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ABSTRACT OF THE DISSERTATION

Prediction and Estimation in High Dimensions

by

Varlam Kutateladze

Doctor of Philosophy, Graduate Program in Economics
University of California, Riverside, June 2021

Dr. Tae-Hwy Lee, Chairperson

This dissertation examines some prediction and estimations problems that arise in

“high dimensions”, increasingly prevalent settings characterized by the presence of a large

number of observations and a large number of variables.

Chapter 1 provides an overview and briefly discusses some challenges in a large-

dimensional framework.

Chapter 2 considers factor modeling, an effective tool for extracting information

from large panels of data, and extends the classical linear factor analytic approach to ac-

commodate nonlinearities, which is made possible by employing the kernel method. This

chapter also establishes the theoretical guarantees, discusses the generality of the proposed

approach and considers a forecasting application.

Chapter 3 explores an estimation problem in the context of group testing. It pro-

poses a methodology that is based on `1-norm sparse recovery which explicitly leverages

the fact that the high-dimensional vector of interest is likely to be sparse in certain applica-

tions. The theoretical properties are investigated and extensive numerical simulations are

v



provided.

Chapter 4 studies estimation of a large-dimensional covariance matrix. This chap-

ter develops an estimator that is suitable for consistent estimation of large matrices with

sparse eigenvectors and error components. It also derives the theoretical properties of the

proposed method and provides a numerical experiment.
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Chapter 1

Introduction

This work examines prediction and estimation problems arising in “high dimen-

sions”, increasingly prevalent settings characterized by the presence of a large number of

observations and a large number of variables. The truth is, large-dimensional datasets are

“cursed” in the sense that analyzing them appears to be impossible. In reality, however,

most interesting datasets have an inner low-dimensional structure, which is of high value,

that often succumbs to modern data scientific treatment. My research exploits this property

and studies efficient ways of distilling massive amounts of information into valuable knowl-

edge. Naturally, one must inevitably assume that there is something to extract: Chapter

2 assumes most variation in the data is induced by a few latent variables, while Chapters

3 and 4 assume the high-dimensional space is sparse, i.e. most dimensions are effectively

negligible. Luckily, recent developments in machine learning and theoretical discoveries in

statistics enable us to tackle such challenges. As large-dimensional datasets are increasingly
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prevalent in genomics, biomedical imaging, tomography, finance, economics and statistics,

the solutions to such challenges would be of high interest to a broad audience.

Chapter 2 “The Kernel Trick for Nonlinear Factor Modeling,” extends the classi-

cal (linear) factor-analytic framework to accommodate nonlinearities. Factor models have

become an integral part of multivariate analysis and high-dimensional statistics, and have

had a substantial effect on a number of different fields, including psychology ([117]), biology

([62]) and economics ([32]). In econometrics and finance, applications range from portfolio

optimization ([50]) and covariance estimation ([51]) to forecasting ([111]). My work demon-

strates that one can extract information from a large unstructured panel of data and use it

for forecasting a series of interest. The main insight comes from the observation that most

data resides in a low-dimensional space and can be described by a handful of variables known

as factors. Importantly, my work permits to go beyond a linear factor model by employing

the kernel method from machine learning literature. This enables handling the data as big

as one could possibly store, let alone superior performance and faster computational speed.

The study also establishes the theoretical guarantees and discusses the generality of the

proposed approach. Finally, an empirical application to a classical macroeconomic dataset

demonstrates that this approach can offer substantial advantages over mainstream methods.

This manuscript is accepted for publication in the International Journal of Forecasting.

Chapter 3 “Sparse Recovery for COVID-19 Group Testing,” examines group test-

ing strategies against the coronavirus. With testing capacity restricted, group testing is an

appealing alternative for comprehensive screening and has recently received FDA emergency

authorization. We frame this as an estimation problem in high-dimensional context. Simply
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put, if one represents N subjects’ true COVID-19 statuses (positive or negative) in a vector,

then it may be possible to infer this vector with m� N tests based on pooled samples. We

propose a methodology that is based on `1-norm sparse recovery which explicitly leverages

the fact that the vector of interest is likely to be sparse as most of the subjects will be

negative (due to low disease prevalence). This strategy requires fewer testing supplies while

providing multiple folds of speedup over individual testing. It is also more efficient than

other group testing techniques. COVID-19 testing is not the only possible application, the

technique developed in our study can be used in nontesting settings such as coding theory,

multiaccess communication, screening for defective items, nonlinear optimization, etc. This

paper under the name “Fast and Efficient Data Science Techniques for COVID-19 Group

Testing,” co-authored with Ekaterina Seregina, is published in the Journal of Data Science.

Chapter 4 “High-Dimensional Covariance Estimation,” focuses on estimation of a

central object in statistics – a covariance matrix. Covariance matrix estimates are required

in a wide range of applied problems in multivariate data analysis, including principal com-

ponents analysis ([95]) for dimensionality reduction, linear discriminant analysis ([55]) for

classification, spectral clustering ([92]) for community detection. A number of disciplines

rely on such estimates to address major challenges, for example portfolio & risk manage-

ment ([52]) in finance, factor models and testing in economics ([5],[112]), graphical models

([57], [87]) in machine learning and discovering genetic interactions in genomics. In a large

dimensional environment, nearly all desirable properties of the classical sample covariance

estimator cease to hold. This recently motivated researchers to propose a new family of

regularized, or shrinkage ([108]), estimators that essentially average the eigenvalues of the

3



sample covariance matrix with that of a structured matrix. While this approach performs

well in certain scenarios, it presumes that the sample eigenvectors remain close to their

true counterparts, which in general is implausible. An estimator is proposed that aims to

precisely estimate eigenvectors in sparse settings, without requiring strong assumptions on

eigenvalues. I derive its rate of convergence in terms of spectral norm and show that it

achieves the optimal rate in a sparse setting. I also provide a numerical simulation demon-

strating the superior performance of the proposed estimator as compared to other recently

proposed high-dimensional estimators.
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Chapter 2

The Kernel Trick for Nonlinear

Factor Modeling

Abstract

Factor modeling is a powerful statistical technique that permits to capture the com-

mon dynamics in a large panel of data with a few latent variables, or factors, thus

alleviating the curse of dimensionality. Despite its popularity and widespread use

for various applications ranging from genomics to finance, this methodology has pre-

dominantly remained linear. This study estimates factors nonlinearly through the

kernel method, which allows flexible nonlinearities while still avoiding the curse of

dimensionality. We focus on factor-augmented forecasting of a single time series in
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a high-dimensional setting, known as diffusion index forecasting in macroeconomics

literature. Our main contribution is twofold. First, we show that the proposed

estimator is consistent and it nests linear PCA estimator as well as some nonlinear

estimators introduced in the literature as specific examples. Second, our empirical

application to a classical macroeconomic dataset demonstrates that this approach

can offer substantial advantages over mainstream methods.

2.1 Introduction

Over the past century, factor models have become an integral part of multivariate

analysis and high-dimensional statistics, and have had a substantial effect on a number

of different fields, including psychology ([117]), biology ([62]) and economics ([32]). In

economics and finance, applications range from portfolio optimization ([50]) and covariance

estimation ([51]) to forecasting ([111]). The application that we consider is macroeconomic

forecasting, where various forms of factor analysis have become state-of-the-art techniques

for prediction.

The general idea behind factor analysis consists of determining a few latent vari-

ables, or factors, that drive the dependence of the entire outcomes. Factors are designed

to capture the common dynamics in a large panel of data. This feature is crucial in the

context of increasing availability of macroeconomic time series coupled with the inability of

standard econometric methods to handle many variables. While classical econometric tools

break down in such data-rich or “big data” environments, factor models help to compress
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a large amount of the available information into a few factors, turning the curse of dimen-

sionality into a blessing.

Factor analysis possesses several attractive properties that justify a large amount

of literature in its support. First, it effectively handles large dimensions thereby enhancing

forecast accuracy in such regimes. This was demonstrated in [111] and [112] who used so-

called diffusion indexes, or factors, in forecasting models when dealing with a large number of

predictors. More recently, [74] find that factor augmented models nearly always outperform

a wide range of big data and machine learning models in terms of predictive power. Second,

due to its conceptual simplicity, this methodology found its use beyond academic research.

For example, the Federal Reserve Bank of Chicago constructs the Chicago Fed National

Activity Index (CFNAI) simply as the first principal component of a large number of time

series. Third, factor analysis aligns naturally with the dynamic equilibrium theories as

well as the stylized fact of [100] of a small number of variables explaining most of the

fluctuations in macroeconomic time series. And finally, factor estimates can also be used to

provide efficient instruments for augmenting vector autoregressions (VARs) ([21]) to assist

in tracing structural shocks.

Factors, however, are not observable and need to be estimated. Two classical

estimation strategies rely on either intertemporal or contemporaneous smoothing. The for-

mer casts the model into a state-space representation and estimates it by the maximum

likelihood via the Kalman filter. The disadvantages of this approach are that it requires

parametric assumptions and that it quickly becomes computationally infeasible as the num-

ber of predictor series grows 1. Contemporaneous smoothing is a more predominant and

1Interestingly, there has been some evidence to the contrary, see [46]
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computationally simpler way based on principal component analysis (PCA) ([95]), nonpara-

metric least-squares approach for estimating factors.

Forecasts are obtained via a two-step procedure. First, factors estimates are de-

rived from the set of available time series by one of the two methods described above. Once

the factors are estimated, run a linear autoregression of the variable of interest onto factor

estimates and observed covariates (e.g. lagged values of the dependent variable).

We analyze a factor model that is high-dimensional, static and approximate. High-

dimensional framework ([8]), as opposed to classical framework ([5]), allows both time and

cross-section dimensions to grow. Static models do not explicitly model time-dependence of

factors contrary to more general dynamic counterparts ([56]). Approximate factor structure

([32]) is more flexible compared with a strict version ([97]) as it imposes milder assumptions

on the idiosyncratic component.

Factor analysis is closely related to PCA, although the two are not the same ([70]).

It is, however, well documented that the two are asymptotically equivalent under suitable

conditions (see the pervasiveness assumption in [51] for a recent treatment). There are

several results on consistency of PCA estimators of factors ([36], [111], [9] among others)

for various forms of factor models. One of the most relevant of the results is established in

[8] who derive convergence rates of such estimators for an approximate static factor model

of large dimensions.

Despite its widespread use, factor modeling, and diffusion index forecasting method-

ology in particular, is still fundamentally limited to linear framework. Over the past two

decades, leading researchers noted multiple times (e.g. see [112], [10], [113], [35]) that fur-
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ther forecast improvements “will need to come from models with nonlinearities and/or time

variation” and that “nonlinear factor-augmented regression should be considered” for fore-

casting. There have been attempts to incorporate time dependence (see, for example, [91],

[89] and [39] among others) as well as some work documenting the superiority of nonlin-

ear models in time series context ([116], [59], [73]). However, the literature on addressing

nonlinearity within the factor modeling or diffusion index methodology framework, which

arguably remains to be the state-of-the-art technique for macroeconomic prediction ([38]),

is scarce.

One of the first such attempts is [126] who assume nonlinear errors-in-variables

parametrization of a factor model, which is not designed for forecasting applications. The

most prominent work with focus on a prediction exercise is [10]. They either augment the

set of predictor time series with their squares and apply standard PC to the augmented

set, or use squares of principal components obtained from the original (non-augmented)

set. Another closely related work is [49] who substitute the linear second step with kernel

ridge regression and discover that this leads to more accurate forecasts of the key economic

indicators.

This study adds to the scarce literature on nonlinear factor models. Specifically,

the factors are allowed to capture nontrivial functions of predictors. To circumvent the

computational difficulties associated with such novelties, we use the kernel trick, or kernel

method ([63]), which is discussed in the next section within the diffusion index methodology

context.
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The rest of the paper is organized as follows. Subsections 2.1 and 2.2 of Section 2

review the diffusion index methodology and the kernel trick; subsections 2.3 and 2.4 derive

the estimators and provide the theoretical guarantees. Section 3 outlines the forecasting

models, describes the data and provides the empirical results. Section 4 concludes and

discusses possible extensions. All proofs are given in the Appendix.

Notation. For a vector v ∈ Rd, we write its i-th element as vi. The corresponding

`p norm is ‖v‖p =
(∑d

i=1 |vi|p
)1/p

, which is a norm for 1 ≤ p ≤ ∞. An inner product

between two vectors of the same dimension is 〈vi, vj〉 = vi
′vj. For a matrix A ∈ Rm×d, we

write its (i, j)-th entry as {A}ij = aij and denote its i-th row (transposed) and j-th column

as column vectors Ai· and A·j respectively. Its singular values are σ1(A) ≥ σ2(A) ≥ . . . ≥

σq(A), where q = min(m, d). The spectral norm is ‖A‖2 = max
v 6=0

‖Av‖2
‖v‖2

= σ1(A). The `1 norm

is ‖A‖1 = max
1≤j≤d

∑m
i=1 |uij | and `∞ norm is ‖A‖∞ = max

1≤i≤m

∑d
j=1 |uij |. The Frobenius norm

is ‖A‖F =
√
〈A,A〉 =

√
tr(A′A) =

√∑q
i=1 σ

2
i (A). For a symmetric matrix W ∈ Rd×d with

eigenvalues λ1(W ) ≥ λ2(W ) ≥ . . . ≥ λd(W ), define eigr(W ) ∈ Rd×r to be a matrix stacking

r ≤ d normalized eigenvectors in the order corresponding to λ1(W ), . . . , λr(W ). Finally,

for a sequence of random variables {Xn}∞n=1 and a sequence of real nonnegative numbers

{an}∞n=1, denote Xn = OP(an) if ∀ε > 0,∃M,N > 0 such that ∀n > N, P(|Xn/an| ≥M) <

ε; and denote Xn = oP(an) if ∀ε > 0, lim
n→∞

P(|Xn/an| ≥ ε) = 0. Finally, let 11/T be a T × T

matrix of ones divided by T .
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2.2 Methodology

2.2.1 Diffusion Index Models

Our goal is to accurately forecast a scalar variable Yt, given a T ×N data matrix

X with tth row X ′t, or X ′t·. Both the number of observations T and the number of series N

are typically large.

Consider the following baseline model, known as a Diffusion Index (DI) model:

Yt+h
1×1

= β′F
1×r

Ft
r×1

+ β′W
1×p

Wt
p×1

+ εt+h
1×1

, (2.1)

Xt
N×1

= Λ
N×r

Ft
r×1

+ et
N×1

. (2.2)

Equation 2.1 is a linear forecasting model, where Yt+h is the value of the target variable h

periods in the future, Ft is the vector of r factors at time t, Wt is a vector of p observed

covariates (e.g. an intercept and lags of Yt+h), εt+h is a disturbance term. Equation (2.2)

specifies the factor model, where Xt is vector of N candidate predictor series, Λ is a loading

matrix for r common driving forces in Ft, et is an idiosyncratic disturbance; and t = 1, . . . , T .

The latter equation can be rewritten in matrix form

X
T×N

= F
T×r

Λ′
r×N

+ e
T×N

, (2.3)

where X = [X1, . . . , XT ]′ and F = [F1, . . . , FT ]′. Throughout the paper it is assumed that

all series are weakly stationary, while variables in X have been standardized, meaning that

each variable is separately demeaned and set to have unit `2-norm.
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If the above set of equations is augmented with transition equations for Ft, we

obtain a dynamic factor model which is estimated by the Kalman filter as discussed above.

Let us instead focus on a nonparametric estimation approach as suggested in [111]. The

goal at first stage is to solve

arg min
F,Λ

∥∥X − FΛ′
∥∥2

F

N−1Λ′Λ = Ir, F ′F diagonal,

(2.4)

where the restrictions are in place for identifying the unique solution (up to a

column sign change). It is well known that the estimator of factor loadings Λ̂ is given by the

r eigenvectors associated with largest eigenvalues of X ′X, while F̂ = XΛ̂. This estimator

F̂ is equivalent to principal component (PC) scores derived from the matrix X. Once we

have an estimate of F , the second stage involves least squares estimation of equation 2.1

with F substituted with its estimate.

It is clear that the standard PC estimator reduces the dimensionality of X linearly:

Ft represents the projection ofXt onto r eigenvector directions exhibiting the most variation.

However, if there is a nonlinearity in X, that is if the true lower dimensional representation

is a nonlinear submanifold in the original space, such linear projections will be inaccurate.

There are several ways to take into account a possible nonlinearity. For example, [10]

propose a squared principal components (SPC) procedure, which applies the standard PCA

algorithm to the matrixX augmented by its square, that is [X,X2]. Although this procedure

supposedly leads to additional forecasting gains, it is limited by the second-order features

of the data.
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Other nonlinear dimension reduction techniques include Laplacian eigenmaps ([19]),

Locally-Linear Embeddings ([99]), Isomaps ([115]) and a number of others ([61], [77], [120]).

In this paper we use the approach that applies the kernel trick to the standard PCA, so-

called kernel PCA (kPCA) ([101]). This algorithm can be shown to contain a number of

widely used dimensionality reduction methods, including the ones listed above ([63]). While

it permits modeling a set of nonlinearities rich enough for successful applications in nontriv-

ial pattern recognition tasks such as face recognition ([75]), the algorithm does not involve

any iterative optimization.

2.2.2 Kernel Method

In this subsection we review the kernel trick methodology and illustrate its use-

fulness. The kernel method implicitly maps the original data nonlinearly into a high-

dimensional space, known as a feature space, ϕ(·) : X → F . This space can in fact be

infinite-dimensional which would seemingly prohibit any calculations. However, the trick

is precisely in avoiding such calculations. The focus is instead on similarities between

any two transformed data points ϕ(xi) and ϕ(xj) in the feature space2 as measured by

ϕ(xi)
′ϕ(xj), calculating which would at first sight require the knowledge of the functional

form of ϕ(·). The solution is to use a kernel function k(·, ·) : X × X → R, which would

output the inner product in the feature space without ever requiring the explicit func-

tional form of ϕ(·). Moreover, a valid kernel function guarantees the existence of a feature

mapping ϕ(·) although its analytic form may be unknown. The only requirement for this

2Formally, the feature space is thus a Hilbert space, that is a vector space with a dot product defined on
it.
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is positive-definiteness of the kernel function (Mercer’s condition, see 2.H), specifically,∫ ∫
f(xi)k(xi, xj)f(xj)dxidxj ≥ 0, for any square-integrable function f(·).

This kernel function forms a Gram matrix K, known as a Kernel matrix, ele-

ments of which are inner products between transformed training examples, that is {K}ij =

k(xi, xj) = ϕ(xi)
′ϕ(xj). What makes the kernel trick useful is the fact that many models

can be written exclusively in terms of dot products between data points. For example, the

ridge regression coefficient estimator can be formulated as X ′(XX ′ + λIT )−1y3, and hence

the prediction for a test example x∗ is ŷ = x∗
′X ′(XX ′ + λIT )−1y, where the dependence

is exclusively on inner products between the covariates. This property allows us to apply

the kernel method by substituting dot products between original variables with their non-

linear kernel evaluations, that is dot products between transformed variables. Hence, an

alternative form is k′∗(K + λIT )−1y, where k∗ with {k∗}i = {ϕ(x∗)
′ϕ(X)′}i is a vector of

similarities between the test example and training examples in the feature space. In terms

of the time complexity, the algorithm needs to invert a T × T matrix instead of inverting

an N ×N matrix.

The key advantage of the kernel method is that it effectively permits using a

linear model in a high-dimensional nonlinear space, which amounts to applying a nonlinear

technique in the original space. As a toy example, consider a classification problem shown in

Figure 2.1, where the true function separating the two classes is a circle of radius .5 around

the origin. The left panel depicts observations from two classes which are not linearly

separable in the original two-dimensional space. Applying a simple polynomial kernel of

3This can be derived by solving the dual of the ridge least squares optimization problem, however a
simpler approach would be to apply the matrix identity (B′C−1B+A−1)−1B′C−1 = AB′(BAB′ +C)−1 to
the usual ridge estimator (X ′X + λIN )−1X ′y.
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degree 2, k(xi, xj) = (xi
′xj)

2, implicitly corresponds to working in the feature space depicted

on the right panel, since for ϕ(xi) = (x2
i1,
√

2xi1xi2, x
2
i2)′ we have ϕ(xi)

′ϕ(xj) = (xi
′xj)

2.

In this toy example, a linear classifier could perfectly separate the observations in the right

panel of Figure 2.1.

1 0 1
x1

1

0

1

x 2

x 2
1

0

1

x2 2

1.4

0.0

1.4

x2 1
+

x2 2

0

1

Class 0
Class 1

Figure 2.1: Kernel trick illustration for a toy classification example.

Left : observations from two classes in the original space, not linearly separable. Right :
observations in the feature space, linearly separable. See the details in the text.

While all valid kernel functions are guaranteed to have the corresponding feature

space, in many cases it is implicit and infinite-dimensional, as, for instance, for the radial

basis function (RBF) kernel k(xi, xj) = e−γ‖xi−xj‖22 (see 2.A). Again, luckily, the knowledge

of the feature mapping is not required.

2.2.3 Nonlinear Modeling and kPCA

Suppose there is a nonlinear function ϕ(·) : RN → RM , where M � N is very

large (often infinitely large), mapping each observation to a high-dimensional feature space,
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Xt → ϕ(Xt). For now we consider M to be finite for simplicity of exposition, so the original

T ×N data matrix X can be represented as a T ×M matrix Φ = [ϕ(X1), . . . , ϕ(XT )]′ in the

transformed space, which may not be observable. Infinite-dimensional case induces several

complications and is considered later.

Both the original X and its transformation Φ are assumed to be demeaned. The

latter requirement is simple to incorporate in the kernel matrix despite the mapping being

unobserved. Specifically, supposing the original (non-demeaned) transformation is Φ̃, the

kernel associated with demeaned features is

K = (IT − 11/T )Φ̃Φ̃′(IT − 11/T )′ = K̃ − 11/T K̃ − K̃11/T + 11/T K̃11/T , (2.5)

where K̃ = Φ̃Φ̃′ is based on the original Φ̃.

Our modeling of nonlinearity is through the feature mapping ϕ(·). This function

replaces the original variables of interest in equation (2.2) with their transformations,

ϕ(Xt)
M×1

= Λϕ
M×r

Fϕ,t
r×1

+ eϕ,t
M×1

, (2.6)

where the subscript ϕ indicates the association with the transformation. By stacking these

into a T ×M matrix Φ we can rewrite the minimization problem (2.4) as

arg min
Fϕ,Λϕ

∥∥Φ− FϕΛ′ϕ
∥∥2

F

N−1Λ′ϕΛϕ = Ir, F ′ϕFϕ diagonal.

(2.7)
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Note that solving this directly through the eigendecomposition of Φ′Φ is generally

infeasible, since Φ′Φ is M ×M dimensional. Even if the dimension M was not prohibitive,

the map ϕ(·) is unknown for interesting problems rendering any computation dependent on

Φ or Φ′Φ alone impossible. Fortunately, it is possible to reformulate this problem in terms

of the T × T Gram matrix K = ΦΦ′.

While we are assuming M to be prohibitively large but finite, the following de-

composition generalizes to infinite dimensions. Starting from the “infeasible” eigendecom-

position of the unknown covariance matrix of Φ

Φ′Φ

T
V [i]
ϕ = λciV

[i]
ϕ , i = 1, . . . ,M, (2.8)

where the eigenvalues λci = λi(
Φ′Φ
T ) satisfy λc1 ≥ λc2 ≥ . . . ≥ λcT and λcj = 0 for j >

T (assuming M ≥ T ) and V [i] is an M -dimensional eigenvector associated with the ith

eigenvalue λci .

The key is to observe that each V
[i]
ϕ can be expressed as a linear combination of

features

V [i]
ϕ =

Φ′Φ

λciT
V [i]
ϕ ≡ Φ′A[i], i = 1, . . . ,M, (2.9)

where A[i] =
ΦV

[i]
ϕ

λciT
=
[
α

[i]
1 , . . . , α

[i]
T

]′
is a vector of weights which is determined next.

Plugging this back into (2.8) yields

λciΦ
′A[i] =

Φ′Φ

T
Φ′A[i], i = 1, . . . ,M. (2.10)
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Finally, premultiplying equation (2.10) to the left by Φ and removing K = ΦΦ′ from both

sides we obtain

K

T
A[i] = λciA

[i], i = 1, . . . ,M, (2.11)

hence the ith vector of weights A[i] corresponds to an eigenvector of a finite-dimensional

Gram matrix K associated with the ith largest eigenvalue λi(
K
T ) = λci with λj(

K
T ) = 0 for

j > T .

Notice that while solving the eigenvalue problem of K
T allows to compute A[i], we

are still unable to obtain the vector V [i] = Φ′A[i] since Φ may not be known. However,

the main object of interest is recoverable: to calculate principal component projections, we

project the data onto (unknown) eigenspace,

F̂ [i]
ϕ

T×1

= ΦV [i] = ΦΦ′A[i] = KA[i], i = 1, . . . ,M. (2.12)

Stacking estimated factors corresponding to the first r eigenvalues, define a T × r matrix

F̂ϕ =
[
F̂

[1]
ϕ , . . . , F̂

[r]
ϕ

]
, where the subindex r is dropped to simplify the notation. We refer

to the factors constructed this way as kernel factors.

A similar alternative solution that only involves the Gram matrix has been known

in econometrics since at least [37]. In particular, for a given r the optimization problem in

(2.7) with the identification constraints T−1F ′ϕFϕ = Ir and diagonal Λ′ϕΛϕ, has the solution

F̃ϕ =
√
Teigr(ΦΦ′) =

√
TAr, where Ar =

[
Â[1], . . . , Â[r]

]
. Hence, the kPCA estimator is

equivalent to the latter premultiplied by ΦΦ′√
T

= K√
T

. Note, however, that both estimators
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yield the same predictions when passed to the main forecasting equation (2.1) as they have

identical column spaces. This idea is summarized in the following proposition.

Proposition 1 Estimators F̂ϕ = ΦΦ′eigr(ΦΦ′) and F̃ϕ =
√
Teigr(ΦΦ′) produce the same

projection matrix.

Importantly, we also establish that certain commonly used kernels allow the kernel

factor estimator to incorporate the usual PC estimator. The following proposition demon-

strates that RBF and sigmoid kernels allow to nest (a constant multiple of) the PC estimator

for limiting values of the hyperparameter.

Proposition 2 For a column-centered matrix X ∈ RT×N , let F̂ϕ = Keigr(K) be the kernel

factor estimator and F̂ = Xeigr(X
′X) be the usual linear PCA factor estimator. Then

∃s = ±1, such that lim
γ→0

cγ−1F̂ϕL
−1/2 = sF̂ , ∀r = 1, . . . ,min {T,N},

where K = K̃−11/T K̃−K̃11/T +11/T K̃11/T , L is a diagonal matrix of r largest eigenvalues

of XX ′ sorted in nonincreasing order. Furthermore,

(a) for RBF kernel k̃ij = e−γ‖Xi·−Xj·‖
2
2 we have c = 2−1,

(b) for sigmoid kernel k̃ij = tanh(c0 + γX ′i·Xj·) we have c = (1− tanh2(c0))−1, where c0 is

an arbitrary (hyperparameter) constant.

Proof. See appendix 2.B.

Adjustment by γ−1 is necessary as the entries of F̂ϕ = Keigr(K) approach 0 as

γ → 0. This is due to the nature of K = K̃ − 11/T K̃ − K̃11/T + 11/T K̃11/T , where kij
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converge to 0 for both kernels for all i, j = 1, . . . , T . Luckily γ−1K has a nice non-degenerate

limiting value (shown in the proof) that ensures the limit in proposition 2.B holds.

Proposition 2 states that the (properly scaled) kernel factor matrix converges

pointwise to its PCA analog (up to a sign flip) as the value of the hyperparameter γ nears

zero. That is, in the limit the two factor estimators are constant multiples of one another

and hence produce the same forecasts. This ability to mimic the linear estimator is impor-

tant for certain applications. For example, in macroeconomic forecasting it is notoriously

difficult to beat linear models in a short horizon prediction exercise.

Figure 2.2 illustrates the implicit procedure for obtaining r kernel factors. The

selected kernel function induces nonlinearity ϕ(·) on each element of the input layer, N -

dimensional observationsX1·, . . . , XT ·. Next, pairwise similarities between high-dimensional

vectors ϕ(X1·), . . . , ϕ(XT ·) are computed, with a kernel function given as

k(Xi·, ·) =
[
ϕ(Xi·)

′ϕ(X1·), . . . , ϕ(Xi·)
′ϕ(XT ·)

]′
.

Finally, each factor is obtained as a linear combination of these inner products with the

weights given as a solution to the eigenvalue problem discussed above. Of course, the kernel

PCA algorithm does not explicitly nonlinearize the inputs as the kernel trick allows us to

immediately calculate similarities and avoid the expensive high-dimensional computation.

However, as mentioned earlier, the existence of such implicit nonlinearities is guaranteed by

Mercer’s theorem (2.H). As opposed to standard feedforward neural networks, there is no

iterative training involved and no peril of being trapped in local optima. On the other hand,

it has been noted that certain kernels, including RBF and sigmoid, allow extracting features
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of the same type as the ones extracted by neural networks ([101]). The two necessary steps

involve evaluation of similarities in the kernel matrix and solving its eigenvalue problem;

the complexity is thus dependent only on the sample size.

Figure 2.2: Neural network interpretation of kernel PCA, T = 3, r = 2.

Each observation is nonlinearly transformed and the inner products are computed. The output

units are kernel factors with F̂
[j]
ϕ =

∑T
i=1 α

[j]
i k(Xi, ·) which linearly combine these dot products,

with the weight estimate calculated as the eigenvector of the kernel matrix K.

2.2.4 Theory

Depending on the choice of the kernel, the induced feature space could be either

finite or infinite. A polynomial kernel considered earlier generates a finite-dimensional

feature space, consisting of a set of polynomial functions over the inputs. In this simple

case, the eigenspace associated with the kernel factor estimator in equation (2.12) can

generally be consistently estimated within the framework of [7]. Particularly, proposition 1

and the following theorem in [7] immediately imply
√
M -consistency of F̃ϕ.
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For the model associated with equation (2.6):

Assumption A: There exists a constant c1 < ∞ independent of M and T , such

that

(a) E ‖Fϕ,t‖4F ≤ c1 and T−1F ′ϕFϕ
p→ ΣF > 0, where ΣF is a non-random positive

definite matrix;

(b) E ‖Λϕ,i·‖F ≤ c1 and N−1Λ′ϕΛϕ
p→ ΣΛ > 0, where ΣΛ is a non-random positive

definite matrix.

(c1) E(eϕ,it) = 0, E |eϕ,it|8 ≤ c1;

(c2) E(e′ϕ,seϕ,t/M) = γM (s, t), |γM (s, s)| ≤ c1 ∀s, T−1
∑T

s=1

∑T
t=1 |γM (s, t)| ≤ c1,∑T

s=1 γM (s, t)2 ≤M ∀t, T ;

(c3) E(eϕ,iteϕ,jt) = τij,t with |τij,t| ≤ |τij | for some τij and ∀t; and M−1
∑M

i=1

∑M
j=1

|τij | ≤ c1;

(c4) E(eϕ,iteϕ,js) = τij,ts, (MT )−1
∑M

i=1

∑M
j=1

∑T
t=1

∑T
s=1 |τij,ts| ≤ c1;

(c5) E
∣∣∣M−1/2

∑M
i=1 (eϕ,iseϕ,it − E(eϕ,iseϕ,it))

∣∣∣4 ≤ c1 ∀t, s;

(d) E
(

1
M

∑M
i=1

∥∥∥ 1√
T

∑T
t=1 Fϕ,teϕ,it

∥∥∥2

F

)
≤ c1;

(e) T−1F ′ϕFϕ = Ir and Λ′ϕΛϕ is diagonal with distinct entries.

Part (a) is standard in factor model literature. Part (b) ensures pervasiveness of factors in

the sense that each factor has non-negligible effect on the variability of covariates. This is

crucial for asymptotic identification of the common and idiosyncratic components. Parts (c·)

partially permit time-series and cross-section dependence in the idiosyncratic component,

as well as heteroskedasticity in both dimensions. Possible correlation of eϕ,it across i sets

up the model to have an approximate factor structure. Part (d) allows weak dependence

between factors and idiosyncratic errors and (e) is for identification.
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The following theorem establishes consistency of kernel factors, for kernels inducing

finite nonlinearities, in a large-dimensional framework.

Theorem 3 (Theorem 1 [8], adapted) Suppose the kernel function induces finite di-

mensional nonlinearity, i.e. for N <∞, ϕ(·) : RN → RM , where M := M(N) is such that

N ≤M(N) <∞, and Assumption A holds. Then for any fixed r ≥ 1, as M,T →∞

δ2
NT

∥∥∥F̃ϕ,t −H ′Fϕ,t∥∥∥2

F
= Op(1), ∀t = 1, . . . , T,

where δNT = min{
√
M,
√
T}, H

r×r
=

Λ0
ϕ
′Λ0
ϕ

M

F 0
ϕ
′F̃ϕ
T V −1

MT , VMT
r×r

is a diagonal matrix

of r largest eigenvalues of ΦΦ′

MT , F̃ϕ,t and Fϕ,t are t-th rows in F̃ϕ =
√
Teigr(ΦΦ′) and Fϕ,

respectively.

Proof. See appendix 3.B.

Some comments are in order. First, the theorem states that the squared differ-

ences between the proposed factor estimator and (a rotation of) the true factor vanish as

M,T →∞. While true factors themselves are not identifiable unless additional assumptions

are imposed (see [11]), identification of the latent space spanned by factors is just as good

as exact identification for forecasting purposes. Second, since for any given number of orig-

inal variables N the dimension of the transformed space M is fixed and finite, the growth

in M is only possible through N and thus the limit on M implies one on N . Third, this

result does not imply uniform convergence in t. Lastly, the results suggest the possibility

of
√
T -consistent estimation of the forecasting equation with respect to its conditional mean.
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Unfortunately, this result does not generalize to the most interesting kernels (e.g.

RBF) inducing infinite-dimensional Hilbert spaces, rendering the traditional approach un-

suitable for establishing theoretical properties. Hence we turn to a functional analytic

framework which allows rigorous treatment of infinite-dimensional spaces and which has

been the classical framework for analyzing statistical properties of functional PCA, and

kernel PCA in particular, in machine learning literature.

As will be shown later, it turns out that we can still show that the estimator

concentrates around its population counterpart. We briefly present the necessary terms

for understanding this result, without aiming to be exhaustive. A sufficiently detailed

introduction to the analysis in Hilbert spaces can be found in [24], while a classical reference

for operator perturbation theory is [72].

One of the first major investigations of the statistical properties of kernel PCA

can be found in [103]. The study provides concentration bounds on the sum of eigenvalues

of the kernel matrix towards that of corresponding (infinite-dimensional) kernel operators.

This permits to characterize the accuracy of kPCA in terms of the reconstruction error, that

is the ability to preserve the information about a high-dimensional input in low dimensions.

This is of significant interest for certain types of applications, such as pattern recognition.

[24] further extend the results of the aforementioned study and improve the bounds on

eigenvalues using tools of perturbation theory.

Although the theoretical discussion and the mathematical approaches developed

in this literature are extremely valuable, our interest is not in kPCA’s ability to reconstruct

a given observation. The kernel factor estimator only reduces the dimensionality and passes
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it to the next stage, without ever going through the reconstruction phase. As the dimen-

sionality is reduced by projecting observations onto the eigenspace – the space spanned by

eigenfunctions of the true covariance operator with largest eigenvalues – the interest is in

convergence of empirical eigenfunctions towards the true counterparts. Importantly, the

proximity of eigenvalues does not guarantee that underlying eigenspaces will also be close.

We now briefly introduce the technical background for understanding our result.

LetH be an inner product space, that is a linear vector space endowed with an inner product

〈·, ·〉H, commonly denoted together as (H, 〈·, ·〉H). An inner product space (H, 〈·, ·〉H) is a

Hilbert space if and only if the norm induced by the inner product ‖·‖H = 〈·.·〉1/2H is

complete4. The results below rely on this norm, so we drop the subscript H to simplify the

notation.

Let X be a random variable taking values on a general probability space X . A

function k : X × X → R is a kernel if there exists a real-valued Hilbert space and a

measurable feature mapping φ : X → H such that ∀x, x′ ∈ X , k(x, x′) = 〈φ(x), φ(x′)〉 . A

function k : X ×X → R is a reproducing kernel of H and H is a reproducing kernel Hilbert

space (RKHS), if k satisfies (i) ∀x ∈ X , k(·, x) ∈ X , and the reproducing property (ii)

∀x ∈ X ,∀f ∈ H, 〈f, k(·, x)〉 = f(x). An important result from [6] guarantees the existence

of a unique RKHS for every positive definite k.

Assume that Eφ(X) = 0 and E ‖φ(X)‖2 < ∞. A unique covariance operator

on φ(X), Σ = Eφ(X) ⊗ φ(X), satisfying 〈g,Σh〉H = E 〈h, φ(X)〉H 〈g, φ(X)〉H , ∀g, h ∈ H,

always exists (Theorem 2.1 in [24]) and is a positive, self-adjoint trace-class operator. Denote

4Specifically, the limits of all Cauchy sequences of functions must be in the Hilbert space.
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Σ̂ = 1
T

∑T
i=1 φ(Xi)⊗φ(Xi) to be its empirical counterpart. Finally, an orthogonal projector

in H onto a closed subspace V is an operator ΠV such that Π2
V = ΠV and ΠV = Π∗V .

We now lay out two lemmas which lead to the result. Lemma (10) bounds the

difference between the true and empirical covariance operators.

Lemma 4 (Difference between sample and true covariance operators)

Assume random variables X1, . . . , XT ∈ X are independent and supx∈X k(x, x) ≤ k̄, then

P
(∥∥∥Σ̂− Σ

∥∥∥ ≥ (1 +

√
ε

2

)
2k̄√
T

)
≤ e−ε.

Proof. See appendix 2.E.

Note that both sigmoid and RBF kernels are bounded and hence satisfy the re-

quirement of the above lemma. Lemma (5) is an operator perturbation theory result and

is adapted from [76] and [131]:

Lemma 5 Let A,B be two symmetric linear operators. Denote the distinct eigenvalues of

A as µ1 > . . . > µk > 0 and let Πi be the orthogonal projector onto the i-th eigenspace.

For a positive integer p ≤ k define δp(A) := min{|µi − µj | : 1 ≤ i < j ≤ p + 1}. Assuming

‖B‖ < δp(A)/4, then

‖Πi(A)−Πi(A+B)‖ ≤ 4 ‖B‖
δi(A)

.

Proof. See appendix 2.F.

Finally, the following theorem bounds the difference between empirical and true

eigenvectors.
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Theorem 6 Denote the i-th eigenvectors of Σ̂ and Σ as ψ̂i and ψi respectively. Then,

under the assumptions of Lemma 10 and 5, as T →∞ we have

∥∥∥ψ̂i − ψi∥∥∥ = op(1)

Proof. See appendix 2.G.

Some comments are in order. First, note that we require the eigenvalues to be

distinct, a well-known restriction (similar to sin(θ) theorem of [41]), since it is impossible

to identify eigenspaces with the same eigenvalues. Second, Theorem 6 suggests that the

eigenspace estimated by kernel PCA will concentrate close to the true eigenspace. Our

kernel factor estimator simply projects onto that eigenspace and hence the precision is ex-

pected to increase as T → ∞. Third, this rate does not address the case when variables

exhibit dependence, although the exercise in the next section is indicative of some form

of concentration, which suggests that the theoretical assumptions might be too conserva-

tive. Lastly, it may be possible to obtain a sharper bound since the proof relies on crude

inequalities (e.g. triangle inequality).
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2.3 Empirical Evaluation

2.3.1 Forecasting Models

This subsection discusses specific forms of equations (2.1) and (2.2) that are used

for forecasting. Autoregressive Diffusion Index (ARDI) model is specified as

Yt+h = βh0 +

Pht∑
p=1

βhY,pYt−p+1 +

Mh
t∑

m=1

βhF,m
1×Kh

t

′Ft−m+1
Kh
t ×1

+ εt+h, (2.13)

where superscript h indicates dependence on the time horizon. Note, P ht ,M
h
t ,K

h
t are the

number of lags of the target variable, the number of lags of factors, the number of factors

respectively. These three parameters are estimated simultaneously for each time period

and time horizon using BIC. Since the true factors are unknown, we instead plug in the

estimates from the factor equation, which is discussed next.

Three factor equation specifications are considered,

Xt
N×1

= ΛFt + et, (2.14)

X∗,t
2N×1

= Λ∗F∗,t + e∗,t, (2.15)

ϕ(Xt)
M×1

= ΛϕFϕ,t + eϕ,t. (2.16)

Factors in equation (2.14) are estimated by PCA. Equation (2.15) is similar, replacing the

left-hand side with an augmented vector X∗,t = [Xt, X
2
t ]. This procedure was dubbed as

squared principal components (SPC) in [10]. Finally, the last equation applies nonlinearity

induced by the selected kernel and is estimated by kPCA.
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Forecasts using PCA and SPC are produced in three steps. First, we extract

three factors from the set transformed and standardized predictors using one of the two

methods. Second, three parameters are determined according to BIC for each out-of-sample

forecasting period and each prediction horizon: the number of lags of the target variable P ht ,

the number of lags of factors Mh
t , the number of factors Kh

t . Third, the forecasting equation

is estimated by least squares and forecasts are produced. The procedure for predicting with

kPCA is similar, except there is an additional step where the value of the hyperparameter

is specified, and the estimation is instead made in accordance with Algorithm 1.

Algorithm 1: kPCA Algorithm

Input: Observations X1, . . . , XT ∈ RN , kernel function k(·, ·), dimension r.
for i = 1, . . . , T do

for j = 1, . . . , T do
Kij = k(Xi, Xj) ; /* Compute similarities */

end

end
K = K − 11/TK −K11/T + 11/TK11/T ; /* Standardization */

[A,Λ] = K/T ; /* Eigendecomposition */

F̂r = KAr ; /* Compute factors */

Output: T × r matrix F̂r.

The algorithm starts by computing similarities via a given kernel. This induces

transformed observation that need to be demeaned according to equation (2.5). As in

ordinary PCA, one then needs to compute the eigenvectors. The difference here is that

our object is a Gram matrix, not a covariance matrix. The kernel factors are then simply

derived as projections of the kernel matrix onto r eigenvectors associated with the largest

eigenvalues.
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2.3.2 Data and Forecast Construction

As an empirical investigation, we examine whether using kernel factors leads to

improved performance in forecasting several key macroeconomic indicators. We use a large

dataset from FRED-MD ([85]), which has become one of the classical datasets for empirical

analysis of big data. Its latest release consists of 128 monthly US variables running from

1959 : 01 through 2020 : 04, 736 observations in total. Following previous studies, we set

1960 : 01 as the first sample, leaving 724 observations. Since the models presented in this

study require stationary series, each of the variables undergo a transformation to achieve

stationarity. The decision on a particular form of transformation is generally dependent

on the outcome of a unit root test, which is known to lack power in finite samples. So

instead, following [85], all interest and unemployment are assumed to be I(1), while price

indexes are assumed to be I(2). The transformations applied to each series are described

in supplemental materials.

We aim to predict a single time series from this dataset by utilizing the remaining

variables. The series to be predicted include 8 variables characterizing different aspects of

the economy. Specifically, we take one series from each of the eight variable “groups” in the

dataset. The summary is provided in Table A1 in Appendix.

Forecasts are constructed for h = 1, 3, 6, 9, 12, 18, 24 months ahead with a rolling

time window, the size of which is taken to be 120 − h. Thus, the pseudo-out-of-sample

forecast evaluation period is 1970 : 01 to 2020 : 04, which is 604 months. We estimate

6 variants of autoregressive diffusion index models. The first model, taken as a bench-

mark, is a classical ARDI with PC estimates. Several studies have documented a strong
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performance of this model (see for example, [38]). The second and third take SPC and

so-called PC-squared (PC2) estimates ([10]) respectively, where the latter is identical to

the first model with squares of factor estimates added in the forecasting equation. The

remaining models are based on kPCA estimates with three different kernels: a sigmoid

k(xi, xj) = tanh(γ(xi
′xj) + 1), a radial basis function (RBF) k(xi, xj) = e−γ‖xi−xj‖2 and a

quadratic5 polynomial (poly(2)) kernel k(xi, xj) = (xi
′xj + 1)d, d = 2.

Optimal parameters for each model at each step, P ht ,M
h
t ,K

h
t and the kernel hy-

perparameter, are determined within the rolling window period, that is our setup only

permits the information set that would be available at the moment of making a predic-

tion. Specifically, P ht ,M
h
t ,K

h
t are selected by BIC (maximum value allowed for each is

set equal to 6) for each out-of-sample period, while γ is determined over a grid of values

by so-called time series cross-validation. Specifically, we consecutively predict the latest

5 available observations and select the hyperparameter that minimizes the average error.

The standard cross-validation may not theoretically be fully adequate due to the presence

of serial correlation in the data and several approaches were suggested to correct it ([96]).

2.3.3 Results

The main empirical findings are presented in Table 2.1. The subtitles of series

indicate the names of dependent variables, while each value in the table represents the

ratio of out-of-sample MSPE of a given estimation method to out-of-sample MSPE of the

autoregression augmented by diffusion indexes estimated by PCA. An asterisk indicates

the best performer for each horizon (no asterisk indicates the superiority of the baseline

5Polynomial kernels of lower and higher order demonstrated poor forecasting ability and are not included.
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method). Values printed in boldface suggest statistical significance of the Diebold-Mariano

test of equal predictive ability at 90%, when the corresponding method is compared against

the autoregression with PCA estimates. The results range for 8 variables across 7 different

forecast horizons. Our results are reproducible: in supplemental materials we provide the

script written in Python 3.6 that generates all results within a few hours.

Table 2.1: Relative MSPEs for 8 variables across 7 different

prediction horizons.

h = 1 h = 3 h = 6 h = 9 h = 12 h = 18 h = 24

Real Personal Income

SPC 1.0327 1.3195 1.5310 1.8579 1.3750 1.1647 1.1979

PC2 1.0130 1.1736 1.2709 1.0859 1.2503 38.1598 19.4460

kPCA poly(2) 1.0769 2.2967 3.1602 2.5349 1.9702 2.2061 1.3281

kPCA sigmoid 1.0013 0.9886∗ 0.9650∗ 0.8835∗ 0.8891∗ 0.8377∗ 0.8688∗

kPCA RBF 0.9995∗ 0.9972 0.9977 0.9318 0.9367 0.9269 0.9890

Civilian Employment

SPC 1.0257 1.4758 1.6383 2.2547 1.9158 1.3148 1.3624

PC2 0.9871∗ 1.1357 1.2180 1.2806 1.4784 20.8259 386.2726

kPCA poly(2) 1.4307 1.6269 2.7371 2.0439 1.7979 1.6266 1.6697

kPCA sigmoid 1.0017 0.9830 0.9245∗ 0.9213∗ 0.9084∗ 0.9171∗ 0.9138∗

Continued on next page
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Table 2.1 – continued from previous page

h = 1 h = 3 h = 6 h = 9 h = 12 h = 18 h = 24

kPCA RBF 1.0004 0.9758∗ 0.9448 0.9317 0.9381 1.0028 0.9696

Housing Starts: Privately Owned

SPC 1.0102 1.5529 2.3532 1.9179 1.4604 1.2191 1.7948

PC2 1.0978 1.1887 1.7617 1.8405 1.3927 67.1838 23.4097

kPCA poly(2) 1.0684 1.3471 2.8672 1.6391 2.2092 2.2018 2.8618

kPCA sigmoid 0.9953 0.9742 0.9786∗ 0.9583 0.9576 0.9453 0.9771

kPCA RBF 0.9950∗ 0.9588∗ 0.9990 0.9225∗ 0.9412∗ 0.8944∗ 0.9409∗

Real personal consumption

SPC 1.0790 1.3103 1.6410 2.0345 1.5595 1.1362 1.3404

PC2 1.0456 1.1577 1.2311 1.3181 1.1786 11.5388 19.6892

kPCA poly(2) 1.1722 2.0990 1.8980 1.8964 2.5677 2.8196 1.7777

kPCA sigmoid 1.0037 0.9901 0.9549∗ 0.9310∗ 0.9072∗ 0.9131∗ 0.9477∗

kPCA RBF 0.9919∗ 0.9894∗ 0.9609 0.9363 0.9596 0.9622 0.9799

M1 Money Stock

SPC 1.0660 1.5959 1.3715 1.5438 1.7104 1.4845 1.3175

PC2 1.3453 1.4641 1.1331 1.1987 2.5199 27.0868 157.3719

Continued on next page
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Table 2.1 – continued from previous page

h = 1 h = 3 h = 6 h = 9 h = 12 h = 18 h = 24

kPCA poly(2) 1.9656 3.9986 2.6646 2.6261 2.5258 2.1058 1.6008

kPCA sigmoid 1.0074 0.9631 0.9275∗ 0.9183∗ 0.9311∗ 0.8977∗ 0.8295∗

kPCA RBF 0.9892∗ 0.9994∗ 0.9663 0.9569 0.9756 0.9521 0.9827

Effective Federal Funds Rate

SPC 0.9261∗ 1.4816 3.1258 2.6737 2.4173 1.7712 2.2228

PC2 1.2278 1.3466 1.3976 2.3356 1.2200 9.0571 23.7870

kPCA poly(2) 1.3172 2.2581 3.8848 2.8236 1.3301 2.8415 1.6740

kPCA sigmoid 0.9921 0.9250∗ 0.8363∗ 0.8503∗ 0.8654∗ 0.8094∗ 0.7950∗

kPCA RBF 1.0388 0.9782 0.9544 0.9119 0.9619 0.9335 0.8907

CPI: All Items

SPC 1.0445 2.0341 2.2723 1.3606 1.3226 1.3522 1.3168

PC2 1.1932 1.6602 1.2048 1.9320 1.5478 12.5806 34.1029

kPCA poly(2) 1.6292 3.0142 3.9154 1.9549 1.4750 1.3192 1.2334

kPCA sigmoid 0.9901∗ 1.0189 0.9418∗ 0.9659∗ 0.9540∗ 0.9518 0.9538∗

kPCA RBF 0.9967 1.0596 1.0101 1.0138 0.9803 0.9504∗ 0.9564

S&P 500 Index

Continued on next page
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Table 2.1 – continued from previous page

h = 1 h = 3 h = 6 h = 9 h = 12 h = 18 h = 24

SPC 1.1235 1.3328 2.0309 2.0885 2.0879 1.5848 2.0441

PC2 1.1131 1.2793 1.4291 1.6809 1.9813 41.7948 43.1356

kPCA poly(2) 1.6190 1.7477 2.5330 2.3499 2.0381 1.4199 1.3398

kPCA sigmoid 0.9890∗ 0.9675∗ 0.9336∗ 0.8708∗ 0.8634∗ 0.8125∗ 0.8749∗

kPCA RBF 1.0001 0.9877 0.9701 0.9683 0.9450 0.8319 0.9441

Some comments are in order. First, sigmoid and RBF kernel approaches do lead to

improved forecasting accuracy, especially at medium- and long-term time horizons. One of

these two approaches dominates others in nearly 95% of the cases considered. Additionally,

Diebold-Mariano test ([42]) of equal predictive ability suggests that only these two methods

are capable of often significantly outperforming the baseline PCA autoregression across a

range of variables and horizons, while never being dominated. The kernel method is least

advantageous for one-step-ahead forecasting. The phenomenon that linearity is hard to

beat in a very short horizon is rather well known in the literature. Luckily, as was shown

in Proposition 2, kPCA is capable of mimicking a linear PCA by adjusting the kernel hy-

perparameter closer to 0, which often leads to the parity of the two methods in near-term

forecasting. While the gains are not pronounced at h = 1, they become apparent at longer

horizons. Results vary across variables, but the improvement is prevailing at medium-term
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horizons and is uniform in one-year and longer predictions. The superiority exhibited by

kPCA in many cases is remarkable for macroeconomic forecasting literature.

Second, both SPC and PC2 perform substantially worse than a simple PCA. This

result contradicts to [10], but is consistent with a recent empirical comparison of [49].

Besides, PC2 is extremely unreliable for long-term predictions. Similar to SPC, poly(2)

kernel seeks to model the second-order features of the data and, as a result, often performs

on par with SPC. As pointed out by the referee, the additional squared terms might often

be leading to inefficiency.

Ultimately, note that kPCA’s computational complexity is dependent on the num-

ber of time periods for estimation 120 − h, making kPCA slightly faster in this particular

exercise. Most importantly, kPCA’s advantage would grow in a macroeconomic setting,

where “bigger” data (i.e. larger N) is becoming the norm.

2.4 Concluding Remarks

In this study we have introduced a nonlinear extension of factor modeling based

on the kernel method. Although our exposition mainly focused on a feature mapping ϕ(·)

enforcing nonlinearity, it is also convenient to think of this approach as kernel smoothing in

an inner product space. That is, the kernel factor estimator implicitly relies on the weighted

distances between original observations. This alternative viewpoint presumes that analyzing

the variation in the inner product space, rather than the original space, may be more

beneficial. This idea had a profound impact on machine learning and pattern recognition

fields, especially as regards to support vector machines (SVMs). By using a positive definite
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kernel, one can be very flexible in the original space while effectively retaining the simplicity

of the linear case in the high-dimensional feature space.

We have demonstrated that constructing factor estimates nonlinearly can be ben-

eficial for macroeconomic forecasting. Specifically, the nonlinearity induced by the sigmoid

and RBF kernels leads to considerable gains at medium- and long-term time horizons. This

gain in performance comes at no substantial sacrifice, the algorithm remains scalable and

computationally fast.

There are several possible extensions. First, it is interesting to see how the per-

formance would change have we pre-selected the variables (targeting) before reducing the

dimensionality. As shown in [10] and [26] this generally leads to better precision. Second,

the forecasting accuracy can be compared with other nonlinear dimension reduction tech-

niques mentioned earlier, such as autoencoders. For the latter, however, one must be aware

of the possibility of implicit overfitting by tuning the network architecture. This is not

an issue in the current framework as there are a lot fewer parameters to specify. Third,

the static factors considered here could possibly be extended to dynamic factors ([56]), by

explicitly incorporating the time domain, or “efficient” factors, by weighing observations by

the inverse of the estimated variance.
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Appendices

2.A Decomposition of RBF kernel

Let x, z ∈ Rk and k(x, z) = e−γ‖x−z‖2 . Then through the Tailor expansion we can

write

k(x, z) = e−γ‖x‖
2

e−γ‖z‖
2

e2γx′z

= e−γ‖x‖
2

e−γ‖z‖
2
∞∑
j=0

(2γ)j

j!
(x′z)j

= e−γ‖x‖
2

e−γ‖z‖
2
∞∑
j=0

(2γ)j

j!

∑
∑k
i=1 ni=j

j!
k∏
i=1

(xiyi)
ni

ni!

=

∞∑
j=0

∑
∑k
i=1 ni=j

(
(2γ)j/2e−γ‖x‖

2
k∏
i=1

xnii√
ni!

)(
(2γ)j/2e−γ‖z‖

2
k∏
i=1

ynii
ni!

)

= ϕ(x)′ϕ(z)

That is, ϕj(x) =
∑

∑k
i=1 ni=j

(2γ)j/2e−γ‖x‖
2

k∏
i=1

xnii√
ni!
, j = 0, . . . ,∞.
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2.B Proof of Proposition 2

Proof. (a) First show that lim
γ→0

(2γ)−1K = XX ′, or lim
γ→0

(2γ)−1kij = X ′iXj , ∀i, j =

1 . . . T , where kij = k̃ij − 1
T

∑T
l=1 k̃il −

1
T

∑T
s=1 k̃sj −

1
T 2

∑T
m,p=1 k̃mp and k̃ij = e−γ‖Xi−Xj‖

2
2 .

By L’Hopital’s rule we can write lim
γ→0

(2γ)−1kij as

−1

2
‖Xi −Xj‖22 +

1

2T

T∑
l=1

‖Xi −Xl‖22 +
1

2T

T∑
l=1

‖Xl −Xj‖22 −
1

2T 2

T∑
l,m=1

‖Xl −Xm‖22 .

Next, use the fact that X is centered, that is X ′1 = 0 (zero column means) and hence∑T
l=1X

′
iXl =

∑T
l=1X

′
lXi = 0, ∀i = 1 . . . T . This allows to simplify the above as

−1

2
X ′iXi +X ′iXj −

1

2
X ′jXj +

1

2
X ′iXi +

1

T

T∑
l=1

X ′lXl +
1

2
X ′jXj −

1

T

T∑
l=1

X ′lXl = X ′iXj ,

∀i, j = 1 . . . T, completing the first step. Hence, since the eigenvectors are normalized, we

have lim
γ→0

(2γ)−1Keigr(K) = sXX ′eigr(XX
′) for s equal either to +1 or −1. Second, given

the SVD decomposition of X = UDV ′, we have XX ′ = V D2V ′ and X ′X = UD2U ′, with

D2 = L. Thus, XX ′eigr(XX
′)L−1/2 = UD = Xeigr(X

′X).

(b) First show that lim
γ→0

(γ(1 − tanh2(c0))−1kij = X ′iXj , ∀i, j = 1 . . . T , where

kij = k̃ij − 1
T

∑T
l=1 k̃il −

1
T

∑T
s=1 k̃sj −

1
T 2

∑T
m,p=1 k̃mp and k̃ij = tanh(c0 + γX ′iXj). By

L’Hopital’s rule

lim
γ→0

(γ(1− tanh2(c0))−1kij = X ′iXj − T−1
T∑
l=1

X ′iXl − T−1
T∑
l=1

X ′lXj + T−2
T∑

l,m=1

X ′lXm,

which immediately leads to the result once mean-zero property is taken into account. The

second step is analogous to that in (a).
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2.C Proof of Theorem 3

Proof. The proof of Theorem 3 for a linear case, ϕ(Xt) = Xt, is available in [8].

For a general finite-dimensional ϕ(·) the result follows by applying the original theorem to

a vector ϕ(Xt) instead.

2.D Bounded differences inequality

Theorem 7 ([86]) Given independent random variables X1, . . . , Xn ∈ X and a mapping

f : X n → R satisfying

sup
x1,...,xn,x′i∈X

∣∣f(x1, . . . , xi, . . . , xn)− f(x1, . . . , x
′
i, . . . , xn)

∣∣ ≤ ci,
then for all ε > 0,

P(f(X1, . . . , Xn)− E(f(X1, . . . , Xn)) ≥ ε) ≤ e
−2ε2∑n
i=1

c2
i .

2.E Proof of Lemma 10

Proof. Let Σx := ϕ(x)⊗ ϕ(x). Note that ‖Σx‖ = k(x, x) ≤ k̄, and hence

sup
x1,...,xT ,x

′
i∈X

∣∣∣∣∣∣
∥∥∥∥∥ 1

T

∑
x1...xi...xT

Σxi − EΣX

∥∥∥∥∥−
∥∥∥∥∥∥ 1

T

∑
x1...x′i...xT

Σxi − EΣX

∥∥∥∥∥∥
∣∣∣∣∣∣ ≤

sup
xi∈X

1

T
|‖Σxi − EΣX‖| ≤

2k̄

T
.
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Thus, by bounded difference inequality ([86]) we have

P
(∥∥∥Σ̂− Σ

∥∥∥− E
(∥∥∥Σ̂− Σ

∥∥∥) ≥ 2k̄

√
ε

2T

)
≤ e−ε.

Finally,

E
(∥∥∥Σ̂− Σ

∥∥∥) ≤ E
(∥∥∥Σ̂− Σ

∥∥∥2
)1/2

= T−1/2 E
(
‖ΣX − E(ΣX)‖2

)1/2
≤ 2k̄√

T
,

since E
(
‖ΣX − E(ΣX)‖2

)
= 〈ΣX − E (ΣX) ,ΣX − E (ΣX)〉 ≤ 4k̄2.

2.F Proof of Lemma 5

Proof. See the proof of Lemma 5.2 in [76].

2.G Proof of Theorem 6

Proof. Since ψi, ψ̂i are standardized to be unit length, we have
〈
ψi, ψ̂i

〉2
≤ 1 by

Cauchy-Schwarz inequality. Choosing eigenvector signs so that
〈
ψi, ψ̂i

〉
> 0, we have

∥∥∥ψi − ψ̂i∥∥∥2
= 2− 2

〈
ψi, ψ̂i

〉
≤ 2− 2

〈
ψi, ψ̂i

〉2
=
∥∥∥Πi(Σ)−Πi(Σ̂)

∥∥∥2
.

Using Lemma 5, ∥∥∥Πi(Σ)−Πi(Σ̂)
∥∥∥ ≤ 4δ−1

i (Σ)
∥∥∥Σ̂− Σ

∥∥∥ ,
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and hence through Lemma 10 we have

P
(∥∥∥ψ̂i − ψi∥∥∥ ≥ (1 +

√
ε

2

)
8k̄√
Tδi(Σ)

)
≤ e−ε,

which implies the result.

2.H Mercer’s Theorem

Theorem 8 ([88]) Given compact X ⊆ Rd and continuous K : X × X → R, satisfying

∫
y

∫
x
K2(x, y)dxdy <∞ and

∫
y

∫
x
f(x)K(x, y)f(y)dxdy ≥ 0, ∀f ∈ L2(X ),

where L2(X ) = {f :
∫
f2(x)dx < ∞}, then there exist λ1 ≥ λ2 ≥ . . . ≥ 0 and functions

{ψi(·) ∈ L2(X ), i = 1, 2, . . .} forming an orthonormal system in L2(X ), i.e. 〈ψi, ψj〉L2(X ) =∫
ψi(x)ψj(x)dx = 1{i=j}, such that

K(x, y) =

∞∑
i=1

λiψi(x)ψi(y), ∀x, y ∈ X .
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2.I Time Series

Table 2.I.1: Target variables from FRED-MD dataset.

Group Fred-code Description

Output & income RPI Real Personal Income
Labor market CE16OV Civilian Employment
Housing HOUST Housing Starts: Privately Owned
Consumption & inventories DPCERA3M086SBEA Real personal consumption
Money & credit M1SL M1 Money Stock
Interest & exchange rates FEDFUNDS Effective Federal Funds Rate
Prices CPIAUCSL CPI: All Items
Stock Market S&P 500 S&P’s Common Stock Price Index
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Chapter 3

Sparse Recovery for COVID-19

Group Testing

Abstract

1 Researchers and public officials tend to agree that until a vaccine is readily avail-

able, stopping SARS-CoV-2 transmission is the name of the game. Testing is the

key to preventing the spread, especially by asymptomatic individuals. With test-

ing capacity restricted, group testing is an appealing alternative for comprehensive

screening and has recently received FDA emergency authorization. This technique

tests pools of individual samples, thereby often requiring fewer testing resources

1This paper is published in the Journal of Data Science under the name “Fast and Efficient Data Science
Techniques for COVID-19 Group Testing,” co-authored with Ekaterina Seregina
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while potentially providing multiple folds of speedup. We approach group testing

from a data science perspective and offer two contributions. First, we provide an

extensive empirical comparison of modern group testing techniques based on simu-

lated data. Second, we propose a simple one-round method based on `1-norm sparse

recovery, which outperforms current state-of-the-art approaches at certain disease

prevalence rates.

3.1 Introduction

There is broad consensus among epidemiologists that massive testing a key to

preventing the spread of COVID-19. However, large-scale testing is not realistic due to

substantial restrictions in testing kits, chemical reagents, skilled personnel and time. Group

testing is an appealing alternative to individual testing that suggests to combine a set of

individual specimens into a common pool, and test the pool rather than each individual

sample. As long as the disease prevalence is not too large, testing pooled samples permits

to considerably reduce the total number of tests required for diagnosing the population.

First experiments with pooling samples trace back to dilution studies in 1915

([65]), which attempted to determine the presence or absence of organisms in a fluid based

on pooled information. Researchers cultured samples of the fluid to let the bacteria, if

they were present, grow, which served as a test. The results were then gathered across the

samples to infer the bacterial density in the original fluid.

Many academics, however, attribute the invention of group testing to a Harvard

economist Robert Dorfman, whose influential work ([45]) proposed a simple pooling method

45



for weeding out syphilitic men called up for induction. Instead of analyzing individual blood

samples for the presence or absence of a ”syphilitic antigen”, it is suggested to examine

pooled samples combining the individual blood sera into groups of five. If the corresponding

men are healthy, the pooled test should be negative. On the other hand, if at least one of

the patients is syphilitic, the pool will contain antigen, which the test is supposed to reveal.

In that case, all associated patients need to be retested individually. Putting aside possible

dilution concerns, it is clear that such strategy leads to savings of chemical reagents and

higher overall testing capacity in a population with low disease prevalence. The idea is

illustrated in Figure 3.1.1.

Stage 1:

♂ ♂ ♂ ♂ ♂

♂ ♂ ♂ ♂ ♂

♂ ♂ ♂ ♂ ♂

♂ ♂ ♂ ♂ ♂

♂ ♂ ♂ ♂ ♂

♂ ♂ ♂ ♂ ♂

=⇒ Stage 2:

• • • • •
♂ ♂ ♂ ♂ ♂

• • • • •
• • • • •
♂ ♂ ♂ ♂ ♂

• • • • •

Figure 3.1.1: Dorfman pooling illustration.

“User” icons represent individuals, red are infected and grey are healthy. In the first stage, all
N = 30 specimen are pooled into N/n = 6 groups (rows) of n = 5, which are then tested. In the

second stage, everyone in infected groups (rows two and four) is tested individually. As a result, it
is possible to detect k = 2 positives with 6 + 10 < N = 30 tests.

Due do its simplicity, Dorfman’s two-stage approach has found widespread use in

medicine. Many of its properties are also readily available. Suppose we collect N individual

samples and pool them into N/n groups of size n. Given the disease prevalence rate per
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hundred, p (which is also the probability of a randomly selected individual being positive),

the expected number of tests for diagnosing the population is

E(T ) = N/n+ (1− (1− p)n)︸ ︷︷ ︸
P(at least one positive)

n
N

n
. (3.1)

The first term on the right-hand side corresponds to the number of tests in the

first stage, the second term is n times the expectation of a random variable distributed as

Bi(N/n, (1 − (1 − p)n)), characterizing the number of positive groups in the second stage.

Clearly, this method is more beneficial at a lower prevalence rate p. For fixed E(T ) and p,

one could also optimize over the pool size n to get the largest possible coverage N ,

n∗ =
2W (−1

2

√
− ln(1− p))

ln(1− p)
, (3.2)

where W (·) is the Lambert W function. Notice that this also is decreasing in p and, inter-

estingly, is independent of E(T ). The expected number of tests per person is approximately

minimized when the group size is n = 1/
√
p and hence the expected number of tests per

person is 2
√
p. Graphs illustrating the above relationships are provided in Appendix 3.A.

[109] proposed a modification to Dorfman’s second stage: instead of testing every

individual, one would only do so until a positive sample is found, after which continue with

group testing. In that case, if the prevalence is low, it is likely that the new sub-pool will

be negative. This leads to an increase in savings of tests from Dorfman’s 80% (compared to

individual testing) to 86% at 1% rate. There have been other alternatives as well, e.g. [107],
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halving techniques in [83] and others. These methods generally trade off higher efficiency

with more complexity and longer wait times.

In group testing literature, Dorfman’s approach and its modifications are classi-

fied as adaptive (or hierarchical), in a sense that they “adapt” to the results of preceding

stages. An alternative approach, known as non-adaptive (or non-hierarchical), designs a

single-stage experiment, results of which should allow to infer (often in a probabilistic man-

ner) the original assignment of positives and negatives. This should generally, although

not necessarily, come at the cost of having to run more tests overall since the sequential

approach takes in more information. A distinctive feature of the non-adaptive approach

is in assigning a single individual to multiple groups, i.e. groups are overlapping. How to

design such assignment is a crucial question that is considered later. In a scenario such

as the current SARS-CoV-2 pandemic, with the disease spreading fast and standard test-

ing kits not showing results immediately, such non-adaptive approaches would have a clear

advantage.

Furthermore, with multiple stages of testing, adaptive techniques also bear the

risk of running out of tests before learning the outcomes. Given a limited number of tests,

Dorfman’s approach may require more test than are available. In contrast, single-round

designs do not suffer from such indeterminacy.

Hence, we focus on such “fast” single-stage techniques. We consider several recent

combinatorial and probabilistic algorithms. Importantly, we propose a simple method based

on `1-norm sparse recovery, which outperforms the above algorithms.
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Pooling strategies help resolve two kinds of problems, namely estimation and clas-

sification. The first seeks to estimate the prevalence of positive individuals in a population.

The second, which may or may not rely on the information on estimated prevalence, aims to

identify the infected individuals. The performance is typically gauged by the expected num-

ber of tests required for a given specificity or sensitivity, or conversely, based on predictive

accuracy for a given number of tests. We focus on classification.

3.1.1 RT-qPCR test

The two main ways of determining whether an individual has a SARS-CoV-2

virus are (1) to check for the presence of antibodies to the virus, (2) to check for the

presence of the virus RNA itself. The former, although capable of uncovering whether a

recovered individual had the virus in the past, is less widespread; the latter includes so-called

reverse transcription quantitative polymerase chain reaction (RT-qPCR), the gold standard

for COVID-19 testing recommended by the Centers for Disease Control and Prevention.

Though popular, massive individual PCR testing is not possible due to serious constraints

in equipment, chemical reagents and skilled personnel. The resulting readouts of RT-qPCR

are of key interest to this study so we briefly describe the testing process.

To perform this test, nasopharyngeal swabs from subjects are collected and diluted

in a fluid medium. The first stage, reverse transcription, then transforms the virus RNA to

complementary DNA (cDNA). This eventually allows to start the next stage, polymerase

chain reaction, which aims to exponentially amplify the viral cDNA molecules through the

process that involves up to nearly 40 cycles of heating and cooling. To trace this increase,

the virus-specific sequences are marked by fluorescent. The testing machine then measures
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the amount of fluorescent signal in real time and displays it as a function of cycles. This

information we are interested in is when (if at all) the fluorescence exceeds the critical level

associated with a positive subject. This is given by a cycle threshold (Ct), the number of

cycles completed before crossing the threshold. The subject is then declared positive if the

threshold is exceeded before about 40 cycles. The Ct indicator is (negatively) correlated

with the original viral load, with larger initial viral loads leading to sooner crossing of the

threshold and thus shorter cycle thresholds. The entire process takes up to approximately

4 hours.

The information on cycle thresholds of pooled samples is the key input to group

testing algorithms. Surprisingly, many known group testing algorithms do not take this

quantitative information into account and instead work with degenerate binary transfor-

mations. The algorithm proposed in this study is capable of not only incorporating the

quantitative information, but also producing corresponding quantitative predictions mea-

suring the original individual viral loads.

3.1.2 Biomedical Considerations

One of the major concerns with pooling approaches is dilution. Fortunately, there

is growing evidence that pooling of SARS-CoV-2 with negative samples does not lead to

substantial dilution of the virus DNA. In a recent study ([127]), Israeli researchers discovered

that it is possible to detect a single positive SARS-CoV-2 sample in pools of up to 64 samples

with reasonably high accuracy. That is, the fluorescent signal of a pooled positive sample,

diluted with up to 63 negative samples, amplifies sufficiently to cross the required threshold.

Other investigations ([1], [64], [90]) tend to agree with such claims.
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Pooled testing for SARS-CoV-2 has been conducted in a number of countries,

including the United States (Stanford Health Care Clinical Virology Laboratory and Ne-

braska’s Public Health Laboratory), Germany (University Hospital Frankfurt at Goethe

University), China and Israel (Rambam Health Care Campus).

Group testing has been used for detecting the HIV ([48]); in fact, it is now a routine

option in blood screening. Pooling not only decreases the cost but also the probability of

making an error in low disease prevalence populations. Pooling has also been deployed

against malaria ([114]), influenza ([119]) and a few other diseases. It has also found its use

in non-medical settings, for example detecting defective units in manufacturing, computer

fault diagnosis or testing collections of documents in data forensics.

3.2 Non-adaptive Group Testing

We first briefly review some of the recent non-adaptive algorithms introduced in

the literature ([34]). As all are one-round approaches, it is required to construct an m×N

pooling matrix A 2, which would assign each of the N individuals to one or more of the m

groups. As opposed to adaptive testing, we may have the same subject sample split among

several groups. Figure 3.2.1 illustrates the idea. The corresponding pooling matrix has its

(i, j)th entry equal to one if an ith individual is assigned to group j, i ≤ N, j ≤ m, and

zero otherwise. One would typically also normalize the matrix, but this does not raise any

substantial challenges so we omit this issue.

2This matrix is not to be confused with the (N/n) × n Dorfman “matrix” in Figure 3.1.1. Dorfman
approach does not involve allocating individuals to groups.
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♂ ♂ ♂ ♂ ♂ . . . ♂
Test 1 ○ + ○ + + . . . +
Test 2 + ○ + ○ + . . . +
Test 3 + + ○ + ○ . . . +
Test 4 ○ + + + ○ . . . ○

. . .

Test m + + ○ + + . . . ○

Figure 3.2.1: Illustration of a pooling matrix assigning N individuals to m pooled tests.

A black circle indicates that the corresponding individual (column) has been assigned to the given
test (row). If an individual is assigned to several tests, his sample is split accordingly.

Once the pooling matrix is specified, one then observes the results of m pooled

tests via an m× 1 vector y and the goal is to identify which of the N � m individuals are

truly positive. We briefly discuss novel algorithms and provide an intuitive explanations

behind their principles. Exact algorithmic formulations can be found in our code.

Combinatorial Basis Pursuit (CBP) is a simple algorithm that is based on the

following idea: declare all individuals that were included in negative pools as negative

(since if at least one sample was positive, the entire group would have been positive), and

declare the remaining individuals as positives. Since this strategy would identify healthy

individuals for certain, it will not produce any false negatives.

Instead of looking at each test (row), one may instead try to decode the matrix

“column”-wise, i.e. by going over the individuals. This is what the combinatorial orthogo-

nal matching pursuit (COMP) algorithm does: if all tests an individual participated in turn

out to be positive, then the individual is considered to be infected, and negative otherwise.

This deciphering method never produces false negatives, only false positives. A false posi-

tive would only occur if a healthy individual happened to always participate in tests that

contained at least one infected sample; the probability of this happening decreases with m.
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Definite defectives (DD) algorithm starts with COMP to leverage its ability of

identifying true negatives. Once COMP is over, DD switches to “row”-wise search by

looking at positive tests and seeks to determine individuals that are “definite defectives”

(positives). All remaining subjects are declared negative. This reversal in the algorithm

leads to DD producing only false negatives, and no false positives. This leads to greater

accuracy in sparse settings: because there are a lot more healthy subjects, one should by

default assume that an individual is not infected, all else equal.

Finally, sequential COMP (SCOMP) further attempts to improve DD by modify-

ing its last step of labeling remaining subjects as negatives. The key is to observe that if

the current set of individuals that are declared positive cannot explain all of the positive

pooled tests, one can do better by sequentially declaring potential positives as positives

until the set of positives accounts for all positive tests. From a list of potential candidates,

the algorithm picks the one that would account for the largest number of unexplained tests.

SCOMP has been shown to perform close to the information-theoretic bound.

3.3 Problem Formulation

We now turn to our algorithm that leverages recent advancements in the field of

compressed sensing in engineering and statistics literature ([30, 43]). Our main goal is to

efficiently infer x, the N -dimensional sparse vector of individual viral loads, from m � N

available group test results stacked in a vector y. In general, we have y = g(Ax)+ε, however

we will restrict our attention to the simplest case when y = Ax + ε. Hence, A ∈ Rm×N

represents a set of linear measurements on the variable of interest x. This formulation has
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a crucial difference with regression type of problems: in our setting one gets to choose how

to design the pooling matrix A, while in regression problems A is pre-determined by the

data. Thus, there are two steps to solving such problems.

The first step is to encode the sparse signal, by designing a proper pooling matrix

A. This matrix provides the assignments for each individual specimen to the corresponding

groups and must satisfy certain desirable conditions pertaining to the group testing problem.

The second step attempts to decipher the first step with fewest test measurements.

For a large-dimensional vector x finding the corresponding sparsest vector that would be

consistent with m pooled observations is an NP-hard problem. However, recent advance-

ments in engineering allow to transition this problem to a convex domain where exact

decoding is feasible with high probability.

While x is generally a vector of quantitative measurements of all individuals, one

can equivalently think of it as a sparse vector, i.e. with most entries equal to 0 (associated

with healthy individuals) and very few 1’s, without loss of generality. What matters is that

the vector needs to be sparse in some transformed coordinate system.

3.3.1 Pooling Matrix Design

We first focus on the design of a pooling (also known as sensing or measurement)

matrix A. Due to the nature of our primary application, we only consider sparse pooling

matrices with few nonzero elements. When properly formed, this should ensure there is not

too much dilution: a single sample is not split into too many subsamples and any one group

sample does not contain too many specimens. The simplest approach would be to generate a

random Bernoulli matrix with entries, which together with a normally distributed random
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matrix, has been shown to satisfy desirable properties, mainly the null space condition

(NSC) and the restricted isometry property (RIP) discussed later, that guarantee a precise

recovery of the original vector of interest with high probability.

We instead use a pooling matrix that was proposed in a different branch of group

testing literature. Known as a constant column weight design ([2]), it was shown to outper-

form simple Bernoulli matrices in terms of its encoding capabilities. The initial approach

outlined in [2] constructs A by inserting up to an L of ones into each column. Concretely,

L indices of each column are sampled with replacement and ones are inserted in the unique

positions. This complication seems to be necessary for their proofs, however the real per-

formance does not depend on whether one bootstraps or simply permutes a fixed number

of ones. Hence, we focus on a simpler, permutation version. One example of such matrix

with N = 6, L = 2 and m = 4 is



1 0 1 0 0 1

0 1 0 1 0 1

1 1 0 0 1 0

0 0 1 1 1 0



As discussed earlier, the ith individual is assigned to group j only if the (i, j)th entry is 1.

This design avoids too much dilution as long as 0 < L < m� N , and outperforms Bernoulli

design. For simplicity, in our experiments we set L = dm/2e (rounded up), but this value

could be theoretically and practically optimized as is done in [2] and [66]. Importantly,

we prove that this design is RIP which has immediate theoretical implications, which are

discussed in the next section.
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Theorem 9 A random matrix A ∈ Rm×N of constant column weight design with L ones in

each column satisfies the restricted isometry property with high probability, specifically there

exists δ ∈ (0, 1) such that

(1− δ) ‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ) ‖x‖22

holds with high probability for any x ∈ RN and 0 < L < m.

Proof. See Appendix ??.

The `p norm of a vector v ∈ Rd is ‖v‖p =
(∑d

i=1 |vi|p
)1/p

, which is a norm for

1 ≤ p ≤ ∞.

3.3.2 `1-norm Sparse Recovery

Once m measurements in y are formed, one can employ several strategies for

decoding the original signal. A direct, brute force approach to tackle the problem would be

to find the sparsest vector of viral loads x that is consistent with the linear measurements,

that is

min
x∈RN

‖x‖0 s.t. ‖Ax− y‖2 ≤ ε.

Unfortunately, this problem is NP-hard as its solution requires an exhaustive search

over all possible combinations in x, although this may still be feasible for low-dimensional

problems. Luckily, a convenient convex relaxation is available, which has been proven to

yield accurate solutions as long as the sensing matrix A satisfies RIP ([30],[43]). This is
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a sufficient condition, which Theorem 9 shows to hold with high probability. In practice

one could generate a random matrix and attempt to verify whether RIP holds for a given

matrix, although doing so is by itself NP-hard ([17]). The corresponding convex alternative

is

min
x∈RN

‖x‖1 s.t. ‖Ax− y‖2 ≤ ε. (3.3)

This is known as Basis Pursuit Denoising ([102]), although many statisticians are

more familiar with its equivalent formulation, Lasso,

min
x∈RN

‖Ax− y‖22 + λ ‖x‖1

The two problems are identical for certain choices of ε and λ. We simply add a nonnegativity

constraint x ≥ 0 which reflects the inherent characteristic of the problem and also improves

the empirical performance.

This type of `1-norm recovery uses m = O(k log(N)) tests while standard group

testing algorithms require m = O(k2 log(N)) tests. Another advantage of this approach

is its ability to handle real-valued quantitative readouts; many group testing algorithms

are only capable of dealing with binary measurements. Furthermore, the output is also a

real-valued number estimating individual’s viral load.
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3.4 Application

This section compares the performance of the above algorithms in simple numerical

experiments with no noise. For clarity of exposition, the vector of interest x is generated to

be a binary 0-1 vector instead of a real-numbered qPCR-like measurements. More general

treatments can be found in our code.

We consider a case with N = 100 specimens where there are k = 2 true positive

cases. This is a conservative estimate in a sense that this share of positives is larger than

the share of active cases in the United States as of December 1, 2020 ([124]). In Appendix

3.C we additionally report cases with k = 1, 3, 4, 5.

To illustrate, we generate a 100-dimensional binary vector with 2 ones and the

sensing matrices as described above to obtain m = 20 linear measurements. We then ap-

ply the decoding algorithms to try to infer the original binary vector (both the number of

positive k and their positions) with only 20 measurements. Figure 3.4.1 demonstrates a

particular realization where only the proposed algorithm, denoted as SR (for sparse recov-

ery), is capable of correctly identifying the positions. Other algorithms produce either false

positives, false negatives or both.

Specifically, to obtain SR estimates we first solve

x̃ = arg min
x∈RN

‖Ax− y‖22 + λ ‖x‖1 , x ≥ 0, (3.4)
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which generally would not produce 0-1 estimates. Hence we simply round the estimates at

the threshold value of τ = .5, that is x̂i =


1 if x̃i ≥ τ

0 if x̃i < τ.
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True COMP DD CBP SCOMP SR

Figure 3.4.1: Identification of negative and positive positions.

Only the proposed (SR) algorithm is able to successfully determine which samples correspond to
positive/negative specimens.

Next, we repeat this process for 1000 iterations across different group sizes m

and report the average root mean square error (RMSE) plotted against the number of test

measurements m in Panel A of Figure 3.4.2. RMSE is defined as
‖x−x̂‖2
‖x̂‖2

, where x is a true

binary vector and x̂ is one of the estimates. We still keep N = 100 and k = 2, but Appendix

3.C reports cases for k = 1, 3, 4, 5.

As can be seen, the proposed method makes approximately the same error with

m = 15 tests as the best alternative (SCOMP) with m = 30 tests. For comparison,

Dorfman approach would require approximately m = 30 tests and two testing stages. As

the more detailed comparison in Appendix 3.C shows, SR is still superior for k ≥ 2, but

loses dominance to SCOMP for k = 1.
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Figure 3.4.2: RMSE, Sensitivity, Specificity and ROC for N = 100, k = 2.

Panel A: RMSE of each approach as a function of test measurements m. SR outperforms standard
non-adaptive group testing algorithms. Panel B : Sensitivity of each approach as a function of test

measurements m. Panel C : Specificity of each approach as a function of test measurements m.
Panel D : ROC, thresholding SR estimates. AOC = .9995.

However, RMSE does not tell the whole story. One is also interested in sensitivity

(or true positive rate) and specificity (or true negative rate). These are defined as the ratio

of identified positives to all true positives and the ratio of identified negatives to all true

negatives respectively, and reported in Panel B and C of Figure 3.4.2.

Notice that CBP and COMP report perfect sensitivity. This is a sanity check

since these algorithms should not produce any false negatives. Among the other algorithm

SR is again a clear winner. Naturally, the relationship between the two groups reverses for
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specificity: we have SR, COMP and DD achieving ideal (or almost ideal) specificity with a

minimum number of tests, while COMP and CBP slowly catch up.

Additionally, we plot the receiver operating characteristic curve (ROC) for SR in

Panel D of Figure 3.4.2, where we keep the same parameter values N = 100, m = 20, k = 2.

The corresponding area under the curve (AUC) is .9995. This curve traces the true and

false positive rates for different values of the threshold τ . The figure is indicative of a strong

classification ability of the proposed method.

Finally, we report so-called improvement factors in Table 3.4.1, given as the ratio

of the number of specimens N to the expected number of tests required for achieving at

least 95% in specificity & sensitivity. When needed, the expected number is computed

through Monte Carlo averaging. An improvement factor measures the effectiveness of a

given method by computing how many more tests standard individual testing would need

compared to a group testing algorithm. It essentially provides an estimate of how many

individuals one group test effectively “covers”. For the five prevalence ratios, SR dominates

both the non-adaptive algorithms and Dorfman approach for k/N ≥ 2%, while both CBP

and SCOMP seem to be more efficient for k/N = 1%.

k
N = 1% k

N = 2% k
N = 3% k

N = 4% k
N = 5%

Dorfman 4.02 3.37 2.93 2.60 2.34
COMP 8.10 4.69 3.63 2.80 2.21
DD 6.25 2.86 2.39 1.99 1.99
CBP 9.42 4.49 3.60 2.81 2.19
SCOMP 9.83 3.95 3.06 2.48 2.10
SR 8.69 7.14 5.54 4.42 3.07

Table 3.4.1: Improvement factors, N/E(# of tests), for different prevalence rates.
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3.5 Related Work

A closely related work by [128] also considers the techniques based on compressed

sensing. However, there are differences in both encoding and decoding steps. While their

pooling matrix is also sparse, its 0-1 entries are generated from Bernoulli distribution with

probability .5. [2] and [66] compared the encoding capabilities of Bernoulli and constant

column weight design matrices and documented substantial theoretical and empirical supe-

riority of the latter in nonadaptive testing settings. The superiority is even more pronounced

for sparse settings; in fact, such design “in sparse cases is the best proven performance of

any practical algorithm” ([2]). Furthermore, Bernoulli design is not suitable for biomedical

considerations as it is prone to undesirable extremes: one may have columns with all ze-

roes (or all ones) which corresponds to the case when the sample is not used at all (or is

being split into too many subsamples); this is excluded by constant column weight design

with 0 < L < m. Another design [128] consider are expander matrices, which perform

on par with Bernoulli in their experiments. However, the precise structure (for example,

the number of ones per column) and theoretical fitness of such matrices are not discussed.

Their decoding algorithm is non-negative BPDN (Eq. (3.3) coupled with a nonnegativity

constraint) which has a less readily available software implementation than non-negative

Lasso. We were not able to obtain the code of [128] to make a direct comparison.

Another extensive study by [58] also focuses on sparse nonadaptive methods. Re-

searchers used so-called Kirkman triple matrices, which as in our work assign a finite number

of 1′s per column. However, this design suffers from a major restriction on the dimensions

of the sensing matrix, m and N , the number of groups and individuals respectively. Specif-
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ically, m is only allowed to be an integer multiple of 3, while N needs to be an integer

multiple of m/3. This makes direct Monte Carlo comparison with classical approaches, as

is done e.g. in Figure 3.4.2, difficult, since m cannot vary freely. To resolve this by sequen-

tially “truncating” their pooling matrix, i.e. only taking the first m rows from a fixed size

24 × 60 Tapestry matrix. The results are plotted in Appendix 3.D. Our approach is more

precise for lower disease prevalence rates, approximately for k/N ≤ 8%. Finally, although

their matrix is claimed to satisfy RIP, we have not seen the proof.

3.6 Concluding Remarks

Pooled testing has been around for more than 70 years and has been successfully

employed against a number of diseases. There are reasons to believe that pooling can also

be effective against SARS-CoV-2. First, low prevalence of the virus is crucial to making

group testing effective. Second, the recent evidence with dilution experiments suggests that

pooling can be a viable method. Third, pooling is also compatible with the widely used

testing kits such as RT-qPCR. Finally, group testing has been authorized by the FDA ([54]),

which claimed it to be “especially important as infection rates decline and we begin testing

larger portions of the population.”

To this end, we considered a simple one-stage group testing method that is able to

diagnose a large number of specimens with the fewest number of tests and thus substantially

increase the throughput of testing. Our approach does not require to know the number of

positive samples in population to run and compares favorably based on the experiments on

synthetic data. It produces very few false positives and false negatives, and is also capable
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of predicting viral loads. Compared to widely used adaptive strategies it minimizes latency

in delivering test results, while compared with non-adaptive strategies it only requires m ∼

O(k log n) tests. The numerical results suggest this approach is appealing for a wide range of

prevalence rates; particularly, it outperforms standard non-adaptive methods at prevalence

rates greater than 1%, and performs better than Kirkman matrices ([58]) for prevalence

rates lower than 8%.

Supplemental Material

The code supplement [78] is available in Google Colab environment. It is written in

Python and readily allows to replicate all the graphs provided, as well as produce additional

exercises.
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Appendices

3.A Dorfman group testing figures
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Figure A.1: Dorfman group testing

Upper left : Dorfman theoretical optimal pool size, n∗, plotted over the prevalence rate, p. Larger
pools sizes are preferred at a lower disease prevalence. Upper right : Dorfman expected number of

tests, E(T ), plotted over the prevalence rate, p. The benefits of classical approach diminish at
higher prevalence rates. Lower : Number of individuals, N , Dorfman strategy can cover at 2%

prevalence with T = 1500 tests, plotted over the number of groups, N/n. The maximum is
achieved at n = n∗.

3.B Proof of Theorem (9)

A = {a}ij is an m×N matrix where each column randomly permutes 0 < L < m

ones among zeros. Without loss of generality, let us assume that each column has been de-

meaned and normalized to be of unit length, i.e. divided by

√
L
(
1− L

m

)2
+ (m− L)

(
L
m

)2
=√

L
(
1− L

m

)
. It is then evident that E(aij) = 0 and E(a2

ij) = 1
m .

First, we want to show that for any fixed x ∈ RN , the random variable ‖Ax‖22

concentrates around its mean, i.e.

Pr
(∣∣∣‖Ax‖22 − ‖x‖

2
2

∣∣∣ ≥ ε ‖x‖22) ≤ 2e−m(ε2/4−ε3/6). (3.5)
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For i = 1, . . . ,m, denote ci the ith entry of Ax, i.e. ci =
∑N

j=1 aijxj , then

E ci = E

 N∑
j=1

aijxj

 =

N∑
j=1

E(aij)xj = 0,

E(c2
i ) =E

 N∑
j=1

aijxj

2 = E

 N∑
j=1

(aijxj)
2 + 2

N∑
l=1

N∑
m=1

aljamjxlxm


=

N∑
j=1

E(a2
ij)x

2
j + 2

N∑
l=1

N∑
m=1

E(alj)E(amj)xlxm =
1

m
‖x‖22 ,

and hence E(‖Ax‖22) = E
(∑m

i=1 c
2
i

)
=
∑m

i=1 E(c2
i ) = ‖x‖22.

Since ‖Ax‖22 is proportional to ‖x‖22, it is sufficient to demonstrate the concentra-

tion for arbitrary unit vectors. For all fixed unit vectors x ∈ RN ,

P
(
‖Ax‖22 > 1 + ε

)
= P

(
et‖Ax‖22 > et(1+ε)

)
(3.6)

< E
(
et‖Ax‖22

)
e−t(1+ε), (3.7)

where (3.6) and (3.7) simply apply the Chernoff technique for t > 0. Now, because the

columns ci are i.i.d. we have E
(
et‖Ax‖22

)
= E

(
et

∑m
i=1 c

2
i

)
=
(
E
(
etc

2
1

))m
, leading to

P
(
‖Ax‖22 > 1 + ε

)
<
(
E
(
etc

2
1

))m
e−t(1+ε) (3.8)

≤ (1− 2t/m)−m/2e−t(1+ε), (3.9)
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where (3.9) follows from Lemma 10. Optimizing this bound with respect to t, t∗ = mε
2(1+ε) ,

we can write

P
(
‖Ax‖22 > 1 + ε

)
< ((1 + ε)e−ε)m/2 (3.10)

< e−m(ε2/4−ε2/6), (3.11)

where the last inequality comes from truncating the Taylor approximation of (3.10). Simi-

larly, for the other bound,

P
(
‖Ax‖22 < 1− ε

)
<
(
E
(
e−tc

2
1

))m
et(1−ε) (3.12)

<
(
E
(
1− tc2

1 + t2c4
1/2
))m

et(1−ε) (3.13)

≤
(

1− t

m
+

3t2

2m2

)m
et(1−ε) (3.14)

=

(
1− ε

2(1 + ε)
+

3ε2

8(1 + ε)2

)m
e
mε(1−ε)
2(1+ε) (3.15)

< e−m(ε2/4−ε3/6), (3.16)

where (3.13) and (3.16) is a Taylor approximation, (3.14) uses the fact E(c4
1) = 1

m2 ≤ 3
m2

and (3.15) plugs in the earlier value of t∗.

Lemma 10 For m ≥ 1 and all x ∈ RN s.t. ‖x‖22 = 1, E
(
etc

2
1

)
≤ (1 − 2t/m), ∀t ∈

[0,m/2].
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Proof. Let W ∼ N (0, 1
m), then

E
(
etc

2
1

)
=
∞∑
i=1

ti

i!
E
(
c2i

1

)
(3.17)

≤
∞∑
i=1

ti

i!
E
(
W 2i

)
(3.18)

=E
(
etW

2
)

(3.19)

=(1− 2t/m)−1/2. (3.20)

Observe that for t ∈ [0,m/2] the expectations in (3.17) and (3.19) are bounded, allowing

to push the expectation inside the limiting sums in (3.17) and (3.18). Inequality in (3.18)

holds since E(c2i
1 ) = m−i ≤ E

(
W 2i

)
= m−i (2i)!

i!2i
holds for each i = 0, 1, 2, . . ..

Given the concentration of ‖Ax‖22 around its mean, RIP follows from Lemma 5.1

in [18], which is adapted and reiterated below for completeness.

Lemma 11 Let a random matrix A ∈ Rm×N satisfy the concentration inequality in (3.5).

Then, for any set T with q = #(T ) < m and any 0 < δ < 1, we have

Pr
(

(1− δ) ‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ) ‖x‖22
)
≥ 1− 2(12/δ)qe−(δ/2)m(ε2/4−ε3/6)

Proof. See Lemma 5.1 in [18].
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3.C Additional experiments for k = 1, 3, 4, 5
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Figure A.2: Additional experiments for N = 100 and k = 1, 3.

Rows represent RMSE, sensitivity and specificity (top to bottom), columns correspond to k = 1
and k = 3 (left to right) infected individuals in population of N = 100. The proposed approach is

second-best for k = 1 and the best for k = 3.
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Figure A.3: Additional experiments for N = 100 and k = 4, 5.

Rows represent RMSE, sensitivity and specificity (top to bottom), columns correspond to k = 4
and k = 5 (left to right) infected individuals in population of N = 100. The proposed approach

retains its desirable properties.
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3.D Comparison with Tapestry ([58])
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Figure A.4: RMSE comparison for N = 60, k = 1, 2, 3, 4, 5, 6.

The proposed SR method dominates Tapestry ([58]) for k = 1, 2, 3, 4, but seems to be less precise
for k = 5, 6.
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Chapter 4

High-Dimensional Covariance

Estimation

Abstract

1Covariance matrix estimates are required in a wide range of applied problems in

multivariate data analysis, including portfolio and risk management in finance, fac-

tor models and testing in economics, and graphical models and classification in

machine learning. In modern applications, where often the model dimensionality

is comparable or even larger than the sample size, the classical sample covariance

estimator lacks desirable properties, such as consistency, and suffers from eigenvalue

1This paper is co-authored with Ekaterina Seregina.
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spreading. In recent years, improved estimators have been proposed based on the

idea of regularization. Specifically, such estimators, known as rotation-equivariant

estimators, shrink the sample eigenvalues, while keeping the eigenvectors of the

sample covariance estimator. In high dimensions, however, the sample eigenvectors

will generally be strongly inconsistent, rendering eigenvalue shrinkage estimators

suboptimal. We consider an estimator that goes beyond mere eigenvalue shrinkage

and aims at precise estimation of eigenvectors in sparse settings, without requiring

eigenvalues to diverge. The rate of convergence is provided in terms of spectral

norm and it achieves the optimal rate under reasonable assumptions. We also pro-

vide a numerical simulation demonstrating the superior performance of the proposed

estimator as compared to the competition.

4.1 Introduction

Covariance matrix estimation is fundamental to multivariate statistical analysis.

In statistics and machine learning, some of its applications include graphical modeling,

clustering, classification by linear or quadratic discriminant analysis and dimensionality

reduction by PCA. In finance, covariance estimates play a central role in portfolio opti-

mization and risk management. In economics, its uses include Kalman filtering, factor

analysis, hypothesis testing, GLS and GMM. Covariance estimation is also key in many

application in signal processing, bioinformatics and several other fields.

With rapidly increasing availability of data, the analysis of covariance matrices in

the low-dimensional (or classical) regime quickly becomes obsolete. This paper considers a
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large-dimensional framework, where the number of variables p is comparable or even larger

than the sample size n. In such settings, the sample covariance estimator S loses desirable

properties and its classical theoretical foundations break down. For instance, if p > n, S is

not full rank, so the inverse does not exist. Even when S is invertible, its inverse is highly

biased for the theoretical inverse when p and n are comparable. In portfolio optimization

this may lead to imprecise and highly volatile weights. Several other major issues such as

eigenvalue spreading and eigenvector inconsistency are considered in this manuscript.

On the other hand, while a generic high-dimensional analysis is complicated, spar-

sity may be a reasonable simplifying assumption to resort to. Furthermore, in applications

ranging from genomics to finance, sparsity-inducing approach may be preferred to unre-

stricted estimation. For example, assets weights in eigenportfolio methodology are propor-

tional to the corresponding eigenvector entries; hence, sparse estimation of an eigenvector

leads to more parsimonious allocations with less associated transaction costs. In addition,

sparse estimates are easier to interpret.

The literature on covariance estimation proposes some remedies to tackle these

challenges. One approach is to shrink a high-variance sample estimator to some structured

matrix which may be highly biased and thus produce a better estimator which would achieve

optimal bias-variance trade-off. Another approach is to assume a low-dimensional struc-

ture in the data as in factor models and consider the implied covariance. Statisticians and

mathematicians have also looked into estimation based on the behavior of random matrices,

where the analysis is primarily driven by theoretical advancements in random matrix theory.
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This paper proposes an estimator that is suitable for the high-dimensional regime,

analyzes its theoretical properties and provides a numerical experiment comparing it with

the alternative methods. The manuscript is structured as follows. Section 2 describes some

of the phenomena and challenges that arise in settings where the number of dimensions is

large, reviews some existing approaches and, in this context, motivates the proposed esti-

mator. Section 3 described the model setup, introduces the estimator and point out the

similarities with the factor model framework. Section 4 considers a numerical simulation

and Section 5 concludes and mentions possible extensions.

Notation. For a vector v ∈ Rd, we write its i-th element as vi. The corresponding `p

norm is ‖v‖p =
(∑d

i=1 |vi|p
)1/p

. For a matrix A ∈ Rm×d, we write its (i, j)-th entry as

{A}ij and denote its i-th row (transposed) and j-th column as column vectors Ai· and A·j

respectively. Its singular values are σ1(A) ≥ σ2(A) ≥ . . . ≥ σq(A), where q = min(m, d).

The spectral norm is a matrix operator norm induced by the Euclidean norm, ‖A‖2 =

max
v 6=0

‖Av‖2
‖v‖2

= σ1(A). The max and Frobenius norms are given as ‖A‖max = max
i,j
|aij | and

‖A‖F =
√
tr(A′A) =

√∑q
i=1 σ

2
i (A) respectively. Finally, for a sequence of random variables

{Xn}∞n=1 and a sequence of real nonnegative numbers {an}∞n=1, denote Xn = OP(an) if

∀ε > 0, ∃M,N > 0 such that ∀n > N, P(|Xn/an| ≥ M) < ε; and denote Xn = oP(an) if

∀ε > 0, lim
n→∞

P(|Xn/an| ≥ ε) = 0. Finally, let 1(·) be an indicator function and Id is a d× d

identity matrix.
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4.2 Background & Related Literature

We observe a data matrix X ∈ Rn×p, where n and p are the number of observations

and the number of variables respectively. Denote the population covariance matrix by

Σ ∈ Rp×p and write its eigendecomposition as

Σ = ULU ′ =

p∑
j=1

`juju
′
j ,

where U = [u1 · · · up] is an orthonormal matrix of eigenvectors, and L = diag(`1, . . . , `p)

is a diagonal matrix of eigenvalues with `1 ≥ . . . ≥ `p. The sample covariance estimator is

given as S := 1
nX
′X (demeaned data) and we write its eigendecomposition as

S = V ΛV ′ =

p∑
j=1

λjvjv
′
j ,

with V = [v1 · · · vp] and Λ = diag(λ1, . . . , λp).

4.2.1 Sample Eigenvalues

It is well-known that S is unbiased and consistent in a classical regime, i.e. when

p is fixed and n diverges. Furthermore, it is generally invertible and has an asymptot-

ically normal spectral distribution centered around the true value ([4]),
√
n(λi − `i)

d→

N (0, 2`2i ), j ≤ p.

However, it was observed that many of the desirable properties cease to hold once p

also grows, specifically when γ := lim p
n ∈ (0,∞). In fact, consistent estimation of the entire
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spectrum becomes a lot more problematic as both sample eigenvalues and eigenvectors tend

to concentrate beyond their true destination.

Specifically, [84] derived the empirical distribution of sample eigenvalues, which

became known as Marčenko-Pastur distribution. In its simple formulation when Σ = Ip,

the empirical distribution of sample eigenvalues of a random matrix Fp(x) := 1
p#{λj ≤ x}

approaches a limiting distribution for which the density is given as

fMP (x) =

√
(λ+ − x)(x− λ−)

2πxγ
, λ− = (1−√γ)2, λ+ = (1 +

√
γ)2,

where λ−, λ+ are the lower and upper bounds of the support. This result illustrates how

sample eigenvalues spread out away from their true values, in this case `i = 1, ∀i. Moreover,

there is a positive bias in the largest sample eigenvalues and a negative bias in the smallest

eigenvalues. Furthermore, the magnitude of the bias increases with p.
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Figure 4.2.1: Marčenko-Pastur and empirical sample eigenvalue distributions

For empirical distribution both panels have n = 1000, while γ := p/n is different. Left : γ = .2;
Right : γ = .8.
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Figure 4.2.1 plots the theoretical density on top of the empirical sample eigendis-

tribution for n datapoints sampled from Np(0, Ip) for different values of γ := p/n. It

demonstrates two phenomena. First, the sample eigenvalues are spread out asymmetri-

cally around the true value of 1. Second, the smallest and largest eigenvalues concentrate

around λ− and λ+ respectively. In fact, Bai-Yin’s law ([14]) states that for matrices with

bounded fourth moments the extreme sample eigenvalues land almost surely on these edges,

i.e. λp
a.s.→ λ− and λ1

a.s.→ λ+. Excellent treatment is given in [12].

This paper focuses on the case when a few population eigenvalues are larger than

the bulk, in other words top eigenvalues are spiked ([67]),

Σ = diag(`1, . . . , `r, 1, . . . , 1), `r > 1.

The convergence of the sample eigenvalues in this case depends on the magnitude of the true

spikes in comparison to the so-called BBP transition point λ
1/2
+ , named after its discoverers

[15]. Specifically, we have for j ≤ r,

λj
a.s.→


λ+, `j < λ

1/2
+ ,

`j + γ
`j
`j−1 , `j > λ

1/2
+ ,

as n, p→∞. That is, there is an upward bias in leading sample eigenvalues and the amount

of bias is asymptotically known. [16] establish the almost sure limits of the eigenvalues of

large sample covariance matrices in a spiked population model framework. Moreover, the

exact asymptotic distribution of the largest and smallest eigenvalues is also known ([118]).
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Hence, if the true spikes are not large enough, the sample eigendistribution will

follow the Marčenko-Pastur distribution. In the opposite case, the spiked sample eigenvalues

will overshoot the true counterparts and lie above the Marčenko-Pastur sea. In general this

knowledge can be used as a heuristic for inferring the number of principal components or

factors.

In view of the above phenomena, statisticians have proposed to construct rotation-

ally invariant estimators (RIE), which would correct the sample eigenvalues while assuming

the sample and true eigenvectors coincide. This includes many popular estimators, e.g.

linear shrinkage of the sample covariance with a structured matrix (typically, an identity)

proposed in [81] or nonlinear extensions as in [82], which in essence seek to pull upward

and downward biased sample estimates towards the center. Another approach is to set all

eigenvalues inside the Marčenko-Pastur sea to some constant, as these are deemed as noise,

while keeping the spikes unaltered; this strategy is known as eigenvalue clipping ([25]). [44]

do not address eigenvector inconsistency but partially address fix this issue by proposing an

RIE that accounts for the non-vanishing angle between population and sample eigenvectors.

They find a univariate function ν that when applied to eigenvalues would optimally (for a

given loss) shrink it such that eigenvector estimation inaccuracy is taken into consideration.

4.2.2 Sample Eigenvectors

However, the assumption that sample and population eigenvectors coincide in

high dimensions is unrealistic as sample eigenvectors are generally also inconsistent in high

dimensions. This motivates us to develop an estimator that primarily aims at accurate

eigenvector estimation. We seek to carefully characterize the assumptions this will require
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and the trade-offs between different sets of assumptions. Before that, we briefly review

some of the related work without aiming to be exhaustive.

As described in the previous section, there has been a lot of work done examining

the features of sample eigenvalues. [13] points out that this may partly be explained by

the quantum mechanics origins of the random matrix theory, where the sample eigenvalues

are associated with energy levels of particles. Many applications, however, require precise

estimates of eigenvectors and the research in this direction is gradually being recognized.

[68] propose an (adaptive) sparse PCA for settings when p, n → ∞ in a single

factor model framework. They show that plain PCA leads to consistent estimates if and

only if p/n → 0, however it is possible to recover consistency even when p � n if some

preselection of variables, possibly in an alternative sparse basis, is made in advance. Their

Theorems 1,2 and 3 characterize the inconsistency of PCA when lim p/n = γ > 0 in terms

of an angle between the true leading eigenvector and its estimate. Theorem 5 suggest a

solution for cases when the true principal eigenvector satisfies `q-ball sparsity assumption.

In a closely related work, [69] provide a similar characterization of inconsistency

in Theorem 1 but in terms of the normalized inner product between the true and estimated

principal eigenvectors, while Theorem 2 proves that consistency is recovered as long as the

PCA is performed after the proposed variable selection algorithm.
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[94] characterize the asymptotic behavior of sample eigenvectors and its depen-

dence on the eigenvalue phase transition. Specifically, under mild conditions on a spiked

covariance model, as p/n→ γ ∈ (0, 1) we have

〈vj ,uj〉2
a.s.→


0, `j < λ

1/2
+ ,

1−γ/(`j−1)2

1+γ/(`j−1) , `j > λ
1/2
+ .

That is, the sample eigenvector vj is asymptotically orthogonal to the true vector uj when

the corresponding eigenvalue is small. On the other hand, consistent estimation of eigen-

vectors with sufficiently strong signals requires γ → 0, , i.e. n grows faster than p. The

conventional PCA becomes confused in the presence of large number of variables. Sparsity,

either in the original or some transformed domain, becomes crucial for consistent estimation

of principal component directions.

[104] further investigate consistency and asymptotic behavior of sample eigenvalues

and eigenvectors in a more general multiple-component spike covariance framework with r

spikes, `1 > . . . > `r � `r+1 → . . . → `p → 1. They also consider a more general

asymptotic framework with p
n`j
→ cj > 0, j ≤ r, where 0 < c1 < . . . < cr <∞; allowing `j

to potentially diverge turns out to be crucial. Their Theorem 3 states that
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
λj
`j

a.s.→ 1 + cj , 1 ≤ j ≤ r,

nλj
p`j

a.s.→ 1, r + 1 ≤ j ≤ n ∧ p,

(4.1)

and 

|〈vj , uj〉|
a.s.→ (1 + cj)

−1/2, 1 ≤ j ≤ r,

|〈vj , uj〉|
a.s.→ Oa.s.

(
(n/p)1/2

)
, r + 1 ≤ j ≤ n ∧ p,

∠ (vj , span(uk : k = r + 1, . . . , p))
a.s.→ 0, r + 1 ≤ j ≤ n ∧ p.

(4.2)

Equation (4.1) formalizes the idea that sample eigenvalues with stronger signals

will be less biased, but still almost surely biased when cj 6= 0. Notice that there is no bias

if the eigenvalues grow linearly with the dimension. Equation (4.2) reveals that leading

sample eigenvectors lie in a cone along the true eigendirections as long as the ratio of the

dimension to the product of the sample size and the spike size, p
nλj
→ cj > 0, j ≤ r. This

shows that sample eigenvectors might still be consistent in the high-dimensional regime

when γ > 0 as long as their corresponding eigenvalues are large. Intuitively, a strong signal

helps identify the direction of most variation.

Observe that p
n`j
→ cj > 0 can contain three cases: (i) p, n, `j →∞, (ii) p, `j →∞,

while n < ∞, (iii) p, n → ∞ and `j < ∞. The result stated in equation (4.2) refers to the

first case, [104] also covers the second case. We focus on the third case, where leading

eigenvalues are bounded.

A natural extension to the work of [94] and [104] is the study by [53] who analyze

the asymptotic distributions of the sample eigenstructure and derive the precise rates of

convergence in a similar setup with a high-dimensional spiked covariance and p, n, `j →∞
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with p
n`j

< ∞, j ≤ r. Although this comes at the cost of a sub-Gaussianity assumption

on the data. In particular, they establish that the normalized spiked part of the sample

eigenvector converges to a vector of ones. [51] also consider a diverging eigenvalue setup.

Instead of assuming increasing eigenvalues, a simple alternative approach which

permits efficient estimation in high dimensions is sparsity. [23] propose regularizing a large

covariance matrix by hard thresholding, which leads to a consistent (in the operator norm)

estimator as long as the true covariance matrix is sparse. However, imposing sparsity on

a high-dimensional covariance directly may be unjustified in certain applications, e.g. in

portfolio theory covariance of asset returns is not sparse. [51] consider conditional spar-

sity, i.e. sparsity after estimating and accounting for the factor structure. To distinguish

the signal and noise components, they assume diverging (with p) signal eigenvalues. This

assumption may be ”misleading in many economic and financial applications”, as pointed

out some researchers ([51], discussion on the paper).

On the other hand, the eigenvectors themselves are often sparse in many high-

dimensional applications or may be required to be sparse in certain scenarios, e.g. in

capital allocation problems. This also leads to better interpretability since eigenvectors are

only linear combinations of a subset of variables. Most importantly, sparsity can help even

in cases when γ > 0 and the signal is bounded, `j = O(1). A similar idea is considered in

[3], however they focus on sparse eigenvector support recovery.

Besides, precise estimation of eigenvectors in high dimensions has its own benefit.

For example, the top eigenvectors of a covariance identify the directions of the most
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variation, while the bottom eigenvectors of a graph’s Laplacian provide insights into its

cluster structure.

4.3 Model

Given a n × p data matrix X of p i.i.d. mean-zero variables with the population

covariance

Σ = E(X ′X) =

r∑
i=1

`iuiu
′
i +

p∑
i=r+1

`iuiu
′
i, (4.3)

and the sample covariance estimator

S =
1

n
X ′X =

r∑
i=1

λiviv
′
i +

p∑
i=r+1

λiviv
′
i,

where r is the number of signal eigenvalues (assumed to be known and fixed), our

primary goal is accurate estimation of Σ in a high-dimensional setting under a spiked co-

variance framework ([67]). Throughout this paper we measure the estimation error in terms

of spectral (operator) norm ‖·‖. By Weyl’s and Davis-Kahan Theorems (see Appendix 4.D)

the ‖Σ̂−Σ‖ → 0 implies the convergence of the corresponding eigenvalues and eigenvectors

as well as the convergence of PCA loadings.

Assumption 1 (Spiked covariance) There are r � p ∧ n spikes in eigenvalues `1 >

. . . > `r > 1, independent of p and n, with ∆ := `r − `r+1 � 0. All spiked eigenvalues are

distinct.
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Remark. In particular, while we need not have diverging signals, the eigengap `r − `r+1

should be large enough for identification purposes. This also inherently relates to the eigen-

vector instability demonstrated in the following example.

Example. ([121]) Consider a perturbation of a diagonal A by another diagonal matrix

εP ,

Aε = A+ εP =

1 0

0 1.01

+ ε

0 1

1 0

 .

Clearly, the eigenvalues of unperturbed A are {1, 1.01} and the eigenvalues of the perturbed

An are {
1

2
(2.01 +

√
.0001 + 4ε2),

1

2
(2.01−

√
.0001 + 4ε2)

}
,

satisfying Weyl’s theorem

max
i=1,2

|`i(A)− `i(Aε)| =
1

2
|.01−

√
.0001 + 4ε2| ≤ ‖εP‖2 = ε,

and thus displaying resilience to small perturbations. On the other hand, the maximal

eigenvector of A changes its direction substantially from u1(A) = (0 , 1)′ to u1(Aε) ≈

(.53 , .85)′, so that ‖u1(A)− u1(Aε)‖2 � ε. The problem arises due to small eigengap, and

hence a large enough eigengap is needed to ensure the stability.

A simple example of a spiked model that was widely considered in the literature

is of the form,

Σ = `1u1u′1 + Ip,
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with `1 > 0, ‖u1‖2 = 1, where u1 is a unique maximal eigenvector with eigenvalue 1+`1 and

all other eigenvalues are 1. That is, we have a low-rank perturbation of a sparse matrix.

[22] examine the possibility of detection of the low-rank component and propose a minimax

optimal test based on an eigenvalue statistic.

Spiked models are also inherently related to factor models considered in financial

econometrics and we examine the similarity in Section 4.3.2. The differences mainly arise

due to different assumptions placed on the behavior of the eigenstructure.

Assumption 2 (High-dimensional asymptotics) n, p→∞ and `j = O(1), j = 1, . . . , p.

Remark. In particular, we need not have strong (pervasive) signals, so it is not necessary

that `i = O(p), i ≤ r. In fact, the pervasiveness assumption ([51]) can make consistent

estimation impossible in terms of spectral norm, as discussed in the following example.

Example. Suppose we know the entire spectrum of Σ except for the first eigenvector,

for which suppose we have a good estimator with ‖v1 − u1‖ = Op(n
−1/2). Then we can

construct a sample covariance S∗ with this population information in its spectrum, then

‖S∗ − Σ‖ = ‖`1(v1v′1 − u1u′1)‖ = `1Op(‖v1 − u1‖) = Op(`1n
−1/2),

which does not converge if `1 grows linearly in p and n = O(p2), so under certain

conditions Σ may not be estimated consistently in terms of spectral norm in the presence

of diverging spiked eigenvalues.
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In accordance with Equation (4.3) we can decompose the true covariance into two

parts,

Σ = Σs + Σe, (4.4)

where the two matrices on the right-hand side represent signal and noise (error) components.

In particular, one can view the above equation as low-rank plus sparse matrix structure.

This idea is formalized in the following assumption.

Assumption 3 (Low-rank plus sparse) In equation (4.4), rank(Σs) = r and Σe is (ap-

proximately) sparse with bounded eigenvalues. Moreover, Σs has a fixed number r sparse

unit norm eigenvectors, ‖uj‖0 = s, j ≤ r, ‖uj‖2 = 1, ∀j.

Remark. The low-rank plus sparse structure has been thoroughly studied, see e.g. [125] or

[31] on the possibility of identification of the two matrices, low-rank and sparse, only from

the sum alone. This structure is also implied by approximate factor models ([33]) where

Σ = ΛΛ′ + Ω.

Remark. In general, the results throughout this paper can be adapted to cases with approx-

imate sparsity. For example, if ũ1 is an approximation of exactly s-sparse vector u1 of Σs, we

can instead analyze a slightly different perturbation, S = Σ+E = Σ̃+(E−Σ̃+Σ) = Σ̃+Ẽ,

where Ẽ := E − Σ̃ + Σ.
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Remark. Notice that this formulation with sparse eigenvectors does not necessarily imply

that Σ is sparse. A similar framework with sparse eigenstructure was analyzed by [3] with

the focus on support recovery.

Notice that Σe is approximately sparse; we characterize sparsity as in [23],

m := max
i≤p

∑
j≤p
|{Σe}i,j |q,

so that m stays bounded for some 0 ≤ q < 1, although for simplicity we will focus on the

case with q = 0 corresponding to exact sparsity, m = maxi≤p
∑

j≤p 1({Σe}i,j 6= 0). The fact

that eigenvalues are thus bounded can be seen from

‖Σe‖ ≤ ‖Σe‖1 ≤ max
i≤p

∑
j≤p
|{Σe}i,j |q({Σe}i,i{Σe}j,j)(1−q)/2 = O(m),

when {Σe}i,i are bounded. This assumption is not very restrictive and corresponds

to weak correlation between idiosyncratic components in factor models.

4.3.1 Estimator

In what follows we consider a simpler version of Equation (4.4) with r = 1, namely

Σ = `1u1u′1 + Σe, (4.5)
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where the single signal eigenvector is s-sparse, i.e. ‖u1‖0 = s, and Σe is approximately sparse

in a sense that ‖Σe‖ has bounded eigenvalues as p→∞. In other words, the covariance is

a rank-1 perturbation of a sparse matrix.

As a first step, we seek to estimate the sparse eigenvectors of Σs. To recover

the first eigenvector, one could proceed by explicitly imposing the sparsity restriction in a

rank-one approximation problem by solving

min
ν,ξ
‖X ′X − νξξ′‖2F

ν ≥ 0, ‖ξ‖0 ≤ s, ‖ξ‖2 = 1,

(4.6)

which is equivalent to solving

min
ξ
ξ′X ′Xξ

‖ξ‖0 ≤ s, ‖ξ‖2 = 1.

(4.7)

Clearly, both are NP-hard problems due to the presence of ‖ · ‖0-norm. Efficient

convex relaxations with ‖ · ‖1-norm substitution have been studied ([40]) as well as al-

ternative formulations imposing sparse structure (e.g. [71],[130], [123]). The theoretical

underpinnings for the above algorithms and formulations are less developed.

Luckily, it is possible to directly approximate the solution via the principle of

power iteration. [129] propose a truncated power method which tackles the optimization

problem in Equation (4.7) and analyze its theoretical properties. This approach achieves an

optimal bound ([28]) and is guaranteed to converge under mild technical conditions. The

goal is to recover a sparse eigenvector given a perturbation of an original matrix.
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The truncated power iteration procedure is described in Algorithm 2. The only

difference with a conventional power method is in the truncation step, which forces the

p − r smallest entries of a vector to zero in each iteration thus naturally inducing sparse

estimates.

The following perturbation formulation is useful,

S = Σ + E, (4.8)

where S is a sample covariance matrix, and E := S − Σ is an error. The theorem of [129]

is adapted in 12 and assures the recovery of s-sparse eigenvectors so long as the spectral

norm of ŝ× ŝ principal submatrix of E, denoted as Eŝ, is sufficiently small for some initial

estimate of sparsity ŝ. Notice that this norm can be a substantially smaller than the norm

of the full matrix E.

Theorem 12 (Sparse recovery) Given Assumptions 1, 3 and the initial vector v̂
(0)
1 with

‖v̂(0)
1 ‖0 ≤ ŝ, ‖v̂

(0)
1 ‖2 = 1, ŝ ≥ s, |v̂(0)

1
′u1| − δ ≥ θ, where 0 < θ < 1 and

δ :=

√
2‖Eŝ‖√

‖Eŝ‖2 + (∆− 2‖Eŝ‖)2
,

we have √
1− |v̂(t)

1
′u1| ≤ ct1

√
1− |v̂(0)

1
′u1|+

√
10δ(1− c1)−1, ∀t ≥ 0, (4.9)

where c1 can be chosen to be less than 1.

Proof. See [129] Theorem 4.
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Since the convergence of the algorithm is guaranteed, let us denote limt→∞ v̂
(t)
1 =

v̂1.

Corollary 13 Given the assumptions of Theorem 12, we have

‖v̂1 − u1‖ = OP(‖Eŝ‖).

Corollary 14 Given the assumptions of Theorem 12 and assuming entries in E are Gaus-

sian iid and ŝ = O(s), we have

‖v̂1 − u1‖ = OP

(√
s log p

n

)
.

Theorem 12 bounds the angle between the t-th iteration of sparse eigenvector es-

timate v̂
(t)
1 and its population counterpart u1. Corollary 14 is an immediate consequence

and states that the error depends on the norm of s-dimensional principal submatrix which

could be much smaller than the norm of the entire perturbation implied by standard per-

turbation inequalities. Corollary 14 follows when entries of the perturbation are normally

distributed; this is a standard result in random matrix theory. The arguments of the proof

are based on eigenvector perturbation inequalities provided in the appendix. Initialization

is also discussed.

Hence, this iterative approach can recover the leading sparse eigenvector even from

noisy observations. The remaining sparse eigenvector estimates could be obtained greedily,

i.e. for the second iteration one would optimize over an unexplained component
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X ′X − (ξ̂′X ′Xξ̂)ξ̂ξ̂′, where ξ̂ solves equation (4.7). This procedure is known as iterative

deflation.

Suppose that we have obtained eigenvector estimates {v̂}ri=1. The corresponding

weight estimates for r top matrices can be estimated consistently by least squares under

the standard assumptions with usual parametric rates, i.e. |λ̂j − `j | = O(n−1/2). This

completes the estimation of the signal part of the covariance matrix.

Once the signal component is estimated we turn to the error part Σe. Consistent

with the assumption of conditionally sparse covariance, after removing the estimated low-

rank part we threshold the remainder. In a general case one can obtain an estimate of the

remainder as

Ŝe = S −
r∑
j=1

λ̂j v̂j v̂j
′, (4.10)

where we subtract the estimated low-rank component from the sample covariance. Next we

apply entry-wise adaptive hard thresholding similar to [29] to obtain Ŝτe , where each entry

is set as

{Ŝτe }i,j =


{Ŝe}i,i, i = j,

{Ŝe}i,j1(|{Ŝe}i,j | ≥ τ
√
{Ŝe}i,i{Ŝe}i,j), i 6= j,

(4.11)

for a given τ > 0, which amounts to thresholding the corresponding correlation matrix.

This approach yields an optimal rate of convergence ([28]) for Σe.

93



Theorem 15 (Error component) Under assumptions of Theorem 12, Assumption 2 and

given ‖S − Σ‖max = OP

(√
log p
n

)
, for a large enough τ > 0 we have

‖Ŝτe − Σe‖ = Op

(
m

√
s log p

n

)
.

Proof. See Appendix 4.B.

Optimal estimation of a sparse component is discussed in detail in [28], [51]. The

assumptions are not unusual and are easy to verify.

Thus the final estimator is given as

Ŝ =

r∑
j=1

̂̀
j v̂j v̂j

′ + Ŝτe , (4.12)

The estimation involves two stages, one for estimating each of the components.

The full algorithm is provided in Algorithm 3.

Theorem 16 Suppose the assumptions of Theorem 15 hold. Then

‖Ŝ − Σ‖ = Op

(
m

√
s log p

n

)
.

Proof. See Appendix 4.C.

Notice that this estimator achieves the optimal bound [28] for high-dimensional

covariance estimators in sparse settings. The proof is provided for rank-1 perturbations as

in Equation (4.5), however it can be generalized to multi-spike covariances.
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4.3.2 Factor Model Framework

This subsection demonstrates that the covariance structure considered in the pre-

vious sections is implied by weak (non-pervasive) factors with approximately sparse loading

matrices.

A latent factor model is given as

Xi
p×1

= Λ Fi
r×1

+ ei, (4.13)

Λ is an approximately sparse loading matrix for the r factors in Fi, ei is an idiosyncratic

disturbance; and i = 1, . . . , n. Only Xi are observable. The latter equation can be rewritten

in matrix form

X = FΛ′ + e, (4.14)

where X = [X1 · · · Xn]′ and F = [F1 · · · Fn]′.

For the above factor model specification, we have the corresponding population

covariance matrix of Xi,

Σ := E(X ′X) = ΛΛ′ + Ω, (4.15)

where Ω = E(e′e) is assumed to be approximately sparse. Hence Equation (4.15) admits low-

rank plus sparse representation. The two components can be asymptotically identified only

when the eigengap ∆ is sufficiently large while Ω has bounded eigenvalues as a consequence

of sparsity. This is crucial for consistent estimation since if nonzero eigenvalues of ΛΛ′

are smaller than ‖Ω‖, then it is impossible to distinguish signal from noise. In practice,

factors are expected to exhibit sufficiently strong signal while the remaining part normally
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has weak correlation. The leading r eigenvectors of Σ should be nearly aligned with the

corresponding columns of Λ. One can also view Σ in Equation (4.15) as a perturbation of

ΛΛ′ by Ω. Further, denote the eigendecomposition of Σ as in Equation (4.3).

In vanilla factor modeling, one can obtain factors and loading estimates via PCA

by solving

arg min
F,Λ

∥∥X − FΛ′
∥∥2

F

p−1Λ′Λ = Ir, F ′F diagonal.

We can formulate a similar optimization problem in a penalized PCA fashion,

similar to Equation (4.7), that would correspond to a sparse setting considered in this

paper. Specifically, to obtain an approximate solution for the first loading column Λ1 one

can solve

arg min
Λ1

Λ′1X
′XΛ1

‖Λ1‖0 ≤ s, ‖Λ1‖2 = 1.

(4.16)

Clearly, the truncated power iteration method described earlier can be used. Its

solution Λ̂ will be the first r sparse eigenvectors of X ′X. The corresponding factor estimate

can simply be calculated as F̂i = (Λ̂′Λ̂)−1Λ̂′Xi = Λ̂′Xi. Hence, the technique and the theory

considered above are applicable when a sparsity assumption on the loadings is justifiable.

This may also be beneficial for constructing interpretable factor models; a similar setup

from the Bayesian viewpoint is considered in [93].
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4.4 Numerical Experiment

Generate the covariance as follows

Σ = ULU ′ = UrLrU
′
r + Σe,

where Ur is a p × r matrix of eigenvectors corresponding to top eigenvalues and Lr is an

r × r diagonal matrix of eigenvalues in descending order. Specifically, we set r = 2 across

all simulations are generate the two columns in Ur = (u1 u2) as follows,

{u1}i =


1√
s
, i ∈ [1, s]

0, otherwise

, {u2}i =


1√
s
, i ∈ [s+ 1, 2s]

0, otherwise

,

We set `1, `2 to either (200, 100) or (500, 300). The entries of the error component Σe are

generated in a block-diagonal fashion with

{Σe}i,j = ρ|i−j|1(|i− j| ≤ 1),

and set ρ = .5. This design ensures sparsity and is sometimes referred to as MA(1).

The data X ∈ Rn×p is generated by drawing n samples from X ∼ Np(0,Σ). We

run 100 Monte Carlo simulations. The proposed method is compared against POET ([51]),

a hard-thresholding estimator of [23] and a linear shrinkage estimator of [81].

We vary p ∈ {100, 300, 500} and the sparsity s ∈ {5, 15, 25}. The results report

the ratios of a spectral (or Frobenius) norm of the covariance estimation error of a given
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method with respect to POET’s corresponding norm. Tables 4.4.1 and 4.4.2 consider cases

with `1 = 200, `2 = 100 and `1 = 500, `2 = 300 respectively. The proposed method is

dubbed as ”DSCE” for doubly sparse covariance estimator.

Table 4.4.1: Ratios to POET error n = 300, `1 = 200, `2 = 100.

p Method
Spectral Frobenius

s = 5 s = 15 s = 25 s = 5 s = 15 s = 25

100 DSCE 0.7462 0.7308 0.7800 0.7587 0.7776 0.7717
100 B&L 0.8701 0.9139 0.9287 0.9072 0.9246 0.9501
100 L&W 1.0297 1.0122 0.9598 1.0317 1.0066 0.9804
300 DSCE 0.7076 0.7382 0.7551 0.7380 0.7733 0.7706
300 B&L 0.8844 0.9253 0.9331 0.9073 0.9336 0.9481
300 L&W 1.0318 0.9989 0.9887 1.0518 1.0377 0.9894
500 DSCE 0.6943 0.7100 0.7362 0.6964 0.7390 0.7477
500 B&L 0.9127 0.9286 0.9463 0.9286 0.9483 0.9623
500 L&W 1.0937 1.0626 1.0215 1.1254 1.0750 1.0532

Table 4.4.2: Ratios to POET error n = 300, `1 = 500, `2 = 300.

p Method
Spectral Frobenius

s = 5 s = 15 s = 25 s = 5 s = 15 s = 25

100 DSCE 0.7108 0.7135 0.7776 0.7292 0.7415 0.7677
100 B&L 0.8999 0.9257 0.9280 0.9183 0.9569 0.9454
100 L&W 1.0446 0.9944 0.9720 1.0603 1.0266 0.9937
300 DSCE 0.6919 0.7038 0.7395 0.7008 0.7299 0.7474
300 B&L 0.9144 0.9257 0.9239 0.9409 0.9542 0.9544
300 L&W 1.0358 1.0209 0.9789 1.0847 1.0125 0.9800
500 DSCE 0.6560 0.6886 0.6955 0.6877 0.7167 0.7115
500 B&L 0.9504 0.9685 0.9605 0.9593 0.9733 0.9714
500 L&W 1.0873 1.0594 1.0239 1.1203 1.0807 1.0673

The tables are indicative of high estimation accuracy of the proposed method in

sparse settings as compared to the competition. The precision of DSCE seems to generally

increase with dimension p and decreased in sparsity s. As evident from Table 4.4.2, stronger

signal makes both DSCE and POET perform better compared to the other methods.
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4.5 Concluding Remarks

We consider estimation high-dimensional covariance estimation in sparse settings.

Our approach goes beyond mere eigenvalue shrinkage by taking into consideration the be-

havior of eigenvectors in a large dimensional framework. Furthermore, we do not require

diverging (pervasive) signals, but instead assume sparsity, which is a feature of many large

datasets and a desirable characteristic to require in a number of applications. Our model

consists of low-rank and sparse components, where the former also has sparse eigenvectors.

Our analysis shows that accurate estimation is possible, with the rate of conver-

gence proportional to the optimal rate for sparse estimation as in [28]. The numerical

experiment also reveals that the proposed algorithm can accurately estimate the induced

covariance. It would also be worth considering an empirical application where nonzero co-

efficients are associated with loss, e.g. transaction costs in finance, so that it is desirable to

have sparse estimates.

Our empirical application also demonstrates that the proposed method may of-

fer substantial advantages over other high-dimensional estimation techniques. One of the

possible extensions is a closer examination of a multi-spike covariance model and the issues

arising therein, e.g. whether sparsity should vary across eigenvectors and how. Another ex-

tension would be the consideration of linear shrinkage (of eigenvalues) of a sparse estimator

discussed here with a structured estimator. Finally, it is valuable to explore the properties

of the inverse (precision) estimator induced by the proposed method.
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Appendices

4.A Auxiliary lemmas

Lemma 17 For unit vectors u and v,

‖uu′ − vv′‖2F = 2− 2(u′v)2

Proof.

‖uu′ − vv′‖2F = tr((uu′ − vv′)(uu′ − vv′))

= 1− tr(uu′vv)− tr(vv′uu′) + 1

= 2− 2(u′v)2

Lemma 18 For a rank-1 matrix A = x1x′2 we have

‖A‖ = ‖x1‖2‖x2‖2.
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Proof. The equality is trivial if x2 = 0, so consider x2 6= 0. For a vector u = x2
‖x2‖2 we have

‖A‖ ≥ ‖Au‖2 =

∥∥∥∥x1x′2
x2

‖x2‖2

∥∥∥∥
2

=
1

‖x2‖2
‖x1x′2x2‖2 =

‖x2‖22
‖x2‖2

‖x1‖2 = ‖x1‖2‖x2‖2.

On the other hand,

‖A‖ = ‖x1x′2‖2 ≤ ‖x1‖2‖x′2‖2 = ‖x1‖2‖x2‖2.

4.B Proof of Theorem 15

Proof. It suffices to prove that the max error is bounded

‖Ŝe − Σe‖max = OP

(√
s log p

n

)
.

The desired rate on adaptive threshold estimator would follow immediately as discussed in

[29] and [98].

Recall from Equation 4.10 that

Ŝe = S − V̂rΛ̂rV̂ ′r ,

where V̂r is a p×r matrix of sparse eigenvector estimates and Λ̂r is an r×r diagonal matrix

of the corresponding eigenvalue estimates in descending order.
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‖Ŝe − Σe‖max = ‖S − V̂rΛ̂rV̂ ′r − (Σ− UrLrU ′r)‖max

≤ ‖S − Σ‖max + ‖V̂rΛ̂rV̂ ′r − UrLrU ′r‖max

By assumption, ‖S − Σ‖max = OP

(√
log p
n

)
, so we want to show ‖V̂rΛ̂rV̂ ′r −

UrLrU
′
r‖max = OP

(√
s log p
n

)
. Then since the eigenvalues are bounded by assumption, we

have

‖V̂rΛ̂rV̂ ′r − UrLrU ′r‖max

≤ ‖V̂r(Λ̂r − Lr)V̂ ′r‖max + ‖(V̂r − Ur)Lr(V̂r − Ur)′‖max + 2‖UrLr(V̂r − Ur)′‖max

= OP

(
‖Λ̂r − Lr‖max + ‖V̂r − Ur‖max

)
= OP

(√
s log p

n

)
.
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4.C Proof of Theorem 16

Proof.

‖Ŝ − Σ‖ = ‖Ŝs + Ŝτe − Σs − Σe‖

≤ ‖`1u1u′1 − λ̂1v̂1v̂′1‖+ ‖Ŝτe − Σe‖

= ‖`1(u1u′1 − v̂1v̂′1) + (`1 − λ̂1)v̂1v̂′1‖+Op

(
m
√
n−1s log p

)
= `1OP(‖u1 − v̂1‖) +OP(n−1/2)‖v̂1v̂′1‖+Op

(
m
√
n−1s log p

)
(4.17)

= OP(‖Eŝ‖) +OP(n−1/2)‖v̂1v̂′1‖+Op

(
m
√
n−1s log p

)
(4.18)

= OP(‖Eŝ) +OP(n−1/2)‖v̂1‖22 +Op

(
m
√
n−1s log p

)
(4.19)

= OP(‖Eŝ) +OP(n−1/2) +Op

(
m
√
n−1s log p

)
, (4.20)

where (4.17) follows from Lemma 17 and the fact that ‖ · ‖ ≤ ‖ · ‖F for a square

matrices; (4.19) follows from Corrolary 13; (4.19) holds by Lemma 18.

To complete the proof observe that in Equation 4.20 the first term becomes

OP

(√
s log p
n

)
by Corrolary 14, while the second term is asymptotically negligible under

the Assumption 2.

4.D Weyl and Davis-Kahan Theorems

Denote eigenvectors and eigenvalues as ξi(·) and λi(·) respectively. For Hermitian

p× p matrices A, Â,
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Proposition 19

max
i=1,...,p

|λi(Â)− λi(A)| ≤ ‖Â−A‖.

Proposition 20

∥∥∥ξi(Â)− ξi(A)
∥∥∥ ≤ √

2‖Â−A‖
min(|λi−1(Â)− λi(A)|, |λi+1(Â)− λi(A)|)

.

4.E T-Power Algorithm

Algorithm 2: Truncated Power Method [129]

Input: p× p PSD matrix A, initial estimate x0 ∈ Rp, dimension r.
t = 1
while not converged do

x′t = Axt−1/‖Axt−1‖; /* Power iteration */

Ft = supp(x′t, r) ; /* Support of indices */

x̂t = Truncate(x′t, Ft); /* Truncate */

xt = x̂t/‖x̂t‖ ; /* Standardize */

t = t+ 1
end

4.F DSCE Algorithm

Algorithm 3: Proposed DSCE Algorithm

Input: standardized p× n data matrix X, dimension r.
S = 1

nX
′X ; /* Sample covariance */

Ŝs = T-Power(S) ; /* Rank-r Truncuted power method */

Ŝτe = τ(S − Ŝs) ; /* Adaptive Thresholding,(4.10) */

Output: p× p matrix Ŝ = Ŝs + Ŝτe .
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