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aDepartment of Neurobiology and Behavior, University of California, Irvine, CA, USA

bCenter for the Neurobiology of Learning and Memory, University of California, Irvine, CA, USA

cDepartment of Psychiatry and Behavioral Sciences, University of California, Irvine, CA, USA
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Abstract

Alzheimer’s disease (AD) is the most common type of dementia, characterized by early memory 

impairments and gradual worsening of daily functions. AD-related pathology, such as amyloid-

beta (Aβ) plaques, begins to accumulate many years before the onset of clinical symptoms. 

Predicting risk for AD via related pathology is critical as the preclinical stage could serve 

as a therapeutic time window, allowing for early management of the disease and reducing 

health and economic costs. Current methods for detecting AD pathology, however, are often 

expensive and invasive, limiting wide and easy access to a clinical setting. A non-invasive, 

cost-efficient platform, such as computerized cognitive tests, could be potentially useful to identify 

at-risk individuals as early as possible. In this study, we examined the diagnostic value of an 

episodic memory task, the mnemonic discrimination task (MDT), for predicting risk of cognitive 

impairment or Aβ burden. We constructed a random forest classification algorithm, utilizing MDT 
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performance metrics and various neuropsychological test scores as input features, and assessed 

model performance using area under the curve (AUC). Models based on MDT performance 

metrics achieved classification results with an AUC of 0.83 for cognitive status and an AUC 

of 0.64 for Aβ status. Our findings suggest that mnemonic discrimination function may be a 

useful predictor of progression to prodromal AD or increased risk of Aβ load, which could be a 

cost-efficient, noninvasive cognitive testing solution for potentially wide-scale assessment of AD 

pathological and cognitive risk.

Keywords

Mnemonic discrimination tasks; Alzheimer’s disease; Mild cognitive impairment; Amyloid-beta 
pathology; Random forest classification; Pattern separation

1. Introduction

Alzheimer’s disease (AD) is an age-related neurodegenerative disorder associated with 

profound cognitive and functional impairment. As the life span of aging population 

increases, the number of AD cases is projected to reach up to 13.8 million by 2050 in 

the United States (Hebert et al., 2013) and 152 million worldwide (Zeisel et al., 2020). 

Currently, there are only a few preventive medications approved (e.g., lecanemab) (van 

Dyck et al., 2023), imposing a substantial burden on affected individuals, communities, 

and healthcare systems. AD starts with accumulation of neuropathology many years before 

symptoms appear (Jack et al., 2013), and about a third of cognitively normal older 

individuals are known to have high amyloid-beta (Aβ) pathology prior to showing clinical 

symptoms (Aizenstein et al., 2008; Villemagne et al., 2008). Up to 70% of older individuals 

who are diagnosed with mild cognitive impairment (MCI), a prodromal stage between 

normal aging and AD with increased risk for AD dementia, have been shown to have 

concomitant AD-related pathology (Jansen et al., 2015; Petersen et al., 2001). Because 

not all the AD-related neuropathology is reversible, early identification and treatment of 

individuals with high risk for developing MCI or AD is of paramount importance. Timely 

identification of at-risk individuals will allow early management and planning of long-term 

care (Leifer, 2003). Prognostics can also help design clinical trials (i.e., screening for target 

population), facilitate precise intervention plans, and further provide a critical time window 

for attenuating AD-related symptoms.

Post-mortem neurohistology has been the gold standard for detecting AD pathology 

including Aβ plaques and neurofibrillary tangles (Hyman and Tanzi, 1992), demonstrating 

that Aβ deposition starts in the neocortex and gradually progresses toward the allocortex, 

midbrain, and eventually the cerebellum (Thal et al., 2002). Hyperphosphorylated tau 

accumulation begins at the locus coeruleus (Ehrenberg et al., 2017; Jacobs et al., 2021), 

followed by a typical cortical spatiotemporal distribution pattern from the transentorhinal 

region to the association and sensory cortices (Arnold et al., 1991; Braak and Braak, 

1991). A growing volume of work has demonstrated the diagnostic utility of in vivo 
pathological biomarkers to predict AD risk prior to clinical onset using positron emission 

tomography (PET) imaging (Jack and Holtzman, 2013; Sperling et al., 2011). However, the 
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relationship between the extent of pathology, particularly Aβ, and the severity of cognitive 

impairment remains debated (Arriagada et al., 1992; Hyman et al., 1993; Ingelsson et 

al., 2004; Perez-Nievas et al., 2013). For example, a recent meta-analysis by Ackley et 

al. (2021) analyzing results from 14 randomized controlled trials of Aβ-targeting drugs 

suggest that these therapies have not yielded meaningful improvements on mini-mental 

state examination (MMSE) scores. A potentially viable strategy for future trials could be to 

identify asymptomatic individuals with elevated Aβ burden.

Several in vivo tools for measuring AD-related pathology and neurodegeneration, including 

magnetic resonance imaging (MRI), PET, and fluid biomarkers (e.g., cerebrospinal fluid 

[CSF], blood, saliva), have opened new research avenues for early detection of pathology 

and characterizing the AD trajectory. Elevated Aβ and tau measured by either PET or CSF 

(Quigley et al., 2011; Stephan et al., 2012), brain atrophy (Pini et al., 2016), and functional 

network dysfunction (Ibrahim et al., 2021; Puttaert et al., 2020) are associated with cognitive 

status along the AD continuum. While these methods can be useful for early diagnosis 

and monitoring disease progression, they may be somewhat invasive (e.g., injection of 

radioactive tracers for PET, or lumbar puncture for CSF collection), expensive, and require 

a trained expert to analyze and interpret results. Computer-based cognitive testing may 

provide a low-cost, accessible, and non-invasive solution to early detection of cognitive 

change and accumulation of key AD pathological markers.

While computerized cognitive testing may be a viable solution to early disease detection, as 

they can be easily administered during routine clinical assessments in older populations, it is 

currently unclear what kind of cognitive test may be sensitive and specific enough to detect 

the earliest pathophysiology or symptoms in AD. Deficits in episodic memory is one of the 

key hallmarks of AD, and cognitively normal older adults were shown to exhibit deficits 

in mnemonic discrimination—the ability to differentiate between highly similar objects or 

events—while more traditional measures of recognition memory remain intact (Berron et al., 

2018; Stark et al., 2013; Yassa et al., 2011). This suggests that early impairments in this 

domain may be clinically meaningful. Early evidence of the neural correlates supporting this 

function comes from studies of amnesic patients by the late Andrew Mayes and colleagues 

(Holdstock et al., 2002; Mayes et al., 2002; Migo et al., 2009) who demonstrated that 

the hippocampus and adjacent cortices play a role in recollection as well as recognition 

of items that are highly similar (i.e., discrimination) – a major inspiration for the current 

work. Following Mayes’ pioneering work, a host of studies also have demonstrated impaired 

recognition and mnemonic discrimination in MCI patients (Belliart-Guerin and Planche, 

2023; Bennett et al., 2019; Stark et al., 2013; Yassa et al., 2010).

Evidence from rodent and neuroimaging studies also supported the notion that subfields of 

the hippocampus (dentate gyrus and CA3) orthogonalize similar patterns into distinct neural 

representation (i.e., pattern separation), putatively supporting the mnemonic discrimination 

function (Bakker et al., 2008; Leutgeb et al., 2004). Multiple variants of mnemonic 

discrimination tasks have been developed across different cognitive domains (e.g., object, 

spatial, temporal, emotion) (Leal and Yassa, 2014; Reagh et al., 2014, 2018; Stark and Stark, 

2017), all of which are considered to be linked to hippocampal integrity (Stark et al., 2019). 
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The direct relationship between AD pathology and mnemonic discrimination performance, 

however, has not yet been fully assessed.

In this study, we aimed to address these unknowns by taking a machine learning approach 

to examine whether the mnemonic discrimination tasks (MDT) can be utilized for prediction 

of cognitive status (normal versus MCI) as well as risks for Aβ burden in a sample of 

extensively phenotyped older adults without an MCI or dementia diagnosis. Interest in 

developing machine learning-based approaches for AD prognosis or diagnosis is growing, 

and numerous studies have demonstrated that artificial intelligence approaches facilitate 

classification of cognitive status across the AD continuum based on multidimensional 

datasets (e.g., neuroimaging, genetic biomarker, neuropsychological test scores) as input 

features (Falahati et al., 2014). While prediction of conversion from MCI to AD or from 

normal to AD have been extensively studied, prediction of transition from normal to MCI 

has been less explored, and few studies have examined whether cognitive or behavioral 

assessments improve model performance. Here, we demonstrate the potential of MDTs as an 

inexpensive, non-invasive platform for early prognosis of prodromal AD or elevated cerebral 

Aβ burden.

2. Materials and methods

2.1. Participants

Data from two studies were used: the Biomarker Exploration in Aging, Cognition, and 

Neurodegeneration (BEACoN) study and the Alzheimer’s Disease Research Center (ADRC) 

Project 1 at the University of California, Irvine. The BEACoN study is an ongoing study that 

aims to develop neuroimaging biomarkers for cognitive decline in preclinical AD. Up to 150 

cognitively normal older adults (60 years and older) from community are being enrolled, 

completing a battery of neuropsychological assessments, mnemonic discrimination tasks, 

and [18F]-Florbetapir (FBP) PET to measure Aβ. Normal cognition was defined as a Clinical 

Dementia Rating of 0, mini mental state examination (MMSE) score of 27 or higher, and 

neuropsychological test performance within 1.5 SD of age-adjusted norms.

Project 1 of the ADRC is a completed study originally aimed to recruit cognitively normal 

older adults (n = 30) as well as older adults with amnestic MCI (n = 15)(Albert et al., 

2011) to understand the neural basis of preclinical AD through identification of non-invasive 

biomarkers. Participants were characterized by the Uniform Data Set (UDS) in accordance 

with the National Alzheimer’s Coordinating Center (NACC) criteria (Besser et al., 2018; 

Weintraub et al., 2018) and had a clinician diagnosis (normal or MCI) on cognitive status 

based on the NACC-UDS guidelines. For MCI, a panel consensus diagnosis was made when 

1) there was concern about a change in cognition (by the subject, informant, or clinicians) 

compared to the subject’s previous level, 2) there was impairment in one or more cognitive 

domains (memory, executive function, language, attention, and visuospatial skills), and 3) 

functional independence was preserved for most daily abilities, requiring minimal assistance 

in living. Participants in the Project 1 also completed the mnemonic discrimination tasks as 

well as lumbar puncture for cerebrospinal fluid Aβ measurement (see below).
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In order to maximize our sample size, we combined data from both studies, ensuring 

every participant had complete data available including demographic information, amyloid 

measures (PET or CSF), and performance scores on MDT, MMSE, and Rey auditory verbal 

learning test (RAVLT). We analyzed a total of 104 participants (mean age = 72.1 yrs, 

range 60–89 yrs, 65 females), 82 of whom were part of the BEACoN study and 9 of 

whom had a clinician diagnosis of MCI. All participants were free of major neurological 

and psychiatric disorders, spoke fluent English, had visual and auditory acuity adequate 

for neuropsychological and computerized testing, and were free of neuroimaging (MRI or 

PET) contraindications. Participants gave written informed consent in accordance with the 

Institutional Review Board of the University of California, Irvine, and were compensated for 

their participation. Table 1 summarizes the demographic and clinical characteristics of the 

participants involved in the study.

2.2. Aβ cerebrospinal fluid marker

Cerebrospinal fluid samples were collected from the participants in the ADRC cohort 

via lumbar puncture for analysis of variables related to Aβ load (e.g., Aβ1–40, Aβ1–42). 

Following standard clinical research methods in aseptic fashion by a board-certified 

neurologist, samples were collected in a 15 mL Falcon tube and were placed on ice 

until processed (within 2 h), aliquoted into 250 μL volumes and stored at −80 °C. The 

LUMIPULSE G 1200, a fully automated immunoassay instrument (Fujirebio, Malvern PA), 

was used to estimate the levels of Aβ1–42 and Aβ1–40 markers using a chemiluminescent 

enzyme immunoassay (CLEIA) by the UCSD Shirley-Marcos ADRC Biomarker Core. The 

primary measure used for current study was the ratio of Aβ1–42 and Aβ1–40, accounting for 

individual differences among Aβ isoforms. A cutoff value of 0.062 (Alcolea et al., 2019) 

was used to group the participants into two classes: low (>0.062) and high Aβ burden 

(<0.062).

2.3. Amyloid PET image acquisition and processing

Participants in the BEACoN study underwent FBP PET imaging conducted on a High 

Resolution Research Tomograph at the University of California, Irvine Neuroscience 

Imaging Center. Image acquisition followed the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) (Landau et al., 2013) protocol consisting of 4 × 5-min frames collected 

50–70 min after ligand injection. Ten mCi (370MBq) of FBP was injected, followed by a 

saline flush. During the uptake participants rested comfortably in a dimly lit room with their 

eyes open.

Structural T1-weighted magnetization prepared rapid gradient echo (MPRAGE) scans were 

acquired on a 3-T Siemens Magnetom Prisma scanner at the Facility for Imaging and Brain 

Research, University of California, Irvine, using the following parameters: orientation = 

sagittal, TR = 2300ms, TE = 2.38ms, FA = 8, voxel resolution = 0.8 mm isotropic, FOV 

= 256 mm, SENSE acceleration factor = 3. Segmentations were then computed on these 

images using the Desikan/Killiany atlas in the Freesurfer (Version 6)(Desikan et al., 2006).

The PET data were reconstructed with attenuation correction, scatter correction, and 2 

mm3 Gaussian smoothing. Images were realigned, co-registered to T1-MPRAGE scans, 
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and normalized by a whole cerebellum reference region to create standard uptake values 

ratios (SUVR) images. Additional 6 mm3 Gaussian smoothing was performed to achieve an 

effective resolution of 8 mm3. The mean SUVR of previously validated cortical composite 

regions was used to classify the participants into two groups using a cutoff SUVR of 1.10: 

low (≤1.10) and high (>1.10) Aβ (Landau et al., 2012, 2013).

2.4. Concordance between FBP-PET and CSF Aβ measurement

A recent study by Adams et al. (2023) assessed concordance between CSF-based and 

PET-based Aβ measures with respect to diagnosis of cognition (normal and MCI). The 

authors showed high concordance between the two measures with high accuracy (0.93 ± 

0.13), precision (0.93 ± 0.17), and an overall AUC of 0.92 (±0.16). In the current study, we 

combined data from both groups for all the analyses.

2.5. Rey auditory verbal learning test

The Rey auditory verbal learning test (RAVLT) is a standard neuropsychological verbal 

memory test that had been widely used as a proxy for episodic memory functions and 

impairments in aging and dementia (Savage and Gouvier, 1992). The test involves a free 

recall paradigm in which participants listen to a list of 15 nouns (list A) and are asked to 

recall aloud as many words as possible. Following 5 repetitions of word recall (A1 to A5), a 

new list (B) is introduced for “interference” with words presented in the list A. Participants 

then are asked to recall the words from list A (immediate recall, A6) and 20-mins later 

asked again to recall as many words as possible (delayed recall, A7). Performance scores 

were calculated based on the number of words recalled. Other performance metrics were 

calculated as following: learning rate (learning slope [LS] = [A5–A1]/4); susceptibility to 

interference (retrospective interference [RI] = A6/A5); forgetting rate ([A5–A7]/5). All the 

five variables were included as input features.

2.6. Mnemonic discrimination tasks

Participants completed the computerized Mnemonic Discrimination Task (MDT) in object 

(MDTO) and spatial (MDTS) domains, as described previously (Adams et al., 2022; Reagh 

et al., 2016; Reagh and Yassa, 2014)(Fig. 1). Programmed in Python (version 2.7) using 

PsychoPy (Peirce, 2007), the MDTs are based on a recognition memory test paradigm 

including a study (encoding) phase immediately followed by a test (a surprise recognition 

memory test) phase. During the study phase, participants saw a series of object stimuli (120 

for MDTO and 160 for MDTS), one at a time (2 s each, ISI = 0.5 s), on a white background. 

For each trial, participants were asked to indicate whether an item was an “indoor” or 

“outdoor” object using a key press. In the MDTO, each object was presented at the center 

of the screen. In the MDTS, each object was presented in a random grid position within the 

screen. During the test phase, participants were shown another series of stimuli, one at a 

time (2 s each, ISI = 0.5 s). For the MDTO, a total of 160 stimuli were shown, including 40 

repeated (target) items, 40 new (foil) items, and 80 lure items that were perceptually similar 

(but not identical) to the studied items. Of the 80 lure items, 40 lures were very similar to 

the targets (high lures) and 40 lures were less similar to the targets (low lures). Participants 

were asked to indicate by a keypress whether an object was the “same” or “different”. For 

the MDTS, the same images were shown as in the study phase, 40 of which were presented 
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in the same locations (targets) and 120 of which were presented in different locations. The 

distance from the initial presentation varied across incremental levels to manipulate spatial 

similarity (i.e., novel location for corner-to-corner dislocation, low similarity for positions 

in a different quadrant of the grid, high similarity for different position within the same 

quadrant). Participants were asked to indicate by a keypress whether an object was presented 

in the “same” or “different” position. Participants were allowed 2 s to make a response 

before the next stimulus appeared. Each participant saw a unique order of stimuli for each 

phase for both versions.

For both MDTO and MDTS, mnemonic discrimination performance was assessed using 

a bias-corrected Lure Discrimination Index (LDI), defined as the proportion of lures 

correctly identified minus the proportion of targets incorrectly identified (p[‘Different’|

lures]-p [‘Different’| targets]). We averaged values from LDI of high and low lures. We also 

calculated LDI as a function of similarity levels (i.e., LDI slope = LDI for low lures minus 

LDI for high lures). D prime measures, based on classic signal detection theory (Snodgrass 

and Corwin, 1988), were also calculated for targets, high lures, and low lures based on the 

equation, d’ = Z (Target hit rate) – Z (False alarm rate). Recognition memory performance 

was calculated as the probability of correctly responding to repeated target objects (hits) 

minus the probability of incorrectly responding to foil objects (false alarms). All the five 

variables were included as input features.

2.7. Random forest classification

Random forest (RF) classification models were constructed for prediction of cognitive status 

(cognitively normal or MCI) and Aβ status (low or high, in cognitively normal participants). 

Random forest (Breiman, 2001) is a type of ensemble machine learning algorithm that has 

been widely used for classification or regression models (Fernandez-Delgado et al., 2014). 

We chose this method based on several advantages in terms of high accuracy, resistance to 

overfitting and outliers, and robust handling of small samples with class imbalance (Caruana 

and Niculescu-Mizil, 2006; Fernandez-Delgado et al., 2014). Owing to its utility, random 

forest methods have been applied in AD studies using large scale data sets such as ADNI 

(Dimitriadis et al., 2018). An RF classifier selects a random sample of the training data and 

forms numerous decision trees that learn decision rules from multiple features of the data. 

Then in a test dataset, prediction of each tree generates the mode of the outcome classes of 

interest.

We developed and implemented RF algorithms in Python (version 3.8.8) using the 

Scikit-Learn library (Pedregosa et al., 2011) and built 100 decision trees consisting of 

different combinations of predictor variables. The predictors or input features consisted 

of performance scores from MDT, RAVLT, or MMSE. Demographic features (age, sex, 

education) were also considered in some prediction models. Additionally, we utilized the 

Gini impurity index (Breiman, 2001), a commonly employed feature selection strategy in RF 

classification, to assess relative importance of features contributing to model prediction.

Sensitivity and specificity of the models were determined using 0.5 as a threshold. Model 

performance was then evaluated using the area under the curve (AUC) of the receiver 

operating characteristic (ROC) curves, which was plotted from all the predicted values of 
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the test data set using leave-one-out cross validation (LOOCV). We specifically chose the 

LOOCV design given the small sample size (Falahati et al., 2014) and built n classification 

models using n-1 subject each time and then used the classifier to determine the class 

of the left out subject. We then performed bootstrapping method (1000 resampling with 

replacement) to estimate 95% confidence intervals (CI) of the average cross-validated 

AUCs. DeLong’s method was used to test for significant differences between the AUCs 

of two models (Delong et al., 1988; Sun and Xu, 2014).

2.8. Statistical analysis

All statistical analyses were performed using the open-source statistical software package 

R (www.r-project.org/). DeLong’s test was performed using the ‘pROC’ package in R. We 

ran independent two sample t-tests for comparison of demographics and neuropsychological 

variables between CN and MCI as well as between high Aβ and low Aβ groups. Pearson’s 

correlation between MDTO, MDTS, and RAVLT was computed to assess collinearity among 

predictors. Area under the ROC curves were estimated and plotted using Scikit-Learn library 

implemented in Python (version 3.8.8).

3. Results

3.1. Demographic, neuropsychological, and clinical characteristics

Participant characteristics are summarized in Table 1, and different types of scores of MDTs 

are summarized in Supplemental Table 1. Average age (yrs ± SD) of cognitively normal 

(CN) participants and participants with MCI diagnosis was 71.7 ± 6.6 and 76.5 ± 9.6, 

respectively. There was a significant difference in age (p = 0.05) but not in education level 

(p = 0.62) between the CN and MCI groups. In both groups, there were more females than 

males and participants were predominantly non-Hispanic white. The MCI group performed 

more poorly than the CN group on MMSE, immediate and delayed recall on RAVLT, and 

most of the MDT performance metrics (ps < 0.05). Cognitively normal adults were further 

divided into two groups based on the level of Aβ. There was no group difference in any 

measures, except for the learning slope of RAVLT (p = 0.05). A few participants reported 

having a comorbid condition (5 diabetes and 2 heart disease).

3.2. Correlations among MDTO and MDTS metrics

Pearson’s correlation coefficients between performance scores of MDTO and MDTS are 

summarized in Table 2, and scatter plots are shown in Supplemental Fig. 1. Overall, the LDI 

scores of MDTO and MDTS had the highest correlation (r = 0.452, p < 0.001) compared 

to other pairs of scores. Lure discrimination index of MDTO had significant correlation 

with MDTS LDI, recognition, and d’ (ps < 0.001). Recognition score of MDTO also had 

a strong correlation with LDI and recognition score of MDTS (ps < 0.001). Discrimination 

performance on high spatial lures was significantly associated with MDTO LDI (p < 

0.05). Similarly, discrimination performance on low spatial lures had significant association 

with MDTO performance, mainly the LDI and recognition (ps < 0.05). When we applied 

Holm’s correction (Holm, 1979) for multiple correlations, correlations remained statistically 

significant between MDTO LDI and MDTS LDI, as well as between the recognition score 

of MDTS and all the MDTO scores.
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3.3. Correlations among MDTO and RAVLT metrics

Pearson’s correlation coefficients between performance scores of MDTO and RAVLT 

are summarized in Table 3, and scatter plots are shown in Supplemental Fig. 2. Lure 

discrimination index, recognition, and d’ scores of MDTO showed significant correlation 

with immediate recall score (A6) of RAVLT (ps < 0.05). LDI, recognition and d’ scores 

showed significant correlation with delayed recall score (A7) of RAVLT (ps < 0.05). All the 

scores in MDTO had negative correlation with rate of forgetting the word list in RAVLT; 

however, only recognition and d’ scores had significant association (ps < 0.05). No scores 

in MDTO were significantly associated with learning capacity of the word list in RAVLT. 

A6 remained significantly correlated with MDTO LDI and recognition score after applying 

Holm’s correction method.

3.4. Correlations among MDTS and RAVLT metrics

Pearson’s correlation coefficients between performance scores of MDTO and RAVLT are 

summarized in Table 4, and scatter plots are shown in Supplemental Fig. 3. As in MDTO 

scores, lure discrimination index, recognition, and d’ scores of MDTS showed significant 

correlation with immediate recall score (A6) of RAVLT or delayed recall score (A7) (ps < 

0.05). All the scores in MDTO had negative correlation with rate of forgetting the word list 

in RAVLT, however, only LDI and recognition scores had significant association (ps < 0.05). 

No scores in MDTS were significantly associated with learning capacity of the word list in 

RAVLT. A6 remained significantly correlated with MDTS recognition score after applying 

Holm’s correction method.

3.5. Model performance on classification of cognitive status

Table 5 and Fig. 2 demonstrate performance of random forest classification model by area 

under the curve (AUC) of the ROC curves, specificity, and sensitivity. A prediction model 

combining 5 types of scores (LDI, target recognition, d’ for target, d’ for high lures, d’ for 

low lures) from both MDTO and MDTS achieved an AUC of 0.834 (CI 95% bootstrap = 

0.833, 0.835) for distinguishing individuals with normal cognition from MCI (Fig. 2A, Table 

5). We found weaker performance when employing 5 types of scores (A6, A7, learning rate, 

retrospective interference, forgetting rate) from RAVLT (AUC = 0.555, CI 95% bootstrap = 

0.554, 0.557). The two AUCs were statistically different (DeLong’s test, p = 0.01). There 

was a similar trend when demographics (age, sex, education level) were added to each 

model (AUC = 0.805 and 0.634 for MDT-based and RAVLT-based predictions, respectively). 

In fact, the RAVLT-based model performance was weaker than a model predicting with 

MMSE scores (AUC = 0.716, CI 95% bootstrap = 0.715, 0.717). Models using age, sex, and 

education level as a single predictor showed weaker performance than models employing 

MDT scores as predictors (AUCs <0.540).

Gini impurity-based feature importance was plotted for each model (Fig. 3). The three most 

informative MDT features were MDTS d’, MDTO recognition, and MDTO d’ (Fig. 3A). 

For RAVLT, the three most informative features (Fig. 3B) were retrospective interference, 

immediate recall, and forgetting rate. Feature engineering was performed by selecting the 

most informative feature (Top 1) and then adding up to three most informative features 

(Top 1 and 2; Top 1, 2, and 3). For both MDT-based and RAVLT-based models, addition of 
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features enhanced model performance (AUCs tabulated within Fig. 3A and B). On another 

feature engineering analysis, when recognition scores were excluded, a smaller AUC was 

achieved (0.79) than the model including all the MDT performance metrics (AUC = 0.83).

To examine whether prediction performance varies between MDT domains (object vs. 

spatial), we compared model performance of RF classifiers when MDTO and MDTS 

features were separately employed (Supplemental Figs. 4A–D). A prediction model using 

MDTO performance metrics achieved an AUC of 0.86, which was numerically higher than 

the model using both MDTO and MDTS features (AUC = 0.83). This AUC value was higher 

than that of the MDTS-based model (AUC = 0.75). In the MDTO model, the recognition 

score emerged as the most informative feature, whereas, in the MDTS model, it was ranked 

as the least informative.

A joint model combining features from both MDT and RAVLT was considered 

(Supplemental Fig. 5). The joint model performance did not improve (AUC = 0.81) 

compared to the MDT-based model with an AUC of 0.83 (Supplemental Fig. 5A). 

Performance metrics of MDT (e.g., MDTO d’, MDTO Rec, MDTS d’) were ranked as 

more informative features than RAVLT scores (Supplemental Fig. 5B).

3.6. Model performance on classification of Aβ status in cognitively normal older adults

The best model predicting low versus high Aβ burden was achieved for the model in 

which all the 5 types of scores from both MDTO and MDTS were used ((Fig. 2B, Table 

5), yielding an AUC of 0.638 (CI 95% bootstrap = 0.637, 0.639). This performance was 

superior to that of the model employing the 5 types of scores from RAVLT (AUC = 0.578, 

CI 95% bootstrap = 0.577, 0.578). The two AUCs were statistically not different (DeLong’s 

test, p = 0.77). When demographics (age, sex, education level) were included as features, 

MDT-based model (AUC = 0.650, CI 95% bootstrap = 0.649, 0.651) was still superior to 

RAVLT-based model (AUC = 0.529, CI 95% bootstrap = 0.528, 0.530). Compared to the 

models employing MDT scores, models employing age (AUC = 0.595, CI 95% bootstrap = 

0.594, 0.595), sex (AUC = 0.307, CI 95% bootstrap = 0.307, 0.308), education level (AUC = 

0.329, CI 95% bootstrap = 0.326, 0.332), or MMSE scores (AUC = 0.517, CI 95% bootstrap 

= 0.516, 0.518) as a single predictor demonstrated weaker performance. Interestingly, a 

model employing the LDI slope as a single feature achieved comparable performance (AUC 

= 0.648) as the model including all the MDT features and demographics.

Gini impurity-based feature importance was plotted for each model. The three most 

informative MDT features were MDTS d’, MDTO d’ low similarity lures, and MDTO 

LDI (Fig. 3C). Recognition scores of MDTS and MDTO were less informative features 

(8th and 10th, respectively). For RAVLT, the three most informative features were learning 

slope, retrospective interference, and forgetting rate (Fig. 3D). Feature engineering was 

performed by selecting the most informative feature (Top 1) and then adding up to three 

most informative features (Top 1 and 2, Top 1, 2, and 3). For both MDT and RAVLT 

models, addition of features also enhanced model performance (AUCs tabulated within Fig. 

3C and D). On another feature engineering analysis, exclusion of recognition scores had 

little impact on model performance (AUC = 0.66) compared to the model including all the 

MDT performance metrics (AUC = 0.64).
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To examine if prediction performance varies between MDT domains (object vs. spatial), 

we compared model performance of RF classifiers when MDTO and MDTS features were 

separately employed (Supplemental Figs. 4E–H). A prediction model using features from 

MDTO performance metrics achieved an AUC of 0.63, which was similar to the model 

using both MDTO and MDTS features (AUC = 0.64). The MDTO-based model yielded a 

marginally higher AUC than the MDTS-based model (AUC of 0.60). For each MDTO and 

MDTS model, recognition scores were the least informative feature.

A joint model combining features from MDT and RAVLT was considered (Supplemental 

Fig. 5). The joint model performance remained consistent (AUC = 0.65) compared to the 

MDT-based model with an AUC of 0.64 (Supplemental Fig. 5C). Recognition scores of 

MDT and recall scores (A6 and A7) of RAVLT ranked as the least informative features 

(Supplemental Fig. 5D).

4. Discussion

In this study, we evaluated the diagnostic utility of the mnemonic discrimination tasks 

for cross-sectionally identifying cognitively normal older individuals from individuals with 

a clinical diagnosis of MCI, as well as for statistically predicting cerebral Aβ burden 

(measured by FBP-PET or CSF) among cognitively normal older adults. We trained a 

random forest classifier by including various MDT performance scores as input features. 

For comparisons, we also trained random forest classifiers by including performance 

metrics from a commonly used neuropsychological assessment (RAVLT) or a MMSE score. 

Model performance was evaluated based on the AUC of ROC curves. For classification 

of cognitive status, the MDT-based model outperformed the RAVLT-based model with a 

higher AUC (0.83 vs. 0.56, DeLong’s test, p < 0.05). For classification of Aβ status, 

the MDT-based model yielded a numerically higher AUC than the RAVLT-based model 

(0.64 vs. 0.53), but the AUCs were not statistically different (DeLong’s test, p > 0.5). For 

both classifications, MDT recognition scores had a minimal impact on model performance. 

Furthermore, combining MDT and RAVLT features did not enhance classification compared 

to models that used MDT performance metrics as features. Overall, RF classifiers based on 

MDT performance metrics yielded numerically greater AUC values than classifiers based on 

RAVLT performance metrics.

A key aspect of the MDT is its ability to engage the hippocampal-dependent process (pattern 

separation) that supports discrimination of highly similar representations. Notably, a body 

of literature (Aggleton and Shaw, 1996; Holdstock et al., 2005; Mayes et al., 2002) has 

demonstrated sparing of recognition memory following hippocampal lesions, suggesting 

that recognition and mnemonic discrimination are two distinct cognitive processes. This 

idea leads to an interesting question: how might including recognition scores impact the 

performance of our MDT-based classifiers? In our classifications of cognition or Aβ status, 

recognition scores had minimal impact on model predictions, resulting in marginal changes 

in the AUC values. Moreover, recognition scores ranked as less informative features for 

classification of Aβ load in cognitively normal individuals. These findings are in line with 

the idea that recognition remains largely intact over healthy aging (e.g.., Stark et al., 2013) 
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and demonstrate that predicting AD-related pathology based on recognition performance 

may not yield sufficient discrimination.

A line of research exploring the domain-specific (object and spatial) functional pathways in 

the MTL (Ranganath and Ritchey, 2012) may offer relevant insights into to our results 

comparing the discriminative value of MDTO and MDTS. These functional pathways 

operate separately for object information through the perirhinal-lateral entorhinal cortex 

and spatial information through the parahippocampal-medial entorhinal cortex, which are 

also thought to be crucial for MDTO and MDTS, respectively (Reagh and Yassa, 2014). 

Importantly, the transitional region including the lateral entorhinal and perirhinal cortex is 

known to be vulnerable to accumulation of AD-related pathology (primarily tau pathology, 

Braak and Braak, 1991), overlapping with the object processing pathway that supports 

MDTO. In our classification of CN and MCI, we found that that the MDTO-based model 

achieved a higher AUC value of 0.86, surpassing the model that exclusively used MDTS 

features (AUC = 0.75). While this result is in line with other reports demonstrating impaired 

MDTO performance in MCI (Bakker et al., 2012; Stark et al., 2013), there is still lack of 

evidence supporting which domain serves as the superior tool for clinical diagnosis. We 

also compared model performance between MDTO and MDTS for prediction of Aβ status 

but found little difference (AUC = 0.63 vs. 0.60). One possibility is that, because MDTO 

and MDTS metrics were correlated, it was expected that no specific domain outperforms 

the other. Another possibility is that the domain difference may track tau pathology better 

than Aβ, given the susceptibility of the transentorhinal region to the pathology (Berron et 

al., 2018, 2019; Braak and Braak, 1991), which invites future work examining the domain-

specific diagnostic value for prediction of tau burden.

For classification of cognition, we found that the RAVLT-based model marginally benefited 

with addition of demographic features. We also trained RF classifiers using combined 

features from both MDT and RAVLT, and this joint model performance substantially 

improved (AUC = 0.81) compared to the RAVLT-based model (AUC = 0.56). A few 

points may help explain these findings. First, MCI is recognized as a heterogeneous 

category, encompassing a wide range of demographics, cognitive or clinical symptoms, and 

pathological severity. Due to this heterogeneity, we expect the clinical diagnosis may not 

achieve perfect performance (i.e., AUC close 1.0). In this regard, our MDT-based classifier 

may have already reached a near-ceiling level of performance (AUC >0.8), and further 

improvement may not be possible. Second, MDT performance may be more sensitive to age 

(e.g., decline starting to emerge in the 4th decade of life) than RAVLT performance (Stark 

et al., 2013). It is plausible that MDT performance already accounts for age-related effects 

and therefore, addition of age or demographic features may have had little impact on model 

predictions. Overall, our findings suggest that MDT may be an effective diagnostic tool and 

able to provide complementary information to cognitive assessments used for diagnosis of 

AD.

A wealth of studies have utilized machine learning techniques and integrated combined 

features from biomarkers and neuropsychological scores for discrimination of healthy 

controls from AD patients (Clark et al., 2014; Ewers et al., 2012; Spasov et al., 2019), 

for discrimination of MCI from AD (Ardekani et al., 2017; Clark et al., 2016; Grassi et al., 
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2019; Moradi et al., 2015; Velazquez et al., 2021; Zhang et al., 2011), or for discrimination 

of normal cognition from MCI (Cui et al., 2012; Gray et al., 2013; Lebedeva et al., 

2017). Most of these investigations yielded AUCs ranging from 0.7 to 0.9, suggesting that 

biomarker data derived from neuroimaging, CSF assays, or genotyping play a crucial role 

in achieving powerful classification of cognition along the AD continuum. A fundamental 

question remains whether cognitive test metrics can adequately replace the need of acquiring 

invasive and expensive biomarker data. While conversion to AD from MCI is a stage 

that may be readily detectable with standard neuropsychological measures across multiple 

cognitive domains, conversion from cognitively normal to MCI is perhaps a more subtle 

and less common trajectory. Consequently, more sensitive and specific cognitive tests 

are required to predict the transition to MCI, which is a critical window for potential 

intervention. Our findings illustrate that by probing memory measures (MDT) rooted in 

neurobiological process (pattern separation) and known to be sensitive to cognitive decline, 

predicting conversion from cognitively normal to MCI may be achievable.

We also examined whether MDT performance may predict risks of cerebral Aβ burden 

in older adults with normal cognition. A few studies recently proposed different machine-

learning approaches for predicting risks for cerebral Aβ positivity, but mostly in MCI or 

prodromal AD patients (Ezzati et al., 2020; Haghighi et al., 2015; Kandel et al., 2015; Kim 

et al., 2018, 2021; Palmqvist et al., 2019) reporting a range of AUCs between 0.6 and 0.8. 

Our classification performance for Aβ status was generally weaker than classification for 

clinical diagnosis. One potential explanation is that features like neuroimaging data, APOE 

genotype, or biomarkers exhibit higher discriminatory power in detecting AD pathology, 

whereas cognitive impairment alone may not be sufficient to differentiate pathological 

burden. Another possibility is that Aβ accumulation is prevalent in cognitively normal older 

adults (Jack and Holtzman, 2013) and is only weakly associated with cognitive changes. In 

contrast to tau, which tends to be regionally concentrated around the medial temporal lobe 

in preclinical AD (Braak and Braak, 1991), the distribution of Aβ plaques is widespread 

throughout the brain (Thal et al., 2002). Therefore, performance on MDT, which taps into 

medial temporal lobe integrity, may not exhibit a strong association with Aβ pathology. 

As suggested above, future work is needed to examine the diagnostic value of MDTs for 

prediction of tau burden.

Though not based on machine-learning approaches, some recent studies (Jutten et al., 2021a; 

Papp et al., 2021; Trelle et al., 2021; Webb et al., 2020) are worth noting for demonstrating 

a close relationship between MDT performance and AD pathology in various cognitively 

normal cohorts. Papp et al. (2021), for example, used a variant of the MDTO (labelled as the 

Behavioral Pattern Separation Test-Object [BPSO]) and demonstrated significant differences 

between a large sample (n = 4486) of Aβ + and Aβ – individuals. Aβ or tau burden was 

also found to be related to lure discrimination scores particularly as a function of similarity 

level in cognitively normal older adults, a pattern which was observed in both MDTO (Trelle 

et al., 2021) and MDTS (Webb et al., 2020). While there are methodological and analytical 

differences among the studies, the results are in line with our finding that MDT performance 

metrics may be a useful tool for early detection of AD-related pathology in cognitively 

normal older adults.
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With the growing number of large data sets, machine learning has emerged as a useful 

diagnostic approach in numerous clinical and non-clinical domains. Among several 

ensemble learning techniques available (Caruana and Niculescu-Mizil, 2006; Fernandez-

Delgado et al., 2014), we chose the random forest classifier given its advantages for 

effective handling of small or imbalanced data and capability of solving overfitting problems 

(Dietterich, 2000). Another strength of the RF classifier is that relative feature importance 

can be derived, providing additional explanations for prediction models. In recent review 

papers, classification results from studies using RF classifiers (Sarica et al., 2017) or other 

prediction methods (e.g., support vector machine, neural network) (Weiner et al., 2017) 

for clinical diagnosis of AD have been summarized. A study by Velazquez et al. (2021) 

particularly provided comparisons among RF classifier, support vector classifier, logistic 

regression, and XGBoost classifier, and found RF was the best method for AD conversion 

prediction. Collectively, previous reports demonstrate the utility of RF classifiers as an early 

screening tool to identify individuals who will likely develop AD and require intervention.

In addition to the use of RF classification algorithms, strengths of our study include 

our focus on discrimination of CN and MCI in the early stage of AD, which provide 

opportunities for identifying at-risk individuals prior to any clinical diagnosis. Moreover, 

our study participants have been deeply phenotyped with regards to their cognitive and 

clinical profiles. Our study is also among the few studies leveraging rich, comprehensive 

datasets to examine the diagnostic capacity of cognitive tests for cerebral Aβ status, which 

can otherwise be measured by invasive and expensive means. The MDT can be briefly and 

easily administered in several domains (object, spatial, temporal) and in different platforms 

(in person or online) (Jutten et al., 2021a). Furthermore, compared to RAVLT that primarily 

rely on verbal memory, the MDT stimuli are based on object images and therefore can be 

widely available for diverse population speaking different languages (e.g., see Suwabe et al., 

2017).

The main limitation of our study is the small and unbalanced sample size (e.g., MCI, 

n = 9) compared to other studies using large-scale databases (e.g., ADNI cohort). Thus, 

our statistical power for classification may be somewhat limited and warrants cautious 

interpretation of the findings. Although we were not able to test our RF classifiers on an 

independent dataset, we mitigated this issue by using the leave-one-out cross validation 

that is considered the preferred method for smaller datasets (Falahati et al., 2014). We also 

note that sensitivity values of our models were quite low (16%–47%) (Table 5). Given the 

imbalance in the class of the participant groups, we suggest that little importance can be 

assigned to the divergence of the specificity and sensitivity values. This emphasizes the 

importance of obtaining confidence intervals for these measures. Consider for example, 

a study by Wang et al. (2017) which investigated the use of event related potentials to 

identify individuals at risk of presenting delayed onset post-traumatic stress disorder. The 

participant groups in this study were unbalanced (60 Stables, 5 Converters). In this case 

on a first examination the results were encouraging (sensitivity = 0.80, specificity = 0.87), 

but the confidence intervals for both measures were found to be [0.0, 1.0]. The sensitivity 

and specificity results were seen to be a fortuitous consequence of the small sample size. 

Similarly, in the current investigation, the divergence of the sensitivity or specificity results 

may be a consequence of an unbalanced design.
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Another limitation of our study is that our participants were predominantly non-Hispanic 

white with high educational attainment, which necessitates future studies with a larger and 

more diverse sample. Also, our participants were generally free of other neuropsychiatric 

conditions (e.g., depression), which may make our findings less generalizable to the broader 

aging population. Given the relatively high prevalence of neuropsychiatric disorders in 

preclinical AD (Ownby et al., 2006), future studies should consider these conditions in their 

analyses. Lastly, our analyses were cross-sectional, making it challenging to examine how 

MDT performance may predict subsequent cognitive or neuropathological changes. Future 

work with longitudinal data will provide much insight into this potential relationship.

5. Conclusion

In summary, we have demonstrated that the MDT has a diagnostic utility in classifying 

AD-related cognitive impairment as well as Aβ burden in a preclinical AD population. 

Our findings indicate that utilizing cost- and time-efficient digital cognitive assessments 

can effectively predict cognitive status or AD-related pathology, replacing the need for 

expensive and invasive measures. This approach can serve as an initial screening tool, 

guiding clinical decision-making without subjecting individuals to risky and financially 

burdensome assessments. Furthermore, the machine-learning techniques employed in this 

research can be extended to other datasets, including diverse ethnic and racial populations. 

This extension represents a crucial direction for future research, enhancing the applicability 

and generalizability of the findings.
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Fig. 1. 
The mnemonic discrimination tasks (MDTs). An illustrative diagram of MDTs for object 

(MDTO) and spatial (MDTS) domains. Object stimuli size relative to screen size is smaller 

in the actual task. For each trial, an object image was presented for 2 s (ISI = 0.5sec) in 

the center of the screen (MDTO) or in a random grid position within the screen (MDTS). 

During the study phase, participants saw a series of object stimuli and were asked to indicate 

whether an item belonged “indoor” or “outdoor” objects using a key press. For the test 

phase, participants were asked to indicate by a keypress whether an object (MDTO) or 

object location (MDTS) was the “same” or “different”. Participants were allowed 2 s to 

make a response before the next stimulus appeared. Each participant saw a unique order of 

stimuli for each phase.
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Fig. 2. 
Receiver operating characteristic curves for random forest classification models using MDT 

performance metrics (blue) and RAVLT performance metrics (red) for cognitive status (A) 

and amyloid load (B) prediction. MDT = mnemonic discrimination task, RAVLT = Rey 

auditory verbal learning test, Dotted line = chance.

Kim et al. Page 24

Neuropsychologia. Author manuscript; available in PMC 2024 January 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Ranked feature importance among the 10 features of the mnemonic discrimination tasks (A 

and C) and 5 features of Rey-auditory verbal learning task (B and D) for classification of 

cognition (A and B) and classification of amyloid status (C and D). Areas under the curve 

(AUC) for model performance based on the most informative features (up to 3) are tabulated 

within each plot. MDTO = object version of the mnemonic discrimination task, MDTS = 

spatial version of the mnemonic discrimination task, Rec = recognition, d’H = d’ for high 

similarity lures, d’L = d’ for low similarity lures, LDI = lure discrimination index, RI = 

retrospective interference, A6 = immediate recall, A7 = delayed recall.
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Table 1

Demographics and clinical and neuropsychological characteristics of the study participants.

Demographics Total (n = 104) CN MCI Group differencea Group differenceb

Low Aβ High Aβ p value p value

N 67 28 9 – –

Age (yrs) 71.1 (6.3) 73.1 (7.3) 76.5 (9.6) 0.05 0.19

Female (%) 61.2 78.6 22.2 – –

Education (yrs) 16.8 (2.3) 16.1 (2.5) 17.0 (2.3) 0.62 0.17

Race (%)

White 71.6 89.3 88.9 – –

Asian 22.4 10.7 11.1 – –

Black 1.5 0 0 – –

More than one 1.5 0 0 – –

Other 3.0 0 0 – –

MMSE 28.4 (1.3) 28.6 (1.5) 27.4 (2.1) 0.04 0.34

MDTO LDI 0.27 (0.15) 0.31 (0.12) 0.198 (.10) 0.10 0.14

MDTO Rec 0.81 (0.15) 0.81 (0.11) 0.64 (0.18) 0.001 0.95

MDTO d’ 3.58 (1.75) 3.19 (1.45) 2.08 (0.90) 0.02 0.31

MDTO d’High 0.87 (0.93) 0.92 (0.62) 0.50 (0.24) 0.18 0.79

MDTO d’Low 1.42 (0.94) 1.44 (0.75) 0.91 (0.35) 0.09 0.91

MDTS LDI 0.25 (0.16) 0.28 (0.12) 0.09 (0.10) 0.001 0.46

MDTS Rec 0.39 (0.21) 0.43 (0.19) 0.11 (0.13) <0.001 0.42

MDTS d’ 1.26 (0.90) 1.68 (1.50) 0.31 (0.39) 0.01 0.10

MDTS d’High 0.60 (0.71) 0.69 (0.80) 0.11 (0.31) 0.04 0.59

MDTS d’Low 1.03 (0.80) 1.27 (1.02) 0.71 (0.99) 0.22 0.22

RAVLT - immediate 10.8 (3.1) 11.0 (3.4) 6.7 (3.6) <0.001 0.79

RAVLT - delayed 10.8 (3.3) 10.7 (3.8) 5.8 (4.8) <0.001 0.85

RI 0.84 (0.17) 0.85 (0.20) 0.65 (0.24) 0.004 0.72

Learning 1.74 (0.51) 1.49 (0.61) 1.44 (0.78) 0.27 0.05

Forgetting 0.17 (0.19) 0.17 (0.24) 0.46 (0.39) <0.001 0.99

Comorbidities

Diabetes 4 0 1 – –

Heart disease 2 0 0 – –

Data are presented as mean (SD). Group differences were assessed by two-sample independent T tests. CN = cognitively normal, MCI = mild 
cognitive impairment, Aβ = amyloid, MMSE = mini-mental state exam, MDTO = object version of the mnemonic discrimination task, MDTS = 
spatial version of the mnemonic discrimination task, LDI = lure discrimination index, Rec = recognition, d’High = d’ for high similarity lures, 
d’Low = d’ for low similarity lures, RAVLT = Rey auditory verbal learning test, RI = retrospective interference.

a
CN vs. MCI,

b
Low Aβ vs. High Aβ
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Table 2

Pearson correlation coefficients among MDTO and MDTS scores.

MDTS LDI MDTS Rec MDTS d’ MDTS d’H MDTS d’L

MDTO LDI .452*† .425*† .307*† .198* .217*

MDTO Rec .337*† .445*† .205* .102 .197*

MDTO d’ .176 .310*† .112 .001 .063

MDTO d’H .173 .297*† .155 .062 .022

MDTO d’L .195 .313*† .171 .082 .058

MDTO = object version of the mnemonic discrimination task, MDTS = spatial version of the mnemonic discrimination task, LDI = lure 
discrimination index, Rec = recognition, d’H = d’ for high similarity lures, d’L = d’ for low similarity lures,

*
significant, uncorrected p < 0.05,

†
significant, corrected (Holm’s) p < 0.05.
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Table 3

Pearson correlation coefficients among MDTO and RAVLT scores.

A6 A7 LS RI FR

MDTO LDI .317*† .228* .048 .280* −.166

MDTO Rec .306*† .271* .005 .273* −.257*

MDTO d’ .240* .237* .072 .196* −.221*

MDTO d’H .210* .182 .055 .195* −.173

MDTO d’L .225* .164 .026 .217* −.147

MDTO = object version of the mnemonic discrimination task, RAVLT = Rey auditory verbal learning test, LDI = lure discrimination index, Rec 
= recognition, d’H = d’ for High similarity lures, d’L = d’ for low similarity lures, LS = learning slope, RI = retrospective interference, FR = 
forgetting rate,

*
significant, uncorrected p < 0.05,

†
significant, corrected (Holm’s) p < 0.05.
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Table 4

Pearson correlation coefficients among MDTS and RAVLT scores.

A6 A7 LS RI FR

MDTS LDI .295* .296* .106 .247* −.267*

MDTS Rec .318*† .286* .091 .252* −.240*

MDTS d’ .259* .212* −.006 .202* −.163

MDTS d’H .112 .072 −.034 .110 −.064

MDTS d’L .096 .053 −.046 .115 .041

MDTS = spatial version of the mnemonic discrimination task, RAVLT = Rey auditory verbal learning test, LDI = lure discrimination index, Rec 
= recognition, d’H = d’ for High similarity lures, d’L = d’ for low similarity lures, LS = learning slope, RI = retrospective interference, FR = 
forgetting rate,

*
significant, uncorrected p < 0.05,

†
significant, corrected (Holm’s) p < 0.05.
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