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Abstract 

First language lexical attrition remains a difficult 
phenomenon to study empirically, due to its long-term and 
dynamic effects.  Based on observations from existing case 
studies, we propose a connectionist model to simulate the 
effects of first language lexical attrition.  The model exhibits a 
plausible time-course for first language lexical 
comprehension, highlights the independence of productive 
and receptive attrition trajectories, and predicts an age of 
onset effect for early cases of L1 lexical attrition. 

Keywords: language attrition, lexicon, modeling, self-
organizing map, connectionism 

Introduction 

Many people learn and forget a second or third language 

during the course of their lifetimes.  Less often, a major 

migration may cause someone to forget all or part of his 

native language.  While a great deal of research has been 

dedicated to the first and second language acquisition, 

relatively little is known about language loss (hereafter, 

attrition) in the individual speaker. 

Lexical Attrition 

In the last decade, there has been an increasing amount of 

work devoted to the study of language attrition, specifically 

in L1 or first language attrition.  Apparent age-related 

effects have been observed in the attrition of L1 phonology 

(Hytenstam et al, 2009; Pallier et al, 2003).  However, long-

term lexical attrition has remained largely undocumented, 

partly due to the lack of rigorous experimental 

methodologies for the study of lexical attrition. 

Nonetheless, one could reasonably expect the long-term 

course of lexical attrition to differ from that of phonology.  

Previous research examining the interplay between language 

learning and cognitive functions has identified differing 

memory stores for lexical and phonological acquisition 

(Hernandez & Li, 2007; Ullman, 2001). To the extent that 

continued performance in the L1 depends on different 

memory representations, the effects of attrition on 

phonology and the lexicon may be independent. 

The current body of L1 lexical attrition research provides 

some general observations about the relationship between 

age of onset (AoO)
1
, length of residence (LoR) and the 

degree of attrition.  A case study of letters written by an L1-

                                                           
1 “Age of onset” here refers specifically to the beginning of 

attrition.  Due to the difficulty of identifying this event, AoO is 

typically marked by the change of language environment (e.g., 

geographic migration), prior L2 exposure notwithstanding. 

German immigrant to the United States revealed an ongoing 

process of lexical attrition even fifty years after AoO (Hutz, 

2004).  In another case study, an L1-German speaker with a 

similarly long LoR of 47 years in the United States 

demonstrated substantial lexical relearning in a natural 

conversational setting (Stolberg & Münch, 2010).  That 

relearning is possible after such a long time raises the 

question of whether lexical attrition is truly a case of 

forgetting, in which L1 knowledge is destroyed in memory, 

or whether it is the access to L1 knowledge that is primarily 

affected by attrition.  

The most evident problem in current L1 attrition research 

is the difficulty of reliably measuring change across time.   

As demonstrated in the case studies, loss of L1 abilities may 

be a slow and gradual process spanning years or decades.  

As a result, even longitudinal studies over a few years 

capture only a snapshot of a highly dynamic language 

system.  The limited span of longitudinal data provided by 

any single study makes it extremely difficult or statistically 

impossible to identify the time course of development.  

While large samples with cross-section age variables (such 

as age of acquisition in the L2 literature) can mitigate these 

problems, advanced language users who experience L1 

attrition are relatively scarce, making a cross-sectional 

sample nearly impossible. 

One small-scale quantitative study has tested L2 lexical 

attrition through the relearning paradigm.  De Bot, Martens, 

& Stossel (2004) found a relearning advantage in foreign 

language study for forgotten words over new words, 

revealing that the forgotten words, though inaccessible, 

persisted in memory.  While this study found a general 

adherence to an exponential forgetting curve in which 

relearning savings are possible below the productive 

threshold, the findings are difficult to generalize due to the 

limited size of the vocabulary and the limited scope of the 

study. 

Given the difficulties in systematic control of important 

learning variables (such as age, language proficiency, and 

L2 exposure), language attrition research has remained 

mostly a descriptive enterprise. Computational modeling 

may serve to turn language attrition research to an 

experimental science, due to its flexibility in parametric 

manipulation of the relevant variables and in testing relevant 

theoretical hypotheses. To date, very little work has been 

done in the computational modeling of language attrition.  

The goal of this study is to make a first attempt in providing 

a detailed computational account of the developmental time 

course of language attrition in the lexical domain.   
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Computational Models 

To our knowledge there has been only one computational 

model specifically designed to address lexical attrition.  

Meara’s (2004) Boolean model of lexical attrition used a 

simple connectionist paradigm to simulate the effect of 

intra-lexical relationships on the time course of attrition.  

Meara’s model exhibited self-organized criticality, that is, 

the wide-spread and sudden deactivation of lexical nodes at 

unpredictable intervals.  This effect may be interpreted as 

largely a product of the inter-node dependencies inherent to 

Boolean models, but more importantly, Meara found that 

when the mean activation was taken across ten models, the 

resulting curve showed a gradual decline.  This study 

highlights the troubling possibility that empirical research of 

lexical attrition in human subjects is hiding potential 

criticality effects.  Increasingly sophisticated computational 

models may yet fill this gap. 

Self-organizing feature maps (SOM) are a promising 

option in modeling lexical attrition.  SOM is a connectionist 

modeling paradigm which represents data in a network of 

clustered nodes.  Previous research has established the 

utility of SOM in producing cognitively plausible models of 

language development (see Li, 2009, for a review; see also 

Richardson & Thomas, 2008 and Mayor & Plunkett, 2010).   

The potential for extending SOM to lexical attrition is 

suggested by its flexibility in simulating the effects of 

competing input sets.  Age-related dynamic cross-linguistic 

competition in L2 learning has been demonstrated with 

other SOM-based models (Li & Farkas, 2002; Zhao & Li, 

2007). Furthermore, effects of sensitive period or 

catastrophic interference have also been shown with the 

manipulation of learning parameters in SOM (Richardson & 

Thomas, 2008).  

Computational modeling offers the possibility of a unified 

account of language learning, attrition, and relearning 

phenomena, integrating empirical research in these fields 

under more durable hypotheses. The present study aims to 

produce a SOM model: (1) to replicate the sustained gradual 

erosion of L1 lexical knowledge in both production and 

comprehension, (2) to compare the respective rates of 

attrition for comprehension and production, (3) to produce a 

plausible time course for long-term L1 lexical attrition, and 

(4) to reveal age of onset effects in L1 lexical attrition. 

Method 

In this study, a dual self-organizing feature map (SOM) 

model is trained in a first language (L1) and at varying ages 

of onset (AoO) in a second language (L2) while L1 training 

decreases or stops.  Performances of the model in 

comprehension and production are tracked throughout 

training. 

The Model 

The self-organizing feature map (SOM) is a connectionist 

modeling paradigm wherein each node contains a vector of 

weights corresponding to each member of the input vector 

(see Kohonen, 2001 for a detailed explanation of SOM).  

Node weights falling within a defined neighborhood around 

the input vector are adjusted towards the input based on 

their distance from it.  Over many epochs of training, this 

adjustment results in topography-preserving orders, such 

that similar inputs are represented by nearby clusters of 

nodes in the map while dissimilar inputs by distinct and 

distant clusters. The typography-preserving characteristics 

of SOM are particularly well suited for examining the 

effects of cross-language lexical competition in a 

dynamically evolving system as in lexical attrition. 

Architecture The model designed for this study employs 

two such SOMs (see Figure 1).  The first SOM was trained 

on the phonological representations of words.  This 

phonological map self-organizes according to the basic 

phonemic elements in a word, clustering words of a similar 

sound together.  The phonological map was composed of 

1600 nodes on a 40 by 40 rectangular grid. The second 

SOM was trained using the semantic representation of 

words.  The semantic map clustered words of similar 

meaning, category, and part of speech.  The semantic map 

was composed of 900 nodes arranged on a 30 by 30 

rectangular grid.  The semantic map was designed to be 

smaller than the phonological map because it received half 

as many unique input representations (see Stimuli and 

Training). The two maps were joined by Hebbian 

connections (see Hebb, 1949 for model and biological 

basis).  A single Hebbian connection is represented by a 

weight that multiplies activation between the two nodes it 

connects.  Every node on one map was connected to every 

node on the opposite map, for a total of 1.44 million (1600 x 

900) Hebbian connections. 

Functions and Parameters After the presentation of each 

input stimulus, the maps and Hebbian connections were 

updated according to a set of learning functions.  These 

functions defined which sets of nodes and weights are 

adjusted and how much they are adjusted. 

Figure 1: The model is composed of two self-organizing 

feature maps.  Activation in each map is propagated to 

the other by means of Hebbian Connections. 
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On the phonological and semantic maps, the node whose 

weights most closely match those of the input set (measured 

as minimal Euclidean distance between input and each 

node) is designated as the Best Matching Unit or BMU.  

The nodes around the BMU are updated according to a 

neighborhood function approximating a Gaussian curve 

with a maximum value of one at the BMU.   

The radius of the neighborhood is variable between trials 

and measured in terms of the Cartesian distances between 

nodes on the rectangular grid.  In this study, the radius was 

initially set at one half the size of the smaller map (15) to 

allow maximum adjustment in early trials.  With each epoch 

the radius was allowed to decrease by one if the 

quantization error was less than in the preceding trial.  With 

this approach, performance of the model was not directly 

tied to a manipulation of the radius size, but rather the 

radius size and model performance were allowed to covary 

through early training stages. 

Updates to SOM weights were proportional to a node’s 

value on the Gaussian neighborhood curve, resulting in a 

smaller change for more distant nodes, and no change for 

nodes outside the neighborhood.  All updates were also 

multiplied by the SOM’s learning rate, a value between zero 

and one which limits the amount of change that can occur in 

a single trial.  A learning rate of 0.2 was set for both maps. 

Hebbian connection adjustment was determined by co-

activation in both maps.  Activation for each node within 

the BMU’s neighborhood was inversely proportional to 

Euclidean distance between the node’s weights and the 

input vector.  Each Hebbian connection was then adjusted 

by multiplying the activation of the nodes on each map and 

the Hebbian learning rate.  The Hebbian learning rate was 

set to 0.1 in this model.  Following each trial, Hebbian 

weights were normalized to values between zero and one. 

Stimuli and Training 

Two types of stimuli were provided to the model for 

training.  Vectors containing phonological representations 

of words were presented one at a time to the phonological 

map.  Simultaneously, vectors containing semantic 

representations of the same words were presented to the 

semantic map.  This paired presentation allowed each map 

to organize around its respective input and then form 

connections between the phonological and semantic 

representations on their respective maps. 

Phonological input vectors were generated using the 

PatPho system for English (Li & MacWhinney, 2002) and 

Mandarin Chinese (Zhao & Li, 2009).  The dimension of 

each phonological vector was 63 units. Semantic vectors 

were obtained from the English stimulus set used to train the 

DevLex-II model.  Each semantic input vector was 200 

units long, derived from word co-occurrence patterns (see 

Li, Zhao, & MacWhinney, 2007 for details).  In order to 

help the model discriminate between highly similar words 

(such as red and blue or grandma and grandpa) a nominal 

amount of noise was randomly added to the semantic data 

before training began for each model.  

Most importantly, the English semantic representations 

were paired with both Chinese and English phonological 

representations during training.  While emergentist models 

of bilingualism such as the Unified Competition Model have 

accounted for semantic and lexical transfer in second 

language acquisition (MacWhinney, 2005), prior 

computational models of language acquisition have failed to 

account for the largely shared conceptual space between two 

languages.  Due to the importance of L2 negative transfer in 

L1 lexical attrition (Hutz, 2004; Schmitt, 2010) a 

computational account would be incomplete without a 

common semantic representation. 

Words for the training set were selected from the 

MacArthur-Bates Communicative Developmental 

Inventories (English: Dale & Fenson, 1996; Chinese: Hao et 

al, 2008).  Originally, 140 rough translation equivalents 

were obtained by comparing the English index with the 

English glosses in the Chinese index.  Because intonation 

was not coded in the phonological representation, several 

words were eliminated as homophones.  A few other words 

were removed because they could not fit the PatPho 

template for phonological encoding or did not have readily 

available co-occurrence data for semantic input.  In total 

116 English and 116 Chinese words were phonologically 

and semantically encoded for input to the model. 

All instances of the model were trained for 500 epochs.  

The L1 (Chinese) was trained first, and at varying numbers 

of epochs (AoO) L1 input ceased and L2 (English) input 

began.  AoO was varied in intervals of 50 epochs from 50 to 

400.  Ten models were trained for each of the eight AoOs. 

Performance Tests 

Following each training epoch, production and 

comprehension of the L1 was tested throughout the entire 

lifespan of the model.  

For modeling purposes, comprehension was defined as 

the activation of the correct BMU on the semantic map 

when a phonological stimulus was presented to the 

phonological map.  This activation was achieved by means 

of the Hebbian connections.  After presentation of the 

stimulus, activation on the phonological map was calculated 

by the same method described in Functions and Parameters 

(above).  Activation levels in the phonological map were 

then multiplied through their Hebbian connections.  The 

incoming activation on the semantic map was summed for 

each node, and the most activated node on the semantic map 

was found.  This most activated node was then compared to 

a list of semantic BMUs.  If the most activated node was 

also the correct BMU, comprehension had occurred.  If no 

BMU occupied the most activated node, the most activated 

node was compared to the closest BMU (by Cartesian 

distance) on the map.  In the event that two or more BMUs 

on either map occupied the same node, all of these BMUs 

were disqualified from the comparison, preventing their 

corresponding words from passing the comprehension 

measure. 
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Production was defined by the reverse process of 

comprehension.  A stimulus input was provided to the 

semantic map, and activation was propagated by the same 

Hebbian connections to the phonological map, and the most 

activated unit was compared by the same criteria to the 

phonological BMUs.  One important distinction in the case 

of production is that the most activated unit was only 

compared to the L1 BMUs to avoid inter-language 

confusion. 

Results 

L1 Comprehension 

Mean comprehension curves were calculated across ten 

models for each AoO condition.  Performance for each 

condition exceeded 92% by 50 epochs (the earliest AoO).  

AoO conditions later than 50 epochs exceeded 95% 

comprehension by 100 epochs.  Maximum L1 

comprehension after 100 epochs was 96.6% (112 out of 116 

L1 words) for all models (un-averaged) with an AoO greater 

than 100.  After AoO began, L1 comprehension decreased 

monotonically.  Figure 2 shows the L1 comprehension 

curves for all eight AoO conditions.  At the onset of L2 

training, L1 comprehension seems to approximate an 

exponential decay for each AoO condition.  Differences 

between L1 curves are described below (see section Age of 

Onset Effects). 

L1 Production 

L1 production declined severely and immediately for all 

AoO conditions.  All models across all conditions 

performed below 5% correct productions within four epochs 

of the AoO and remained low throughout L2 training.  Due 

to the low performance, no further analysis was applied to 

these data.  See the Discussion section for a further 

treatment of this topic. 

Age of Onset Effects 

By visual inspection, AoO was inversely related to rate of 

attrition for the earlier AoO conditions.  To quantify this 

relationship, the number of epochs required for each AoO 

condition to drop below 75% comprehension was 

calculated.  Many models in the AoO 50 and 100 conditions 

did not reach maximum L1 comprehension performance by 

L2 onset.  Therefore the performance calculation 

compensated by adding to performance measures the 

difference between each model's maximum L1 

comprehension and the overall maximum (112) before 

calculating the number of epochs necessary to reach the 

threshold.   

Figure 3 approximates the rate of attrition for each AoO 

by showing the number of epochs elapsed after L2 onset 

before the 75% L1 comprehension threshold was reached.  

Error bars indicate the two standard errors of the mean for 

Figure 2: Mean comprehension scores in each AoO condition are graphed across the duration of the models 

(measured in training epochs).  AoO values are also measured in training epochs, as depicted along horizontal axis. 

Figure 3: Mean number of epochs to reach 75% L1 

comprehension or less, adjusted for incomplete learning.  

Error bars are two standard errors of the mean. 
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each AoO condition.  ANOVA revealed a highly significant 

difference (p<0.001) in mean decay rates between 

conditions.  Post-hoc tests (Tukey, with a family alpha of 

0.05) showed that the AoO 50 condition was significantly 

different than AoO 200-400 (but not 100 and 150), while 

AoO 100 was also significantly different from 200. 

Discussion 

While an examination of learning in connectionist models 

may be interesting in its own right, the results of this study 

are most informative with regard to the dynamic trajectories 

of human first language attrition.  Prior studies in L1 

attrition have found age effects in phonological attrition, but 

no such effect has been demonstrated for lexical attrition.  

Nonetheless, a review of the current L1 lexical attrition 

literature reveals that lexical attrition is a long-term and 

dynamic process. 

Performance measures for L1 comprehension and 

production after AoO indicated great instability in the 

production while comprehension declined more gradually.  

A potential source of declining performance in both 

measures was the changing Hebbian weights.  Because the 

weights were normalized with each trial, the magnitude of 

change to the Hebbian connections due to a stimulus is not 

strictly dependent on activation levels.  This effect is 

analogous to a decay (or forgetting) rate, as all connection 

weights were reduced relative to the learning rate. 

A major source of instability, and a probable driving 

factor behind the rapid decline in production, was the 

reorganization of the phonological SOM.  The operational 

definition of comprehension assumed activation of the 

correct phonological representations (if present) and tested 

the consequent activation on the semantic map, rendering 

comprehension relatively resistant to changes in the 

phonological map.  By contrast, production required that the 

static semantic representations correctly activate the highly 

plastic phonological representations.  Faced with moving 

targets, productive performance was at a distinct 

disadvantage, even when activation was artificially 

restricted to L1 candidates and criteria were loosened to 

allow for “close enough” matches.  

Although the degree and rate of decline for production 

may be exaggerated by the model, this finding does 

reinforce the dissociation of receptive versus productive 

abilities.  Due to this dissociation, studies which primarily 

measure productive errors in speakers undergoing L1 

attrition may overestimate the degree of loss.  Stolberg and 

Münch (2010) found that lexical/semantic production errors 

decreased by approximately half over the course of 15 

conversations in the subject’s L1.  In light of the 

dissociation between comprehension and production, the 

degree to which these errors represent receptive L1 lexical 

attrition remains in question. 

The relearning demonstrated in Stolberg and Münch's 

study points to the possibility of persistent, though 

temporarily inaccessible L1 representations.  Results from 

the described model suggest that these representations do 

persist in memory, reactivated with relatively little practice 

long after becoming unavailable for production.  De Bot et 

al (2004) confirmed the presence of latent lexical 

representations in the L2 through a short term relearning 

task. Foreign language students showed a relearning 

advantage for words to which they had been previously 

exposed but forgotten over learning new words.  Our model 

stands to bridge these studies by demonstrating that these 

latent representations may also explain the observed L1 

lexical attrition phenomena, further guiding L1 attrition 

studies toward seeking L1 representations that may have 

fallen below the threshold of retrieval for production.  

The model also exhibited a highly plausible decay 

function for first language lexical comprehension.  

Previously only retrospective analyses, such as that by Hutz 

(2004), have been available for lexical attrition across a 

lifetime.  Semantic transfer errors identified in Hutz’s case 

study  (e.g. “Das ist feine mit mir” which is a literal 

translation of the English idiom “That's fine with me”, 

rather than the equivalent German idiom “damit bin ich 

einverstanden”) grew at a diminishing rate over 55 years.  

The decay of comprehension in this model is highly 

compatible with Hutz’s findings in semantic transfer, 

indicating that the model’s performance curves may 

represent a component of the generalized time course for L1 

lexical attrition. 

Moreover, variation of age of onset revealed a possible 

inverse relationship with the rate at which the 

comprehension decay occurred.  Particularly in the 50 AoO 

condition, we observed attrition occurring at a higher rate 

than for later AoOs.  This rate, coupled with the slightly 

lower L1 pre-attrition performance (92% versus 97%), 

points to the effects of incomplete learning for early onset 

attrition.  Empirical studies have shown that early rather 

than late exposure to L2 may lead to stronger influence from 

L2 to L1, causing certain elements of L1 to give way to L2 

patterns more easily (e.g., in object naming patterns and 

categorization; see Pavlenko & Malt, in press). On the other 

hand, the stronger AoO effects at early stages may be 

accounted for by the substantial brain plasticity for new 

languages within the critical period (Pallier et al., 2003).   

In the model, it is apparent that the importance of AoO is 

diminished in cases of later onset.  The ostensible leveling-

off  may be attributable to the limitations placed on Hebbian 

entrenchment by the normalization. The strength of early 

AoO effects and high variability in later AoOs reflects 

Johnson and Newport’s (1989) observation of age-related 

effects in second language acquisition.  Like Johnson and 

Newport’s data, our findings are at best ambiguous about 

the role of age in late second language onset.  To what 

degree the performance of our model was due to incomplete 

L1 learning versus age-related acceleration of decay 

requires further investigation. 

Conclusion 

In empirical literature the study of language attrition has 

remained a qualitative and descriptive enterprise, due to the 
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lack of rigorous experimental methodologies for reliably 

measuring change across time. Coupled with the difficulty 

of finding a sufficient number of language users who 

experience L1 language attrition, the extant research makes 

it difficult to identify any time course of development. In 

this study, we provided a SOM-based computational model 

of lexical attrition as a first attempt to systematically 

investigate mechanisms of language attrition. Specifically, 

our model is able to produce a gradual decline in L1 lexical 

performance, suggesting a plausible course of decay in first 

language comprehension that is compatible with the 

observations of existing case studies.  Furthermore, our 

model highlights the potential for independent effects on 

comprehension and production within a single language 

user.  Finally, our model shows age of onset effects in 

relation to the rate of attrition and points to the possible role 

of incomplete L1 learning. Such effects are important for 

understanding the dynamic changes in the competition of 

two languages during learning. 

Acknowledgements 

This research was supported by a University Graduate 

Fellowship for BDZ and a grant from the National Science 

Foundation (No. 0642586) to PL. We are grateful to Jon-

Fan Hu and Xiaowei Zhao for their invaluable discussion 

and collaboration. 

References 

Dale, P.S., & Fenson, L. (1996). Lexical development 

norms for young children. Behavior Research Methods, 

Instruments, & Computers, 28, 125-127. 

de Bot, K., Martens, V., & Stoessel, S. (2004). Finding 

residual lexical knowledge: The Savings approach to 

testing vocabulary. International Journal of Bilingualism, 

8 (3), 373-382. 

Hao, M., Shu, H., Xing, A., & Li, P. (2008). Early 

vocabulary inventory for Mandarin Chinese. Behavior 

Research Methods, 40 (3), 728-733. 

Hebb, D. (1949). The organization of behavior: A 

neuropsychological theory. New York, NY: Wiley. 

Hernandez, A. E., & Li, P. (2007). Age of acquisition: Its 

neural and computational mechanisms. Psychological 

Bulletin, 133 (4), 638-650. 

Hutz, M. (2004). Is there a natural process of decay? A 

longitudinal study of language attrition. In M. S. Schmid, 

B. Köpke, M. Keijzer, & L. Weilemar, First language 

attrition: Interdisciplinary perspectives on 

methodological issue. Amsterdam: John Benjamins 

Publishing Company. 

Hyltenstam, K., Bylund, E., Abrahamsson, N., & Park, H. 

(2009). Dominant-language replacement: The case of 

international adoptees. Bilingualism: Language and 

Cognition, 12(2), 121-140. 

Johnson, J., & Newport, E. (1989). Critical Period Effects in 

Second Language Learning: The Influence of 

Maturational State on the Acquisition of English as a 

Second Language. Cognitive Psychology, 21, 60-99. 

Kohonen, T. (2001). The self-organizing maps (3rd ed.). 

Berlin: Springer.  

Li, P. (2009). Lexical Organization and Competition in First 

and Second Languages: Computational and Neural 

Mechanisms. Cognitive Science, 33, 629-664.  

Li, P., & Farkas, I. (2002). A self-organizing connectionist 

model of bilingual processing. In R. Heredia & J. 

Altarriba, Bilingual sentence processing, 17, 59–85. 

North-Holland. 

Li, P., & MacWhinney, B. (2002). PatPho: A phonological 

pattern generator for neural networks. Behavior Research 

Methods Instruments and Computers, 34 (3), 408–415. 

Li, P., Zhao, X., & MacWhinney, B. (2007). Dynamic Self-

Organization and Early Lexical Development in Children. 

Cognitive Science, 31 (4), 581-612. 

MacWhinney, B. (2005). A unified model of language 

acquisition. In J. F. Kroll & A. De Groot, Handbook of 

bilingualism: Psycholinguistic approaches. Oxford 

University Press.  

Mayor, J., & Plunkett, K. (2010).   A neuro-computational 

account of taxonomic responding and  

fast mapping in early word learning. Psychological 

Review. (in press). 

Meara, P. (2004). Modelling vocabulary loss. Applied 

linguistics, 25 (2), 137–155. 

Pallier, C., Dehaene, S., Poline, J.-B., LeBihan, D., Argenti, 

A.-M., Dupoux, E., & Mehler, J. (2003). Brain imaging of 

language plasticity in adopted adults: can a second 

language replace the first? Cerebral cortex, 13 (2), 155-

61. 

Pavlenko, A. & Malt, B. (2010). Kitchen Russian: Cross-

linguistic differences and first language object naming by 

Russian-English bilinguals. Bilingualism: Language and 

Cognition, (in press). 

Richardson, F. M., & Thomas, M. S. (2008). Critical 

periods and catastrophic interference effects in the 

development of self-organizing feature maps. 

Developmental science, 11 (3), 371-89. 

Schmitt, E. (2010). When boundaries are crossed: 

Evaluating language attrition data from two perspectives. 

Bilingualism: Language and Cognition, 13 (1), 63-72. 

Stolberg, D., & Münch, A. (2010). “Die Muttersprache 

vergisst man nicht” –or do you? A case study in L1 

attrition and its (partial) reversal,. Bilingualism: Language 

and Cognition, 13 (1), 19-31. 

Ullman, M. T. (2001). The neural basis of lexicon and 

grammar in first and second language: the 

declarative/procedural model. Bilingualism: Language 

and Cognition, 4 (2). 

Zhao, X., & Li, P. (2007). Bilingual lexical representation in 

a self-organizing neural network. Proceedings of the 

Twenty-Fifth Annual Conference of the Cognitive Science 

Society. Mahwah, NJ: Lawrence Erlbaum. 

Zhao, X., & Li, P. (2009). An online database of 

phonological representations for Mandarin Chinese. 

Behavior Research Methods, 41 (2), 575-83. 

2792




