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Computational analysis of RNA
methyltransferase Rv3366 as a
potential drug target for
combating drug-resistant
Mycobacterium tuberculosis

Tasmin Nazim1‡, Vipul Kumar2†‡, Faraz Ahmed1,
Nasreen Z. Ehtesham3, Seyed E. Hasnain2,3*, Durai Sundar2* and
Sonam Grover1*
1Department of Molecular Medicine, Jamia Hamdard, New Delhi, India, 2Department of Biochemical
Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India, 3Department of
Life Sciences, School of Basic Science and Research, Sharda University, Greater Noida, India

Mycobacterium tuberculosis (M.tb) remains a formidable global health threat. The
increasing drug resistance amongM.tb clinical isolates is exacerbating the current
tuberculosis (TB) burden. In this study we focused on identifying novel
repurposed drugs that could be further investigated as potential anti-TB
drugs. We utilized M.tb RNA methyltransferase Rv3366 (spoU) as a potential
drug target due to its imperative activity in RNA modification and no structural
homology with human proteins. Using computational modeling approaches the
structure of Rv3366 was determined followed by high throughput virtual
screening of Food and Drug Administration (FDA) approved drugs to screen
potential binders of Rv3366. Molecular dynamics (MD) simulations were
performed to assess the drug-protein binding interactions, complex stability
and rigidity. Through this multi-step structure-based drug repurposing
workflow two promising inhibitors of Rv3366 were identified, namely,
Levodopa and Droxidopa. This study highlights the significance of targeting
M.tb RNA methyltransferases to combat drug-resistant M.tb. and proposes
Levodopa and Droxidopa as promising inhibitors of Rv3366 for future pre-
clinical investigations.
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Introduction

M.tb is the causative agent of TB and still one of the world’s lethal infectious pathogens.
According to the latest 2023 WHO Global Tuberculosis Report, during 2022, an estimated
10.6 million individuals globally contracted tuberculosis (TB), with a range of uncertainty
between 9.9 and 11.4 million cases. This figure translates to about 133 new cases per
100,000 individuals in the population. Among these newly reported TB cases, 6.3% were
identified in individuals living with HIV and 1.13 million people lost their lives due to this
co-infection. The majority of TB cases in 2022 were concentrated in specific WHO regions,
with South-East Asia comprising 46%, followed by Africa with 23%, and theWestern Pacific
with 18%. Smaller portions were observed in the Eastern Mediterranean (8.1%), the
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Americas (3.1%), and Europe (2.2%) (WHO, 2023). An increase in
the TB incidence rate was observed partly due to the continuously
emerging new drug resistant M.tb strains and partly because of the
COVID-19 pandemic (Shariq et al., 2022; Bagcchi, 2023).
Unfortunately, the COVID-19 pandemic has imposed a
detrimental impact on the progress made in the fight against TB
before 2019. It has worsened the overall burden of the disease by
disrupting routine TB diagnosis and treatment (Chakaya et al., 2020;
Chakaya et al., 2021; Sheikh et al., 2022). Understanding the reasons
of drug resistance in M.tb clinical isolates would eventually lead to
the identification of new drug targets as well as development of
effective anti-TB drugs. The current standard TB regimen, involving
drugs like Rifampicin and Isoniazid, faces poor compliance,
contributing to the problem of resistance. While new drugs like
Bedaquiline and Delamanid show promise against MDR and XDR-
TB, resistance issues have been observed in clinical practice (Sullivan
and Ben Amor, 2016). Consequently, there is a critical need for
research into new anti-TB drugs. To combat the exacerbated
virulence and resistance pattern of the pathogen, and to
eliminate TB globally by 2035, Researchers have explored
repurposing existing drugs to address this challenge, focusing on
finding new uses for approved drugs to quickly transition them from
lab to patient care (Sheikh et al., 2022; Malik and Sinha, 2023; Singh
et al., 2023). Currently there are 5-6 repurposed drugs approved by
WHO for the treatment for drug resistant TB, namely: delamanid,
bedaquiline, pretomanid, clofazimine, carbapenems, and linezolid
(Silva et al., 2018; Sharma et al., 2023; Singh et al., 2023).

In all living organisms RNAs, tRNAs, mRNAs, long noncoding
RNAs and microRNAs undergo almost 160 different chemical
modifications (Boccaletto et al., 2018; Xuan et al., 2018). In case of
microbes, methylation of RNA is a crucial modification for the
regulation of its stability, processing, nucleus-cytoplasmic export
and translation (Meyer and Jaffrey, 2014; Wang et al., 2014;
Slobodin et al., 2017; Anderson et al., 2018; Hu et al., 2021).
The process of methylation is carried out by a distinct family of
proteins called methyltransferases (MTases). Methyltransferases
are like multitasking conductors in the cell orchestra, involved in
crucial activities such as creating molecules, relaying signals, fixing
proteins, managing DNA packaging, and even silencing genes
(Petrossian and Clarke, 2011). They’re essential players in
controlling how genes express themselves and shape the fate of
the cell. For instance, Rv3366, a SAM-dependent
Methyltransferase in M.tb, plays the role of transferring methyl
groups from SAM (S-adenosylmethionine) to RNA, specifically
tweaking its structure. At present, Methyltransferase activity of
Rv3366 onM.tb RNA has been studied in vitro recently which will
be communicated in addition to its further characterization.
Limited mechanism of action has been revealed about this
gene of M.tb.

When we look closely at the types of RNA modifications, we see
that a large chunk—around 56%—is handled by RNA
methyltransferases, followed by tRNA methyltransferases at about
39%. These modifications are vital for the growth and survival of the
cell. In the game of antibiotics versus bacteria, the primary targets
are not the proteins but the RNAs (Malke et al., 1990). Antibiotics
like aminoglycosides, tetracycline, and others take aim at the RNA-
rich surfaces of ribosomal subunits, disrupting protein production.
Any changes to these rRNAs, like methylations or alterations in their

building blocks, could lead to resistance against these drugs
(Poehlsgaard and Douthwaite, 2005).

This makes RNA methyltransferases potential new targets in
fighting infectious diseases like tuberculosis. They could specifically
modify the rRNAs of the infectious agent, inhibiting protein
synthesis and also thwarting the mechanisms that make the
bacteria resistant to drugs. Scientists have been exploring drugs
that target these methyltransferases, aiming to find ones that can
specifically tackle the rRNA modifications in tuberculosis and other
infectious diseases (Foik et al., 2018). In human, rRNA and tRNA
MTases collectively cover about 95% of total MTases where rRNA
MTases constitute a significant portion with approximately 56%
having unique enzymatic functions (Lennard, 2010). This indicates
their essentiality in cell growth and survival. One of the important
options to investigate as possible therapeutic targets in M.
tuberculosis is methyltransferases (MTases). It is a large, diverse,
and biologically relevant protein superfamily that uses S-adenosyl-
L-methionine (SAM) to methylate various biomolecule substrates,
including proteins, DNA, and RNA. Previous research has
demonstrated that M.tb contains a very high number of
121 distinct MTases (Ali et al., 2021; Rani et al., 2022). In
comparison, MTases make up about 1.2% of all gene products in
yeast (Petrossian and Clarke, 2009; Petrossian and Clarke, 2019).
Also, there are 17 functional methyltransferases in Helicobacter
pylori (Lee et al., 2015). However, while many organisms have
multiple methyltransferases, not all methyltransferases are active
all the time. It was found that out of three putative
methyltransferases in Enterococcus faecalis only one was active
under the conditions tested (Huo et al., 2015).

Moreover, the differences in MTases protein structure between
prokaryotes and eukaryotes make them ideal for investigating as
drug targets. By inhibiting rRNA methyltransferases, it may be
possible to address the antibiotic resistance in M.tb without
interfering with host protein synthesis pathways (Salaikumaran
et al., 2022). Among these RNA MTases, M.tb Rv3366 (SpoU) is
a known tRNA/rRNA methylase which belongs to the RNA
methyltransferase TrmL family (InterPro, 2022). The homologue
of this protein is absent in human genome but present in various
species like Escherichia coli (Gustafsson et al., 1996; Persson et al.,
1997), Aquifex aeolicus (Hori et al., 2003), Thermus thermophilus
(Hori et al., 2002), and as trm3 in Saccharomyces cerevisiae (Cavaillé
et al., 1999). Among all these mentioned organisms SpoU has been
reported to play a crucial role in tRNAmodification. In case ofM.tb,
tRNA modification results in antibiotic resistance (Babosan
et al., 2022).

The rise of resistance against existing drugs calls for a deeper
search of a novel drug target as well as a novel drug to combat such
extensive resistance by the M.tb pathogen. Considering the known
fundamental importance of SpoU MTase in various organisms we
selected M.tb Rv3366 as a potential drug target for computational
analysis. The analysis of different MD simulation paths with
different molecules showed that the flexibility in RNA
methyltransferase contributes to its conformational stability,
which plays a critical role in the development of a drug target
against antibiotic resistance. This research sets the stage for creating
effective anti-TB drugs by targeting this mechanism. Also, molecular
docking and simulation studies conducted to explore the impact of
Methyltransferase on drug-binding revealed a correlation between
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the docking scores andmolecular simulation values for protein-drug
complexes. The binding energy and increase in H-bonds confirms
the stability of the drug target. By utilizing computational based drug
repurposing approaches this study aims to investigate the high
throughput interaction of Rv3366 with FDA approved drugs in
order to screen for its potential inhibitors. This study can further
help the researchers in finding novel repurposed drugs against drug
resistant M.tb.

Methods

Computational methods

Protein structure retrieval, modeling and
preparation

The RNA methyltransferase (Rv3366) (Uniprot ID: O50394)
structure was modeled using Alphafold2 integrated in ColabFold
with high confidence scores (pLDDT) for all the residues (>90),
except for residues 38–41 and residue 56 it was between 70 and 90,
for residues 42–55 between 50 and 70 (Jumper et al., 2021). The
pLDDT score and Predicted aligned error matrix has been shown in
Supplementary Figure S1 (Mirdita and Schütze, 2022). The model
was then prepared using Schrodinger’s protein preparation wizard,
which involved adding missing hydrogens, completing side chains
and loops, and removing water molecules (Desmond 2020). The
structure was refined with H-bond assignment at pH 7.0 using the
PROPKA tool (Søndergaard et al., 2011), followed by restrained
minimization using the OPLS3e forcefield (Roos et al., 2019) until
heavy atoms converged to 0.3 Å. Subsequently, classical molecular
dynamics (MD) simulations were conducted for 50 ns to equilibrate
the structure.

For MD simulations, the system was solvated with TIP3P water
in a periodic boundary box, ensuring a 10 Å distance between the
protein complex and the box wall to prevent unwanted interactions.
The system was neutralized by adding Na+/Cl− ions based on the
complex’s charge, and a low-temperature (10 K) Brownian motion
MD simulation was performed for 100 ps in the NVT ensemble to
eliminate steric clashes and unfavorable conformations. The system
was further equilibrated in both NVT and NPT ensembles using the
Desmond Schrodinger suite’s “relax model system before
simulation” option. Finally, unrestrained MD simulations were
carried out for 50 ns in the NPT ensemble at 300 K and 1 atm,
using the Nose–Hoover chain thermostat and
Martyna–Tobias–Kelin barostat, with a time step of 2 fs and a
recording interval of 50 ps. The resulting structure from the
simulations was used for subsequent analysis (Desmond 2020).

Receptor grid generation and virtual screening
workflow to screen ligands

In the receptor grid generation and virtual screening workflow,
the binding site coordinates of the known inhibitor SFG were
employed to create a grid (10 Å̂3) for molecular docking. The
SFG-bound structure of Rv3919c (PDB ID: 7CFE) was aligned
with Rv3366’s binding site using Schrodinger’s Align Binding Site
module. This module automatically detects the bound ligand and
aligns the residues within 5 Angstrom from the ligand. Figure 1A
shows the binding pose of SFG with Rv3919c (PDB ID: 7CFE), and

Figure 1B shows the binding site alignment of SFG with modelled
Rv3366. Once the grid was generated, ligands were retrieved from a
set of FDA-approved compounds (2,499) obtained from DrugBank.
These compounds were filtered based on Lipinski’s rule, resulting in
1,657 ligands. The LigPrep module of Schrodinger was then used to
prepare the ligands, including neutralization, desalting, and
minimization with the OPL3e force field (Friesner et al., 2006;
Harder et al., 2016).

The virtual screening workflow comprised three steps: (i) High-
Throughput Virtual Screening (HTVS), which docked the ligands
flexibly and performed post-docking minimization, resulting in
500 FDA-approved drugs for the next step; (Migliori, Sotgiu
et al.); Glide SP (Standard Precision), applied to the top
200 compounds from HTVS; and (iii) Glide XP, applied to the
output compounds from Glide SP, with the top 50 FDA-approved
compounds selected for further analysis (Friesner et al., 2006). The
3D visualization of docked complexes was done through ChimeraX
(Pettersen et al., 2021).

Molecular mechanics/generalized born surface
area (MM/GBSA) binding free energy

The results from the Virtual Screening Workflow, which
included the docking of 50 FDA-approved drugs to their target
proteins, were further analyzed to identify the top 20 molecules
based on their MM/GBSA binding free energy computation through
the following equations (Genheden and Ryde, 2015):

MM/GBSAΔGbind � ΔGcomplex − ΔGreceptor + ΔGligand( )

ΔG � ΔEgas + ΔGsol − TΔSgas
ΔEgas � ΔEint + ΔEelec + Δevdw

ΔGsol � ΔGgb + ΔGsurf

The gas-phase interaction energy (ΔEgas) was determined by
summing the electrostatic (ΔEelec) and van der Waals (ΔEvdw)
interaction energies, with the internal energy being disregarded. The
solvation free energy (ΔGsol) comprised both non-polar (ΔGsurf)
and polar solvation energy (ΔGgb), calculated using the VSGB
solvation model and the OPL3e force field (Li et al., 2011;
Edward et al., 2016). However, the entropy term was not
considered in this calculation. In summary, the MM/GBSA
binding free energy computation involved dissecting the energy
contributions from various components, such as gas-phase
interactions and solvation effects, to assess the binding stability
of the molecules under investigation. In essence, MM/GBSA binding
free energy is a commonly used method to establish a correlation
between the binding energy of a compound and its experimental
affinity for the target protein. It is important to note that the
reported binding energy values are not absolute due to inherent
limitations in accurately calculating force fields and entropy.
However, it is generally accepted that a more negative value for
the binding energy indicates a higher affinity of the compound for
the target protein.

Molecular dynamics (MD) simulations of the top
screened molecules

A total of eight FDA-approved drugs, as highlighted in the table,
were selected based on their availability and functionality for further
investigation with Rv3366. Molecular dynamics (MD) simulations of
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these selected complexes were conducted using the same protocol as
outlined previously for the modeled protein. The primary objective of
these simulations was to assess the stability of the top docked ligands
and monitor their crucial interactions throughout the simulation. To
comprehensively evaluate the stability and dynamic behavior of these
complexes during the MD simulations, several structural metrics were
calculated: (i) Root Mean Square Deviation (RMSD): RMSD measures
the deviation of the ligand-protein complex from its initial structure
over the course of the simulation. It provides insights into the overall
stability and structural changes of the complex (Migliori et al., 2012).
Root Mean Square Fluctuation (RMSF): RMSF quantifies the
fluctuation of individual atoms or residues within the complex
during the simulation. This analysis helps identify regions of the
protein or ligand that exhibit high flexibility or interactions that
may change significantly during the simulation. (iii) Radius of
Gyration (Harder et al., 2016): Rg is a measure of the compactness
ligand during the simulation. It offers information about the flexibility
(Anderson et al., 2018). Solvent Accessible Surface Area (SASA): SASA
calculation estimates the surface area of ligands that is accessible to

solvent molecules throughout the simulation. Changes in SASA reveal
alterations in the complex’s accessibility and potential conformational
rearrangements. Furthermore, to gain insights into the critical
interactions between the ligands and Rv3366, simulation interactions
were examined. This analysis involved monitoring the types of
interactions (such as hydrogen bonds, hydrophobic interactions, and
electrostatic interactions) formed between the ligands and the protein
throughout the simulation. The occupancy of these interactions was
also calculated, indicating how frequently they occurred during the
simulation (Schrödinger 2020).

Results

The top screened FDA-approved
compounds against Rv3366

The DrugBank was used for structure-based virtual screening
against Rv3366 using the virtual screening workflow of the Glide

FIGURE 1
The binding alignment of SFGwith Rv3366. (A) The native pose of SFGwith Rv3919c (PDB ID: 7CFE). (B) The binding pose of SFG with Rv3366, when
binding site alignment tool was used to find the binding site at Rv3366. (C) The docked pose of SFGwith Rv3366 showing the hydrogen bond interactions
(D) The 2D interaction diagram of Rv3366-SFG showing all kind of interactions.

Frontiers in Molecular Biosciences frontiersin.org04

Nazim et al. 10.3389/fmolb.2023.1348337

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1348337


Schrodinger suite. The compounds were initially prepared and
filtered in the workflow based on the Lipinski rule of five.
Further, based on the virtual screening, the top 50 FDA-
approved drugs were screened as top docked molecules
(Supplementary Table S1). Then these docked complexes were
used for further extensive screening using MM/GBSA binding
free energy (Supplementary Table S2). Given the time and
computational energy expense, simulation of all these
20 complexes was not feasible. Therefore, based on the already
known functions of these screened FDA drugs, eight drugs, namely,
Kappadione, Pamidronic acid, Pyridoxal Phosphate, Cedrazuridine,
Levodopa, Droxidopa, Pyrophosphoric acid and Zoledronic acid,
were selected against Rv3366. Based on this study throughmolecular
docking and molecular dynamics simulations, out of eight drugs
only two (Levodopa and Droxidopa) were found to be binding stably
with the target.

Levodopa, a pro drug of dopamine, is given to Parkinson’s
patients because it can pass across the blood-brain barrier. Because
Levodopa can convert to dopamine on either side of the blood-
brain barrier, it is typically given along with a dopa decarboxylase
inhibitor, such as carbidopa, to delay conversion until after it has
passed the blood-brain barrier (Djamshidian and Poewe, 2016).
Levodopa is converted to dopamine once it crosses the blood-
brain barrier, supplementing the low endogenous levels of
dopamine to treat Parkinson’s symptoms. The US-FDA
authorized Sinemet, (Boshes, 1981; Djamshidian and Poewe,
2016), a Levodopa and carbidopa combination product, the
first produced drug product to receive FDA approval.
Droxidopa is a drug used to treat non-diabetic autonomic
neuropathy, primary autonomic failure, and symptomatic
neurogenic orthostatic hypotension (nOH) brought on by
dopamine beta-hydroxylase deficiency. This drug is an orally
active synthetic amino acid that is converted to norepinephrine
by the enzyme aromatic L-amino acid decarboxylase (dopa-
decarboxylase), was recently approved by the FDA for the
short-term treatment of nOH. It is presumed to raise blood
pressure by acting at the neurovascular junction to increase
vascular tone (Kaufmann et al., 2015).

Interactions of FDA-approved drugs
with Rv3366

The eight drugs, namely, Kappadione, Pamidronic acid,
Pyridoxal Phosphate, Cedrazuridine, Levodopa, Droxidopa,
Pyrophosphoric acid and Zoledronic acid complexed with
Rv3366 were simulated for 100ns. Initially, Sinefungin (SFG) the
known pan inhibitor was superimposed on the catalytic site of
Rv3366 using the Schrodinger suite using the structure of Rv3919c
(PDB ID: 7CFE). Further it was docked at the same site and best
docked pose interactions showed that SFG was making a hydrogen
bond with Ser 8, Glu33, Leu63, Leu111, Ala112 and Asp113 are
involved in other non-bonded interactions (Figures 1C, D). It had a
docking score of −9.33 kcal/mol and MM/GBSA binding energy
of −29.70 kcal/mol.

Further, the top docked from the eight selected FDA drugs were
also visualized, and it was observed that Pyridoxal Phosphate had
the highest docking score of −9.41 kcal/mol, it’s MM/GBSA binding

free energy was −54.4 kcal/mol and was making hydrogen bond with
Phe78, Thr79, Glu102, Arg129 and Ser130 and was involved in other
non-bonded interactions as shown in Figure 2A. Further, Levadopa
had a docking score of −8.119 kcal/mol and MM/GBSA binding
energy of −41.91 kcal/mol had hydrogen bonding with Thr79,
Ala80, Pro103, Leu106 and Arg129 (Figure 2B). Likewise,
Droxidopa had a docking score of −8.6 kcal and MM/
GBSA −34.59 kcal/mol, and it was involved in the hydrogen
bonding with Ala80, Glu102, Pro103, Leu106 and Arg129
(Figure 2C). Next, Kappadion had a docking score of −8.03 kcal/
mol and MM/GBSA binding free energy of −56.16 kcal/mol, and it
was making hydrogen bonding with Thr79, Pro103, Leu106 and
Arg129 (Figure 2D). Cedazuridine had a docking score of −8.05 kcal
and MM/GBSA binding free energy of −44.5 kcal/mol, making
hydrogen bond interactions with Thr79, Ala80 and Pro103
(Figure 2E). Pamidronic acid had a docking score of −8.25 kcal/
mol and MM/GBSA binding energy of −27.05 kcal/mol, and it was
making hydrogen bond interactions with Ala80 and Leu106
(Figure 2F). Overall, it was found that all the molecules similar
binding affinity as SFG and were interacting with common residues
through hydrogen bonds and hydrophobic interactions as shown in
Supplementary Figure S2 and could have a similar mode of
inhibition.

Levodopa and Droxidopa were found to
have stable interactions with Rv3366

When the docked complexes were subjected to 100 ns explicit
water classical MD simulation, it was found that Levodopa and
Droxidopa could only interact stably with the protein target
throughout the simulation time. The rest of the compound
complexes were not able to bind stably within the binding pocket
and they found to be translocating randomly around the protein in
the trajectory (Figure 3). Therefore, two complexes (Levodopa and
Droxidopa with Rv3366) were further taken to investigate their
binding stability and crucial interactions at the binding site. The
RMSD calculation showed that complexes, as well as the ligands
alone, got stabilized within the first 30 ns of the simulation. The
average deviation of Rv3366_apo was 2.36 ± 0.43 Å. While the
average deviation of the Rv3366_Levodopa complex was 1.72 ±
0.28 Å, while Levodopa alone bound in the cavity had a deviation of
1.15 ± 0.33 Å, shows the binding of Levodopa made the complex
more stable and compact. On the other hand, the average deviation
of Rv3366_Droxidopa was 2.40 ± 0.37 Å, showing similar flexibility
as the apo form of the protein. Droxidopa alone had an RMSD of
1.27 ± 0.41 Å in the binding cavity (Figure 4A).

Further, the RMSF of the complexes was calculated, and it did
not show any abrupt fluctuation in the protein throughout the
simulation time. It was observed that apo Rv3366 had a little
more fluctuation (1.41 ± 0.91 Å) than the bound complexes. The
average fluctuation in the Rv3366_Levodopa was 1.04 ± 0.66 Å
and similar was for Rv3366_Droxidopa (1.19 ± 0.58 Å)
(Figure 4B). Further, Levodopa and Droxidopa binding were
also assessed through the radius of gyration (Harder, Damm
et al.) and solvent-accessible surface area (SASA) calculation to
observe their compactness and how well they fit inside the
binding pocket, respectively. In Rg calculation, it was found
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that both the molecules had similar flexibility, Levadopa (2.97 ±
0.08 Å) and Droxidopa (2.96 ± 0.06 Å), and they are quite stable
throughout the simulation (Figure 4C). In the case of SASA

calculation, it was found that Levadopa (67 ± 35 Å2) was less
accessible to solvent and more deeply bound at the binding site
than Droxidopa (107.12 ± 45.15 Å2) (Figure 4D).

FIGURE 2
The hydrogen bond interaction of ligands with the Rv3366 in the docked pose. (A) The best binding pose and hydrogen bond interactions of Pyridoxal
Phosphate with Rv3366 (B) Levadopa (C) Droxidopa (D) kappadione (E) Cedazuridine (F) Pamidronic acid (G) Pyro-phosphoric acid (H) Zoledronic acid.
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Then, the simulation interactions were calculated to assess the
crucial interactions, their types and occupancy of interactions. The
results showed that both compounds had multiple interactions
throughout the simulations, most of which involved hydrogen
bonding. More specifically, Levodopa interacted critically (>40% of
simulation time) with Ala80, Ile122 and ser130, while Droxidopa
interacted significantly with Glu102, Ile122 and Ser130. Both of
these ligands were interacting through Hydrogen bonding and
water-mediated contacts. Overall, results suggested that both
Levodopa and Droxidopa had stable binding at the Rv3366 catalytic

pocket and residues Ala80, Ile122 and Ser130 are the critical residues at
the binding site providing affinities to these drugs (Figures 5A, B).

Discussion

The significance of RNA in protein production has been
acknowledged for decades (Higgs and Lehman, 2015). RNA plays
various crucial roles, such as mRNA for transcription, tRNA for
translation, and rRNA for ribosomes. However, it also has additional

FIGURE 3
The binding pattern of unstable ligands during the 100 ns of simulations. The top docked compounds such as Cedazuridine, Kappadione,
Pamidronic acid and Pyridoxal Phosphate could not bind stably at the binding pocket during the simulation. (The Blue color ligand shows the binding at
0th ns, Yellow color ligand shows the binding at 50th ns and Orange color ligand shows the binding at 100th ns. (A) Cedrazuridine (B) Kappadione (C)
Pamidronic acid (D) Pyridoxal Phosphate (E) Pyrophosphoric acid (F) Zoledronic acid.
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functions, like controlling gene expression in eukaryotes (Zheng
et al., 2015).

M.tb, a slow-growing pathogen, has limited RNA compared to
DNA, with a significant portion being rRNA. RNA is essential for
gene coding, regulation, and disease development (Burkert and
Schumann, 2020). Alterations in bacterial rRNA, like methylation
at position 518 of the 16S rRNA, can affect the behavior ofM.tb and
immune responses during infection (Demirci et al., 2010). Changes
in rRNA modification can significantly impact ribosome assembly,
function, and response to antibiotics. Certain rRNA methylations
can either resist antibiotics or enhance drug binding and efficacy
(Maguire, 2009). MTases, responsible for these methylations, are of
interest due to their influence on pathogenicity and antibiotic
resistance. Examples include erm (Rv 1988), which confers
macrolide antibiotic resistance, and Rv2118c, a t-RNA MTase
that affects bacterial virulence and proliferation. M.tb Rv2372c,
an RsmE-like methyltransferase, methylates U1498 of the 16S
rRNA, potentially aiding bacterial survival inside host
macrophages. In case of recently reported DNA MTases, the
immunomodulatory properties of the Rv1509 signature protein
elicit an immunological memory response, which may have
consequences for serodiagnosis and the development of TB
vaccines (Manjunath et al., 2021). Another MTase, Rv2966c, may
methylate N2-G966 of the 16S rRNA and benefit bacteria under
stress, like M.tb inside human macrophages. In M.tb, MTases
represent 3% of the genome despite the reductive evolution of
M.tb (Ahmed et al., 2008). Overall, MTases are promising targets

for developing new drugs to disrupt M.tb’s core mechanisms and
pathogenesis (Varshney et al., 2004; Madsen et al., 2005; Kumar
et al., 2011; Kumar et al., 2014; Grover et al., 2016).

SpoU is a probable RNA MTase and is vastly studied in other
prokaryotes where it is shown to project changes in RNA. For
example, in Escherichia coli spoU that is similar to 2′-O-
methyltransferase modifies tRNA (Gm18) that is completely
absent in the spoU mutant. Also, in yeast (Saccharomyces
cerevisiae) among three RNA 29-O-ribose methylases, spoU
methylates tRNA (G18) which was not detected in spoU
disrupted strains. In Thermus thermophilus, a heat-favourable
microbe, certain t-RNAs often have a chemical modification
called 2′-O-methylguanosine at position 18 in the D-loop, and
this alteration is added to the RNA molecule after it has been
transcribed by an enzyme known as tRNA (Gm18)
methyltransferase. The genome of Aquifex aeolicus, a hyper-
thermophile eubacterium, encodes a novel type II Gm-
methylase gene or t = RNA (guanosine-2′)-methyltransferase
(Gm-methylase) that catalyzes the transfer of a methyl group
from S-adenosyl-l-methionine to 2′-OH of G18 in the D-loop of
tRNA. Evidently, this Gm-methylase factor has the potential to
alter the structure of tRNAs. (Gustafsson et al., 1996; Persson
et al., 1997; Cavaillé et al., 1999; Hori et al., 2002; Hori et al.,
2003). Also it has been reported that SpoU associates with
rifampicin and ethambutol which is a case of artefactual cross-
resistance (Consortium, 2022). It is important to consider the
potential for presuming a drug target that could obstruct

FIGURE 4
TheMD simulation analysis of the protein-ligand complexes. (A) The RMSD plot of Rv3366 with ligands and ligands alone. (B) The RMSF calculations
of the Rv3366-ligand complexes. (C) The radius of gyration of the Levodopa and Droxidopa through the simulation. (D) The solvent accesseble surface
area for the ligands.
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connections with these enzymes in order to perhaps disrupt host-
pathogen interactions. For example, the pathogens developed in
phagosomes and phagolysosomes manipulate or use the common
host as well as pathogen targets to take advantage of the host
immune system. These shared molecules or pathways may serve
as broad-spectrum therapeutic targets in the development of
drugs to combat infectious illnesses brought on by various
intracellular infections (Selvapandiyan et al., 2023). This might
lessen the severity of an illness or facilitate the immune system’s
ability to fight it. Inhibiting acetylated region of the bacteria may
be used as a weapon to prevent the growth of bacteria that are
resistant to antibiotics because increasing data suggest that it
plays a role in the development of antibiotic resistance. In silico
approach was used to observe SpoU binding with FDA approved
compound so that a novel drug target can be proposed to fight

against drug resistant M.tb. The compounds were initially
prepared and filtered in the workflow based on the Lipinski
rule of five. Further, based on the virtual screening, the top
50 FDA-approved drugs were screened as top docked
molecules against both targets. It was observed that Levodopa
and Droxidopa could only interact stably with the protein target
among other drugs. Levodopa is a pro-drug of dopamine that is
given to Parkinson’s patients because it can pass across the blood-
brain barrier. Whereas Droxidopa is a drug used to treat non-
diabetic autonomic neuropathy, primary autonomic failure, and
symptomatic neurogenic orthostatic hypotension (nOH) brought
on by dopamine beta-hydroxylase deficiency. The binding energy
of Levodopa with SpoU protein was −41.91 kcal/mol and with
Droxidopa it was −34.59 kcal/mol. Hydrogen-bonds play a
critical role in determining the specificity of ligand binding.

FIGURE 5
The simulation interaction diagram showing the kind of interactions and their occupancy throughout the simulation for Rv3366 (A)with Droxidopa
(B) Levodopa.
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Levodopa exhibited four hydrogen bonds in the best-docked pose
with Ala80, Pro103, Leu106 and Arg129 and Droxidopa made
five hydrogen bonds in the best binding pose with Ala80, Glu102,
Pro103, Leu106 and Arg129. Both of the compounds showed
efficient docking score which projects towards the potential of a
novel drug target against TB.

Conclusion

This study highlights the role of M.tb RNA MTases as important
players inM.tb cell growth and also suggests that Rv3366 could serve as
a valuable drug target for anti-TB drug development. The two FDA
approved drugs; Levodopa and Droxidopa which are involved in the
treatment of neurological and autonomic disorders respectively, were
observed to strongly bind within the active site of Rv3366. The
formation of stable hydrogen and hydrophobic interactions between
Levodopa-Rv3366 and Droxidopa-Rv3366 complexes reflects their
nature as probable inhibitors of this crucial enzyme. However, the
true inhibitory effect of these two drugs needs to be critically evaluated
via in vitro studies. The results described here represent the groundwork
done towards the identification of new repurposed drugs that could
further be investigated in preclinical and clinical settings. We strongly
believe that the available pharmacokinetics and pharmacodynamics
data on Levodopa and Droxidopa would cut short the time required for
drug safety validations in humans and may speed up the anti-TB drug
repurposing process. Moreover, this study sheds light on how using
computer-based techniques is crucial in pinpointing potential drug
targets and finding new uses for existing drugs to combat tuberculosis.
By combining the strengths of scientific knowledge and inventive
approaches, we aim to lessen the global burden of TB and
ultimately safeguard lives across the world.
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