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Bacterial cells navigate their environment by directing their move-
ment along chemical gradients. This process, known as chemo-
taxis, can promote the rapid expansion of bacterial populations
into previously unoccupied territories. However, despite numer-
ous experimental and theoretical studies on this classical topic,
chemotaxis-driven population expansion is not understood in
quantitative terms. Building on recent experimental progress, we
here present a detailed analytical study that provides a quanti-
tative understanding of how chemotaxis and cell growth lead to
rapid and stable expansion of bacterial populations. We provide
analytical relations that accurately describe the dependence of the
expansion speed and density profile of the expanding population
on important molecular, cellular, and environmental parameters.
In particular, expansion speeds can be boosted by orders of mag-
nitude when the environmental availability of chemicals relative
to the cellular limits of chemical sensing is high. Analytical un-
derstanding of such complex spatiotemporal dynamic processes
is rare. Our analytical results and the methods employed to attain
them provide a mathematical framework for investigations of the
roles of taxis in diverse ecological contexts across broad parameter
regimes.

bacterial chemotaxis | range expansion | Keller–Segel model | Fisher wave |
front propagation

As a fundamental part of their life cycle, bacteria spread by
dispersing into and colonizing new habitats. Many species

of bacteria navigate in these new habitats by sensing gradients
of certain chemicals and biasing their flagellum-based swimming
to move themselves along these gradients (1, 2). This process,
known as chemotaxis, is among the most extensively investigated
topics in molecular biology (1, 3–7) and was observed in diverse
microbial habitats such as the gut (8); the soil (9); leaves (10,
11); and marine environments such as the phycosphere, sinking
marine particles, and coral reefs (2, 12–14). Further, chemotaxis
is employed by many eukaryotic cells such as the free-living
Dictyostelium (15) and is an important element of many tissue-
forming processes involved in embryogenesis (16), neuronal pat-
terning (17), wound healing (18), and tumor metastasis (19).

Beyond promoting the movements by individual cells, chemo-
taxis also drives the collective movement of cells leading to
emergent patterns and behaviors at the population level (20, 21).
Such collective dynamics have been best studied with bacteria
in culture plates and microfluidic devices. For example, when
Escherichia coli cells are inoculated at the center of a soft agar
plate replete with nutrients, consumption of preferred chemicals
(referred to as attractants) results in collective cell movement
up self-generated attractant gradients (22), leading to the emer-
gence of striking migrating bands that propagate radially out-
ward from the inoculation site (23–25). These migrating bands
typically comprise one or two peaks in population density, which
stand in contrast to the predictions of canonical models of front
propagation and population expansion (26–28); they also ex-
pand at much faster speeds than predicted by canonical models.
These population-level changes can strongly shape fitness and
ecological interactions as recent laboratory studies have shown
(29–32).

The first attempt to understand these migrating bands
mathematically was made by Keller and Segel, who recovered
a traveling-wave solution using a pair of reaction–diffusion–
convection equations to describe the density of bacterial
populations and the concentration of the attractant they consume
(33). While being highly influential, the Keller–Segel (KS) model
neglected cell growth, a substantial factor in the expansion
process. It further required unrealistic assumptions on attractant
sensing without which the migrating bands lose stability (34).
Subsequent modeling efforts including cell growth managed
to recover the stability of the bands, but their predictions did
not match major experimental observations such as the sharply
peaked density profiles and their rapid migration speeds (31,
35–38).

Recent work by Cremer et al. (39) demonstrated that the major
features of the migrating bands for E. coli in soft agar can be
accurately captured using a model in which bacterial growth
is independent of the attractant. Numerical solutions to their
growth-expansion (GE) model quantitatively described not only
the boosted speed of the migrating band but also the signature
spatial profile of the bands and their dependence on molecular
parameters (39). Their results established the role of attractants
as an environmental cue exploited by bacteria independent of
possible nutritional values to promote rapid expansion.

The success of the GE model in describing E. coli in soft agar
raises the possibility that the phenotype of rapid expansion and
distinct density bands might also occur for chemotactic systems
in the wild, in situations where growth, diffusion, and chemotaxis
dominate. However, from the numerical work of Cremer et al.
(39), it is not clear what aspects of their results are generalizable
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given that both bacterial and environmental characteristics can
be vastly different in the wild. For example, bacteria living near
sulphidic sediments move more than 30 times faster than E. coli
(39, 40), while bacterial motility is significantly reduced by high
viscosity in the gut (41, 42). Addressing the generalizability of
the GE model requires a detailed mathematical analysis of the
interplay of 1) growth, 2) diffusion, and 3) chemotaxis, preferably
with analytical solutions. While growth and diffusion have been
studied together in the canonical models of front propagation
(26–28), as have diffusion and chemotaxis in the KS model (33,
36, 43–45), a sufficient understanding of the interplay of all three
is still lacking.

Toward obtaining such an understanding, we describe here a
detailed analytical study of the GE model. Through a heuristic
analysis, we derive analytic relations that describe the depen-
dence of the expansion speed and density profile on important
molecular, cellular, and environmental parameters, including
the rate of cell growth, the diffusivity and availability of the
attractants, the motility and sensitivity of the bacteria, carrying
capacity, and the limit of attractant sensing. Our analysis reveals
the key condition for the population to attain rapid expansion
speed and suggests a very broad parameter regime for which
rapid expansion can be expected.

GE Model
In the GE model the evolution of the bacterial density, ρ, in space
and time (t) is given by

∂ρ

∂t
=Dρ∇2ρ−∇ · (�vρ) + rρ(1− ρ/ρc). [1]

The growth of the population is given by the logistic equation
where r is the growth rate and ρc is the carrying capacity of the
system. The nondirected run-and-tumble movement of bacteria
is described by a diffusion-like term with the motility coefficient
Dρ, while directed movement along the gradient of the attractant
concentration a is described by a convection term with the drift
velocity �v(a,∇a), where

�v ≡ χ0
�∇a/(a + am). [2]

χ0 is the chemotactic coefficient which describes how cells trans-
late the sensing of the local attractant gradients into directed
movement. The value of χ0 depends on the strain, the internal
cell state, the medium cells move through (e.g., liquid medium or
soft agar), and the type of attractant being used (46). am describes
the finite sensitivity of the attractant-sensing receptors (47, 48)
and ensures that for �∇a → 0, �v → 0. Finally, the dynamics of the
attractant are determined by its diffusion and consumption by the
bacteria:

∂a

∂t
=Da∇2a − μ

a

a + ak
ρ, [3]

where Da is the molecular diffusion coefficient of the attractant,
μ is the rate of uptake of the attractant by the bacteria, and ak
is the Michaelis–Menten constant describing attractant uptake.
We note that the GE model defined by Eqs. 1–3 is a slight
simplification of the one studied numerically in (39). However,
the simplifications do not significantly impact our results, even at
the quantitative level (see SI Appendix, Fig. S2, for comparison
with the generalized GE model used in ref. 39).

Without growth (r = 0), the GE model resembles the original
KS model which additionally also assumed negligible attractant
diffusion, i.e., Da = 0, and infinitesimal sensitivity in sensing, i.e.,
am = 0. The latter assumption of the KS model is necessary for
stable traveling waves (33, 34) as otherwise the portion of the
band with a < am is not able to migrate as fast as the rest of
the band and falls behind, leading to a gradually diminishing
and slowing band. Many models have attempted to replenish

the bands by including cell growth (35, 49–53), and while they
are able to recover stability, they fail to reproduce experimental
observations such as fast expansion speeds and a trailing region
of increasing bacterial density behind the migrating band.

In the absence of chemotaxis (χ0 = 0), the GE model reduces
to the Fisher–Kolmogorov–Petrovsky–Piskunov (F-KPP) equa-
tion which describes expansion by growth and nondirected mo-
tion alone (26, 27, 54). The F-KPP equation has been extensively
studied in the theory of front propagation (28) and has been used
canonically to describe range expansion into unoccupied habitats
(55–57), including the expansion dynamics of nonmotile bacteria
in colony growth and long-range dispersal (58–62). While growth
and nondirected motion movement result in a traveling-wave
solution with a stable expansion speed given by cF = 2

√
Dρ r

(known as the Fisher speed) (26–28, 63), it is not sufficient to
explain the high expansion speeds of the bacterial front observed
in populations of chemotactic bacteria (39). Indeed, as we will see
in Parameter Dependences of the Expansion Speed, the expansion
speed for the GE model can lead to expansion speeds orders of
magnitude higher than the Fisher speed.

Remarkably, while the two different reaction–diffusion models
(KS and F-KPP) fail to even qualitatively describe the exper-
imental observation of fast-moving stable migrating bands by
themselves, when combined together, they are able to quantita-
tively explain the prominent features of bacterial chemotaxis for a
broad range of physiological and environmental conditions (39).

The GE model describes a system of nonlinear coupled partial
differential equations (Eqs. 1–3) that has a degree of 4 and is
accompanied by appropriate initial values and boundary condi-
tions. For our system, we specify the initial values to be a localized
profile for ρ (any localized profile converges to the same steady
state solution) and a uniform attractant concentration denoted by
a0. In one dimension and with x denoting the spatial coordinate,
we look for a stable traveling-wave solution of the form

ρ(x , t) = ρ(z ), a(x , t) = a(z ); with z = x − ct ,

where c > 0 is the expansion speed. This converts the system
of coupled partial differential equations to two one-dimensional
ordinary differential equations as follows:

−c
dρ

dz
=Dρ

d2

dz 2
ρ− χ0

d

dz

(
ρ

a + am

da

dz

)
+ rρ

(
1− ρ

ρc

)
,

[4]

−c
da

dz
=Da

d2

dz 2
a − μ

a

a + am
ρ. [5]

In Eqs. 4 and 5, we have taken an additional simplifying assump-
tion that am = ak . For the well-characterized model organism E.
coli, both the uptake and sensitivity of the major attractant aspar-
tate are ∼1 μM (39, 64–67). Relaxing this assumption affects the
results only weakly, as will be discussed below.

Eqs. 4 and 5 are supplemented by boundary conditions that
describe limiting values for the bacterial density and attractant
concentration far from the front:

lim
z→−∞

ρ→ ρc , lim
z→−∞

a → 0; lim
z→∞

ρ→ 0, lim
z→∞

a → a0. [6]

Fig. 1 shows the numerically obtained steady state profiles
emerging from Eqs. 4 and 5 using experimentally established
model parameters (39). All numerical solutions were obtained
using finite element simulations (68, 69) (Materials and Methods).
The density profile (solid red line) has a distinct peak at the front
which defines the appearance of the migrating band observed in
experiments (23, 24, 39) and can be divided into three distinct
regimes: the growth regime (left of the density trough), the
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Fig. 1. Profiles of bacterial density (solid red line, in optical density
measured at a wavelength of 600 nm [OD600]), drift velocity (dashed green
line, in mm/h), and attractant concentration (dotted blue line, in mM) for a
steadily expanding population 14.5 h after the inoculation. Arrows indicate
the different regimes used in the analytical consideration. Model parameters
used are adapted from those determined in ref. 39 and are provided in
SI Appendix, Table S1 (this simulation used the low-motility parameters).

chemotaxis regime (the rising part of the density profile), and
the diffusion regime (right of the density peak), as indicated in
Fig. 2B. Such a division reflects the fact that as we will show in
the sections dedicated to each regime, in each of these regimes,
either the growth, chemotaxis, or diffusion term dominates
in Eq. 4.

Chemotaxis Regime
Heuristic Derivation of the Expansion Speed. We first analyze the
most striking feature of the traveling wave, the density bulge.
Initially, we consider Eqs. 4 and 5 in the limit of ρc →∞ (this
assumption will be relaxed later). We start with the following
ansatz:

ρ(z ) = β · (a(z ) + am), [7]

with β being a proportionality constant. This reduces Eq. 5 to a
homogeneous linear differential equation in a(z ) with constant
coefficients. The solution to such an equation is an exponential
function, a(z )∝ exp(λz ), with λ satisfying

− cλ=Daλ
2 − μβ. [8]

The ansatz Eq. 7 also simplifies Eq. 4 considerably, with the
penultimate term on the right-hand side (RHS) of Eq. 4 now
proportional to d2a/dz 2 . Another consequence of the ansatz is
that d

dz
ρ(z ) = β d

dz
a(z ), a relation that will be used often in our

calculations. With the ansatz, Eq. 4 simplifies to

− cλ= (Dρ − χ0)λ
2 + r

(
1 +

am
a(z )

)
. [9]

To proceed further, we consider the case that growth is much
smaller than chemotactic drift so that the term proportional to
r on the RHS of Eq. 9 may be neglected. This requires that both
of the following conditions be true: The first is a condition on the
parameters such that

r � λc, [10]

which is equivalent to assuming that the timescale of growth is
much larger than the timescale of chemotactic drift, and thus,
the two timescales may be separated. As we will show later,
this assumption corresponds to a broad, biologically relevant

parameter regime and is independent of the growth rate itself
(because λc turns out to be proportional to r). The second is a
condition on the values of attractant concentration a(z ),

a(z )	 r

λc
am . [11]

As we will show in Growth Regime and the Density Trough, the
quantity on the RHS of condition [11] is approximately the value
of the attractant concentration at the trough of the density profile
(i.e., the left boundary of the chemotaxis regime). Thus, for
growth that is small compared to chemotactic drift (i.e., condition
[10]), Eq. 9 becomes independent of a(z ) in the chemotaxis
regime. This means Eq. 4 is a linear equation involving ρ(z ), a(z ),
and their derivatives, and it (self-consistently) admits the ansatz
Eq. 7 as a solution. With the last term in Eq. 9 neglected, the
solution to λ is readily obtained, i.e.,

λ=
c

χ0 −Dρ
, [12]

where the solution λ= 0 is rejected as it does not solve Eq. 8. In
this regime, the solution to the attractant concentration can be
explicitly written as

a(z ) = am exp[λ · (z − zm)], [13]

where zm is defined by a(zm) = am .
To obtain a relation for the expansion speed c and its depen-

dence on the model parameters, we note that Eqs. 8 and 12 are by
themselves insufficient since there are three unknown quantities:
c, λ, and β. To obtain a defined solution, we thus invoke the
boundary conditions at z =+∞ well outside the chemotaxis
regime (Eq. 6). This is done by integrating Eqs. 4 and 5 from a
position z = z † in the chemotaxis regime to z =+∞. For Eq. 4
with ρc →+∞, we obtain

cρ(z †) =−Dρ
dρ

dz
(z †) + χ0

ρ(z †)

a(z †) + am

da

dz
(z †) + rN (z †),

[14]
whereN (z †)≡

∫∞
z† ρ(z )dz is the total bacterial population to the

right of z †. Note that Eq. 14 is exact and independent of our
ansatz. For z † located in the chemotaxis regime, we plug in our
ansatz Eq. 7 and Eqs. 13 to 14, yielding

cβ(a(z †) + am) =−(Dρ − χ0)βλa(z
†) + rN (z †). [15]

Note that while the term with growth rate r was negligible in
Eq. 9, it cannot be neglected in the integral form as it involves
contributions by ρ(z ) outside of the chemotaxis regime. Using
Eq. 9, Eq. 15 simplifies to

cβam = rβ(a(z †) + am)/λ+ rN (z †). [16]

Now, while Eq. 16 provides us another equation for c,β and λ,
we have a new unknown, N (z †). However, another relation for
N (z †) is obtained by integrating both sides of Eq. 5 from z † to
+∞, yielding

− c(a0 − a(z †)) =−Daλa(z
†)− μ[N (z †)−ΔN (z †)], [17]

where ΔN (z †)≡
∫∞
z† amρ(z )/(a(z ) + am) dz . We show in

SI Appendix, section S5, thatΔN (z †)∼O(amβ/λ)� N (z †) for
r � λc. Neglecting ΔN (z †) in Eq. 17 and using Eq. 8, we obtain

ca0 ≈ μβa(z †)/λ+ μN (z †). [18]

Eqs. 16 and 18 allow us to eliminate N (z †) + βa(z †)/λ and
explicitly obtain the proportionality constant of the ansatz
Eq. 7,

β =
ra0
μam

1(
1− r

λc

) ≈ ra0
μam

. [19]
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The explicit value of β now allows us to solve for λ and c using
Eqs. 8 and 12:

λ≈
√

r a0/am
χ0 −Dρ +Da

, [20]

c ≈ (χ0 −Dρ)

√
r a0/am

χ0 −Dρ +Da
. [21]

From Eqs. 20 and 21, we find that the condition r � λc amounts
to the following condition on the parameters:

a0
am

	 1 +
Da

χ0 −Dρ
. [22]

Thus, the requirement for our ansatz to hold translates to an
equivalent condition on the chemotactic model parameters that
is independent of the growth rate r. As detailed in Parameter
Dependences of the Expansion Speed, this parameter regime is
typical for the study of migrating bands, with (χ0 −Dρ) a few
fold below Da for bacteria in soft agar, and comparable to Da

for motile cells in liquid medium, while am is several orders of
magnitude smaller than a0.

Parameter Dependences of the Expansion Speed
To validate our heuristic approach we compared the derived
relation for the expansion speed, Eq. 21, with numerical simu-
lations, obtaining an excellent match for a broad range of model
parameters. We show the dependences on growth rate, uptake
rate, background attractant concentration, and the attractant
diffusion coefficient in Fig. 2.

First, there is a square root dependence on the growth rate r,
as validated by numerical results in Fig. 2A. This demonstrates

Fig. 2. Dependence on (A) growth rate r, (B) uptake rate μ, (C) rel-
ative attractant levels a0/am, and (D) attractant diffusion Da. Analytical
relation for the expansion speed (Eq. 23) is shown by solid lines (Dρ =

50 μm2/s, 1, 000 μm2/s in red and blue, respectively). The corresponding
Fisher speeds, cF = 2

√
Dρ · r, are denoted by corresponding dashed lines.

Numerical solutions of the GE model (Eqs. 4 and 5) are shown by correspond-
ing symbols. Unless specified, all parameter values are the default values
given in SI Appendix, Table S1.

that the well-known square root dependence of cF , the Fisher
speed, on growth rate is preserved in the GE model. The ex-
pansion speed is further increased by the square root of the
relative background attractant concentration,

√
a0/am (Fig. 2B).

However, the expansion speed c does not depend on the specific
rate of attractant uptake μ (Fig. 2C) nor the inoculum population
size (as the steady state bulge size is an emergent property,
independent of the initial population size). The independence
on μ is particularly counterintuitive since it is the uptake of
attractant that establishes the attractant gradient which, in turn,
drives the chemotactic movement. The independence on μ is
in contrast to the KS model, which predicts that c = μNKS/a0
(where NKS is the inoculum population size), but is in agreement
with experimental results (23, 39). We will show in The Growth–
Leakage Balance that our solution for c can be similarly expressed
in terms of μ and N0, the size of the density bulge. However,
unlike the KS solution,N0 is here an emergent quantity that turns
out to be inversely proportional to μ. Thus, the dependence on μ
cancels out, making the expansion speed independent of μ.

The most nontrivial aspect of Eq. 21 is perhaps the predicted
dependence of the expansion speed c on the attractant diffusion
coefficient Da (Fig. 2D), which was not considered in most
previous models (33, 34, 70, 71). Although this dependence itself
is not so strong, it significantly affects the dependence of c on the
cellular motility characteristics as we discuss next.

To see how the expansion speed depends on the cellular motil-
ity parameters Dρ and χ0 we first note that Dρ and χ0 result from
the run-and-tumble dynamics and are thus both proportional to
v2
0 τ , where v0 is the run velocity, and τ is the average duration

of runs. The ratio χ0/Dρ results from the properties of the
flagella motor, the ligand/chemotactic receptor interaction, and
the chemotactic signaling network (46). To better describe the
differences, we here define the chemotactic sensitivity,φ≡ (χ0 −
Dρ)/Dρ, a dimensionless parameter such that a large value of φ
represents a strong chemotactic response to a ligand. Notably,
Dρ can vary across a broad range depending on the environment,
with Dρ ∼ 50 μm2/s for E. coli swimming in soft agar (39) and
Dρ ∼ 300 to 1,000 μm2/s in liquid media (39, 72, 73). In contrast,
φ is not expected to be affected by environmental obstacles but by
the chemotactic properties of the cell and the type of attractant
and is found to vary from 2 to 8 (72, 74). We can thus keep φ and
Dρ as independent parameters and write the expansion speed,
Eq. 21, as

c ≈Dρφ

√
r a0/am
Dρφ+Da

. [23]

The predicted comparison with numerical solutions confirms the
dependence on cellular parameters: Notably, for high cellular
motility, Dρφ	Da , Eq. 23 gives c ≈

√
Dρφra0/am , as seen

in Fig. 3 A and B (solid dark blue lines show the analytical
prediction for φ= 5). The thick cyan lines show a square root
fit. Meanwhile, in the range Dρφ�Da , c ∝Dρφ

√
ra0/am and

thus has a linear dependence on the motility parameter and
chemotactic sensitivity (thick yellow lines).

The dependence of the expansion speed on the value of Da

(Fig. 2D) and its relation to Dρ (Fig. 3) reveals a crucial role of
the molecular diffusion of the attractant, which has historically
been assumed to be of a much smaller scale than the motility-
induced bacterial diffusion and chemotaxis (33, 34, 36, 44, 70,
71, 75). Large Da can be understood to result in a smoothening
of the attractant gradient, thereby slowing down chemotaxis. In
fact, for extremely large values of Da , we note that the bacterial
population is unable to establish a gradient in the attractant
concentration, and our analysis fails to hold as seen in the self-
consistency condition [22]. Quantitatively, the molecular diffu-
sivity (Da ≈ 800 μm2/s) well exceeds the chemotactic coefficient
and the effective cell diffusivity of E. coli in soft agar (Dρ ≈
50 μm2/s) (39). Hence, condition [22] is satisfied for a0 > 4am ≈
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Fig. 3. Dependence of expansion speed
on motility parameters. (A) Dependence on
cellular motility Dρ. Numerical solutions for
φ = 1 and φ = 5 are shown by red circles
and dark blue triangles, respectively. Ana-
lytical solutions following Eq. 23 are shown
by corresponding solid red and blue lines.
The green dashed line represents the sta-
ble Fisher speed, cF = 2

√
Dρr, the minimum

expansion speed of our system. (B) Depen-
dence on the chemotactic sensitivity, φ. Nu-
merical solutions for Dρ = 50 μm2/s and
Dρ = 1, 000 μm2/s are shown by red and
dark blue circles, respectively. Analytic so-
lutions following Eq. 23 are shown by the
corresponding solid lines. Thick yellow and
cyan dashed lines are best fits for the respec-
tive values of φ and Dρ to demonstrate that
c ∝ Dρφ for Dρφ � Da and that c ∝

√
Dρφ

if Dρφ is large compared to Da. Unless spec-
ified, all parameter values are the default
values given in SI Appendix, Table S1.

4 μM for aspartate, thus explaining the deviation seen at small
a0/am for Dρ = 50 μm2/s (see red circles in Fig. 2B).

We also verified the dependence of the expansion speed on
φ itself for φ > 1 (Fig. 3B). For φ < 1, the numerical values
do not match the analytical values, as they are beyond the
regime of self-consistency discussed above. Outside of this
regime, the traveling-wave solution transitions to the pulled
wave dynamics of the F-KPP equation, with a lower bound on
the expansion speed given by the Fisher speed (cF = 2

√
Dρr)

(SI Appendix, Fig. S3).

Effect of Carrying Capacity. Next, we consider the effect of a finite
carrying capacity ρc and the corresponding effect on expansion.
To do so, we follow a similar approach as in Heuristic Derivation
of the Expansion Speed; see SI Appendix, section S6, for details of
the calculations performed. Incorporating the effect of ρc leads
us to the following form for the expansion speed:

c = c∞

/√
1 +

ra0
μρc

Dρφγ

(Dρφ+Da)

a0
am

, [24]

where c∞ is the expansion speed for infinitely large carrying
capacities, ρc →∞ as given by Eq. 21, and γ is a dimensionless
function determined by the shape of the density bulge. While
we are unable to determine the exact functional form of γ, we
find an excellent agreement between the numerical results and
analytical solution for the best-fit value of γ (found to be γ = 0.26
for Dρ = 50 μm2/s and γ = 0.36 for Dρ = 1, 000 μm2/s) as seen
in Fig. 4A.

An intriguing prediction of Eq. 24 is a peak in the relation
between c and a0 whose existence is numerically confirmed
(Fig. 4A). Thus, too much attractant actually reduces the expan-
sion speed, i.e., the expansion speed of the population cannot be
arbitrarily increased merely by increasing the ambient attractant
concentration, but is limited ultimately by the physiological and
molecular parameters. To understand this nonmonotonic depen-
dence, we note that in Eq. 24, the effect of ρc is insignificant
for ρc 	 ra2

0/(μam) = β · a0, i.e., if ρc is large compared to the
highest density expected from the ansatz Eq. 7 when a(z )→
a0. For sufficiently large a0 such that ρc < βa0, the quantity
μρc/r (which describes the amount of attractant taken up by
bacteria at the peak density, where ρ(z )≈ ρc , in one doubling
time) becomes small, and the population is unable to take up
the attractant fast enough to generate a substantial gradient in
a(z ). The lack of a substantial gradient, in turn, leads to mitigated
expansion speeds. As a result, for small ρc , Eq. 24 simplifies to

c ∝
√
μ/a0. Thus, for small carrying capacity, c increases with μ

and decreases with a0, qualitatively similar to the relation found
by Keller and Segel (c ∝ μ/a0). In both solutions, the decrease
in expansion speed with a0 results from a bound on the total
population of the density bulge that limits its ability to consume
the attractant.

We note that the existence of a peak in expansion speed
for varying background attractant concentrations was observed
experimentally and reported already over 30 y ago (39, 76) but
was believed to be due to receptor saturation. Our analytical
solution in Eq. 24, validated by simulations (Fig. 4A), provides
an excellent quantitative explanation of this phenomenon even
in the absence of receptor saturation.

The attractant concentration corresponding to the maximum
expansion speed is found to be

amax
0

am
=

√
μρc
ramγ

(
1 +

Da

Dρφ

)
[25]

and is validated numerically in Fig. 4B. The resulting maximum
expansion speed is cmax = c∞(a0 = amax

0 )/
√
2, and the corre-

sponding carrying capacity is proportional to (amax
0 )2. Thus, for

the population to maximize its expansion speed at high attractant
concentrations, a very high carrying capacity is required. As the
carrying capacity is typically no more than a few OD for aerobi-
cally grown cells, the attractant concentration for the maximum
expansion speed, amax

0 , is not expected to be above∼ 0.1mM (Eq.
25 and Fig. 4A).

Case of ak �= am. If we relax the assumption that ak = am and take
as our ansatz ρ(z ) = β(a(z ) + ak ), we note an additional term in
Eq. 9 that is of the order

(am − ak )ama(z )

(a(z ) + ak )(a(z ) + am)2
[26]

relative to the dominant chemotactic drift term. It is due to this
term that our ansatz Eq. 7 fails to hold if ak �= am . A similar term
is found in Eq. 17. While trivially negligible if ak = am , the terms
are also negligible for a(z )	 ak , am and as a(z )→ 0. Thus, we
expect our analysis of the chemotaxis regime (and the growth
regime, which we perform in Growth Regime and the Density
Trough) to also be applicable for the case that ak �= am as long
as a(z )	 ak , am . However, when a(z )∼ am ∼ (am − ak ), our
ansatz will not hold, and the value of a(z ) where ρ(z ) switches
from being relatively constant as in the growth regime to rising
exponentially as in the chemotaxis regime is undetermined by our
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Fig. 4. Effect of carrying capacity. (A) De-
pendence of expansion speed on the am-
bient attractant concentration when the
carrying capacity is finite (ρc = 10 OD600).
Markers (red circles and blue triangles) in-
dicate numerical values, solid lines indicate
analytical predictions as per Eq. 24, and
dashed lines indicate analytical predictions
with ρc → ∞. All results in red are for Dρ =

50 μm2/s, and all results in blue are for
Dρ = 1, 000 μm2/s. (B) The ambient attrac-
tant concentration resulting in maximum
expansion speed amax

0 is shown depending
on the dimensionless parameter μρc/(ram).
The analytical solution, Eq. 24, is shown as
corresponding solid lines. Dashed lines show
the solutions (c∞) without a limiting carry-
ing capacity (ρc → ∞, as shown in Fig. 3).
Different symbols in B denote which model
parameter was varied from its default value
(square if μ, circle if ρc, triangle if r, and
diamond if am) for Dρ = 50 μm2/s (red) and
Dρ = 1, 000 μm2/s (blue). For details, re-
fer to SI Appendix, Supplemental Methods,
and to SI Appendix, Table S2, for range
of values used for each parameter. Pa-
rameters have the default values from
SI Appendix, Table S1, unless specified.

current analysis. We expect the transition to be at ηam , between
ak and am , as both of these values are crucial in determining
the transition in ρ(z ). The coupled nature of ρ(z ) and a(z )
make it difficult to determine η exactly. Such an assumption
leads to a similar expression for expansion speed but where ηam
replaces am in the final form. We find an excellent agreement
with numerical results for ak �= am for just one fitting parameter,
η, which we find to be ∼2/3 for ak = 0.1 μM = 10am and η ≈ 3
for ak = 10 μM = 0.1am . The range of exponential speeds for
different values of ak while keeping am fixed at 1 μM is shown
in Fig. 5 A and B. Notably, c is seen to decrease only twofold for
a 2,000-fold increase in ak , from 50 nM to 100 μM for standard
parameters (Fig. 5B), while if both ak and am increase 2,000-fold,
c would decrease 45-fold (Fig. 2B).

Diffusion Regime and the Density Peak
Next, we describe the dynamics of the propagating density profile
at its asymptotic front. This is the diffusion regime which lies
to the right of the density peak (Fig. 1), where the exponential
increase of the concentration of the attractant observed in the
chemotaxis regime is curtailed by the right boundary condi-
tion, i.e., a(z →∞)→ a0. Here the drift velocity becomes v ∝

d
dz
a(z )/a0 → 0 and thus negligible as z →∞. The equation for

ρ(z ) is no longer affected by the attractant, and the dynamics are
thus described by the F-KPP equation. The solution is

ρ(z ) = ρ0 exp(−λ±
Dz ) with λ±

D =
cD ±

√
c2D − 4rDρ

2Dρ
, [27]

where ρ0 is a proportionality constant (see Eq. 33) and cD is the
speed of propagation of the asymptotic front.

For the front to be a part of the stationary solution that
propagates at the same speed as the chemotaxis regime, c (Eq.
21), we must have cD = c, which well exceeds the F-KPP speed,
cF = 2

√
rDρ. It is well known for the F-KPP equation that

if the dynamical system admits a uniformly translating front
solution with c > cF , then the front solution corresponding
to the traveling speed c is the stable solution (28). For the
case that the front is asymptotic, the initial conditions are
compact, and the right boundary condition is the unstable state,
ρ(z →∞) = 0, the steeper front solution is selected for (28)
(see SI Appendix, section S7A, for a brief description). Thus,

Fig. 5. Effect of varying Michaelis constant,
ak. (A) Dependence of expansion speed on
the chemotactic sensitivity, φ, for differ-
ent values of ak and Dρ = 50 μm2/s. Solid
lines indicate analytical solutions for corre-
sponding best fit values of η, and mark-
ers denote the numerical solutions. Results
for ak = 0.1 μM, 1 μM, and 10 μM are
shown in yellow, red, and blue, respectively.
(B) Dependence of the expansion speed on
model parameter ak. The numerical solu-
tions obtained for Dρ = 50 μm2/s, φ = 5
are represented by yellow triangles, and the
analytic solution found in Eq. 21 for ak =

am = 10−3 mM is shown by the red line.
Parameters have the default values from
SI Appendix, Table S1, unless specified.
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our dynamical system selects for a solution with the leading
asymptotic behavior given by

λD ≡ λ+
D =

c +
√
c2 − 4rDρ

2Dρ
≈ c/Dρ [28]

for the diffusion regime.
We then turn to the form of a(z ) in the diffusion regime. As

a(z )→ a0 	 am in this regime, Eq. 5 becomes

− c
da

dz
=Da

d2a

dz 2
− μρ0 exp(−λDz ). [29]

This is a nonhomogeneous linear differential equation in a(z )
with the solution

a(z ) = a0 −
μ exp(−λDz )

λD(c −DaλD)
− a1 exp(−cz/Da), [30]

where a1 is an undetermined constant of integration. The leading
behavior is determined by whichever exponential term decays
more slowly as z →+∞:

a0 − a(z )∝
{

exp(−cz/Da), λD > c
Da

(orDρ <Da);

exp(−λDz ), λD < c
Da

(orDρ >Da).
[31]

As to the peak itself, it can be shown (see SI Appendix, section S9,
for details) that the attractant concentration at the peak, a(zmax),
is given by the bound

a0

(
χ0

χ0 +Da

)
> a(zmax)>

a0
2

(
χ0

χ0 +Da

)
. [32]

With some further approximations (that χ0 	Dρ and that the
ansatz Eq. 7 extends throughout the rising region of the density
bulge), we obtain that

ρmax

ρmin
∼ λc

r
, [33]

where ρmax is the maximal population density at the front (i.e.,
the density peak) and ρmin is the minimal population density
left of the peak (i.e., the density dip at the transition between
the chemotaxis and growth regimes). A numerical verification
of Eqs. 32 and 33 for a broad parameter range is shown in
SI Appendix, Fig. S4.

Growth Regime and the Density Trough
Next, we turn to the growth regime, which is the region with
exponential density profile trailing the density bulge (Fig. 1B).
In this regime, the increase in ρ(z ) as z →−∞ drives the at-
tractant concentration to zero according to Eq. 5; i.e., a(z )→
0, da(z )/dz → 0 as z →−∞. Consequently, v(z )→ 0 and∣∣∣∣ ddz (v(z )ρ(z ))

∣∣∣∣� c ·
∣∣∣∣dρdz

∣∣∣∣ [34]

in the growth regime, sufficiently to the left of the density trough.
Later in this section, we will quantitatively define the condition
where the v term is negligible compared to c. Here we briefly
describe characteristics of the solution when this condition holds.

Eliminating the term associated with chemotactic drift re-
moves the dependence of ρ(z ) on a(z ) in Eq. 4, with the only
remaining processes determining ρ(z ) being growth and diffu-
sion. Thus, we recover the F-KPP equation, with the solution
ρ(z )∝ exp[−λ±

Gz ], where

λ±
G =

cG
2Dρ

±
√
c2G − 4Dρr

2Dρ
, [35]

cG being the traveling velocity of the growth regime. As in the
diffusion regime, here cG must be the same as c, the speed of
the chemotaxis regime, in order for Eq. 4 to admit a stationary
solution. Since c 	 cF = 2

√
rDρ, the two solutions for χ0 	

Dρ are λ−
G ≈ r/c � λF =

√
r/Dρ and λ+

G ≈ c/Dρ 	 λF . It is
well established for the F-KPP equation that for a solution to
move stably at a speed exceeding cF , its front must be shallower
than λF ; see ref. 77 and SI Appendix, section S7B. Hence, λ−

G is
selected. Thus, the form of density sufficiently to the left in the
growth regime must be given by

ρG(z ) = ρ1 exp[−λG · z ], with λG ≡ λ−
G ≈ r/c, [36]

ρ1 being a proportionality constant that sets the z scale as will be
specified in this section.

To understand how the front of the growth regime is set, we fo-
cus on the transition region between the growth and chemotaxis
regimes (located close to the density trough). A magnified view
of this transition region is shown in Fig. 6A, with zmin denoting
the location of the density minimum.

Previously, we have shown that for z > zm (defined by a(zm) =
am ; Fig. 6A) in the chemotaxis regime, cell density is given by the
ansatz Eq. 7, with the attractant concentration a(z ) given by Eq.
13. We showed that the validity of this ansatz required a(z )	
(r/λc)am , i.e., Eq. 9. However, even with r � λc, this condition
will eventually break down for a(z )� am , for z < zm , including
possibly the vicinity of zmin (Fig. 6A). Thus, in order to address
the density profile in the transition region, we cannot rely on the
ansatz Eq. 7 anymore.

Here we extend our ansatz to a modified form which we will
show to be valid for both the chemotaxis and growth regimes,
including all of the transition region:

ρ(z ) = β [a(z ) + am ] · exp[−λG · (z − zm)]. [37]

Clearly, for a(z )� am , Eq. 37 recovers the form of density estab-
lished for the growth regime, i.e., Eq. 36, with ρ1 = βameλGzm .
For a(z )	 am where a(z ) is given by Eq. 13 in the chemotaxis
regime, Eq. 37 becomes

ρ(z )≈ βa(z ) · e−λG (z−zm ) = βam · e(λ−λG )·(z−zm ) ≈ βa(z ),

where the last approximation results fromλG � λ for our param-
eter regime r � λc. Furthermore, we can verify that the modified
ansatz Eq. 37 satisfies Eq. 4 for intermediate range of a(z ),
leaving behind a linear equation for a(z ) that is the same as that
obtained in the chemotaxis regime, with the same solution (Eq.
13) (SI Appendix, section S7B). Our modified ansatz thus leads to
the following form for the cell density:

ρ(z ) = βam
[
1 + eλ·(z−zm )

]
· e−λG (z−zm ), [38]

which we claim to be valid for the entire regime −∞< z < zm
(for r � λc), including the vicinity of the density trough located
at zmin.

We can now use the expression given by Eq. 38 to work out
characteristics of the solution in the transition region. By setting
d
dz
ρ
∣∣
z=zmin

= 0, we obtain (for r � λc):

zmin = zm − λ−1 ln
(
λc

r

)
; [39]

ρmin = βam ·
(
1 +

r

λc

)
e−(zmin−zm )·r/c ≈ βam ; [40]

amin ≡ a(zmin) = am · exp[λ · (zmin − zm)] =
r

λc
am . [41]

These results are validated numerically for a range of parameters
(Fig. 6 B–D).
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Fig. 6. Transition from the chemotaxis to
the growth regime. (A) Steady expansion
profiles of ρ(z) (solid red line) and a(z)
(solid blue line) for the standard parame-
ters (SI Appendix, Table S1; Dρ = 50 μm2/s,
χ0 = 300μm2/s). The profile of ρ(z) as pre-
dicted by the ansatz Eq. 7 is shown using
the dashed green line. Dashed horizontal
lines indicate distinct values of a and ρ as
indicated. (B–D) Numerically obtained val-
ues of a(zmin), ρ(zmin), and zm − zmin for a
broad variation of parameters. Seven model
parameters in Eqs. 4 and 5 (other than
ρc, which was >1, 000 OD600 for all results
here) were varied across many decades (see
SI Appendix, Supplemental Methods, for de-
tails of what was done and SI Appendix,
Table S3, for the range of values investi-
gated). Blue lines show y = x to demon-
strate agreement with the predicted values
of a(zmin), ρ(zmin) , and zm − zmin.

We can determine the left boundary of the transition region,
z ′
m , by finding the range of z < z ′

m where Eq. 38 is described
by the simple exponential form in Eq. 36 (dashed green line,
Fig. 6A). This can be estimated by setting the asymptotic form

ρG(z )≡ lim
z→−∞

ρ(z ) = βame−λG ·(z−zm ) [42]

to ρG(z ′
m) = ρmin. Using Eq. 40 for ρmin, we find

z ′
m = zmin − λ−1 ln

(
λc

r

)
. [43]

In other words, Eq. 42 can be written as ρG(z ) = ρmine
−λG (z−z ′m ).

Note that because λG · (zmin − z ′
m)� 1 according to Eq. 43 for

r � λc, ρG(z )≈ ρmin for z ′
m < z < zmin; i.e., the density function

on the left side of zmin is constant with relative variation of the
order of r/λc. [We can verify the self-consistency of the ansatz
Eq. 38 by using it to compute the drift velocity dv(z )/dz and
hence evaluate the spatial domain where the condition [34] is
satisfied. We find that [34] is satisfied for eλ·(zmin−z) 	 1 or z <
zmin − λ−1 ln(λc/r) = z ′

m from Eq. 43.]
To summarize, the transition region between the chemotaxis

and growth regimes ranges from z ′
m < z < zm where the dis-

tances from zmin to zm and z ′
m are given by Eqs. 39 and 43,

respectively. The total width of the transition zone is

w ≡ zm − z ′
m =

2

λ
ln(λc/r). [44]

Note that the time it takes for the wave front to migrate across
the transition region is τ = w/c. Thus, the key condition for our
results, r � λc, corresponds simply to rτ � 1, i.e., a separation
of timescale between expansion and population growth. This is
a condition which we expect to hold for most expanding popula-
tions.

The Growth–Leakage Balance
We can finally use the explicit solution for ρ(z ) to connect
the dynamics in the chemotaxis and growth regimes. We con-
sider the total bacterial population to the right of a position
x = z + ct , which is comoving with the population: Ñ (z ; t)≡

∫ +∞
z+ct

dx ′ρ(x ′, t). The change in Ñ (z ; t) over time is given for-
mally by

dÑ

dt
=−J̃ (z ; t) + r · Ñ (z ; t), [45]

where

J̃ (z ; t) = (c − v(z + ct , t))ρ(z + ct , t) +Dρ
∂ρ

∂x

∣∣∣∣
z+ct

obtained from taking time derivative of Ñ using Eq. 1 is the
leakage flux which includes the loss of cells across the position
x = z + ct in the laboratory frame due to chemotaxis and diffu-
sion, and the last term in Eq. 45 describes the growth of the cells
in the region x > z + ct .

In the absence of growth r = 0, Novick-Cohen and Segel (34)
showed that incorporating the lower Weber cutoff to the KS
model led to the loss of cells from the front and subsequently
the slowdown of the migrating wave front. We see from Eq. 45
that the incorporation of growth, even at very low rates, allows
the migrating wave front to replenish itself and thereby maintain
stability.

In the stationary state ( d
dt
Ñ = 0), quantities in the moving

frame have no time dependence, i.e., Ñ (z ; t) = N (z ). Thus,

rN (z ) = J (z )≡ (c − v(z ))ρ(z ) +Dρ
dρ

dz
, [46]

which is just Eq. 14 with v(z ) given by a(z ) that solves the
stationary equations, Eqs. 4 and 5. Earlier, we solved Eq. 14
using the ansatz Eq. 7 that holds only in the chemotaxis regime
with z > zm . We can repeat the calculation using Eqs. 38 and 13
derived from our ansatz Eq. 37. We find the leakage flux to be
very weakly z-dependent in the vicinity of the density trough, i.e.,

J (z ) = J0 · [1 +O(r · (zmin − z )/c)] for z ′
m < z < zm , [47]

where

J0 ≡ J (zmin) = cρmin ·
[
1− r

λc

χ0

χ0 −Dρ

]
≈ cρmin. [48]

Since |z − zmin|< λ−1 ln(λc/r) according to Eqs. 39 and 43, we
conclude that J (z )≈ J0 up to an order of r/(λc) ln(λc/r)� 1.
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Consequently, N (z ) is also nearly z-independent, reflecting the
sharply peaked structure of the density front. For convenience,
we define N0 ≡N (zmin) as the size of the population in the den-
sity bulge. The above results then lead to an important biological
relation,

rN0 = J0, [49]

with the bulge size given by

N0 = J0/r ≈ cρmin/r . [50]

Eq. 49 describes a balance of the growth of the cells in the front
and their leakage behind the front, as depicted in Fig. 7. At a
given instance (time t0), the wave front is shown as the dashed
red line in the laboratory frame. The front region, composed of
N0 cells, grows at a rate rN0. This growth is balanced by cells
leaving the front (i.e., across the black dashed line indicating
x0 = zm + ct0), with flux J0 =−cρmin. At some time δt later,
the front has traversed a distance δx = c · δt . The total amount
of cells leaving the front during this time is δN = J0δt . The
corresponding density of the cells left behind the propagating
front is δN /δx ≈ ρmin (shown as the purple region in Fig. 7A).
The cells left behind will grow at the rate r. For δt much smaller
than the doubling time, the density behind the front will not have
grown much and will thus remain at ∼ ρmin (Fig. 7A). We have
shown that this is the case for the time it takes for the front to
traverse the width of the trough region (Eq. 44). After a time Δt
that is large compared to the doubling time, the population size at
the back will become ρ(x0, t) = ρ(x0, t0) e

rΔt = ρ(x0, t0) e
r(t−t0)

(Fig. 7B). Given that t0 = (x0 − zmin)/c, we have

ρ(x0, t)≈ ρmin exp
[
− r

c
(x0 − ct)

]
. [51]

Thus, the trailing exponential density profile in Eq. 51, while
looking like a moving front, is merely a result of the exponential
growth of a stationary population, which is seeded by the travel-
ing wave front at density ρmin and speed c.

Finally, we note that the picture depicted in Fig. 7A can be
used directly to predict the value or ρmin without going through
detailed calculation: since the bacteria are concentrated in the
density bulge, the removal of the attractant is almost entirely due
to uptake by cells in the density bulge. This gives us the mass
conservation condition*

μN0 ≈ ca0. [52]

*This relation can also be obtained systematically from our solution by using ρmin ≈ βam
(from Eq. 40) and the expression for β from Eq. 19 in Eq. 50. Since the result for β was
invoked, it involves the approximation made following Eq. 17. This reflects the fact that
in arriving at Eq. 52, we assumed that attractant uptake is always saturating.

The growth–leakage balance rN0 = J0 then gives J0 = ca0r/μ.
The consideration described in Fig. 7A then immediately gives
the result that the density left behind the front bulge, which would
be ρmin, is given by J0/c = a0r/μ. Thus, we obtain a surprisingly
simple result,

ρmin ≈ a0r/μ, [53]

independent of the other details of the system.
We can also use the expression for ρmin thus obtained to cal-

culate the consumption of attractant around the density trough.
Using ρ(z ) = ρmin and a(z ) from Eq. 13, Eq. 5 becomes

− cλ=Daλ
2 − μρmin

am
=Daλ

2 − r
a0
am

. [54]

This relation together with the proportionality between λ and
c, Eq. 12, immediately gives the central result on the expansion
speed, Eq. 21. This simple line of consideration reveals the under-
lying origin of the dependence of the expansion speed on a0/am :
the growth–leakage balance relates the ambient concentration
a0 to the trough density ρmin (Eq. 53), and the balance between
attractant uptake μρmin and drift/diffusion at the trough relates c
and λ to ρmin and am .

Discussion
To reveal the underlying dynamics governing chemotaxis-driven
population expansion, we analyzed the experimentally verified
GE model mathematically (39). Following an extensive traveling-
wave analysis we were able to describe the density and attractant
profiles throughout the chemotaxis and growth regimes (Fig. 6
and Eqs. 13 and 37). We determined the expansion speed (Eq.
21) and the slope λ which specifies the width of the migrating
band (Eq. 20).

Our results, which are in excellent agreement with numeri-
cal simulations for a broad range of model parameters tested
(Figs. 2–6), recover many key experimentally observed relations
of the expansion speed to biological and environmental parame-
ters (39) that previous models based on the KS model had failed
to capture (36, 37). Notably, while our model agrees with the KS
model near the density bulge, with the same relation between
expansion speed and the size of the peak (c = μN0/a0; Eq. 52),
the size of the peak itself is not a constant as in the KS model
but an emergent quantity. Consequently, the expansion speed
depends on many of the model parameters.

First, the expansion speed depends on the ratio of the initial
attractant concentration to the lower limit of attractant sensitivity
(i.e., c ∝

√
a0/am) for large carrying capacity. For finite carrying

capacity our analysis predicts the nonmonotonic dependence of
expansion speed with initial attractant concentration, providing

Fig. 7. Schematic of the dynamics of the
transition between chemotaxis and growth
regimes. (A) In a short time δt, the density
bulge shown near x0 (dotted red line) moves
forward to be near x0 + cδt (solid red line).
In that time, the density bulge grows by an
amount rN0δt and is diminished by leakage
given by an amount J0δt. During steady
expansion, these values match the expres-
sions given by our ansatz (Eqs. 7 and 37).
The leaked cells are deposited behind the
density bulge where the bacterial density
is roughly constant for a distance δx. Thus,
ρ(x0, t0 + δt) ≈ ρmin, and the total deposi-
tion over time δt, given by δN0, is also equal
to J0δt. (B) After a long time Δt, the density
bulge moves to be near a position x0 + cΔt
(dashed red line). Cells behind the density
bulge grow at a rate r, and the density thus
accumulates as ρ(x0, t) = ρmin exp(rΔt).
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an explanation for this long-known experimental observation
(76): For lower attractant concentrations, increasing concentra-
tion increases the size of the bulge and hence promotes faster
expansion. However, for higher concentrations, the carrying ca-
pacity limits the size of the bulge, and expansion speed decreases
with increasing attractant concentration as it takes longer for the
bulge to consume the attractant and establish a gradient (Eq. 24
and Fig. 4A).

Second, our results reveal a dependence of the expansion
speed on the diffusion of the attractant (Da ; Fig. 2D). The effect
of multiple diffusion coefficient-like parameters (Dρ,χ0, andDa)
is one of the reasons the GE model is difficult to analyze. In
Cremer et al. (39), a scaling theory was developed to describe the
dependence of the expansion speed on the chemotaxis coefficient
χ0. Assuming that χ0 was the main relevant factor, the scaling
theory predicted that c ∝ χ0. Our analysis here reveal that c ∝
(χ0 −Dρ) holds for large Da but c ∝

√
χ0 −Dρ for small Da

(Fig. 3).
The analytical understanding attained in this work quantita-

tively supports the role of chemotaxis in range expansion found
by Cremer et al. (39). Particularly, bacterial chemotaxis does not
necessarily occur to fulfill an immediate nutritional need, nor
does it necessarily reflect an attempt to avoid starvation. For
example, cells move chemotactically toward attractants they can-
not metabolize and also swim in nutrient-replete conditions (23,
25, 39). Instead, chemotaxis could be hard-wired to promote the
expansion of bacterial populations into unoccupied territories
well before nutrients run out in the existing environment; low
levels of attractants thus act as aroma-like cues that establish
the direction of expansion and enhance the speed of population
movement (39). Subsequently, cells left behind by the migrating
band fully occupy the region behind the front by growing at
rates determined by nutrient availability. This allows the popu-
lation to expand rapidly into unoccupied territories while colo-
nizing the traversed territories, without one compromising the
other.

Our results also expand upon the general theory of front prop-
agation into unstable states and reveal an alternative mechanism
for speed selection. While many studies of front propagation
involve modification of the nonlinear growth/reaction term in
the original F-KPP equation (28, 78, 79), our model considers a
drift term which is a functional of an environmental variable, the
attractant concentration. Though the canonical results pertaining
to the F-KPP equation are not expected to hold in such a two-
variable system, the dynamics in the growth and diffusion regimes
in our system are effectively described by the F-KPP equation.
While the expansion of an F-KPP wave front pushed by the bulk
(as in the diffusion regime) at rates higher than the stable Fisher
speed has long been known (28, 54), our results demonstrate how
F-KPP wave fronts can also be seeded by a transition regime at
the front (as in the growth regime) to attain very large expansion
speeds. Alternatively put, by following the chemotacting cells in
the leading density bulge, the trailing region can propagate faster
than predicted by F-KPP equation based on growth and diffusion
alone.

Finally, we note that our analysis assumes a separation of
timescales between growth (slow) and chemotactic migration
(fast), i.e., 1/r 	 1/λc, indicating that cell growth is negligible
over the timescale at which the population migrates across the
width of the density bulge given by 1/λ. This condition is fulfilled
for a broad parameter regime where the background attractant
concentration is large (a0 	 am) or when the chemotactic coef-
ficient much exceeds the diffusion of the attractant (χ0 −Dρ 	
Da) (condition [22]). For the narrow parameter regime where
condition [22] breaks down, e.g., when χ0 →Dρ, the expansion
speed approaches the stable Fisher speed cF as it is the expected
speed for a pulled wave solution determined by the asymptotic
front (28) in the absence of a push from the bulk. This is sup-
ported by numerical data (SI Appendix, Fig. S3). A solution to

the GE model that includes the small-χ0 regime would provide
an analytical connection to the F-KPP equation and thereby
provide insight on the transition from the pushed and seeded
dynamics observed when r � λc to the well-established pulled
wave dynamics (28, 58, 80, 81).

Outlook
Beyond an analytical understanding of the interplay between
chemotaxis, growth, and diffusion in the case of migrating bands
of E. coli in soft agar [for which Cremer et al. (39) had previously
established the experimental validity of the GE model], the
mathematical relations obtained here offer testable predictions
for settings that involve chemotaxis, growth, and diffusion inde-
pendent of the specifics of the strain or the environment. First,
we identify the parameter regime in which chemotaxis leads to
a boost in the expansion speed (condition [22]). Outside of this
regime, expansion of the population is governed by the F-KPP
equation. Second, the formation of a distinct density bulge con-
forms to the same parameter regime (SI Appendix, section S9)
and is thus also confirmed as an identifiable signature of boosted
expansion for experiments and observations of bacteria in natural
settings.

Quantitatively, we derive a relation between the expansion
speed and the population profile in the density peak (Eq. 12)
which only involves cellular motility parameters. Thus, the expan-
sion speed can be inferred from just a snapshot of the density pro-
file without requiring multiple measurements over an extended
period of time (which can be difficult to do for bacteria outside
the laboratory). Conversely, the cellular motility parameters can
be inferred if measurements of the expansion speed and density
profile are possible. Similarly, we derive a relation between the
expansion speed and the trailing region (Eq. 51) which only
involves the growth rate. We also connect the expansion speed
to the chemoattractant flux generated by a source (Eq. 21). We
thus provide a relation between population-level features and
molecular/cellular level characteristics for chemotactic bacteria,
analogous to what the solution of the F-KPP equation does
for undirected motion (26–28). This relation provides an ana-
lytical framework for further studies of the effects of evolution
(30) and phenotypic variability (5, 82–84) on the spread of the
population.

Our results may also be extended beyond expanding bacterial
populations in culture plates. Fig. 8A shows an illustration of
particulate organic matter, also known as marine snow, which
sinks steadily in the ocean (85, 86). Nutrients and attractants gen-
erated from metabolic processes on such particles could sustain
the growth of bacterial population chasing the sinking particle
(87–89). To understand the resultant population distribution, the
framework of the present study needs to be further extended to
include nutrient and attractant generation, uptake, and diffusion
on and near the particles (88, 90).

More generally, the biological processes underlying
chemotaxis-driven population expansion, sensing, directed
movement, and the modification of the environment (as
accomplished by uptake of attractant by chemotactic bacteria)
are not limited to bacteria and have been reported for eukaryotic
cells and higher-order organisms (15, 43). Directed movement
may result from sensory cues as shown in nematodes (91) or
as a consequence of area-restricted search as shown in beetles
preying on aphids (92). The framework developed here may
thus be employed to understand the GE dynamics of different
organisms in diverse biological scenarios such as the spread of
invasive species into a novel habitat (55–57, 93), the movement
of cells and cell collectives during development in fruit flies
and chickens (16, 94), or cancer metastasis in zebrafish and
mammalian cells (19). Using this framework, we may understand
the spatiotemporal dynamics of diverse ecological interactions
between different species, such as predator–prey interactions
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Fig. 8. Illustrations of possible extensions
of our analysis. (A) Chemotaxis in marine
bacteria in the plume of sinking marine par-
ticles. The gray bead is the sinking particu-
late organic matter. A flux of nutrients (gray
circles) and attractants (pink hexagons) dif-
fuse into the wake of the particle. The
cyan motile bacteria are able to direct
their motion up the attractant gradient and
thus move toward the sinking particle and
keep up with it. (B) Chemotaxis in pursuit–
evasion dynamics in a predator–prey system.
A predator (shown as a blue amoeba) may
pursue gradients of chemicals (attractant;
yellow beads) left by a motile prey (a yel-
low bacterial cell). The motile prey may,
in turn, evade the predator by performing
chemotaxis and moving away from chemi-
cals (repellent; blue beads) secreted by the
predator.

where each species can direct their motion toward or away from
each other, with the other species (or secretions by each species)
playing the role of attractant or repellent (95) (Fig. 8B). The
analysis of directed motion at the population level has largely
been neglected in favor of the F-KPP dynamics (96) due to
the immense body of knowledge developed for undirected mo-
tion (26–28). The mathematical understanding developed here
presents a convenient framework to study directed population
dynamics which has previously lacked analytical tools.

Materials and Methods
To generate all of the numerical results, finite element simulations of the
system of equations were performed using FEniCS, a computing platform
for solving partial differential equations (68, 69). A one-dimensional mesh
of resolution 15 to 50 μm was used to simulate a moving window of 30 mm
(or 120 mm for very fast fronts). Finite elements of P3Λ

0 type were used.
The initial bacterial density was specified with ρ(x, t) = (tanh((1 −

x2)) + 1) × 0.029/2 in order to initiate a sufficiently localized initial
population with a differentiable functional form. The initial attractant
concentration was specified to be constant everywhere. Neumann boundary
conditions of zero flux were specified on both ends of the simulation do-
main. A difference equation was then solved to approximate the differential
equation in time using a small time step (typically between 2 and 25 s). The
resulting solutions were recorded and used for the subsequent iteration of
the difference equation.

In order to obtain high spatial and temporal resolutions simultaneously,
a moving window technique was utilized. In the moving window technique,
only a 30-mm (or 120-mm for very fast fronts) interval was simulated at
a time. However, when the front of the wave had gone beyond a certain
threshold in the simulation domain, the simulation domain was translated
to the right, and the attractant concentrations and bacterial densities were
extrapolated for the sections of the new simulation domain for which the
values were not previously known. This technique holds very well as long as
a threshold sufficiently far from the right end of the domain is chosen (this
is also desirable to ignore edge effects) such that the linear extrapolation is
correct within numerical resolution.

To analyze the simulations and extract the expansion speeds, the position
of the maximum drift velocity was recorded for each time step. A linear fit
over time was then employed for the position to obtain the expansion speed.
Only fits with a small enough sum of residuals were considered. The fits were
also curated manually to ensure that the expansion speed was calculated
using a period of steady and constant expansion.

Data Availability. Data and code are made available in GitHub at
https://github.com/avaneeshnarla/chemotaxis-traveling-wave. All other
study data are included in the article and/or SI Appendix.
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