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This dissertation considers the problem of learning the underlying statis-

tical structure of complex data sets for fitting a generative model, and for both

supervised and unsupervised data-driven decision making purposes. Using prop-

erties of exponential family distributions, a new unified theoretical model called

Generalized Linear Statistics is established.

The complexity of data is generally a consequence of the existence of a

large number of components and the fact that the components are often of mixed

data types (i.e., some components might be continuous, with different underlying

distributions, while other components might be discrete, such as categorical, count

or Boolean). Such complex data sets are typical in drug discovery, health care, or

fraud detection.

The proposed statistical modeling approach is a generalization and amal-

gamation of techniques from classical linear statistics placed into a unified frame-

work referred to as Generalized Linear Statistics (GLS). This framework includes

techniques drawn from latent variable analysis as well as from the theory of Gen-

eralized Linear Models (GLMs), and is based on the use of exponential family
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distributions to model the various mixed types (continuous and discrete) of com-

plex data sets. The methodology exploits the connection between data space and

parameter space present in exponential family distributions and solves a nonlinear

problem by using classical linear statistical tools applied to data that have been

mapped into parameter space.

One key aspect of the GLS framework is that often the natural para-

meter of the exponential family distributions is assumed to be constrained to a

lower dimensional latent variable subspace, modeling the belief that the intrinsic

dimensionality of the data is smaller than the dimensionality of the observation

space.

The framework is equivalent to a computationally tractable, mixed data-

type hierarchical Bayes graphical model assumption with latent variables con-

strained to a low-dimensional parameter subspace. We demonstrate that expo-

nential family Principal Component Analysis, Semi-Parametric exponential fam-

ily Principal Component Analysis, and Bregman soft clustering are not separate

unrelated algorithms, but different manifestations of model assumptions and para-

meter choices taken within this common GLS framework. Because of this insight,

these algorithms are readily extended to deal with the important mixed data-type

case. This framework has the critical advantage of allowing one to transfer high-

dimensional mixed-type data components to low-dimensional common-type latent

variables, which are then, in turn, used to perform regression or classification in

a much simpler manner using well-known continuous-parameter classical linear

techniques.

Classification results on synthetic data and data sets from the University

of California, Irvine machine learning repository are presented.

xix



1 Introduction

Many important risk assessment system applications depend on the abil-

ity to accurately detect the occurrence of key events and/or predict their probabil-

ities given a large data set of observations. For example, this problem frequently

arises in drug discovery (“Do the molecular descriptors associated with known

drugs suggest that a new candidate drug will have low toxicity and high effective-

ness?”), medicine (“Do the epidemiological data suggest that the trace elements

in the local water supply cause cancer?”), health care (“Do the descriptors as-

sociated with the professional behavior of a medical health-care worker suggest

that he/she is an outlier in the efficacy category he/she was assigned to?”) and

failure prediction (“Based on the measurements of monitored disk-drive reliability

and performance metrics, what is the probability that the hard drive containing

my dissertation will fail in the next 72 hours?”). As another important example,

the financial industry is concerned with the problem of fraud detection, such as

credit card fraud detection (“Given the data for a large set of credit card users,

does the usage pattern of this particular card indicate that it might have been

stolen?”). Often in such domains, little or no a priori knowledge exists regarding

the true sources of any causal relationships that may occur between variables of

interest. In these situations, meaningful information regarding the key events must

be extracted from the data itself.

The problem of supervised data-driven detection or prediction is one of

relating descriptors of a large, labeled database of “objects” (e.g., credit card trans-

actions) to measured properties of these objects, then using these empirically de-

1
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termined relationships to categorize, or infer the properties of, new objects. For

the risk assessment problems suggested earlier, the measured object properties are

often non-Gaussian (and comprised of categorical, count, and continuous data),

possibly very noisy, and highly non-linearly related. As a consequence, the re-

sulting categorization problem is very difficult. In many cases, the difficulties are

further compounded because the descriptor space of objects is of very high dimen-

sion. Even worse, the database of training examples may be unlabeled, in which

case unsupervised training methods must be used. For example, it is quite common

in the financial industry to have large existing databases containing a mixture of

both non-fraudulent and fraudulent events which have never been tagged as such,

yet which provide the only data available for training purposes. Lack of fully la-

beled data often occurs in other important domains as well. To ameliorate these

difficulties, we developed appropriate probability models for classes of objects (such

as the credit card transaction classes “fraudulent” and “non-fraudulent” for exam-

ple) which have low-dimensional parameterizations and associated low-dimensional

approximate sufficient statistics (“features”). These models can then be used for

supervised and unsupervised classification.

The approach proposed and utilized here is a generalization and amalga-

mation of techniques from classical linear statistics, logistic regression, Principal

Component Analysis (PCA), and Generalized Linear Models (GLMs) into a frame-

work referred to, analogously to GLMs theory, as Generalized Linear Statistics

(GLS). As defined in this dissertation, Generalized Linear Statistics includes tech-

niques drawn from latent variable analysis [1,2] as well as from the theory of Gen-

eralized Linear Models (GLMs) and Generalized Linear Mixed Models (GLMMs)

[3–6]. It is based on the use of exponential family distributions to model the var-

ious mixed types (continuous or discrete) of measured object properties. Despite

the name, this is a nonlinear methodology which exploits the separation in expo-

nential family distributions between the data space (also known as the expected

value space) and the parameter space as soon as one leaves the domain of purely
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Gaussian random variables. The point is that although the problem at hand may

be nonlinear, it can be attacked using classical linear and other standard statistical

tools applied to data that have been mapped into the parameter space, which is

assumed to have a natural, flat Euclidean space structure. For example, in the

parameter space one can perform regression (resulting in the technique of logistic

regression and other GLMs methods [3–8]), PCA (resulting in a variety of “gen-

eralized PCA” methods [2, 9–13]), or clustering [14–16]. This approach provides

an effective way to exploit tractably parameterized latent-variable exponential-

family probability models to address the problem of data-driven learning of model

parameters and features useful for the development of effective classification and

regression algorithms.

To reiterate, the Generalized Linear Statistics framework draws inspira-

tion primarily from Generalized Linear Models and latent variable modeling. The

additional use of the Non-Parametric Maximum Likelihood (NPML) estimation

technique brings added flexibility to the model and enhanced generalization char-

acteristics. Laird’s classic 1978 paper [17] appears to be generally acknowledged

as the first paper to propose the Expectation-Maximization (EM) algorithm for

Non-Parametric Maximum Likelihood estimation in the mixture density context,

cf. Figure 1.1. A few years earlier, Simar, in his 1976 paper [18], studied max-

imum likelihood estimation in the case of mixtures of Poisson distributions, but

the EM algorithm was not available at the time. A few years later, Jewell, in his

1982 paper [19], followed Simar’s approach and drew similar results focusing on

the particular case of mixtures of Exponential distributions, but suggested the EM

algorithm for the maximum likelihood estimation of the mixing distribution, as

proposed previously by Laird. After Lindsay’s classic 1983 papers [20, 21] placed

the NPML approach on a more rigorous footing by exploiting the convex geome-

try properties of the likelihood function, Mallet’s paper appeared in 1986 [22] and

further explored some of the fundamental issues raised by Lindsay using optimal

design theory. Laird, Lindsay and Mallet, to a greater or lesser extent, all point
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Figure 1.1 Chronology of ideas and influence of Non-Parametric Maximum Likeli-

hood (NPML) in Generalized Linear Models (GLMs) and latent variable modeling.

out that the presence of nuisance (incidental) parameters has to be addressed in

order to assess the consistency properties of the maximum likelihood estimator and

that the early work by Wald [23, 24] and by Kiefer and Wolfowitz [25] is relevant

in this regard. Also relevant is the paper on EM-based non-parametric density

estimation in pharmacokinetic models by Schumitzky (1991) [26].

It was only natural that the GLMs community would begin to explore

the NPML approach as a vehicle to deal with the important and difficult prob-

lem of parameter estimation for random- and mixed-effects GLMs and, indeed,

one can see the fruitful outcome of such inquiry in the 1996 and 1999 papers by

Aitkin [27–30]. It was also natural for the latent variable research community to
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follow up on the NPML thread. After all, in the classical linear Gaussian situ-

ation, regression and latent variable (i.e., factor analysis) problems are different

levels of the problem of learning a linear model, the simpler problem of regression

being the “non-blind” case and the more difficult problem of factor analysis being

the “blind” case (using the terminology common to communications engineers).

The latent variable research community was well aware of the (now classic) 1984

paper by Bartholomew [31] (whose ideas are now fully exploited in the 1999 text

by Bartholomew and Knott [1]), which placed latent variable analysis in a uni-

fying framework and made the points of connection between that theory and the

mixed data-type GLMs framework quite evident. Not surprisingly, then, other re-

searchers (Knott, Skrondal, Rabe-Hesketh and Moustaki) explored the problem of

non-parametric latent variable analysis, including the use of the NPML approach

as suggested by Aitkin. An interesting paper along this line of inquiry was written

by Moustaki and Knott (2000) [32], while a more recent one was written by Ver-

munt (2003) [33]. A good review of the literature through the end of the 1990’s

and exposition of EM-based NPML in latent variable and GLMs analysis is given

in a book written by Boehning in 2000 [34]. A more up-to-date and thorough

presentation can found in the book by Skrondal and Rabe-Hesketh written in 2004

[2]. In addition to the ideas described in the literature cited above, such as Aitkin

[27–30] and Laird [17], the analysis to construct the framework outlined in this

dissertation draws from Collins et al. [10].

The specific Generalized Linear Statistics (GLS) framework developed

here is equivalent to a mixed data-type hierarchical Bayes graphical model assump-

tion with latent variables constrained to a low-dimensional parameter subspace.

Although a variety of techniques exist for performing inference on graphical mod-

els, it is in general very difficult to learn the parameters which constitute the model

even if it is assumed that the graph structure is known [35, 36]. A novel and im-

portant aspect of this work is that the GLS graphical model can be learned, which

provides important insight into the underlying statistical structure of a complex
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data set and allows the development of a variety of inference techniques, either

by using well-established Bayesian Network techniques [37], or by developing new

techniques. In addition to providing a better understanding of the data, learning

the GLS model provides a generative model of the data, making it possible to gen-

erate synthetic data with the same statistical structure as the original data. This

is particularly useful in cases where data are very difficult or expensive to obtain

and when the original data are proprietary and cannot be used for publication

purposes (as encountered in the financial services industry).

1.1 Outline of this thesis

Chapter 2 presents a review of several well-known statistical modeling

techniques that will be referred to and exploited in subsequent sections, such

as Generalized Linear Models (GLMs) and latent variable modeling. The rela-

tionships between these techniques and others like Principal Component Analysis

(PCA) and factor analysis are particularly emphasized.

Chapter 3 presents the proposed statistical modeling approach as a gen-

eralization of techniques drawn from classical linear statistics, logistic regression,

Principal Component Analysis (PCA), and Generalized Linear Models (GLMs),

all amalgamated into a new framework referred to as Generalized Linear Statistics

(GLS). It is presented in a mixed data-type hierarchical Bayes graphical model

framework.

Chapter 4 exposes the convex optimization problem related to fitting one

extreme of the GLS model to a set of data. This extreme case of the GLS model

is similar to exponential family Principal Component Analysis, proposed in [10],

and is characterized by the fact that each data point is mapped to one (gener-

ally different) parameter point in parameter space, whereas the general GLS case

considers a set of parameter points shared by all the data points. In light of the

significant numerical difficulties associated with the cyclic-coordinate descent-like
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algorithm based on Bregman distance properties proposed in [10], especially in the

mixed data-type case, this dissertation focuses on an algorithm based on Iterative

Reweighted Least Squares (IRLS), an approach commonly used in the GLMs lit-

erature [4, 38, 39]. Using an IRLS-based learning algorithm makes it possible to

tractably attack the more general problem of prediction in a mixed data-type envi-

ronment. Since the optimal model parameter values in this optimization problem

may be non-finite [10], a penalty function is introduced that defines and places a

set of constraints onto the loss function via a penalty parameter in a way so that

any divergence to infinity is avoided. Additionally, for several exponential family

distributions with natural restrictions on their parameter, a positivity constraint

on the natural parameter values has to be introduced. Synthetic data examples for

several exponential family distributions in both mixed and non-mixed data-type

cases are presented and generative models are fit to the data. Furthermore, an un-

supervised minority class detection technique to be performed in parameter space

is proposed. The synthetic data example demonstrates that there are domains for

which classical linear techniques used in the data space, such as PCA, perform

significantly worse than the new proposed parameter space technique.

Chapter 5 presents a general point of view that relates the exponen-

tial family Principal Component Analysis (exponential PCA) technique of [10] to

the Semi-Parametric exponential family Principal Component Analysis (SP-PCA)

technique of [15] and to the Bregman soft clustering method presented in [16].

The proposed viewpoint is then illustrated with a clustering problem in mixed

data sets. The three techniques considered here all utilize Bregman distances and

can all be explained within a single hierarchical Bayes graphical model framework.

They are not separate unrelated algorithms, but different manifestations of model

assumptions and parameter choices taken within a common framework. Selecting

a Bayesian or a classical approach as well as various parametric choices in the

proposed model are demonstrated to determine the three algorithms. Because of

this insight, the algorithms are readily extended to deal with the important mixed
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data-type case. Considering synthetic data examples of mixed types, exponential

PCA, with the addition of a non-parametric estimation tool, is demonstrated to

rival SP-PCA and Bregman soft clustering in terms of clustering performance for

some data sets.

Appendix A summarizes properties of exponential family distributions

that are essential to the framework presented here. In particular, it introduces

Bregman distances, which encompass a large class of distance/divergence func-

tions. Bregman distances are a generalization of the log-likelihood function of any

member of the exponential family of distributions and as such, the convexity prop-

erties of Bregman distances are important to the optimization problem attacked

in Chapter 4. Recently, research has shown that many important algorithms can

be generalized from Euclidean metrics to distances defined by a Bregman distance

[10, 15, 16, 40], i.e., the algorithms can be generalized from Gaussian distributed

data components to data components distributed according to an exponential fam-

ily, such as binary- or integer-valued.

Appendix B reviews the Newton-Raphson IRLS minimization technique

used to learn the Generalized Linear Statistics model.

Appendix C presents the theory supporting non-parametric mixture mod-

els within the Generalized Linear Statistics (GLS) framework, including the Non-

Parametric Maximum Likelihood (NPML) estimation technique used in Section 3

and Section 5. Then, the Expectation-Maximization (EM) algorithm is developed

for the NPML estimation technique with a special focus on exponential family

distributions.

Appendix D presents details on the work with University of California,

Irvine, machine learning repository data sets [41] and emphasizes the benefits of

classifying non-Gaussian and mixed data sets in their natural parameter space.



2 Generalized Linear Models

and latent variable modeling

The goal of this section is to review and reveal the relationships between

several well-known statistical modeling techniques that will be referred to and

exploited in subsequent sections.

There are two general approaches to modeling response processes. In

statistics and biostatistics, the most common approach involves Generalized Linear

Models (GLMs) techniques, whereas a latent variable modeling, or latent response

formulation, is popular in econometrics and psychometrics [2]. Although different

in appearance, these approaches can generate equivalent models for many response

types. This presentation emphasizes the similarity of the two approaches and

relates them to well-known techniques such as logistic regression, factor analysis,

Principal Component Analysis (PCA) and discriminant analysis. Figure 2.4 at the

end of the chapter helps to summarize and compare these techniques.

2.1 Generalized Linear Models (GLMs)

Generalized Linear Models [3,4,6,38] are a unified class of regression mod-

els for discrete and continuous response variables, and have been used routinely in

dealing with observational studies [42]. Many statistical developments in terms of

modeling and methodology in the past twenty years may be viewed as special cases

of GLMs. Examples include logistic regression for binary responses, linear regres-

9
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sion for continuous responses and loglinear models for counts [43]. Applications

of the logistic regression model provide a basic tool for epidemiologic investigation

of chronic diseases. Similar methods have been extensively used in econometrics.

Probit and logistic models play a key role in all forms of assay experiments. The

loglinear model is the cornerstone of modern approaches to the analysis of con-

tingency table data, and has been found particularly useful for medical and social

sciences. Poisson regression models are widely employed to study rates of events

such as disease outcomes. The complementary loglog model arises in the study of

infectious diseases and more generally, in the analysis of survival data associated

with clinical and longitudinal follow-up studies.

2.1.1 The standard Gaussian linear model, or linear regression model

Consider the conditional probability distribution p(x|θ) of the outcome

or response variable x given the parameter vector θ to be a Gaussian distribution

with mean µ and constant covariance matrix. Note that, in this special case of

a Gaussian distribution assumption with known covariance matrix, the parameter

θ is equal to the mean vector µ. The standard Gaussian linear model, or linear

regression model, expresses the conditional expectation of the response variable,

given the parameter, in a linear structure as follows:

µ , E[x|θ] = θ = aV, (2.1)

where x is a (1× d) row vector containing the outcome variable, a is a (1× q) row

vector of estimated coefficients and V is a (q× d) matrix of explanatory variables.

The linear regression model can alternatively be specified by

x = θ + ε,

where the residuals ε, also called disturbances or error components, are indepen-

dently Gaussian distributed with zero mean and constant diagonal covariance ma-

trix Ψ, i.e., ε ∼ N (0, Ψ). The (1 × d) linear predictor vector θ is called the
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systematic component of the linear model while the (1× d) vector ε is the stochas-

tic component. The linear regression literature often uses the notation y = βX+ε;

the reader should be aware of this difference in notation, which we follow to keep

the rest of this dissertation consistent (so their y is our x, their X is our V, and

their β is our a).

The matrix V containing the explanatory variables is assumed to be de-

terministic and known. The coefficients vector a is assumed to be deterministic

and unknown. The parameter vector θ is often called the linear predictor. The re-

sponse variables are sometimes called “dependent” variables whereas the explana-

tory variables are called “independent” variables. In linear regression models, and

more generally in Generalized Linear Models, the explanatory variables affect the

response only through the linear predictor, and the response process is fully de-

scribed by specifying the conditional probability of x given the linear predictor θ.

Furthermore, the components {xi}d
i=1 of the response vector x, conditioned in the

parameter θ, are independently distributed,

p(x|θ) =
d∏

i=1

pi(xi|θ) =
d∏

i=1

pi(xi|θi).

The parameters are estimated according to the principle of least squares

and are optimal according to minimum dispersion theory, or, in the case of a

Gaussian distribution, are optimal to the Maximum Likelihood (ML) theory [7].

2.1.2 Generalized Linear Models (GLMs)

The basic principal behind Generalized Linear Models (GLMs) is that

the systematic component of the linear model can be transformed to create an

analytical framework that closely resembles the standard linear model but accom-

modates a wide variety of non-Gaussian outcome variables. Hence, GLMs are a

generalization of the standard Gaussian linear model to the exponential family

of distributions. It consists of the following components: first, the conditional

probability distribution p(x|θ) is now assumed to be a member of the exponen-
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tial family of distributions with parameter vector θ, cf. Appendix A. Since the

Gaussian distribution belongs to the exponential family, allowing p(x|θ) to be any

member of the family means generalizing the standard Gaussian linear model.

The probability distribution of the response variable is often referred to as the

random component of the GLMs [7]. Second, the functional relationship between

the conditional expectation of the response variable and the linear predictor is:

µ , E[x|θ] = g(θ) or θ = g−1(µ) = f(µ), (2.2)

where g(·) is the link function associated with the exponential family distribution

p(x|θ). Then, as previously for the standard Gaussian linear model, the parameter

θ is expressed in a linear structure as follows:

f(µ) = θ = aV. (2.3)

As for the Gaussian linear model, the linear function of the explanatory vari-

ables shown in equation (2.3) is called the systematic component of the GLMs.

Consequently, the link function describes a functional relationship between the

systematic component and the expectation of the random component. It provides

a bijective relationship between the parameter space and the data space (the con-

ditional expectation of the response variable belongs to the same space as the

response variable itself, i.e., to the space referred to as data space), cf. Appendix

A.

As before, the matrix V is assumed to be deterministic and known, and

the vector a deterministic and unknown.

For example, for dichotomous or binary responses taking on the values 0

or 1, the response variables x = [x1, . . . , xd], conditioned on θ = [θ1, . . . , θd], are

independently Bernoulli distributed, cf. Section 2.1.3. The model is then called a

logistic regression, with conditional expectation µ = [µ1, . . . , µd] defined by

µi =
exp{θi}

1 + exp{θi} or θi = log
( µi

1− µi

)
= f(µi) (2.4)

for i = 1, . . . , d, where f(·) is often referred to as the logit function.
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Counts are discrete nonnegative integer valued responses {0, 1, . . . }. The

standard model for counts is a Poisson regression with conditional expectation

µi = exp{θi} or θi = log(µi) = f(µi)

for i = 1, . . . , d. Counts have a Poisson distribution if the events being counted

for a unit of time occur at a constant rate in continuous time and are mutually

independent. If a count corresponds to the number of events in a given number

N of trials, the count has a Binomial distribution if the events for a unit are

independent and equally probable. Then, the standard model is a regression with

the following conditional expectation for i = 1, . . . , d:

µi = N
exp{θi}

1 + exp{θi} or θi = log
( µi

N − µi

)
= f(µi).

2.1.3 An example: the logistic regression model

As shown in Section 2.1.2, logistic regression is a special case of GLMs,

cf. equation (2.4).

“Given the data for a large set of credit card users does the usage pattern

of this particular card indicate that it might have been stolen?”. This research

question is characterized by a response variable that is not continuous, but rather

dichotomous, i.e., has only two values (0 and 1). Logistic regression analysis is

specifically designed for use in such situations [44], and therefore more appropriate

than linear regression. Although it is used primarily for dichotomous response

variables, the technique can be extended to situations involving response variables

with three or more categories (polytomous, or multinomial, response variables). It

is then referred to as polytomous logistic regression.

Like linear regression, the logistic model relates explanatory, or indepen-

dent, variables to a response, or dependent, variable, and the logistic model yields

regression coefficients, a conditional expectation of the response variable (also re-

ferred to as the predicted value) and residuals. However, unlike linear regression,
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as a special case of GLMs, the logistic model uses a functional relationship be-

tween the predictor and the conditional expectation of the response variable which

is nonlinear. The logistic curve is sigmoidal, as shown in Figure 2.1. Moreover,

the curve never falls below 0, or reaches above 1. Thus, the predicted values

obtained using the logistic regression can always be interpreted as probabilities.

In other words, in logistic regression analysis for dichotomous response variables,

one attempts to predict the probability that an observation belongs to one of

two groups (such as, in our credit card transaction example, the “fraudulent”

and “non-fraudulent” groups). Thus, logistic regression is frequently used as a

statistical classification methodology. For the vector-valued case, the conditional

expectation µ = [µ1, . . . , µd], or probability that for each component the predicted

value is 1, for the logistic regression model is given by

µi =
exp{θi}

1 + exp{θi} =
1

1 + exp{−θi} , (2.5)

with θ = [θ1, . . . , θd] = aV. Equation (2.5) exactly corresponds to GLMs with a

Bernoulli distribution assumption expressed in equation (2.4).
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Figure 2.1 The logistic function or curve, with θi on the horizontal axis and

exp{θi}/(1 + exp{θi}) on the vertical axis.
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Whereas in linear regression analysis the model parameters are chosen

according to the least squares criterion, in logistic regression and more generally in

Generalized Linear Models, the Maximum Likelihood (ML) criterion is generally

used for selecting parameter estimates.

2.1.4 Random Effect Generalized Linear Models (RE-GLMs)

The models are the same as that described for the Generalized Linear

Models, i.e.,

f(µ) = θ = aV, (2.6)

except that now the vector a is assumed to be random and unknown.

2.1.5 Blind Random Effect Generalized Linear Models (BRE-GLMs)

The Blind Random Effect Generalized Linear Models (BRE-GLMs) differ

from the RE-GLMs in that the matrix V is additionally assumed to be determinis-

tic and unknown. The exponential family Principal Component Analysis method

described in [10] and often referred to in Section 3 and Section 4 belongs to the

large class of BRE-GLMs.

2.2 Latent variable modeling

Latent variables are widely used in different disciplines such as medicine,

economics, engineering, psychology, geography, marketing and biology.

A latent variable is defined as a random variable whose realizations are

hidden [2]. This is in contrast to response or manifest variables where the realiza-

tions are observed. Hence, a statistical model, i.e., simply one specifying the joint

distribution of a set of random variables, becomes a latent variable model when

some of these variables, i.e., the latent variables, are unobservable [1]. Variables

which can be directly observed, referred to as response variables, are denoted by
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x = [x1, . . . , xi, . . . , xd]. Latent variables are denoted by a = [a1, . . . , aj, . . . , aq],

where in practice q is much smaller than d. Examples in social sciences of entities

which are handled as if they were measurable quantities but for which no mea-

suring instruments exist, are business confidence, quality of life, conservatism or

general intelligence.

Adopting a twofold classification of measurement levels of variables as in

[1], numerical variables are being distinguished from categorical variables. Numer-

ical variables have realized values in the set of real numbers and may be discrete

or continuous. Categorical variables assign individuals to one of a set of cate-

gories and may be ordered or unordered. Then, factor analysis corresponds to

a latent variable method with numerical response and latent variables. A latent

variable method with numerical response variables and categorical latent variables

is usually referred to as latent trait analysis whereas a latent variable method with

categorical response and latent variables is referred to as latent class analysis, cf.

Table 2.1.

Table 2.1 Types of latent variable models grouped according to whether the re-

sponse and latent variables are categorical or continuous.

Response \ Latent variables Continuous Categorical

Continuous Factor analysis Latent profile analysis

Categorical Latent trait analysis Latent class analysis

As only the response variable x can be observed, any inference must be

based on the joint distribution p(x, a) as follows:

p(x) =

∫
p(x, a)da =

∫
p(x|a)π(a)da, (2.7)

where π(a) is the prior distribution of a, p(x|a) is the conditional distribution of

x given a. The main interest is in what can be known about a after x has been
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observed. This information is conveyed by the conditional density

p(a|x) = π(a)p(x|a)/p(x). (2.8)

The assumption of conditional independence is an important axiom in the

latent variable modeling and states the following: if the correlations among the

xi’s are induced by a set of latent variables a then, when all aj’s are accounted for,

the xi’s will be uncorrelated if all the aj’s are held fixed. In other words,

p(x|a) =
d∏

i=1

pi(xi|a). (2.9)

It is regarded as a definition of what it means to say that the latent variables a

are complete. Then, equation (2.7) becomes

p(x) =

∫ d∏
i=1

pi(xi|a)π(a)da. (2.10)

2.2.1 Factor analysis

Factor analysis aims at identifying statistical dependencies of the response

variable components in a low-dimensional representation when the response and

latent variables are both continuous. It was primarily concerned with hypotheses

about the organization of mental ability suggested by the examination of correla-

tion or covariance matrices for sets of cognitive test variables [45]. For analyzing

the structure of covariance or correlation matrices two methods, namely Principal

Component Analysis (PCA) [46,47] and factor analysis, exist. The two approaches

formally resemble each other but have rather different aims so that it is important

to distinguish between them. The following Section 2.3 discusses PCA.

The aim of factor analysis is to account for the covariances of a response

variable x = [x1, . . . , xd] in terms of a small number of hypothetical variables, or

factors. Put simply in correlation terms, the first question that arises is whether

any correlation exists, that is whether the correlation matrix differs from the unit

matrix. If there is correlation, the next question is whether there is a random vari-

able a1 such that all partial correlation coefficients between the response variables
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after eliminating the effect of a1 are zero. If not, then two random variables a1

and a2 are postulated and the partial correlation coefficients after eliminating a1

and a2 are examined. The process continues until all partial correlations between

the response variables are zero.

In factor analysis, the basic assumption is that

xi =

q∑
j=1

ajvi[j] + εi for i = 1, . . . , d, (2.11)

where aj is the jth common factor, the number q of such factors being specified, and

where εi is a residual representing sources of variation affecting only the response

variable component xi [45]. The d residual variables {εi}d
i=1 are assumed to be

independent of one another and of the q factors {aj}q
j=1.

In matrix form, using a row vector notation, equations (2.11) become

x = aV + ε, (2.12)

where V is a (q × d) matrix of loadings. The covariance matrix of the response

variable x is denoted by Σ. Assuming the factors to be uncorrelated with unit

variances and the residuals diagonal covariance matrix to be Ψ yields

Σ = V′V + Ψ. (2.13)

In practice the elements of V and Ψ are unknown parameters that have to be

estimated from the observed data. Conventionally, the factors and the residuals

follow independent Gaussian distributions with zero mean vectors, a ∼ N (0, I)

and ε ∼ N (0,Ψ), resulting in a Gaussian distributed response variable with mean

zero, x ∼ N (0,Σ). In order to permit the model to have a nonzero mean, a

parameter vector b can be added, yielding

x = aV + b + ε. (2.14)

The maximum likelihood approach is used to estimate the various pa-

rameters, although because there is no closed-form solution for V and Ψ, their

values must be obtained via an iterative procedure.
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It is important to note that there is an indeterminacy issue in that, with

more than one factor, equations (2.11) do not by themselves determine either the

factors or the parameters uniquely. For if the factors aj are uncorrelated, they may

be replaced by an orthogonal transformation of themselves, with a corresponding

transformation of the loadings, while with correlated factors any nonsingular linear

transformation may be made.

2.3 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a widely used technique for di-

mensionality reduction, lossy data compression, feature extraction and data vi-

sualization that seeks a projection, i.e., a linear method that projects the high-

dimensional data onto a lower dimensional space, that best represents the data in

a least-squares sense [37, 47–49]. It is of importance to notice that PCA, unlike

factor analysis which focuses on correlation, searches for directions of maximum

variance, i.e., directions of maximum uncertainty [46]. It is also known as the

Karhunen-Loève transform.

In Principal Component Analysis, the components of an observed or out-

come variable x = [x1, . . . , xd] are transformed linearly and orthogonally into a

new variable a = [a1, . . . , ad] with an equal number of components that have the

property of being uncorrelated [45]. These are chosen such that a1 has maximum

variance, a2 has maximum variance subject to being uncorrelated with a1, and so

on. The transformation is obtained by finding the eigenvalues and eigenvectors

(also called latent roots and vectors) of either the covariance or the correlation

matrix of the observed variable x. The eigenvalues, arranged in descending order

of magnitude, are equal to the variances of the corresponding components of the

latent variable a, which are the unstandardized principal components. Often, the

first few components account for a large proportion of the total variance of the vari-

able x and may then, for certain purposes, be used to summarize the original data.
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In other words, used as a dimensionality reduction technique, PCA would only re-

tain the q first principal components, where q < d, i.e., the q components that

account for the maximum variance in the observed variable. In general, all com-

ponents are, however, needed to reproduce accurately the correlation coefficients

between the observed variable components. Hence the method is not appropriate

for investigating their correlation structure. When it is employed, no hypothesis

needs to be made about the components of x; they do not even need to be random

variables.

It is clear from this that PCA is variance-oriented, whereas factor analysis

is covariance- or correlation-oriented. The aims of the two methods can also be

contrasted by considering the nature of the relationships involved. In PCA, the

components ai, i = 1, . . . , d, are by definition linear functions of the observed

variable components xi, i = 1, . . . , d. In factor analysis, the basic assumption is

given by equation (2.11).
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Figure 2.2 Principal Component Analysis seeks an orthogonal projection onto a

subspace of lower dimensionality than that of the original data.

From a practical point of view, given a data set of observations {x[k]}n
k=1

where x[k] =
[
x1[k], . . . , xd[k]

] ∈ Rd, an estimate of the covariance matrix, or
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scatter matrix S, is obtained as follows:

S ,
n∑

k=1

(x[k]− x)T (x[k]− x), (2.15)

where x is the sample mean of the observations. An eigenvalue decomposition of

the scatter matrix yields

S = Γ∆ΓT , (2.16)

where the diagonal matrix ∆ contains the eigenvalues arranged in decreasing or-

der of magnitude, and where the ith column of Γ is the normalized eigenvector

corresponding to the ith eigenvalue. The new variables are then defined by

a[k] , x[k]Γ, (2.17)

for k = 1, . . . , n. For dimensionality reduction purposes, i.e., for a projection

from an original space of dimension d into a space of lower dimension q, only

the q first eigenvectors, usually referred to as the q principal axes or principal

components, are used to create a (q × d) projection matrix V. As a result, for

a data set of observations {x[k]}n
k=1 where x[k] =

[
x1[k], . . . , xd[k]

] ∈ Rd, a new

data set {a[k]}n
k=1 where a[k] =

[
a1[k], . . . , aq[k]

] ∈ Rq is generated. This yields

for k = 1, . . . , n

x[k] = a[k]V, (2.18)

where V = [vT
1 , . . . ,vT

q ]T is a (q× d) matrix. The process of orthogonal projection

is illustrated in Figure 2.2, where the data set
{
x[1], . . . ,x[5]

}
produces the set

{
a[1], . . . , a[5]

}
with a projection onto the direction given by the first principal

component v1.

2.3.1 Probabilistic PCA

As previously acknowledged, PCA is an ubiquitous technique for data

analysis and processing that is not based upon a probability model. However, there
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exists a probabilistic formulation of PCA, known as probabilistic PCA: it can be

demonstrated that the principal components of a set of observed data vectors can

be determined through maximum likelihood estimation of parameters in a latent

variable model closely related to factor analysis [37, 45, 50–52]. Even though the

focus of factor analysis differs from the focus of PCA, i.e., a focus on covariance

versus a focus on variance as demonstrated earlier, the two methods yield similar

results in the special case of isotropic error model, where the residual variances are

constrained to be equal, i.e., Ψ = σ2 I in equation (2.13).

Probabilistic PCA can be formulated by first introducing a latent variable

a corresponding to the principal-component or low-dimensional subspace. The

prior distribution over a is assumed to be a zero-mean unit-covariance Gaussian

distribution

p(a) = N (a|0, I).

Next, a Gaussian conditional distribution p(x|a) is defined over the observed vari-

able x conditioned on the value of the latent variable

p(x|a) = N (x|aV + b, σ2 I),

in which the mean of x is a general linear function of a governed by a (q×d) matrix

V and the d-dimensional vector b. The rows of V span a linear subspace within

the data space that corresponds to the principal subspace. The other parameter in

this model is the scalar σ2 governing the variance of the conditional distribution.

Alternatively, the model can be specified by

x = aV + b + ε,

where a is a q-dimensional Gaussian latent variable, and ε is a d-dimensional zero-

mean Gaussian-distributed noise variable with variance σ2 I.

The values of the parameters V, a and σ2 can be determined by using

Maximum Likelihood (ML) estimation.
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2.4 Discriminant analysis

Discriminant analysis as well as Principal Component Analysis (PCA) is

a widely used technique for dimensionality reduction. However, whereas PCA seeks

a projection that best represents the data in a least squares sense, discriminant

analysis seeks a projection that best separates the data in a least squares sense

[49]. There are actually two major purposes of discriminant analysis: description

and prediction. Descriptive discriminant analysis is a statistical technique that

allows one to identify variables that best discriminate members of two or more

groups from one another. Predictive discriminant analysis allows one to predict

the group membership status of observations of which the group status is unknown

[44]. Hence, discriminant analysis fulfills a similar role as the one performed by

logistic regression. However, discriminant analysis requires assumptions about the

data that are more restrictive than those for logistic regression. For example, it

requires that within each group, the components of the response variable follow a

multivariate Gaussian distribution. Besides, the variance-covariance structures of

the response variable components should be equal across all groups [44]. This im-

plies that, in particular, discriminant analysis should not be used with categorical

response variables.
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Discriminant analysis is performed as follows in order to separate class

D1 from class D2. First, the within-class scatter matrix SW is defined as follows:

SW , S1 + S2, where (2.19)

S1 ,
∑

k: x[k]∈D1

(x[k]−m1)
T (x[k]−m1) and

S2 ,
∑

k: x[k]∈D2

(x[k]−m2)
T (x[k]−m2).

Then, the between-class scatter matrix SB is defined as follows:

SB , (m1 −m2)
T (m1 −m2), (2.20)

where m1, respectively m2, is the sample mean for data belonging to class D1,

respectively class D2. Discriminant analysis aims at finding a direction of pro-

jection that maximizes the between-class scatter while minimizes the within-class

scatter. The process of orthogonal projection is illustrated in Figure 2.3, where

the data set
{
x[1],x[2],x[4],x[5]

}
becomes easily separable from the data set

{
x[3],x[6],x[7],x[8]

}
. Note that for this example, PCA would have decided for

a direction of projection orthogonal to the one chosen by discriminant analysis,

making it impossible to separate the two data sets.
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a deterministic & unknown
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µ , E[x|θ] = θ = aV

f(·) = identity

?
RE-GLMs

a random

?
BRE-GLMs

V unknown

?
latent variable modeling ¾

V unknown
a random

f(·) = identity

Figure 2.4 Hierarchy and relationship of ideas between well-known statistical tech-

niques such as the standard Gaussian linear model, Generalized Linear Models

(GLMs) and latent variable modeling.



3 Generalized Linear Statistics

(GLS)

The proposed statistical modeling approach is a generalization and amal-

gamation of techniques from classical linear statistics, logistic regression, Principal

Component Analysis (PCA), and Generalized Linear Models (GLMs) into a frame-

work we refer to as Generalized Linear Statistics (GLS), analogously to the GLMs

theory. This is actually a nonlinear methodology which exploits the split that

occurs for exponential family distributions between the data space (also known as

the expected value space) and the parameter space as soon as one leaves the domain

of purely Gaussian random variables, cf. Appendix A. The point is that although

the problem may be nonlinear in data space, it can be attacked using classical

linear and other standard statistical tools applied to data that have been mapped

into the parameter space, which is assumed to have a natural, flat Euclidean space

structure. For example, one can perform regression (resulting in the technique of

logistic regression and other GLMs methods [3–8]), PCA (resulting in a variety of

“generalized PCA” methods [2, 9–13]), or clustering [14–16] in parameter space.

This framework is used to develop algorithms capable of classification

techniques in domains involving highly heterogenous (mixed) data types, and

involving labeled as well as unlabeled data sets. Specifically, this work consid-

ers mixed data-type records which have both continuous (e.g., Exponential and

Gaussian) and discrete (e.g., count and binary) components. It focuses on the

development of both supervised and unsupervised classification algorithms which

26
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can be trained using labeled and unlabeled training data sets, respectively. The

unsupervised case is very difficult and takes one out of the domain of the stan-

dard supervised approaches, such as neural networks and Support Vector Machines

(SVMs).

3.1 Theoretical framework

The problem is abstractly stated as follows. A particular “object” of inter-

est can be associated with a variety of descriptor random variables. Practitioners

choose measurable descriptor variables that they believe are likely to be informa-

tive about interesting properties “attached to the object”. These descriptors can

be viewed as comprising the components of a random vector x = [x1, . . . , xd] ∈ Rd,

where the dimension d is equal to the number of descriptors. Thus the vector x is

a point in a d-dimensional descriptor space.

Following the probabilistic Generalized Latent Variable (GLV) formal-

ism described in [1, 2, 31], it is assumed that training descriptor space points can

be drawn from populations having factorable class-conditional probability density

functions of the form:

p(x|θ) = p1(x1|θ) · . . . · pd(xd|θ) = p1(x1|θ1) · . . . · pd(xd|θd) =
d∏

i=1

pi(xi|θi). (3.1)

This is referred to as the latent variable assumption throughout this dissertation.

Delta-functions are admitted so that densities are well-defined for discrete, contin-

uous, and mixed random variables. Note the critical assumption that the compo-

nents of x are independent, when conditioned on the parameter vector θ ∈ Rd. It

is further assumed that θ can be written as

θ = aV + b (3.2)

with V ∈ Rq×d and b ∈ Rd deterministic, and a ∈ Rq. While one generally

assumes q < d for dimensionality reduction (and ideally q << d), this is strictly

speaking not required. This work both considers a Bayesian approach for which
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a is treated as a random vector and a classical approach where the vector a is

deterministic. We first assume that a is a random vector. The randomness of

a causes a to be called the random effect. The notation used here is motivated

by the discussions in [10] and [29]. Figure 3.1 shows the geometry of the lower

©©©©©©©©©*
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Figure 3.1 Random effect on the parameter space lower dimensional subspace.

dimensional subspace and the variations that occur due to the randomness of a.

The matrix V is assumed to have full row-rank so that the relationship between a

and θ is one-to-one. Then, conditioning on the random vector θ is equivalent to

conditioning on the low-dimensional random vector a, so that

p(x|θ) = p(x|a) = p1(x1|a) · . . . · pd(xd|a). (3.3)

This is precisely the condition under which a is a complete latent variable [1]. In

a probabilistic sense, all of the information that is mutually contained in the data

vector x must be contained in the latent variable a. As noted in [1,2,53], equations

(3.1) and (3.2) generalize the classical factor analysis model (as described, e.g., in

[47] and [1]) to the case when the marginal densities pi(xi|θi) are non-Gaussian.

Indeed, the subscript “i ” on pi(·|·) serves to indicate that the marginal densities can

all be different, allowing for the possibility of x containing categorical, discrete,

and continuous valued components. As described below, it is further assumed

that the marginal densities are each one-parameter exponential family densities,

allowing the rich and powerful theory of such densities to be fruitfully exploited
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[54–57], and it is commonly the case that θi is taken to be the so-called natural

parameter (or some bijective function of the natural parameter) of the exponential

family density pi(·|·). Because both the Generalized Linear Models (GLMs) and

the Generalized Latent Variable (GLV) methodologies exploit the linear structure

(3.2), they can be viewed as special cases of a Generalized Linear Statistics (GLS)

approach to data analysis.

In the Generalized Linear Models (GLMs) theory, V and b are known

and a is deterministic and unknown [3,4]. In both the Generalized Latent Variable

(GLV) theory described in [1,2,53] and the random- and Mixed-effects Generalized

Linear Models (MGLMs) literature [4,5,8,27–30,38,58–61], V and b are determin-

istic while a (and hence θ) is treated as a random vector. The difference between

GLV and MGLMs is that in GLV, all of the quantities V, b, and a are unknown,

and hence need to be identified, resulting in a so-called “blind” estimation prob-

lem, whereas in MGLMs, V is a known matrix of regressor variables and only the

deterministic vector b and the unknown realizations of the random effect vector a

(also known as latent variable) must be estimated. In both GLV and MGLMs, it is

assumed that the linear relationship (3.2) holds in parameter space, and that the

tools of linear and statistical inverse theory are applicable or insightful, at least

conceptually. The MGLMs theory is a generalization of the classical theory of

linear regression, while the GLV theory is a generalization of the classical theory

of statistical factor analysis and PCA. In both cases, the generalization is based on

a move from the data/description space containing the measurement vector x to

the parameter space containing θ via a generally nonlinear transformation known

as a link function [3–6] (cf. Appendix A). It is in the latter space that the linear

relationship (3.2) is assumed to hold.

Graphical models, also referred to as probabilistic graphical models, bring

together graph theory and probability theory in a powerful formalism for multi-

variate statistical learning. Many of the classical multivariate probabilistic systems

studied in statistics, information theory and pattern recognition (e.g., PCA, Inde-
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pendent Component Analysis (ICA) and factor analysis) are special cases of the

general graphical model formalism [37, 62–65]. As an amalgamation of such tech-

niques, the Generalized Linear Statistics approach also is a subclass of graphical

model techniques. More precisely, a graphical model consists of a collection of

probability distributions that factor according to the structure of an underlying

graph. A graph is formed by a collection of nodes (also called vertices) connected

by a collection of edges. An edge consists of a pair of vertices and may either be

directed or undirected. Associated with each vertex is a random variable (or a

group of random variables) taking values in some set which may either be contin-

uous or discrete. The graph then captures the way in which the joint distribution

over all of the random variables can be decomposed into a product of factors each

depending only on a subset of the variables. In the directed case, more popular in

the machine learning community than the undirected one, the graphical model is

often referred to as a Bayesian Network, and each edge is directed from parent to

child with an arrow. The directed graphs that are usually considered are subject

to an important restriction namely that there must be no directed cycles. In other

words, there should be no closed paths within the graph such that one can move

from node to node along links following the direction of the arrows and end up

back at the starting node. Such graphs are also called directed acyclic graphs [37].

A directed graphical model with S nodes consists of a collection of probability

distributions that factor as follows:

p(x) =
S∏

s=1

p
(
xs|xπ(s)

)
, (3.4)

where x = [x1, . . . , xS], the node s represents the random variable xs and π(s)

denotes the set of all parents of a given node s [37, 64]. Each directed graph rep-

resents a specific decomposition of a joint probability distribution into a product

of conditional probabilities. Figure 3.2 presents the directed graphical model cor-

responding to the Generalized Linear Statistics (GLS) approach. Equation (3.3)

corresponds exactly to equation (3.4). The focus of graphical models being to
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Figure 3.2 Graphical model for the Generalized Linear Statistics approach.

solve inference problems (e.g., how can the hidden states of a system be efficiently

inferred, given partial and possibly noisy observations?) to perform learning tasks

(e.g., how can the parameters and structure of the model be estimated?) and

to construct decision theories, learning a GLS graphical model perfectly fits our

approach.

Since a (and hence θ) is treated as a random vector (Bayesian approach),

the (non-conditional) probability density function p(x) requires a generally in-

tractable integration over the parameters,

p(x) =

∫
p(x|θ)π(θ)dθ =

∫ d∏
i=1

pi(xi|θi)π(θ)dθ, (3.5)

where π(θ) is the probability density function of θ = aV+b. Given the observation

matrix X =
[
x[1]T , . . . ,x[n]T

]T ∈ Rn×d composed of n independent and identically

distributed statistical data samples, each assumed to be stochastically equivalent

to the random row vector x, x[k] =
[
x1[k], . . . , xd[k]

] ∼ x, the data likelihood

function is defined as

p(X) =
n∏

k=1

p
(
x[k]

)
=

n∏

k=1

∫
p
(
x[k]|θ)

π(θ)dθ (3.6)

using the independent and identically distributed statistical samples assumption,

and then becomes

p(X) =
n∏

k=1

∫ d∏
i=1

pi

(
xi[k]|θi

)
π(θ)dθ (3.7)
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using the latent variable assumption, with θ = aV + b. For specified exponential

family densities pi(·|·), i = 1, . . . , d, maximum likelihood identification of the model

(3.5) corresponds to identifying π(θ), which, under the condition θ = aV + b,

corresponds to identifying the matrix V, the vector b, and a density function, µ(a),

on the random effect a via a maximization of the likelihood function p(X) with

respect to V, b, and µ(a). This is generally a quite difficult problem [4,5,38] and

it is usually attacked using approximation methods which correspond to replacing

the integrals in (3.5), (3.6) and (3.7) by sums [29]:

p(x) =
m∑

l=1

p
(
x|̄θ[l]

)
πl =

m∑

l=1

d∏
i=1

pi

(
xi|̄θi[l]

)
πl, (3.8)

p(X) =
n∏

k=1

m∑

l=1

p
(
x[k]|̄θ[l]

)
πl,k (3.9)

=
n∏

k=1

m∑

l=1

d∏
i=1

pi

(
xi[k]|̄θi[l]

)
πl,k (3.10)

over a finite number of discrete support points (“atoms”)
¯
θ[l] (equivalently,

¯
a[l])

for l = 1, . . . , m, 1 ≤ m ≤ n, with point-mass probabilities

πl , π
(
θ =

¯
θ[l]

)
= π

(
a =

¯
a[l]

)
,

πl,k , π
(
θ[k] =

¯
θ[l]

)
= π

(
a[k] =

¯
a[l]

)
= πl,

the last equality resulting from the independent and identically distributed statis-

tical samples assumption. Note that θ and a are (discrete) random variables while

¯
θ[l] and

¯
a[l], l = 1, . . . , m, are the m nonrandom support point values (i.e., the

values of the random variables having nonzero probabilities). These m support

points are shared by all the data points x[k], k = 1, . . . , n. Also recall that taking

π
(
¯
θ[l]

)
= π

(
¯
a[l]

)
for

¯
θ[l] =

¯
a[l]V + b with the matrix V having full row-rank

results in the assumption that the relationship between the discrete values
¯
θ[l]

and
¯
a[l] is one-to-one. As clearly described in [29], this approximation is justified

either as a Gaussian quadrature approximation to the integral in (3.7) in the case

of a Gaussian assumption for the probability density function π(θ) [4, 5, 38], or
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by appealing to the fact that the Non-Parametric Maximum Likelihood (NPML)

estimate [17, 53, 66] of the mixture density π(θ) yields a solution which takes a

finite number of points of support [17,20–22,25,26,66], cf. Appendix C.

With θ = aV + b, with V, b fixed and a random, the single-sample

likelihood (3.8) is equal to

p(x) =
m∑

l=1

p
(
x|̄θ[l]

)
πl =

m∑

l=1

p
(
x|

¯
a[l]V + b

)
πl, (3.11)

and the data likelihood (3.9) is equal to

p(X) =
n∏

k=1

m∑

l=1

p
(
x[k]|̄θ[l]

)
πl =

n∏

k=1

m∑

l=1

p
(
x[k]|

¯
a[l]V + b

)
πl. (3.12)

The data likelihood is thus (approximately) the likelihood of a finite mixture of ex-

ponential family densities with unknown mixture proportions or point-mass prob-

ability estimates πl and unknown point-mass support points
¯
a[l], with the linear

predictor
¯
θ[l] =

¯
a[l]V + b in the lth mixture component [29]. In the mixture

models literature, the point-mass probabilities πl are called mixing proportions or

weights, the densities p
(
x[k]|̄θ[l]

)
are called the component densities of the mix-

ture and equation (3.11) is referred to as the m-component finite mixture density

[53]. The combined problem of Maximum Likelihood Estimation (MLE) of the

parameters V, b, the point-mass support points (atoms)
¯
a[l] and the point-mass

probability estimates πl, l = 1, . . . , m, (as approximations to the unknown, and

possibly continuous density µ(a)) is known as the Semiparametric Maximum Like-

lihood mixture density Estimation (SMLE) problem [53,66,67].

This problem can be attacked by using the Expectation-Maximization

(EM) algorithm [1,15,17,20–22,29,34,53,68–74]. Then, the number m of distinct

support point values is often strictly smaller than the number of data points n,

i.e., m < n. Note that, historically, Laird’s classic 1978 paper [17] appears to

be generally acknowledged as the first paper that proposed the EM algorithm for

NPML estimation in the mixture density context; then, Lindsay’s classic 1983 pa-

pers [20, 21] improved upon the theoretical foundations of the NPML estimation
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approach and later Mallet’s 1986 paper [22] further explored some of the funda-

mental issues raised by Lindsay. As noted above, this problem (i.e., simultaneously

identifying b,
¯
a[l], πl for all l, and V) is the subject matter of Generalized La-

tent Variable (GLV) analysis [1, 2, 53, 75]. The commonly encountered alternative

problem of estimating b,
¯
a[l] and πl, l = 1, . . . , m, for known V, where the ele-

ments of V are comprised of measured regressor variables, is a generalization of

classical linear regression and is the subject matter of the theory of random- and

Mixed-effects Generalized Linear Models (MGLMs) [3–5,8, 27–30,38,58,60,61].

However, a classical approach to the GLS estimation problem can also

be considered and the vector a (and hence θ) is treated as a deterministic vector.

Then, to each data point x[k], k = 1, . . . , n, corresponds a (generally different)

parameter point, yielding a total of n points
¯
θ[k], k = 1, . . . , n, in parameter space

(and hence n points
¯
a[k], k = 1, . . . , n, in the parameter space low-dimensional

subspace) as presented in the exponential family Principal Component Analysis

technique [10]. The data likelihood is simply equal to

p(X) =
n∏

k=1

p
(
x[k]|̄θ[k]

)
=

n∏

k=1

p
(
x[k]|

¯
a[k]V + b

)
. (3.13)

Contrary to the Bayesian approach, no point-mass probabilities have to be esti-

mated. For consistency of vocabulary throughout this dissertation, the points
¯
a[k],

k = 1, . . . , n, in the parameter space low-dimensional subspace are called latent

variables for both Bayesian and classical approaches. Similarly, the parameter

points
¯
θ[k], k = 1, . . . , n, are called atoms in both approaches. The classical ap-

proach can also be seen as an extreme case of the Bayesian approach for which

the probability density function π(θ) is a delta function (one per data point) and

the total number of atoms m equals the number of data points n, i.e., m = n.

Note that while the m < n parameter points of the Bayesian approach are shared

by all the data points, the classical approach assigns one parameter point to each

data point (hence m = n). This extreme case is the approach followed in Section

4. Section 5 presents a general point of view and considers and compares both
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Figure 3.3 The GLS model as a Markov chain.

approaches (m < n and m = n). Interestingly, in this classical approach, it can be

shown that the latent variables
¯
a are approximate sufficient statistics and provide

all the information needed to make decisions on future data.

Proof. We consider the problem of classifying data point x. The Maximum A

Posteriori (MAP) estimator for the class C is defined as follows:

ĈMAP , arg max
C

p(C|x) = arg max
C

p(C,x). (3.14)

Acknowledging that the GLS graphical model is similar to the Markov chain pre-

sented in Figure 3.3, we have:

p(C|x)p(x) = p(C,x) =

∫
p(C,x, a)da

=

∫
p(C|x, a)p(x, a)da

and, because of the Markov chain structure,

≈
∫

p(C|a)p(a|x)p(x)da

and, because each data point x exactly corresponds to one support point
¯
a =

¯
a(x),

=

∫
p(C|a)δ(a−

¯
a)p(x)da

= p(C|
¯
a)p(x).

Hence, p(C|
¯
a) ≈ p(C|x) and

¯
a is an approximate sufficient statistics.
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The goal of the work proposed and analyzed in this thesis is to fit an

adequately faithful, class-conditional probability model of the form (3.12) for a

Bayesian approach or (3.13) for a classical approach to labeled (when available) or

unlabeled data to develop algorithms for making decisions on new measurements

or future data. The family of models provided by (3.12) and (3.13), where the

component densities are exponential family densities as described in Appendix A,

is very flexible and can be used to model both labeled and unlabeled cases. For

example, fraud detection considers the problem of labeling a new measurement as

fraudulent or non-fraudulent. If an adequate fit of a parameterized probability dis-

tribution has only been found to the single, labeled class of non-fraudulent points,

an interesting question is whether the new data point fits well with this distribution

or whether it should be flagged as an outlier worthy of further scrutiny and indicat-

ing possible fraud. Alternatively, if class-conditional distributions can be fitted to

both fraudulent and non-fraudulent labeled data, a Bayes-optimal likelihood ratio

test can be computed. Indeed, it is well known that knowledge of class-conditional

probability density functions p(x|Cc) and the a priori class probabilities p(Cc) for

classes Cc, c = 1, . . . , K, is sufficient for the development of Bayes-optimal classi-

fiers that can then be applied to future data [49]. Class-conditional density-based

tests can be equivalently posed as discriminant functions that are functions of suffi-

cient statistics of the densities (when they exist) and which, in turn, define decision

surfaces in feature space. Of course, the most difficult situation arises when the

training samples are unlabeled. However, even in the unlabel-data case, sometimes

the single-class model can still be effective for detection. For example, if the ratio

of fraudulent data (say class C2, as measured by p(C2)) to non-fraudulent data

(class C1, as measured by p(C1)) is very small, p(C2)/p(C1) ¿ 1, then the unlabeled

data points are approximately distributed like the non-fraudulent data, and the

simpler single-class model might be effectively assumed and utilized. This condi-

tion can be satisfied in practice; for example researchers working on credit card

fraud detection indicate that fraudulent credit card transactions are typically ap-
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proximately one tenth of one percent of all transactions. This type of applications

is called minority class detection and is presented in Section 4.4.

3.2 Component probability density models

As mentioned above, parameterized density functions of the form (3.1)

whose parameter vectors θ = aV + b have to be learned in a data-driven manner

are being used. The approach proposed here is motivated by the exponential family

Principal Component Analysis technique developed in [10]. Following the MGLMs

and GLV literature cited above, it is assumed that each component density pi(xi|θi)

in (3.1) for xi ∈ Xi, i = 1, . . . , d, is a one-parameter standard exponential family

density of the form:

p(xi|θi) = exp
(
xiθi −G(θi)

)
h(xi), (3.15)

cf. Appendix A. The function G(·) is the cumulant generating function and is

defined as

G(θi) = log

∫

Xi

eθixih(xi)ν(dxi),

where ν(·) is either the Lebesgue measure or the counting measure [55, 76]. Con-

tinuous exponential family probability densities are defined with respect to the

Lebesgue measure whereas discrete probability densities are defined with respect

to the counting measure (further discussed in Appendix A). It can be shown,

using Fubini’s theorem [76], that the cumulant generating function of a parame-

ter vector θ = [θ1, . . . , θd] is G(θ) =
∑d

i=1 G(θi) (further discussed in Section 4).

Note, again, that the possibility of each scalar component xi of x having a differ-

ent exponential family distribution is allowed. This is referred to as the mixed or

hybrid exponential family distributions assumption. Hence, it is possible to work

with descriptor spaces made up of mixed types of data, such as categorical data,

discrete/count data, and continuous data. Exponential family densities have many

useful and important mathematical properties which can be fruitfully exploited to
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obtain Maximum Likelihood Estimates (MLEs) of the parameters in the model

(3.12) or (3.13) [54,55,57], cf. Appendix A.

3.3 Automatic feature extraction

Ideally, the fitting of parameterized probability models makes it possible

to generate features, or data-patterns, which belong to a significantly lower dimen-

sional space than the original descriptor space, but which retain all the statistical

information contained in the descriptor space representation. This is a nontrivial

step which can greatly improve the performance of classification algorithms and

enhance the ability to interpret the results of such algorithms [77–79]. The gen-

eral problem of feature selection is known to be a difficult, combinatorially-hard

problem and the problem of efficient generation of informative features is of great

interest [78]. This work investigates the generalization to the proposal presented

in [10] that one should perform maximum likelihood estimation of the parameters

of the model distribution (3.15) subject to the requirement that the parameters

be constrained to a low-dimensional linear subspace in parameter space. This

generalization corresponds to investigating the utility of the more general models

provided by (3.12) and (3.13). Note that the dimension, q, of the low-dimensional

constrained-parameter subspace is a design parameter that must be determined

from empirical and model-fitting considerations.

Once the model (3.12) or (3.13) has been identified, one can then esti-

mate
¯
a ∈ Rq for a new data measurement x ∈ Rd as a vehicle for obtaining a

low-dimensional feature (where ideally, q ¿ d) which captures all of the relevant

statistical information in x in the sense that when conditioned on a the proba-

bility density of x has the factorial form (3.3). Recall that this is precisely the

requirement for the latent variable
¯
a to be complete [1]. These features can be

used to develop effective low-dimensional algorithms and help to gain insight into

the statistical nature of the addressed classification problems.
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3.4 Synthetic data generating model

In practice, producing synthetic observations from a generative model

can prove informative in understanding the form of the probability distribution

represented by that model [37]. Also, a side benefit of successfully fitting a faithful

probability model (3.12) or (3.13) to the data is the ability to generate synthetic

data in sufficient quantity that meaningful Monte-Carlo simulations and statistical

tests on any proposed algorithm can be performed. This is especially important

when data are scarce or expensive to get.
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4 Learning at one extreme of

the GLS framework

This section focuses on the estimation procedure of Generalized Linear

Statistics (GLS) framework components for the extreme case where the number

of parameter points equals the number of data points m = n. This extreme

case is similar to the exponential family Principal Component Analysis technique

proposed in [10] (further discussed in Section 5). We interpret it as a form of

Principal Component Analysis (PCA) performed in parameter space instead of

data space as in classical PCA. Therefore, we often compare the consequences of

decision making in parameter space based on GLS modeling with the consequences

of decision making in data space based on information from classical PCA and other

classical linear techniques.

This section is organized as follows. The estimation procedure is consid-

ered first for a single exponential family, and subsequently for data of mixed types

where several exponential families are involved. The loss function is defined and

its convexity properties studied; an iterative minimization algorithm is derived in

detail. The angle between subspaces is defined as a measure of the estimation

performance. A set of constraints and penalty functions are then designed and

added to the loss function in order to address the following concerns: divergence

at infinity, positivity of the natural parameter, matrix identifiability problems. As

noted in [10], it is possible for the atoms to diverge since the optimum may be at

infinity. To avoid such a behavior a penalty function is introduced; this defines

40
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and places a set of constraints into the loss function via a penalty parameter in a

way that penalizes any divergence to infinity. Also, for several exponential family

distributions with natural restrictions on their parameter, an additional positivity

constraint on the natural parameter values has to be taken into account. For exam-

ple, the natural parameter of the Gamma distribution is the negative of the inverse

of the scale parameter, which is assumed to be strictly positive, cf. Appendix A.

As a result, the natural parameter must be constrained to be strictly negative.

Several approaches that impose such constraints are studied. A key assumption

of the GLS framework is that the parameters are restricted to a low-dimensional

subspace. However, an orthonormality constraint is needed for the matrix that

defines this low-dimensional parameter subspace. It can be shown that otherwise

the matrix is not unique and that other equivalent representations can be derived

by orthogonal transformations of it [45]. The orthonormality constraint reduces

the impact of the identifiability problem. For both the single exponential fam-

ily case and the mixed data-type case, synthetic data examples provide insights

into the relationship between the low-dimensional parameter subspace originally

used to create the synthetic data sets and the subspace estimated within the GLS

framework. Finally, insights about the underlying statistical structure of complex

data sets gained by GLS modeling are utilized in a problem of unsupervised minor-

ity class detection. Minority class detection aims to differentiate rare key events

belonging to a “minority class” from the remainder of the data belonging to a

“majority class”. An unsupervised minority class detection algorithm performed

in parameter space rather than in data space as in more classical approaches is

proposed and tested on a synthetic data example.

4.1 Problem description

Following the Generalized Linear Statistics (GLS) framework presenta-

tion in Section 3, the special case where the number of parameter points equals
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the number of data points, i.e., m = n, is solely considered. Hence, the point-mass

probabilities do not need to be estimated and the Expectation-Maximization (EM)

algorithm is unnecessary. To each vector x corresponds a single vector
¯
a, i.e., a

single vector
¯
θ, and they all share a common index k = 1, . . . , n.

Let X be the (n× d) matrix of observations. The dimension of the data

space is referred to as d and the number of points in the data set is referred to as

n. The k’th row of the matrix X is the data row vector x[k]. The observations can

also be referred to as the data set
{
x[k]

}n

k=1
, where x[k] =

[
x1[k], x2[k], . . . , xd[k]

]
.

Consequently, the observation matrix is denoted as follows:

X =




x[1]

x[2]
...

x[n]




=




x1[1] . . . xd[1]

x1[2] . . . xd[2]
...

. . .
...

x1[n] . . . xd[n]




.

The proposed algorithm aims to identify the set of parameters
{
¯
θ[k]

}n

k=1
, where

each
¯
θ[k] is the “projection” of a corresponding x[k] onto a lower dimensional

subspace of the parameter space. The dimension of this lower dimensional subspace

is referred to as q, where q < d, ideally q ¿ d, and its basis is defined as {vj}q
j=1

where vj = [vj1, vj2, . . . , vjd]. Hence, the matrix V defined by

V =




v1

v2

...

vq




=




v11 . . . v1d

v21 . . . v2d

...
. . .

...

vq1 . . . vqd




is (q × d) and identifies the lower dimensional subspace of the parameter space.

The latent variable matrix
¯
A is (n×q) and represents the coordinates of each

¯
θ[k],

k = 1, . . . , n, in this lower dimensional subspace:

¯
A =




¯
a[1]

¯
a[2]

...

¯
a[n]




=




¯
a1[1] . . .

¯
aq[1]

¯
a1[2] . . .

¯
aq[2]

...
. . .

...

¯
a1[n] . . .

¯
aq[n]




.
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Therefore, each
¯
θ[k], k = 1, . . . , n, can be represented as a linear combination of

the basis vectors plus a d-dimensional offset or displacement vector b as follows:

¯
θ[k] =

¯
a[k]V + b =

q∑
j=1

¯
aj[k]vj + b, (4.1)

with b = [b1, . . . , bd]. In other words, the proposed algorithm aims to find the
¯
θ[k]

that is “best” in parameter space for its corresponding x[k], for all k = 1, . . . , n.

The matrix
¯
Θ is of the same dimensions as the observation matrix, namely

(n× d):

¯
Θ =

¯
AV + B =




¯
θ[1]

¯
θ[2]

...

¯
θ[n]




=




¯
θ1[1] . . .

¯
θd[1]

¯
θ1[2] . . .

¯
θd[2]

...
. . .

...

¯
θ1[n] . . .

¯
θd[n]




,

where the offset matrix B is (n× d) and simply composed of n identical rows b:

B =




b

b
...

b




=




b1 . . . bd

b1 . . . bd

...
. . .

...

b1 . . . bd




.

Assuming a Maximum Likelihood (ML) estimation path as traditionally

used in the GLMs literature [6], the loss function is the negative log-likelihood

function and is given by:

L(
¯
A,V,b) = − log p(X|

¯
Θ),

subject to the constraint
¯
Θ =

¯
AV+B. Without loss of generality, the offset term

b could be absorbed in the standard manner into the matrix V using homogenous

coordinates as in Section 2. However, for the sake of completeness, its presence

remains throughout the remainder of this dissertation.

In accordance with the Generalized Linear Statistics framework, the fol-

lowing assumptions are made:
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(i) the independent and identically distributed statistical samples assumption:

the samples x[k], k = 1, . . . , n, are drawn independently and identically;

(ii) the latent variable assumption: the components xi[k], i = 1, . . . , d, are inde-

pendent when conditioned on the parameter vector
¯
θ[k], i.e.,

p
(
x[k]|̄θ[k]

)
= p1

(
x1[k]|̄θ1[k]

) · . . . · pd

(
xd[k]|̄θd[k]

)
for all k, k = 1, . . . , n;

(iii) the mixed or hybrid exponential family distributions assumption: each density

function pi

(
xi[k]|̄θi[k]

)
is any one-parameter exponential family distribution

with
¯
θi[k] taken to be the natural parameter of the exponential family density

or some simple function of it. This assumption allows the rich and powerful

theory of exponential family distributions to be fruitfully utilized.

The marginal densities pi(·|·) can all be different, allowing for the possibility of

x[k] containing continuous and discrete valued components. Consequently, the

loss function becomes:

L(
¯
A,V,b) = − log p(X|

¯
Θ) matrix distribution, (4.2)

= −
n∑

k=1

log p
(
x[k]|̄θ[k]

)
vector distribution, (4.3)

= −
n∑

k=1

d∑
i=1

log pi

(
xi[k]|̄θi[k]

)
scalar distribution. (4.4)

A distribution is said to be a member of the exponential family if it has a density

function of the form

p
(
xi[k]|̄θi[k]

)
= exp

(
xi[k]

¯
θi[k]−G

(
¯
θi[k]

))
,

where the function G(·) is the cumulant generating function, defined as

G(
¯
θi) = log

∫

Xi

e¯θixiν(dxi),

and where ν(·) is a σ-finite measure that generates the exponential family (for

the details cf. Appendix A). The gradient of the cumulant generating function is

denoted by g(·) and is referred to as the link function. By exploiting the previously
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stated latent variable assumption, it can be shown that if pi(·|·) is the 1-dimensional

conditional distribution of the component xi[k], i = 1, . . . , d, of the data point x[k]

given the parameter
¯
θi[k], then the vector x[k] follows a d-dimensional conditional

exponential distribution p(·|·) given the vector parameter
¯
θ[k].

Proof. Considering the most general case, each component xi for i = 1, . . . , d

is assumed to be exponentially distributed according to the distribution pi with

parameter
¯
θi, and the components are independent when conditioned on theirs

parameters. Following the definition of standard exponential families presented in

Appendix A.2, a σ-finite measure νi is assumed for each distribution, i = 1, . . . , d.

Let ν = (ν1, . . . , νd) with ν(dx) = ν1(dx1) · ν2(dx2) · . . . · νd(dxd) be the σ-finite

measure in the d-dimensional data space. The 1-dimensional distribution can be

written as pi(xi|̄θi) = exp
{
¯
θixi−Gi(

¯
θi)

}
. Based on the latent variable assumption,

the distribution of the vector x can be written as follows:

p(x|̄θ) =
d∏

i=1

pi(xi|̄θi) =
d∏

i=1

e¯θixi−Gi(
¯
θi) = e¯θ·x−

Pd
i=1 Gi(

¯
θi),

where, by definition of an exponential family distribution and using Fubini’s the-

orem [76],

d∑
i=1

Gi(
¯
θi) =

d∑
i=1

log

∫

Xi

e¯θixiνi(dxi) = log
d∏

i=1

∫

Xi

e¯θixiνi(dxi)

= log

{∫

X1

e¯θ1x1ν1(dx1) ·
∫

X2

e¯θ2x2ν2(dx2) · . . . ·
∫

Xd

e¯θdxdνd(dxd)

}

= log

∫

X1

· · ·
∫

Xd

e¯θ1x1+
¯
θ2x2+···+

¯
θdxdν1(dx1) · . . . · νd(dxd)

= log

∫

X
e¯θxν(dx) = G(

¯
θ), (4.5)

where X = X1 × X2 × · · · × Xd defines the (product) space of the d-dimensional

vector x. As a result, G(
¯
θ) =

∑d
i=1 Gi(

¯
θi) is the cumulant generating function of

the multivariate exponential family distribution p(x|̄θ) =
∏d

i=1 pi(xi|̄θi).
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4.2 Estimation procedures for a single exponential family

First, the case of a single common exponential family, i.e., pi(·|·) = p(·|·)
for all i = 1, . . . , d, is considered.

4.2.1 Loss function and convexity

The loss function is given by

L(
¯
A,V,b) = −

n∑

k=1

d∑
i=1

log p
(
xi[k]|̄θi[k]

)
, (4.6)

where p(·|·) is an exponential family distribution with parameter
¯
θi[k] satisfying the

constraint
¯
θi[k] =

∑q
j=1 ¯

aj[k]vji + bi. Also, using the definition of an exponential

family distribution, the loss function can be written as:

L(
¯
A,V,b) = −

n∑

k=1

d∑
i=1

{
xi[k]

¯
θi[k]−G

(
¯
θi[k]

)}
,

and

arg min

¯
A,V,b

L(
¯
A,V,b) = arg min

¯
A,V,b

−
n∑

k=1

d∑
i=1

{
xi[k]

¯
θi[k]−G

(
¯
θi[k]

)}
(4.7)

= arg min

¯
A,V,b

n∑

k=1

d∑
i=1

{
G

(
¯
θi[k]

)− xi[k]
¯
θi[k]

}

= arg min

¯
A,V,b

n∑

k=1

{
d∑

i=1

G
(
¯
θi[k]

)−
d∑

i=1

xi[k]
¯
θi[k]

}

= arg min

¯
A,V,b

n∑

k=1

{
G

(
¯
θ[k]

)−
¯
θ[k]x[k]T

}

= arg min

¯
A,V,b

n∑

k=1

{
G

(
¯
a[k]V + b

)− (
¯
a[k]V + b

)
x[k]T

}
. (4.8)

Alternatively, Appendix A shows that the negative log-likelihood of the density

of an exponential family distribution p(xi[k]|̄θi[k]) can be expressed through a

Bregman distance BF (·‖·):

− log p(xi[k]|̄θi[k]) = BF

(
xi[k]

∥∥g(
¯
θi[k])

)− F
(
xi[k]

)
,
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where F (·) is the Fenchel conjugate of the cumulant generating function G(·).
Then, the loss function in (4.6) becomes:

L(
¯
A,V,b) =

n∑

k=1

d∑
i=1

{
BF

(
xi[k]

∥∥g(
¯
θi[k])

)− F
(
xi[k]

)}

=
n∑

k=1

d∑
i=1

{
BF

(
xi[k]

∥∥g(
¯
θi[k])

)}−
n∑

k=1

d∑
i=1

F
(
xi[k]

)
,

where
¯
θi[k] =

∑q
j=1 ¯

aj[k]vji+bi. As shown in Appendix A.3, the underlined term in

the above equation does not depend on either
¯
A, V or b, resulting in the following

minimization problem:

arg min

¯
A,V,b

L(
¯
A,V,b) = arg min

¯
A,V,b

n∑

k=1

d∑
i=1

BF

(
xi[k]

∥∥g(
¯
θi[k])

)

= arg min

¯
A,V,b

n∑

k=1

d∑
i=1

BF

(
xi[k]

∥∥g

( q∑
j=1

¯
aj[k]vji + bi

))
. (4.9)

It can be shown that the loss function is convex in either of its arguments with

the others fixed. Indeed, the dual divergences property of the Bregman distance

presented in Appendix A.3.2 implies that, if G
(
¯
θi[k]

)
is strictly convex, then

BF

(
xi[k]

∥∥g(
¯
θi[k])

)
= BG

(
f
(
g(

¯
θi[k])

)∥∥f
(
xi[k]

))

= BG

(
¯
θi[k]

∥∥f(xi[k])
)
, (4.10)

since the function f(·) is the inverse of the link function g(·). The fact that f(·) and

g(·) are inverse functions of each other is easily shown and explained in Appendix

A.2. Using equation (4.10) in equation (4.9), the minimization problem becomes,

if G
(
¯
θi[k]

)
is strictly convex:

arg min

¯
A,V,b

L(
¯
A,V,b) = arg min

¯
A,V,b

n∑

k=1

d∑
i=1

BG

(
¯
θi[k]

∥∥f(xi[k])
)

= arg min

¯
A,V,b

n∑

k=1

d∑
i=1

BG

( q∑
j=1

¯
aj[k]vji + bi

∥∥f(xi[k])
)
. (4.11)

This is a critical step of GLS because the minimization problem is moved from

data space fully into parameter space.
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It is well-known that G
(
¯
θi[k]

)
is a convex function on

¯
θi[k] and strictly

convex if the exponential family is minimal [55]. The convexity property in Ap-

pendix A.3.2 states that BG(·‖·) is always convex in the first argument, result-

ing in the fact that BG

(
¯
θi[k]

∥∥f(xi[k])
)

is convex in
¯
θi[k] for all k = 1, . . . , n and

i = 1, . . . , d. Then, since
¯
θi[k] =

∑q
j=1 ¯

aj[k]vji +bi is a convex relationship in either

aj[k], j = 1, . . . , q, vji, j = 1, . . . , q, or bi with the others fixed, for all k = 1, . . . , n

and i = 1, . . . , d, the Bregman distance BG

( ∑q
j=1 ¯

aj[k]vji + bi

∥∥f(xi[k])
)

is convex

in any of the three arguments when the other two are fixed. Therefore, as a sum

of convex functions, the loss function is convex in either of its arguments with the

others fixed, i.e., the loss function is convex in
¯
Θ =

¯
AV + B.

The strict convexity of the function G(·) for common one-dimensional

exponential family distributions [80] is shown below:

(i) Gaussian with unit-variance:

G(
¯
θi) = ¯

θ2
i

2
,

dG(
¯
θi)

d
¯
θi

= G′(
¯
θi) =

¯
θi,

d2G(
¯
θi)

d
¯
θ2

i

= G′′(
¯
θi) = 1 > 0.

(ii) Exponential:

G(
¯
θi) = − log(−

¯
θi), G′(

¯
θi) =

−1

¯
θi

, G′′(
¯
θi) =

1

¯
θ2

i

> 0.

(iii) Bernoulli:

G(
¯
θi) = log(1 + e¯θi), G′(

¯
θi) =

e¯θi

1 + e¯θi
, G′′(

¯
θi) =

e¯θi

(1 + e¯θi)2
> 0.

(iv) Binomial:

G(
¯
θi) = N log(1 + e¯θi), G′(

¯
θi) = N

e¯
θi

1 + e¯θi
, G′′(

¯
θi) = N

e¯θi

(1 + e¯θi)2
> 0.

(v) Poisson:

G(
¯
θi) = e¯θi , G′(

¯
θi) = e¯θi , G′′(

¯
θi) = e¯θi > 0.
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Since the loss function is convex in either of its arguments with the others fixed,

its minimization can be attacked by using an iterative approach. Then, the first

step, given a fixed matrix V and a fixed vector b, is to obtain the matrix
¯
A or the

set of vectors
¯
a[k] for k = 1, . . . , n, that minimizes the loss function

L(
¯
A,V,b) =

n∑

k=1

{
G

(
¯
a[k]V + b

)− (
¯
a[k]V + b

)
x[k]T

}
. (4.12)

The second step, given a fixed matrix
¯
A and a fixed vector b, is to obtain the

matrix V or the set of vectors vj for j = 1, . . . , q, that minimizes the loss function

(4.12). The last step, given a fixed matrix
¯
A and a fixed matrix V, is to obtain

the vector b that minimizes the loss function (4.12).

4.2.2 Iterative minimization of the loss function

The classical Newton-Raphson method is used for the iterative minimiza-

tion of the loss function (4.12), cf. Appendix B.

The first step in the (t + 1)st iteration consists of the update
¯
A(t+1) =

arg min
¯
A L(

¯
A,V(t),b(t)), with

¯
A(t), V(t) and b(t) being the updates obtained at

the end of the tth iteration. It then requires the computation of the gradient vector

∇
¯
al

(
¯
a[k]

)
and the Hessian matrix∇2

¯
al

(
¯
a[k]

)
of the loss function l

(
¯
a[k]

)
with respect

to the vector
¯
a[k], for all k = 1, . . . , n, where l

(
¯
a[k]

)
= l

(
¯
a[k],V(t),b(t)

)
collects

the elements of the loss function L(
¯
A,V(t),b(t)) that depend only on the vector

¯
a[k]:

l
(
¯
a[k]

)
= G

(
¯
a[k]V(t) + b(t)

)− (
¯
a[k]V(t) + b(t)

)
x[k]T (4.13)

=
d∑

i=1

{
G

(
q∑

j=1
¯
aj[k]v

(t)
ji + b

(t)
i

)
− xi[k]

(
q∑

j=1
¯
aj[k]v

(t)
ji + b

(t)
i

)}
.

The gradient vector of the loss function l
(
¯
a[k]

)
with respect to the vector

¯
a[k], for

k = 1, . . . , n, is given by

∇
¯
al

(
¯
a[k]

)
=

∂l
(
¯
a[k]

)

∂
¯
a[k]

= V(t)G′(
¯
a[k]V(t) + b(t)

)−V(t)x[k]T

= V(t)
(
G′(

¯
a[k]V(t) + b(t)

)− x[k]T
)
,
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where

G′(
¯
a[k]V(t) + b(t)

)
=

∂G
(
¯
θ[k]

)

∂
¯
θ[k]

∣∣∣∣∣
¯
θ[k]=

¯
a[k]V(t)+b(t)

and
∂
¯
θ[k]

∂
¯
a[k]

= V(t).

Here, the following convention for derivatives with respect to a row vector is used:

for
¯
a[k], a (1 × q) vector, and l(·), a scalar function of

¯
a[k], ∂l

(
¯
a[k]

)
/∂

¯
a[k] =

[
∂l

(
¯
a[k]

)
/∂

¯
a1[k], . . . , ∂l

(
¯
a[k]

)
/∂

¯
aq[k]

]T
is a (q × 1) vector. Similarly, for

¯
θ[k], a

(1×d) vector, and G(·), a scalar function of
¯
θ[k], ∂G

(
¯
θ[k]

)
/∂

¯
θ[k] is a (d×1) vector

as follows: ∂G
(
¯
θ[k]

)
/∂

¯
θ[k] =

[
∂G

(
¯
θ[k]

)
/∂

¯
θ1[k], . . . , ∂G

(
¯
θ[k]

)
/∂

¯
θd[k]

]T
. Then,

G′(
¯
a[k]V(t) + b(t)

)
=

[
∂G

(
¯
θ[k]

)

∂
¯
θ1[k]

, . . . ,
∂G

(
¯
θ[k]

)

∂
¯
θd[k]

]∣∣∣∣∣

T

¯
θ[k]=

¯
a[k]V(t)+b(t)

=

[
∂

∂
¯
θ1[k]

d∑
i=1

G
(
¯
θi[k]

)
, . . . ,

∂

∂
¯
θd[k]

d∑
i=1

G
(
¯
θi[k]

)
]T

for
¯
θ[k] =

¯
a[k]V(t) + b(t) and using equation (4.5)

=
[
g
(
¯
θ1[k]

)
, . . . , g

(
¯
θd[k]

)]∣∣T
¯
θ[k]=

¯
a[k]V(t)+b(t) ,

where g
(
¯
θi[k]

)
= ∂G

(
¯
θi[k]

)
/∂

¯
θi[k] as seen in Appendix A. The Hessian matrix of

the loss function with respect to the vector
¯
a[k] is given by

∇2

¯
al

(
¯
a[k]

)
=

∂2l
(
¯
a[k]

)

∂
¯
a[k]2

= V(t)G′′(
¯
a[k]V(t) + b(t)

)
V(t),T ,

where

G′′(
¯
a[k]V(t) + b(t)

)
=




∂2G(
¯
θ[k])

∂
¯
θ1[k]2

· · · ∂2G(
¯
θ[k])

∂
¯
θd[k]∂

¯
θ1[k]

...
...

...

∂2G(
¯
θ[k])

∂
¯
θ1[k]∂

¯
θd[k]

· · · ∂2G(
¯
θ[k])

∂
¯
θd[k]2




∣∣∣∣∣∣∣∣∣
¯
θ[k]=

¯
a[k]V(t)+b(t)

.

Furthermore,

∂2G
(
¯
θ[k]

)

∂
¯
θr[k]∂

¯
θs[k]

=
∂2

∂
¯
θr[k]∂

¯
θs[k]

G
(
¯
θ[k]

)
=

∂2

∂
¯
θr[k]∂

¯
θs[k]

d∑
i=1

G(
¯
θi[k])

=
∂

∂
¯
θs[k]

g(
¯
θr[k]),
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so that

∂2G
(
¯
θ[k]

)

∂
¯
θr[k]∂

¯
θs[k]

=





0 if r 6= s,

∂g(
¯
θr[k])/∂

¯
θr[k] if r = s.

As a result,

G′′(
¯
a[k]V(t) + b(t)

)
=




∂g(
¯
θ1[k])

∂
¯
θ1[k]

· · · 0
...

...
...

0 · · · ∂g(
¯
θd[k])

∂
¯
θd[k]




∣∣∣∣∣∣∣∣∣
¯
θ[k]=

¯
a[k]V(t)+b(t)

,

i.e., G′′(
¯
a[k]V(t) + b(t)

)
is a (d× d) diagonal matrix.

The Newton-Raphson technique simply solves the minimization problem

arg min
¯
a l(

¯
a[k],V(t),b(t)) at iteration (t + 1) by using the update

¯
a(t+1)[k] =

¯
a(t)[k]− α(t+1)

¯
a

(
∇2

¯
al

(
¯
a(t)[k],V(t),b(t)

))−1

∇
¯
al

(
¯
a(t)[k],V(t),b(t)

)
,

where ∇l(·) is the gradient of the function l(·), ∇2l(·) its Hessian matrix and α
(t+1)

¯
a

the so-called step size, cf. Appendix B. It yields the following update equation for

the set of vectors
¯
a(t+1)[k] at iteration (t + 1) for k = 1, . . . , n:

¯
a(t+1)[k]T =

¯
a(t)[k]T − α(t+1)

¯
a

(
V(t)G′′(

¯
a(t)[k]V(t) + b(t)

)
V(t),T

)−1

·
(
V(t)

(
G′(

¯
a(t)[k]V(t) + b(t))− x[k]T

))
.

(4.14)

As in [5, 7], it can be shown that solving the minimization problem
¯
A(t+1) =

arg min
¯
A L(

¯
A,V(t),b(t)) by using a Newton-Raphson method reduces to a repeated

weighted least squares in which the inverse of the diagonal values of the matrix

G′′(
¯
a(t)[k]V(t) + b(t)

)
are the appropriate weights. Indeed, the update equation

(4.14) can be written as
(
V(t)G′′(

¯
a(t)[k]V(t) + b(t)

)
V(t),T

)
¯
a(t+1)[k]T

=
(
V(t)G′′(

¯
a(t)[k]V(t) + b(t)

)
V(t),T

)
¯
a(t)[k]T

− α(t+1)

¯
a

(
V(t)

(
G′(

¯
a(t)[k]V(t) + b(t))− x[k]T

))
.

(4.15)

The vector on the right side of equation (4.15) can be written as

V(t)G′′(
¯
a(t)[k]V(t) + b(t)

)
z(t),
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where the (d× 1) vector z(t) is defined as follows:

z(t) = V(t),T

¯
a(t)[k]T

− α(t+1)

¯
a G′′(

¯
a(t)[k]V(t) + b(t))−1

(
G′(

¯
a(t)[k]V(t) + b(t))− x[k]T

)
.

Then, the update equation (4.15) takes the following form:
(
V(t)G′′(

¯
a(t)[k]V(t) + b(t)

)
V(t),T

)
¯
a(t+1)[k]T

= V(t)G′′(
¯
a(t)[k]V(t) + b(t)

)
z(t),

(4.16)

which are the so-called normal equations of a weighted least squares problem [6,81].

Because the matrix of weights G′′(
¯
a(t)[k]V(t) + b(t)

)
is updated at each iteration,

equation (4.16) corresponds to the update of a method known as Iterative Weighted

Least Squares (IWLS) [6,82], also called Iterative Reweighted Least Squares (IRLS)

[7, 15], or iteratively weighted least squares [5].

The second step in the iterative minimization method consists of the up-

date V(t+1) = arg minV L(
¯
A(t+1),V,b(t)). It requires the computation of the gradi-

ent vector ∇vl
(
vj

)
and the Hessian matrix ∇2

vl
(
vj

)
of the loss function l

(
vj

)
with

respect to the vector vj, for all j = 1, . . . , q, where l
(
vj

)
= l

(
¯
A(t+1), {vj}q

j=1,b
(t)

)

collects the elements of the loss function L(
¯
A(t+1),V,b(t)) that depend only on the

vector vj.

l(vj) =
n∑

k=1

{
G

(
q∑

r=1
¯
a(t+1)

r [k]vr + b(t)

)
−

(
q∑

r=1
¯
a(t+1)

r [k]vr + b(t)

)
x[k]T

}
,

∇vl(vj) =
∂l(vj)

∂vj

=
n∑

k=1

{

¯
a

(t+1)
j [k]G′

(
q∑

r=1
¯
a(t+1)

r [k]vr + b(t)

)
−

¯
a

(t+1)
j [k]x[k]T

}

=
n∑

k=1
¯
a

(t+1)
j [k]

{
G′(

¯
a(t+1)[k]V + b(t)

)− x[k]T
}
,

∇2
vl(vj) =

∂2l(vj)

∂v2
j

=
n∑

k=1
¯
a

(t+1)
j [k]2G′′

(
q∑

r=1
¯
a(t+1)

r [k]vr + b(t)

)

=
n∑

k=1
¯
a

(t+1)
j [k]2G′′(

¯
a(t+1)[k]V + b(t)

)
.
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Then, the update equation is given as follows for j = 1, . . . , q:

v
(t+1),T
j = v

(t),T
j − α(t+1)

v

(
n∑

k=1
¯
a

(t+1)
j [k]2G′′(

¯
a(t+1)[k]V(t) + b(t)

)
)−1

·
(

n∑

k=1
¯
a

(t+1)
j [k]

{
G′(

¯
a(t+1)[k]V(t) + b(t)

)− x[k]T
}
)

,

(4.17)

where

n∑

k=1
¯
a

(t+1)
j [k]2G′′(

¯
a(t+1)[k]V(t) + b(t)) =




∑n
k=1 ¯

a
(t+1)
j [k]2

∂g(
¯
θ1[k])

∂
¯
θ1[k]

0 · · · 0
...

...
...

...

0 0 · · · ∑n
k=1 ¯

a
(m+1)
j [k]2

∂g(
¯
θd[k])

∂
¯
θd[k]




for
¯
θ[k] =

¯
a(t+1)[k]V(t) + b(t).

As previously for
¯
a[k], the update equation (4.17) for each vj can be rep-

resented as normal equations of a weighted least squares problem. Because the

matrix G′′(
¯
a(t+1)[k]V(t) + b(t)) is updated at each iteration, equation (4.17) also

corresponds to the update of the Iterative Reweighted Least Squares method.

The last step in the iterative minimization method consists of the update

b(t+1) = arg minb L(
¯
A(t+1),V(t+1),b). It requires the computation of the gradient

vector∇bl
(
b
)

and the Hessian matrix∇2
bl

(
b
)

of the loss function l
(
b
)

with respect

to the offset vector b, where l
(
b
)

= l
(
¯
A(t+1),V(t+1),b

)
collects the elements of the

loss function L(
¯
A(t+1),V(t+1),b) that depend only on the vector b.

l(b) =
n∑

k=1

{
G

(
¯
a(t+1)[k]V(t+1) + b

)− (
¯
a(t+1)[k]V(t+1) + b

)
x[k]T

}
,

∇bl(b) =
∂l(b)

∂b
=

n∑

k=1

{
G′(

¯
a(t+1)[k]V(t+1) + b

)− x[k]T
}

,

∇2
bl(b) =

∂2l(b)

∂b2
=

n∑

k=1

G′′(
¯
a(t+1)[k]V(t+1) + b

)
.
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Then, the update equation is given as follows:

b(t+1),T = b(t),T − α
(t+1)
b

(
n∑

k=1

G′′(
¯
a(t+1)[k]V(t+1) + b(t)

)
)−1

·
(

n∑

k=1

{
G′(

¯
a(t+1)[k]V(t+1) + b(t)

)− x[k]T
}
)

,

(4.18)

where

G′′(
¯
a(t+1)[k]V(t+1) + b(t)) =




∂g(
¯
θ1[k])

∂
¯
θ1[k]

0 · · · 0
...

...
...

...

0 0 · · · ∂g(
¯
θd[k])

∂
¯
θd[k]




for
¯
θ[k] =

¯
a(t+1)[k]V(t+1) + b(t).

Note that only the cumulant generating function G(·) needs to be changed

in order to get an algorithm for a loss function involving a new exponential fam-

ily. This is pertinent since the cumulant generating function uniquely defines the

exponential family, cf. Appendix A.

4.2.3 Angle between subspaces

The angle between the estimated lower dimensional subspace N and the

original lower dimensional subspace M of the parameter space is proposed as a

measure to assess the performance of the estimation. As stated in [83], defining

the angle between subspaces in Rd, d À 1, is not as straightforward as the visual

geometry of R or R3 might suggest.

The minimal angle between nonzero subspaces M,N ⊆ Rd is defined to

be the number 0 ≤ ωmin ≤ π/2 for which

cos ωmin = max
u∈M,v∈N
‖u‖2=‖v‖2=1

vTu. (4.19)

If PM and PN are the orthogonal projectors onto M and N , respectively, then

cos ωmin = ‖PNPM‖2.
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If M and N are complementary subspaces (M⊕ N = Rd) and if PMN is the

oblique projector onto M along N , then

sin ωmin =
1

‖PMN‖2

.

M and N are complementary subspaces if and only if PM − PN is invertible; in

this case

sin ωmin =
1

‖(PM −PN )−1‖2

.

While the minimum angle works fine for complementary subspaces, it may not

convey much information about the separation between non-complementary sub-

spaces. For example, ωmin = 0 whenever M and N have a nontrivial intersection,

but there might be a nontrivial “gap” between M and N nevertheless.

The maximal angle between subspaces M,N ⊆ Rd is defined to be the

number 0 ≤ ωmax ≤ π/2 for which

sin ωmax = ‖PM −PN‖2. (4.20)

The maximum angle is chosen for the assessment of the lower dimensional subspace

estimation performance. Since PM is the orthogonal projector onto the lower

dimensional subspace, and since the matrix V ∈ Rq×d defines this subspace, then

PM = VTV+ = VT
(
VVT

)−1
V,

where the subscript + denotes a pseudo-inverse.

4.2.4 Positivity constraints and penalty function

For the Exponential, Gamma and Inverse Gaussian distributions, for ex-

ample, an additional positivity constraint on the natural parameter values has

to be taken into account in order to fully comply with the definition of the dis-

tributions [80]. Indeed, the natural parameter of the Gamma distribution is the

opposite of the inverse of the scale parameter, which is assumed to be strictly pos-

itive, cf. Appendix A. As a result, the natural parameter must be constrained to

be strictly negative.
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Three alternative ways to deal with the positivity constraint are: (1)

the use of Lagrange multipliers and Kuhn-Tucker theory; (2) the use of penalty

functions; and (3) the use of a non-canonical link function, which enables one to

work in an unconstrained parameter space. The latter option is investigated first;

second, the penalty functions approach is examined.

4.2.4.1 Non-canonical link approach

The non-canonical link function of an exponential family distribution is

the composition of its canonical link with a chosen function. If, for example, the

natural parameter has to be strictly negative, then one can choose the composition

of the canonical link with the negative square function or the negative absolute

value function. The absolute value function might be discarded because of its

discontinuity at the origin. Using a composition with the negative square function,

the loss function becomes:

L̃(
¯
A,V,b) =

n∑

k=1

BF

(
x[k]

∥∥g
(− [

¯
a[k]V + b

]2))
(4.21)

instead of

L(
¯
A,V,b) =

n∑

k=1

BF

(
x[k]

∥∥g(
¯
a[k]V + b)

)
,

where g
( − [

¯
a[k]V + b

]2)
= g(−

¯
θ2[k]) with [

¯
θ2[k]] =

[
¯
θ2
1[k], . . . ,

¯
θd[k]2

]
. In this

case, even though the predictor remains linear, i.e.,
¯
θ =

¯
aV + b, it is not

¯
θ but

−
¯
θ2 that is used. Hence, the lower dimensional subspace becomes curved instead

of flat. A possibility would be to then consider the angle between the original

flat subspace and the tangent to the estimated curved subspace instead of the

angle between the original flat and estimated flat subspaces in order to assess the

parameter subspace estimation performance.

The previously developed iterative minimization algorithm is then used

on L̃(
¯
A,V,b). However, the gradients and the Hessian matrices of the loss function
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L̃(
¯
A,V,b) with respect to

¯
a[k], k = 1, . . . , n, to vj, j = 1, . . . , q and to b are then

different from the gradients and Hessian matrices of the loss function L(
¯
A,V,b).

The first step of the iterative minimization problem goes as follows for

k = 1, . . . , n:

l̃
(
¯
a[k]

)
= G

(− [
¯
a[k]V(t) + b(t)

]2)
+

[
¯
a[k]V(t) + b(t)

]2
x[k]T ,

∇
¯
al̃

(
¯
a[k]

)
=

∂l̃
(
¯
a[k]

)

∂
¯
a[k]

.

For
¯
a[k], a (1× q) vector, and l̃(·), a scalar function of

¯
a[k], the gradient

∂l̃
(
¯
a[k]

)
/∂

¯
a[k] =

[
∂l̃

(
¯
a[k]

)
/∂

¯
a1[k], . . . , ∂l̃

(
¯
a[k]

)
/∂

¯
aq[k]

]T
is a (q × 1) vector. For

j = 1, . . . , q:

∂l̃
(
¯
a[k]

)

∂
¯
aj[k]

=
∂

∂
¯
aj[k]

{
G

(− [
¯
a[k]V(t) + b(t)

]2)}
+

∂

∂
¯
aj[k]

{[
¯
a[k]V(t) + b(t)

]2
x[k]T

}

=
d∑

i=1

∂

∂
¯
aj[k]

{
G

(−
¯
θ2

i [k]
)}

+
d∑

i=1

∂

∂
¯
aj[k]

{
¯
θ2

i [k]xi[k]
}

=
d∑

i=1

{−2
¯
θi[k] · vji ·G′(−

¯
θ2

i [k]
)

+ 2
¯
θi[k] · vji · xi[k]

}

=
d∑

i=1

−2
¯
θi[k] · vji ·

{
G′(−

¯
θ2

i [k]
)− xi[k]

}
,

with
¯
θ[k] =

[
¯
θ1[k], . . . ,

¯
θd[k]

]
=

¯
a[k]V(t) + b(t).

Similarly, the Hessian matrix ∇2

¯
al̃

(
¯
a[k]

)
is a (q × q) matrix with the ele-

ment of column j = 1, . . . , q and row r = 1, . . . , q defined as:

∂2l̃
(
¯
a[k]

)

∂
¯
aj[k]∂

¯
ar[k]

=
∂

∂
¯
ar[k]

d∑
i=1

−2
¯
θi[k] · vji ·

{
G′(−

¯
θ2

i [k]
)− xi[k]

}

=
d∑

i=1

−2vri · vji ·
{
G′(−

¯
θ2

i [k]
)− xi[k]

}

+
d∑

i=1

−2
¯
θi[k] · vji · −2

¯
θi[k] · vri ·G′′(−

¯
θ2

i [k]
)

=
d∑

i=1

−2vri · vji ·
{
G′(−

¯
θ2

i [k]
)− xi[k]− 2

¯
θ2

i [k] ·G′′(−
¯
θ2

i [k]
)}

.
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Recall that the update equation at iteration (t + 1) is

¯
a(t+1)[k] =

¯
a(t)[k]− α(t+1)

¯
a

(
∇2

¯
al̃

(
¯
a(t)[k],V(t),b(t)

))−1

∇
¯
al̃

(
¯
a(t)[k],V(t),b(t)

)
,

where ∇l̃(·) is the gradient of the function l̃(·), ∇2l̃(·) its Hessian matrix and α
(t+1)

¯
a

the so-called step size.

The second step in the iterative minimization problem goes as follows for

j = 1, . . . , q:

l̃(vj)=
n∑

k=1



G


−

[
q∑

r=1
¯
a(t+1)

r [k]vr + b(t)

]2

+



[

q∑
r=1

¯
a(t+1)

r [k]vr + b(t)

]2

x[k]T



 ,

∇v l̃(vj) =
∂l̃(vj)

∂vj

is a (d× 1) gradient vector whose components are as follows for i = 1, . . . , d:

∂l̃(vj)

∂vji

=
∂

∂vji

n∑

k=1

d∑
s=1

{
G

(−
¯
θ2

s [k]
)

+
¯
θ2

s [k]xs[k]
}

=
n∑

k=1

{−2
¯
θi[k] ·

¯
aj[k] ·G′(−

¯
θ2

i [k]
)

+ 2
¯
θi[k] ·

¯
aj[k] · xi[k]

}

=
n∑

k=1

−2
¯
θi[k] ·

¯
aj[k] · {G′(−

¯
θ2

i [k]
)− xi[k]

}
,

with
¯
θ[k] =

[
¯
θ1[k], . . . ,

¯
θd[k]

]
=

¯
a(t+1)[k]V + b(t).

Similarly, the Hessian matrix∇2
vj

l̃(vj) is a (d×d) matrix with the element

of column i = 1, . . . , d and row r = 1, . . . , d:

∂2l̃(vj)

∂vji∂vjr

=
∂

∂vjr

n∑

k=1

−2
¯
θi[k] ·

¯
aj[k] · {G′(−

¯
θ2

i [k]
)− xi[k]

}

=





0 if r 6= i,

∑n
k=1−2

¯
a2

j [k] · {G′(−
¯
θ2

i [k]
)− xi[k]− 2

¯
θ2

i [k] ·G′′(−
¯
θ2

i [k]
)}

if r = i.
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Then, the last step of the iterative minimization problem goes as follows:

l̃(b) =
n∑

k=1

{
G

(− [
¯
a(t+1)[k]V(t+1) + b

]2)
+

[
¯
a(t+1)[k]V(t+1) + b

]2
x[k]T

}
,

∇bl̃(b) =
∂l̃(b)

∂b
=

n∑

k=1

{
∂

∂b

{
G

(− [
¯
a(t+1)[k]V(t+1) + b

]2)}}

+
n∑

k=1

{
∂

∂b

{[
¯
a(t+1)[k]V(t+1) + b

]2
x[k]T

}}

is a (d× 1) gradient vector whose components are as follows for i = 1, . . . , d:

∂l̃(b)

∂bi

=
n∑

k=1

{
d∑

i=1

{−2
¯
θi[k] ·G′(−

¯
θ2

i [k]
)

+ 2
¯
θi[k] · xi[k]

}
}

,

with
¯
θ[k] =

[
¯
θ1[k], . . . ,

¯
θd[k]

]
=

¯
a(t+1)[k]V(t+1) + b.

Similarly, the Hessian matrix ∇2
bl̃(b) is a (d×d) matrix with the element

of column i = 1, . . . , d and row r = 1, . . . , d:

∂2l̃(b)

∂bi∂br

=
∂

∂br

n∑

k=1

{
d∑

i=1

{−2
¯
θi[k] ·G′(−

¯
θ2

i [k]
)

+ 2
¯
θi[k] · xi[k]

}
}

=





0 if r 6= i,

∑n
k=1−2

{
G′(−

¯
θ2

i [k]
)− xi[k]− 2

¯
θ2

i [k] ·G′′(−
¯
θ2

i [k]
)}

if r = i.

4.2.4.2 Penalty function approach

As noted in [10], it is possible for the atoms obtained with the extreme

GLS case corresponding to exponential family Principal Component Analysis to

diverge since the optimum may be at infinity. To avoid such behavior, we introduce

a penalty function that defines and places a set of constraints into the loss function

via a penalty parameter in a way so that any divergence to infinity is avoided.

The penalty function approach is used to convert the nonlinear program-

ming problem with equality and inequality constraints into an unconstrained prob-

lem, or into a problem with simple constraints [84–86]. This transformation is ac-

complished by defining an appropriate auxiliary function in terms of the problem

functions to define a new objective or loss function. In other words, the constraints
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are placed into the loss function via a penalty parameter in a way that penalizes

any violation of the constraints. It can be difficult to find a penalty function,

which is an effective and efficient surrogate for the constraints. As such, there are

no general guidelines on designing penalty functions, and constructing an efficient

penalty function is quite problem-dependent.

The penalty function is defined as follows for
¯
θ = [

¯
θ1, . . . ,¯

θd]:

ψ(
¯
θ) =

d∑
i=1

{
exp

(− βmin(
¯
θi − θmin)

)
+ exp

(
βmax(

¯
θi − θmax)

)}
, (4.22)

and was designed so that ψ(
¯
θ) is close to zero for θmin ≤

¯
θi ≤ θmax, i = 1, . . . , d,

and reaches infinity otherwise. Figure 4.1 shows possible shapes for the penalty
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Figure 4.1 Sketches for a possible penalty function (θmin = −5, θmax = 5): solid

line for penalty function parameters βmin = βmax = 1, dashed line for parameters

βmin = βmax = 10 and dashdot line for βmin = βmax = 0.5.

function depending on the parameters βmin and βmax values.
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The loss function becomes:

L̄(
¯
A,V,b) =

n∑

k=1

{
BF

(
x[k]

∥∥g(
¯
a[k]V + b)

)
+ c · ψ(

¯
a[k]V + b

)}
(4.23)

instead of

L(
¯
A,V,b) =

n∑

k=1

BF

(
x[k]

∥∥g(
¯
a[k]V + b)

)
,

where the scalar c is called the penalty parameter.

The previously developed iterative minimization algorithm is then used

on L̄(
¯
A,V,b). As did previously happen with the non-canonical link approach, the

gradients and the Hessian matrices of the loss function L̄(
¯
A,V,b) with respect to

¯
a[k], k = 1, . . . , n, to vj, j = 1, . . . , q and to b are then dissimilar to the gradients

and Hessian matrices of the loss function L(
¯
A,V,b).

The first step of the iterative minimization problem goes as follows for

k = 1, . . . , n:

l̄
(
¯
a[k]

)
= G

(
¯
a[k]V(t) + b(t)

)− (
¯
a[k]V(t) + b(t)

)
x[k]T + c · ψ(

¯
a[k]V(t) + b(t)

)
,

∇
¯
al̄

(
¯
a[k]

)
=

∂l̄
(
¯
a[k]

)

∂
¯
a[k]

= V(t)
{

G′(
¯
a[k]V(t)+ b(t)

)− x[k]T+ c · ψ′(
¯
a[k]V(t)+ b(t)

)}
,

∇2

¯
al̄

(
¯
a[k]

)
=

∂2l̄
(
¯
a[k]

)

∂
¯
a[k]2

= V(t)
{

G′′(
¯
a[k]V(t)+ b(t)

)
+ c · ψ′′(

¯
a[k]V(t)+ b(t)

)}
V(t),T .

Hence, the update equation becomes for k = 1, . . . , n:

¯
a(t+1)[k]T =

¯
a(t)[k]T − α(t+1)

¯
a

·
{
V(t)

{
G′′(

¯
a(t)[k]V(t) + b(t)

)
+ c · ψ′′(

¯
a(t)[k]V(t) + b(t)

)}
V(t),T

}−1

·V(t)
{

G′(
¯
a(t)[k]V(t) + b(t)

)− x[k]T + c · ψ′(
¯
a(t)[k]V(t) + b(t)

)}
.

Note that the gradient and Hessian of the penalty function are given by:

ψ′
(
¯
a[k]V(t) + b(t)

)
=

∂ψ
(
¯
θ[k]

)

∂
¯
θ[k]

∣∣∣∣∣
¯
θ[k]=

¯
a[k]V(t)+b(t)

and
∂
¯
θ[k]

∂
¯
a[k]

= V(t),

with

ψ′
(
¯
a[k]V(t) + b(t)

)
=

[
∂ψ

(
¯
θ[k]

)

∂
¯
θ1[k]

, . . . ,
∂ψ

(
¯
θ[k]

)

∂
¯
θd[k]

]∣∣∣∣∣

T

¯
θ[k]=

¯
a[k]V(t)+b(t)
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where, for i = 1, . . . , d and k = 1, . . . , n,

∂ψ
(
¯
θ[k]

)

∂
¯
θi[k]

=
∂

∂
¯
θi[k]

d∑
r=1

exp
(− βmin(

¯
θr[k]− θmin)

)

+
∂

∂
¯
θi[k]

d∑
r=1

exp
(
βmax(

¯
θr[k]− θmax)

)

= −βmin exp
(− βmin(

¯
θi[k]− θmin)

)
+ βmax exp

(
βmax(

¯
θi[k]− θmax)

)
.

The Hessian matrix is given by:

ψ′′
(
¯
a[k]V(t) + b(t)

)
=




∂2ψ(
¯
θ[k])

∂
¯
θ1[k]2

· · · ∂2ψ(
¯
θ[k])

∂
¯
θd[k]∂

¯
θ1[k]

...
...

...

∂2ψ(
¯
θ[k])

∂
¯
θ1[k]∂

¯
θd[k]

· · · ∂2ψ(
¯
θ[k])

∂
¯
θd[k]2




∣∣∣∣∣∣∣∣∣
¯
θ[k]=

¯
a[k]V(t)+b(t)

,

with

∂2ψ(
¯
θ[k])

∂
¯
θr[k]∂

¯
θs[k]

=
∂2

∂
¯
θr[k]∂

¯
θs[k]

d∑
i=1

exp
(− βmin(

¯
θi[k]− θmin)

)

+
∂2

∂
¯
θr[k]∂

¯
θs[k]

d∑
i=1

exp
(
βmax(

¯
θi[k]− θmax)

)

= β2
min exp

(− βmin(
¯
θr[k]− θmin)

)
+ β2

max exp
(
βmax(

¯
θr[k]− θmax)

)

for r = s, and ∂2ψ(
¯
θ[k])

∂
¯
θr[k]∂

¯
θs[k]

= 0 otherwise.

The second step of the iterative minimization follows for j = 1, . . . , q:

l̄(vj) =
n∑

k=1

G

( q∑
r=1

¯
a(t+1)

r [k]vr + b(t)

)

+
n∑

k=1

{ q∑
r=1

¯
a(t+1)

r [k]vr + b(t)
}
x[k]T + c · ψ

( q∑
r=1

¯
a(t+1)

r [k]vr + b(t)
)
.

Then,

∇v l̄(vj) =
∂l̄(vj)

∂vj

=
n∑

k=1

∂

∂vj

G

( q∑
r=1

¯
a(t+1)

r [k]vr +b(t)

)
+

n∑

k=1

∂

∂vj

{ q∑
r=1

¯
a(t+1)

r [k]vr +b(t)
}
x[k]T

+ c ·
n∑

k=1

∂

∂vj

ψ
( q∑

r=1
¯
a(t+1)

r [k]vr + b(t)
)
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∇v l̄(vj) =
n∑

k=1
¯
a

(t+1)
j [k]

{
G′(

¯
a(t+1)[k]V+b(t)

)−x[k]T +c · ψ′(
¯
a(t+1)[k]V+b(t)

)}
,

∇2
v l̄(vj) =

∂2l̄(vj)

∂v2
j

=
n∑

k=1
¯
a

(t+1)
j [k]2

{
G′′(

¯
a(t+1)[k]V + b(t)

)
+ c · ψ′′(

¯
a(t+1)[k]V + b(t)

)}
,

so that the update equation becomes for j = 1, . . . , q:

v
(t+1),T
j = v

(t),T
j − α(t+1)

v ·
( n∑

k=1
¯
a

(t+1)
j [k]2

{
G′′(

¯
a(t+1)[k]V(t) + b(t)

)
+ c · ψ′′(

¯
a(t+1)[k]V(t) + b(t)

)})−1

·
( n∑

k=1
¯
a

(t+1)
j [k]

{
G′(

¯
a(t+1)[k]V(t) + b(t)

)− x[k]T + c · ψ′(
¯
a(t+1)[k]V(t) + b(t)

)})
.

Finally, the last step of the minimization problem goes as follows:

l̄(b) =
n∑

k=1

{
G

(
¯
a(t+1)[k]V(t+1) + b

)− (
¯
a(t+1)[k]V(t+1) + b

)
x[k]T

+ c · ψ(
¯
a(t+1)[k]V(t+1) + b

)}
,

∇bl̄(b) =
∂l̄(b)

∂b

=
n∑

k=1

{
G′(

¯
a(t+1)[k]V(t+1) + b

)− x[k]T + c · ψ′(
¯
a(t+1)[k]V(t+1) + b

)}
,

∇2
bl̄(b) =

∂2l̄(b)

∂b2
=

n∑

k=1

{
G′′(

¯
a(t+1)[k]V(t+1) + b

)
+ c · ψ′′(

¯
a(t+1)[k]V(t+1) + b

)}
.

Then, the update equation is given as follows:

b(t+1),T = b(t),T − α
(t+1)
b ·

( n∑

k=1

{
G′′(

¯
a(t+1)[k]V(t+1) + b(t)

)
+ c · ψ′′(

¯
a(t+1)[k]V(t+1) + b(t)

))−1

·
( n∑

k=1

{
G′(

¯
a(t+1)[k]V(t+1) + b(t)

)− x[k]T + c · ψ′(
¯
a(t+1)[k]V(t+1) + b(t)

)})
.

4.2.5 Uniqueness and identifiability

The matrix V ∈ Rq×d defines the low-dimensional parameter subspace.

It can be shown that the matrix V, when q > 1, is not unique and that other
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equivalent representations can be derived by orthogonal transformations of it [45].

Indeed, if q = 1, then V reduces to a row vector of d elements. It is unique, apart

from a possible change of sign of all its elements, which corresponds merely to

changing the sign of the latent variable. In cases where q > 1, there are an infinity

of choices for V. The constraint
¯
θ[k] =

¯
a[k]V +b for k = 1, . . . , n, is still satisfied

if
¯
a[k] is replaced by

¯
a[k]M and V by MTV, where M is any orthogonal matrix

of dimension (q × q).

In order to reduce the identifiability problem of the matrix
¯
Θ =

¯
AV+B,

an orthonormality constraint is used, i.e., the condition

VVT = Iq×q (4.24)

is enforced. Consider the matrix space M = Rq×d, then V ∈ M. As the iterative

minimization process proposed earlier goes on, the successive updates of the matrix

V evolve, giving rise to a curve V(t) in M, where t describes time. The constraint

VVT = Iq×q corresponds to a hyperplane in M and an easy way to comply with

it would be to impose that the curve V(t) remains tangential to the VVT = Iq×q

hyperplane. In other words, the progression along the curve V(t) should remain on

the tangent of the VVT = Iq×q hyperplane. Considering the notation V̇ = dV/dt,

the tangent to the VVT = Iq×q hyperplane can be defined by the equation

V̇VT + VV̇T

2
= 0, (4.25)

where the denominator is used for later convenience. Let M = V̇ ∈ M and the

following operator is defined:

A(M) , MVT + VMT

2
. (4.26)

The operator A : M → S, where S ⊂ Rq×q, is linear and onto. Note that

A(M)T = A(M), so that S only contains symmetric matrices.

Proof. This proof is divided into two parts:
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• A is a linear operator;

For any β ∈ R, any M and M̃ ∈M,

A(βM + M̃) =
(βM + M̃)VT + V(βM + M̃)T

2

= β
MVT + VMT

2
+

M̃VT + VM̃T

2

= βA(M) +A(M̃).

• A is onto, i.e., R(A) = S the range of A or N (A∗) = {0} the null space of

its adjoint operator.

For any M ∈M and any W ∈ S, the adjoint operator A∗ is defined by

〈W,A(M)〉 = 〈A∗(W),M〉 , (4.27)

where, using the trace operator tr,

〈W,A(M)〉 = trWTA(M)

= trWT

(
MVT + VMT

2

)

=
1

2
tr

(
WTMVT + WTVMT

)

=
1

2
tr

(
WTMVT + MVTW

)
=

1

2
tr

(
WTMVT + WMVT

)

6

- ¾

6

R(A)R(A∗)

N (A∗) = {0}N (A)

SM A

A∗

CC

CC

Figure 4.2 The operator A, its range R(A) and null space N (A) in relation

with its adjoint operator A∗, its range R(A∗) and null space N (A∗) = {0}, with

M = N (A) ∪R(A∗) and S = N (A∗) ∪R(A).
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using properties of the trace operator,

= tr

(
WT + W

2

)
MVT = trWMVT

since W ∈ S is symmetric,

= trVTWM = trVTWTM = tr(WV)TM

= 〈WV,M〉 . (4.28)

Now, combining equations (4.27) and (4.28) results in

〈A∗(W),M〉 = 〈WV,M〉 .

Consequently,

A∗(W) = WV. (4.29)

If A∗(W) = 0, then WV = 0, meaning W = 0 since V cannot be the 0

matrix. Therefore, N (A∗) = {0} and A is onto.

Figure 4.2 shows the relationship between the range and null space of A and the

range and null space of its adjoint operator A∗.

Imposing that the curve V(t) remains tangential to the VVT = Iq×q

hyperplane is equivalent to imposing A(V̇) = 0, i.e., V̇(= dV/dt ' δV) or the

increment δV in the V update equation
(
V(m+1) = V(m)−α

(m+1)
v δV, cf. equation

(4.17)
)

needs to be projected onto the null space of A. The projection operator

onto the null space of A is defined as PN (A) = I − PR(A∗) = I − A+A, where the

subscript + denotes a pseudo-inverse. The goal now is to compute A+. Since A is

onto, R(A) = S, for any M ∈M there exists a matrix W ∈ S such that

A(M) = W. (4.30)

Similarly, for any M ∈M there exists a matrix Λ ∈ S such that

M = A∗(Λ). (4.31)
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Then, combining equations (4.29) and (4.31) gives

M = A∗(Λ) = ΛV. (4.32)

Now, using both equations (4.30) and (4.32) gives

A(M) = A(ΛV) = W

=
ΛVVT + VVTΛT

2
=

Λ + ΛT

2
= Λ,

since VVT = Iq×q and Λ ∈ S is symmetric. As a result, Λ = W. Consequently,

M = WV = A+(W). The projection operator onto the range of A∗ is defined by

PR(A∗)(M) = A+A(M)

= A+

(
MVT + VMT

2

)
=

MVT + VMT

2
V.

It can be shown that PR(A∗) is correctly defined as a projection operator since it

is idempotent, i.e., P2
R(A∗) = PR(A∗).

Proof.

P2
R(A∗)(M) = PR(A∗)

(
MVT + VMT

2
V

)

=

(
MVT +VMT

2
V

)
VT + V

(
MVT +VMT

2
V

)T

2
V

=
1

2

{(
MVT + VMT

2

)
VVTV + VVT

(
MVT + VMT

2

)T

V

}

=
1

2

{(
MVT + VMT

2

)
V +

(
MVT + VMT

2

)
V

}

=

(
MVT + VMT

2

)
V = PR(A∗)(M),

since VVT = Iq×q and A(M) is symmetric.

Then, the projection operator onto the null space of A is defined by

PN (A)(M) =
(
I− PR(A∗)

)
(M) = M−

(
MVT + VMT

2

)
V.
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It is indeed a projector onto the null space of A since

A (
PN (A)(M)

)
=

1

2

(
M−

(
MVT + VMT

2

)
V

)
VT

+
1

2
V

(
M−

(
MVT + VMT

2

)
V

)T

=
1

2

(
MVT −VMT

2

)
− 1

2

(
MVT −VMT

2

)
= 0.

Finally, the update equation for j = 1, . . . , q becomes:

v
(t+1),T
j = v

(t),T
j − α(t+1)

v PN (A)

(
n∑

k=1
¯
a

(t+1)
j [k]2G′′(

¯
a(t+1)[k]V(t) + b(t)

)
)−1

·
(

n∑

k=1
¯
a

(t+1)
j [k]

{
G′(

¯
a(t+1)[k]V(t) + b(t)

)− x[k]T
}
)

.

4.2.6 Synthetic data examples

Synthetic data examples for several single exponential family distribu-

tions are presented here. Both continuous and discrete distributions are portrayed:

the Gaussian and Gamma distributions are examples of continuous distributions

whereas the Poisson and Binomial distributions represent discrete ones. The iter-

ative minimization algorithm update equations are described and figures in both

data space and parameter space provide insight about the relationship between the

parameter space low-dimensional subspace originally used to create the synthetic

data sets and the subspace estimated within the GLS framework.

Gaussian data set

The Gaussian distribution describes data that cluster around a mean or

average.

A Gaussian random variable with unit-variance has the following proba-

bility density function:

p(x|µ) =
1√
2π

exp

(
−(x− µ)2

2

)

=
1√
2π

exp

(
−x2

2

)
exp

(
xµ− µ2

2

)
, for x ∈ R and µ ∈ R.
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Identifying the various terms in the definition of the probability density of a stan-

dard exponential family yields, cf. Appendix A:

N = R,

θ = µ,

G(θ) =
θ2

2
,

g(θ) = θ,

g′(θ) = 1,

F (µ) =
µ2

2
,

BF

(
x
∥∥g(θ)

)
=

1

2
(x− θ)2.

The Gaussian distribution does not require any penalty term that penalizes any

divergence to infinity. Therefore, the update equation for the first step of the

iterative minimization algorithm takes the following form, for k = 1, . . . , n:

¯
a(t+1)[k]T =

¯
a(t)[k]T − α(t+1)

¯
a ·

{
V(t)

{
G′′(

¯
a(t)[k]V(t) + b(t)

)}
V(t),T

}−1

·V(t)
{

G′(
¯
a(t)[k]V(t) + b(t)

)− x[k]T
}

,

where

G′(
¯
a(t)[k]V(t) + b(t)

)
=

[
g
(
¯
θ1[k]

)
, . . . , g

(
¯
θd[k]

)]∣∣T
¯
θ[k]=

¯
a(t)[k]V(t)+b(t)

=
[
¯
θ1[k], . . . ,

¯
θd[k]

]∣∣T
¯
θ[k]=

¯
a(t)[k]V(t)+b(t)

is a (d× 1) vector and

G′′(
¯
a(t)[k]V(t)+b(t)

)
=




∂g(
¯
θ1[k])

∂
¯
θ1[k]

· · · 0
...

. . .
...

0 · · · ∂g(
¯
θd[k])

∂
¯
θd[k]




∣∣∣∣∣∣∣∣∣
¯
θ[k]=

¯
a(t)[k]V(t)+b(t)

=




1 · · · 0
...

. . .
...

0 · · · 1




is a (d× d) matrix. Hence, for k = 1, . . . , n,

¯
a(t+1)[k]T =

¯
a(t)[k]T − α(t+1)

¯
a ·

{
V(t)V(t),T

}−1

V(t)
{
¯
a(t)[k]V(t) + b(t) − x[k]

}T

=
¯
a(t)[k]T − α(t+1)

¯
a ·V(t)

{
¯
a(t)[k]V(t) + b(t) − x[k]

}T

.
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Then, for the second step, the update equation is given as follows for j = 1, . . . , q:

v
(t+1),T
j = v

(t),T
j − α(t+1)

v

(
n∑

k=1
¯
a

(t+1)
j [k]2G′′(

¯
a(t+1)[k]V(t) + b(t)

)
)−1

·
(

n∑

k=1
¯
a

(t+1)
j [k]

{
G′(

¯
a(t+1)[k]V(t) + b(t)

)− x[k]T
}
)

= v
(t),T
j − α(t+1)

v

(
n∑

k=1
¯
a

(t+1)
j [k]2Id×d

)−1

·
(

n∑

k=1
¯
a

(t+1)
j [k]

{
¯
a(t+1)[k]V(t) + b(t) − x[k]

}T

)
.

For the last step, the update equation is given as follows:

b(t+1),T = b(t),T − α
(t+1)
b

(
n∑

k=1

G′′(
¯
a(t+1)[k]V(t+1) + b(t)

)
)−1

·
(

n∑

k=1

{
G′(

¯
a(t+1)[k]V(t+1) + b(t)

)− x[k]T
}
)

= b(t),T − α
(t+1)
b

1

n
·

n∑

k=1

{
¯
a(t+1)[k]V(t+1) + b(t) − x[k]

}T
.

Figure 4.3 presents a mixture of two Gaussian distributions in data space.

Figure 4.4 presents the corresponding parameter space, with the 1-dimensional

subspace containing the parameters of the Gaussian distributions. Recall that the

extreme case of GLS studied here corresponds to a form of Principal Component

Analysis (PCA) performed in parameter space. Also, a characteristic unique to

the Gaussian distribution is that, the link function g(·) being the identity, there

is no difference between data space and parameter space. Hence, the parameter

subspaces estimated within the GLS framework and by classical PCA can both

be compared to the original subspace. However, for other exponential family dis-

tributions, the subspace estimated by classical PCA lives in data space whereas

the subspace estimated within the GLS framework is in parameter space as the

original subspace is. Figure 4.5 shows the parameter space 1-dimensional subspace

learned with classical PCA. The sine of the angle between the original subspace

and the subspace learned with classical PCA is sin(]PCA) = 0.0052666. Figure
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Figure 4.3 Data space: mixture of two Gaussian distributions with parameters

constrained on a 1-dimensional subspace.
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Figure 4.4 Parameter space: parameters (M) of two Gaussian distributions, con-

strained on a 1-dimensional subspace.
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Figure 4.5 Parameter space: original 1-dimensional subspace (solid line) and 1-

dimensional subspace estimated with classical PCA (dashed line) with the corre-

sponding data-point projections (¤).
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Figure 4.6 Parameter space: original 1-dimensional subspace (solid line) and 1-

dimensional subspace estimated with GLS (dashdot line) with the corresponding

data-point projections (◦).
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4.6 shows in parameter space the 1-dimensional subspace learned within the GLS

framework. The sine of the angle between the original subspace and the subspace

learned with GLS is sin(]GLS) = 0.0044633 and sin(]GLS) < sin(]PCA).

Gamma data set

The Gamma distribution is often a probability model for waiting times.

For instance, in life testing, the waiting time until death is a random variable which

is frequently modeled with a Gamma distribution.

A Gamma random variable with shape parameter c and scale parameter

b has the following probability density function:

p(x|b) = (x/b)c−1[exp(−x/b)]/bΓ(c), for x ∈ R≥0 and b > 0, c > 0 (fixed).

If c is an integer, then the distribution represents the sum of c independent expo-

nentially distributed random variables, each of which has a mean of b. Hence, if

c = 1, then the Gamma distribution becomes an Exponential distribution.

Identifying the various terms in the definition of the probability density

of a standard exponential family yields, cf. Appendix A:

N = R<0,

θ = −1/b < 0,

G(θ) = log[(−1/θ)c],

g(θ) = −c/θ,

g′(θ) = c/θ2,

F (µ) = − log[(µ/c)c]− c,

BF

(
x
∥∥g(θ)

)
= − log[(−xθ/c)c]− xθ − c.

Because the scale parameter b is strictly positive, the natural parameter θ has to

be strictly negative. One could use the non-canonical link function as described in



74

Section 4.2.4. However, the loss function is defined as follows:

L(
¯
A,V,b) =

n∑

k=1

{
G

(
¯
θ[k]

)−
¯
θ[k]x[k]T

}
=

n∑

k=1

d∑
i=1

{
G

(
¯
θi[k]

)−
¯
θi[k]xi[k]

}
,

and the generative cumulant function associated with the Gamma distribution is:

G(
¯
θi[k]) = log[(−1/

¯
θi[k])c].

Assuming that the initialization of
¯
θ is strictly negative, as each

¯
θi[k] goes to 0,

G(
¯
θi[k]) goes to +∞, i.e., the loss function L(

¯
A,V,b) goes to +∞. Hence, if the

loss minimization is performed with small steps, the form of the generative cumu-

lant function itself should prevent the parameter values to become nonnegative.

The update equation for the iterative minimization algorithm takes the

following form, for k = 1, . . . , n:

¯
a(t+1)[k]T =

¯
a(t)[k]T − α(t+1)

¯
a

·
{
V(t)

{
G′′(

¯
a(t)[k]V(t) + b(t)

)
+ c · ψ′′(

¯
a(t)[k]V(t) + b(t)

)}
V(t),T

}−1

·V(t)
{

G′(
¯
a(t)[k]V(t) + b(t)

)− x[k]T + c · ψ′(
¯
a(t)[k]V(t) + b(t)

)}
,

where

G′(
¯
a(t)[k]V(t) + b(t)

)
=

[
g
(
¯
θ1[k]

)
, . . . , g

(
¯
θd[k]

)]∣∣T
¯
θ[k]=

¯
a(t)[k]V(t)+b(t)

=
[− c/

¯
θ1[k], . . . ,−c/

¯
θd[k]

]∣∣T
¯
θ[k]=

¯
a(t)[k]V(t)+b(t)

and

G′′(
¯
a(t)[k]V(t) + b(t)

)
=




c/
(
¯
θ1[k]

)2 · · · 0
...

. . .
...

0 · · · c/
(
¯
θd[k]

)2




∣∣∣∣∣∣∣∣∣
¯
θ[k]=

¯
a(t)[k]V(t)+b(t)

.

Then, for the second step, the update equation is given as follows for j = 1, . . . , q:

v
(t+1),T
j = v

(t),T
j − α(t+1)

v ·
( n∑

k=1
¯
a

(t+1)
j [k]2

{
G′′(

¯
a(t+1)[k]V(t) + b(t)

)
+ c · ψ′′(

¯
a(t+1)[k]V(t) + b(t)

)})−1

·
( n∑

k=1
¯
a

(t+1)
j [k]

{
G′(

¯
a(t+1)[k]V(t) + b(t)

)− x[k]T + c · ψ′(
¯
a(t+1)[k]V(t) + b(t)

)})
.
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For the last step, the update equation is given as follows:

b(t+1),T = b(t),T − α
(t+1)
b ·

( n∑

k=1

{
G′′(

¯
a(t+1)[k]V(t+1) + b(t)

)
+ c · ψ′′(

¯
a(t+1)[k]V(t+1) + b(t)

))−1

·
( n∑

k=1

{
G′(

¯
a(t+1)[k]V(t+1) + b(t)

)− x[k]T + c · ψ′(
¯
a(t+1)[k]V(t+1) + b(t)

)})
.

With the Gamma distribution, one might get unlucky and the values of

the matrix
¯
A stop updating before the matrix V is completely settled down. In

this case, it seems that the iterative minimization approach converges to a local

minimum. Fortunately, changing the random seed and starting the minimization

with a new random initialization solves this local minimum problem. Additionally,

a step-size value of 0.01 for both
¯
A and V seems to be optimum.

Figure 4.7 presents a mixture of two Gamma distributions in data space.

Figure 4.8 presents the corresponding parameter space. The original 1-dimensional

subspace containing the parameters of the Gamma distributions is represented with

a solid line and the subspace learned within the GLS framework with a dashdot

line. The sine of the angle between the original subspace and the subspace learned

with GLS is sin(]GLS) = 0.10468. The estimation result is not as good as the one

obtained in the Gaussian case, but the Gamma distribution is intrinsically more

challenging than the Gaussian distribution as seen in Figure 4.7.
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Figure 4.7 Data space: mixture of two Gamma distributions with parameters

constrained on a 1-dimensional subspace.
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with GLS (dashdot line).
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Poisson data set

The Poisson distribution expresses the probability of a number of events

occurring in a fixed period of time if these events occur with a known average rate

and independently of the time since the last event.

A Poisson random variable has the following probability density function:

p(x|λ) =
λx exp(−λ)

x!

=
exp(x log λ− λ)

x!
, for x ∈ X = {0, 1, 2, . . . } and λ > 0.

Identifying the various terms in the definition of the probability density of a stan-

dard exponential family yields, cf. Appendix A:

N = R,

θ = log λ,

G(θ) = exp(θ),

g(θ) = exp(θ),

g′(θ) = exp(θ),

F (µ) = µ log µ− µ,

BF

(
x
∥∥g(θ)

)
= x log x− xθ + exp(θ)− x.

The update equation for the iterative minimization algorithm takes the following

form, for k = 1, . . . , n:

¯
a(t+1)[k]T =

¯
a(t)[k]T − α(t+1)

¯
a

·
{
V(t)

{
G′′(

¯
a(t)[k]V(t) + b(t)

)
+ c · ψ′′(

¯
a(t)[k]V(t) + b(t)

)}
V(t),T

}−1

·V(t)
{

G′(
¯
a(t)[k]V(t) + b(t)

)− x[k]T + c · ψ′(
¯
a(t)[k]V(t) + b(t)

)}
,

where

G′(
¯
a(t)[k]V(t) + b(t)

)
=

[
g
(
¯
θ1[k]

)
, . . . , g

(
¯
θd[k]

)]∣∣T
¯
θ[k]=

¯
a(t)[k]V(t)+b(t)

=
[
exp

(
¯
θ1[k]

)
, . . . , exp

(
¯
θd[k]

)]∣∣T
¯
θ[k]=

¯
a(t)[k]V(t)+b(t)
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and

G′′(
¯
a(t)[k]V(t) + b(t)

)
=




exp
(
¯
θ1[k]

) · · · 0
...

. . .
...

0 · · · exp
(
¯
θd[k]

)




∣∣∣∣∣∣∣∣∣
¯
θ[k]=

¯
a(t)[k]V(t)+b(t)

.

Then, for the second step, the update equation is given as follows for j = 1, . . . , q:

v
(t+1),T
j = v

(t),T
j − α(t+1)

v ·
( n∑

k=1
¯
a

(t+1)
j [k]2

{
G′′(

¯
a(t+1)[k]V(t) + b(t)

)
+ c · ψ′′(

¯
a(t+1)[k]V(t) + b(t)

)})−1

·
( n∑

k=1
¯
a

(t+1)
j [k]

{
G′(

¯
a(t+1)[k]V(t) + b(t)

)− x[k]T + c · ψ′(
¯
a(t+1)[k]V(t) + b(t)

)})
.

For the last step, the update equation is given as follows:

b(t+1),T = b(t),T − α
(t+1)
b ·

( n∑

k=1

{
G′′(

¯
a(t+1)[k]V(t+1) + b(t)

)
+ c · ψ′′(

¯
a(t+1)[k]V(t+1) + b(t)

))−1

·
( n∑

k=1

{
G′(

¯
a(t+1)[k]V(t+1) + b(t)

)− x[k]T + c · ψ′(
¯
a(t+1)[k]V(t+1) + b(t)

)})
.

Figure 4.9 presents a mixture of two Poisson distributions in data space.

Figure 4.10 shows the corresponding parameter space. The original 1-dimensional

subspace containing the parameters of the Poisson distributions is represented with

a solid line and the subspace learned within the GLS framework with a dashdot

line. The sine of the angle between the original subspace and the subspace learned

with GLS is sin(]GLS) = 0.021943.
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Binomial data set

The Binomial distribution depicts the number of successes in a sequence of

N independent yes/no experiments, each of which yields success with probability p.

Such a success/failure experiment is also called a Bernoulli experiment or Bernoulli

trial. In fact, when N = 1, the Binomial distribution is a Bernoulli distribution.

A Binomial random variable with unit-variance has the following proba-

bility density function:

p(x|p) =
N !

x!(N − x)!
px(1− p)(N−x), for x ∈ X = {0, 1, 2, . . . , N}, 0 ≤ p ≤ 1.

Identifying the various terms in the definition of the probability density of a stan-

dard exponential family yields, cf. Appendix A:

N = R,

θ = log
p

1− p
,

G(θ) = N log
(
1 + exp(θ)

)
,

g(θ) = N
exp(θ)

1 + exp(θ)
= N

1

1 + exp(−θ)
,

g′(θ) = N
exp(θ)(

1 + exp(θ)
)2 ,

F (µ) = µ log
µ

N
+ (N − µ) log

N − µ

N
,

BF

(
x
∥∥g(θ)

)
= N log

1 + exp(θ)

exp(θ)
+ (N − x)θ

+ x log
x

N
+ (N − x) log

N − x

N
.

The update equation for the iterative minimization algorithm takes the following

form, for k = 1, . . . , n:

¯
a(t+1)[k]T =

¯
a(t)[k]T − α(t+1)

¯
a

·
{
V(t)

{
G′′(

¯
a(t)[k]V(t) + b(t)

)
+ c · ψ′′(

¯
a(t)[k]V(t) + b(t)

)}
V(t),T

}−1

·V(t)
{

G′(
¯
a(t)[k]V(t) + b(t)

)− x[k]T + c · ψ′(
¯
a(t)[k]V(t) + b(t)

)}
,
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where

G′(
¯
a(t)[k]V(t) + b(t)

)
=

[
g
(
¯
θ1[k]

)
, . . . , g

(
¯
θd[k]

)]∣∣T
¯
θ[k]=

¯
a(t)[k]V(t)+b(t)

=
[
N

exp
(
¯
θ1[k]

)

1 + exp
(
¯
θ1[k]

) , . . . , N
exp

(
¯
θd[k]

)

1 + exp
(
¯
θd[k]

)]
∣∣∣∣∣

T

¯
θ[k]=

¯
a(t)[k]V(t)+b(t)

and

G′′(
¯
a(t)[k]V(t) +b(t)

)
=




N
exp(

¯
θ1[k])

{1+exp(
¯
θ1[k])}2 · · · 0

...
. . .

...

0 · · · N
exp(

¯
θd[k])

{1+exp(
¯
θd[k])}2




∣∣∣∣∣∣∣∣∣
¯
θ[k]=

¯
a(t)[k]V(t)+b(t)

.

Then, for the second step, the update equation is given as follows for j = 1, . . . , q:

v
(t+1),T
j = v

(t),T
j − α(t+1)

v ·
( n∑

k=1
¯
a

(t+1)
j [k]2

{
G′′(

¯
a(t+1)[k]V(t) + b(t)

)
+ c · ψ′′(

¯
a(t+1)[k]V(t) + b(t)

)})−1

·
( n∑

k=1
¯
a

(t+1)
j [k]

{
G′(

¯
a(t+1)[k]V(t) + b(t)

)− x[k]T + c · ψ′(
¯
a(t+1)[k]V(t) + b(t)

)})
.

For the last step, the update equation is given as follows:

b(t+1),T = b(t),T − α
(t+1)
b ·

( n∑

k=1

{
G′′(

¯
a(t+1)[k]V(t+1) + b(t)

)
+ c · ψ′′(

¯
a(t+1)[k]V(t+1) + b(t)

))−1

·
( n∑

k=1

{
G′(

¯
a(t+1)[k]V(t+1) + b(t)

)− x[k]T + c · ψ′(
¯
a(t+1)[k]V(t+1) + b(t)

)})
.

Figure 4.11 presents a mixture of two Binomial distributions in data

space. Figure 4.12 shows the corresponding parameter space. The original 1-

dimensional subspace containing the parameters of the Binomial distributions is

represented with a solid line and the subspace learned within the GLS framework

with a dashdot line. The sine of the angle between the original subspace and the

subspace learned with GLS is sin(]GLS) = 0.0093628.
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4.3 Mixed data types

The above approach was proposed assuming that the data attributes have

the same distribution. It can be extended to the hybrid dimensionality reduction

problem. By hybrid we mean a problem in which different types of distributions

can be used for different attributes. Often, records have attributes that can be

both continuous (with different underlying distributions) and discrete, such as

categorical, count or Boolean. This situation is referred to as the mixed data-

type case throughout this dissertation. Below, a derivation of the algorithm for

the hybrid dimensionality problem is presented. Only two types of exponential

family distributions are considered (for example, the Bernoulli distribution and

the Gaussian distribution). Of course, this approach generalizes to any number of

exponential family distributions.

For simplicity of presentation, we consider that the f first attributes are

distributed according to the exponential family distribution p(1) and the (d−f) last

attributes are distributed according to the exponential family distribution p(2). Fol-

lowing the previously stated example, the bold superscript (1) would correspond to

Bernoulli distributed attributes and (2) to Gaussian distributed attributes. Then,

X =




x[1]

x[2]
...

x[n]




=




x1[1] . . . xf [1] xf+1[1] . . . xd[1]

x1[2] . . . xf [2] xf+1[2] . . . xd[2]
...

. . .
...

...
. . .

...

x1[n] . . . xf [n] xf+1[n] . . . xd[n]




=
(
X(1) X(2)

)
.

The loss function is expressed as follows:

L(
¯
A,V,b) = − log p(X|

¯
A,V,b) = −

n∑

k=1

log p
(
x[k]|̄θ[k]

)
,

using the iid statistical samples assumption, where
¯
θ[k] =

¯
a[k]V + b. Then, using
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the latent variable assumption,

p
(
x[k]|̄θ[k]

)

= p1(x1[k]|̄θ1[k]) · · · pf (xf [k]|̄θf [k])pf+1(xf+1[k]|̄θf+1[k]) · · · pd(xd[k]|̄θd[k])

= p(1)(x1[k]|̄θ1[k]) · · · p(1)(xf [k]|̄θf [k])p(2)(xf+1[k]|̄θf+1[k]) · · · p(2)(xd[k]|̄θd[k])

= p(1)
(
x(1)[k]|̄θ(1)[k]

)
p(2)

(
x(2)[k]|̄θ(2)[k]

)
,

where

¯
Θ =




¯
θ[1]

¯
θ[2]

...

¯
θ[n]




=




¯
θ1[1] . . .

¯
θf [1]

¯
θf+1[1] . . .

¯
θd[1]

¯
θ1[2] . . .

¯
θf [2]

¯
θf+1[2] . . .

¯
θd[2]

...
. . .

...
...

. . .
...

¯
θ1[n] . . .

¯
θf [n]

¯
θf+1[n] . . .

¯
θd[n]




=
(
¯
Θ(1)

¯
Θ(2)

)
.

The matrix of parameters
¯
Θ =

¯
AV + B results in the following decompositions:

V =




v1

v2

...

vq




=




v11 . . . v1f v1(f+1) . . . v1d

v21 . . . v2f v2(f+1) . . . v2d

...
. . .

...
...

. . .
...

vq1 . . . vqf vq(f+1) . . . vqd




=
(
V(1) V(2)

)
,

and

B =




b

b
...

b




=




b1 . . . bf b(f+1) . . . bd

b1 . . . bf b(f+1) . . . bd

...
. . .

...
...

. . .
...

b1 . . . bf b(f+1) . . . bd




=
(
B(1) B(2)

)
,

where B(1) = [b(1), . . . ,b(1)]T and b(1) = [b1, . . . , bf ], B(2) = [b(2), . . . ,b(2)]T and

b(2) = [bf+1, . . . , bd]. Then,

¯
Θ =




¯
θ[1]

¯
θ[2]

...

¯
θ[n]




=
¯
AV + B =

(
¯
AV(1) + B(1)

¯
AV(2) + B(2)

)
.
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Now, notice that

¯
AV(1) + B(1) =




¯
a1[1] . . .

¯
aq[1]

¯
a1[2] . . .

¯
aq[2]

...
. . .

...

¯
a1[n] . . .

¯
aq[n]







v11 . . . v1f

v21 . . . v2f

...
. . .

...

vq1 . . . vqf




+




b1 . . . bf

b1 . . . bf

...
. . .

...

b1 . . . bf




.

The underlined term is a (n × f) matrix whose elements are
∑q

j=1 ¯
aj[k]vji for

all k = 1, . . . , n and i = 1, . . . , f . Consequently, the elements of the (n × f)

matrix
¯
AV(1) + B(1) are of the form

∑q
j=1 ¯

aj[k]vji + bi for all k = 1, . . . , n and

i = 1, . . . , f . The matrix
¯
Θ(1) is also (n × f) and its elements take the following

form:
¯
θi[k] =

∑q
j=1 ¯

aj[k]vji + bi for all k = 1, . . . , n and i = 1, . . . , f . Besides,

knowing that
¯
θi[k] =

∑q
j=1 ¯

aj[k]vji + bi for all k = 1, . . . , n and i = 1, . . . , d, the

matrix
¯
Θ can be expressed as:

¯
Θ =




∑q
j=1 ¯

aj[1]v11 + b1 . . .
∑q

j=1 ¯
aj[1]vjf + bf . . .

∑q
j=1 ¯

aj[1]vjd + bd

∑q
j=1 ¯

aj[2]vj1 + b1 . . .
∑q

j=1 ¯
aj[2]vjf + bf . . .

∑q
j=1 ¯

aj[2]vjd + bd

...
. . .

...
. . .

...
∑q

j=1 ¯
aj[n]vj1 + b1 . . .

∑q
j=1 ¯

aj[n]vjf + bf . . .
∑q

j=1 ¯
aj[n]vjd + bd




.

As a result, it becomes clear that
¯
Θ(1) =

¯
AV(1) + B(1), and

¯
Θ(2) =

¯
AV(2) + B(2).

Note that, even though we are able to separate the matrix
¯
Θ into two blocks, the

matrix
¯
A is common to both

¯
Θ(1) and

¯
Θ(2). Therefore, the loss function takes the

following form:

L(
¯
A,V,b) = −

n∑

k=1

log p
(
x[k]|

¯
a[k],V,b

)

= −
n∑

k=1

log p(1)
(
x(1)[k]|

¯
a[k],V(1),b(1)

)−
n∑

k=1

log p(2)
(
x(2)[k]|

¯
a[k],V(2),b(2)

)
,



86

and the minimization problem can be expressed as:

arg min

¯
A,V,b

L(
¯
A,V,b)

= arg min

¯
A,V,b

{ n∑

k=1

{
G(1)

(
¯
a[k]V(1) + b(1)

)− (
¯
a[k]V(1) + b(1)

)
x(1)[k]T

}

+
n∑

k=1

{
G(2)

(
¯
a[k]V(2) + b(2)

)− (
¯
a[k]V(2) + b(2)

)
x(2)[k]T

}}
.

Since the linear combination of convex functions with nonnegative coefficients is

always convex [84], the loss function remains convex in either of its arguments with

the others fixed. Therefore, the iterative minimization technique proposed for the

single exponential family can be applied in the mixture of exponential families

case.

The first step in the Newton-Raphson minimization technique, given a

fixed matrix V and fixed vector b, is to obtain the matrix
¯
A, or the set of vectors

¯
a[k] for k = 1, . . . , n, that minimizes the loss function. The second step, given a

fixed matrix
¯
A and fixed vector b, is to obtain the matrix V that minimizes the

loss function. The last step, given a fixed matrix
¯
A and a fixed matrix V, is to

obtain the vector b. The updates are derived in a way similar to the one used in

Section 4.2. As previously, the superscript (t) means an estimate obtained at the

end of the tth iteration of the iterative minimization process. Note that, in order to

avoid confusion, the step superscript is not bold whereas the mixture superscripts

(1) and (2) are.

l
(
¯
a[k]

)
= G(1)

(
¯
a[k]V(1)(t) + b(1)(t)

)− (
¯
a[k]V(1)(t) + b(1)(t)

)
x(1)[k]T

+ G(2)
(
¯
a[k]V(2)(t) + b(2)(t)

)− (
¯
a[k]V(2)(t) + b(2)(t)

)
x(2)[k]T ,

∇
¯
al

(
¯
a[k]

)
=

∂l
(
¯
a[k]

)

∂
¯
a[k]

= V(1)(t)G(1)′(
¯
a[k]V(1)(t) + b(1)(t)

)−V(1)(t)x(1)[k]T

+ V(2)(t)G(2)′(
¯
a[k]V(2)(t) + b(2)(t)

)−V(2)(t)x(2)[k]T

= V(1)(t)
{

G(1)′(
¯
a[k]V(1)(t) + b(1)(t)

)− x(1)[k]T
}

+ V(2)(t)
{

G(2)′(
¯
a[k]V(2)(t) + b(2)(t)

)− x(2)[k]T
}

,
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∇2

¯
al

(
¯
a[k]

)
=

∂2l
(
¯
a[k]

)

∂
¯
a[k]2

= V(1)(t)G(1)′′(
¯
a[k]V(1)(t) + b(1)(t)

)
V(1)(t),T

+ V(2)(t)G(2)′′(
¯
a[k]V(2)(t) + b(2)(t)

)
V(2)(t),T .

The update equation for the set of vectors
¯
a[k] for k = 1, · · · , n is:

¯
a(t+1)[k]T =

¯
a(t)[k]T − α(t+1)

¯
a

{
V(1)(t)G(1)′′(

¯
a(t)[k]V(1)(t) + b(1)(t)

)
V(1)(t),T

+ V(2)(t)G(2)′′(
¯
a(t)[k]V(2)(t) + b(2)(t)

)
V(2)(t),T

}−1

·
{
V(1)(t)

(
G(1)′(

¯
a(t)[k]V(1)(t) + b(1)(t)

)− x[k](1),T
)

+ V(2)(t)
(
G(2)′(

¯
a(t)[k]V(2)(t) + b(2)(t)

)− x[k](2),T
)}

.

For the second step, the two sets of row vectors
{
v

(1)
j

}q

j=1
and

{
v

(2)
j

}q

j=1

are updated separately. For the sake of simplicity, the following derivations are

made for the set
{
vj

}q

j=1
indistinct of the mixture superscript. The update equa-

tion can be used for
{
v

(1)
j

}q

j=1
and

{
v

(2)
j

}q

j=1
by changing vj to v

(1)
j , respectively

to v
(2)
j , b to b(1), respectively to b(2), G(·), G′(·), and G′′(·) to G(1)(·), G(1)′(·), and

G(1)′′(·), respectively to G(2)(·), G(2)′(·), and G(2)′′(·).

l(vj) =
n∑

k=1

{
G

(
q∑

r=1
¯
a(t+1)

r [k]vr + b(t)

)
−

(
q∑

r=1
¯
a(t+1)

r [k]vr + b(t)

)
x[k]T

}
,

∇vl(vj) =
∂l(vj)

∂vj

=
n∑

k=1

{

¯
a

(t+1)
j [k]G′

(
q∑

r=1
¯
a(t+1)

r [k]vr + b(t)

)
−

¯
a

(t+1)
j [k]x[k]T

}

=
n∑

k=1
¯
a

(t+1)
j [k]

{
G′(

¯
a(t+1)[k]V + b(t)

)− x[k]T
}
,

∇2
vl(vj) =

∂2l(vj)

∂v2
j

=
n∑

k=1
¯
a

(t+1)
j [k]2G′′

(
q∑

r=1
¯
a(t+1)

r [k]vr + b(t)

)

=
n∑

k=1
¯
a

(t+1)
j [k]2G′′(

¯
a(t+1)[k]V + b(t)

)
.

Then, the update equation is given as follows for j = 1, . . . , q:

v
(t+1),T
j = v

(t),T
j − α(t+1)

v

(
n∑

k=1
¯
a

(t+1)
j [k]2G′′(

¯
a(t+1)[k]V(t) + b(t)

)
)−1

·
(

n∑

k=1
¯
a

(t+1)
j [k]

{
G′(

¯
a(t+1)[k]V(t) + b(t)

)− x[k]T
}
)

.
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For the last step, as for
{
v

(1)
j

}q

j=1
and

{
v

(2)
j

}q

j=1
, the derivations are made

for the vector b indistinct of the mixture superscript. The update equation can

then be used for b(1) and b(2) by changing b to b(1), respectively to b(2), V to

V(1), respectively to V(2), G(·), G′(·), and G′′(·) to G(1)(·), G(1)′(·), and G(1)′′(·),
respectively to G(2)(·), G(2)′(·), and G(2)′′(·).

l(b) =
n∑

k=1

{
G

(
¯
a(t+1)[k]V(t+1) + b

)− (
¯
a(t+1)[k]V(t+1) + b

)
x[k]T

}
,

∇bl(b) =
∂l(b)

∂b
=

n∑

k=1

{
G′(

¯
a(t+1)[k]V(t+1) + b

)− x[k]T
}

,

∇2
bl(b) =

∂2l(b)

∂b2
=

n∑

k=1

G′′(
¯
a(t+1)[k]V(t+1) + b

)
.

Then, the update equation is given as follows:

b(t+1),T = b(t),T − α
(t+1)
b

(
n∑

k=1

G′′(
¯
a(t+1)[k]V(t+1) + b

)
)−1

·
(

n∑

k=1

{
G′(

¯
a(t+1)[k]V(t+1) + b

)− x[k]T
}
)

.

4.3.1 Penalty function

The penalty function should dependent on the attributes distributions,

hence, a mixed data-type case necessitates an appropriate penalty function that

takes into account the requirements of the specific distributions in use. Consider-

ing that the f first attributes are distributed according to the exponential family

distribution p(1) and the (d − f) last attributes are distributed according to the

exponential family distribution p(2), the penalty function takes the following form

for
¯
θ = [

¯
θ1, . . . ,¯

θd]:

ψ(
¯
θ) =

f∑
i=1

{
exp

(− β
(1)
min(

¯
θi − θ

(1)
min)

)
+ exp

(
β(1)

max(¯
θi − θ(1)

max)
)}

+
d∑

i=f+1

{
exp

(− β
(2)
min(

¯
θi − θ

(2)
min)

)
+ exp

(
β(2)

max(¯
θi − θ(2)

max)
)}

,

(4.33)
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where the penalty function parameters are β
(1)
min and θ

(1)
min for attributes distributed

according to p(1), and β
(2)
min and θ

(2)
min for attributes distributed according to p(2).

Since

¯
Θ =




¯
θ[1]

¯
θ[2]

...

¯
θ[n]




=




¯
θ1[1] . . .

¯
θf [1]

¯
θf+1[1] . . .

¯
θd[1]

¯
θ1[2] . . .

¯
θf [2]

¯
θf+1[2] . . .

¯
θd[2]

...
. . .

...
...

. . .
...

¯
θ1[n] . . .

¯
θf [n]

¯
θf+1[n] . . .

¯
θd[n]




=
(
¯
Θ(1)

¯
Θ(2)

)
,

with

Θmin =




θmin

θmin

...

θmin




=




θmin,1 . . . θmin,f θmin,f+1 . . . θmin,d

θmin,1 . . . θmin,f θmin,f+1 . . . θmin,d

...
. . .

...
...

. . .
...

θmin,1 . . . θmin,f θmin,f+1 . . . θmin,d




,

i.e.,

Θmin =
(
Θ

(1)
min Θ

(2)
min

)
,

and

Θmax =
(
Θ(1)

max Θ(2)
max

)
,

then,

¯
Θ−Θmin =

(
¯
Θ(1) −Θ

(1)
min ¯

Θ(2) −Θ
(2)
min

)
,

and

¯
Θ−Θmax =

(
¯
Θ(1) −Θ(1)

max ¯
Θ(2) −Θ(2)

max

)
.

Hence, the penalty function takes the following form:

ψ(
¯
Θ) = ψ(1)(

¯
Θ(1)) + ψ(2)(

¯
Θ(2)),

where

ψ(1)(
¯
Θ(1)) =

f∑
i=1

{
exp

(− β
(1)
min(

¯
θi − θ

(1)
min)

)
+ exp

(
β(1)

max(¯
θi − θ(1)

max)
)}

,

ψ(2)(
¯
Θ(2)) =

d∑

i=f+1

{
exp

(− β
(2)
min(

¯
θi − θ

(2)
min)

)
+ exp

(
β(2)

max(¯
θi − θ(2)

max)
)}

.
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The loss function takes the following form:

L(
¯
A,V,b) = −

n∑

k=1

log p
(
x[k]|

¯
a[k],V,b

)
+ c ·

n∑

k=1

ψ
(
¯
a[k]V + b

)

= −
n∑

k=1

log p(1)
(
x(1)[k]|

¯
a[k],V(1),b(1)

)
+ c ·

n∑

k=1

ψ(1)
(
¯
a[k]V(1) + b(1)

)

−
n∑

k=1

{
log p(2)

(
x(2)[k]|

¯
a[k],V(2),b(2)

)

+ c ·
n∑

k=1

ψ(2)
(
¯
a[k]V(2) + b(2)

)
,

and the minimization problem can be expressed as:

arg min

¯
A,V,b

L(
¯
A,V,b)

= arg min

¯
A,V,b

{ n∑

k=1

{
G(1)

(
¯
a[k]V(1) + b(1)

)− (
¯
a[k]V(1) + b(1)

)
x(1)[k]T

+ c ·
n∑

k=1

ψ(1)
(
¯
a[k]V(1) + b(1)

)}

+
n∑

k=1

{
G(2)

(
¯
a[k]V(2) + b(2)

)− (
¯
a[k]V(2) + b(2)

)
x(2)[k]T

+ c ·
n∑

k=1

ψ(2)
(
¯
a[k]V(2) + b(2)

)}}
.

Since the linear combination of convex functions with nonnegative co-

efficients is always convex [84], the loss function remains convex in either of its

arguments with the others fixed. Therefore, the iterative minimization technique

proposed for the single exponential family can be applied in the mixture of expo-

nential families case.

The first step in the Newton-Raphson minimization technique is, given a

fixed matrix V and fixed vector b, to obtain the matrix
¯
A, or the set of vectors

¯
a[k] for k = 1, . . . , n, which minimizes the loss function. The second step is, given

a fixed matrix
¯
A and fixed vector b, to obtain the matrix V which minimizes the

loss function. The last step is, given a fixed matrix
¯
A and a fixed matrix V, to

obtain the vector b. The updates are derived in a way similar to the one used in
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Section 4.2. As previously, the superscript (t) means an estimate obtained at the

end of the tth iteration of the iterative minimization process:

l
(
¯
a[k]

)
= G(1)

(
¯
a[k]V(1)(t) + b(1)(t)

)− (
¯
a[k]V(1)(t) + b(1)(t)

)
x(1)[k]T

+ c · ψ(1)
(
¯
a[k]V(1)(t) + b(1)(t)

)

+ G(2)
(
¯
a[k]V(2)(t) + b(2)(t)

)− (
¯
a[k]V(2)(t) + b(2)(t)

)
x(2)[k]T

+ c · ψ(2)
(
¯
a[k]V(2)(t) + b(2)(t)

)
.

Then,

∇
¯
al

(
¯
a[k]

)
=

∂l
(
¯
a[k]

)

∂
¯
a[k]

= V(1)(t)G(1)′(
¯
a[k]V(1)(t) + b(1)(t)

)−V(1)(t)x(1)[k]T

+ c ·V(1)(t)ψ(1)′(
¯
a[k]V(1)(t) + b(1)(t)

)

+ V(2)(t)G(2)′(
¯
a[k]V(2)(t) + b(2)(t)

)−V(2)(t)x(2)[k]T

+ c ·V(2)(t)ψ(2)′(
¯
a[k]V(2)(t) + b(2)(t)

)

= V(1)(t)
{

G(1)′(
¯
a[k]V(1)(t) + b(1)(t)

)− x(1)[k]T

+ c · ψ(1)′(
¯
a[k]V(1)(t) + b(1)(t)

)}

+ V(2)(t)
{

G(2)′(
¯
a[k]V(2)(t) + b(2)(t)

)− x(2)[k]T

+ c · ψ(2)′(
¯
a[k]V(2)(t) + b(2)(t)

)}
,

∇2

¯
al

(
¯
a[k]

)
=

∂2l
(
¯
a[k]

)

∂
¯
a[k]2

= V(1)(t)
{

G(1)′′(
¯
a[k]V(1)(t) + b(1)(t)

)

+ c · ψ(1)′′ big(
¯
a[k]V(1)(t) + b(1)(t)

)}
V(1)(t),T

+ V(2)(t)
{

G(2)′′(
¯
a[k]V(2)(t) + b(2)(t)

)

+ c · ψ(2)′′(
¯
a[k]V(2)(t) + b(2)(t)

)}
V(2)(t),T .
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The update equation for the set of vectors
¯
a[k] for k = 1, · · · , n is:

¯
a(t+1)[k]T =

¯
a(t)[k]T

− α(t+1)

¯
a

{
V(1)(t)

(
G(1)′′(

¯
a(t)[k]V(1)(t) + b(1)(t)

)

+ c · ψ(1)′′(
¯
a[k]V(1)(t) + b(1)(m)

))
V(1)(t),T

+ V(2)(t)
(
G(2)′′(

¯
a(t)[k]V(2)(t) + b(2)(t)

)

+ c · ψ(2)′′(
¯
a[k]V(2)(t) + b(2)(t)

))
V(2)(t),T

}−1

·
{
V(1)(t)

(
G(1)′(

¯
a(t)[k]V(1)(t) + b(1)(t)

)− x[k](1),T

+ c · ψ(1)′(
¯
a(t)[k]V(1)(t) + b(1)(t)

))

+ V(2)(t)
(
G(2)′(

¯
a(t)[k]V(2)(t) + b(2)(t)

)− x[k](2),T

+ c · ψ(2)′(
¯
a(t)[k]V(2)(t) + b(2)(t)

))}
.

For the second step, the two sets of row vectors
{
v

(1)
j

}q

j=1
and

{
v

(2)
j

}q

j=1
are up-

dated separately. For the sake of simplicity, the following derivations are made for

the set
{
vj

}q

j=1
indistinctively of the mixture superscript. The update equation

can then be used for
{
v

(1)
j

}q

j=1
and

{
v

(2)
j

}q

j=1
by changing vj to v

(1)
j , respectively

to v
(2)
j , b to b(1), respectively to b(2), G(·), G′(·), and G′′(·) to G(1)(·), G(1)′(·), and

G(1)′′(·), respectively to G(2)(·), G(2)′(·), and G(2)′′(·).

l(vj) =
n∑

k=1

{
G

(
q∑

r=1
¯
a(t+1)

r [k]vr + b(t)

)
−

(
q∑

r=1
¯
a(t+1)

r [k]vr + b(t)

)
x[k]T

+ c · ψ
(

q∑
r=1

¯
a(t+1)

r [k]vr + b(t)

)}
,

∇vl(vj) =
∂l(vj)

∂vj

=
n∑

k=1

{
¯
a

(t+1)
j [k]G′

(
q∑

r=1
¯
a(t+1)

r [k]vr + b(t)

)
−

¯
a

(t+1)
j [k]x[k]T

+ c ·
¯
a

(t+1)
j [k]ψ

(
q∑

r=1
¯
a(t+1)

r [k]vr + b(t)

)}
,
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∇2
vl(vj) =

∂2l(vj)

∂v2
j

=
n∑

k=1
¯
a

(t+1)
j [k]2

{
G′′

(
q∑

r=1
¯
a(t+1)

r [k]vr + b(t)

)

+ c · ψ
(

q∑
r=1

¯
a(t+1)

r [k]vr + b(t)

) }

=
n∑

k=1
¯
a

(t+1)
j [k]2

{
G′′(

¯
a(t+1)[k]V + b(t)

)
+ c · ψ′′(

¯
a(t+1)[k]V + b(t)

)}
.

Then, the update equation is given as follows for j = 1, . . . , q:

v
(t+1),T
j = v

(t),T
j − α(t+1)

v

(
n∑

k=1
¯
a

(t+1)
j [k]2

(
G′′(

¯
a(t+1)[k]V(t) + b(t)

)

+ c · ψ′′(
¯
a(t+1)[k]V(t) + b(t)

))
)−1

·
(

n∑

k=1
¯
a

(t+1)
j [k]

(
G′(

¯
a(t+1)[k]V(t) + b(t)

)− x[k]T

+ c · ψ′(
¯
a(t+1)[k]V(t) + b(t)

))
)

.

For the last step, as for
{
v

(1)
j

}q

j=1
and

{
v

(2)
j

}q

j=1
, the derivations are made

for the vector b indistinctively of the mixture superscript. The update equation

can then be used for b(1) and b(2) by changing b to b(1), respectively to b(2), V to

V(1), respectively to V(2), G(·), G′(·), and G′′(·) to G(1)(·), G(1)′(·), and G(1)′′(·),
respectively to G(2)(·), G(2)′(·), and G(2)′′(·).

l(b) =
n∑

k=1

{
G

(
¯
a(t+1)[k]V(t+1) + b

)− (
¯
a(t+1)[k]V(t+1) + b

)
x[k]T

+ c · ψ(
¯
a(t+1)[k]V(t+1) + b

)}
,

∇bl(b) =
∂l(b)

∂b
=

n∑

k=1

{
G′(

¯
a(t+1)[k]V(t+1) + b

)− x[k]T

+ c · ψ′(
¯
a(t+1)[k]V(t+1) + b

)}
,

∇2
bl(b) =

∂2l(b)

∂b2

=
n∑

k=1

{
G′′(

¯
a(t+1)[k]V(t+1) + b

)
+ c · ψ′′(

¯
a(t+1)[k]V(t+1) + b

)}
.
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Then, the update equation is given as follows:

b(t+1),T = b(t),T − α
(t+1)
b

(
n∑

k=1

G′′(
¯
a(t+1)[k]V(t+1) + b

)

+ c · ψ′′(
¯
a(t+1)[k]V(t+1) + b

)
)−1

·
(

n∑

k=1

{
G′(

¯
a(t+1)[k]V(t+1) + b

)− x[k]T

+ c · ψ′(
¯
a(t+1)[k]V(t+1) + b

)}
)

.

4.3.2 Synthetic data examples

Synthetic data examples for several exponential family distributions in the

case of mixed data types are presented here. Figures in both data space and pa-

rameter space provide insight about the relationship between the low-dimensional

parameter subspace originally used to create the synthetic data sets and the sub-

space estimated within the GLS framework.

Poisson-Gaussian mixed data set

Figure 4.13 presents a mixture of two Poisson-Gaussian mixed distrib-

utions in data space. The data are comprised of one Poisson attribute and two

Gaussian attributes. Figure 4.14 shows the corresponding parameter space. The

original 1-dimensional subspace containing the parameters of the mixed data is

represented with a solid line and the subspace learned within the GLS framework

with a dashdot line. The sine of the angle between the original subspace and the

subspace learned with GLS is sin(]GLS) = 0.088601.
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Figure 4.13 Data space: mixture of two Poisson-Gaussian mixed distributions

with parameters constrained on a 1-dimensional subspace.
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Figure 4.14 Parameter space: parameters (M) of two Poisson-Gaussian mixed

distributions, original 1-dimensional subspace (solid line) and 1-dimensional sub-

spaces estimated with GLS (dashdot line).
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Binomial-Gaussian mixed data set

Figure 4.15 presents a mixture of two Binomial-Gaussian mixed distrib-

utions in data space. The data are comprised of one Binomial attribute and two

Gaussian attributes. Figure 4.16 shows the corresponding parameter space. The

original 1-dimensional subspace containing the parameters of the mixed data is

represented with a solid line and the subspace learned within the GLS framework

with a dashdot line. The sine of the angle between the original subspace and the

subspace learned with GLS is sin(]GLS) = 0.021565.

Gamma-Gaussian mixed data set

Figure 4.17 presents a mixture of two Gamma-Gaussian mixed distrib-

utions in data space. The data are comprised of one Gamma attribute and two

Gaussian attributes. The sine of the angle between the original subspace and the

subspace learned with GLS is sin(]GLS) = 0.01724.

0

5

10

−6
−4

−2
0

2
4

−3

−2

−1

0

1

2

3

Figure 4.15 Data space: mixture of two Binomial-Gaussian mixed distributions

with parameters constrained on a 1-dimensional subspace.
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Figure 4.16 Parameter space: parameters (M) of two Binomial-Gaussian mixed

distributions, original 1-dimensional subspace (solid line) and 1-dimensional sub-

spaces estimated with GLS (dashdot line).
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Figure 4.17 Data space: mixture of two Gamma-Gaussian mixed distributions

with parameters constrained on a 1-dimensional subspace.
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Binomial-Gamma-Gaussian mixed data set

Figure 4.18 presents a mixture of two Binomial-Gaussian-Gamma mixed

distributions in data space. The data are comprised of one Gamma attribute, one

Gaussian attribute and one Binomial attribute (N = 10). The sine of the angle

between the original subspace and the subspace learned with a Binomial-Gaussian-

Gamma GLS assumption is sin(]GLS:BGG) = 0.0326. With a simple Gaussian GLS

assumption, the sine becomes sin(]GLS:G) = 0.93375 > sin(]GLS:BGG). Since both

a Binomial random variable and a Gamma random variable only take on positive

values, we could only consider two more assumptions: a Binomial-Gaussian GLS

assumption and a Gaussian-Gamma GLS assumption. The sine of the angle be-

tween the original subspace and the subspace learned with a Binomial-Gaussian

GLS assumption is sin(]GLS:BG) = 0.93623 and the sine of the angle between the

original subspace and the subspace learned with a Gaussian-Gamma GLS assump-

tion is sin(]GLS:GG) = 0.08310. Hence, a Gaussian-Gamma GLS assumption yields

results that are close to the results obtained with the Binomial-Gaussian-Gamma

GLS assumption. In this particular example, assuming a Gamma distribution for

the last attribute seems to be essential for a good estimation performance. We

performed a similar experiment with a mixture of two Binomial-Gaussian-Gamma

mixed distributions and the Binomial parameter N equal to 5. The results are simi-

lar to the ones obtained for the data with Binomial parameter N equal to 10 and are

as follows: sin(]GLS:G) = 0.86571 > sin(]GLS:BG) = 0.86359 > sin(]GLS:GG) =

0.14198 > sin(]GLS:BGG) = 0.098467.

4.4 Application: unsupervised minority class detection in

parameter space on synthetic data

Minority class detection considers a binary class situation where a “mi-

nority class” is discriminated from a “majority class”. It aims to differentiate rare

key events belonging to the minority class from the remainder of the data belonging
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Figure 4.18 Data space: a mixture of two Binomial-Gaussian-Gamma mixed dis-

tributions with parameters constrained on a 1-dimensional subspace.

to the majority class.

The problem of unsupervised data-driven minority class (rare event) de-

tection is one of relating property descriptors of a large unlabeled database of

“objects” to measured properties of these objects, then using these empirically

determined relationships to infer the properties of new objects. Here, the ultimate

goal is to correctly characterize the new objects as either belonging to the minority

class or not. This work assumes that minority class and majority class objects con-

stitute two distinct, well-separated classes of objects in a latent variable subspace

of the parameter space as described in Section 3. In the case of a rare occurrence

of objects to be detected, it is believed that modeling the total unlabeled database

allows one to discern the statistical structure of the majority class of objects. This

experiment considers measured object properties that are non-Gaussian, mixed

(comprised of continuous and discrete data), very noisy, and highly non-linearly

related for which the resulting minority class detection problem is very difficult.

Unsupervised methods for feature extraction, such as Principal Compo-
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nent Analysis (PCA), are commonly used to process data before using discrimi-

native classifiers, such as Support Vector Machines (SVMs) or neural networks.

However, methods such as Independent Component Analysis (ICA) and PCA as-

sume the same form of the distribution for all components of the data. In contrast,

the Generalized Linear Statistics (GLS) framework developed in Section 3 allows

each component to have its own parametric form. The proposed minority class de-

tection technique is based on the GLS framework, enabling the use of exponential

family distributions to model the various mixed types of data measurements (con-

tinuous or discrete). A key aspect is that the parameters of the exponential family

distributions are constrained to a lower dimensional latent variable subspace to

model the belief that the intrinsic dimensionality of the data is smaller than the

dimensionality of the data space. The proposed minority class detection technique

is performed in parameter space rather than in data space, as in more classical

approaches, and exploits the low dimensional information provided by the latent

variables
¯
a[k], k = 1, . . . , n.

Figure 4.19 shows an example of synthetic three-dimensional mixed data

(d = 3), with each data sample comprised of a Binomial component with values

between 0 and 5, an Exponential distribution component, and a Gaussian com-

ponent. The data are generated by two different classes, a minority one and a

majority one, and for each class the parameters are assumed to be constrained to

lie on a (different) one-dimensional subspace of the parameter space (q = 1). To as-

sess the unsupervised minority class detection performance, we consider a situation

where the minority class is a rare occurrence (1 percent of 10000 data samples),

and the data are equally divided into a training set and a test set. The unsu-

pervised minority class detection technique using the GLS information learned in

parameter space works as follows: first, given the training set {x[k]}n
k=1, we learn

the low-dimensional parameter subspace or direction of projection in parameter

space, namely the matrix V, by using the GLS modeling approach, and compute

the training set mean-image on the lower dimensional parameter subspace, namely
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1/n
∑n

k=1 ¯
a[k]. The training set mean-image is then taken as an approximation to

the training cluster mean of the majority class in the lower dimensional subspace.

Then, for each test sample, the data point is moved from data space to parame-

ter space using the inverse link function. We project the obtained point onto the

direction of projection estimated by GLS and compute its distance to the training

set mean-image. Finally, we compare the obtained distance to a given threshold

λ to make a decision. The test point is declared to be part of the minority class

if the distance is higher than λ, otherwise it is declared to be part of the majority

class. This procedure is conducted for all of the test set samples, and the detection

performance is assessed by plotting the ROC curve found from varying the value

of λ. The ROC curve shows the probability of detection PD versus the probability

of false alarm PFA as λ varies. The proposed technique is compared to classical

PCA used in data space with a threshold test performed on new test data pro-

jected along the first principal axis, as well as to a supervised Bayes (minimum

rate) detector for the sake of an optimal benchmark.

Data for which classical PCA will fail to provide accurate detection are

easily created, using the knowledge that classical PCA defines the direction of

projection as the direction of maximum variance in data space. The classical PCA

approach will therefore give poor performance on data for which the direction of

maximum variance is inappropriate for separating minority from majority class

data. The Exponential distribution p(x; θ) = β exp(−βx), with θ = −β, is used

as a component of the data. Because the link function for this distribution is

f(x) = −1/x, the direction of maximum variance in data space is actually the

direction of minimum variance in feature space, and for this situation classical

PCA is expected to perform poorly, and indeed it does.

Figure 4.20 shows a comparison between the supervised Bayes detector,

the minority class detector based on GLS information and performed in parameter

space, and the minority class detector based on classical PCA information and

performed in data space. This illuminating example shows that there are domains
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for which classical PCA performs far from optimal.
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Figure 4.19 Data space: data samples of a 3-dimensional mixed data set with

Binomial, Exponential and Gaussian components (blue circles for one class and

red squares for the other class).
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5 A unifying viewpoint and

extensions to mixed data sets

This section presents a general point of view that relates the exponential

family Principal Component Analysis (exponential PCA) technique of [10] to both

the Semi-Parametric exponential family Principal Component Analysis (SP-PCA)

technique of [15,82] and the Bregman soft clustering method presented in [14,16].

The proposed viewpoint is then illustrated with a clustering problem in mixed data

sets.

The three techniques considered here all utilize Bregman distances and

can all be explained within a single hierarchical Bayes graphical model framework

shown in Figure 3.2. They are not separate unrelated algorithms but different

manifestations of model assumptions and parameter choices taken within a com-

mon framework. The proposed model is mathematically equivalent to equation

(5.6) and this work demonstrates that selecting a Bayesian or a classical approach

as well as various parametric choices sketched in Figure 5.1, Figure 5.2 and Figure

5.3 determine the three algorithms. Because of this insight, these algorithms are

readily extended to deal with the important mixed data-type case.

104
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5.1 Theoretical background

Following the Bayesian approach presented in Section 3, the maximum

likelihood identification of the blind random effect model

p(x) =

∫
p(x|θ)π(θ)dθ =

∫ d∏
i=1

pi(xi|θi)π(θ)dθ, (5.1)

is a quite difficult problem. It corresponds to identifying π(θ), which, under the

condition θ = aV + b, corresponds to identifying the matrix V, the vector b,

and a density function, µ(a), on the random effect a via a maximization of the

likelihood function p(X) with respect to V, b, and µ(a), where

p(X) =
n∏

k=1

p
(
x[k]

)
=

n∏

k=1

∫
p
(
x[k]|θ)

π(θ)dθ

=
n∏

k=1

∫ d∏
i=1

pi

(
xi[k]|θi

)
π(θ)dθ, (5.2)

and X is the (n× d) observation matrix

X =




x[1]

x[2]
...

x[n]




=




x1[1] . . . xd[1]

x1[2] . . . xd[2]
...

. . .
...

x1[n] . . . xd[n]




.

In the simpler case of a single common exponential family distribution for all

components, i.e.,

p(x|θ) = p(x1|θ) · . . . · p(xd|θ) = p(x1|θ1) · . . . · p(xd|θd) =
d∏

i=1

p(xi|θi), (5.3)

it can be shown that, if the distribution π(θ) of the random parameter vector θ is

conjugate to the exponential family distribution p(x|θ), then maximum likelihood

methods are straightforward in principle from the marginal distribution of the

observation matrix [27,29]. However, the conjugate approach lacks generality since

for the general case a different conjugate distribution has to be assumed for each

exponential family distribution.
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In some specific applications, the marginal density is mathematically sim-

ple to treat [34]: for example, considering the simple one-dimensional case, if

p(x|θ) = p(x|λ) = λxe−λ/x!

is a Poisson distribution with parameter λ = eθ, the conjugate prior for λ is the

Gamma distribution given by

π(λ) = γ−κλκ−1e−λ/γ/Γ(κ).

Then, the marginal density

p(x) =

∫ +∞

0

p(x|λ)π(λ)dλ =

∫ +∞

0

λxe−λ/x! γ−κλκ−1e−λ/γ/Γ(κ)dλ

=
γ−κ

Γ(x + 1)Γ(κ)

∫ +∞

0

λx+κ−1e−λ(1+1/γ)dλ,

with Γ(x) = (x− 1)!,

=
γ−κ

Γ(x + 1)Γ(κ)

∫ +∞

0

e−zzx+κ−1
(
γ/(γ + 1)

)x+κ−1
γ/(γ + 1)dz,

with z = λ(1 + 1/γ) = λ(γ + 1)/γ and dz = (γ + 1)/γ dλ,

p(x) =
(γ + 1)−κΓ(x + κ)

Γ(x + 1)Γ(κ)

(
γ/(γ + 1)

)x

is a negative Binomial distribution because of the definition of the Gamma function
∫ +∞
0

e−zzx+κ−1dz = Γ(x + κ).

Another example goes as follows: if

p(x|θ) = p(x|λ) =
N !

x!(N − x)!
λx(1− λ)N−x

is a Binomial distribution with parameter λ = eθ/(1 + eθ), the conjugate prior for

λ is the Beta distribution given by

π(λ) = Γ(α + β)/
(
Γ(α)Γ(β)

)
λα−1(1− λ)β−1.
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Then, the marginal density

p(x) =

∫ +∞

−∞
p(x|λ)π(λ)dλ

=

∫ +∞

−∞

N !

x!(N − x)!
λx(1− λ)N−xΓ(α + β)/

(
Γ(α)Γ(β)

)
λα−1(1− λ)β−1dλ

=
N !

x!(N − x)!

Γ(α + β)

Γ(α)Γ(β)

∫ +∞

−∞
λx+α−1(1− λ)N−x+β−1dλ

=
N !

x!(N − x)!

Γ(α + β)Γ(x + α)Γ(N − x + β)

Γ(α)Γ(β)Γ(x + α + N − x + β)

is a special distribution called the Beta-Binomial distribution because

∫ +∞

−∞

Γ(x + α + N − x + β)

Γ(x + α)Γ(N − x + β)
λx+α−1(1− λ)N−x+β−1dλ = 1 (5.4)

as an integral over the Beta distribution with parameters (x+α) and (N −x+β).

A more appealing approach would be to assume a common distribu-

tion for the random effect across the exponential family; an obvious choice is

the Gaussian distribution. This is particularly natural for link functions generat-

ing an unbounded parameter space for the linear predictor. This approach calls

for a Gaussian quadrature approximation based on the Expectation-Maximization

(EM) algorithm [68], an approximation that does not easily yield correct maximum

likelihood estimates [27, 29]. This difficulty can be avoided by Non-Parametric

Maximum Likelihood (NPML) estimation of the random effect distribution, con-

currently with the structural model parameters (further discussed in Appendix

C).

The Non-Parametric Maximum Likelihood (NPML) estimate is known

to be a discrete distribution on a finite number of support points or “atoms”

[17, 20, 25]. Finding the NPML estimate is widely regarded as computationally

intensive, the particular difficulty being the location of the atoms [27].

As shown in Section 3, with θ = aV + b, with V, b fixed and a random,

the single-sample likelihood (5.1) is then equal to

p(x) =
m∑

l=1

p
(
x|̄θ[l]

)
πl =

m∑

l=1

p
(
x|

¯
a[l]V + b

)
πl (5.5)
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and the data likelihood (5.2) is equal to

p(X) =
n∏

k=1

m∑

l=1

p
(
x[k]|̄θ[l]

)
πl

=
n∏

k=1

m∑

l=1

p
(
x[k]|

¯
a[l]V + b

)
πl, (5.6)

with point-mass probability estimates πl, point-mass support points
¯
a[l], and linear

predictor in the lth mixture component
¯
θ[l] =

¯
a[l]V + b, l = 1, . . . , m.

The data likelihood is thus approximately the likelihood of a finite mix-

ture of exponential family densities with unknown mixture proportions or point-

mass probability estimates πl and unknown point-mass support points
¯
a[l], with

the linear predictor
¯
θ[l] =

¯
a[l]V + b in the lth mixture component [29]. The

combined problem of Maximum Likelihood Estimation (MLE) of the parameters

V, b, the point-mass support points (atoms)
¯
a[l] and the point-mass probabil-

ity estimates πl, l = 1, . . . , m, (as approximations to the unknown, and possi-

bly continuous density µ(a)) is known as the Semiparametric Maximum Likeli-

hood mixture density Estimation (SMLE) problem [53, 66, 67]. For m < n, this

problem can be attacked by using the Expectation-Maximization (EM) algorithm

[1,17,20,22,29,34,53,68–74], cf. in particular in the Semi-Parametric exponential

family Principal Component Analysis (SP-PCA) technique proposed in [15,82] and

discussed below. Note that, historically, Laird’s classic 1978 paper [17] appears to

be generally acknowledged as the first paper that proposed the EM algorithm for

NPML estimation in the mixture density context; then, Lindsay’s classic 1983 pa-

pers [20, 21] improved upon the theoretical foundations of the NPML estimation

approach and later Mallet’s 1986 paper [22] further explored some of the funda-

mental issues raised by Lindsay.

However, a classical approach to the GLS estimation problem can also be

considered. The classical approach can be seen as an extreme case of the Bayesian

approach for which the probability density function π(θ) is a delta function and

the total number of distinct parameter values m (referred to in this dissertation

as support points or atoms in both Bayesian and classical approaches) equals the
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number of data points n, i.e., m = n. Then, to each data point corresponds a

(generally different) parameter point, yielding a total of n points
¯
θ[k], k = 1, . . . , n,

in parameter space as presented in the exponential family Principal Component

Analysis technique [10]. Note that while the m < n parameter points of the

Bayesian approach are shared by all the data points, the classical approach assigns

one parameter point to each data point (hence m = n).

This section aims at presenting a general point of view, considers and

compares both approaches, and relates them to a simpler Bregman soft clustering

technique proposed in [14,16].

5.2 Semi-Parametric exponential family PCA approach

The Semi-Parametric exponential family Principal Component Analysis

(SP-PCA) approach presented in [15, 82] attacks the Semiparametric Maximum

Likelihood mixture density Estimation (SMLE) problem by using the Expectation-

Maximization (EM) algorithm [68]. A detailed derivation of the EM algorithm is

presented below with a few changes compared to [15,82].

Following the notations introduced in Appendix C, the mixing distrib-

ution is denoted by Q =
{
¯
θ[l], πl

}m

l=1
and encompasses the parameters

¯
θ[l], l =

1, . . . , m, and their associated point-mass probabilities πl, l = 1, . . . , m. Estima-

tion is performed conventionally by maximum likelihood and the Non-Parametric

Maximum Likelihood estimator is represented by Q̂ =
{̂
¯
θ[l], π̂l

}m

l=1
. The EM ap-

proach considers an incomplete log-likelihood function, which is defined by the

following equation

L(Q) = log
n∏

k=1

m∑

l=1

p
(
x[k]|̄θ[l]

)
πl =

n∑

k=1

log
m∑

l=1

p
(
x[k]|̄θ[l]

)
πl. (5.7)

Because π1 + π2 + · · · + πm = 1, πm can be replaced by 1 − ∑m−1
l=1 πl and the

incomplete log-likelihood function can also be written as:

L(Q) =
n∑

k=1

log

{
m−1∑

l=1

p
(
x[k]|̄θ[l]

)
πl + p

(
x[k]|̄θm

)
(

1−
m−1∑

l=1

πl

)}
.
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A missing (unobserved) variable zk = [zk1, . . . , zkm], for k = 1, . . . , n, is introduced;

this variable is an m-dimensional binary vector whose lth component equals 1 if the

response variable x[k] was drawn from the lth mixture component and 0 otherwise.

Hence, a complete log-likelihood function is generated as follows:

L(c)
(Q, {zk}n

k=1

)
=

n∑

k=1

log
m∏

l=1

p
(
x[k]|̄θ[l]

)zklπzkl
l (5.8)

=
n∑

k=1

m∑

l=1

zkl log p
(
x[k]|̄θ[l]

)
+

n∑

k=1

m∑

l=1

zkl log πl, (5.9)

where the underlined term is independent of πl, l = 1, . . . , m. Because zkl equals

1 exactly for one l if k is fixed, reflecting the assumption that each x[k] is drawn

from exactly one mixture component, the inner sum in equation (5.7) has in fact

for each k exactly one non-zero term. In equation (5.8) it is exactly that non-zero

term which is present in the product, all others have an exponent of zkl = 0, and

hence do not contribute to the product. Note that maximizing equation (5.9) with

respect to πl yields π̂l =
∑n

k=1 zkl/n for l = 1, . . . , m, corresponding to the number

of samples x[k] drawn from the lth mixture, divided by the number of samples

overall.

First, the E-step, or Expectation-step, allows one to obtain an estimate

of the missing variables zk = [zk1, . . . , zkm]T , k = 1, . . . , n, by replacing them with

their expected values given the data set
{
x[k]

}n

k=1
:

ẑkl = E {zkl|x[k], π1, . . . , πm} = Pr
(
zkl = 1|x[k]

)

=
Pr

(
x[k]|zkl = 1

)
Pr(zkl = 1)∑m

r=1 Pr
(
x[k]|zkr = 1

)
Pr(zkr = 1)

=
p
(
x[k]|̄θ[l]

)
πl∑m

r=1 p
(
x[k]|̄θ[r]

)
πr

, (5.10)

for l = 1, . . . , m, where the notation Pr(·) expresses the probability of an event. For

all l and all k, each data point x[k] has an estimated probability ẑkl of belonging

to the lth mixture component.
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Then, the complete log-likelihood function becomes:

L(c)
(Q, {ẑk}n

k=1

)
=

n∑

k=1

m∑

l=1

ẑkl log p
(
x[k]|̄θ[l]

)
+

n∑

k=1

m∑

l=1

ẑkl log πl. (5.11)

Finally, maximizing equation (5.11) leads to the M-step, or Maximization-step and

yields the estimates for the point-mass probabilities:

π̂l =

∑n
k=1 ẑkl

n
=

n∑

k=1

p
(
x[k]|̄θ[l]

)
πl

n
∑m

r=1 p
(
x[k]|̄θ[r]

)
πr

. (5.12)

Now, the component parameters
¯
θ[l] =

¯
a[l]V + b, l = 1, . . . , m, are as-

sumed to be unknown and need to be estimated in the M-step, i.e., the parameters

V, b, and the point-mass support points
¯
A =

[
¯
a[1]T , . . . ,

¯
a[m]T

]T ∈ Rm,q need to

be estimated. Maximizing the complete log-likelihood function (5.11) with respect

to these parameters is equivalent to:

arg max

¯
A,V,b

L(c)
(Q, {ẑk}n

k=1

)

= arg max

¯
A,V,b

n∑

k=1

m∑

l=1

ẑkl log p
(
x[k]|̄θ[l]

)
+

n∑

k=1

m∑

l=1

ẑkl log π̂l

= arg max

¯
A,V,b

n∑

k=1

m∑

l=1

ẑkl log p
(
x[k]|

¯
a[l]V + b

)

since the underlined term does not depend on either V, b, or
¯
A,

= arg max

¯
A,V,b

n∑

k=1

m∑

l=1

ẑkl

{(
¯
a[l]V + b

)
x[k]T −G

(
¯
a[l]V + b

)}

where G(·) is the cumulant generating function associated with the exponential

family distribution p(·),

= arg min

¯
A,V,b

n∑

k=1

m∑

l=1

ẑkl

{
G

(
¯
a[l]V + b

)− (
¯
a[l]V + b

)
x[k]T

}

= arg min

¯
A,V,b

n∑

k=1

m∑

l=1

ẑklG
(
¯
a[l]V + b

)−
n∑

k=1

m∑

l=1

ẑkl

(
¯
a[l]V + b

)
x[k]T
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= arg min

¯
A,V,b

m∑

l=1

(
n∑

k=1

ẑkl

)
G

(
¯
a[l]V + b

)−
m∑

l=1

(
¯
a[l]V + b

)
{

n∑

k=1

ẑkl x[k]T

}

= arg min

¯
A,V,b

m∑

l=1

(
n∑

k=1

ẑkl

)
·
{

G
(
¯
a[l]V + b

)− (
¯
a[l]V + b

)∑n
k=1 ẑkl x[k]T∑n

k=1 ẑkl

}

= arg min

¯
A,V,b

m∑

l=1

π̂l

{
G

(
¯
a[l]V + b

)− (
¯
a[l]V + b

)∑n
k=1 ẑkl x[k]T∑n

k=1 ẑkl

}
,

since (1/n)
∑n

k=1 ẑkl = π̂l. As in [15,82], the following notation is introduced:

x̃[l] =

∑n
k=1 ẑkl x[k]∑n

k=1 ẑkl

,

the lth mixture component center, for l = 1, . . . , m. Since the vector x belongs to

Rd, similarly, the vector x̃ belongs to Rd. The loss function is then defined as

L(
¯
A,V,b) =

m∑

l=1

π̂l

{
G

(
¯
a[l]V + b

)− (
¯
a[l]V + b

)
x̃[l]T

}
. (5.13)

Note that the coefficients π̂l, l = 1, . . . , m, are not present in the algorithm pro-

posed in [15,82]. It is easily noticed how similar the loss function (4.12) in Section

4 and the loss function described in equation (5.13) are: the summation over k

becomes a summation over l, the data vector x[k] becomes the mixture component

center x̃[l] and a coefficient weighting the importance of the lth mixture component

compared to other components is introduced. Hence, following the derivations in

Section 4, the classical Newton-Raphson method is used for the iterative mini-

mization of the loss function (5.13) and the resulting update equations are easily

deduced from the update equations (4.14), (4.17) and (4.18) from Section 4.

First, for l = 1, . . . , m, at iteration (t + 1),

¯
a(t+1)[l]T =

¯
a(t)[l]T − α(t+1)

¯
a

(
V(t)G′′(

¯
a(t)[l]V(t) + b(t)

)
V(t),T

)−1

·
(
V(t)

(
G′(

¯
a(t)[l]V(t) + b(t))− x̃[l]T

))
.

(5.14)

Then, for j = 1, . . . , q:

v
(t+1),T
j = v

(t),T
j − α(t+1)

v

(
m∑

l=1

π̂l
¯
a

(t+1)
j [l]2G′′(

¯
a(t+1)[l]V(t) + b(t)

)
)−1

·
(

m∑

l=1

π̂l
¯
a

(t+1)
j [l]

{
G′(

¯
a(t+1)[l]V(t) + b(t)

)− x̃[l]T
}
)

.

(5.15)
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And finally,

b(t+1),T = b(t),T − α
(t+1)
b

(
m∑

l=1

π̂l G
′′(

¯
a(t+1)[l]V(t+1) + b

)
)−1

·
(

m∑

l=1

π̂l

{
G′(

¯
a(t+1)[l]V(t+1) + b

)− x̃[l]T
}
)

.

(5.16)

Table 5.1 summarizes the Semi-Parametric exponential family Principal Compo-

nent Analysis algorithm.

5.2.1 The mixed data-type case

As previously in Section 4.3 for exponential PCA, the SP-PCA approach

is now modified to be able to address mixed data-type cases.

For simplicity of presentation, we consider that the f first attributes are

distributed according to the exponential family distribution p(1) and the (d − f)

last attributes are distributed according to the exponential family distribution p(2).

The following notation is used:

x[k] =
[
x1[k], . . . , xf [k], xf+1[k], . . . , xd[k]

]
=

[
x(1)[k]

∣∣x(2)[k]
]
,

for k = 1, . . . , n, and

X =




x[1]

x[2]
...

x[n]




=




x1[1] . . . xf [1] xf+1[1] . . . xd[1]

x1[2] . . . xf [2] xf+1[2] . . . xd[2]
...

. . .
...

...
. . .

...

x1[n] . . . xf [n] xf+1[n] . . . xd[n]




=
(

X(1) X(2)

)
.

The complete log-likelihood function is expressed as follows:

L(c)
(Q, {zk}n

k=1

)
= log

n∏

k=1

m∏

l=1

p
(
x[k]|̄θ[l]

)zklπzkl
l

=
n∑

k=1

m∑

l=1

zkl log p
(
x[k]|̄θ[l]

)
+

n∑

k=1

m∑

l=1

zkl log πl,
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Table 5.1 The Semi-Parametric exponential family Principal Component Analysis

algorithm.

Algorithm: Semi-Parametric exponential family PCA [15,82]

Input: a set of observations
{
x[k]

}n

k=1
⊆ Rd, an exponential family

distribution p(·) defined by its cumulant generating function G(·),
a number of atoms m, q ¿ d the dimension of the latent variable
lower dimensional subspace.

Output: the NPML estimator that maximizes the complete log-
likelihood function L(c)

(Q, {zk}n
k=1

)
: Q̂ =

{̂
¯
θ[l], π̂l

}m

l=1
with ̂

¯
θ[l] =

̂̄a[l]V̂ + b̂ for all l, {̂̄a[l]}m
l=1 ∈ Rq, V̂ ∈ Rq×d and b̂ ∈ Rd.

Method:
Initialize V, b and

{
¯
a[l], πl

}m

l=1
with πl ≥ 0 for all l and∑m

l=1 πl = 1;
¯
θ[l] =

¯
a[l]V + b ∈ Θ for all l;

repeat
{The Expectation Step}
for k = 1 to n do

for l = 1 to m do
ẑkl ←− p

(
x[k]|̄θ[l]

)
πl/

∑m
r=1 p

(
x[k]|̄θ[r]

)
πr

end for
end for
{The Maximization Step}

for l = 1 to m do
π̂l ←− (1/n)

∑n
k=1 ẑkl

end for
{The Newton-Raphson iterative algorithm}
for l = 1 to m do

¯
a[l] ←− update equation (5.14)

end for
for j = 1 to q do
vj ←− update equation (5.15)

end for
b ←− update equation (5.16)

until convergence;

return Q̂ =
{̂
¯
θ[l] = ̂̄a[l]V̂ + b̂, π̂l

}m

l=1
.
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where
¯
θ[l] =

¯
a[l]V + b. Then, using the latent variable assumption,

p
(
x[k]|̄θ[l]

)

= p1(x1[k]|̄θ1[l]) · · · pf (xf [k]|̄θf [l])pf+1(xf+1[k]|̄θf+1[l]) · · · pd(xd[k]|̄θd[l])

= p(1)(x1[k]|̄θ1[l]) · · · p(1)(xf [k]|̄θf [l])p
(2)(xf+1[k]|̄θf+1[l]) · · · p(2)(xd[k]|̄θd[l])

= p(1)
(
x(1)[k]|̄θ(1)[l]

)
p(2)

(
x(2)[k]|̄θ(2)[l]

)
,

where

¯
θ[l] =

[
¯
θ1[l], . . . ,

¯
θf [l],

¯
θf+1[l], . . . ,

¯
θd[l]

]
=

[
¯
θ(1)[l]

∣∣
¯
θ(2)[l]

]
,

for l = 1, . . . , m, and

¯
Θ =




¯
θ[1]

¯
θ[2]

...

¯
θ[m]




=




¯
θ1[1] . . .

¯
θf [1]

¯
θf+1[1] . . .

¯
θd[1]

¯
θ1[2] . . .

¯
θf [2]

¯
θf+1[2] . . .

¯
θd[2]

...
. . .

...
...

. . .
...

¯
θ1[m] . . .

¯
θf [m]

¯
θf+1[m] . . .

¯
θd[m]




=
(
¯
Θ(1)

¯
Θ(2)

)
.

Then,
¯
Θ =

¯
AV + B results in the following decompositions:

V =




v1

v2

...

vq




=




v11 . . . v1f v1(f+1) . . . v1d

v21 . . . v2f v2(f+1) . . . v2d

...
. . .

...
...

. . .
...

vq1 . . . vqf vq(f+1) . . . vqd




=
(
V(1) V(2)

)
,

and

B =




b

b
...

b




=




b1 . . . bf b(f+1) . . . bd

b1 . . . bf b(f+1) . . . bd

...
. . .

...
...

. . .
...

b1 . . . bf b(f+1) . . . bd




=
(
B(1) B(2)

)
,

where B(1) = [b(1), . . . ,b(1)]T and b(1) = [b1, . . . , bf ], B(2) = [b(2), . . . ,b(2)]T and

b(2) = [bf+1, . . . , bd]. Hence,

¯
Θ =




¯
θ[1]

¯
θ[2]

...

¯
θ[m]




=
¯
AV + B =

(
¯
AV(1) + B(1)

¯
AV(2) + B(2)

)
.
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Note that there is no such split for
¯
A.

The complete log-likelihood function becomes:

L(c)
(Q, {zk}n

k=1

)
=

n∑

k=1

m∑

l=1

zkl log p
(
x[k]|̄θ[l]

)
+

n∑

k=1

m∑

l=1

zkl log πl

=
n∑

k=1

m∑

l=1

zkl log
{
p(1)

(
x(1)[k]|̄θ(1)[l]

) · p(2)
(
x(2)[k]|̄θ(2)[l]

)}

+
n∑

k=1

m∑

l=1

zkl log πl.

(5.17)

The E-step remains unchanged:

ẑkl = E {zkl|x[k], π1, . . . , πm} =
p
(
x[k]|̄θ[l]

)
πl∑m

r=1 p
(
x[k]|̄θ[r]

)
πr

=
p(1)

(
x(1)[k]|̄θ(1)[l]

) · p(2)
(
x(2)[k]|̄θ(2)[l]

))
πl∑m

r=1 p(1)
(
x(1)[k]|̄θ(1)[r]

) · p(2)
(
x(2)[k]|̄θ(2)[r]

)
πr

,

for k = 1, . . . , n and l = 1, . . . , m.

The M-step first yields the estimates for the point-mass probabilities:

π̂l =

∑n
k=1 ẑkl

n
=

n∑

k=1

p
(
x[k]|̄θ[l]

)
πl

n
∑m

r=1 p
(
x[k]|̄θ[r]

)
πr

=
n∑

k=1

p(1)
(
x(1)[k]|̄θ(1)[l]

) · p(2)
(
x(2)[k]|̄θ(2)[l]

)
πl

n
∑m

r=1 p(1)
(
x(1)[k]|̄θ(1)[r]

) · p(2)
(
x(2)[k]|̄θ(2)[r]

)
πr

.

However, the second part of the M-step, i.e., the estimation of the parameters V,

b, and the point-mass support points
¯
A =

[
¯
a[1]T , . . . ,

¯
a[m]T

]T ∈ Rm,q, has to be

modified. Maximizing the complete log-likelihood function (5.17) with respect to

these parameters is equivalent to:

arg max

¯
A,V,b

L(c)
(Q, {ẑk}n

k=1

)

= arg max

¯
A,V,b

n∑

k=1

m∑

l=1

ẑkl log p(1)
(
x(1)[k]|̄θ(1)[l]

) · p(2)
(
x(2)[k]|̄θ(2)[l]

)

+
n∑

k=1

m∑

l=1

ẑkl log πl

⇐⇒ arg max

¯
A,V,b

n∑

k=1

m∑

l=1

ẑkl log p(1)
(
x(1)[k]|̄θ(1)[l]

) · p(2)
(
x(2)[k]|̄θ(2)[l]

)
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since the underlined term does not depend on either
¯
A, V, or b

⇐⇒ arg max

¯
A,V,b

{ n∑

k=1

m∑

l=1

ẑkl

{
G(1)

(
¯
a[l]V(1) + b(1)

)− (
¯
a[l]V(1) + b(1)

)
x(1)[k]T

}

+
n∑

k=1

m∑

l=1

ẑkl

{
G(2)

(
¯
a[l]V(2) + b(2)

)− (
¯
a[l]V(2) + b(2)

)
x(2)[k]T

}}

where G(1)(·), G(2)(·) respectively, is the cumulant generating function associated

with the exponential family distribution p(1)(·), p(2)(·) respectively,

⇐⇒ arg min

¯
A,V,b

m∑

l=1

π̂l

{
G(1)

(
¯
a[l]V(1) + b(1)

)− (
¯
a[l]V(1) + b(1)

)∑n
k=1 ẑkl x

(1)[k]T∑n
k=1 ẑkl

}

+
m∑

l=1

π̂l

{
G(2)

(
¯
a[l]V(2) + b(2)

)− (
¯
a[l]V(2) + b(2)

)∑n
k=1 ẑkl x

(2)[k]T∑n
k=1 ẑkl

}
,

since 1/n
∑n

k=1 ẑkl = π̂l. As previously, the following notation is introduced:

x̃[l] =

∑n
k=1 ẑkl x[k]∑n

k=1 ẑkl

,

for l = 1, . . . , m. The loss function is then defined as

L(
¯
A,V,b) =

m∑

l=1

π̂l

{
G(1)

(
¯
a[l]V(1) + b(1)

)− (
¯
a[l]V(1) + b(1)

)
x̃(1)[l]T

}

+
m∑

l=1

π̂l

{
G(2)

(
¯
a[l]V(2) + b(2)

)− (
¯
a[l]V(2) + b(2)

)
x̃(2)[l]T

}
.

(5.18)

Following the derivations in Section 4.3, the classical Newton-Raphson method is

used for the iterative minimization of the loss function (5.18) and the resulting

update equations are as follows.

First, for l = 1, . . . , m, at iteration (t + 1),

¯
a(t+1)[l]T =

¯
a(t)[l]T − α(t+1)

¯
a

{
V(1)(t)G(1)′′(

¯
a(t)[k]V(1)(t) + b(1)(t)

)
V(1)(t),T

+ V(2)(t)G(2)′′(
¯
a(t)[k]V(2)(t) + b(2)(t)

)
V(2)(t),T

}−1

·
{
V(1)(t)

(
G(1)′(

¯
a(t)[k]V(1)(t) + b(1)(t))− x̃(1)[l]T

)

+ V(2)(t)
(
G(2)′(

¯
a(t)[k]V(2)(t) + b(2)(t))− x̃(2)[l]T

)}
.
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For the second step, the two sets of row vectors
{
v

(1)
j

}q

j=1
and

{
v

(2)
j

}q

j=1
are

updated separately. The update equations can then be used for
{
v

(1)
j

}q

j=1
and

{
v

(2)
j

}q

j=1
by changing vj to v

(1)
j , respectively to v

(2)
j , b to b(1), respectively

to b(2), G(·), G′(·), and G′′(·) to G(1)(·), G(1)′(·), and G(1)′′(·), respectively to

G(2)(·), G(2)′(·), and G(2)′′(·). For j = 1, . . . , q:

v
(t+1),T
j = v

(t),T
j − α(t+1)

v

(
m∑

l=1

π̂l
¯
a

(t+1)
j [l]2G′′(

¯
a(t+1)[l]V(t) + b(t)

)
)−1

·
(

m∑

l=1

π̂l
¯
a

(t+1)
j [l]

{
G′(

¯
a(t+1)[l]V(t) + b(t)

)− x̃[l]T
}
)

.

And finally for the last step, the update equations can then be used for b(1)

and b(2) by changing b to b(1), respectively to b(2), V to V(1), respectively

to V(2), G(·), G′(·), and G′′(·) to G(1)(·), G(1)′(·), and G(1)′′(·), respectively to

G(2)(·), G(2)′(·), and G(2)′′(·).

b(t+1),T = b(t),T − α
(t+1)
b

(
m∑

l=1

π̂l G
′′(

¯
a(t+1)[l]V(t+1) + b

)
)−1

·
(

m∑

l=1

π̂l

{
G′(

¯
a(t+1)[l]V(t+1) + b

)− x̃[l]T
}
)

.

5.3 Exponential PCA approach

The work proposed in Section 4 is based on the generalization of Principal

Component Analysis to the exponential family technique presented in [10], often

referred to as exponential family Principal Component Analysis or exponential

PCA.

As stated earlier, instead of the fastidious estimation of the point-mass

probabilities, exponential PCA considers the special classical case for which the

number of parameter points equals the number of data samples, i.e., m = n. The

point-mass probabilities do not need to be estimated and the EM algorithm is

unnecessary. Then, each vector x corresponds to a single vector
¯
a, i.e., a single

vector
¯
θ, and they all share a common index k = 1, . . . , n.
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Following the notations used previously in the SP-PCA presentation, the

set of parameters to be estimated is denoted by Q =
{
¯
θ[k]

}n

k=1
, with linear pre-

dictors
¯
θ[k] =

¯
a[k]V + b for k = 1, . . . , n. The Maximum Likelihood estimator

is Q̂ =
{̂
¯
θ[k] = ̂̄a[k]V̂ + b̂

}m

k=1
. The classical approach can also be seen as an

extreme case of the Bayesian approach for which the probability density function

π(θ) is a delta function (one per data point). Hence, the log-likelihood function is

given by:

L(Q) =
n∑

k=1

log p
(
x[k]|̄θ[k]

)

and,

arg max
¯
A,V,b

L(Q) = arg max
¯
A,V,b

n∑

k=1

log p
(
x[k]|̄θ[k]

)

= arg max
¯
A,V,b

n∑

k=1

{
G

(
¯
θ[k]

)−
¯
θ[k]x[k]T

}

= arg max
¯
A,V,b

n∑

k=1

{
G

(
¯
a[k]V + b

)− (
¯
a[k]V + b

)
x[k]T

}

= arg max
¯
A,V,b

L(
¯
A,V,b),

where L(
¯
A,V,b) is defined in equation (3.13) in Section 4. Then, following the

derivations in Section 4, the classical Newton-Raphson method is used for the

iterative minimization of the loss function L(
¯
A,V,b) and the resulting update

equations are copied below from the update equations (4.14), (4.17) and (4.18).

First, for l = 1, . . . , m, at iteration (t + 1),

¯
a(t+1)[k]T =

¯
a(t)[k]T − α(t+1)

¯
a

(
V(t)G′′(

¯
a(t)[k]V(t) + b(t)

)
V(t),T

)−1

·
(
V(t)

(
G′(

¯
a(t)[k]V(t) + b(t))− x[k]T

))
.

(5.19)

Then, for j = 1, . . . , q:

v
(t+1),T
j = v

(t),T
j − α(t+1)

v

(
n∑

k=1
¯
a

(t+1)
j [k]2G′′(

¯
a(t+1)[k]V(t) + b(t)

)
)−1

·
(

n∑

k=1
¯
a

(t+1)
j [k]

{
G′(

¯
a(t+1)[k]V(t) + b(t)

)− x[k]T
}
)

.

(5.20)
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And, finally,

b(t+1),T = b(t),T − α
(t+1)
b

(
n∑

k=1

G′′(
¯
a(t+1)[k]V(t+1) + b

)
)−1

·
(

n∑

k=1

{
G′(

¯
a(t+1)[k]V(t+1) + b

)− x[k]T
}
)

.

(5.21)

It is easily noticed that equations (5.19), (5.20) and (5.21) are almost

identical to equations (5.14), (5.15) and (5.16), the difference being that the ex-

ponential PCA update equations use x instead of x̃, i.e., data points instead of

mixture component centers, and do not include mixture component proportion

factors. Each data point x is its own mixture component center.

Table 5.2 summarizes the exponential family Principal Component Analy-

sis algorithm.

The mixed data-type case was already presented in Section 4.3.

5.4 Bregman soft clustering approach

The Bregman soft clustering approach presented in [14, 16] utilizes an

alternative interpretation of the EM algorithm for learning models involving mix-

tures of exponential family distributions. It is a simple soft clustering algorithm

for all Bregman distances, i.e., for all exponential family distributions. It is based

on the fact that there exists a bijection between Bregman distances and expo-

nential family distributions. Indeed, the existence of a unique Bregman distance

corresponding to every regular exponential family had been previously observed

[57,87], but was formally proven by [16] (further discussed in Appendix A).

Given a data set of observations
{
x[k]

}n

k=1
where x[k] =

[
x1[k], . . . , xd[k]

]
,

Bregman soft clustering aims at modeling the statistical structure of the data as a

mixture of m densities of the same exponential family. The clusters correspond to

the components of the mixture model and the soft membership of a data point in

each cluster is proportional to the probability of the data point being generated by

the corresponding density function. The Bregman soft clustering problem is based
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Table 5.2 The exponential family Principal Component Analysis algorithm.

Algorithm: Exponential PCA [10]

Input: a set of observations
{
x[k]

}n

k=1
⊆ Rd, an expo-

nential family distribution p(·) defined by its cumulant
generating function G(·), a number of atoms n, q ¿ d
the dimension of the latent variable lower dimensional
subspace.

Output: the ML estimator that maximizes the log-
likelihood function L

(Q)
= log

∏n
k=1 p

(
x[k]|̄θ[k]

)
: Q̂ ={̂

¯
θ[k]}n

k=1 with ̂
¯
θ[k] = ̂̄a[k]V̂ + b̂ for all k, {̂̄a[k]}n

k=1 ∈
Rq, V̂ ∈ Rq×d and b̂ ∈ Rd.

Method:
Initialize V, b and

{
¯
a[k]

}n

k=1
;
¯
θ[k] =

¯
a[k]V + b ∈ Θ

for all k;
repeat
{The Newton-Raphson iterative algorithm}
for k = 1 to n do

¯
a[k] ←− update equation (5.19)

end for
for j = 1 to q do
vj ←− update equation (5.20)

end for
b ←− update equation (5.21)

until convergence;

return Q̂ =
{̂
¯
θ[k] = ̂̄a[k]V̂ + b̂

}n

k=1
.
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on a Maximum Likelihood (ML) estimation of the cluster parameters
{
¯
θ[l], πl

}m

l=1

satisfying the following mixture structure:

p(x) =
m∑

l=1

p
(
x|̄θ[l]

)
πl, (5.22)

where p(x|·) is an exponential family distribution. The data likelihood function

takes the following form:

p(X) =
n∏

k=1

m∑

l=1

p
(
x[k]|̄θ[l]

)
πl. (5.23)

The bijection between Bregman distances and exponential family distributions

states that for any exponential family distribution p(x|·),

p(x|̄θ) = exp
{
−BF

(
x‖g(

¯
θ)

)} · exp
{
F (x)

}
,

where F (·) is the Fenchel conjugate of the cumulant generative function associated

with p(x|·), and BF (·‖·) is the Bregman distance associated with p(x|·). Hence,

equations (5.22) and (5.23) become:

p(x) =
m∑

l=1

exp
{
−BF

(
x‖g(

¯
θ[l])

)} · exp
{
F (x)

}
πl, (5.24)

p(X) =
n∏

k=1

m∑

l=1

exp
{
−BF

(
x[k]‖g(

¯
θ[l])

)} · exp
{
F (x[k])

}
πl. (5.25)

The Expectation-Maximization (EM) algorithm is used for the parameters estima-

tion. The authors in [14,16] show that the maximization step reduces to:

¯
θ[l] =

∑n
k=1 p

(
l|x[k])x[k]∑n

k=1 p
(
l|x[k])

,

where p
(
l|x[k]) is the posterior probability of cluster l containing the data point

x[k], given the data point x[k]. The update equation for the posterior probabilities

are given by

p
(
l|x) =

exp
{
−BF

(
x‖g(

¯
θ[l])

)}
πl

∑m
r=1 exp

{
−BF

(
x‖g(

¯
θ[r])

)}
πr

.
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The Bregman soft clustering algorithm uses an EM approach to a mix-

ture of m exponential family distribution problem. This exactly corresponds to

the NPML for exponential family distributions discussed in Appendix C with the

notation zkl = p
(
l|x[k]).

We now present this technique without referring to the Bregman distance

but by using its corresponding exponential family probability distribution for the

sake of comparison with SP-PCA and exponential PCA. The data likelihood func-

tion in (5.23) is similar to the data likelihood function in (5.6) without the linear

constraint
¯
θ[l] =

¯
a[l]V + b for l = 1, . . . , m. Hence, the Bregman soft clustering

problem is similar to the SP-PCA problem without the lower dimensional subspace

constraint and a simple EM algorithm is used to estimate the cluster parameters.

The E-step and the first part of the M-step yield the same results as for SP-PCA.

In the second part of the M-step, the component parameters
¯
θ[l], l = 1, . . . , m, are

estimated in the following way:

̂
¯
θ[l] = arg max

¯
θ[l]

n∑

k=1

m∑
r=1

ẑkr log p
(
x[k]|̄θ[r]

)
,

with log p
(
x[k]|̄θ[r]

)
=

¯
θ[r]x[k]T−G

(
¯
θ[r]

)
. Using the convexity properties of G(·),

it is easily shown that:

G′(̂
¯
θ[l]) =

( n∑

k=1

ẑklx[k]
)/( n∑

k=1

ẑkl

)

can be solved for ̂
¯
θ[l].

Table 5.3 summarizes the Bregman soft clustering algorithm.

5.4.1 The mixed data-type case

We consider again the mixed data-type case. The E-step and the first

part of the M-step yield the same results as for SP-PCA. In the second part of

the M-step, the component parameters
¯
θ[l], l = 1, . . . , m, are estimated in the



124

Table 5.3 The Bregman soft clustering algorithm.

Algorithm: Bregman Soft Clustering [14,16]

Input: a set of observations
{
x[k]

}n

k=1
⊆ Rd, an expo-

nential family distribution p(·) defined by its cumulant
generating function G(·), a number of atoms m.

Output: the NPML estimator that maximizes the
complete log-likelihood function L(c)

(Q, {zk}n
k=1

)
: Q̂ ={̂

¯
θ[l], π̂l

}m

l=1
.

Method:
Initialize

{
¯
θ[l], πl

}m

l=1
with πl ≥ 0 for all l and∑m

l=1 πl = 1;
¯
θ[l] ∈ Θ for all l;

repeat
{The Expectation Step}
for k = 1 to n do

for l = 1 to m do
ẑkl ←− p

(
x[k]|̄θ[l]

)
πl/

∑m
r=1 p

(
x[k]|̄θ[r]

)
πr

end for
end for
{The Maximization Step}
for l = 1 to m do
π̂l ←− (1/n)

∑n
k=1 ẑkl

¯
θ[l] ←− solve for

¯
θ[l]:

G′(
¯
θ[l]) =

∑n
k=1 ẑklx[k]/

∑n
k=1 ẑkl

end for
until convergence;

return Q̂ =
{̂
¯
θ[l], π̂l

}m

l=1
.
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following way:

̂
¯
θ[l] = arg max

¯
θ[l]

n∑

k=1

m∑
r=1

ẑkr log p
(
x[k]|̄θ[r]

)

= arg max

¯
θ[l]

{ n∑

k=1

m∑
r=1

ẑkr log p(1)
(
x(1)[k]|̄θ(1)[r]

)

+
n∑

k=1

m∑
r=1

ẑkr log p(2)
(
x(2)[k]|̄θ(2)[r]

)}
,

with log p
(
x[k]|̄θ[r]

)
=

¯
θ[r]x[k]T−G

(
¯
θ[r]

)
. Using the convexity properties of G(·),

it is easily shown that:

G′(̂
¯
θ[l]) =

( n∑

k=1

ẑklx[k]
)/( n∑

k=1

ẑkl

)

can be solved for ̂
¯
θ[l](1) and ̂

¯
θ[l](2) by changing x to x(1), respectively to x(2), G′(·)

to G(1)′(·), respectively to G(2)′(·).

5.5 A unifying framework

Within the proposed hierarchical Bayes graphical model framework, ex-

ponential PCA, SP-PCA and Bregman soft clustering are not separate uncorre-

lated algorithms but different manifestations of model assumptions and parameter

choices.

Figure 5.1 considers the number of atoms as a common characteristic for

comparison purposes. The exponential PCA technique corresponds to a classical

approach to the GLS estimation problem. The classical approach can be seen

as an extreme case of the Bayesian approach for which the probability density

function π(θ) is a delta function (one per data point) and the total number of

distinct natural parameter values m equals the number of data points n, i.e.,

m = n. While the m < n parameters of the Bayesian approach consistent with

SP-PCA and the Bregman soft clustering techniques are shared by all the data

points, the classical approach assigns one parameter point to each data point (hence
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m = n). The Bregman soft clustering approach considers an even smaller number

of natural parameters or atoms than SP-PCA. Since its primary goal is clustering,

the atoms play the role of cluster centers in parameter space and their total number

is generally small. Furthermore, both exponential PCA and SP-PCA impose a

low-dimensional (unknown) latent variable subspace in their structure. However,

Bregman soft clustering does not impose this lower dimensional constraint and

hence can be seen as a degenerate case.

It becomes clear while looking at Table 5.1, Table 5.2 and Table 5.3

shown previously that both SP-PCA and Bregman soft clustering utilize the EM

algorithm for estimation purposes whereas exponential PCA does not. Indeed,

because exponential PCA assumes a classical approach, no point-mass probabilities

need to be estimated.

- number of
atoms mn0 1 2

?

exponential PCA

'

&

$

%

. . .. . .

?

exp. family PCA
Semi-Parametric

'

&

$

%

. . .

?

Bregman soft
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Figure 5.1 General point of view based on the number of atoms used in the GLS

estimation.

Figure 5.2 presents connections between the techniques of interest in

terms of an algorithmic perspective. As explained previously, Semi-Parametric

exponential family PCA and Bregman soft clustering utilize the EM algorithm for

estimation purposes whereas exponential PCA does not. The dotted line between

exponential PCA and NPML suggests that exponential PCA can be seen as an

extreme case of the general Bayesian approach for which the number of natural
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parameters equals the number of data points, m = n. Both exponential PCA and

SP-PCA impose a lower dimensional latent variable subspace in their structure,

hence the need for the Newton-Raphson iterative algorithm (expressed as NR on

the figure). The two arrows going back and forth between NPML and Finite Mix-

ture Models suggest that the two methods are similar. Vertex Direction Method

(VDM) and Vertex Exchange Method (VEM) are alternative suitable algorithms

for constructing the NPML estimates [34].
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Figure 5.2 Algorithmic connections between Bregman soft clustering, exponential

PCA and Semi-Parametric exponential family PCA.

Figure 5.3 offers a detailed diagram of the successive steps of Bregman soft

clustering, SP-PCA and exponential PCA. It illustrates how different assumptions

and parameter choices generate different approaches for a common problem, i.e.,

different algorithms.
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̂
¯
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Figure 5.3 Detailed diagram of the successive steps comparing Bregman soft clus-

tering, SP-PCA and exponential PCA approaches.
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5.6 Application: experimental clustering results on syn-

thetic data

This application compares the relative performances of exponential PCA,

SP-PCA and Bregman soft clustering in a mixed data set clustering problem with

two data types and demonstrates how exponential PCA with the addition of a

non-parametric estimation of the point-mass probabilities can exceed SP-PCA in

performance.

We first consider a synthetic d = 3-dimensional data set with a lower

dimensional subspace of dimension q = 1. The first data feature is Poisson dis-

tributed, the second and third features are Gaussian distributed. The data has

n = 500 points and is composed of two mixture components with parameters
¯
θ[1]

and
¯
θ[2] constrained to the lower dimensional subspace.

We first use exponential PCA. However, exponential PCA does not esti-

mate point-mass probabilities. We use a non-parametric density estimation tech-

nique based on a kernel smoothing method to estimate the point-mass probabilities

using the support points values
¯
a[k], k = 1, . . . , n, obtained by exponential PCA.

Figure 5.4 shows that the non-parametric density estimation exhibits a definite

two-component shape. The dotted lines represent the correct values
¯
a[1] and

¯
a[2].

We can then estimate the values of
¯
a[1] and

¯
a[2] as well as their mixing distributions

π1 and π2 using a simple k-means algorithm, with the π1 + π2 = 1 assumption.

Figure 5.5 presents the histogram of the estimated point-mass probabili-

ties obtained with SP-PCA, m = 2.

Table 5.4 shows detailed results for this synthetic data setting (“modified”

means the extension to mixed data sets of the algorithm): the mixing distributions

or point-mass probabilities π1 and π2, the latent variable or point of support val-

ues
¯
a[1] and

¯
a[2], the parameter values

¯
θ[1] and

¯
θ[2] as well as the sine of the

angle between the estimated lower dimensional subspace and the correct subspace.
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Bregman soft clustering does not have the lower dimensional subspace constraint,

and hence does not exhibit a sine or the latent variables values in Table 5.4. The

estimation quality of the
¯
θ[1],

¯
θ[2] and π1, π2 values defines the clustering per-

formance. For this simple Poisson-Gaussian mixed data setting, both exponential

PCA and Bregman soft clustering seem to perform better than SP-PCA: the SP-

PCA obtained parameter values for
¯
θ[2] are far from the original values, contrary

to exponential PCA and Bregman soft clustering.
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Figure 5.4 Non-parametric estimation of the point-mass probabilities obtained

with exponential PCA (dotted: correct cluster centers).

Results for a second experiment are shown in Table 5.5 for a Binomial-

Gaussian mixed data set created in a similar fashion as the Poisson-Gaussian mixed

data set (the parameter N is set to 10 for the Binomial component). Again,

exponential PCA exceeds SP-PCA in clustering performance.
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Figure 5.5 Histogram of the estimated point-mass probabilities obtained with

SP-PCA (dotted: correct cluster values).

Table 5.4 Clustering results for a Poisson-Gaussian mixed data set.

π1; π2
¯
a[1];

¯
a[2]

¯
θ[1];

¯
θ[2] sin

correct 0.4 3 [1.9404, 1.6148, 1.6210]
model values 0.6 −2 [−1.2936, −1.0765, −1.0806]

modified 0.4107 3.0009 [1.6235, 1.8648, 1.7007] 0.1368
exponential PCA 0.5893 −1.3725 [−0.7425, −0.8529, −0.7778]

modified 0.3724 3.2170 [2.1732, 1.5715, 1.7768] 0.058663
SP-PCA 0.6276 0.8355 [0.5644, 0.4081, 0.4614]

modified Bregman 0.4069 [1.9317, 1.7162, 1.5585]
soft clustering 0.5931 [−1.1061, −1.0802, −1.0304]
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Table 5.5 Clustering results for a Binomial-Gaussian mixed data set.

π1; π2
¯
a[1];

¯
a[2]

¯
θ[1];

¯
θ[2] sin

correct 0.4 1 [0.8914, 0.1688, 0.4206]
model values 0.6 −2 [−1.7828, −0.3375, −0.8412]

modified 0.4475 0.8559 [0.7796, 0.1166, 0.3334] 0.049038
exponential PCA 0.5525 −1.9972 [−1.8193, −0.2721, −0.7779]

modified 0.3978 −0.9548 [−0.9046, −0.0989, −0.2890] 0.1455
SP-PCA 0.6022 −3.1821 [−3.0148, −0.3296, −0.9633]

modified Bregman 0.3973 [0.82252, 0.144, 0.41004]
soft clustering 0.6027 [−1.8072, −0.3089, −0.9816]
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6 Conclusions

This dissertation considered the problem of learning the underlying sta-

tistical structure of data of mixed types for fitting a generative model, and for both

supervised and unsupervised data-driven decision making. A new unified theoret-

ical model called Generalized Linear Statistics was established using properties

of exponential family distributions. The primary contributions are summarized

below.

6.1 Contributions of this thesis

The proposed statistical modeling approach called Generalized Linear

Statistics (GLS) is a generalization and amalgamation of techniques from classical

linear statistics, Generalized Linear Models (GLMs) and latent variable modeling.

This is a nonlinear methodology which exploits the split that occurs for exponential

family distributions between the data space and the parameter space as soon as one

leaves the domain of purely Gaussian random variables. Nonlinear problems can

then be attacked using classical linear and other standard statistical tools applied

to data that have been mapped into the parameter space, which is assumed to still

have a natural, flat Euclidean space structure. This dissertation demonstrated the

ability to learn a generative GLS model that captures the statistical structure of the

data, using this knowledge to gain insight into the problem domain and to develop

effective algorithms capable of data-driven techniques in domains involving mixed

data-type, labeled and unlabeled data sets. Specifically, this work considered mixed

133
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data-type records which have both continuous (e.g., Exponential and Gaussian)

and discrete (e.g., count and binary) components. The approach employed here

allows for the data components to have different parametric forms by using the

large range of exponential family distributions. Exponential families have many

useful and important mathematical properties which were fruitfully exploited to

obtain Maximum Likelihood (ML) estimates of the GLS model parameters.

The specific Generalized Linear Statistics (GLS) framework developed

in this dissertation represents a subclass of graphical model techniques and is

equivalent to a computationally tractable mixed exponential families data-type

hierarchical Bayes graphical model with latent variables constrained to a low-

dimensional parameter subspace. The exponential family Principal Component

Analysis (exponential PCA) technique of [10], the Semi-Parametric exponential

family Principal Component Analysis (SP-PCA) technique of [15] and the Bregman

soft clustering method presented in [14] were demonstrated not to be separate

unrelated algorithms, but rather different manifestations of model assumptions and

parameter choices within the GLS framework. Because of this insight, the three

algorithms could be extended to readily derive novel extensions that deal with the

important mixed data-type case. Several synthetic data examples of mixed types

were considered, demonstrating that exponential PCA, with the addition of a non-

parametric estimation tool, rivals SP-PCA and Bregman soft clustering in terms

of clustering performance for some data sets.

This work exposed in detail the convex optimization problem related to

fitting one extreme case of the GLS model to a set of data. This extreme case

of the GLS model is similar to exponential family Principal Component Analysis,

proposed in [10], and is characterized by the fact that each data point is mapped to

one (generally different) parameter point in parameter space, whereas the general

GLS case considers a set of parameter points shared by all the data points. In

light of the significant numerical difficulties associated with the cyclic-coordinate

descent-like algorithm based on Bregman divergence properties proposed in [10],
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especially in the mixed data-type case, this dissertation focused on an algorithm

based on Iterative Reweighted Least Squares (IRLS), an approach commonly used

in the GLMs literature [4, 38, 39]. Using an IRLS-based learning algorithm makes

it possible to tractably attack the more general problem of prediction in a mixed

data-type environment. Since the optimal model parameter values for our opti-

mization problem may be non-finite [10], a penalty function was introduced that

defined and placed a set of constraints into the loss function via a penalty parame-

ter in a way so that any divergence to infinity is avoided. Additionally, for several

exponential family distributions with natural restrictions on their parameter, a

positivity constraint on the natural parameter values was introduced. Synthetic

data examples for several exponential family distributions in both mixed and non-

mixed data-type cases were presented and generative models were fit to the data.

Furthermore, an unsupervised minority class detection technique to be performed

in the parameter space, rather than in the data space, as in more classical ap-

proaches, was proposed. A synthetic data example was created, demonstrating

that there are domains for which classical linear techniques used in the data space,

such as PCA, perform significantly worse than the new proposed parameter space

technique.

Once the generative GLS model was learned, the knowledge gained about

the statistical structure of data was used to perform effective classification on data

sets from the University of California, Irvine machine learning repository. The

text categorization and classification problems attacked in Appendix D illustrated

the benefits of making decisions in parameter space rather than in data space, as

with more classical approaches, and demonstrated the utility of the GLS approach

for experiments on real data sets in both supervised and unsupervised settings.

Support Vector Machines (SVMs) also make decisions in a non-data space. How-

ever, the SVMs technique does not provide any better understanding of the data,

despite often promising the highest degree of accuracy. An advantage of learning a

generative model of the data, as with GLS, is that generating synthetic data for the
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purposes of developing and training classifiers with the same statistical structure as

the original data becomes possible. This is particularly useful in cases where data

are very difficult or expensive to obtain, or when the original data are proprietary

and cannot be directly used for publication purposes in open literature.

6.2 Future work

While this dissertation established a complete well-rounded theory, sev-

eral interesting and important associated problems remain open, some of which

are listed below.

• Bregman distances and convexity properties: in addition to Lafferty et al [88,

89], Bauschke has intensively studied optimization problems using Bregman

distances and their convexity properties [90–92]. In particular, the existence

of a convex dual optimization problem associated with the minimization of

Bregman distances might be of interest to the Generalized Linear Statistics

(GLS) parameters estimation problem.

• Modeling overdispersion: the problem of overdispersion, or more rarely un-

derdispersion, is often mentioned when the variance observed on fitting the

model is greater, or more rarely smaller, than anticipated [27,93,94], i.e., the

data samples are strongly heterogenous. This phenomenon can be accounted

for in Generalized Linear Statistics (GLS) by adding a dispersion parame-

ter φ. The definition of an exponential family then becomes p(x|θ, φ) =

exp {(θx−G(θ)) /φ}h(x). The dispersion parameter can be estimated by

maximum likelihood estimation and regularly updated within the iterative

algorithm proposed for GLS. For a Gaussian distribution, the dispersion pa-

rameter corresponds to the variance, i.e., φ = σ2. The dispersion parameter

can be taken as a correction factor and as such, a dispersion parameter with

a value greater than 1 for a unit-variance Gaussian model assumption would

mean that overdispersion is observed, whereas a dispersion parameter value
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of 1 would mean that the model is correct.

• Sparse representation in parameter space: sparse representation of signals

have caught researchers’ attention in recent years. Solving the sparse repre-

sentation problem corresponds to finding the most compact representation

of a signal in terms of a linear combination of atoms in an overcomplete dic-

tionary. In other words, the chosen representation should be characterized

by a high number of zero-valued elements, i.e., the weights in the linear com-

bination are mostly zero-valued. The work proposed in [95–97] is based on

the use of FOCUSS (FOCal Underdetermined System Solver), an algorithm

designed to obtain suboptimal sparse solutions to the underdetermined linear

inverse problem θ = aV for known (q × d)-matrix V with d ≤ q, typically

d ¿ q. Instead of a wide V matrix as in GLS (q ¿ d), the matrix V

is now considered tall. We can imagine a generalization of FOCUSS from

µ , E[x|θ] = θ = aV to µ , E[x|θ] = g(θ) & θ = aV with g(·) the link

function of any exponential family distribution. Along these lines of inquiry,

there already exists a sparse alternative to Principal Component Analysis

(PCA) [98, 99]. Just as PCA was generalized to the exponential family [10],

it would be interesting to look at the problem of generalizing existing sparse

PCA techniques to provide the option of a sparse PCA representation in

parameter space.



A Exponential families

A.1 Motivation in a learning environment

To model a distribution over some data set X ⊂ Rd, a prior distribution π

can be set over X , for example the Uniform distribution. Then, several “features”

are measured, T1 : X → R, T2 : X → R, . . . , TN : X → R, for which the average

outcome with respect to the Lebesgue measure is computed and referred to as bi

for i = 1, . . . , N , with |bi| < ∞. In order to choose the best distribution p∗ to

model the data, the following conditions must be satisfied:

1. Ep∗
[
Ti(x)

]
= bi ∀i, where x ∈ X ,

2. p∗ is as close to the prior distribution π as possible,

i.e., p∗ = minp D(p||π), and the minimum p∗ is taken to satisfy condition 1, where

D(p||π) is the Kullback-Leibler divergence between a distribution p and the prior

distribution π. The Kullback-Leibler divergence is a measure of relative entropy,

or information divergence, between two distributions (further discussed in Appen-

dix A.4). Therefore, the distribution p∗ has to be the solution of the following

constraint optimization problem:

min
p

D(p||π) s.t. Ep

[
Ti(x)

]
= bi, i = 1, . . . , N. (A.1)

A unique solution to the minimization problem (A.1) exists and is a distribution

of the form [100]:

p∗(x) =
1

zη

exp

(
N∑

i=1

ηiTi(x)

)
π(x),

138
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where exp(y) = ey, zη is a normalizer and {ηi}N
i=1 ⊆ R a set of coefficients. As

η = [η1, . . . , ηN ] varies over RN , the set
{

1
zη

exp
(∑N

i=1 ηiTi(x)
)

π(x)
}

forms the

exponential family of distributions generated by π. An appropriate choice of the

prior distribution π defines the Gaussian distribution, or the Poisson distribution,

or any other exponential family distribution, as the best model for the data set X .

Details on these choices follow in the next section.

A.2 Standard exponential families

A.2.1 Probability and measure

A probability space is a triple (X ,F , P ) where:

(i) the sample space X is a nonempty set whose elements are known as outcomes,

(ii) F is a nonempty σ-algebra of subsets of X ; its elements are measurable sets

A ⊆ X called events, which are sets of outcomes for which one can ask a

probability; it is closed under (1) complement, if A ∈ F then X \ A ∈ F ,

and (2) countable union, if Ai ∈ F then ∪
i
Ai ∈ F ,

(iii) the probability measure P is a function from F to the real numbers that

assigns to each event A ∈ F a probability between 0 and 1, P : F → [0, 1].

A measure generalizes the concepts of the length of a line, the area of a

spread, or the volume of a 3-dimensional object and can be considered a consistent

notion of size. A measure ν on a σ-algebra F satisfies the following two properties:

• ν(A) ≥ ν(∅) = 0 for all A ∈ F ,

• countable additivity: if the system of sets Ai is disjoint, then ν
( ∞∪

i=1
Ai

)
=

∞∑
i=1

ν
(
Ai

)
.

The counting measure is defined as follows: let X be any (possibly infinite) count-

able set, then F = 2X , the powerset of X , is the class of all subsets of X and ν(A) is
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the number of points of A if A is finite, otherwise ν(A) = ∞, and A ∈ F . Another

well-known measure is the Lebesgue measure. The Borel subsets B of R are defined

as the smallest σ-algebra containing all the (closed) intervals. Similarly, the Borel

subsets of Rd are defined as the smallest σ-algebra containing all closed rectangles
{
(x1, . . . , xd) : ai ≤ xi ≤ bi, i = 1, . . . , d

}
, −∞ < ai < bi < ∞. The Lebesgue

measure is defined on a larger family F that adds to the Borel subsets all sets A for

which there is a set B ∈ B with ν(B) = 0 and A ⊂ B [101]. Then, the Lebesgue

measure in R is the measure of the interval [a, b], i.e., ν
(
(a, b)

)
= b − a, and the

Lebesgue measure in Rd is ν
(
(a1, b1)× (a2, b2)× · · · × (ad, bd)

)
=

d∏
i=1

(bi − ai), i.e.,

the volume of the rectangle. These are not probability measures since ν(X ) = ∞
in both cases, but they are σ-finite, i.e., X is the countable union of measurable

sets of finite measure.

A.2.2 Standard exponential families definition

Definition 1 ([54, 55]). Let ρ be a σ-finite measure on the Borel subsets of Rd.

Then, ρ generates an exponential family in the following way:

(i) Let N =
{
θ ∈ Rd :

∫
X eθ·xρ(dx) < ∞}

, the natural parameter space,

(ii) G(θ) = log
∫
X eθ·xρ(dx), the log-partition function, or the cumulant generat-

ing function,

(iii) p(x|θ) = eθ·x−G(θ) for x ∈ X and θ ∈ N , the probability densities with

respect to ρ.

(iv) For any Θ ⊆ N , called the restricted parameter space, the family of probabil-

ity densities {p(·|θ) : θ ∈ Θ} is called a d-dimensional standard exponential

family (of probability densities).

This definition of standard exponential families requires the characteri-

zation of an elaborate measure ρ for each family. However, it is usually possible to

assume the measure to be absolutely continuous with respect to either the Lebesgue
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measure or the counting measure ν:

ρ ¿ ν : ∃h s.t.

∫

A

f(x)ρ(dx) =

∫

A

f(x)h(x)ν(dx) ∀f, ∀A ∈ F .

The function h is called the Radon-Nikodym derivative of ρ with respect to ν.

Then the standard exponential families can be defined as follows:

Definition 2 ([76]). Let ν be either the Lebesgue measure or the counting measure

on the Borel subsets of Rd and let h(·) be a function from X ⊆ Rd to R. Then, ν

and h(·) generate an exponential family in the following way:

(i) Let N =
{
θ ∈ Rd :

∫
X eθ·xh(x)ν(dx) < ∞}

, the natural parameter space,

(ii) G(θ) = log
∫
X eθ·xh(x)ν(dx), the log-partition function, or the cumulant gen-

erating function,

(iii) p(x|θ) = eθ·x−G(θ)h(x) for x ∈ X and θ ∈ N , the probability densities with

respect to ν.

(iv) For any Θ ⊆ N , called the restricted parameter space, the family of probabil-

ity densities {p(·|θ) : θ ∈ Θ} is called a d-dimensional standard exponential

family (of probability densities).

The factor h(x) does not depend on the parameter θ and absorbing it

into the measure ν transforms Definition 2 into Definition 1. Continuous exponen-

tial family probability densities are defined with respect to the Lebesgue measure

whereas discrete probability densities are defined with respect to the counting

measure on N0 or a subset thereof.

Other d-dimensional exponential family definitions present in the litera-

ture can be reduced by sufficiency, reparameterization, and proper choice of h(·)
to the definition of a d-dimensional standard exponential family [55]. The term

canonical form is also frequently used to refer to standard exponential family dis-

tributions [76]. Well-known exponential families include the Gaussian distribution,

the Bernoulli distribution, the Binomial distribution, the Chi-square distribution,
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the Exponential distribution, the Inverse Gaussian distribution and the Poisson

distribution.

The parameter θ ∈ Θ is sometimes referred to as a canonical parameter,

and x ∈ X is sometimes called a canonical observation. The exponential family

generated by Θ is called full if Θ = N . The family is called regular if it is full

and if N is open, i.e., if N = N ◦, where N ◦ denotes the interior of N , defined

as intN = {∪Q : Q ⊂ N , Q is open}. Let D be the convex support of h. A d-

dimensional standard exponential family is called minimal is dimN = dimD = d.

The Multinomial distribution with parameters (N , π1, . . . , πk), for exam-

ple, considers N balls thrown into k bins, with πi being the probability that any

given ball falls into bin i for all i, and with the constraint π1 + · · ·+ πk = 1. The

observation vector x = [x1, . . . , xk] ∈ Zk
≥0 describes the number of balls in each

bin, with the constraint x1 + · · · + xk = N . The distribution takes the following

form:

p(x|π1, . . . , πk) =

(
N

x1, . . . , xk

)
πx1

1 · . . . · πxk
k .

Following Definition 2, this Multinomial family is characterized as follows with

parameter θ = [θ1, . . . , θk]:

p(x|π1, . . . , πk) =

(
N

x1, . . . , xk

)
exp{x1 log(π1) + . . . + xk log(πk)}.

Hence,

h(x) =

(
N

x1, . . . , xk

)
,

θi = log πi, i = 1, . . . , k with Θ =
{

[log πi]
k
i=1 : 0 < πi,

k∑
i=1

πi = 1
}

,

G(θ) = log
∑

x1+···+xk=N

(
N

x1, . . . , xk

)
ex1θ1 · . . . · exkθk

= log(eθ1 + · · ·+ eθk)N = N log
( k∑

i=1

eθi

)
,

N = Rk.
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This exponential family is not full because Θ 6= N = Rk. However, the family is

not minimal either since dimD = k−1 < k because of the constraint x1+· · ·+xk =

N . To reduce this family to a minimal family, let x? = [x?
1, . . . , x

?
k−1] ∈ Zk−1

≥0

be defined as x?
1 = x1, . . . , x

?
k−1 = xk−1. It is essentially equivalent to x since

xk = N −∑k−1
i=1 x?

i . Let θ?
i = θi − θk, and let

h?(x?) =

(
N

x?
1, . . . , x

?
k−1, N −∑k−1

i=1 x?
i

)
.

Then, the density of x? with parameter θ? = [θ?
1, . . . , θ

?
k] is

p?(x?|θ?) = eθ?·x?−G?(θ?)h?(x?) with G?(θ?) = N log
(
1 +

k−1∑
i=1

eθ?
i

)
.

This is a full minimal standard exponential family with N = Rk−1. Note that

πi = eθ?
i /

(
1 +

k−1∑
j=1

eθ?
j

)
, i = 1, . . . , k − 1,

πk = 1/
(
1 +

k−1∑
j=1

eθ?
j

)
.

It is well-known [54] that the parameter space N is a convex set for the

exponential families listed in the previous paragraph and that G(θ) is a convex

function on N (strictly convex if the family is minimal): ∀θ1, θ2 ∈ N and ∀α ∈
(0, 1),

G
(
αθ1 + (1− α)θ2

)
= log

∫
e(αθ1+(1−α)θ2)·xν(dx)

= log

∫
eαθ1·x · e(1−α)θ2·xν(dx)

≤ log
[ ∫

eθ1·xν(dx)
]α[ ∫

eθ2·xν(dx)
]1−α

= αG(θ1) + (1− α)G(θ2),

using Hölder’s inequality.

The function G(·) plays a fundamental role in characterizing members

of an exponential family [57]. Let Eθ[·] be the expectation with respect to the
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distribution p(·|θ). First, note that the moment-generating function of p(·|θ) can

be written as:

Eθ

[
et·x] =

∫

X
et·xeθ·x−G(θ)h(x)ν(dx)

= e−G(θ)

∫

X
e(t+θ)·xh(x)ν(dx)

= e−G(θ)eG(t+θ) = eG(t+θ)−G(θ),

so that the function G(·) fully characterizes the moment-generating function of

p(·|θ).

Second, the function G(·) is differentiable and its gradient function g(·)
is equal to the mean of x, i.e., Eθ[x] = ∇θG(θ) [76]:

∇θG(θ) = ∇θ log

∫

X
eθ·xh(x)ν(dx)

=

∫
X ∇θe

θ·xh(x)ν(dx)∫
X eθ·xh(x)ν(dx)

=

∫
X xeθ·xh(x)ν(dx)∫
X eθ·xh(x)ν(dx)

=

∫

X
xeθ·xh(x)ν(dx) · e−G(θ) =

∫

X
xeθ·x−G(θ)h(x)ν(dx)

=

∫

X
xp(x|θ)ν(dx) = Eθ[x].

The derivatives of the moment-generating function evaluated at 0 produce the

moments, hence the previous result can also be obtained as follows:

Eθ[x] =
∂Eθ

[
et·x]

∂t

∣∣∣∣∣
t=0

=
∂

∂t
eG(t+θ)−G(θ)

∣∣∣∣
t=0

=
∂G(t + θ)

∂t
eG(t+θ)−G(θ)

∣∣∣∣
t=0

= ∇θG(θ).

Similarly, it can be shown that its Hessian ∇2
θG(θ) is the covariance matrix of x.

Since G(θ) is convex, its Hessian is (symmetric and) positive semidefinite,

and strictly positive definite if the family is minimal.

A.2.3 Two parameter spaces

For minimal standard exponential families, the cumulant generative func-

tion G(·) is strictly convex as discussed earlier. Therefore, for any θ1, θ2 ∈ N , its
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directional derivative function ∇G(·) · (θ2−θ1)/‖θ2−θ1‖ strictly increases on the

line connecting θ1 and θ2, i.e., g(θ1) = ∇G(θ1) 6= ∇G(θ2) = g(θ2). Hence, the

function g(·) is bijective and invertible.

Let µ = g(θ) where µ is called the expectation parameter. Sometimes

it is more convenient to parameterize a distribution in the exponential family by

using its expectation parameter µ instead of its natural parameter θ. This pair of

parameterizations has a dual relationship. To understand this duality, the key is

that convex functions come in pairs [84,85]: the (convex) conjugate of the convex

function G : Rd → R is defined as G∗ : Rd → R and given by

G∗(η) = sup
θ∈domG

(
θ · η −G(θ)

)
.

The domain of the conjugate function consists of η ∈ Rd for which the supremum

is finite, i.e., for which the difference θ ·η−G(θ) is bounded above on the domain of

the function G. Clearly, G∗ is a convex function, since it is the pointwise supremum

of a family of convex (indeed, affine) functions of η. It can be shown that if G

is convex and closed, i.e., its epigraph is a closed set, then G∗∗ = G. Moreover,

the conjugate of a differentiable function G is also called the Legendre transform

of G. To distinguish the general definition from the differentiable case, the term

Fenchel conjugate is sometimes used instead of conjugate. Additionally, it is easily

shown that for G convex and differentiable with domG = Rd, G∗(η) at the point

η = ∇G(θ), or equivalently at θ = (∇G)−1(η), is given by

G∗(η) = sup
θ∈domG

(
θ · η −G(θ)

)
= (∇G)−1(η) · η −G

(
(∇G)−1(η)

)
.

Then, applying this definition to a standard exponential family {p(·|θ) :

θ ∈ Θ}, the Fenchel conjugate F (·) of the cumulant generating function G(·)
satifies the following:

F (µ) = G∗(µ) = θ · µ−G(θ) for µ = ∇G(θ). (A.2)
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Let f(µ) , ∇µF (µ) denote the gradient of F (µ):

f(µ) = ∇µF (µ) = ∇µ {θ · µ−G(θ)} for µ = ∇G(θ)

= ∇µθ · µ + θ · ∇µµ−∇µG(θ)

= ∇µθ · µ + θ −∇µθ · g(θ)

= ∇µθ · µ + θ −∇µθ · µ = θ.

Then, the two parameterizations θ and µ are related by the following

transformations:

µ = g(θ) and f(µ) = θ. (A.3)

It follows from (A.3) that the Hessian of F (µ) is the inverse of the Fisher Infor-

mation matrix, i.e., ∇2
µF (µ) =

(∇2
θG(θ)

)−1
. Using (A.3) to replace µ in (A.2)

brings:

F
(
g(θ)

)
= θ · g(θ)−G(θ). (A.4)

To conclude discussion of the duality property, there exist two spaces, the expec-

tation parameter space (or data space) and the natural parameter space, and two

functions that enable switching from one space to the other, g(·) and f(·), as shown

in Figure A.1. As shown above, g(·) is the inverse of f(·), f(µ) = g−1(µ). The

function g(·) is referred to as the link function. The Generalized Linear Models

(GLMs) literature often denotes f(·) as the link function [3].

A.2.4 Log-likelihood, score function and information matrix

The likelihood function of a random sample
{
x[1], . . . ,x[n]

}
indepen-

dently and identically drawn from an exponential family distribution with unknown

parameter θ is given by

L(θ) =
n∏

k=1

p
(
x[k]|θ)
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Figure A.1 Exponential family two parameter spaces, the link function g(·) and

its inverse f(·).

and the log-likelihood function takes the form

l(θ) = log L(θ)

=
n∑

k=1

log p
(
x[k]|θ)

=
n∑

k=1

{
θ · x[k]−G(θ)

}
+

n∑

k=1

log h
(
x[k]

)
.

The vector of the first derivative of l(·) with respect to the row vector θ is called

the score function. It is defined as

s(θ) =
∂

∂θ
l(θ) = ∇θl(θ) =

1

L(θ)

∂

∂θ
L(θ), (A.5)

where ∇θl(·) is the gradient of the log-likelihood function with respect to θ. Here,

the following convention for derivatives with respect to a row vector is used: for

the (1 × d) vector θ = [θ1, . . . , θd] and the scalar-valued function l(θ), the score

function s(θ) = ∂l(θ)/∂θ =
[
∂l(θ)/∂θ1, . . . , ∂l(θ)/∂θd

]T
is a (d×1) vector. Then,

E [s(θ)] = E

[
∂l(θ)

∂θ

]
= E

[
∂

∂θ

{ n∑

k=1

{
θ · x[k]−G(θ)

}
+

n∑

k=1

log h
(
x[k]

)}
]

=
n∑

k=1

{
E

[
x[k]

]− ∂G(θ)

∂θ

}
=

n∑

k=1

{µ− g(θ)} = 0.

The following matrix,

E

[−∂2l(θ)

∂θ2

]
= E

[−∇2
θl(θ)

]
, (A.6)
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is called the Fisher-information matrix, where ∇2
θl(·) is the Hessian matrix of

the log-likelihood function with respect to θ [7, 76]. It represents the information

that the random sample
{
x[1], . . . ,x[n]

}
contains about the parameter θ. More

specifically, E
[−∇2

θl(θ)
]

is a (d× d) matrix and can be expressed as

E
[
−∇2

θl(θ)
]

= E

[
− ∂2

∂θ2

{ n∑

k=1

{
θ · x[k]−G(θ)

}
+

n∑

k=1

log h
(
x[k]

)}
]

= E
[ n∑

k=1

∇2
θG(θ)

]
= n∇2

θG(θ),

where ∇2
θG(θ) is the covariance matrix of x.

A.3 Bregman distance

A.3.1 Definition

Bregman distances were introduced by L. M. Bregman [102]. The Breg-

man distance between two points in Rd is a nonnegative real number which can

be interpreted as a measure of distance [87]. However, a Bregman distance is usu-

ally not symmetric and the triangular inequality may not hold. Hence Bregman

distances are also referred to as Bregman divergences. The Bregman distance is

formally defined as follows: for an arbitrary real-valued convex and differentiable

function G(θ) on the parameter space Θ ⊆ Rd, the Bregman distance between two

parameters θ and θ̃ in Θ is defined as [57]

BG(θ̃‖θ) , G(θ̃)−G(θ)− (θ̃ − θ) · ∇θG(θ).

Here, ∇θ denotes the gradient with respect to θ and “·” denotes the dot product

between vectors. As discussed in [57], the Bregman distance BG(θ̃‖θ) equals G(θ̃)

minus the linearization of G(θ̃) around θ. Equivalently, BG(θ̃‖θ) is the error in

the approximation of G(θ̃) by a first-order Taylor expansion around θ. Since G(θ)

is convex, BG(θ̃‖θ) ≥ 0, and, if G(θ) is strictly convex, with equality if and only

if θ̃ = θ.
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For a 1-dimensional parameter θ ∈ Θ ⊆ R, the Bregman distance takes the follow-

ing form:

BG(θ̃‖θ) = G(θ̃)−G(θ)− (θ̃ − θ)g(θ),

where g(θ) = G′(θ). As previously described in [88], a graphical representation of

the Bregman distance as a measure of the convexity of G is shown in Figure A.2.

»»»»»»»»»»

θ θ̃

G(θ̃)−G(θ)− (θ̃ − θ)g(θ)

Figure A.2 For 1-dimensional parameters θ and θ̃, the Bregman distance is an

indication of the increase in G(θ̃) over G(θ) above linear growth with slope g(θ).

The Bregman distance encompasses a large class of distance/divergence

functions. For example, let the parameter space be Θ = Rd and the function

G(θ) = 1
2
θ · θ, which is convex and differentiable on Θ. In this case, the Bregman

distance becomes the squared Euclidean distance:

BG(θ̃‖θ) =
1

2
θ̃ · θ̃ − 1

2
θ · θ − (θ̃ − θ) · θ =

1

2
‖θ̃ − θ‖2.

Another example is the Itakura-Saito distance often used in speech processing,

where G(θ) = −∑d
i=1 log(θi) on the parameter space Θ = Rd

≥0. Noting that G(·)
is convex and differentiable on Θ, the Bregman distance becomes

BG(θ̃‖θ) = −
d∑

i=1

log(θ̃i) +
d∑

i=1

log(θi) +
d∑

i=1

1

θi

(θ̃i − θi)

=
d∑

i=1

(
θ̃i

θi

− log
θ̃i

θi

− 1

)
.

Table A.1 presents an example of different distances that in fact are a special case
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of a Bregman distance (for the Mahalanobis distance, W is the inverse covariance

matrix of θ).

Table A.1 Example of Bregman distances.

domain G(θ) BG(θ̃‖θ) Bregman distance

R θ2 (θ̃ − θ)2 squared Euclidean dist.

Rd ‖θ‖2 ‖θ̃ − θ‖2 squared Euclidean dist.

Rd θWθT (θ̃ − θ)W(θ̃ − θ)T Mahalanobis distance

Rd
≥0 −∑d

i=1 log θi

∑d
i=1

{
θ̃i/θi − log θ̃i/θi − 1

}
Itakuro-Saito distance

Considering a standard exponential family {p(·|θ) : θ ∈ Θ}, application

of identity (A.4) implies that the negative log-likelihood function of the density

p(x|θ) can be expressed through a Bregman distance [57]:

− log p(x|θ) = − log
{

eθ·x−G(θ)h(x)
}

= −θ · x + G(θ) + log h(x)

= −θ · x− F
(
g(θ)

)
+ θ · g(θ) + log h(x)

= θ · (g(θ)− x
)− F

(
g(θ)

)
+ log h(x)

= BF

(
x
∥∥g(θ)

)− F (x). (A.7)

Following the description of the Fenchel conjugate F (·) given in equation (A.2)

and using the equivalence x = ∇G(θ) = g(θ) ⇔ θ = f(x), F (x) can be expressed

as:

F (x) = f(x) · x−G
(
f(x)

)

= f(x) · x−
∫

X
ef(x)·xν(dx).

Bregman distances are a generalization of the log-likelihood of any member of

the exponential family of distributions and the negative log-likelihood of the den-

sity of an exponential family can be written as the sum of a uniquely determined
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Bregman distance and a term that is independent of the parameter θ. Hence,

maximizing the log-likelihood function is equivalent to minimizing a Bregman dis-

tance. Though it was formally proven by [16], the existence of a unique Bregman

distance corresponding to every regular exponential family had been previously

observed [57,87].

A.3.2 Properties of the Bregman distance

The following properties are true of the Bregman distance [16,57].

1. Non-negativity: If G(θ) is strictly convex and BG(θ̃‖θ) ≥ 0, then equality

holds if and only if θ̃ = θ.

2. Convexity: BG(·‖·) is always convex in the first argument, but not neces-

sarily in the second argument.

3. Linearity: The Bregman distance is a linear operator on the space of gen-

erating functions,

BG+H(θ̃‖θ) = BG(θ̃‖θ) + BH(θ̃‖θ) and

BcG(θ̃‖θ) = cBG(θ̃‖θ) for c ≥ 0.

4. Non-symmetry: Bregman distances are usually not symmetric,

BG(θ̃‖θ) 6= BG(θ‖θ̃).

5. Dual distances: If G(θ) is strictly convex, the Bregman distances have the

following duality property:

BG(θ̃‖θ) = BF

(
g(θ)‖g(θ̃)

)
= BF (µ‖µ̃).

6. Generalized Pythagorean Theorem: For any θ1,θ2 and θ3,

BG(θ1‖θ2) + BG(θ2‖θ3) = BG(θ1‖θ3) + (θ1 − θ2) · (µ3 − µ2).

The dot product can usually have any sign. When it is negative the above

contradicts the triangular inequality.
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As a conclusion, there are two ways in which Bregman distances are im-

portant. Firstly, they generalize squared Euclidean distance to a class of distances

that all share similar properties. Secondly, they bear a strong connection to expo-

nential families of distributions: there is a bijection between exponential families

and Bregman distances. Recently, researchers have shown that many important

algorithms can be generalized from Euclidean metrics to distances defined by a

Bregman distance [10,14–16,40,103,104].

A.4 Kullback-Leibler divergence

The Kullback-Leibler divergence is also referred to as the Kullback-Leibler

information [55,76], or the Kullback-Leibler relative entropy [37].

The Kullback-Leibler divergence for distributions p and q over a set X is

D(p||q) =
∑
x∈X

p(x) log
p(x)

q(x)
, or

∫

X
p(x) log

p(x)

q(x)
dx, respectively.

The Kullback-Leibler divergence D(p||q) can also be called the entropy distance

between p and q with respect to p [55,76], or the relative entropy of p with respect

to q [105].

The Kullback-Leibler divergence can be seen as a measure of distance

between distributions, but it is not a metric in the topological sense. In particular,

it is generally not symmetric, i.e., D(p||q) 6= D(q||p). Also, it is interesting to note

that the Kullback-Leibler divergence is unbounded. For example, if X = {0, 1},
p(0) = q(1) = 1, and p(1) = q(0) = 0, then D(p||q) = ∞. In general, p(x) should

be zero whenever q(x) is zero to avoid this, i.e., p should be absolutely continuous

with respect to q, denoted p ¿ q (for all events A, if q(A) = 0, then p(A) = 0),

and p(x)/q(x) for q(x) = 0 is then defined to equal 1. In light of the two previous

properties of the Kullback-Leibler divergence, for cases where the choice between

D(p||q) and D(q||p) is available, it is preferable to have the smoother distribution

as the second argument. Moreover, D(p||q) ≥ 0 as a consequence of the Jensen’s
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inequality applied to the convex function − log(·):

D(p||q) =
∑
x∈X

p(x) log
p(x)

q(x)
= Ep

[
log

p

q

]
= Ep

[
− log

q

p

]

≥ − log Ep

[
q

p

]
= − log

∑
x∈X

p(x)
q(x)

p(x)
= log(1) = 0.

Then, for any two distributions, D(p||q) exists and satisfies 0 ≤ D(p||q) ≤ ∞,

where D(p||q) = 0 if and only if p = q. Additionally,

D
(
p(x)q(y)||r(x)s(y)

)
=

∑
x,y∈X

p(x)q(y) log
p(x)q(y)

r(x)s(y)

=
∑

x,y∈X
p(x)q(y) log

p(x)

r(x)
+

∑
x,y∈X

p(x)q(y) log
q(y)

s(y)

= D
(
p(x)||r(x)

)
+ D

(
q(y)||s(y)

)
.

The Kullback-Leibler divergence between two Gaussian distributions pµ

and pµ′ with means µ and µ′, respectively, and identity covariance matrices is:

D(pµ||pµ′) =

∫
pµ(x) log

pµ(x)

pµ′(x)
dx =

∫
pµ(x) log

e−‖x−µ‖2/2

e−‖x−µ′‖2/2
dx

=

∫
pµ(x)

{
−1

2
‖x− µ‖2 +

1

2
‖x− µ′‖2

}
dx

=

∫
pµ(x)

{
x · µ− x · µ′ − 1

2
‖µ‖2 +

1

2
‖µ′‖2

}
dx

=
1

2
‖µ‖2 +

1

2
‖µ′‖2 − µ · µ′ =

1

2
‖µ− µ′‖2.

Hence, the l22-norm can be seen as the natural distance associated with Gaussian

distributions.

The Kullback-Leibler divergence between two distributions pθ and pθ′

from any standard exponential family is:

D(pθ||pθ′) =

∫

X
p(x|θ) log

p(x|θ)

p(x|θ′)dx

=

∫

X
p(x|θ) log

eθ·x−G(θ)

eθ′·x−G(θ′) dx

=

∫

X
p(x|θ)

{
(θ − θ′) · x−G(θ) + G(θ′)

}
dx,
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and, using the fact that Eθ[x] = ∇θG(θ),

= G(θ′)−G(θ)− (θ′ − θ) · ∇θG(θ) = BG(θ′‖θ). (A.8)

Hence, the Bregman distance is generated by the Kullback-Leibler divergence be-

tween distributions of an exponential family. The Bregman distance can then be

seen as the natural measure of distance for a particular exponential family.

Note also that for distributions of a standard exponential family,

log
p(x|θ)

p(x|θ′) = (θ − θ′) · x−G(θ) + G(θ′). (A.9)

Using (A.9) in (A.8) gives:

D(pθ||pθ′) = BG(θ′‖θ) = log
p
(
g(θ)|θ)

p
(
g(θ)|θ′) . (A.10)

The second part of equation (A.10) shows that the Kullback-Leibler divergence is

related to log-likelihood ratio testing. Finally, from equation (A.7) it follows that:

D(pθ||pθ′) = BG(θ′‖θ) = BF

(
g(θ)

∥∥g(θ′)
)
, (A.11)

where F is the Fenchel conjugate of the cumulant generating function G.

The Kullback-Leibler divergence seems to arise as a natural measure of

distance, or a natural measure of similarity, between probability distributions as-

sociated with language models [106–109]. For example, how should English words

be clustered [106]? Let M be a set of common nouns and choose a set V comprised

of some common verbs which co-occur with the nouns in M. Then, for each noun

m ∈M, the probability distribution pm is defined as follows for v ∈ V :

pm(v) =
#times (m, v) co-occur∑

v′∈V #times (m, v′) co-occur
,

and is measured over some corpus of documents (this assumes the noun m occurs

with at least one verb of V). Given these distributions, the goal is to find a partition

into a specified number of clusters of these distributions and their associated means.

The claim is that for any cluster C of distributions, its mean µC minimizes the
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Kullback-Leibler divergence among all distributions µ in C, i.e., for any positive

distribution µ on V (in particular, any weighted average of the distributions of C),
∑

p∈C D(p||µ) ≥ ∑
p∈C D(p||µC) (note that µC is the mean of the distributions of

the cluster C and as such is a distribution itself):

∑
p∈C

D(p||µ) =
∑
p∈C

∑
x

p(x) log
p(x)

µ(x)

=
∑
p∈C

∑
x

p(x) log
p(x)

µC(x)

µC(x)

µ(x)

=
∑
p∈C

∑
x

p(x) log
p(x)

µC(x)
+

∑
p∈C

∑
x

p(x) log
µC(x)

µ(x)

=
∑
p∈C

D(p||µC) +
∑
x

∑
p∈C

p(x) log
µC(x)

µ(x)
,

where the underlined term equals |C|µC(x) with |C| the cardinality of the cluster,

=
∑
p∈C

D(p||µC) + |C|D(µ||µC) ≥
∑
p∈C

D(p||µC).

The Kullback-Leibler divergence reaches its minimum value at the mean of C as

does the l22-norm in the classical K-means technique and hence offers a natural

measure of similarity between probability distributions for clustering in language

modeling applications.

A.5 Examples

The Gaussian, Inverse Gaussian, Exponential, Gamma, Chi-square, Beta,

Dirichlet, Weibull, Bernoulli, Binomial, Multinomial, Poisson, Negative Binomial,

Geometric distributions are all exponential families. The Cauchy and Uniform

families of distributions are not exponential families. Note that the Gamma dis-

tribution with parameters b and c = 1, as well as the Weibull distribution with

parameters b and c = 1 correspond to the Exponential distribution with mean b.

This paragraph presents a few useful examples of 1-dimensional exponen-

tial families [80] and their associated Bregman distances.
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Following Definition 2, the probability density function of a 1-dimensional

exponential family is p(x|θ) = exp {θx−G(θ)}h(x) where:

1. the factor h(x) only depends on the data space variable x ∈ X ;

2. the cumulant generating function G(θ) = log
∫
X exp{θx}h(x)ν(dx) only de-

pends on the natural parameter θ in N =
{
θ :

∫
X exp{θx}h(x)ν(dx) < ∞}

,

with the Lebesgue measure ν for continuous exponential family probability

densities, and the counting measure for discrete exponential family probabil-

ity densities;

3. the link function g(θ) is the first derivative of G(θ); the function f(µ) is the

inverse link function for µ = g(θ) and the first derivative of F (µ);

4. BF

(
x‖g(θ)

)
= F (x) − F

(
g(θ)

) − (
x − g(θ)

)
f
(
g(θ)

)
denotes the Bregman

distance associated with the exponential family of interest.

Below are presented several examples of 1-dimensional exponential family distrib-

utions and their various terms corresponding to Definition 2.

(i) Gaussian with unit-variance N (µ, 1):

A Gaussian random variable is one of the most important random variables

because it is a very good approximation of the sum of a large number of

random variables whose distribution is not completely known. Its domain is

X = R. The parameter µ is its average value and σ > 0 (chosen equal to 1

in this example) denotes the spread and σ2 its variance. A Gaussian random

variable has the following probability density function:

p(x|µ) =
1√
2π

exp

{
−(x− µ)2

2

}

=
1√
2π

exp

(
−x2

2

)
exp

(
xµ− µ2

2

)
, for x ∈ R and µ ∈ R.

Identifying the various terms in the definition of the probability density of a
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standard exponential family yields:

X = R,

h(x) =
1√
2π

exp

(
−x2

2

)
,

θ = µ,

G(θ) = log

∫

X
exp(θx)

1√
2π

exp

(
−x2

2

)
dx

= log
1√
2π

∫

X
exp

{
−(x− θ)2

2

}
exp

(
θ2

2

)
dx

= log exp

(
θ2

2

)
=

θ2

2
,

N = R,

g(θ) = θ,

f(µ) = µ,

F (µ) =
µ2

2
,

BF

(
x
∥∥g(θ)

)
= F (x)− F

(
g(θ)

)− (
x− g(θ)

)
f
(
g(θ)

)

=
x2

2
− g(θ)2

2
− (

x− g(θ)
)
θ =

x2

2
− θ2

2
− (x− θ)θ

=
1

2
(x− θ)2.

The natural parameter coincides with the expectation parameter.

(ii) Exponential(β):

An Exponential random variable measures the time between two successive

arrivals in a Poisson process. It only takes positive values, X = R≥0, and

is parameterized by a positive real number β > 0. Its probability density

function is:

p(x|β) = β exp(−βx) = exp(−βx + log β), for x ∈ R≥0 and β ∈ R≥0.

Identifying the various terms in the definition of the probability density of a
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standard exponential family yields:

X = R≥0,

h(x) = 1,

θ = −β < 0,

G(θ) = log

∫

X
exp(θx)dx

= log

∫ +∞

0

exp(θx)dx = log
−1

θ
= − log(−θ),

N = R−,

g(θ) = −1

θ
,

f(µ) = − 1

µ
,

F (µ) = − log µ− 1,

BF

(
x
∥∥g(θ)

)
= F (x)− F

(
g(θ)

)− (
x− g(θ)

)
f
(
g(θ)

)

= − log x− 1 + log g(θ) + 1− (
x− g(θ)

)
θ

= − log
x

g(θ)
− (

x− g(θ)
)
θ = − log(−xθ)− xθ − 1.

(iii) Bernoulli(p):

The Bernoulli random variable may be the simplest random variable. It takes

only two values, X = {0, 1}. It may be used to characterize the probability

that a (possibly biased) coin falls on heads, taking the value 1, or tails, taking

the value 0. It is sometimes interpreted as an experiment or trial with two

possible outcomes: failure, wherein the random variable takes the value 0,

or success, wherein the random variable takes the value 1, with probabilities

1 − p and p, respectively. A Bernoulli random variable has the following

probability mass function:

p(x|p) = px(1− p)(1−x)

= exp

(
x log

p

1− p
+ log(1− p)

)
, for x ∈ X = {0, 1}, 0 ≤ p ≤ 1.
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Identifying the various terms in the definition of the probability density of a

standard exponential family yields:

X = {0, 1},
h(x) = 1,

θ = log
p

1− p
,

G(θ) = log

∫

X
exp(θx)dx

= log
x=1∑
x=0

exp(θx) = log
(
1 + exp(θ)

)

N = R,

g(θ) =
exp(θ)

1 + exp(θ)
,

f(µ) = log
µ

1− µ
,

F (µ) = µ log µ + (1− µ) log(1− µ),

BF

(
x
∥∥g(θ)

)
= F (x)− F

(
g(θ)

)− (
x− g(θ)

)
f
(
g(θ)

)

= x log x + (1− x) log(1− x)− g(θ) log g(θ)

+
(
1− g(θ)

)
log

(
1− g(θ)

)− (
x− g(θ)

)
θ

= x log
x

g(θ)
+ (1− x) log

1− x

1− g(θ)

= log
(
1 + exp{−(2x− 1)θ}).

(iv) Binomial(p,N):

The Binomial random variable counts the number of successes in N indepen-

dent Bernoulli experiments with parameter p. If the ordering was maintained,

then the required probability for x successes would be px(1− p)(N−x). Since

the ordering is disregarded, all possible outcomes leading to x successes must

be counted. The probability mass function is therefore:

p(x|p) =
N !

x!(N − x)!
px(1− p)(N−x), for x ∈ X = {0, 1, 2, . . . , N}, 0 ≤ p ≤ 1.



160

Identifying the various terms in the definition of the probability density of a

standard exponential family yields:

X = {0, 1, 2, . . . , N},

h(x) =
N !

x!(N − x)!
,

θ = log
p

1− p
,

G(θ) = log

∫

X

N !

x!(N − x)!
exp(θx)dx

= log
x=N∑
x=0

N !

x!(N − x)!
exp(θx)

= log

(
1N +

N !

1!(N − 1)!
1N−1eθ + · · ·+ eNθ

)

= log
(
1 + exp(θ)

)N
= N log

(
1 + exp(θ)

)
,

N = R,

g(θ) = N
exp(θ)

1 + exp(θ)
,

f(µ) = log
µ

N − µ
,

F (µ) = µ log
µ

N
+ (N − µ) log

N − µ

N
,

BF

(
x
∥∥g(θ)

)
= F (x)− F

(
g(θ)

)− (
x− g(θ)

)
f
(
g(θ)

)

= x log
x

g(θ)
+ (N − x) log

N − x

N − g(θ)

= N log
1 + exp(θ)

exp(θ)
+ (N − x)θ

+ x log
x

N
+ (N − x) log

N − x

N
.

(v) Poisson(λ):

The Poisson random variable is often used to count the number of occurrences

of an event at a particular region in a fixed time period (e.g., cars arriving

at an intersection or phone calls arriving at a switchboard). The parameter
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λ is the average number of events occurring. Its probability mass function is

p(x|λ) =
λx exp(−λ)

x!

=
exp(x log λ− λ)

x!
, for x ∈ X = {0, 1, 2, . . . } and λ > 0.

Identifying the various terms in the definition of the probability density of a

standard exponential family yields:

X = {0, 1, 2, . . . },

h(x) =
1

x!
,

θ = log λ,

G(θ) = log

∫

X

1

x!
exp(θx)dx = log

∞∑
x=0

1

x!
exp(θx) = exp(θ),

N = R,

g(θ) = exp(θ),

f(µ) = log µ,

F (µ) = µ log µ− µ,

BF

(
x
∥∥g(θ)

)
= F (x)− F

(
g(θ)

)− (
x− g(θ)

)
f
(
g(θ)

)

= x log x− x− g(θ) log g(θ) + g(θ)− (
x− g(θ)

)
θ

= x log
x

g(θ)
− x− g(θ) = x log x− xθ + exp(θ)− x.

Table A.2, Table A.3 and Table A.4 summarize the characteristics of several contin-

uous 1-dimensional exponential families whereas Table A.5 and Table A.6 present

the characteristics of several discrete 1-dimensional exponential families.
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Table A.2 Characteristics of several continuous 1-dimensional exponential families:

Gaussian and Exponential.

Gaussian N (µ, 1) Gaussian N (µ, σ2) Exponential, β > 0

X R R R≥0

P (x; θ) 1√
2π

exp{− (x−µ)2

2
} 1√

2πσ2
exp{− (x−µ)2

2σ2 } βe−βx

mean µ µ 1/β
variance 1 σ2 1/β2

θ µ µ/σ2 −β
G(θ) θ2/2 θ2σ2/2 − log(−θ)

g(θ) = E[x|θ] θ = µ σ2θ = µ −1/θ = 1/β

g′(θ) = dg(θ)
dθ

1 σ2 1/θ2

f(x) = g−1(x) x x/σ2 −1/x
F (x) x2/2 x2/(2σ2) − log(x)− 1

BF (ϕ
∥∥ψ) (ϕ− ψ)2/2 (ϕ− ψ)2/(2σ2) − log(ϕ

ψ
) + ϕ

ψ
− 1

BF (x
∥∥g(θ)) (x− θ)2/2 (x− σ2θ)2/(2σ2) − log(−xθ)− xθ − 1

Table A.3 Characteristics of several continuous 1-dimensional exponential families:

Chi-square and Inverse Gaussian.

Chi-square, ν i.i.d. N (0, σ2) Inv. Gaussian, µ > 0, β > 0 fixed

X R≥0 R≥0

P (x; θ) xν/2−1

2ν/2σνΓ( ν
2
)
exp(− x

2σ2 )
√

β
2πx3 exp{−β(x−µ)2

2µ2x
}

mean ν µ
variance 2ν µ3/β

θ −1/(2σ2) −β/(2µ2)
G(θ) (ν/2) log(−1/θ) −β/µ

g(θ) = E[x|θ] −ν/(2θ) = νσ2
√

β/(−2θ) = µ

g′(θ) = dg(θ)
dθ

ν/(2θ2)
√

β/(−4θ3)
f(x) = g−1(x) −ν/(2x) β/(2x2)

F (x) −ν
2
[log(x

ν
) + 1] β/(2x)

BF (ϕ
∥∥ψ) −ν

2
[log(ϕ/ψ)− ϕ/ψ + 1] β[1/(2ϕ)− 1/ψ + ϕ/(2ψ2)]

BF (x
∥∥g(θ)) −ν

2
[log(−2xθ/ν)− 2xθ/ν + 1] β[1/(2x)−

√
−2θ/β − xθ/β]
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Table A.4 Characteristics of several continuous 1-dimensional exponential families:

Gamma and Weibull.

Gamma, b > 0, c > 0 fixed Weibull, b > 0, c > 0 fixed

X R≥0 R≥0

P (x; θ) (x/b)c−1[exp(−x/b)]/bΓ(c) cxc−1

b
exp{−(x

b
)c}

mean bc bΓ[(c + 1)/c]
variance b2c b2(Γ[(c + 2)/c]− {Γ[(c + 1)/c]}2)

θ −1/b < 0
G(θ) log[(−1/θ)c]

g(θ) = E[x|θ] −c/θ

g′(θ) = dg(θ)
dθ

c/θ2

f(x) = g−1(x) −c/x
F (x) − log[(x/c)c]− c

BF (ϕ
∥∥ψ) − log[(ϕ

ψ
)c] + cϕ

ψ
− c

BF (x
∥∥g(θ)) − log[(−xθ/c)c]− xθ − c

Table A.5 Characteristics of several discrete 1-dimensional exponential families:

Bernoulli and Poisson.

Bernoulli, 0 < p < 1 Poisson, λ > 0

X {0,1} {0, 1, 2, . . . }
P (x; θ) px(1− p)(1−x) λxe−λ

x!

mean p λ
variance p(1− p) λ + λ2

θ log
(

p
1−p

)
log λ

G(θ) log(1 + eθ) eθ

g(θ) = E[x|θ] eθ

1+eθ = p eθ = λ

g′(θ) = dg(θ)
dθ

eθ

(1+eθ)2
eθ

f(x) = g−1(x) log
(

x
1−x

)
log(x)

F (x) x log(x) + (1− x) log(1− x) x log(x)− x

BF (ϕ
∥∥ψ) ϕ log(ϕ

ψ
) + (1− ϕ) log

(
1−ϕ
1−ψ

)
ϕ log(ϕ

ψ
) + ϕ− ψ

BF (x
∥∥g(θ)) log

(
1 + exp{−(2x− 1)θ}) eθ − xθ + x log(x)− x
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Table A.6 Characteristics of several discrete 1-dimensional exponential families:

Binomial.

Binomial, 0 < p < 1 & N fixed

X {0, 1, 2, . . . , N}
P (x; θ) N !

x!(N−x)!
px(1− p)N−x

mean Np
variance Np(1− p)

θ log
(

p
1−p

)

G(θ) N log(1 + eθ)

g(θ) = E[x|θ] N eθ

1+eθ = Np

g′(θ) N eθ

(1+eθ)2

f(x) = g−1(x) log
(

x
N−x

)
F (x) x log

(
x
N

)
+ (N − x) log

(
N−x

N

)
BF (ϕ

∥∥ψ) ϕ log
(

ϕ
ψ

)
+ (N − ϕ) log

(
N−ϕ
N−ψ

)

BF (x
∥∥g(θ)) N log

(
1+eθ

eθ

)
+ (N − x)θ + x log

(
x
N

)
+ (N − x) log

(
N−x

N

)



B The Newton-Raphson

minimization technique

One classical minimization technique is the Newton, or Newton-Raphson,

method and is based on the Newton-Raphson method for finding the roots of

nonlinear equations [6]. In this procedure, a candidate solution is found by applying

the Newton-Raphson method to find a zero of the gradient of the loss function. If

the loss function is (locally) convex, then the solution will be a (locally) unique

minimum.

The Newton-Raphson method results from a Taylor series expansion

around some given point. Taylor series expansions utilize the principle that there

exists a relationship between the value of a mathematical function (with contin-

uous derivatives over the relevant support) at a given point, x0, and the function

value at another (perhaps close) point, x1, given by

f(x1) = f(x0) + (x1 − x0)f
′(x0)

+
1

2!
(x1 − x0)

2f ′′(x0) +
1

3!
(x1 − x0)

3f ′′′(x0) + · · · ,
(B.1)

where f ′(·) is the first derivative with respect to x, f ′′(·) is the second derivative

with respect to x, and so on. Infinite precision is achieved only with infinite

application of the series (as opposed to just the four terms previously provided),

and is therefore unobtainable. For the purposes of most statistical estimation

techniques, only the first two terms are required. Note that later terms will be

unimportant because of the rapidly growing factorial function in the denominator.

165



166

The assumption is that the problem aims at finding the point x1 such

that f(x1) = 0. This is a root of function f(·). The Taylor series expansion in

equation (B.1) then becomes:

0 = f(x0) + (x1 − x0)f
′(x0)

+
1

2!
(x1 − x0)

2f ′′(x0) +
1

3!
(x1 − x0)

3f ′′′(x0) + · · · .
(B.2)

Considering only the two first terms in the series expansion (B.2), the Gauss-

Newton method yields:

0 ∼= f(x0) + (x1 − x0)f
′(x0). (B.3)

The Newton-Raphson method rearranges (B.3) at the (t + 1)st step to produce:

x(t+1) = x(t) − f
(
x(t)

)

f ′
(
x(t)

) , (B.4)

so that progressively improved estimates are produced until f
(
x(t+1)

)
is sufficiently

close to zero. It can be shown that this method converges rapidly to a solution

provided that the selected starting point is reasonably close to the solution and

f(·) certifies some constraints. These are in particular satisfied if f(·) is sufficiently

smooth and convex.

When applied to finding roots in statistical settings, the Newton-Raphson

method adapts (B.3) to find the root of the first derivative of the log-likelihood

function l(·), also called the score function (cf. Appendix A).

First, for a single-component parameter θ, following equation (B.4), iter-

ative estimates are produced by

θ(t+1) = θ(t) − ∂/∂θ l
(
θ(t)

)

∂2/∂θ2 l
(
θ(t)

) .

Then, generalizing to a multiple components parameter, the update equation be-

comes

θ(t+1) = θ(t) −
(
∇2

θl
(
θ(t)

))−1

∇θl
(
θ(t)

)
, (B.5)
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where ∇2
θl(·) and ∇θl(·) are the Hessian and the gradient, respectively, of the

log-likelihood function l(·) with respect to the parameter vector θ. The update

equation (B.5) can also be modified as follows:

θ(t+1) = θ(t) − α(t+1)
(
∇2

θl
(
θ(t)

))−1

∇θl
(
θ(t)

)
, (B.6)

where α(t+1) is the step size chosen for the (t+1)st iteration. In a machine learning

environment, the step size is often referred to as the learning rate [49, 79]. It

enables an adjustment in the relative size of the change in the parameter vector θ.

The learning rate is usually taken to be a constant, and can also be optimized by

a line search that maximizes the loss function at each update.

Sometimes the Hessian matrix is difficult to calculate and is replaced by

its expectation with regard to θ, i.e., Eθ

[
∇2

θl
(
θ(t)

)]
. This modification is referred

to as Fisher scoring [6]. For exponential family distributions and canonical link

functions, the observed and expected Hessian matrices are identical [5–7, 76, 110].

At each step of the Newton-Raphson algorithm, the following equations must be

solved:
(
θ(t+1) − θ(t)

)
Eθ

[
∇2

θl
(
θ(t)

)]
= −∇θl

(
θ(t)

)
. (B.7)

It can be shown that these equations correspond to normal equations in a least

squares environment [81]. Therefore, the problem of root finding reduces to a

repeated weighted least squares application in which the inverse of the diagonal

values of Eθ

[
∇2

θl
(
θ(t)

)]
are the appropriate weights. The weights being constantly

updated, the overall strategy is called the iterative weighted least squares [6, 82],

also known as iterative reweighted least squares [7,15], or iteratively weighted least

squares [5].



C Non-parametric mixture

models

Non-parametric mixture models have become popular over the last twenty

years. One reason is that they provide a natural framework for practitioners to deal

with unobserved population heterogeneity [34]. This situation arises when, under

standard conditions, a certain model is valid. However, because of variation of the

parameters describing the model in the population, these assumptions are no longer

met, though they are still true in subpopulations described by variations of the

parameters. Since one has not observed which subpopulation each observed data

point belongs to, one can treat the variable describing subpopulation membership

only as a missing variable. The corresponding marginal model is a specific form

of the non-parametric mixture model. First, Appendix C.1 presents the theory

around non-parametric mixture models within the Generalized Linear Statistics

(GLS) framework, including the Non-Parametric Maximum Likelihood (NPML)

estimation technique used in Section 3 and Section 5. Then, Appendix C.2 develops

the Expectation-Maximization (EM) algorithm for the NPML estimation technique

with a special focus on exponential family distributions.

C.1 Theory of non-parametric mixture models

Mixture models express the presence of extra-population heterogeneity in

the following way: the (non-conditional) probability density function p(x) of the
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observation variable x takes the following form:

p(x) =

∫
p(x|θ)π(θ)dθ, (C.1)

where π(θ) is the probability density function of the parameter vector θ. Because

a different value of θ means that the observation variable belongs to a different

subpopulation, the parameter θ expresses the population heterogeneity. Here it is

represented as a continuous quantity with a continuous distribution for the sake

of generality. Given the observation matrix X =
[
x[1]T , . . . ,x[n]T

]T ∈ Rn×d,

composed of n independent and identically distributed statistical data samples,

each assumed to be stochastically equivalent to the random row vector x, x[k] =
[
x1[k], . . . , xd[k]

] ∼ x, the data likelihood function is given by:

p(X) =
n∏

k=1

p
(
x[k]

)
=

n∏

k=1

∫
p
(
x[k]|θ)

π(θ)dθ. (C.2)

For a specified exponential family density p(·|·), maximum likelihood

identification of model (C.1) corresponds to identifying the vector θ and its den-

sity function π(θ). This difficult problem is usually attacked using approximation

methods which correspond to replacing the integrals in (C.1) and (C.2) by sums

[17,20,22,25,26,34,66]:

p(x) =
m∑

l=1

p
(
x|̄θ[l]

)
πl =

m∑

l=1

d∏
i=1

p(xi|̄θi[l])πl, (C.3)

p(X) =
n∏

k=1

m∑

l=1

p
(
x[k]|̄θ[l]

)
πl (C.4)

=
n∏

k=1

m∑

l=1

d∏
i=1

p
(
xi[k]|̄θi[l]

)
πl (C.5)

over a finite number of discrete support points, or “atoms”,
¯
θ[l] (equivalently,

¯
a[l])

for l = 1, . . . , m, 1 ≤ m ≤ n, with point-mass probabilities

πl , π
(
θ =

¯
θ[l]

)
.

The data likelihood (C.4) thus approximates the likelihood of a finite mixture

of exponential family densities with unknown mixture proportions or point-mass
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probability estimates πl and unknown point-mass support points
¯
θ[l]. In the mix-

ture models literature, the point-mass probabilities πl are called mixing proportions

or weights, the densities p
(
x[k]|̄θ[l]

)
are called the component densities of the mix-

ture and equation (3.11) is referred to as the m-component finite mixture density

[53]. As clearly described in [29], the proposed approximation is justified either

as a Gaussian quadrature approximation to the integral in (C.1), in the case of

a Gaussian assumption for the probability density function π(θ) [4, 5, 38], or by

appealing to the fact that the Non-Parametric Maximum Likelihood (NPML) es-

timate [17,53,66] of the mixture density π(θ) yields a solution which takes a finite

number of points of support [17, 20,22,25,26,66].

The model in equation (C.3) enables the variation of the parameter over

a diversity of subpopulations to be captured. In this case, the population consists

of various subpopulations with parameter
¯
θ[1],

¯
θ[2], . . . ,

¯
θ[m] where m denotes the

number (possibly unknown) of subpopulations. This situation is called a hetero-

geneous case. The same type of density in each subpopulation l is assumed, but

with a potentially different parameter: p
(
x|̄θ[l]

)
is the density of subpopulation l,

l = 1, . . . , m. In contrast, a homogeneous case assumes the parameter to be part

of a unique subpopulation.

Following the notations in [34], the mixing distribution is denoted by Q =
(
¯
θ[l], πl, l = 1, . . . , m

)
=

{
¯
θ[l], πl

}m

l=1
and encompasses the parameters

¯
θ[l], l =

1, . . . , m and their associated weights or point-mass probabilities πl, l = 1, . . . , m.

Estimation is conventionally performed by maximum likelihood, i.e., the Non-

Parametric Maximum Likelihood estimator Q̂ =
{̂
¯
θ[l], π̂l

}m

l=1
maximizes the log-

likelihood function L(Q) =
∑n

k=1 log
∑m

l=1 p
(
x[k]|̄θ[l]

)
πl. In this formulation of

the NPML estimation problem, the number m of points of support is considered

fixed. However, in many applications, the value of m is unknown and needs to be

inferred from the available data; in this case m̂ denotes its estimator.

Corollary 1 ([34]). Suppose that p
(
x[k]|̄θ)

, as a function of
¯
θ, has a unique mode

for all x[k], which lies in the interval
[
xmin,xmax

]
where xmin and xmax are the
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minimum and maximum of the observed data x[1], . . . ,x[n], respectively. Then, Q̂
can only have support points, or atoms, in the interval

[
xmin,xmax

]
.

For many densities, the assumption of Corollary 1 is fulfilled. For exam-

ple, the one-dimensional Gaussian density function N (µ, 1)

p
(
x|̄θ = µ

)
=

1√
2π

exp

{
−(x− µ)2

2

}

is maximized for
¯
θ = x, i.e., for µ = x. However, the Poisson density function

p
(
x|̄θ = log λ

)
=

λxe−λ

x!

is maximized for λ = x, i.e.,
¯
θ = log x. Consequently, Q̂ will have points of sup-

port only in the interval
[
min{log(x)}, max{log(x)}] =

[
log(xmin), log(xmax)

]
.

Similarly, consider the Binomial case

p

(
x
∣∣
¯
θ = log

p

1− p

)
=

N !

x!(N − x)!
px(1− p)N−x.

The Binomial density function is maximized for p = x/N , i.e.,
¯
θ = log x/N

1−x/N
.

Consequently,
[
min

{
log x/N

1−x/N

}
, max

{
log x/N

1−x/N

} ]
will be the interval for the

points of support.

Corollary 1 has implications in that there is no need to search for the

NPML estimates outside the range of observed data. This reduces the computa-

tional burden enormously and facilitates the critical initialization step.

Now suppose that the training set incorporates replications, i.e., there

are only x(1),x(2), . . . ,x(K) different values. Consider the K-dimensional set

Γ =
{(

p(x(1) |̄θ), . . . , p(x(K)|̄θ)
)∥∥

¯
θ ∈ Θ

}
.

Corollary 2 (Existence and number of NPML atoms [34]). (a) If Γ is closed and

bounded, then an NPML estimate Q̂ exists. (b) Q̂ has at most K points of support.

Corollary 2 is based on a well-known theorem of Carathéodory and gives

a bound on the maximum number of necessary support points or atoms. This
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bound is the size of the training sample, n, if all data points are different from

each other. However, if there are many replications, this bound is largely reduced.

In practice, the bound for the number of support points given in Corollary 2 is

seldom sharp and there will often be fewer support points required than the bound

indicates [34].

There exist several suitable algorithms for constructing an NPML es-

timate. First, the Vertex Direction Method (VDM) and the Vertex Exchange

Method (VEM) both consider the convex set of all discrete distributions in which

one-point mixing distributions Q
¯
θ =

{
¯
θ, π

}
are interpreted as vertices of the sim-

plex, and they both find the mixing distribution that maximizes the log-likelihood

function by a succession of appropriate moves inside the simplex [34]. The di-

rections of movement for the VDM is toward a vertex whereas the VEM moves

parallel to the edges of the simplex. Second, the Expectation-Maximization (EM)

algorithm is the most commonly used technique and is presented below.

C.2 The EM algorithm for exponential family distributions

First, the atoms
¯
θ[1], . . . ,

¯
θ[m] are considered fixed and known. Because

π1 + π2 + · · · + πm = 1, πm can be replaced by 1 − ∑m−1
l=1 πl. Estimation of the

point-mass probabilities π1, . . . , πm is performed by maximizing the following log-

likelihood function

L(Q) =
n∑

k=1

log
m∑

l=1

p
(
x[k]|̄θ[l]

)
πl (C.6)

=
n∑

k=1

log

{
m−1∑

l=1

p
(
x[k]|̄θ[l]

)
πl + p

(
x[k]|̄θ[m]

)
(

1−
m−1∑

l=1

πl

)}
, (C.7)

where p(·|·) is an exponential family distribution. Taking the partial derivatives

with respect to πl, l = 1, . . . , m− 1, gives

∂L(Q)

∂πl

=
n∑

k=1

p
(
x[k]|̄θ[l]

)− p
(
x[k]|̄θ[m]

)
∑m

l=1 p
(
x[k]|̄θ[l]

)
πl

,
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yielding the following likelihood equations for l = 1, . . . , m− 1

∂L(Q)

∂πl

=
n∑

k=1

p
(
x[k]|̄θ[l]

)− p
(
x[k]|̄θ[m]

)
∑m

r=1 p
(
x[k]|̄θ[r]

)
πr

= 0

⇐⇒
n∑

k=1

p
(
x[k]|̄θ[l]

)
∑m

r=1 p
(
x[k]|̄θ[r]

)
πr

=
n∑

k=1

p
(
x[k]|̄θ[m]

)
∑m

r=1 p
(
x[k]|̄θ[r]

)
πr

(C.8)

⇐⇒
m−1∑

l=1

πl

n∑

k=1

p
(
x[k]|̄θ[l]

)
∑m

r=1 p
(
x[k]|̄θ[r]

)
πr

=
m−1∑

l=1

πl

n∑

k=1

p
(
x[k]|̄θ[m]

)
∑m

r=1 p
(
x[k]|̄θ[r]

)
πr

⇐⇒

m−1∑

l=1

πl

n∑

k=1

p
(
x[k]|̄θ[j]

)
∑m

r=1 p
(
x[k]|̄θ[r]

)
πr

+ πm

n∑

k=1

p
(
x[k]|̄θ[m]

)
∑m

r=1 p
(
x[k]|̄θ[r]

)
πr

=
m−1∑

l=1

πl

n∑

k=1

p
(
x[k]|̄θ[m]

)
∑m

r=1 p
(
x[k]|̄θ[r]

)
πr

+ πm

n∑

k=1

p
(
x[k]|̄θ[m]

)
∑m

r=1 p
(
x[k]|̄θ[r]

)
πr

⇐⇒
m∑

l=1

πl

n∑

k=1

p
(
x[k]|̄θ[l]

)
∑m

r=1 p
(
x[k]|̄θ[r]

)
πr

=
m∑

l=1

πl

n∑

k=1

p
(
x[k]|̄θ[m]

)
∑m

r=1 p
(
x[k]|̄θ[r]

)
πr

⇐⇒
n∑

k=1

∑m
l=1 p

(
x[k]|̄θ[l]

)
πl∑m

r=1 p
(
x[k]|̄θ[r]

)
πr

=
m∑

l=1

πl

n∑

k=1

p
(
x[k]|̄θ[m]

)
∑m

r=1 p
(
x[k]|̄θ[r]

)
πr

⇐⇒
n∑

k=1

p
(
x[k]|̄θ[m]

)
∑m

r=1 p
(
x[k]|̄θ[r]

)
πr

= n. (C.9)

Using equation (C.9) in equation (C.8) results in

n∑

k=1

p
(
x[k]|̄θ[l]

)
∑m

r=1 p
(
x[k]|̄θ[r]

)
πr

= n (C.10)

for l = 1, . . . , m. Equation (C.10) can also take the form of a fixed point equation:

n∑

k=1

p
(
x[k]|̄θ[l]

)
πl

n
∑m

r=1 p
(
x[k]|̄θ[r]

)
πr

= πl (C.11)

for l = 1, . . . , m.

As it turns out, equation (C.11) is a special case of a more general

fixed point algorithm, the Expectation-Maximization (EM) algorithm [68]. The

EM approach introduces a missing or unobserved variable zk = [zk1, . . . , zkm] for

k = 1, . . . , n, where n is the number of data samples and m the number of mixture

components. This variable is an m-dimensional binary vector whose lth component

equals 1 if the observed variable x[k] was drawn from the lth mixture component
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and 0 otherwise and hence is also referred to as the mixture component indica-

tor. Then, the observed data matrix X =
[
x[1]T , . . . ,x[n]T

]T
is viewed as being

incomplete since the associated component indicators are not available and the

log-likelihood function defined by equation (C.6) is also called incomplete. The

complete log-likelihood function is therefore declared to be:

L(c)
(Q, {zk}n

k=1

)
= log

n∏

k=1

m∏

l=1

p
(
x[k]|̄θ[l]

)zklπzkl
l

=
n∑

k=1

m∑

l=1

zkl log p
(
x[k]|̄θ[l]

)
+

n∑

k=1

m∑

l=1

zkl log πl, (C.12)

where the underlined term is independent of πl, l = 1, . . . , m. The EM algorithm

overcomes the fact that the component indicator vectors zk, k = 1, . . . , n, are

unknown by iteratively working with the conditional expectation of the complete

log-likelihood function given the observed data, which is computed using the cur-

rent fit for the unknown parameters [53].

First, the E-step, or Expectation-step, allows one to obtain an estimate

of the missing variables zk = [zk1, . . . , zkm]T , k = 1, . . . , n, by replacing them with

their expected values given the data set
{
x[k]

}n

k=1
:

ẑkl = E {zkl|x[k], π1, . . . , πm} = Pr
(
zkl = 1|x[k]

)

=
Pr

(
x[k]|zkl = 1

)
Pr(zkl = 1)∑m

r=1 Pr
(
x[k]|zkr = 1

)
Pr(zkr = 1)

=
p
(
x[k]|̄θ[l]

)
πl∑m

r=1 p
(
x[k]|̄θ[r]

)
πr

, (C.13)

for l = 1, . . . , m, where the notation Pr(·) expresses the probability of an event.

Then, the complete log-likelihood function becomes:

L(c)
(Q, {ẑk}n

k=1

)
=

n∑

k=1

m∑

l=1

ẑkl log p
(
x[k]|̄θ[l]

)
+

n∑

k=1

m∑

l=1

ẑkl log πl. (C.14)

Finally, maximizing equation (C.14) leads to the M-step, or Maximization-step

and yields the estimates for the point-mass probabilities:

π̂l =

∑n
k=1 ẑkl

n
=

n∑

k=1

p
(
x[k]|̄θ[l]

)
πl

n
∑m

r=1 p
(
x[k]|̄θ[r]

)
πr

, (C.15)
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which is the fixed point equation noticed earlier in equation (C.11) and which is

simply the proportion of the data from each mixture component.

Now the component parameters
¯
θ[l], l = 1, . . . , m, are assumed to be

unknown and need to be estimated in the M-step in the following way for l =

1, . . . , m:

̂
¯
θ[l] = arg max

¯
θ[l]

L(c)
(
¯
θ[l], π̂l, l = 1, . . . , m, {ẑk}n

k=1

)

= arg max

¯
θ[l]

{
n∑

k=1

m∑
r=1

ẑkr log p
(
x[k]|̄θ[r]

)
+

n∑

k=1

m∑
r=1

ẑkr log π̂r

}

= arg max

¯
θ[l]

n∑

k=1

m∑
r=1

ẑkr log p
(
x[k]|̄θ[r]

)

and, since p(·|·) is assumed to be an exponential family distribution,

= arg max

¯
θ[l]

n∑

k=1

m∑
r=1

ẑkr

{
¯
θ[r]x[k]T −G(

¯
θ[r])

}
.

For all l = 1, . . . , m, the function l(
¯
θ[l]) is defined as collecting the elements of

the loss function −∑n
k=1

∑m
r=1 ẑkr

{
¯
θ[r]x[k]T −G(

¯
θ[r])

}
that only depends on the

vector
¯
θ[l]. The computation of the gradient vector ∇

¯
θl

(
¯
θ[l]

)
goes as follows, for

l = 1, . . . , m:

l
(
¯
θ[l]

)
= −

n∑

k=1

ẑkl

{
¯
θ[l]x[k]T −G(

¯
θ[l])

}
=

n∑

k=1

ẑkl

{
G(

¯
θ[l])−

¯
θ[l]x[k]T

}

∇
¯
θl

(
¯
θ[l]

)
=

∂l
(
¯
θ[l]

)

∂
¯
θ[l]

=
∂

∂
¯
θ[l]

n∑

k=1

ẑkl

{
G(

¯
θ[l])−

¯
θ[l]x[k]T

}

=
n∑

k=1

ẑkl

{
G′(

¯
θ[l])− x[k]

}
=

n∑

k=1

ẑklG
′(
¯
θ[l])−

n∑

k=1

ẑkjx[k]

= G′(
¯
θ[l])

n∑

k=1

ẑkl −
n∑

k=1

(
ẑklx[k]

)
,

where

G′(
¯
θ[l]) =

[
∂G(

¯
θ[l])

∂
¯
θ1[l]

, . . . ,
∂G(

¯
θ[l])

∂
¯
θd[l]

]
=

[
g(

¯
θ1[l]), . . . , g(

¯
θd[l])

]
,
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as in Section 4. Consequently,

∇
¯
θl

(̂
¯
θ[l]

)
= 0 ⇐⇒ G′(̂

¯
θ[l]

n∑

k=1

ẑkl −
n∑

k=1

(
ẑklx[k]

)
= 0

⇐⇒ G′(̂
¯
θ[l] =

∑n
k=1 ẑklx[k]∑n

k=1 ẑkl

,

where G′(̂
¯
θ[l] takes on a different form depending on the exponential family dis-

tribution considered. Several one-dimensional examples are presented below:

(i) Gaussian with unit-variance N (µ, 1): G(
¯
θ) =

¯
θ2/2 and G′(

¯
θ) =

¯
θ. Hence,

for l = 1, . . . , m,

̂
¯
θ[l] =

∑n
k=1 ẑklx[k]∑n

k=1 ẑkl

.

(ii) Exponential(λ): G(
¯
θ) = − log(−

¯
θ) and G′(

¯
θ) = 1/

¯
θ. Hence, for l = 1, . . . , m,

̂
¯
θ[l] =

∑n
k=1 ẑkl∑n

k=1 ẑklx[k]
.

(iii) Bernoulli(p): G(
¯
θ) = log

(
1 + exp{

¯
θ}) and G′(

¯
θ) = exp{

¯
θ}/(1 + exp{

¯
θ}).

Hence, for l = 1, . . . , m,

exp
{̂
¯
θ[l]

}

1 + exp
{̂
¯
θ[l]

} =

∑n
k=1 ẑklx[k]∑n

k=1 ẑkl

⇐⇒ 1

1 + exp
{− ̂

¯
θ[l]

} =

∑n
k=1 ẑklx[k]∑n

k=1 ẑkl

⇐⇒
n∑

k=1

ẑkl =
(
1 + exp

{− ̂
¯
θ[l]

}) n∑

k=1

ẑklx[k]

⇐⇒ exp
{− ̂

¯
θ[l]

}
=

∑n
k=1 ẑkl −

∑n
k=1 ẑklx[k]∑n

k=1 ẑklx[k]

⇐⇒ ̂
¯
θ[l] = log

∑n
k=1 ẑklx[k]∑n

k=1 ẑkl −
∑n

k=1 ẑklx[k]
.

(iv) Binomial(p,N): G(
¯
θ) = N log

(
1 + exp{

¯
θ}) and G′(

¯
θ) = N exp{

¯
θ}

1+exp{
¯
θ} . Hence,

for l = 1, . . . , m,

̂
¯
θ[l] = log

∑n
k=1 ẑklx[k]

N
∑n

k=1 ẑkl −
∑n

k=1 ẑklx[k]
.
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(v) Poisson(λ): G(
¯
θ) = exp{

¯
θ} and G′(

¯
θ) = exp{

¯
θ}. Hence, for l = 1, . . . , m,

exp
{̂
¯
θ[l]

}
=

∑n
k=1 ẑklx[k]∑n

k=1 ẑkl

⇐⇒
¯
θ[l] = log

∑n
k=1 ẑklx[k]∑n

k=1 ẑkl

.

The EM algorithm for the Non-Parametric Maximum Likelihood estimation for

exponential family distribution is summarized below in Table C.1.

Table C.1 EM algorithm for Non-Parametric Maximum Likelihood estimation in

exponential family distributions mixture models.

Algorithm: EM algorithm for exponential family distributions mixture models

Input: a set of observations
{
x[k]

}n

k=1
⊆ Rd, an exponential family distribution

p(·) defined by its cumulant generating function G(·), a number of atoms m.

Output: the NPML estimator that maximizes the complete log-likelihood func-
tion L(c)

(Q, {zk}n
k=1

)
: Q̂ =

{̂
¯
θ[l], π̂l

}m

l=1
.

Method:
Initialize

{
¯
θ[l], πl

}m

l=1
with πl ≥ 0 for all l and

∑m
l=1 πl = 1;

¯
θ[l] ∈ Θ for all l;

repeat
{The Expectation Step}
for k = 1 to n do

for l = 1 to m do

ẑkl ←− p(x[k]|̄θ[l])πlPm
r=1 p(x[k]|̄θ[r])πr

end for
end for
{The Maximization Step}
for l = 1 to m do
π̂l ←− 1

n

∑n
k=1 ẑkl

¯
θ[l] ←− G′(

¯
θ[l]) =

Pn
k=1 bzklx[k]Pn

k=1 bzkl

end for
until convergence;

return Q̂ =
{̂
¯
θ[l], π̂l

}m

l=1
.

Often, the choice of initial values for the EM algorithm is critical. Three

methods for choosing initial values in the case m = 2 are proposed in [34]. In the

first two strategies, starting values for
¯
θ[1],

¯
θ[2] and π are found by classifying the

n data samples into two disjoint sets of size s and n−s respectively (s < n). Then,
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¯
θ[1] is estimated by the arithmetic mean of the first set and

¯
θ[2] by the arithmetic

mean of the second set. The prior π is estimated as s/n. In particular, ordered

values x(1), . . . ,x(n) are considered, and the sets are updated by including one

observation at each step. Thus, at first, set 1 consists of x(1), set 2 of x(2), . . . ,x(n).

In the second step, set 1 consists of x(1),x(2) whereas set 2 contains x(3), . . . ,x(n),

and so forth. The procedure considers n−1 partitions. Strategies differ in the way

they select the optimal partition. Strategy I maximizes

LI

(
¯
θ[1],

¯
θ[2], π

)
=

n∑

k=1

log
{
p
(
x[k]|̄θ[1]

)
π + p

(
x[k]|̄θ[2]

)
(1− π)

}

in
¯
θ[1] = x̄1 the arithmetic mean of set 1 and

¯
θ[2] = x̄1 the arithmetic mean of

set 2, and π = s/n, meaning that the log-likelihood function has to be evaluated

n− 1 times. Strategy II is minimizing the total sum of squares in s

LII

(
¯
θ[1],

¯
θ[2], π

)
=

s∑

k=1

(
x[k]− x̄1

)2
+

n∑

k=s+1

(
x[k]− x̄2

)2
,

where x̄1 and x̄2 are the means of the first s and the remaining n − s ordered

values, respectively. In Strategy III the means are chosen as values of certain

order statistics. The following values are chosen:
¯
θ[1] = x(1),

¯
θ[1] = x(n) (Strategy

III.1),
¯
θ[1] = x(5),

¯
θ[1] = x(n−5) (Strategy III.5),

¯
θ[1] = x(30),

¯
θ[1] = x(n−30)

(Strategy III.30). The prior π is chosen to be 1/2 in all three cases.



D Work on UC Irvine data sets

This chapter demonstrates the utility of the Generalized Linear Statistics

(GLS) approach with experiments on real data sets, for which classification in

parameter space often outperforms classification in data space. The data sets used

here are from the University of California, Irvine machine learning repository [41].

Table D.1 presents characteristics of the data sets used in this work, i.e., their

name, the number of classes to identify as well as the number of instances in both

training and test sets.

The Twenty Newsgroups and the Reuters-21578 data sets account for

most of the experimental work in text categorization. Text categorization is the

activity of labeling natural language texts with thematic categories from a prede-

fined set [111] and is one example of information retrieval tasks. The Abalone data

set task is to predict the age of an abalone based on physical measurements and

can be seen as either a regression or a classification problem.

Table D.1 Characteristics of the University of California, Irvine machine learning

repository data sets used in this work.

data set # classes training set test set

Twenty Newsgroups 3 1764 1236

Reuters-21578 10 6490 2545

Abalone 3 2506 1671

179
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For each data set, a low-dimensional parameter subspace is identified

using GLS while classical Principal Component Analysis (PCA) selects a low-

dimensional data subspace. Classification is performed on both subspaces and

performances are compared. The benefits of decision making in parameter space

rather than in data space as with more classical approaches are illustrated with

examples of categorical data supervised and unsupervised text categorization and

mixed-type data classification. As a text document preprocessing tool, an exten-

sion from binary to categorical data of the conditional mutual information maxi-

mization based feature selection algorithm is presented.

D.1 Twenty Newsgroups data set

The Twenty Newsgroups data set consists of Usenet articles collected

from twenty different newsgroups. Each newsgroup contains 1000 articles.

This work considers the three following newsgroups: sci.med

comp.sys.mac.hardware and comp.sys.ibm.pc.hardware. A classification problem

with two distinct classes is studied, the first class consisting of the newsgroup

sci.med, the second class consisting of the newsgroups comp.sys.ibm.pc.hardware

and comp.sys.mac.hardware. The first class articles are assigned a target value

equal to 1 and the second class a target value equal to 0.

D.1.1 Preprocessing and document representation for text categoriza-

tion

It has been acknowledged by the text categorization community that

words seem to work well as features of a document for many classification tasks.

In addition, it is usually assumed that the ordering of the words in a document

does not matter. Hence, a document can simply be represented as a bag of words,

i.e., as a vector for which each distinct word is a feature [112]. There are two ways

to characterize the value of each feature that are commonly used in the literature:
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Boolean and tf×idf weighting schemes. In Boolean weighting, the weight of a

word is considered to be 1 if the word appears in the document and 0 otherwise.

We choose to characterize the value of each feature by using the tf×idf (term

frequency × inverse document frequency) document representation scheme pro-

posed in [113]. This scheme argues that terms (or words) appearing in documents

should be weighted proportional to the term frequency and inversely proportional

to the document frequency. The weight is a statistical measure used to evaluate

how important a word is to a corpus. The importance increases proportionally

to the number of times a word appears in the document but is offset by the fre-

quency of the word in the corpus. This weighting scheme is commonly used for

document representation and the combination of tf×idf weights and document

length normalization have been shown to perform generally better retrieval results

[111, 113–115]; interestingly, in practice, the Boolean approach does not always

perform worse than the tf×idf approach [116]. The term frequency tf is the num-

ber of times a specific word occurs in a specific document. The document frequency

df is the number of documents in which the specific word occurs at least once. The

inverse document frequency idf can be calculated from the document frequency as

follows:

idf = log

(
total # of documents

df

)
.

Therefore, tf×idf weighting goes as follows:

wi = tfi · log

(
total # of documents

dfi

)

for each feature, i.e., for all i, and tf×idf weighting with length normalization is:

wi =
tfi · log

(
total # of documents

dfi

)
√∑|T |

j=1

[
tfj · log

(
total # of documents

dfj

)]2
,

where |T | is the length of the document, i.e., the number of distinct words in

the document (after stopword removal and stemming is performed as explained

below). Length normalization ensures that each document vector is of unit length,
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removing the advantage that long documents have over short documents with

respect to information retrieval [111]. However, if a document is long, but has quite

often a term that represents key information for a specific text categorization task,

normalization would reduce the importance of the term as compared to a short

document, where the term appears equally often in absolute term. Hence we decide

to discard the length normalization step.

We choose to bin the weights and to work with integer valued weights

(five bins are selected), i.e., categorical features.

text document

?
parsing

?
case-folding

?
removing
stopwords

?
stemming

?
term

weighing

?
dictionary
learning

?
encoded vector

Figure D.1 Preprocessing and document representation for text categorization.

In regard to the newsgroup articles, following the steps described in Figure

D.1, we first chose to discard all header fields such as Cc, Bcc, Message-ID, as well
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as the Subject field (this step is called parsing). Case-folding, which stands for

converting all the characters in a document into the same case, is performed by

converting all the characters into lower-case. We use a stop list, i.e., a list of words

that will not be taken into account. Indeed, there are words such as pronouns,

prepositions and conjunctions which are encountered very frequently but carry no

useful information about the content of the document. We used the following stop

list: ftp://ftp.cs.cornell.edu/pub/smart/english.stop. It consists of 571 stopwords

and is commonly used in the literature. It yields a drastic reduction in the number

of features. Then, some simple stemming is performed, such as removing the third

person and plural “s”. In addition to removing very frequent words with the stop

list, we remove rare words, i.e., words appearing less than 10 times in the corpus.

At this point, each document is a vector in a 4383-dimensional space, i.e., 4383

distinct words were identified to represent the newsgroups documents.

Last, we construct a dictionary, and hence reduce the dimensionality of

the feature space. There are various methods commonly applied for dimension-

ality reduction in document categorization [112]. We chose a conditional mutual

information based approach to select a dictionary of 150 words. We modify the

binary feature selection with conditional mutual information algorithm proposed

in [117] to fit a categorical feature. The feature selection algorithm proposed in

[117] is based on the Conditional Mutual Information Maximization (CMIM) cri-

terion and selects features that maximize both the information about the class and

the independence between features. The modification from binary to categorical is

simple; following the definition of entropy and mutual information shown in [117],

the summations are changed from summing over two values to summing over five

values, i.e., the number of bins selected.

We use this data set leaving out a randomly selected 40% of the instances

of each class to use as a test set. The training set then consists of 1764 instances

and the test set consists of 1236 instances. The dictionary is learned using the

training set only. Table D.2 presents the first twenty words of the dictionary
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Table D.2 Twenty Newsgroups data set: first twenty words of the dic-

tionary learned to differentiate the newsgroup sci.med from the newsgroups

comp.sys.mac.hardware and comp.sys.ibm.pc.hardware.

doctor

card

mac

drive

disease

medical

treatment

food

patient

effect

medicine

drug

skepticism

pc

body

health

blood

study

hardware

infection

learned with the purpose of differentiating the newsgroup sci.med from the two

other newsgroups.

D.1.2 Classification and clustering results

Figure D.2 and Figure D.3 represent the training set documents in the

low-dimensional subspace of the parameter space learned with classical PCA for a

dimension q of the subspace equal to 2 and 3. Similarly, Figure D.4 and Figure

D.5 represent the training set documents in the low-dimensional subspace of the

parameter space learned with the GLS approach using a Binomial distribution

(N = 5) for a dimension q of the subspace equal to 2 and 3.

Supervised approach: Table D.3 presents the classification performances
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Twenty Newsgroup (sci.med vs. mac,ibm): classical PCA (q=2)

Figure D.2 Twenty Newsgroups data set: training documents in the lower dimen-

sional subspace of the parameter space learned with classical PCA, q = 2 (sci.med:

*, comp.sys.ibm.pc.hardware and comp.sys.mac.hardware: ◦).
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Twenty Newsgroup (sci.med vs. mac,ibm): classical PCA (q=3)

Figure D.3 Twenty Newsgroups data set: training documents in the lower dimen-

sional subspace of the parameter space learned with classical PCA, q = 3 (sci.med:

*, comp.sys.ibm.pc.hardware and comp.sys.mac.hardware: ◦).
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Twenty Newsgroup (sci.med vs. mac,ibm): GLS with Binomial assumption (q=2)

Figure D.4 Twenty Newsgroups data set: training documents in the low-

dimensional parameter subspace learned with the GLS approach (Binomial, N =

5), q = 2 (sci.med: *, comp.sys.ibm.pc.hardware and comp.sys.mac.hardware: ◦).
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Figure D.5 Twenty Newsgroups data set: training documents in the low-

dimensional parameter subspace learned with the GLS approach (Binomial, N =

5), q = 3 (sci.med: *, comp.sys.ibm.pc.hardware and comp.sys.mac.hardware: ◦).
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Twenty Newsgroup (sci.med vs. mac,ibm): GLS with Binomial assumption (q=3)

Figure D.6 Twenty Newsgroups data set: training documents in the low-

dimensional parameter subspace learned with the GLS approach (Binomial, N =

5), q = 3 (sci.med: *, comp.sys.ibm.pc.hardware: ◦, comp.sys.mac.hardware: 4).
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of Support Vector Machines (SVMs) on the q-dimensional latent variable space

learned with classical PCA and the GLS framework with a Binomial distribution

(N = 5). The SVMs results were obtained with the SVMs and Kernel Methods

Matlab Toolbox developed at INSA, France [118]. The SVMs regularization para-

meter C value was chosen to give the best classification performance on a subset

of the training set called validation set. We subdivided the training set (1764 in-

stances) into 1071 training instances and 693 validation instances for this purpose.

We then learned the SVMs with the previously chosen regularization parameter

value on the full 1764 training instances and evaluated the performance on the test

set (1236 instances). We did not further optimize performance by tuning parame-

ters to achieve optimal performance on the test set. The number in parentheses

is the number of support vectors obtained during the training phase. The classi-

fication performance is expressed in terms of the percentage of correctly classified

documents.

Classification effectiveness is often measured in terms of precision and

recall in the text categorization community [111]. Precision with respect to a class

Ci (πi) is defined as the probability that, if a random document is classified under

Ci, this decision is correct. Recall with respect to a class Ci (ρi) is defined as

the probability that, if a random document ought to be classified under Ci, this

decision is taken. These probabilities are estimated in terms of the contingency

table for Ci on a given test set as follows:

π̂i =
TPi

TPi + FPi

and ρ̂i =
TPi

TPi + FNi

,

where TPi, FPi and FNi refer to the sets of true positives with respect to Ci

(documents correctly deemed to belong to class Ci), false positives with respect to

Ci (documents incorrectly deemed to belong to class Ci), and false negatives with

respect to Ci (documents incorrectly deemed not to belong to class Ci). The notion

of breakeven point is used to describe the value at which π equals ρ. Additionally,

the F1 measure combines precision and recall, attributing equal importance to π
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Table D.3 Twenty Newsgroups data set: SVMs classification performances on the

q-dimensional latent variable space learned with classical PCA and GLS with a

Binomial distribution (1764 training instances and 1236 test instances).

classical PCA classical PCA GLS Binomial GLS Binomial

training set test set training set test set
q = 1 85.32% 84.95% 85.09% 84.87%

(14) (17)
q = 2 95.75% 94.17% 93.54% 91.50%

(42) (119)
q = 3 96.03% 94.98% 96.54% 95.57%

(77) (129)
q = 4 96.15% 94.74% 96.37% 94.82%

(111) (174)
q = 5 96.20% 94.98% 96.71% 95.06%

(167) (228)
q = 6 96.26% 94.90% 96.77% 94.90%

(237) (311)
q = 8 96.43% 94.58% 96.54% 94.09%

(382) (469)
q = 10 96.09% 93.69% 97.00% 93.53%

(524) (627)
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Table D.4 Averaging precision, recall and F1 measure across different classes.

microaveraging (µ) macroaveraging (M)

precision (π) π̂µ =
P|C|

i=1 TPiP|C|
i=1(TPi+FPi)

π̂M =
P|C|

i=1 πi

|C| =
P|C|

i=1
TPi

TPi+FPi

|C|

recall (ρ) ρ̂µ =
P|C|

i=1 TPiP|C|
i=1(TPi+FNi)

ρ̂M =
P|C|

i=1 πi

|C| =
P|C|

i=1
TPi

TPi+FNi

|C|

F1 F µ
1 =

2·P|C|
i=1 TPi

2·P|C|
i=1 TPi+

P|C|
i=1 FPi+

P|C|
i=1 FNi

FM
1 =

P|C|
i=1 F1,i

|C| =
P|C|

i=1
2·TPi

2·TPi+FPi+FNi

|C|

and ρ:

F1 =
2 · πρ

π + ρ
.

When effectiveness is computed for several classes, the results for indi-

vidual classes can be averaged in two ways: microaveraging, where π and ρ are

obtained by summing over all individual classes (the subscript “µ” indicates mi-

croaveraging), and macroaveraging, where π and ρ are first evaluated “locally” for

each class and then “globally” by averaging over the results of the different classes

(the subscript “M” indicates macroaveraging) [111], cf. Table D.4.

Tables D.5, D.6, D.7 and D.8 compare classification performances on the

q-dimensional latent variable space learned with classical PCA and GLS with a

Binomial distribution in terms of precision, recall and F1 measure. Table D.5 com-

pares logistic regression classification performances, Table D.6 linear discriminant

classification performances, Table D.7 Naive Bayes classification performances and

Table D.8 k-NN (k = 5) classification performances. These results were obtained

by using the MatlabArsenal toolbox, a package for classification algorithms [119].

The classification performances are often very similar, at times at the advantage

of GLS (linear discriminant classifier for q = 4 and q = 10, Naive Bayes classifier

for q = 2 to 4, k-NN classifier for q = 4, 6 and 8).

Unsupervised approach: A simple K-means algorithm is used to cluster

the training documents into two distinct classes, cf. Figure D.7. Based on this clus-
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Table D.5 Twenty Newsgroups data set: logistic regression classification perfor-

mances on the q-dimensional latent variable space learned with classical PCA and

GLS with a Binomial distribution (1236 test instances).

PCA PCA PCA GLS GLS GLS

Precision Recall F1 Precision Recall F1

q = 1 0.6906 0.6923 0.6915 0 0 0
q = 2 0.8872 0.8317 0.8586 0.9370 0.7861 0.8549
q = 3 0.9391 0.8894 0.9136 0.9136 0.8389 0.8747
q = 4 0.9569 0.9063 0.9309 0.9463 0.8894 0.9170
q = 5 0.9641 0.9038 0.9330 0.9636 0.8918 0.9263
q = 6 0.9666 0.9038 0.9342 0.9636 0.8918 0.9263
q = 8 0.9716 0.9063 0.9378 0.9636 0.8918 0.9263
q = 10 0.9692 0.9063 0.9366 0.9691 0.9038 0.9353

Table D.6 Twenty Newsgroups data set: linear discriminant classification perfor-

mances on the q-dimensional latent variable space learned with classical PCA and

GLS with a Binomial distribution (1236 test instances).

PCA PCA PCA GLS GLS GLS

Precision Recall F1 Precision Recall F1

q = 1 0.5045 0.8149 0.6232 0.3677 0.6603 0.4744
q = 2 0.7843 0.9351 0.8531 0.7844 0.8918 0.8346
q = 3 0.9388 0.8846 0.9109 0.8641 0.8558 0.8599
q = 4 0.9389 0.8870 0.9122 0.8830 0.9615 0.9206
q = 5 0.9038 0.9712 0.9363 0.8931 0.9639 0.9272
q = 6 0.9038 0.9712 0.9363 0.8914 0.9663 0.9273
q = 8 0.9040 0.9736 0.9375 0.8813 0.9639 0.9208
q = 10 0.8904 0.9760 0.9312 0.9691 0.9038 0.9353
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Table D.7 Twenty Newsgroups data set: Naive Bayes classification performances

on the q-dimensional latent variable space learned with classical PCA and GLS

with a Binomial distribution (1236 test instances).

PCA PCA PCA GLS GLS GLS

Precision Recall F1 Precision Recall F1

q = 1 0.5366 0.7404 0.6222 0.4314 0.0529 0.0942
q = 2 0.9077 0.5913 0.7162 0.8950 0.8197 0.8557
q = 3 0.9817 0.6442 0.7779 0.9829 0.6923 0.8124
q = 4 0.9693 0.6827 0.8011 0.8329 0.7909 0.8113
q = 5 0.7364 0.9135 0.8155 0.7045 0.8365 0.7648
q = 6 0.7303 0.9375 0.8211 0.6786 0.8678 0.7616
q = 8 0.7046 0.9231 0.7992 0.6551 0.8630 0.7448
q = 10 0.7183 0.9255 0.8088 0.6679 0.9036 0.7681

Table D.8 Twenty Newsgroups data set: k-NN (k = 5) classification performances

on the q-dimensional latent variable space learned with classical PCA and GLS

with a Binomial distribution (1236 test instances).

PCA PCA PCA GLS GLS GLS

Precision Recall F1 Precision Recall F1

q = 1 0.7724 0.6851 0.7261 0.4398 0.3774 0.4062
q = 2 0.8862 0.9543 0.9190 0.8744 0.8870 0.8807
q = 3 0.8860 0.9712 0.9266 0.8911 0.9639 0.9261
q = 4 0.8855 0.9663 0.9241 0.8877 0.9688 0.9264
q = 5 0.8936 0.9688 0.9296 0.8874 0.9663 0.9252
q = 6 0.8879 0.9712 0.9277 0.8936 0.9688 0.9296
q = 8 0.8862 0.9543 0.9190 0.8867 0.9591 0.9215
q = 10 0.8599 0.9591 0.9068 0.8447 0.9543 0.8962
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Figure D.7 Twenty Newsgroups data set: k-means results for a two-class classifi-

cation of the training documents in GLS subspace (q = 2).

tering information, a linear discriminant is learned on the training documents and

used to classify the test documents. Figure D.8 presents the corresponding ROC

curve for this unsupervised approach performed on both the GLS subspace and the

classical PCA subspace (q = 2). The performance is best when the unsupervised

approach is used on the GLS subspace rather than on the classical PCA subspace.

In this example, even though it is of interest, we did not further investigate the

impact of the value for q on the performance.

D.2 Reuters-21578, Distribution 1.0 data set

The Reuters-21578 text categorization test collection Distribution 1.0 is

considered as the standard benchmark for automatic document organization sys-

tems and consists of documents that appeared on the Reuters newswire in 1987

[120]. This corpus contains 21578 documents assigned to 135 different economic
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Figure D.8 Twenty Newsgroups data set: ROC curve for the unsupervised ap-

proach learned on the GLS subspace (solid line) and the classical PCA subspace

(dashed line) (q = 2).
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Table D.9 The ten topics with the highest number of training documents in the

Reuters-21578 data set with the number of documents belonging to each topic in

the training and test sets.

topics training set test set

earn 2877 1087

acq 1650 719

money-fx 538 179

grain 433 149

crude 389 189

trade 369 118

interest 347 131

wheat 212 71

ship 197 89

corn 181 56

subject categories called topics. The topics are not disjoint. For the training test

division of the data, the “Modified Apte” (ModApte) split is used as suggested on

the README file describing the data set to divide the corpus into a training set

of 9603 documents and a test set of 3299 documents. We reduce the size of the

training set and test set by only considering the ten topics that have the highest

number of training documents as suggested in [121]. These topics are given in

Table D.9 and yield a training set of 6490 documents and a test set of 2545 doc-

uments. These topics cover almost all of the data, hence, researchers are able to

restrict their work to them and still capture the essence of the data set.

The data is preprocessed as explained in Section D.1.1: parsing, case-

folding, elimination of words from a stop list, stemming by using Porter’s stem-
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ming algorithm commonly used for word stemming in English [122], elimination

of words that appear less than 20 times in the corpus, tf×idf weighting (no length

normalization). At this point, each document is represented as a vector in a 3613-

dimensional space, i.e., 3613 distinct words were identified.

Then, we choose to bin the weights and to work with integer valued

weights (5 bins are selected), i.e., categorical features. A dictionary of 50 words

is learned using the following approach. The dictionary is learned on the training

set only. The dictionary is build independently for each of the 10 classes. Feature

selection was incremental. First we do a backward selection to 300 features with

linear regression. From these 300 features, we use a logistic regression with number

of iterations reduced down to just 5 for convergence, and do a backward selection

down to 100 features. Finally we do a standard full-convergence logistic regression

from those 100 down to 50 features (they differ by topic, of course).

Tables D.10 to D.19 compare supervised classification performances on the

q-dimensional latent variable space learned with classical PCA and GLS with a Bi-

nomial distribution (1087 positive test instances) for each of the top ten categories

of the Reuters-21578 data set, using logistic regression, linear discriminant and

Naive Bayes classifiers. Tables D.20 compare classification performances micro-

and macroaveraged over the same top ten categories for the linear discriminant

classifier. The averaging is performed as explained in Table D.4. Microaveraging

and macroaveraging methods give quite different results: the linear discriminant

classifier performs better based on GLS information than based on classical PCA

information when the macroaveraging method is used, whereas microaveraging em-

phasizes how similar the two results are. It is known that the ability of a classifier

to behave well on categories with few positive training instances will be highlighted

by macroaveraging compared to microaveraging [111]. As presented in Tables D.15

to D.19, the linear discriminant classifier based on GLS information performs very

well for the categories with fewer positive training (and test) instances, yielding a

better macroaveraged performance than the microaveraged one.
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Table D.10 Compared supervised classifiers performances on the Reuters-21578

data set - earn category (1087 positive test instances).

(a) Logistic regression performances

logistic PCA PCA PCA GLS GLS GLS

regression Precision Recall F1 Precision Recall F1

q = 1 0.8743 0.8896 0.8819 0.4563 0.1104 0.1778
q = 2 0.9197 0.9374 0.9285 0.9120 0.9154 0.9137
q = 3 0.9189 0.9384 0.9285 0.9307 0.9384 0.9345
q = 4 0.9273 0.9393 0.9333 0.9341 0.9393 0.9367
q = 5 0.9349 0.9374 0.9362 0.9401 0.9393 0.9397
q = 6 0.9436 0.9384 0.9410 0.9453 0.9374 0.9413
q = 10 0.9542 0.9577 0.9559 0.9560 0.9604 0.9582

(b) Linear discriminant performances

linear PCA PCA PCA GLS GLS GLS

discriminant Precision Recall F1 Precision Recall F1

q = 1 0.8893 0.8868 0.8881 0.4483 0.3707 0.4058
q = 2 0.9682 0.8951 0.9302 0.9834 0.8712 0.9239
q = 3 0.9644 0.8960 0.9289 0.9907 0.8804 0.9323
q = 4 0.9709 0.8905 0.9290 0.9866 0.8822 0.9315
q = 5 0.9630 0.9108 0.9362 0.9768 0.8914 0.9322
q = 6 0.9631 0.9117 0.9367 0.9634 0.8970 0.9290
q = 10 0.9667 0.9338 0.9499 0.9592 0.9301 0.9444

(c) Naive Bayes performances

Naive PCA PCA PCA GLS GLS GLS

Bayes Precision Recall F1 Precision Recall F1

q = 1 0.8942 0.8859 0.8900 0.4646 0.1086 0.1760
q = 2 0.9185 0.9227 0.9206 0.9341 0.8868 0.9099
q = 3 0.9085 0.9043 0.9064 0.8984 0.9034 0.9009
q = 4 0.8892 0.9006 0.8949 0.8875 0.8997 0.8936
q = 5 0.9004 0.9062 0.9033 0.9012 0.8979 0.8995
q = 6 0.9631 0.9117 0.9367 0.8621 0.9144 0.8875
q = 10 0.8930 0.9218 0.9072 0.8606 0.9144 0.8867
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Table D.11 Compared supervised classifiers performances on the Reuters-21578

data set - acq category (719 positive test instances).

(a) Logistic regression performances

logistic PCA PCA PCA GLS GLS GLS

regression Precision Recall F1 Precision Recall F1

q = 1 0. 0. 0. 0.7897 0.2559 0.3866
q = 2 0.8700 0.6606 0.7510 0.7703 0.2378 0.3634
q = 3 0.8756 0.7051 0.7812 0.8777 0.6690 0.7593
q = 4 0.8871 0.6996 0.7823 0.8839 0.6885 0.7740
q = 5 0.8858 0.7010 0.7826 0.8897 0.6843 0.7736
q = 6 0.8842 0.7010 0.7820 0.8907 0.6801 0.7713
q = 10 0.9242 0.7803 0.8462 0.9136 0.7942 0.8497

(b) Linear discriminant performances

linear PCA PCA PCA GLS GLS GLS

discriminant Precision Recall F1 Precision Recall F1

q = 1 0.3547 0.6231 0.4521 0.6317 0.7538 0.6874
q = 2 0.7547 0.8387 0.7945 0.6189 0.7204 0.6658
q = 3 0.7892 0.8540 0.8203 0.8000 0.8401 0.8195
q = 4 0.7948 0.8456 0.8194 0.8048 0.8317 0.8181
q = 5 0.7945 0.8442 0.8186 0.8084 0.8331 0.8205
q = 6 0.7924 0.8442 0.8175 0.7995 0.8317 0.8153
q = 10 0.8695 0.8526 0.8610 0.8806 0.8414 0.8606

(c) Naive Bayes performances

Naive PCA PCA PCA GLS GLS GLS

Bayes Precision Recall F1 Precision Recall F1

q = 1 0. 0. 0. 0.7778 0.2726 0.4037
q = 2 0.8453 0.7218 0.7787 0.7768 0.3825 0.5126
q = 3 0.8741 0.7149 0.7865 0.8587 0.7524 0.8021
q = 4 0.8740 0.7330 0.7973 0.8700 0.7260 0.7915
q = 5 0.8503 0.7427 0.7929 0.8552 0.6982 0.7688
q = 6 0.8048 0.7510 0.7770 0.8070 0.7093 0.7550
q = 10 0.8536 0.7705 0.8099 0.8154 0.7803 0.7974



201

Table D.12 Compared supervised classifiers performances on the Reuters-21578

data set - money category (179 positive test instances).

(a) Logistic regression performances

logistic PCA PCA PCA GLS GLS GLS

regression Precision Recall F1 Precision Recall F1

q = 1 0.5652 0.1453 0.2311 0.6316 0.2011 0.3051
q = 2 0.5618 0.2793 0.3731 0.6000 0.2346 0.3373
q = 3 0.6875 0.4302 0.5292 0.5743 0.3240 0.4143
q = 4 0.7344 0.5251 0.6124 0.6957 0.3575 0.4723
q = 5 0.7939 0.5810 0.6710 0.7231 0.5251 0.6084
q = 6 0.7867 0.6592 0.7173 0.7481 0.5642 0.6433
q = 10 0.7826 0.7039 0.7412 0.7867 0.6592 0.7173

(b) Linear discriminant performances

linear PCA PCA PCA GLS GLS GLS

discriminant Precision Recall F1 Precision Recall F1

q = 1 0.2009 1 0.3346 0.2791 0.5084 0.3604
q = 2 0.2027 1 0.3371 0.3324 0.6648 0.4432
q = 3 0.3296 0.6648 0.4407 0.3458 0.6704 0.4563
q = 4 0.3732 0.7151 0.4904 0.3443 0.5866 0.4339
q = 5 0.5325 0.6872 0.6000 0.4943 0.7263 0.5882
q = 6 0.6438 0.8380 0.7282 0.5230 0.6983 0.5981
q = 10 0.6827 0.7933 0.7339 0.6825 0.7207 0.7011

(c) Naive Bayes performances

Naive PCA PCA PCA GLS GLS GLS

Bayes Precision Recall F1 Precision Recall F1

q = 1 0.2174 0.0279 0.0495 0.4854 0.2793 0.3546
q = 2 0.3654 0.4246 0.3928 0.3585 0.4246 0.3887
q = 3 0.6087 0.4693 0.5300 0.3750 0.7207 0.4933
q = 4 0.7077 0.5140 0.5955 0.4561 0.4358 0.4457
q = 5 0.6536 0.5587 0.6024 0.4758 0.6034 0.5320
q = 6 0.6564 0.5978 0.6257 0.4709 0.4525 0.4615
q = 10 0.4571 0.7151 0.5577 0.3333 0.5028 0.4009
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Table D.13 Compared supervised classifiers performances on the Reuters-21578

data set - crude category (189 positive test instances).

(a) Logistic regression performances

logistic PCA PCA PCA GLS GLS GLS

regression Precision Recall F1 Precision Recall F1

q = 1 0. 0. 0. 0.7701 0.3545 0.4855
q = 2 0.7692 0.4762 0.5882 0.7526 0.3862 0.5105
q = 3 0.8750 0.7037 0.7801 0.7928 0.4656 0.5867
q = 4 0.8742 0.6984 0.7765 0.8790 0.7302 0.7977
q = 5 0.8675 0.6931 0.7706 0.8790 0.7302 0.7977
q = 6 0.8675 0.6931 0.7706 0.8910 0.7354 0.8058
q = 10 0.8897 0.6825 0.7725 0.8621 0.7937 0.8264

(b) Linear discriminant performances

linear PCA PCA PCA GLS GLS GLS

discriminant Precision Recall F1 Precision Recall F1

q = 1 0.0892 0.3280 0.1403 0.5946 0.6984 0.6423
q = 2 0.6712 0.7884 0.7251 0.5891 0.6296 0.6087
q = 3 0.6794 0.9418 0.7894 0.7682 0.6138 0.6824
q = 4 0.6794 0.9418 0.7894 0.8247 0.8466 0.8355
q = 5 0.6794 0.9418 0.7894 0.8247 0.8466 0.8355
q = 6 0.6794 0.9418 0.7894 0.8226 0.8095 0.8160
q = 10 0.8116 0.8889 0.8485 0.6795 0.9312 0.7857

(c) Naive Bayes performances

Naive PCA PCA PCA GLS GLS GLS

Bayes Precision Recall F1 Precision Recall F1

q = 1 0. 0. 0. 0.6753 0.5503 0.6064
q = 2 0.7097 0.6984 0.7040 0.7133 0.5661 0.6313
q = 3 0.6910 0.8519 0.7630 0.7459 0.7302 0.7380
q = 4 0.6569 0.8307 0.7336 0.5982 0.7090 0.6489
q = 5 0.5639 0.7937 0.6593 0.5422 0.7143 0.6164
q = 6 0.5106 0.7619 0.6115 0.5116 0.6984 0.5906
q = 10 0.4828 0.9630 0.6431 0.4916 0.9259 0.6422
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Table D.14 Compared supervised classifiers performances on the Reuters-21578

data set - grain category (149 positive test instances).

(a) Logistic regression performances

logistic PCA PCA PCA GLS GLS GLS

regression Precision Recall F1 Precision Recall F1

q = 1 0. 0. 0. 0. 0. 0.
q = 2 0. 0. 0. 0. 0. 0.
q = 3 0. 0. 0. 0. 0. 0.
q = 4 0. 0. 0. 0. 0. 0.
q = 5 0. 0. 0. 0. 0. 0.
q = 6 0. 0. 0. 0. 0. 0.
q = 10 0. 0. 0. 0. 0. 0.

(b) Linear discriminant performances

linear PCA PCA PCA GLS GLS GLS

discriminant Precision Recall F1 Precision Recall F1

q = 1 0.0615 0.5906 0.1114 0.0587 0.6779 0.1080
q = 2 0.0697 0.3020 0.1132 0.0654 0.7047 0.1197
q = 3 0.0717 0.3221 0.1174 0.0583 0.7517 0.1083
q = 4 0.1089 0.3289 0.1636 0.0595 0.6644 0.1093
q = 5 0.1079 0.3289 0.1625 0.1059 0.3154 0.1585
q = 6 0.1082 0.3289 0.1628 0.1047 0.3154 0.1572
q = 10 0.1185 0.3691 0.1794 0.1126 0.3423 0.1694

(c) Naive Bayes performances

Naive PCA PCA PCA GLS GLS GLS

Bayes Precision Recall F1 Precision Recall F1

q = 1 0. 0. 0. 0. 0. 0.
q = 2 0. 0. 0. 0. 0. 0.
q = 3 0. 0. 0. 0. 0. 0.
q = 4 0.1818 0.0134 0.0250 0. 0. 0.
q = 5 0.2143 0.0201 0.0368 0.1852 0.0336 0.0568
q = 6 0.5000 0.0134 0.0261 0.1739 0.0268 0.0465
q = 10 0.2000 0.0134 0.0252 0.1379 0.0268 0.0449
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Table D.15 Compared supervised classifiers performances on the Reuters-21578

data set - trade category (118 positive test instances).

(a) Logistic regression performances

logistic PCA PCA PCA GLS GLS GLS

regression Precision Recall F1 Precision Recall F1

q = 1 0.4667 0.0593 0.1053 0.1667 0.0085 0.0161
q = 2 0.5714 0.1017 0.1727 0.5238 0.0932 0.1583
q = 3 0.5278 0.1610 0.2468 0.4762 0.0847 0.1439
q = 4 0.4848 0.1356 0.2119 0.4872 0.1610 0.2420
q = 5 0.5429 0.1610 0.2484 0.4872 0.1610 0.2420
q = 6 0.5429 0.1610 0.2484 0.5128 0.1695 0.2548
q = 10 0.6250 0.1695 0.2667 0.5789 0.1864 0.2821

(b) Linear discriminant performances

linear PCA PCA PCA GLS GLS GLS

discriminant Precision Recall F1 Precision Recall F1

q = 1 0.1712 0.6356 0.2698 0.1587 0.6186 0.2526
q = 2 0.1980 0.6695 0.3056 0.2051 0.6186 0.3080
q = 3 0.2710 0.6017 0.3737 0.2065 0.5932 0.3063
q = 4 0.2703 0.5932 0.3714 0.3014 0.5339 0.3853
q = 5 0.2789 0.5932 0.3794 0.2920 0.5593 0.3837
q = 6 0.2789 0.5932 0.3794 0.2920 0.5593 0.3837
q = 10 0.2954 0.5932 0.3944 0.2974 0.5847 0.3943

(c) Naive Bayes performances

Naive PCA PCA PCA GLS GLS GLS

Bayes Precision Recall F1 Precision Recall F1

q = 1 0.3158 0.2542 0.2817 0.2468 0.1610 0.1949
q = 2 0.2782 0.3136 0.2948 0.2797 0.3390 0.3065
q = 3 0.2217 0.4153 0.2891 0.2416 0.3051 0.2697
q = 4 0.2060 0.4661 0.2857 0.1789 0.4322 0.2531
q = 5 0.2030 0.4661 0.2828 0.1834 0.4492 0.2604
q = 6 0.2229 0.6271 0.3289 0.1693 0.4576 0.2471
q = 10 0.2071 0.6441 0.3134 0.2005 0.6441 0.3058
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Table D.16 Compared supervised classifiers performances on the Reuters-21578

data set - interest category (131 positive test instances).

(a) Logistic regression performances

logistic PCA PCA PCA GLS GLS GLS

regression Precision Recall F1 Precision Recall F1

q = 1 0.6250 0.0763 0.1361 0.5000 0.1527 0.2339
q = 2 0.6364 0.1069 0.1830 0.5870 0.2061 0.3051
q = 3 0.6316 0.2748 0.3830 0.6981 0.2824 0.4022
q = 4 0.6712 0.3740 0.4804 0.5902 0.2748 0.3750
q = 5 0.6829 0.4275 0.5258 0.5882 0.3053 0.4020
q = 6 0.7234 0.5191 0.6044 0.6034 0.2672 0.3704
q = 10 0.7188 0.5267 0.6079 0.7416 0.5038 0.6000

(b) Linear discriminant performances

linear PCA PCA PCA GLS GLS GLS

discriminant Precision Recall F1 Precision Recall F1

q = 1 0.2077 0.7863 0.3285 0.3172 0.7023 0.4371
q = 2 0.1683 0.7939 0.2777 0.3100 0.7099 0.4316
q = 3 0.3448 0.8397 0.4889 0.3557 0.8092 0.4942
q = 4 0.3852 0.7939 0.5187 0.3732 0.7863 0.5061
q = 5 0.3810 0.7939 0.5149 0.4091 0.7557 0.5308
q = 6 0.2698 0.7557 0.3976 0.4091 0.7557 0.5308
q = 10 0.4737 0.8244 0.6017 0.4933 0.8473 0.6236

(c) Naive Bayes performances

Naive PCA PCA PCA GLS GLS GLS

Bayes Precision Recall F1 Precision Recall F1

q = 1 0.7143 0.2290 0.3468 0.4674 0.3282 0.3857
q = 2 0.6731 0.2672 0.3825 0.4245 0.4504 0.4370
q = 3 0.5263 0.3817 0.4425 0.5079 0.4885 0.4981
q = 4 0.5357 0.5725 0.5535 0.4706 0.4275 0.4480
q = 5 0.5269 0.6718 0.5906 0.3757 0.4962 0.4276
q = 6 0.4947 0.7176 0.5857 0.3410 0.5649 0.4253
q = 10 0.4066 0.8473 0.5495 0.3676 0.7099 0.4844
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Table D.17 Compared supervised classifiers performances on the Reuters-21578

data set - ship category (89 positive test instances).

(a) Logistic regression performances

logistic PCA PCA PCA GLS GLS GLS

regression Precision Recall F1 Precision Recall F1

q = 1 0. 0. 0. 0.6471 0.1236 0.2075
q = 2 0.6000 0.0337 0.0638 0.6087 0.1573 0.2500
q = 3 0.8696 0.2247 0.3571 0.6842 0.2921 0.4094
q = 4 0.9000 0.5056 0.6475 0.7317 0.3371 0.4615
q = 5 0.8548 0.5955 0.7020 0.7368 0.4719 0.5753
q = 6 0.8649 0.7191 0.7853 0.7778 0.5506 0.6447
q = 10 0.8767 0.7191 0.7901 0.8553 0.7303 0.7879

(b) Linear discriminant performances

linear PCA PCA PCA GLS GLS GLS

discriminant Precision Recall F1 Precision Recall F1

q = 1 0.0466 0.6404 0.0868 0.2031 0.7416 0.3188
q = 2 0.0711 1 0.1328 0.2510 0.7416 0.3750
q = 3 0.0789 0.9888 0.1461 0.2915 0.8090 0.4286
q = 4 0.0665 0.9775 0.1246 0.3480 0.8876 0.5000
q = 5 0.3304 0.8539 0.4765 0.3850 0.9213 0.5430
q = 6 0.6500 0.8764 0.7464 0.4686 0.9213 0.6212
q = 10 0.7419 0.7753 0.7582 0.7927 0.7303 0.7602

(c) Naive Bayes performances

Naive PCA PCA PCA GLS GLS GLS

Bayes Precision Recall F1 Precision Recall F1

q = 1 0. 0. 0. 0.5690 0.3708 0.4490
q = 2 0. 0. 0. 0.5455 0.3371 0.4167
q = 3 0. 0. 0. 0.5172 0.1685 0.2542
q = 4 0. 0. 0. 0.6087 0.1573 0.2500
q = 5 0.3043 0.3933 0.3431 0.7143 0.1124 0.1942
q = 6 0.4153 0.8539 0.5588 0.5455 0.1348 0.2162
q = 10 0.2878 0.8989 0.4360 0.3284 0.7528 0.4573
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Table D.18 Compared supervised classifiers performances on the Reuters-21578

data set - wheat category (71 positive test instances).

(a) Logistic regression performances

logistic PCA PCA PCA GLS GLS GLS

regression Precision Recall F1 Precision Recall F1

q = 1 0.2000 0.0423 0.0698 0.2963 0.1127 0.1633
q = 2 0.6567 0.6197 0.6377 0.6596 0.4366 0.5254
q = 3 0.6471 0.6197 0.6331 0.6508 0.5775 0.6119
q = 4 0.6471 0.6197 0.6331 0.6615 0.6056 0.6324
q = 5 0.6615 0.6056 0.6324 0.6452 0.5634 0.6015
q = 6 0.6818 0.6338 0.6569 0.6500 0.5493 0.5954
q = 10 0.7397 0.7606 0.7500 0.7571 0.7465 0.7518

(b) Linear discriminant performances

linear PCA PCA PCA GLS GLS GLS

discriminant Precision Recall F1 Precision Recall F1

q = 1 0.1567 0.6620 0.2534 0.1943 0.5775 0.2908
q = 2 0.5690 0.9296 0.7059 0.4754 0.8169 0.6010
q = 3 0.5739 0.9296 0.7097 0.6444 0.8169 0.7205
q = 4 0.5789 0.9296 0.7135 0.6744 0.8169 0.7389
q = 5 0.5603 0.9155 0.6952 0.6744 0.8169 0.7389
q = 6 0.5603 0.9155 0.6952 0.6444 0.8169 0.7205
q = 10 0.5752 0.9155 0.7065 0.6374 0.8169 0.7160

(c) Naive Bayes performances

Naive PCA PCA PCA GLS GLS GLS

Bayes Precision Recall F1 Precision Recall F1

q = 1 0.1848 0.2394 0.2086 0.2330 0.3380 0.2759
q = 2 0.5664 0.9014 0.6957 0.3118 0.4085 0.3537
q = 3 0.5000 0.8451 0.6283 0.4403 0.8310 0.5756
q = 4 0.4014 0.8310 0.5413 0.3020 0.8592 0.4469
q = 5 0.3554 0.8310 0.4979 0.2300 0.6901 0.3451
q = 6 0.3245 0.8592 0.4710 0.2414 0.6901 0.3577
q = 10 0.2383 0.8592 0.3731 0.2259 0.8592 0.3578
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Table D.19 Compared supervised classifiers performances on the Reuters-21578

data set - corn category (56 positive test instances).

(a) Logistic regression performances

logistic PCA PCA PCA GLS GLS GLS

regression Precision Recall F1 Precision Recall F1

q = 1 0. 0. 0. 0.4286 0.2143 0.2857
q = 2 0. 0. 0. 0.4483 0.2321 0.3059
q = 3 0.5714 0.2857 0.3810 0.4231 0.1964 0.2683
q = 4 0.5208 0.4464 0.4808 0.5778 0.4643 0.5149
q = 5 0.5319 0.4464 0.4854 0.5652 0.4643 0.5098
q = 6 0.5306 0.4643 0.4952 0.5556 0.4464 0.4950
q = 10 0.5476 0.4107 0.4694 0.5854 0.4286 0.4948

(b) Linear discriminant performances

linear PCA PCA PCA GLS GLS GLS

discriminant Precision Recall F1 Precision Recall F1

q = 1 0.0220 0.2500 0.0404 0.1542 0.6250 0.2473
q = 2 0.0900 0.5000 0.1526 0.1757 0.6964 0.2806
q = 3 0.2394 0.8036 0.3689 0.2009 0.7679 0.3185
q = 4 0.3659 0.8036 0.5028 0.4272 0.7857 0.5535
q = 5 0.3600 0.8036 0.4972 0.4175 0.7679 0.5409
q = 6 0.3600 0.8036 0.4972 0.4433 0.7679 0.5621
q = 10 0.4362 0.7321 0.5467 0.4490 0.7857 0.5714

(c) Naive Bayes performances

Naive PCA PCA PCA GLS GLS GLS

Bayes Precision Recall F1 Precision Recall F1

q = 1 0. 0. 0. 0.3143 0.3929 0.3492
q = 2 0.2581 0.2857 0.2712 0.3036 0.3036 0.3036
q = 3 0.3431 0.6250 0.4430 0.1732 0.3929 0.2404
q = 4 0.3388 0.7321 0.4633 0.2727 0.6429 0.3830
q = 5 0.3037 0.7321 0.4293 0.2000 0.6250 0.3030
q = 6 0.2971 0.7321 0.4227 0.1805 0.6607 0.2835
q = 10 0.2070 0.8393 0.3322 0.1273 0.6250 0.1026
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Table D.20 Reuters-21578 data set: linear discriminant classification performances

(micro- and macroaveraged) on the q-dimensional latent variable space learned

with classical PCA and GLS with a Binomial distribution.

(a) Microaveraged performances

microav. linear PCA PCA PCA GLS GLS GLS

discriminant Precisionµ Recallµ F µ
1 Precisionµ Recallµ F µ

1

q = 1 0.2408 0.7306 0.3622 0.2845 0.5653 0.3785
q = 2 0.3704 0.8303 0.5123 0.4087 0.7665 0.5331
q = 3 0.4553 0.8296 0.5880 0.4239 0.8099 0.5565
q = 4 0.4709 0.8260 0.5998 0.4743 0.8128 0.5990
q = 5 0.6178 0.8275 0.7075 0.6233 0.7895 0.6966
q = 6 0.6265 0.8364 0.7164 0.6484 0.8056 0.7185
q = 10 0.6902 0.8415 0.7584 0.6881 0.8318 0.7532

(b) Macroaveraged performances

macroav. linear PCA PCA PCA GLS GLS GLS

discriminant PrecisionM RecallM FM
1 PrecisionM RecallM FM

1

q = 1 0.2200 0.6403 0.2905 0.3040 0.6274 0.3751
q = 2 0.3763 0.7717 0.4475 0.4006 0.7174 0.4757
q = 3 0.4342 0.7842 0.5184 0.4662 0.7552 0.5267
q = 4 0.4594 0.7820 0.5423 0.5138 0.7611 0.5804
q = 5 0.4988 0.7673 0.5870 0.5307 0.7386 0.6007
q = 6 0.5306 0.7809 0.6150 0.5471 0.7373 0.6134
q = 10 0.5971 0.7678 0.6580 0.5984 0.7531 0.6527

D.3 Abalone data set

The task is to predict the age of an abalone based on physical mea-

surements. The data set information given by the UC Irvine machine learning

repository goes as follows: “The age of [an] abalone is determined by cutting the

shell through the cone, staining it, and counting the number of rings through a

microscope – a boring and time-consuming task. Other measurements, which are

easier to obtain, are used to predict the age. Further information, such as weather

patterns and location (hence food availability) may be required to solve the prob-
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Table D.21 Abalone data set: attributes description.

name data type measurement unit description

sex nominal M, F and I (infant)

length continuous mm longest shell measurement

diameter continuous mm perpendicular to length

height continuous mm with meat in shell

whole weight continuous grams whole abalone

shucked weight continuous grams weight of meat

viscera weight continuous grams gut weight (after bleeding)

shell weight continuous grams after being dried

rings (target) integer +1.5 gives the age in years

lem.” The Abalone data set consists of 4177 instances with 8 attributes. Table

D.21 presents the attributes name, data type, measurement unit and description.

Table D.22 presents the number of instances for each number of rings.

The problem can be seen as either a continuous-value regression model-

ing problem [123, 124] or as a classification problem [125, 126]. The classification

problem can aim to distinguish three classes (number of rings = 1− 8, number of

Table D.22 Abalone data set: number of instances per number of rings.

rings 1 2 3 4 5 6 7 8 9 10 11 12 13 14

inst. 1 1 15 57 115 259 391 568 689 634 487 267 203 126

rings 15 16 17 18 19 20 21 22 23 24 25 26 27 29

inst. 103 67 58 42 32 26 14 6 9 2 1 1 2 1
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Figure D.9 Histograms performed on each attribute of the Abalone data set.

rings = 9 − 10, number of rings = 11 and higher) as in [125], or only two classes

(number of rings = 9, number of rings = 18) as in [126]. The latest approach

is interesting because one class has about sixteen times more instances than the

second class.

We use this data set leaving out a randomly selected 40% of the instances

to use as a test set (2506 training points and 1671 test points). Figure D.9 rep-

resents the histograms of the complete data set for each attribute. Note that

there is one instance for which attribute 4 takes the value 1.13 (this abalone has

8 rings) and one instance for which attribute 4 takes the value 0.515 (this abalone

has 10 rings); however, these instances were not considered for the three following

histograms as they do not represent significative values for attribute 4.

Considering a three-class classification problem, Figure D.10 represents

the histograms of each attribute for each class (class A: number of rings = 1 to

8, class B: number of rings = 9 and 10, and class C: number of rings = 11 and
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higher).

Attribute 1 (sex) is the only noncontinuous attribute. We choose to

model this attribute with a Binomial distribution (parameter N = 2). Figure D.11

presents a distribution fitting option for attribute 1.

We first choose a Binomial-Gaussian mixed-data assumption for the data

set, with attribute 1 modeled as a Binomial variable and the other 7 attributes as

Gaussian variables. Table D.23 presents the classification performances per class

using a linear discriminant classifier on the classical PCA q-dimensional subspace

learned in data space. Table D.24 presents the classification performances per class

using a linear discriminant classifier on the latent q-dimensional variable subspace

learned with GLS using a mixed Binomial-Gaussian distribution assumption. Ta-

ble D.25 compares the micro- and macroaveraged classification performances cor-

responding to the results presented in Table D.23 and Table D.24. Performances

are best when classification is performed on the GLS parameter subspace.

Then, we try to fit a distribution to the attributes 5, 6, 7 and 8. Possible

distributions are the Weibull distribution, the Gamma distribution, the Beta dis-

tribution, the Chi-square distribution and the Non-central Chi-square distribution.

The Beta distribution has a special constraint that the data should be greater than

0 and smaller than 1; only attributes 7 and 8 verify this constraint. Figure D.12,

Figure D.13, Figure D.14 and Figure D.15 present distribution fitting options for

attributes 5, 6, 7 and 8. The Gamma distribution is chosen as a good candidate

to fit attributes 5, 6, 7 and 8.

We then choose a Binomial-Gaussian-Gamma mixed-data assumption for

the data set, with attribute 1 modeled as a Binomial variable, attributes 2, 3 and

4 modeled as Gaussian variables and attributes 5, 6, 7 and 8 modeled as Gamma

variables. Table D.26 presents the classification performances per class using a

linear discriminant classifier on the latent q-dimensional variable subspace learned

with GLS using a mixed Binomial-Gaussian-Gamma distribution assumption. Ta-

ble D.27 compares the micro- and macroaveraged classification performances cor-
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Figure D.10 Histograms performed separately on all Abalone data set attributes

for a three-class classification problem (# rings ≤ 8, 9 ≤ # rings ≤ 10 and # rings

≥ 11).
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Figure D.11 Abalone data set: distribution fitting on attribute 1.
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Figure D.12 Abalone data set: distribution fitting on attribute 5.
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Figure D.13 Abalone data set: distribution fitting on attribute 6.
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Figure D.14 Abalone data set: distribution fitting on attribute 7.
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Table D.23 Abalone data set: linear discriminant classification performances on

the q-dimensional latent variable space learned with classical PCA.

(a) Class A (number of rings = 1 to 8) performances

Precision Recall F1

q = 1 0.6815 0.7254 0.7028
q = 2 0.6876 0.7610 0.7224
q = 3 0.7293 0.7763 0.7521

(b) Class B (number of rings = 9 and 10) performances

Precision Recall F1

q = 1 0.4262 0.6779 0.5234
q = 2 0.4292 0.6957 0.5309
q = 3 0.4315 0.6441 0.5168

(c) Class C (number of rings = 11 and higher) performances

Precision Recall F1

q = 1 0.4535 0.7418 0.5629
q = 2 0.4557 0.7437 0.5652
q = 3 0.5393 0.7803 0.6378

responding to the results presented in Table D.23 and Table D.26. There are

no statistically significant differences between the performances obtained with

a mixed Binomial-Gaussian GLS assumption and performances obtained with a

mixed Binomial-Gaussian-Gamma GLS assumption. As a conclusion, using a

Gamma modeling assumption for the last four attributes was not useful to the

linear discriminant classifier.
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Table D.24 Abalone data set: linear discriminant classification performances on

the q-dimensional latent variable space learned with GLS (Binomial-Gaussian dis-

tribution assumption).

(a) Class A (number of rings = 1 to 8) performances

Precision Recall F1

q = 1 0.6805 0.7508 0.7139
q = 2 0.7032 0.7712 0.7357
q = 3 0.6806 0.7441 0.7109

(b) Class B (number of rings = 9 and 10) performances

Precision Recall F1

q = 1 0.4283 0.7011 0.5317
q = 2 0.4433 0.7028 0.5437
q = 3 0.4192 0.5996 0.4934

(c) Class C (number of rings = 11 and higher) performances

Precision Recall F1

q = 1 0.4536 0.7726 0.5716
q = 2 0.4544 0.7399 0.5630
q = 3 0.4662 0.7437 0.5731
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Table D.25 Abalone data set: linear discriminant classification performances

(micro- and macroaveraged) on the q-dimensional latent variable space learned

with classical PCA and GLS with a Binomial-Gaussian distribution.

(a) Microaveraged performances

PCA PCA PCA GLS GLS GLS

Precisionµ Recallµ F µ
1 Precisionµ Recallµ F µ

1

q = 1 0.5036 0.7120 0.5899 0.5043 0.7409 0.6001
q = 2 0.5085 0.7337 0.6007 0.5178 0.7385 0.6088
q = 3 0.5523 0.7331 0.6300 0.5103 0.6954 0.5887

(b) Macroaveraged performances

PCA PCA PCA GLS GLS GLS

PrecisionM RecallM FM
1 PrecisionM RecallM FM

1

q = 1 0.5204 0.7126 0.5952 0.5208 0.7415 0.6058
q = 2 0.5242 0.7335 0.6062 0.5337 0.7380 0.6141
q = 3 0.5667 0.7336 0.6355 0.5220 0.6958 0.5925
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Figure D.15 Abalone data set: distribution fitting on attribute 8.
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Table D.26 Abalone data set: linear discriminant classification performances on

the q-dimensional latent variable space learned with GLS (Binomial-Gaussian-

Gamma distribution assumption).

(a) Class A (number of rings = 1 to 8) performances

Precision Recall F1

q = 1 0.6799 0.7500 0.7133
q = 2 0.7077 0.7731 0.7390
q = 3 0.6875 0.7432 0.7143

(b) Class B (number of rings = 9 and 10) performances

Precision Recall F1

q = 1 0.4262 0.6964 0.5288
q = 2 0.4428 0.6982 0.5419
q = 3 0.4209 0.5993 0.4945

(c) Class C (number of rings = 11 and higher) performances

Precision Recall F1

q = 1 0.4535 0.7737 0.5718
q = 2 0.4539 0.7413 0.5630
q = 3 0.4644 0.7476 0.5729
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Table D.27 Abalone data set: linear discriminant classification performances

(micro- and macroaveraged) on the q-dimensional latent variable space learned

with classical PCA and GLS with a Binomial-Gaussian-Gamma distribution.

(a) Microaveraged performances

PCA PCA PCA GLS GLS GLS

Precisionµ Recallµ F µ
1 Precisionµ Recallµ F µ

1

q = 1 0.5036 0.7120 0.5899 0.5037 0.7394 0.5992
q = 2 0.5085 0.7337 0.6007 0.5191 0.7382 0.6096
q = 3 0.5523 0.7331 0.6300 0.5119 0.6960 0.5899

(b) Macroaveraged performances

PCA PCA PCA GLS GLS GLS

PrecisionM RecallM FM
1 PrecisionM RecallM FM

1

q = 1 0.5204 0.7126 0.5952 0.5199 0.7400 0.6046
q = 2 0.5242 0.7335 0.6062 0.5348 0.7375 0.6146
q = 3 0.5667 0.7336 0.6355 0.5243 0.6967 0.5939
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