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Theoretical Evaluation of Hybrid Simulation Applied
to Continuous Plate Structures

Ahmed A. Bakhaty1; Sanjay Govindjee2; and Khalid M. Mosalam, M.ASCE3

Abstract: Hybrid simulation is a popular experimental technique whereby only part of a system is physically realized and the remainder is
modeled in a computer with a set of actuators and sensors to connect the two subsystems. While the methodology is common, it lacks a
theoretical structure that ensures users are getting valid simulation results of the entire system. Further, little attention has been paid to
distributed mass systems and those that do not have a beam/column like topology. This work examines three basic issues: (1) an abstract
geometric scheme is proposed by which one can reason about hybrid simulation systems and their underlying errors; (2) systems with
distributed mass are explicitly considered; and (3) the model system utilized in this study has a distinctly nonbeam/column like system,
namely, a Kirchhoff-Love plate with a continuous one-dimensional hybrid system interface. It is demonstrated that such systems are generally
viable only below the first fundamental frequency of the system. Furthermore, it is shown that there is a tendency to accumulate global errors,
relative to the classical solution, at the slightest introduction of any interface matching error but that these errors are mostly insensitive to
further increase in mismatch. Finally, it is found that the different substructures of the systems are subject to resonant excitation at their own
independent natural frequencies in addition to those of the complete hybrid system. DOI: 10.1061/(ASCE)EM.1943-7889.0001157.© 2016
American Society of Civil Engineers.

Author keywords: Hybrid simulation; Real-time hybrid simulation; Elastic plate theory; Error analysis; Experimental error.

Introduction

Hybrid testing is a class of simulation techniques that aims to over-
come the limitations of pure experimentation and pure numerical
simulation by using a scheme that combines the two with actuators
and sensors. The concept is to test only part of the system and
numerically simulate the rest. Of these methods, hybrid simulation
(Schellenberg 2008), formerly called pseudodynamic testing
(Shing and Mahin 1984), is the most prominent. In this method, a
system is split into a computational substructure (numerical model)
and a physical substructure (a specimen in the laboratory) and the
governing equations of motions of the system are solved with a
time-stepping algorithm. At each time step, displacements com-
puted by the numerical algorithm are imposed via actuators on
the physical substructure, whose response is measured by sensors
and communicated back to update the system variables and march
forward to the next time step. Naturally inherent errors exist in the
technique that include time integration errors, control errors, inter-
face splitting errors, and random signal errors, which can further be
classified as either systematic or random errors. Although not a
necessary requirement, hybrid simulation can be performed in real
time (Mosalam and Günay 2014; Günay and Mosalam 2014).

Originally conceived in the 1970s as an online testing method
for evaluating the nonlinear response of structures subjected to
earthquake excitation (Takanashi et al. 1975), the technique has
seen significant development over the years. Such developments
have taken the method from simply using the numerical substruc-
ture for modeling only the mass and damping of the system to
numerical substructures that are full finite-element models commu-
nicating in real time with the physical specimen in the laboratory
(Thewalt and Mahin 1987; Igarashi et al. 1992; Nakashima 2001;
Elkhoraibi and Mosalam 2007). Much attention has been devoted
to studying the source and effect of the inherent errors in hybrid
testing and proposing mitigation techniques (Shing and Mahin
1987; Horiuchi and Konno 2001; Ahmadizadeh et al. 2008), but
little work has been dedicated to understanding the theoretical lim-
itations of the technique in the presence of these errors. In other
words, what are the best possible results that can be achieved with
hybrid testing, as compared to the true response of the real system?
To address this issue, this study presents a theoretical framework for
the general assessment and evaluation of hybrid simulation (HS)—a
form of hybrid testing of current interest (Schellenberg 2008).

The objective of this study is to characterize the theoretical per-
formance of HS, applied to platelike structures with distributed
mass, by understanding how the errors influence the global re-
sponse of the system. In order to have a completely controlled set-
ting for analyzing the HS technique, a purely theoretical system
will be utilized in which both the traditional physical and computa-
tional parts are mathematical models. The transfer system, i.e., the
actuators, sensors, data acquisition, and reaction frame, is also rep-
resented by simple mathematical models. In this manner, attention
can be focused on the essential error associated with a system pos-
sessing a split interface and on understanding the inherent error
associated with imperfect interface splitting. This provides a true es-
timate of the best possible realistic error targets for a hybrid system.

The solution to the governing equations of a system (e.g., equa-
tions of motion of a mechanical system) can be considered as a
trajectory in an L2 space. The associated hybrid system obeys
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the same governing equations of the real system in the respective
domains (physical and computational), but are coupled at the inter-
face by introduced constraints. The solutions in each domain are
themselves trajectories in an L2 space, and thus the trajectory of
the sum space of the two domains may be compared with the tra-
jectory of the true solution using an appropriate metric in the inner
product space. Thus the error can be defined as the L2 norm of the
difference in trajectories of the true and hybrid solutions.

The proposed model system will be a Kirchhoff-Love thin plate
in which all equations will be analytically solved and thus the
analysis herein represents the best possible case obtainable in HS.
It is emphasized that the true continuum problem is being treated,
not a lumped mass approximation. Because the proposed system is
two dimensional, the present analysis will also explicitly deal with
the issues associated with hybrid system interfaces that are geomet-
rically continuous (as opposed to isolated points). One of the
central aims of this work is to understand the similarities and differ-
ences of such true two-dimensional systems to one-dimensional
systems such as beam flexure that were earlier investigated using
the same conceptual framework by Drazin et al. (2015). Addition-
ally, this work examines more-generalized error models—those
that are frequency dependent.

Theoretical Framework

Consider a reference mechanical system with domain D, depicted
in Fig. 1(a), whose response is determined from a governing set of
equations

F½uðx; tÞ� ¼ 0; x ∈ D ð1aÞ

uðx; tÞ ¼ ū; x ∈ ∂D ð1bÞ
where u = characteristic quantity (e.g., displacements, velocities,
accelerations, etc.); ū = imposed value of that quantity on the boun-
dary; x = position in space; and t = time. The domain is next sep-
arated into two subdomains denoted by P and C, which represent
the physical and computational substructures, respectively, as de-
picted in Fig. 1(b). Without loss of generality, only two subdomains
are considered for simplicity, but HS may have multiple physical

and computational substructures (Elkhoraibi and Mosalam 2007).
The response of each domain, determined by Eqs. (1a) and (1b)
applied locally to P and C, is given by

û ¼
�
ûpðx; tÞ if x ∈ P

ûcðx; tÞ if x ∈ C
ð2Þ

where the superposed hats (•̂) = quantities in the hybrid system. In
addition to the boundary conditions on the reference system, ap-
plied accordingly to the hybrid system, there must also be condi-
tions on the interface boundaries, Ip and Ic. Physically, these are
provided by the sensor and actuator system. These conditions are
modeled here by boundary functions gp and gc, respectively, for
P and C

ûpðxp; tÞ ¼ gpðxp; tÞ; xp ∈ Ip ð3aÞ

ûcðxc; tÞ ¼ gcðxc; tÞ; xc ∈ Ic ð3bÞ

A constraint is imposed on corresponding boundary functions at
the interface to join the two components of the hybrid system. This
constraint takes into consideration the imperfect dynamics of the
hybrid system, such as time delays between the two components
or tracking errors. This relation may be posed as

D½ûc�jIc
¼ ED½ûp�jIp

ð4Þ

where D½•� = operator that provides the necessary boundary func-
tions at the interface from the displacements, ûp and ûc; and E =
error operator that applies a mismatch (or error) between corre-
sponding boundary functions generated by D½•�. One such form,
representative of time delay and tracking error as encountered
in HS due to finite communication time of the actuator system
(Horiuchi et al. 1999; Conte and Trombetti 2000), is presented as
follows:

gkp ¼ eiΩdkgkcð1þ εkÞ ð5Þ

where Ω represents the frequency of excitation, but is not directly
the frequency of excitation, ω. Later, Ω will be redefined as a
dimensionless excitation of frequency, and thus, dk will be dimen-
sionless. Throughout, i ¼ ffiffiffiffiffiffi−1p

is the imaginary unit, and the
parameters εk and dk represent the magnitude and phase of the er-
ror, respectively, in the kth boundary quantity, gkð•Þ. It is emphasized
that the solution to the governing equations in each domain can be
derived exactly without the use of any numerical schemes as is the
case with HS and thus the only source of error in the analysis comes
from the constraint presented in Eq. (5).

If so desired, Eq. (5) may be modified to include the effect of
frequency dependence on the error. Physically speaking, a control-
ler will have more difficulty keeping up while operating at higher
frequencies and larger error is observed when compared to lower
frequencies (Conte and Trombetti 2000; Günay and Mosalam
2015). Making use of the generalized logistic function (Richards
1959), a simple frequency-dependent error model may be ex-
pressed as

εkðωÞ ¼
εk0

½1þ eðωk0−ωÞ�2 ð6Þ

where for the kth quantity; εk0 = maximum error magnitude
reached asymptotically at high frequencies; ω = excitation fre-
quency; and ωk0 = frequency of maximum growth rate. The analy-
sis herein is limited to an error model as given by Eq. (5) with a later

Fig. 1. Theoretical concept of hybrid simulation: (a) domain of system
to be simulated; (b) hybrid domain of system to be simulated

© ASCE 04016093-2 J. Eng. Mech.
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modification for Eq. (6) but the selection of an appropriate interface
error model is not unique.

Application to Kirchhoff-Love Thin Plate

To make the proposed general framework concrete, it will now be
applied it to a classical problem in continuum mechanics with a
wide array of important engineering applications: a simply sup-
ported Kirchhoff-Love a × b plate (Timoshenko 1959) subjected
to a time harmonic edge bending moment as shown in Fig. 2.

The plate is considered linear-elastic and isotropic with infini-
tesimal kinematics. For a treatment with damping, the reader is re-
ferred to the work of Drazin et al. (2015). The governing equation
of motion is, e.g., Graff (1975)

D∇4wþ ρh
∂2w
∂t2 ¼ 0 ð7Þ

where w = out-of-plane displacement; ∇4ð•Þ = biharmonic opera-
tor; and D ¼ Eh3=12ð1 − ν2Þ = bending stiffness for Young’s
modulus, E; Poisson’s ratio, ν; and plate thickness, h. The

boundary conditions are simply supported with the addition of a
harmonic edge bending moment at y ¼ b

−D∂2w
∂y2

����
y¼b

¼ M̄eiωt ð8Þ

where M̄ = magnitude of the applied bending moment per unit
length; and ω = harmonic driving frequency. A solution in the spirit
of Lévy (Timoshenko 1959) is given as

wðx; y; tÞ ¼
X∞
m¼1

YmðyÞ sinðαmxÞeiωt ð9Þ

where αm ¼ mπ=a. The selection of a Fourier series in only one
direction is convenient for the one-sided excitation (Fig. 2) and is
known to have faster convergence than a traditional double Fourier
series solution (Taylor and Govindjee 2004). Eq. (9) results in a
fourth-order ordinary differential equation in Ym after substitution
into Eq. (7) which can be solved, with the proper boundary con-
ditions, to give a final result that is consistent with the one pre-
sented by Gorman and Sharma (1976)

wðx; y; tÞ ¼
Xmc

m¼1;3; : : :

4M̄
mπDðγ21 þ γ22Þ

sinðαmxÞ
�
sinðγ2yÞ
sinðγ2bÞ

− sinhðγ1yÞ
sinhðγ1bÞ

�
eiωt

þ
Xmr

m¼mcþ1;mcþ3; : : :

4M̄
mπDðγ21 − γ22Þ

sinðαmxÞ
�
b cothðγ1bÞ

sinhðγ1yÞ
sinhðγ1bÞ

− y
coshðγ1yÞ
sinhðγ1bÞ

�
eiωt

þ
X∞

m¼mrþ1;mrþ3; : : :

2M̄
mπDγ1

sinðαmxÞ
�
sinhð−γ2yÞ
sinhð−γ2bÞ −

sinhðγ1yÞ
sinhðγ1bÞ

�
eiωt ð10Þ

where γ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ α2

m

p
, γ2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jβ2 − α2

mj
p

, β4 ¼ ρhω2=D, and ρ =
mass density of the material. The parametersmr andmc are defined
such that α4

m > β4 for m ≤ mc, α4
m ¼ β4 for mc < m ≤ mr, and

α4
m > β4 for m > mr. The constant coefficient ordinary differential

equation (ODE) has a characteristic polynomial with roots that vary
depending on αm. This requires a solution [Eq. (10)] that accounts
for the imaginary, repeated, and real roots. Eq. (10) represents the
solution to the real plate. In the hybrid system, each subsystem, P

and C, also has a solution of the form given in Eq. (9). The solution
for the generalized coefficients, however, is more involved due to
the boundary conditions at the splitting interface. The reader is re-
ferred to Bakhaty et al. (2014) for a detailed expressions.

The boundary functions introduced in Eqs. (3a) and (3b) are not
defined explicitly but can be determined from the constraints pre-
sented in Eq. (5). The boundary functions at the splitting interface
for the P domain per Eq. (3a) can be expressed in Fourier form as

(a) (b)

Fig. 2. Kirchhoff-Love simply supported plate subjected to a harmonic edge bending moment: (a) true formulation; (b) hybrid formulation

© ASCE 04016093-3 J. Eng. Mech.
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ŵpðx; bp; tÞ ¼ gwpðx; tÞ ¼
X∞

m¼1;3; : : :

Γw
pm sinðαpmxÞeiωt ð11aÞ

∂ŵp

∂y
����
y¼bp

¼ gθpðx; tÞ ¼
X∞

m¼1;3; : : :

Γθ
pm sinðαpmxÞeiωt ð11bÞ

where gwð•Þ and gθð•Þ = boundary functions representing the displace-
ment and rotation at the splitting interface, respectively, and Γw

ð•Þm
and Γθ

ð•Þm = respective Fourier coefficients. The corresponding
boundary functions for the C domain are

~wcðx; bc; tÞ ¼ gwc ðx; tÞ ¼
X∞

m¼1;3; : : :

Γw
cm sinðαcmxÞeiωt ð12aÞ

∂ ~wc

∂ ~y
����
~y¼bc

¼ gθcðx; tÞ ¼
X∞

m¼1;3; : : :

Γθ
cm sinðαcmxÞeiωt ð12bÞ

The coordinates bp and bc are shown in Fig. 2(b) and a local
coordinate, ~y ¼ b − y, is introduced to the C domain in Eqs. (12a)
and (12b) for convenience, with corresponding displacement
~wcðx; ~y; tÞ ¼ ŵcðx; b − ~y; tÞ; in addition, bp þ bc ¼ b.

To complete the system of equations for the hybrid system, a
total of four relations at the splitting interface on each domain
are needed for a unique solution. Two of these relations come by
constraining the displacements at the interface [Eqs. (11a) and
(12a)] as well as the rotations [Eqs. (11b) and (12b)]. The addi-
tional two relations are obtained by constraining the bending mo-
ments, My, and total shears, Vy, along the interface. This allows
expression of any mismatch in the kinematic quantities and kinetic
quantities at the interface, leading to the following system of equa-
tions that can be used to solve for the unknown boundary functions:

gwpðx; tÞ − fwgwc ðx; tÞ ¼ 0 ð13aÞ

gθpðx; tÞ − fθgθcðx; tÞ ¼ 0 ð13bÞ

M̂pyðx; bp; tÞ − fMM̂c ~yðx; bc; tÞ ¼ 0 ð13cÞ

V̂pyðx; bp; tÞ − fVV̂c ~yðx; bc; tÞ ¼ 0 ð13dÞ
where

fk ¼ ð1þ εkÞeiΩdk ; k ∈ fw; θ;M;Vg ð14Þ
such that gkp ¼ fkgkc, as introduced in Eq. (5). The expressions
for My and Vy are determined, as usual, from the displacement
(Timoshenko 1959) as

My ¼ −D
�∂2w
∂y2 þ ν

∂2w
∂x2

�
ð15aÞ

Vy ¼ −D
�∂3w
∂y3 þ ð1 − 2νÞ ∂3w

∂x2∂y
�

ð15bÞ

These expressions for the moments and shears are necessarily
dependent on the Fourier coefficients Γw

pm, Γw
cm, Γθ

pm, and Γθ
cm and

thus the system in Eqs. (13a) and (13b) can be used to uniquely
solve for these coefficients. Ultimately, expressions for the displace-
ments, rotations, bending moments, and shears in each domain, with

known, locally introduced errors determined by εk and dk, where k
represents one of the quantities w, θ, M, or V, are determined.

The development to this point has been specific to the case of
the simply supported plate subjected to a single edge moment. This
was considered sufficient to elucidate the basic behavior of plate-
like structures in the hybrid testing framework. Notwithstanding,
many other boundary conditions and loading conditions are of
practical interest and can be investigated using the same method-
ology. For general boundary and loading conditions, the primary
change when doing so will be the need to replace Eq. (9) with
more-general expansions, though in some cases they may still fall
within the generalized Lévy framework. In the worst case setting,
one will have to utilize the more slowly converging double trigo-
nometric series method. The interface matching methodology,
however, will remain the same.

Analysis

In the present context, hybrid simulation can be understood from a
geometric point of view by considering the motion, u, as being
trajectories defined in a L2 function space

L2ðΩÞ ¼
�
v∶v is defined onΩ and

Z
Ω
v2dx < ∞

	
ð16Þ

where Ω = bounded domain in R3. It is known that u ∈ L2ðDÞ, the
restriction of u to P is up ∈ L2ðPÞ, and the restriction of u to C is
uc ∈ L2ðCÞ. In addition, L2ðDÞ ¼ L2ðCÞ × L2ðPÞ. The multiplica-
tion operation here is to be understood in the sense that functions
over C and P are extend over the other domain with zero value and
then summed. The trajectories given by uc and ûc (as well as up
and ûp) differ from each other since the systems are, in general,
different. By considering trajectories in L2ðCÞ and L2ðPÞ as com-
ponents of generalized order pairs in L2ðDÞ at each moment in
time, trajectories from L2ðCÞ and L2ðPÞ can be combined into tra-
jectories in L2ðDÞ, one for the reference system and one for the
hybrid system. This difference gives the basis of the error analysis,
which is measured using a space-time L2-norm [Eqs. (17a)
and (17b)].

Now consider the behavior of the hybrid system if a tracking
error is introduced in the edge displacements at the interface. This
could result in a system behavior as shown in Fig. 3(b). This is to be
compared with the true system behavior shown in Fig. 3(a).

In order to assess the error in the hybrid system, L2 space-time
norms and seminorms are introduced, defined as

kepwk2 ¼
Z
τ

Z
P
ðw − ŵpÞ2dxdτ ;

kecwk2 ¼
Z
τ

Z
C
ðw − ŵcÞ2dxdτ ð17aÞ

kewk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kepwk2 þ kecwk2

q
ð17bÞ

L2 norms of the rotation, θy ¼ ∂w=∂y, bending moment, and shear
errors are computed analogously to the displacement error norm.
Perhaps more insightful are the relative norms

kewkrel ¼ kewk=kwk; keθkrel ¼ keθk=kθyk;
keMkrel ¼ keMk=kMyk; keVkrel ¼ keVk=kVyk ð18Þ

In the case of an unbounded response, the quotients in Eq. (18)
may numerically produce an artificially bounded error. For the sub-
sequent analysis, norms evaluated at the precomputed natural

© ASCE 04016093-4 J. Eng. Mech.
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frequencies of the plate (Leissa 1969) that produce the unbounded
response are omitted. The following analysis will exclusively use
these relative norms.

The integrals presented in Eqs. (17a) and (17b) can be evaluated
analytically but this can be difficult to perform accurately due to the
presence of hyperbolic trigonometric functions in Eq. (10) and in
the analogous equations of the hybrid system. Instead, a high-order
numerical quadrature routine is used (Kronrod 1965). This is sim-
pler and does not compromise accuracy.

Validation of the Formulation

First, a validation of the proposed framework is presented by im-
posing perfect continuity between the P and C domains or in other
words by setting the introduced error parameters εk ¼ 0 and dk ¼ 0
in Eq. (14). Fig. 4 presents the relative global error, given by
Eq. (18), for the displacement, rotation, bending moment, and
shear. The parameter Ω ¼ ω=ω̄ is the driving frequency of the har-
monic excitation normalized by the first fundamental frequency of
the system. The material parameters E ¼ 200 GPa, ν ¼ 0.3, and
ρ ¼ 7.9 g=cm3 are chosen to represent steel material, however, this
analysis is not intended to be restricted by the selection of any par-
ticular material.

The expected errors are zero, however, values greater than the
machine limit were observed for double precision. This loss of dig-
its is attributed to the evaluation of the sums of hyperbolic terms in
Eq. (10). The only source of error in this theoretical calculation
comes from those introduced at the splitting interface, and to prop-
erly assess these errors, Fig. 4 can be considered as the baseline for
zero error.

Effect of the Excitation Frequency

First, consider the effect of the excitation frequency on the global
errors of the hybrid system relative to the true solution. Each
curve in Fig. 5 presents a level of introduced error only in
the displacement with fixed dk ¼ 0.01. Several observations
are noted: (1) there is a strong tendency to accumulate errors
in the vicinity of the natural frequencies of the system; (2) the
error becomes somewhat unpredictable above the fundamental
frequency; and (3) there are spikes of large errors not associated
with natural frequencies, which will be discussed in the section
on substructure excitation. Not all of the natural frequencies of
the plate are excited due to the one-sided nature of the excitation
(Fig. 2). The unpredictable nature of the errors at and above the
first fundamental frequency indicates that hybrid tests with

Fig. 3. Hybrid plate with a displacement gap: (a) perfect matching (no error); (b) forced incompatibility in displacement
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Fig. 4. Frequency sweep with zero introduced errors; vertical dashed lines indicate natural frequencies of the original (nonhybrid) system:
(a) displacement; (b) rotation; (c) bending moment; (d) shear
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dominant excitation frequencies above the first fundamental fre-
quency or near the natural frequencies of the system may not be
viable.

Effect of Error Type

The effect of introducing error in the rotation as well as the
displacement is shown in Fig. 6(a) and the effect of introduc-
ing equal error in all four quantities is shown in Fig. 6(b).
Due to the similarity of the different norms from Fig. 5, only
results for the relative displacement error are presented. As

expected, the global error increases as local error is introduced
in more quantities at the interface. Interestingly, the large er-
rors not associated with natural frequencies are absent when
the only locally introduced errors are in the displacement and
rotation.

Frequency-Dependent Errors

Making use of Eq. (6), the effect of frequency-dependent
errors is demonstrated in Fig. 7 with dk ¼ 0.01, k ∈
fw; θ;M;Vg, and ωk0=ω ¼ 4. A clear upward trend shows that

(a) (b)

(c) (d)

Fig. 5. Frequency sweep with εk ¼ εw errors in the displacement; vertical dashed lines indicate natural frequencies of the original (nonhybrid)
system: (a) displacement; (b) rotation; (c) bending moment; (d) shear

(a) (b)

Fig. 6. Effect of different locally introduced errors at interface with dk ¼ 0.01: (a) local error in displacement and rotation; (b) local error in all
interface quantities
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as the driving frequency grows, so does the global error. Not
surprisingly, there is little difference in the global error of the
various response quantities at low frequencies and the effect
of εk0 becomes significant only at higher normalized driving
frequency.

Substructure Excitation

The error spikes not associated with a natural frequency of the plate
are observed to be consistent with natural frequencies of one of the
individual subplates created by the domain split. Fig. 8(a) presents

(a) (b)

(c) (d)

Fig. 7. Frequency dependent errors with dk ¼ 0.01 in all four boundary quantities: (a) displacement; (b) rotation; (c) bending moment; (d) shear

(a)

(b) (c)

Fig. 8. Excitation of the subdomains in the presence of introduced errors with Ω ¼ 5.58: (a) sweep over domain separation with εk ¼ 5%; (b) true
deformed shape of plate; (c) deformed shape of hybrid plate with εk ¼ 5%
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the relative global displacement error versus the location where the
separation is made for ϵk ¼ 5%, (k ∈ fw; θ;M;Vg). The parameter
ηp is defined as the location of separation normalized by the length
of the plate orthogonal to the separation. A spike in the error is
observed at one value of ηp and again at 1 − ηp. This indicates that
each subdomain is excited at resonance when its length takes on a
critical value, which for the assigned boundary conditions of the
substructures is consistent with a natural frequency (Leissa 1973).
This is confirmed in Fig. 8(c) which demonstrates the P-domain
being excited at one of its individual eigenmodes as opposed to
that of the real system. The small values in Fig. 4 indicate that these
errors are not present when an interface error of zero value is in-
troduced and thus this effect is only realized when a mismatch is
introduced at the interface.

The implication of this is that the individual substructures can
be excited independently during a hybrid test, particularly when
the excitation is transient. This is consistent with studies that have
demonstrated that delay in the control can lead to excitation of
higher modes of the physical substructure (Shing and Mahin
1987). This behavior was also observed in experiments discussed
by Bakhaty et al. (2014) when the effect of real-time HS with
large computational substructures was investigated. In this case,
components of the experimental set-up (the hydraulic oil-column
in the actuator system) were observed to be excited. Although not
intended as part of the physical substructure, the entire experi-
mental set-up inevitably becomes part of the physical substruc-
ture, and in this case is excited, resulting in significant errors.
Furthermore, when a different computational model is used, a

different mode of the physical substructure is seen to be excited,
leading to some errors.

Effect of the Magnitude and Phase of the
Introduced Error

Fig. 9 presents the global displacement error versus εk introduced
into all four boundary quantities with dk ¼ 0 and dk ¼ 0.05 at a
fixedΩ ¼ 0.5. Fig. 10 presents the global displacement error versus
dk introduced into all four boundary quantities with εk ¼ 5% and at
two different excitation frequencies: Ω ¼ 0.5 in Fig. 10(a) and Ω ¼
2.0 in Fig. 10(b). Each curve represents the global error in each of
the response quantities as introduced by the norms in Eq. (18).

It is observed that the slightest introduction of the boundary er-
ror results in a rapid increase of the global error. However, the
global error becomes quickly indifferent to increasing boundary
errors. These results indicate that significant efforts to decrease the
errors in the transfer system, particularly the reaction system of the
test specimen, may result in little global error reduction of the hy-
brid system—especially in the presence of time-delay errors.

Spatial Distribution of Errors

The norms presented are useful for quantifying the overall behavior
of the plate when a mismatch is introduced between the domains in
the context of hybrid simulation. However, to understand the failure
of given structural system, the local behavior is often of interest.
Fig. 11 demonstrates the absolute difference between the true

(a) (b)

Fig. 9. Effect of varying εk with Ω ¼ 0.5: (a) dk ¼ 0; (b) dk ¼ 0.05
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(a) (b)

Fig. 10. Effect of varying dk with εk ¼ 5%: (a) Ω ¼ 0.5; (b) Ω ¼ 2.0
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(nonhybrid) solution and the hybrid solution at the time of maxi-
mum displacement with Ω ¼ 0.5. The location of the domain sep-
aration is indicated with a dashed line. A local error is introduced in
displacement, rotation, bending moment, and shear at a magnitude
of 5% and dk ¼ 0.01. The edge bending moment is applied at η ¼
y=b ¼ 1 (Fig. 2). There is a general trend observed that error ac-
cumulates around the interface where the local mismatch is intro-
duced. The error propagates to the driving edge as well as the
opposite edge for the rotation and the shear. Finally, there are
observed errors in the regions of peak displacements, rotations,
bending moments, and shears in the plate, indicating that locally
introduced errors affect the global response of the system.

Conclusion

A theoretical framework for characterizing the errors in hybrid sim-
ulations was presented. The method was applied to a classical two-
dimensional problem in continuum mechanics and the errors were
presented with respect to analytically derived true solutions. The
following are concluded from this study:
• The basic character of the two-dimensional continuum hybrid

system is very similar to that of the one-dimensional hybrid
system studied by Drazin et al. (2015);

• There are unpredictable errors at and above the first funda-
mental frequencies of the systems, with a large accumulation
of errors near the resonant frequencies. This indicates that hy-
brid tests that excite the natural frequencies of a system may
not be viable;

• The frequency of excitation plays a crucial role on the overall
errors observed for the system; and

• Efforts to further decrease the errors in the transfer system may
result in disappointingly little reduction in the global errors.
In the present two-dimensional study, it is further found that

• Frequency-dependent errors based on the logistic model in the
transfer system lead to linearly increasing errors on the log-log
scale;

• Substructures of a hybrid test respond to excitation dominated
by their individual natural frequencies in addition to the natural
frequencies of the real system. These results have been corro-
borated by experiments (Mosalam et al. 2012); and

• Locally introduced errors propagate to peak deformations and
boundary quantities; they do not necessarily remain localized
as one would expect from a naïve Saint Venant effect argument.
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