 24, 25]. These reviews did not 

focus on direction of effects, did not generally include published investigations after 2011, 

and did not examine potential factors that could explain heterogeneity of findings. One 

previous quantitative review only found limited DMN differences in varying directions[23], 

and did not examine sources of variability among studies. Another meta-analysis[26] that 

included a small subset of the studies reviewed here and similarly included null results and 

analyzed both directions of group differences, found several areas of hypo- and hyper-

connectivity, including hypo-connectivity within the posterior cingulate.

Our meta-analysis showed evidence of reduced connectivity in MCI compared to HC in a 

posterior cingulate cluster. The posterior cingulate is considered a DMN hub and may be 

important for switching between task-positive and task-negative networks[86]. Its 

involvement in MCI is consistent with the cascading networks hypothesis that posits it is an 

early site for functional disconnection that spreads to other cortical networks later in the 

course of AD[87]. Reduced posterior cingulate connectivity showed the most across-study 

consistency, yet it was present in only half of the studies. Further investigation of this 

important brain region is warranted.

We searched for study features that might explain inconsistencies. In general, there were few 

methodological differences that could account for the inconsistent results. In some cases, 

consistency with the meta-analysis was more likely among studies with lower HC sample 

size or shorter scan time. Since more observations are associated with greater power, these 

relationships only reduce confidence in the pattern of results. Age difference might be 
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important but mean age varied little across the reviewed studies. We were unable to 

systematically review longitudinal changes in DMN functional connectivity, and no studies 

examined whether MCI individuals progressed to AD. There may be a period of increased 

activation and/or functional connectivity as individuals progress from unaffected to MCI 

with an eventual decline as they progress to AD[88–91]. Thus, it is possible that 

heterogeneity within or between MCI groups with respect to this trajectory might increase 

the likelihood of inconsistent findings. Only studies following these individuals to dementia 

diagnosis will be able to resolve this issue.

Also, no studies in our review used actuarial or neuropsychologically-defined methods of 

diagnosis, even though the actuarial approach to defining MCI has been shown to result in a 

group that is more biomarker positive and at higher risk for progressing to AD[92, 93]. The 

actuarial approach has also been able to identify MCI in middle age[94], with higher AD 

polygenic risk scores associated with significantly increased odds of having MCI[95].

An additional source of heterogeneity among studies could be the presence or absence of 

other biomarkers such as amyloid or tau, which were not measured in the majority of the 

reviewed studies. It is possible that the combination of such biomarkers with resting state 

DMN connectivity deficits in, for example, the posterior cingulate, might more powerfully 

predict AD progression than either alone. The A/T/(N) framework emphasizes the value of a 

biomarker-based diagnosis of AD, with amyloid (A) and tau (T) being the defining 

pathologies[96]. In this framework, MCI is viewed as prodromal AD in the presence of 

biomarker positivity, usually defined by amyloid positivity. Biomarker data might help to 

resolve some of the heterogeneity of the DMN findings for MCI, but they are unlikely to 

fully account for the inconsistencies. Within regions demonstrating significant effects in the 

meta-analysis, some findings reflected hyper-connectivity while others reflected hypo-

connectivity. Biomarker negative individual may have MCI that is not due to AD and might 

be less abnormal, but it seems unlikely that their differences would be in the opposite 

direction. The A/T/(N) framework is also agnostic to the biomarker sequence, which means 

that some biomarker negative MCI cases are likely to be false negatives because they may 

ultimately develop biomarker positivity. Again, the only way that these issues can be 

resolved is through longitudinal studies that can track biomarker and diagnostic status 

through to dementia onset.

There are limitations to our review that should be considered. We may have missed some 

relevant papers with our search terms and our review of the references of the included 

papers. An advantage of our meta-analysis technique was its allowance for consideration of 

studies with null results. Publication bias against null studies may have strengthened the 

meta-analytic results, but that would suggest even greater inconsistency. It is further possible 

that some included studies contained overlapping samples, which again would serve to 

reduce heterogeneity, not enhance it. In addition, we considered studies that found MCI>HC 

versus HC>MCI in the same region to be inconsistent, but some might argue that analyses 

should be done regardless of direction to identify biomarkers of MCI. It did not appear from 

our data, however, that considering the absolute value of the group difference would have 

greatly changed the results. We focused on the DMN because it was the most commonly 

examined resting network. Consequently, we excluded studies of other networks and inter-
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network connectivity measures. We restricted our review to resting-state studies because 

these may hold the most promise for future clinical applications, and the various paradigms 

employed in task-based studies would have introduced an additional source of heterogeneity. 

It is possible, however, that task-based connectivity measures would reveal more consistent 

patterns in MCI. Because of additional inclusion criteria for the meta-analysis, it included 

only a subset of studies, limiting its power; however, heterogeneity was observed in both the 

quantitative and larger qualitative systematic reviews. Our review did not address other AD 

risk factors such as APOE genotype, beta-amyloid, or tau burden. These factors are also 

potentially important and should be examined in combination with MCI diagnosis in future 

studies.

In summary, although we found nine significant clusters of group difference in our meta-

analysis, the direction of the differences varied, and, similar to our qualitative findings, there 

were substantial inconsistencies between studies in the magnitude and topography of 

connectivity differences between MCI and HC groups. Although reduced posterior cingulate 

cortex connectivity in MCI was the most robust and consistent finding, being present in 52% 

of the studies, that also means that it was not reduced in 48% of the studies. Inconsistency 

was not clearly due to methodological variability. Once people progress to AD, there do 

appear to be consistent differences in DMN resting-state signal and intercorrelation 

compared with healthy older adults[23]. Therefore, such measures may yet prove to be a 

sensitive biomarker of risk for developing AD. This will likely need to be shown with large, 

longitudinal studies that follow people through conversion, and perhaps combine resting 

fMRI measures with biomarkers of amyloid or tau deposition. The results to date are too 

inconsistent, however, to support DMN functional connectivity, as currently measured, as a 

useful biomarker of risk for AD, as determined by current criteria for MCI.
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Figure 1. 
PRISMA flow diagram of review process.
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Figure 2. 
Significant clusters from the meta-analysis of studies comparing DMN resting state 

connectivity between those with mild cognitive impairment (MCI) and healthy comparison 

(HC) participants. Warm-colored clusters are regions where the studies indicated greater/

more positive correlation strength among those with MCI compared to HC. Cool-colored 

clusters are regions where the studies indicated lower/less positive correlation strength in 

MCI compared to HC.
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Figure 3. 
Number of studies out of 24 that showed a non-zero effect in each voxel. Locations of 

significant clusters from the meta-analysis are indicated with black outlines. The color scale 

indicates the number of studies with significant non-zero effects, not the effect size.
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