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ABSTRACT OF THE DISSERTATION

Model-Driven Cosmology With Bayesian Machine Learning and Population Inference

by

Ming-Feng Ho

Doctor of Philosophy, Graduate Program in Physics
University of California, Riverside, September 2024

Dr. Simeon Bird, Chairperson

This thesis presents new directions for cosmological data analysis using Bayesian techniques

and machine learning.

First, I introduce a novel machine learning spectroscopic analysis technique to

detect absorption systems in the Lyman-α forest. Using Gaussian processes, I build data-

driven models for the quasar emission and apply Bayesian model selection to classify the

damped Lyman alpha absorbers (DLAs), which are high column density absorption sys-

tems found in quasar spectra. The Gaussian process DLA finder (GP-DLA) is applied to

the Sloan Digital Sky Survey (SDSS) quasar spectra and and now adopted by the Dark

Energy Spectroscopic Instrument (DESI) collaboration. This GP-DLA technique allows us

to construct probabilistic catalogs of damped Lyman-α absorbers, offering a new approach

to studying the intergalactic medium and cosmology at z = 2− 5.

Next, I present a new method to infer cosmological parameters using Bayesian

surrogate modeling with multi-fidelity emulators. Multi-fidelity emulators are a type of

surrogate model that use information from multiple levels of fidelity to improve the accu-
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racy of the surrogate model. This approach accelerates both the analysis of cosmological

simulations and the inference of cosmological parameters, providing a probabilistic method

to quantify and correct the resolution in cosmological simulations. Multi-fidelity emulators

make it possible to perform fast and accurate parameter inference on large-scale structure

data, such as the matter power spectrum, using computationally expensive simulations in

high-dimensional parameter spaces.

Finally, I discuss population inference of gravitational wave (GW) data using a

mixture model approach. The population statistics of GW events can provide insights into

the formation and evolution of binary black holes (BBHs). I present a data-driven method

to infer the mixing fraction between BH populations, along with a Bayesian hierarchical

approach to correct for selection effects. The results of the mixing fraction analysis suggest

that the population of 35M⊙ BHs is likely separate from the rest of the population, indi-

cating that current formation channels for this mass bump need to be revised to include

explanations for the separation of these massive 35M⊙ binaries.
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1.12 An example of the non-linear multi-fidelity emulator. Red dots as the high-
fidelity data, blue dots as the low-fidelity data. Red dashed curve is the
high-fidelity true function and blue curve is the low-fidelity true function.
Left panel shows the emulator prediction using only the high-fidelity data
(purple curve), which has a wrong frequency. Right panel shows the emula-
tor prediction using only the low-fidelity data (blue curve), which provides
prior knowledge on the frequency of the high-fidelity function, and the multi-
fidelity emulator prediction (yellow curve) is more accurate with a reasonable
uncertainty quantification. YouTube video tutorial can be found in the same
video link in the caption of Figure 1.11. . . . . . . . . . . . . . . . . . . . . 36
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multi-fidelity emulator prediction (red curve) on the power spectrum, and
the emulator relative errors are shown in the bottom panels for z = 2 and
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2.1 The effect of the shift to the gp mean vector from the Lyman-α forest effective
optical depth model (µ◦exp (−τ0(1 + z)β)). The dotted red curve shows the
mean emission model before application of the forest suppression. The solid
red curve is the mean model including the forest suppression. . . . . . . . . 62

2.2 The difference between the original pixel-wise noise variance ω [3] and the
re-trained ω from Eq. 2.28. The re-trained ω decreases because the fit no
longer needs to account for the mean forest absorption. . . . . . . . . . . . 62

2.3 The trained covariance matrix M, which is almost the same as the covariance
from [3]. Note that we normalize the diagonal elements to be unity, so this
is more like a correlation matrix than a covariance matrix. The values in the
matrix are ranging from 0 to 1, representing the correlation between λ and
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2.4 An example of finding dlas using [3]’s model. Here we use the single-dla
per spectrum version of Garnett’s model. Upper: sample likelihoods p(y |
θ,MDLA) in the parameter space θ = (zDLA, log10NHI). Red dots show the
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2.5 The same spectrum as Figure 2.4, but using the multi-dla model reported
in this paper. Upper: sample likelihoods p(y | θ,MDLA) in the parameter
space of the MDLA(1), with θ = (zDLA, log10NHI). Bottom: the observed
spectrum (blue), the null model gp prior before the suppression of effective
optical depth (orange), and the multi-dla gp prior (Red). The orange curve
is slightly higher than the one in Figure 2.4 because we try to model the mean
spectrum before the forest. However, the DLA quasar model (red curve)
matches the level of the observed mean flux better than Figure 2.4 due to
the inclusion of a term for the effective optical depth of the Lyman-α forest. 82

2.6 Blue: the normalised observed flux. The spectral ID represents spec-plate-mjd-fiber id.
Yellow: Parks’ predictions on top of our null model. Our model predicts
only one dla while the cnn model in [4] predicts two dlas. One of the dlas
predicted by [4] is coincident with the Lyγ absorption from our predicted
dla. z dla corresponds to the dla redshifts reported in Parks’ catalogue,
and lognhi corresponds to the column density estimations of Parks’ cata-
logue. p dla is the dla confidence reported in Parks. Red: Our current
model with the highest model posterior and the maps of column densities. In
this spectrum, we show that it is crucial to include Lyβ and Lyγ absorption
from the dla in the dla profile. It not only helps to localize the dla, but
it also predicts NHI more accurately using information from the Lyβ region.
The blue line shows the observed flux, the red curve is our multi-dla gp
prior, and the orange curve shows the predicted dlas from [4] subtracted
from our mean model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

2.7 A spectrum in which we detect two dlas. Blue: Normalised flux. Red:
gp mean model with two intervening dlas. Yellow: The predictions from
Parks’ catalogue. Pink: The map prediction of [3] on top of the gp mean
model without mean flux suppression. The model posterior from [3] is listed
in the legend (1) with the map value of log10NHI. The column density esti-
mate for the dla near λrest = 1 025Å has large uncertainty (see Figure 2.8).
It is thus possible that this dla could be a sub-dla, as preferred by [4]. . . 84

2.8 The log sample likelihoods for the dla model of the spectrum shown in Fig-
ure 2.7, normalised to range from −∞ to 0. The dla at zDLA ∼ 2.52 could be
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2.9 A noisy spectrum at zQSO = 2.378 fitted with a large dla by [3]. Red: The
model presented in this paper predicts no dla detection in thie spectrum.
Pink: The map prediction of [3] on top the gp mean model without the
mean-flux suppression. Gold: The prediction of [4] subtracted from our
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2.10 Top: The sample likelihoods of the spectrum shown in Figure 2.9. The
colour bar indicates the normalised log likelihoods ranging from −∞ to 0.
Bottom: The orange curve indicates the gp mean model before mean-flux
suppression, the red curve represents the mean model after suppression, and
the blue line is the normalised flux of this spectrum. The x-axis of this
spectrum is rescaled to be the same as the zDLA presented in the upper panel. 86

2.11 The roc plot made by ranking the sightlines in boss dr9 samples using the
log posterior odds of containing at least one dla. Ground truths are from
the dr9 concordance catalogue. The orange curve shows the roc plot of
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2.14 The cddf based on the posterior densities for at least one dla (blue, ‘gp’).
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2.15 The line density of dlas as a function of redshift from our dr12 multi-dla
catalogue (blue, ‘gp’). We also plot the results of [5] (n12; black) and [6]
(pw09; grey). Note that statistical error was not computed in [5]. . . . . . 99

2.16 The total hi density in dlas, ΩDLA, from our dr12 multi-dla catalogue as a
function of redshift (blue, ‘gp’), compared to the results of [5] (n12; black),
[6] (pw09; grey) and [7] (c15; red). . . . . . . . . . . . . . . . . . . . . . . 100
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2.20 dN/dX from [4]. The dN/dX agrees well with other surveys, but there is a
moderate deficit of dlas at high redshifts. . . . . . . . . . . . . . . . . . . . 107

3.1 Our GP mean function using a precision weighted average of the rest-frame
wavelengths. We extended our model compared [8] (light blue), both blue-
wards past the Lyman break at 912Å and redwards past the Siv emission
line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

3.2 The correlation matrix learned from data, which is the covariance matrix K
normalised by the diagonal elements. Note that the correlation in the plot is
pixel-by-pixel, and the matrix dimension is 2281 × 2281. Different emission
lines and the Lyman break are visible in the plot. . . . . . . . . . . . . . . . 123

3.3 An example of a spectrum with distinct DLA features. (Top): The nor-
malised observed spectrum in rest-frame wavelengths (blue) with the GP
model (red) and the detection from the CNN model reported in DR16Q
(orange). The title shows a series of column values in SDSS DR16Q cata-
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able redshift, and object classification from visual inspection (0: not in-
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3.4 An example of a noisy spectrum with an uncertain meanflux. The normalised
observed spectrum in rest-frame wavelengths (blue) with the GP model (red)
and the detection from the CNN model reported in DR16Q (orange). We
also plot the result without marginalising the uncertainty of meanflux prior
(cyan). Shaded area (grey) shows the sampling range of zDLA, which is
from Lyβ + 3 000 km s−1 to zQSO − 3 000 km s−1. Our proposed model (red)
indicates no DLA in the spectrum, with the null model posterior p(M¬DLA |
D) = 0.998. On the other hand, if our model ignores the uncertainty of
(βMF, τ0,MF), it would falsely detect a DLA with p(MDLA | D) = 0.916 with
log10NHI = 22.9 (cyan). When marginalising over the uncertainty in effective
optical depth, our proposed model (red) avoids detecting a false-positive large
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3.11 The CDDF of DLAs for a subset of samples with different minimal SNRs.
SNR > 2 (orange) excludes 20% of the noisiest spectra, and SNR > 4 (green)
excludes 54% of the spectra. 68% confidence limits are drawn as error bars,
while 95% confidence limits are shown as a grey filled band. . . . . . . . . 144

3.12 The line density (left) and total NHI mass (right) in DLAs as a function of
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> 2 (orange) excludes 20% of the noisiest spectra, and SNR > 4 (green)
excludes 54% of the spectra. . . . . . . . . . . . . . . . . . . . . . . . . . . 145
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3.16 (Left) The comparison of dN/dX with different sampling ranges, Lyβ-Lyα
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3.17 (Left) The CDDF of the DLAs detected by the CNN model presented in [4].
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3.18 The 2D histograms for zDLA (left) and log10NHI (right) estimated by the
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3.19 Examples showing (top) the case of a sub-DLA overlapping a DLA and
(bottom) the case of a DLA near to another DLA. The red line indicates
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4.1 The matter power spectrum output by mp-gadget at different mass resolu-
tions. The vertical dash lines indicate the mean particle spacing kspacing for
a given mass resolution. (Blue): The matter power spectrum from a dark-
matter only mp-gadget simulation with 643 particles. (Orange): The
matter power spectrum from mp-gadget with 1283 particles. (Green):
The matter power spectrum from mp-gadget with 2563 particles. (Red):
The matter power spectrum from mp-gadget with 5123 particles. (Pur-
ple): Linear theory power spectrum. The cosmology parameters are h =
0.675,Ω0 = 0.278,Ωb = 0.0474, As = 1.695 × 10−1, ns = 9.405 × 10−1. The
dotted line shows the relative error of hr (5123 simulations) compared with
EuclidEmulator2 [10], averaged over four different cosmologies. . . . . . . . 169

4.2 The learned scale factor between fidelities in the linear multi-fidelity model, ρ,
as a function of k. This scale factor is learned from 50 low-fidelity simulations
and 3 high-fidelity simulations. . . . . . . . . . . . . . . . . . . . . . . . . . 180

4.3 Two 2-D cross-sections of the 5-D samples of input parameters. The input
parameters are designed with a nested structure, x1 ⊆ x2, between hr and
lr. (Blue): x1, 50 sampling points in lr. (Orange): x2, 3 sampling
points in hr. The selection of these 3 points is chosen by the procedure
described in Section 4.6.2, which minimizes the lr error in the low-fidelity
only emulator. (Green): 10 points from the hr testing set, which is a
different Latin hypercube than x1. . . . . . . . . . . . . . . . . . . . . . . . 185

4.4 Training (left) and testing (right) data for the multi-fidelity emulator. (Left):
50 low-fidelity training simulations (blue) and 3 high-fidelity simulations (or-
ange) used in a 50lr-3hr emulator. A hr is a 5123 simulation and a lr is
a 1283 simulation. Both hr and lr are in a box with 256 Mpc/h per side.
The 50 low-fidelity training simulations are drawn from a 5D Latin hyper-
cube, (h,Ω0,Ωb, As, ns). The 3 high-fidelity simulations are a subset of the
low-fidelity simulation hypercube. (Right): 10 high-fidelity test simulations
(green dashed) and 3 high-fidelity training simulations (orange). . . . . . . 185

4.5 Emulator mean squared errors evaluated from 643 emulators and 2563 emula-
tors. We compute all subsets of 3 samples from a 50 samples Latin hypercube,(
50
3

)
= 19 600 subsets in total. Colorbar is in log scale. The blue dashed line

represents a perfect linear relationship. . . . . . . . . . . . . . . . . . . . . . 189
4.6 Predicted divided by exact power spectrum from a 50 lr-3hr emulator using

a linear multi-fidelity method (AR1). Different colours correspond to 10 test
simulations spanning a 5-D Latin hypercube. The shaded area indicates the
worst-case 1 − σ emulator uncertainty. There is one test simulation driving
the larger error compared to the non-linear one in Figure 4.7. . . . . . . . . 191

4.7 Predicted divided by exact power spectrum from a 50 lr-3hr emulator using
a non-linear multi-fidelity method (NARGP). Different colours correspond
to 10 test simulations spanning a 5-D Latin hypercube. The shaded area
indicates the worst-case 1− σ emulator uncertainty. Note that the y-scale in
this plot is the same as Figure 4.6. . . . . . . . . . . . . . . . . . . . . . . . 192
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4.8 Relative emulator errors from a 50 lr-3hr emulator using linear multi-fidelity
(blue) and non-linear multi-fidelity (orange). Solid lines represent the average

error from test simulations, 1
10

∑10
i=1 |

Ppred,i

Ptrue
− 1|. Shaded areas show the

maximum and minimum test errors. . . . . . . . . . . . . . . . . . . . . . . 194
4.9 Non-linear multi-fidelity emulator (blue) with 50 lr and 3 hr simula-

tions, compared to single-fidelity emulators with 3 hr (orange) and with
11 hr (green). Shaded area indicates the maximum and minimum emulation
errors. The computational cost for a 50 lr-3hr emulator ≃ 9 000 core hours
while the single-fidelity emulator with 11 hr requires ≃ 25 000 core hours.
However, a 50 lr-3hr emulator still outperforms an 11hr emulator. . . . . 195

4.10 Relative emulator errors between a 50 low-fidelity emulator and a non-linear
50 lr-3hr emulator. Errors are evaluated on 10 hr simulations. Shaded area
indicates the maximum and minimum errors. Note that the y-axis is in log10
scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

4.11 Core hours for running the training simulations versus emulation errors for
high-fidelity only emulators (orange) and low-fidelity only emulators (blue),
linear multi-fidelity emulators (AR1) with 2 hr (green), and non-linear multi-
fidelity emulators (NARGP) with 3 hr (purple). The numbers in the labels
indicate the number of training simulations used in the emulator. For multi-
fidelity emulators, X-Y , X is the number of low-resolution and Y is the
number of high-resolution training simulations. The dots show the average
errors. The upper shaded areas show the maximum emulator errors among
10 test simulations. The lr samples beyond 100 are drawn from a separate
Latin hypercube with 400 samples. For LF-only emulators, we only calculate
the relative errors for k ≤ 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

4.12 Relative emulator error of non-linear N lr-3hr emulator colour coded with
different number of lr training simulations, with N ∈ {10, 20, 30, 40, 50}.
The same as Figure 4.8, solid lines represent the average error from test
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∑10
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Ppred,i

Ptrue
− 1|, and shaded areas show the maximum and

minimum test errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
4.13 Relative emulator errors from non-linear 50 lr-N hr emulator with N =

3 (blue), N = 5 (orange), N = 7 (green), and N = 9 (red) hr training
simulations. Solid lines are the average test errors. Shaded areas show the
maximum and minimum test errors. . . . . . . . . . . . . . . . . . . . . . . 201

4.14 Relative emulator errors for 50 lr-3hr emulator emulators using different
qualities of lr simulations. (Blue): using 1283 simulations as low-fidelity
training simulations. (Orange): using 643 simulations as lr, which are ≃ 8
times cheaper than 1283 simulations. (Green): using 2563 simulations as
lr, which are ≃ 8 times most expensive than 1283 simulations. Shaded area
shows the maximum and minimum errors among ten test simulations. . . . 203

4.15 Relative emulator errors for a non-linear emulator at different redshifts, z ∈
{0, 1, 2}. Note the y-axis is in log10 scale. The larger error in the z = 2
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Chapter 1

Introduction

The beginning of the 21st century is the era of Bayesian methods. Bayesian meth-

ods have revolutionized the way natural and social scientists analyze data, providing a more

accessible way to quantify uncertainty and allowing scientists to develop domain-specific the-

ories to explain their data. Before this revolution, scientists often used classical statistical

methods, which typically required numerous assumptions about the data and models, and

only well-trained statisticians could understand the results.

The benefits of Bayesian methods are two-fold: they provide a principled way to

combine scientific theory with data, and they also propagate uncertainty from the data

to the theories. Thus, Bayesian methods free scientists from the burden of understanding

complex statistical methods and allow them to focus on the scientific questions they are

interested in. This is particularly well-suited for physicists, who often create many untested

(sometimes untestable) hypothetical models.
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The rise of Bayesian methods coincides with the rise of observational cosmology.

When CPUs became fast enough to run Markov Chain Monte Carlo (MCMC) samplers,

physicists were able to send satellites into space to observe the cosmic microwave background

(CMB) radiation. The COBE (Cosmic Background Explorer) satellite was the first to

measure the CMB radiation, revealing that the background temperature of the universe is

2.7K. The success of COBE led to the WMAP (Wilkinson Microwave Anisotropy Probe)

satellite, which measured the anisotropy of the CMB radiation, providing insights into the

age, composition, and geometry of the universe.

However, we have only one universe and can measure it only once. How can we

measure cosmological parameters from this single observation? The answer lies in Bayesian

methods. Cosmologists perform Bayesian inference using the well-developed ΛCDM model

and run MCMC samplers on the cosmological parameters. We can simulate the universe

many times using the ΛCDM model and use these simulations to infer the cosmological

parameters. To achieve this, we need robust theoretical models, which physicists are good

at creating. This demonstrates the power of Bayesian methods in physics: even when data

are scarce, we can still infer parameters using theoretical models. This advantage does

not always apply to other fields, where data are abundant but good theoretical models are

scarce. Bayesian methods shine in physics for good reasons.

The success of cosmological inference using Bayesian methods has also spread to

astrophysics and astronomy. Astronomers have photometric surveys to catalog stars and

galaxies. With a limited number of photometric bands (usually 5-10 bands), astronomers

infer the redshift of galaxies, star formation rates, and metallicity using knowledge of stellar
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population synthesis models. Although this is a challenging problem, and the accuracy

of photometric inference is strongly affected by prior knowledge, it opens a window for

astronomers to study the universe on a large scale at minimal cost. This illustrates the

power of Bayesian methods in astronomy: even when data are noisy and incomplete, we

can still infer parameters using theoretical models.

After the dark age of the 20th century, Bayesian statistics have become popular

and have survived criticism from frequentists. However, the information explosion and the

rise of machine learning and deep learning techniques bring new challenges to the Bayesian

paradigm. Data are no longer scarce, and theory models are no longer the only way to ex-

plain data. The old strong-model-small-data paradigm is giving way to a new weak-model-

big-data paradigm. Instead of spending years developing theoretical models, scientists now

use deep learning to replicate what Bayesian methods can do. Deep learning models are

extremely flexible and, with enough data, scientists can make predictions without under-

standing the underlying mechanisms. Moreover, under the umbrella of the AI industry’s

rise, all deep learning APIs are well-maintained and easy to use even for non-computer

scientists. The success of convolutional neural networks, large language models, and rein-

forcement learning can be directly applied to scientific research with minimal effort. How

can Bayesian methods survive in this new era?

I titled my thesis “Model-Driven Cosmology with Bayesian Machine Learning and

Population Inference” to emphasize what I believe is the most important aspect of Bayesian

methods in the era of big data: being model-driven. In my opinion, Bayesian methods are

not just a set of statistical techniques but a set of principles that guide physics theory
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research. Their purpose is not to replace theoretical models but to help make these models

more accurate, interpretable, and properly connected to data.

In this thesis, I document my research from the past few years and demonstrate

how Bayesian methods can be combined with machine learning to solve three different

problems in cosmology and astrophysics. By documenting these three methods, I hope this

thesis will serve as a reference for future researchers interested in exploring data analysis

using Bayesian methods in the era of big data.

This thesis is organized as follows. In this chapter, I will summarize the three

Bayesian approaches I took in the past few years, and the motivation behind them. For

each method, I will describe the data I used, the method I developed, and the application

I applied. Each type of data and application represent a science problem, which I will also

describe after the method.

Following the tradition of thesis writing in this field, I append the published papers

I have written during my PhD journey in the following chapters. Chapter 2 is the published

paper in Ref. [8], Chapter 3 is the published paper in Ref. [15], Chapter 4 is the published

paper in Ref. [16], Chapter 5 is the published paper in Ref. [17], and Chapter 6 is the

submitted paper to Physical Review D (in review).

These papers provide details of each scientific topic and method I mentioned in

this chapter, they also provide a much thorough literature review and discussion on the

scientific implications. For interested experts, these papers can be served as a reference for

the specific topic. For a general audience, Chapter 1 provides a high-level overview which

will be easier to follow.
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This section is structured as follows. Section 1.1 will describe the first method I

developed during my PhD journey, which is the Gaussian Process Damped Lyman-α Ab-

sorber (GP-DLA) method. Section 1.2 will describe the second method I developed during

my PhD journey, which is the Multi-fidelity Emulator (MFEmulator) method. Section 1.3

is a short note on the mathematics behind applying Bayesian hierarchical modeling to

population inference on a catalog of gravitational wave events, subjecting to the selection

bias.

1.1 Spectroscopic Inference using Gaussian Processes

Astronomy has a long history of using various statistical methods to analyze the

spectroscopic data. Generally speaking, there are two features in a spectrum: emission lines

and absorption lines. Emission lines are the bright spectral lines emitted by the source, i.e.,

the object we are observing. Absorption lines are the spectral lines absorbed by the objects

on the line of sight. The absorption lines are usually caused by the interstellar medium

(ISM) or the intergalactic medium (IGM) between the source and the observer. Emission

lines inform us about the chemical composition of the source, while absorption lines inform

us about the medium on the line of sight.

Quasar spectra, however, do not have well-defined stellar models to predict the

emission lines due to the complexity of the active galactic nuclei (AGN) and supermassive

black holes. The traditional data analysis in this field is to use low-redshift high-resolution

quasar spectra to build a template library, and then use the template library to fit the high-

redshift quasar spectra. Astronomers usually apply dimension reduction methods, such as
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principal component analysis (PCA), to reduce the dimension of the template library. In

this section, I will explain how to interpret the quasar data analysis in a Bayesian way, and

describe the template fitting as a probability density function (PDF) through a Gaussian

process.

This section describes the Gaussian Process Damped Lyman-α Absorber (GP-

DLA) method, which is a new method to classify the absorption systems in the quasar

spectra using Gaussian processes. The beauty of this method is that it summarizes and

combines the past statistical methods used in the quasar spectroscopic analysis, and provides

a single Bayesian way to model both the emission lines and absorption lines under the well-

defined probabilistic framework.

1.1.1 Data: Quasar Spectra

Quasars are active galactic nuclei (AGN) powered by supermassive black holes.

Astronomers use quasars, the most luminous objects in the universe, as background light

sources to trace absorption systems along the line of sight. Here, I will provide a high-

level overview of quasar spectroscopic data to give context for the GP-DLA method. The

primary goal is to help readers unfamiliar with this field understand how to interpret the

data.

Figure 1.1 shows a typical quasar spectrum from Sloan Digital Sky Survey (SDSS).

The x-axis is the wavelength (λ), and the y-axis is the flux (f), which counts the number

of photons received by the telescope at a given wavelength. A spectrum describes the flux

as a continuous function of the wavelength, f(λ), however, in practice, we only have a
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Figure 1.1: A quasar spectrum with a DLA. This spectrum is from the SDSS
DR16 quasar catalog, and it shows the Lyman-α forest and the Damped Lyman-
α absorbers. The x-axis is the rest-frame wavelength, and the y-axis is the
normalized flux. The red line is the continuum fit to the quasar emission spec-
trum, and the blue line is the observed quasar spectrum. The orange line is the
Voigt profile fit to the DLA absorption system. The jupyter notebook tutorial in
� https://github.com/jibanCat/gpy_dla_detection/blob/master/notebooks/

Tutorial%3A%20Automate%20Lyman%20alpha%20Absorption%20Detection.ipynb pro-
vides a step-by-step guide on understanding the quasar spectrum and the DLA detection.

discrete number of data points, with the wavelength bins λ and the corresponding flux

vector y = f(λ). Observational data always subject to noise, which is usually modeled as a

Gaussian noise with the variance σ(λ)2. To summarize, for each quasar spectrum, we have

the following data: D = {λ,y, σ(λ)}.

With the data, now is the matter of how to organize and interpret it. For as-

tronomers, there are a few procedures they usually do with the quasar spectra. These

procedures do not change the data itself, but they provide an easier way to interpret it.

• Normalized Flux: The flux is usually normalized, so different quasar observations

can be compared. One simple way to normalize the flux is to divide the flux by the

median flux. Astronomers usually choose a specific absorption-free wavelength range

to normalize the flux. Another way to normalize is the continuum-normalized flux,
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which is to divide the flux by the continuum model. Continuum-normalized flux is

usually used in the absorption line studies when the emission features are not the

primary interest.

• Rest-frame Wavelength: The observed-frame wavelength, λobs, is usually con-

verted to the rest-frame wavelength, λrest, which is the rest-frame of the quasar, with

a conversion of cosmic expansion, λobs = (1 + zQSO)λrest. The benefit of this con-

version is that different quasar observations can be compared in the same rest-frame,

and they are believed to have similar emission features in the same λrest.

The above procedures can be thought as normalization procedures for x-axis (λ) and y-axis

(f) of the data.

Reading quasar spectrum is not a task we can easily learn from a textbook, it takes

time and learning directly from senior practitioners. Here I share my limited knowledge on

how to read a quasar spectrum, mostly in the purpose of finding DLAs. There are a few

important emission lines to recognize in Figure 1.1. For example, the Lyman-α emission

at λrest = 1216 Åand the Lyman-β emission at λrest = 1025 Å. The above are the hydrogen

emission lines. Astronomers usually treat elements heavier than hydrogen and helium as

metals. When reading a quasar spectrum, it is useful to find the Lyman-α emission line

first. The blueward (left-hand side) of the Lyman-α emission is for hydrogen emissions and

the redward (right-hand side) is for metal emissions.1 Some noteworthy metal lines are

SiIV at λrest = 1399 Å, CIV at λrest = 1549 Å, and MgII at λrest = 2799 Å. All of them

1With some exceptions, such as the OVI emission line at λrest = 1035 Å.
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are redward of the Lyman-α emission line. For interested readers, I recommend using the

SDSS line table to find more emission lines in the quasar spectrum2.

The rest-frame wavelength of the emission lines can be identified from the atomic

physics, and usually there are laboratory measurements (on earth) for the wavelengths of

the emission lines. The absorption lines, however, are not as easy to identify as the emission

lines. Unlink the emission lines, the absorption lines are not from the quasar itself, but from

the intervening gas between the quasar and the observer. The absorptions can happen at

any location on the line of sight, and usually these gas clouds are not as luminous as the

quasar itself. Therefore, the determination of the absorption lines is more challenging than

the emission lines because we need to simultaneously know what type of element is in the

absorber and the redshift of this absorber. And different types of absorptions from different

redshifts can overlap with each other, making it even more challenging.

The rule of thumb for interpreting the absorption lines is that a given type of

line only appears at the blueward of the emission line of the same type. For example,

the Lyman-α absorption line only appears at the blueward of the Lyman-α emission line

at λrest = 1216 Å. Astronomers give a name for the absorptions caused by the Lyman-α

line, which is called the Lyman-α forest (see Figure 1.2), falling in the wavelength range

of 912 − 1216 Å, blueward to the Lyman-α emission line. The same rule applies to metal

absorptions, such as CIV, SiIV, and MgII. For example, the CIV absorption line only

appears at the blueward of the CIV emission line at λrest = 1549 Å. Since the Lyman alpha

forest also falls in the wavelength range for the CIV absorptions, it is possible to have a

CIV absorption line at the Lyman alpha forest. Usually, high-resolution quasar spectrum

2https://classic.sdss.org/dr6/algorithms/linestable.php
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Figure 1.2: The Lyman-α forest, simulated from the neutral hydrogen intergalactic medium
from a hydrodynamical simulation. Upper panel: the colors represent the temperature of
the gas, and the x-axis is the co-moving box size. The shining arrow represents drawing
a quasar sightline through the box. Bottom panel: the shaded blue color represent the
absorptions due to the neutral hydrogen in the gas in the sightline. The y-axis is the flux
(1: no absorption, 0: fully absorbed), and the x-axis is the comoving distance. YouTube
link: u https://youtu.be/xBZLH14Qzyo?si=Jg08ARJju85Ljt5T.

is needed to resolve the metals in the Lyman alpha forest. Therefore, at a scale of a

cosmological survey such as SDSS and DESI, which heavily rely on low-resolution quasar

spectra, it is often very challenging to fully break this degeneracy. A cosmological analysis

using Lyman alpha forest therefore usually model metal absorptions as contamination of

the forest and marginalize over them as systematics in the Bayesian inference.

A final note I would like to mention is the level of noise in the quasar spectra.

Knowing the noise level in different parts of the data is the essence of Bayesian modeling,

misinterpreting the noise might lead to interpreting the noise as the signal. Back to Fig-
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ure 1.1, one obvious observation is the spectrum at the blueward of the Lyman-α emission

line is “noisier” than the redward. I put a quotation for “noiser” because these noisy fea-

tures are not necessarily noise but mostly from the absorptions of neutral hydrogen. We

know that the hydrogen is the most abundant element in the universe, therefore there are

more absorption features at λrest < 1216 Å than λrest > 1216 Å. When these abundant hy-

drogen lines blending together in the spectrum, they look like noise. Thus, for astronomers

interested in the metal absorbers, it is easier to work on the wavelength region redward to

the Lyman-α emission line, where the flux is not affected by neutral hydrogen lines.

Finally, for the spectra from Sloan, the bluest end of the optical spectrum, which

is around 3800 Å, is highly affected by the instrumental noise. As seen in Figure 1.1, the

flux at the blueward of 3800 Å, which is λrest ∼ 908 Å for this z = 3.184 quasar, is not

reliably measured. This bluest part of the spectrum will be redshifted out of the Lyman

alpha forest (912− 1216 Å) for quasars at z > 3.2, so we need to keep in mind the Lyman

alpha forest analysis for z < 3 would be affected by this specific instrumental noise.

1.1.2 Method: Dataspace Gaussian Process Inference

After introducing the quasar spectra in the previous subsection, we now narrow

our focus to detecting the absorption systems in the quasar spectra. To think this problem

in a Bayesian view, the absorption systems are the latent variables in the quasar spectra,

and the intrinsic quasar emission function is the background model. The goal is to infer the

latent variables from the observed spectrum, based on the emission model and marginalize

over the potential systematics in the data, such as other intervening absorbers and the

instrumental noise. Schematically, for a given spectroscopic observation, D, the problem
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can be expressed as:

P(absorption systems | D) =

∫
P(absorption systems|quasar spectrum,D)

P(quasar spectrum | D)dquasar spectrum.

(1.1)

The p(quasar spectrum | D) is a probability density function (PDF) for the quasar spectrum

model, which needs to take into account for both the quasar emission model and data noise

model.

The above marginalization is very idealistic, and it is usually not possible to do it

in practice as you need to parameterize the quasar systematics, physics of emission, and all

possible absorption systems within the search range. The traditional way astronomers do

this is to use the template fitting method, ideally this should model the emission physics.

The search of absorption systems is then empirically done by chi-squared fitting with Voigt

profiles, with human intervention to decide the significance of the absorption systems. All

these steps are not Bayesian, and the results are usually not quantified in a probabilistic

way.

As a Bayesian, the first thing we might want to quantify is the human intervention

on the detection of the absorption systems. In the Bayesian context, this decision making

is a model selection problem, where we need to compare the model with the absorption

systems and the model without the absorption systems. SupposeM+ is the model with the

absorption systems, and M− is the model without the absorption systems, the probability

of the absorption systems given the quasar spectrum (D) is:

P (M+|D) =
P (M+)P (D | M+)

P (M+)P (D | M+) + P (M−)P (D | M−)
. (1.2)
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1.1.3 Application: Damped Lyman alpha Absorbers

In observational astronomy, one of the famous absorption lines is the Damped

Lyman-α absorbers, or DLAs (see Figure 1.3). DLAs are strong HI absorption lines found in

Lyman-α forest. They are optically thick, and their column density is high enough to cause

self-shielding, appearing as damping wings on the spectrum. They are interesting objects

to study because DLAs trace the neutral hydrogen gas surrounding the small galaxies at

z ∼ 3, and these neutral gases eventually falling into the gravitational wall of the galaxies

and fuel the galaxy formation activities (see Ref. [18]). Probing DLAs thus traces these small

galaxies, which are not luminous enough to be visible through the emission-line observations.

Counting and recording the neutral hydrogen in DLAs also tell us about the co-evolution

between galaxies and the neutral hydrogen reservoir surrounding them. Observational-wise,

the damping wings of DLAs provide accurate measurement of column density compared to

depending on lines. This enables better measurement of the metallicity of the gas, which is

important for understanding how galaxies deposit or recycle the metals to the surrounding

gas. Therefore, DLAs are no-doubt useful tools for studying the galaxy evolution.

On the other hand, cosmology-wise, the damping wings of DLAs introduce a sys-

tematic effect in the Lyman-α forest analysis. As shown in Figure 1.3, the damping wings

of DLAs are large enough to affect the absorption features not in the same pixel but in a

wide range of neighboring pixels. This causes a problem in measuring the neutral hydrogen

clustering in the Lyman-α forest, as the damping wings artificially add the scale-dependent

absorptions to the forest. In addition, the fully absorbed flux in DLA also wash out the

small-scale structures in the Lyman-α forest, which suppresses the small-scale power in the
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Erase small-scale 
structures

Correlated large-
scale structures

Figure 1.3: A Damped Lyman-α absorber found in a hydrodynamical simulation. The
y-axis is the normalized flux (1 means un-absorbed flux and 0 means fully absorbed flux),
and the x-axis is the co-moving box size. In contrast to Figure 1.2, the lyman alpha forest
is washed out in the yellow region, and the damping wings bias the flux in the blue region.
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flux power spectrum. The impact of DLAs on the Lyman-α 1D power spectrum can be

found in Ref. [19].

The current way to deal with DLAs in the Lyman-α forest analysis is to mask out

the pixels around the DLAs, therefore, the measurement of two-point correlation function

in the Lyman-α forest (NHI < 1017 cm−2) is not affected by the DLAs. The potential

contamination from the error in the DLA masking is usually marginalized as a systematic

error in the Bayesian inference. Historically, the search of DLAs is done by human eyes

(e.g., DLAs in SDSS DR3, Ref. [20]), which is still a reliable way to find DLAs in some

high-resolution surveys when the number of quasar spectra is sparse. However, there are

180,000 quasar spectra in the SDSS-III, and the expected number of quasar spectra in the

DESI survey is over millions. It is not only impractical to search DLAs by hands, but also

we need a systematic way to access the impact of DLAs on the cosmological analyses. To

achieve this, the DLA search needs to be automated and be applied to many mock data to

quantify DLA’s systematical effects.

Our GP-DLA finder (see Sec 2 and Sec 3, or Ref. [21, 15, 8]) is designed to

automate the DLA search in large spectroscopic surveys. The GP-DLA finder is a Bayesian

model selection method to classify the absorption systems using Gaussian processes. The

underlying principle of this GP-DLA finder is the Bayes rule. The probability of finding

DLAs in a given quasar spectrum, D, is:

P (MDLA|D) =
P (MDLA)P (D | MDLA)

P (MDLA)P (D | MDLA) + P (M¬DLA)P (D | M¬DLA)
. (1.3)

TheMDLA is the model with the DLA, andM¬DLA is the model without the DLA. P (D |

M¬DLA) is the probability of the data given the model without the DLA, in other words,
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this is our model to describe the emission spectrum. GP-DLA uses a Gaussian process to

empirically learn the emission model from the data, so,

P (D | M¬DLA) = GP(µ(λ),K(λ, λ′)), (1.4)

each quasar spectrum can be thought as a realization from this learned Gaussian process. A

Gaussian process is a generalization of a multi-variate Gaussian distribution to infinite di-

mensions, and it is a nature way to model the continuous function such as 1-D spectroscopic

data. µ(λ) describes the mean function and K(λ, λ′) describes the covariance function of

the Gaussian process. λ denotes that this GP is in the wavelength space.

The DLA model, MDLA, is a spectrum model with the DLA absorption feature,

mathematically, it is a Voigt profile convolved with the learned Gaussian process. Fortu-

nately, applying a multiplication on a Gaussian process is still a Gaussian process, so the

DLA model can be thought as a realization from a Gaussian process with slightly different

mean and covariance functions,

P (D | MDLA) = GP(µ(λ) ·Voigt(λ),Voigt(λ)⊤K(λ, λ′) Voigt(λ′)). (1.5)

Detailed mathematics can be found in Sec 2. Below, I only provide a hand-waving expla-

nation of how the GP-DLA finder works.

For each incoming quasar spectrum, the GP-DLA finder first uses M¬DLA to cal-

culate the probability of the data given the learned emission model. Then, the GP-DLA

finder uses MDLA to calculate the probability of the data having at least one DLA. These

two probabilities then are compared using Eq. 1.3, and then return a probability of the

data having at least one DLA. A deterministic threshold is set to decide whether the quasar
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𝒟 : Quasar Spectrum

ℳ¬DLA : No DLA ℳDLA : Yes DLA

P(ℳDLA ∣ 𝒟) : Model Selection
Figure 1.4: How GP-DLA works. The GP-DLA finder uses two models to calculate the
probability of the data having at least one DLA. A tutorial of GP-DLA can be found in �
https://github.com/jibanCat/gpy_dla_detection

spectrum has a DLA or not. A diagram of how the GP-DLA finder works is shown in

Figure 1.4.

GP-DLA as a Bayesian method, it allows us to incorporate our prior knowledge

to the calculation. For example, we can set a prior on the number of DLAs in the quasar

spectrum as a function of redshift, or we can set a prior on the column density of the HI

absorptions. Both of these priors could be subjective prior, which can be set by the experts

on finding DLAs, or empirical prior, which can be learned from the data or in the literature.

The performance of GP-DLA on low-resolution spectra from large surveys, such

as SDSS, has been shown having a high accuracy and a low false positive rate. Sec 2 and

Sec 3 show the applications of GP-DLA on the SDSS DR12 and DR16 quasar spectra,

respectively. Figure 1.5 shows examples of DLAs found in the SDSS DR16 quasar spectra
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Figure 1.5: DLAs found in the SDSS DR16 quasar spectra, and the corresponding column
density distribution function.

using GP-DLA, and the robustness of the constraints on the column density distribution

function of DLAs. GP-DLA technique has been adopted in SDSS-IV for the Baryonic

Acoustic Oscillation (BAO) analysis [22], and it has been further re-developed and applied

to the DESI quasar spectra [23, 24].

The GP-DLA finder is not limited to the DLA search, it can be applied to any

absorption systems in the quasar spectra. For example, in Ref. [25], led by Dr. Reza

Monadi, a former student in UCR, we applied the same Gaussian process and model selec-

tion technique to search for the CIV absorbers in the quasar spectra, one of the common

metal absorbers in the quasar spectra. In Ref. [1], led by Leah Fauber, a former computer

science student in UCR, we extended the Gaussian process quasar spectrum model to infer

the quasar redshift, and it shows a competitive performance compared to the other quasar

redshift estimation methods (See Figure 1.6).
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Figure 1.6: A demonstration of the usage of GP redshift estimator from Ref. [1]. This
animation is on YouTube: u https://youtu.be/NhUycNaHBzM?si=cRSZhtTKWFJ6mlir
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1.2 Multi-Fidelity Emulators for Cosmological Simulations

As mentioned in the previous section, the Lyman-α forest is a unique probe to

study the large-scale structure of the Universe. Lyα forest probes the structures at the red-

shift range of 2 < z < 5, covering a wide range of scales from ∼ 100 Mpc to ∼ 1 Mpc. On the

small scales (∼ 1 Mpc), correlating the neutral hydrogen absorptions within a single quasar

spectrum (sightline) can be used to measure the power spectrum of the matter density fluc-

tuations. On the large scales (∼ 100Mpc), cross-correlating different quasar sightlines can

be used to measure the 3-dimensional power spectrum, constraining the Baryonic Acoustic

Oscillations (BAO), which is the imprint of the sound wave in the early universe. These

two measurements are complementary to each other. As shown in Figure 1.7, the first one

is the Lyα 1-dimensional power spectrum (flux power spectrum, FPS, or P1D), and the

second one is the Lyα 3-dimensional power spectrum (P3D).

However, how do we compare the Lyα forest observations to the dark matter’s

large-scale structure power spectrum? A classic way to predict the large-scale structures

is to use the linear perturbation theory, which model the growth of the matter density

fluctuations from the early universe to current time. Linear perturbation theory is a good

approximation until k ∼ 0.1h/Mpc (or ∼ 10 Mpc; see Ref. [26]), but it is not accurate

enough to predict the power spectrum on the non-linear small scales. Lyα P1D probes the

scales around k ∼ 1h/Mpc, and around k ∼ 10h/Mpc when using high-resolution quasar

spectra (see Figure 1.8), so the linear theory is apparently not enough. Something more

accurate is needed.
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Lyα 1D correlations (P1D) Lyα 3D correlations (P3D)

FFT
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⟨δ̃F1δ̃*F2
⟩
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Figure 1.7: The Lyα 1D (P1D) and 3D (P3D) power spectra. P1D is measured from the
auto-correlation of the flux in a single quasar spectrum, and P3D is measured from the
cross-correlation of the flux in different quasar spectra. The spikes in the diagram show the
Lyman alpha forest, and the black arrows show the quasar sightlines.

Figure 1.8: A schematic representation from Ref [2], showing the current and future probes
of the structure formation, across different redshifts z and scales k. Lyman alpha forest
probes the structure formation at 2 ≤ z ≤ 5 and k ∼ 0.1− 10 Mpc−1.
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N -body simulations emerged as a powerful tool to predict the structure formation

at small scales at lower redshifts. The “N -body” here means the mutual gravitational

interaction between N particles within a simulation box. What N -body simulations do is

to solve the non-linear evolution of the matter density fluctuations from the early Universe

to the current time. Linear theory is mostly accurate at the early Universe because the

non-linear structures still do not have time to form yet. Cosmologists therefore use the

linear theory to generate the initial conditions for the N -body simulations at a high enough

redshift (e.g., z = 100 for most of the simulations in this thesis), and then allow the

structures gravitationally evolve to the current time. Pure dark matter N -body simulations

are believed to be accurate up to k ∼ 0.5h/Mpc (see Ref. [26]), beyond that, the baryonic

effects, such as the feedback from the active galactic nuclei (AGN), need to be included to

make the power spectrum prediction accurate.

Unfortunately, N -body simulations are slow. For a simulation box of 1 Gpc3 with

30003 particles, a simulation designed to resolve scales for the current Euclid survey, it takes

about 2 000 node hours per simulation on a GPU accelerated supercomputer (see Ref. [11]).

In comparison, computing a power spectrum using the linear perturbation theory takes only

a few seconds on a laptop. There is a huge computational gap between these two methods,

so it means that there are lots of traditional analyses done by the linear theory cannot be

directly replaced by the N -body simulations. One of them is the Bayesian inference of the

cosmological parameters, which requires re-computing the power spectrum for > 106 times.

The concept of emulators emerged around the 2010s in the cosmology community

(see Ref. [27, 28, 29]), primarily due to the surrogate modeling techniques and the devel-
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opment of the Gaussian process in the machine learning and statistics community around

early 2000s (see Ref. [30, 31]). The idea of the emulator is to build a fast surrogate model

to predict the slow simulation results. The underlying principle is simple: take a suite of

simulations with different input parameters, and then build a regression model to predict

the simulation results as a function of the input parameters. The simulation results here

have to be something easy to interpolate in a low-dimensional space, such as the power

spectrum, the correlation function, or the bispectrum. The creation of the emulator is

not to replace the role of simulations, rather, it is designed to expand the usage of the

simulations to a broader range of applications. For example, simulation sensitivity checks

(varying 1 input parameter at a time), optimization (finding the best-fit input parameter to

the data), model selection (comparing the goodness-of-fit across different simulation codes),

and Bayesian inference (quantify the posterior of parameters). This is a powerful tool to

bridge the gap between the slow simulations and the fast cosmological data analysis. After

around a decade, the emulator approach has become a standard tool in the cosmology com-

munity on interpolating the power spectrum from the pure dark matter N -body simulations

(until k ∼ 10h/Mpc).

Until this point, we have been talking about the power spectrum from the “pure

dark matter” N -body simulations. However, the Lyα forest is a very special probe, to

properly predict the Lyα forest, we need to include gas physics in the simulations, which is

best done by the hydrodynamical N -body simulations. Each hydrodynamical simulation is

more expensive than the pure dark matter simulation. Moreover, unlike the pure dark mat-

ter N -body simulations, unfortunately, the astrophysical feedbacks in the hydrodynamical
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simulations are not well understood, so different simulation codes do not usually converge

to the same answer. These difficulties make the cosmological emulator approach more chal-

lenging for the hydrodynamical simulations than the pure dark matter simulations, as the

cosmological analysis usually requires to be at a percent level of accuracy.

There are various ways to attack this problem. One way is the baryonification

approach, where the pure dark matter N -body simulations are used to post-process and re-

position the particles to mimic the baryonic effects according to some physically-motivated

phenomenological models (see Ref. [32]). Baryonification method in Ref. [32] is shown to

be able to be calibrated to the summary statistics (primarily at the power spectrum and

bi-spectrum level) of various hydrodynamical simulations. In a similar vine, Fluctuating

Gunn-Peterson Approximation (FGPA) (see Ref. [33, 34]) is a method to post-process the

pure dark matter simulations to generate mock Lyα forest spectra, and it is shown to be able

to reproduce the Lyα forest produced by the hydrodynamical simulations. The benefit of

these post-processing approaches is that it is computationally cheap, as post-processing the

pure dark matter simulations is much faster than running a new hydrodynamical simulation.

Another way is to directly emulate the hydrodynamical simulations by running a

suite of hydrodynamical simulations with different astrophysical feedback parameters. By

varying the feedback parameters, the emulator hopefully can capture all possible outcomes

of the feedback effects and help us understand the correlation between the feedback models

and the cosmological signals. The benefit of this approach, compared to the baryonification

approach, is that we have better physical intuitions on the feedback models because these

models are usually designed to match the observations of the galaxy or AGN. Thus, the
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feedback parameters, though are considered to be nuisance in the cosmological analysis, are

physically meaningful and useful in the galaxy formation studies. The downside of this ap-

proach is that it is computationally expensive, as there are way more feedback parameters

than the cosmological parameters (see Ref. [35], where 28 subgrid model parameters are

used), and each simulation is more expensive than the pure dark matter simulation. More-

over, the issue of the convergence between different hydrodynamical simulation codes is

still unsolved. The multi-simulation campaign such as CAMELS [36] is designed to address

this issue, by running the same input parameter dimension with different hydrodynamical

simulation codes and different feedback models.

In this section, I will briefly recap the concept of emulation and the idea of multi-

fidelity emulator. Multi-fidelity emulation is a technique to combine the predictions from

different fidelity models to improve the prediction accuracy. Section 1.2.1 will provide a

high-level overview of the cosmological emulator. Section 1.2.2 will provide an overview

of the multi-fidelity methods. Section 1.2.3 will show the application of the multi-fidelity

emulator in the cosmological emulation. Detailed mathematics and the application will be

shown in the Chapter 4 and Chapter 5.

1.2.1 Data: Emulation

Why do we need emulators anyway?

In Bayesian modeling, we usually have a statistical model to describe the data.

To assess how well the model fits the data, we need to compare the model’s predictions to

the actual data. To do this, we can “simulate” “mock” data from the statistical model and
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then compare the simulated data to the real data. If the simulated data is close to the real

data, then the model is a good fit.

We can vary the parameters of this statistical model, repeat the simulations mil-

lions of times, and find the best-fit parameters that can generate the data. This is exactly

what Markov Chain Monte Carlo (MCMC) simulations do in Bayesian inference. When

people talk about “simulations” in the context of statistics, they usually mean simulations

from the statistical model, i.e., something easy to compute, fast to run, and used to bet-

ter understand the data. While obtaining data can be expensive, simulations are usually

straightforward and computationally inexpensive.

However, in cosmology, the “simulations” usually mean the N -body simulations

or the hydrodynamical simulations, which are slow to run and expensive to compute. In

addition, we only have one realization of the Universe, so we only have one data point.

Therefore, in cosmological analysis, not only data are sparse and expensive to obtain, but

the simulations are also slow and expensive to run. When both data and simulations are

expensive, we need one of them to be cheap to obtain, otherwise, data analysis is not

possible.

This is where the emulator comes in. The emulator approach treats the simulations

as “data” and fits a flexible statistical model to predict the simulation results as a function

of the input parameters. With this fitted statistical model, we can easily generate the “mock

simulations” with a cheaper computational cost. This fitted model acts as a surrogate for

the simulations, and it is often called the “surrogate model” or the “emulator.”
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Figure 1.9: Bayesian surrogate modeling of the Forrester function. This is a demonstra-
tion of the Gaussian process emulator in combination of Bayesian optimization on the
Forrester function. The red dots are the simulations we have run (the red stars being
the last simulation we run), and the purple curve is the true simulation function. The
emulator prediction is shown as the yellow curve, with the shaded areas showing the
(1,2,3)-σ confidence intervals. The lower panel shows the Expected Improvement (EI) func-
tion (i.e., the acquisition function), which is used to find the next best point to evaluate
the function in the Bayesian optimization. A higher EI value means the point is more
likely to better improve the surrogate model fitting. Video tutorial can be found in u
https://youtu.be/6JmuqVhSq5Y?si=5TFzIbepU6iCXRno.

27

https://youtu.be/6JmuqVhSq5Y?si=5TFzIbepU6iCXRno


Figure 1.9 shows an example of fitting an emulator on the Forrester function,

f(x) = (6x − 2)2 sin(12x − 4). This is a classic example to demonstrate the emulator

approach. Here, we have a function f(x), which we assume to be the true simulation

function (purple curve), and we assume f(x) is expensive to compute. Since it is expensive,

we can only evaluate the simulation function at a few input x values, which are shown as the

red points in Figure 1.9. These red points are the simulations we have run, or the “data”

we have. The goal of the emulator is to predict the function f(x) at any input x values,

given the few data points we already have.

A standard way to build the emulator is to use the Gaussian process (GP) regres-

sion. We assume the function f(x) is a realization from a Gaussian process,

f(x) ∼ GP(µ(x),K(x, x′)), (1.6)

where µ(x) is the mean function and K(x, x′) is the covariance function of the Gaussian

process. The usage of Eq. 1.6 is slightly different from the Gaussian process we used in the

DLA search. In the DLA search, we directly learn the covariance function from the quasar

spectra because there is no simple analytical form for the quasar emission covariance. In

the emulator, we usually assume the simulation function, f(x), is smooth and continuous,

so we can use a simple covariance function, such as the squared exponential kernel,

K(x, x′) = σ2 exp

(
−(x− x′)2

2l2

)
, (1.7)

where σ2 is the variance and l is the length scale of the kernel. The hyperparameters σ2 and

l are usually learned from the data (the red points) by maximizing the marginal likelihood

of the Gaussian process. The emulator prediction is shown as the yellow curve in Figure 1.9.
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The smoothness of the emulator is controlled by the length scale l of the kernel, where a

smaller l means the emulator is more flexible to the data, and a larger l means the emulator

is smoother. Given a suite of simulations, D = {x, f(x)}, the emulator prediction at any

input x is a Gaussian distribution,

p(f | D) = GP(f ;µD,KD), (1.8)

where

µD(x∗) = µ(x∗) +K(x∗,x)K(x,x)−1(f(x)− µ(x)),

KD(x∗, x∗
′
) = K(x∗, x∗

′
)−K(x∗,x)K(x,x)−1K(x, x∗

′
).

(1.9)

Here, the emulator prediction is the posterior mean function µD(x∗) at the new input x∗,

and the uncertainty of the prediction is the variance of the Gaussian process at the input

x∗, which is the diagonal of the covariance matrix KD(x∗, x∗
′
).

The smoothness assumption sounds like a strong assumption, but it is usually a

good assumption in terms of simulations. For a simulation code, we usually expect the

neighboring input parameters to have similar simulation results, so the simulation function

is usually smooth and continuous. For example, the power spectrum from the N -body

simulations is usually a smooth and continuous function of the cosmological parameters, so

the emulator can predict the power spectrum at any cosmological parameters within the

range of the simulations.

With the smoothness assumption, a common experimental design for preparing

the simulations is the Latin hypercube sampling (LHS). LHS is a space-filling design, which

ensures the input parameters are evenly distributed in the input space, even in the high-

dimensional space. Detailed explanation of the LHS will be described in Chapter 4 and
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Chapter 5. To gain the intuition of the reasoning behind using LHS, let’s consider the

Forrester function example in Figure 1.9. With the assumption that the underlying true

function is smooth, the intuitive way to prepare the simulations is to sample the input

parameters evenly in the input space, x. When the input parameters are evenly distributed,

the red points in Figure 1.9 are more likely to cover the whole input space. Extending this

to the high-dimensional space is the LHS, which ensures the design of simulation suite

represent the real variability of the input parameters and better capture the underlying

function.

In most of the cosmological emulator applications the response function of the

power spectrum is a smooth function of the input cosmology. However, there might be some

concerns about how emulator can handle the not-very-smooth functions. For example, if

there is a sharp drop or peak in the f(x), the evenly distributed design might not be the

best design for the emulator. In this case, emulator requires more data points at the input

x values where the sharp drop or peak happens. For example, in Figure 1.9, we might need

more data points around x ∼ 7 to better predict the sharp drop and rise of the function.

However, we often do not know where the sharp drop or peak is beforehand, so we need

to adaptively sample the input space to better capture the sharp features of the function.

This is where the Bayesian optimization comes in.

Bayesian optimization is a sequential design strategy for global optimization of

expensive-to-evaluate functions. In the context of the emulator, Bayesian optimization

can be used to find the best next input x to evaluate the simulation function, f(x), to

better improve the emulator prediction. When we talk about emulator, we cannot avoid
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talking about the Bayesian optimization, as the Bayesian optimization and Gaussian process

emulation are often used together. However, the Bayesian optimization will not be covered

in the later chapters, so I will only provide a hand-waving demonstration below. Interested

readers can refer to Ref. [37] for a detailed explanation of the Bayesian optimization.

Figure 1.10 shows an example of the Bayesian optimization on the Forrester func-

tion. In comparison to Figure 1.9, the emulator prediction (yellow curve) in Figure 1.10 is

more accurate. This is because the Bayesian optimization adaptively allocate more data

points around x ∼ 7 to better capture the sharp drop and rise of the function. The heart of

this optimization is the acquisition function, which is a function to balance the “exploration”

and “exploitation” of the input space. This is so-called the “multi-armed bandit” problem,

or the “explore-exploit” dilemma. We decide between allocating resources to an input x

where the emulator is uncertain (exploration) for improving future rewards, or allocating

resources to an input x where the emulator is certain (exploitation) for immediate high

rewards. In another word, we need to balance between the “exploitation” of a suspected

local maximum and the “exploration” of the new input space to find the global maximum.

The above description sounds very familiar because exploration-exploitation is

a common problem in everyday life. For example, when we go for lunch, we need to

decide whether to go to the same restaurant we always go to (exploitation) or to try a

new restaurant (exploration). The formal definition can be found in Ref. [37]. To view the

Bayesian optimization in action, I have made a tutorial video on the Forrester function,

which can be found in the video link in the caption of Figure 1.10, where the “Expected

Improvement” is the acquisition function used in the optimization.
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Figure 1.10: Bayesian optimization on the Forrester function. This is a demonstration of
the Gaussian process emulator in combination of Bayesian optimization on the Forrester
function. With a few iterations of Bayesian optimization, the parameters are adaptively
allocated around x ∼ 7 to better capture the sharp drop and rise of the function, and
the parameter space of x < 0.6 is mostly evenly sampled. Video tutorial can be found in
https://youtu.be/6JmuqVhSq5Y?si=5TFzIbepU6iCXRno.
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1.2.2 Method: Bayesian Multi-fidelity Emulation

In previous section, we have discussed the situation the simulation function is

expensive to compute, and the emulator is used to predict the simulation function at any

input parameters, so we can easily generate the “mock simulations” for downstream data

analysis. However, what if the target function is not only expensive to compute but almost

impossible to compute? In the astrophysics community, this is a common situation. For

example, cosmological galaxy formation simulations, such as the IllustrisTNG [38], ASTRID

[39], or FLAMINGO [40], these simulations have to resolve the large-scale structure and

also resolve the small-scale galaxy physics. First, the simulation volume is always not large

enough to match the size of the Universe. Also, the resolution is always not high enough to

resolve the small-scale physics such as supernovae or black holes. The simulation is always

a compromise between the volume and the resolution. Thus, we know the simulation is

always not perfect, and the true simulation function is almost not computable.

Nevertheless, something we know is that the simulation is not completely wrong,

and, to some extent, we know the simulation is better when the resolution is higher and the

volume is larger.3 This is where the multi-fidelity emulation comes in. Usually, simulation

codes have different fidelities, where the high-fidelity simulation (high-resolution) is more

accurate but more expensive, and the low-fidelity simulation (low-resolution) is less accurate

but cheaper. The goal of the multi-fidelity emulation is to build an emulator for the high-

fidelity simulation, a fidelity that is impossible to compute enough data points to build an

3This is mostly correct when all the physics in the simulation are from the first principle (e.g., N -body
simulations), and the simulation is not tuned to match the observations. When empirical models are used in
the simulation to tuned to match the observations at a certain resolution (e.g., subgrid models), the fidelity
of the simulation is not necessarily increasing with the resolution.
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emulator, by using the data from the low-fidelity simulation, a fidelity that is computable

for many data points.

A formal definition of the multi-fidelity emulation is as follows. Given a suite of

simulations from various fidelities, D = {x, {ft(x)}Tt=1}, where t is the fidelity index, the

goal of the multi-fidelity emulation is to predict the simulation function at the high fidelity,

fT (x), given the data from the lower fidelities, ft(x), where T ≥ t and t = 1, 2, . . . , T .

Assuming the simulation function at a fidelity t is a realization from a Gaussian process,

ft(x) ∼ GP(µt(x),Kt(x,x
′)). (1.10)

The multi-fidelity emulation models the high-fidelity simulation function as a function of

the low-fidelity simulation functions,

ft(x) = g(x, ft−1(x)), (1.11)

where g(x, ft−1(x)) is also a Gaussian process. Function g(x, ft−1(x)) can be thought as

a fidelity correction function, which corrects the low-fidelity simulation function to predict

the high-fidelity simulation function.

One of the most common way to model the fidelity correction function is to use

the linear auto-regressive model (Ref. [41]), which separate the correction between the low-

fidelity simulation function and the high-fidelity simulation function into two parts: the

linear scaling part and the bias part,

ft(x) = ρt−1ft−1(x) + δt−1(x), (1.12)

where ρt−1 is the scaling factor and δt−1(x) is the bias term. ρt−1 is a constant, and when

ρt−1 = 1 and δt−1(x) = 0, the low-fidelity simulation function is the same as the high-fidelity
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Figure 1.11: An example of the multi-fidelity emulator on the simple function. Red dots
as the high-fidelity data, blue dots as the low-fidelity data. Red dashed curve is the high-
fidelity true function and blue curve is the low-fidelity true function. Left panel shows the
emulator prediction using only the high-fidelity data (purple curve), which is not accurate
at x > 0.5. Right panel shows the emulator prediction using only the low-fidelity data (blue
curve), which is biased, and the multi-fidelity emulator prediction (yellow curve) is more
accurate. YouTube video tutorial can be found in u https://youtu.be/tQIytDnWOzk?si=

TaKfDkJnhE48yHvK.

simulation function. δt−1(x) is also a Gaussian process. Both ρt−1 and δt−1(x) are learned

from the data. The linear multi-fidelity model is a simple model, but it works well in the

cosmic power spectrum emulation, as shown in Chapter 4 and Ref. [42, 43, 44].

Figure 1.11 shows an example of the linear multi-fidelity emulator (Eq. 1.12) on

a simple function, where the high-fidelity data (red dots) is only available at x < 0.5. The

low-fidelity data (blue dots) are noisy realization of the high-fidelity data with a biased shift

to a higher y, but the low-fidelity data is available at all x. If we only use the high-fidelity

data, the emulator prediction (purple curve) is not accurate at x > 0.5 due to lack of data.

If we only use the low-fidelity data, the emulator prediction (blue curve) is biased. The

multi-fidelity emulator (yellow curve) combines the high-fidelity data and the low-fidelity

data, and it provides a more accurate prediction at all x.
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Figure 1.12: An example of the non-linear multi-fidelity emulator. Red dots as the high-
fidelity data, blue dots as the low-fidelity data. Red dashed curve is the high-fidelity true
function and blue curve is the low-fidelity true function. Left panel shows the emulator
prediction using only the high-fidelity data (purple curve), which has a wrong frequency.
Right panel shows the emulator prediction using only the low-fidelity data (blue curve),
which provides prior knowledge on the frequency of the high-fidelity function, and the multi-
fidelity emulator prediction (yellow curve) is more accurate with a reasonable uncertainty
quantification. YouTube video tutorial can be found in the same video link in the caption
of Figure 1.11.

Another more complex example is shown in Figure 1.12, where the high-fidelity

data (red dots) is a sinusoidal function with a decreasing amplitude and the low-fidelity

data (blue dots) is also a sinusoidal function but with a constant amplitude. The frequency

of the high-fidelity function is 2 times higher than the low-fidelity function. The low-fidelity

and high-fidelity are correlated in a non-linear way, so the linear scaling parameter, ρt−1, is

not enough to capture the correlation. If we only use the high-fidelity data, the emulator

prediction (purple curve) has a wrong frequency due to the lack of data. However, if we

have the low-fidelity data, it provides prior knowledge on the frequency of the high-fidelity

function and the emulator prediction (yellow curve) is more accurate.

The YouTube video tutorial of the multi-fidelity emulator on the simple function

and the non-linear function can be found in the video link in the caption of Figure 1.11
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and Figure 1.12. The jupyter notebook tutorial can be found in my GitHub repository �

https://github.com/jibanCat/nargp_tensorflow.

1.2.3 Application: Cosmic Multi-Fidelity Emulators

One of the most common applications of emulators in cosmology is the cosmic

power spectrum emulation (e.g., see Ref. [28, 45, 10, 11], etc). These power spectrum

emulators are built based on the pure dark matter N -body simulations. These emulators

act as an extension of the linear perturbation theory on predicting the power spectrum

at the non-linear scales of the large scale structure. The N -body simulation codes usually

have different fidelities. For a given volume, the high-resolution simulation can resolve more

small-scale structures, but it is more expensive to run. The resolution of the simulation is

usually controlled by the number of particles in the simulation box or the size of the grids.

The power spectrum is a summary statistic describing the density fluctuations in

the Universe. The power spectrum is in the Fourier space, thus, it is a function of the

wave number, k. A lower k corresponds to lower frequency fluctuations (large scales), and

a higher k corresponds to higher frequency fluctuations (small scales). Thus, for power

spectrum emulation, low fidelity and high fidelity are highly correlated in a lower k region,

but they are less correlated in a higher k region. The exact k value where the correlation

breaks is usually determined by the resolution of the low-fidelity simulation.

Suppose we have a suite of simulations from low-fidelity and high-fidelity sim-

ulations, D = {θ, {Pt(θ)}Tt=1}, where Pt(θ) is the power spectrum from the t-th fidelity

simulation. θ is the input cosmological parameters and Pt(θ) is the power spectrum at the

cosmological parameters θ, which is also a function of the wave number, k. Thus, Pt(θ)
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should be Pt(θ, k). The goal of the multi-fidelity emulation is to predict the power spec-

trum at the high-fidelity, PT (θ, k), given the data from the low-fidelity simulations, Pt(θ, k),

where T ≥ t and t = 1, 2, . . . , T ,

Pt(θ, k) = ρt−1 · Pt−1(θ, k) + δt−1(θ, k), (1.13)

which is the same as Eq. 1.12 but with the wave number, k. Here, ρt−1 could be a function

of k depending on the resolution difference between t-th and t − 1-th simulations. When

the difference is small, ρt−1 is likely to be a constant.

The modeling form of Eq. 1.13 has a similar form to the halo model (see e.g.,

Ref. [46, 47, 48]).:

P (θ, k) = PQ(θ, k) + PH(θ, k), (1.14)

where PQ(θ, k) is the quasi-linear part of the power spectrum, which is usually computed

from the linear perturbation theory, and PH(θ, k) is the non-linear part of the power spec-

trum, which is usually computed from the N -body simulations. There is a clear connection

between the two-halo term, PQ, and the low-fidelity simulation (ρt−1Pt−1(θ, k)), and the

one-halo term, PH, and the high-fidelity simulation (δt−1(θ, k)). The multi-fidelity model-

ing in Eq. 1.13 gives a much better prediction than the halo model because the low-fidelity

simulations are much better than the linear theory

Figure 1.13 shows an example of the multi-fidelity emulator on the matter power

spectrum emulation. It extends the Eq. 1.13 to two low-fidelity simulations (L1 and L2)

and one high-fidelity simulation (HF). Due to the scale-separation property of the power

spectrum, we can use L1 to correct the HF at the large scales, and use L2 to correct the HF
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Figure 1.13: Example of the multi-fidelity emulator on the cosmic power spectrum. The left
panel shows the N -body simulations in the density fields, including two low-fidelity nodes
(L1, 1283 in 256 Mpc/h and L2, 1283 in 100 Mpc/h) and one high-fidelity node (HF, 5123

in 256 Mpc/h). The right panel shows the multi-fidelity emulator prediction (red curve) on
the power spectrum, and the emulator relative errors are shown in the bottom panels for
z = 2 and z = 0.

at the small scales. Here, L1 node is low-resolution simulation in a large volume, and L2

node is high-resolution simulation in a small volume. The HF node is the high-resolution

simulation in a large volume. The multi-fidelity emulator (red curve) combines the L1, L2,

and HF data, and it provides a more accurate prediction at all k. Chapter 5 will provide a

detailed explanation of the multi-fidelity emulator in Figure 1.13.

1.3 Population Inference: A Short Note

In this section, I will briefly explain how to apply Bayesian inference to the popu-

lation analysis. In astronomical data analysis, there is a difference between the population

analysis and the individual source analysis. For example, an astronomer observe a single

galaxy, the goal might be to understand the properties of the galaxy, such as the mass, the

morphology, the color, etc. This is the individual source analysis. On the other hand, an

astronomer analyzes a collection of galaxies, the goal might be to understand galaxy proper-
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ties as a distribution, such as the galaxy stellar mass function, the galaxy color distribution,

etc. This is the population analysis.

For each individual source, there is measurement uncertainty. For a population

of sources, there is bias due to selection effects. The population analysis is challenging

because it needs to propagate the measurement uncertainty from each individual source

to the population level, subjecting the selection bias. The population inference method is

designed to address this issue using Bayesian hierarchical modeling.

Gravitational wave astronomy community has developed a tradition on using

Bayesian hierarchical modeling to analyze the population of the gravitational wave events.

Chapter 6 describes my work on using Bayesian hierarchical inference to understand the

black hole mass spectrum from the gravitational wave events. Below, I will provide a brief

overview on how to apply Bayesian hierarchical inference to the population analysis in the

context of the gravitational wave events.

Here, we define some notations. In what follows, θ are the parameters for a single

event. For example, θ could be the masses of the binary black hole, the spins of the binary

black hole, the sky location of the binary black hole, etc. d is the data for a single event.

The event parameters θ are usually inferred from the data d using a template bank, which is

a set of waveform models to predict the gravitational wave signal. When we have a catalog

of events, we have {θ} and {d}.

The population parameters, Λ, are the parameters for the population of the events

according to our population model. The population models are usually designed to under-

stand the distribution of the event parameters, such as the mass spectrum, the redshift
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distribution, the spin distribution, etc. They can be either astrophysical models or phe-

nomenological models. For instance, if we have a population model that the black hole

mass spectrum follows a power-law distribution, then the population parameters Λ are the

power-law index and the normalization of the power-law distribution.

The distinction between event parameters, θ, and population parameters, Λ, is

important. We can infer the θ from a single event d, but we cannot infer the Λ from a single

event. To infer Λ, we need to consider the entire catalog of events {d} and the “detection

efficiency” due to the sensitivity of instrument.

We need to have the concept of “detection” in the population modeling. The de-

tection is the process of deciding whether an event is detected by the instrument. Detection

bias means that our observed catalog of events is not a fair sample of the true underlying

distribution. For example, in gravitational wave, the lighter binary black holes are harder

to detect than the heavier binary black holes, so the observed catalog of events is biased

towards the heavier binary black holes. And in extragalactic astronomy, the fainter galaxies

are harder to detect than the brighter galaxies.

To bring the concept of detection to the probability notations, we can introduce

the “trigger” term. When the event data d have been recorded at the detector, it either

triggers the detection or not. This trigger is determined according to some deterministic

criteria (ρ(d) ≥ ρthreshold),

p(trig|d) =


0 ρ(d) < ρthreshold ,

1 ρ(d) ≥ ρthreshold .
(1.15)

The criteria is usually determined by the signal-to-noise ratio.
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For a given event with event parameters θ, we want to know what is the probability

of the event being detected. This requires us to marginalize over the data d,

p(trig|θ) =

∫
p(trig|d)p(d|θ)dd. (1.16)

The probability, p(trig|θ), is the detection probability of the event. The probability, p(d|θ),

is the noise model of the event, in another word, it is the single-event likelihood model. The

above marginalization simply states that we marginalize over all possible noisy realizations

of the data d (using the noise model p(d|θ)) to get the detection probability. Eq. 1.16 is

usually computed using the Monte Carlo integration.

For a population model, we parameterize the distribution of the event parameters,

θ, according to the population parameters Λ, i.e., p(θ|Λ). To acquire the detection efficiency

of the population model, we need to marginalize over the event parameters θ in Eq. 1.16,

p(trig|Λ) =

∫
dd

∫
p(trig|d)p(d | θ)p(θ|Λ)dθ

=

∫
p(trig|θ)p(θ|Λ)dθ.

(1.17)

The detection efficiency is often defined as α ≡ p(trig|Λ) in the literature. The detection

efficiency α can be understood as how efficient the population model can produce detectable

events. α can be interpreted as the fraction of the expected detectable events (Ndet) over

the total number of events (Ntot), α = Ndet/Ntot. To compute the detection efficiency in

Eq. 1.17, we can simulate the values of θ from the population model according to the prior

p(θ|Λ), and then compute the detection probability p(trig|θ) for each θ, and then average

over all θ. Thus, one way to interpret the population model, p(θ|Λ), is that it is a physics-

informed parametric prior over the event parameters, and we want to use a set of events to

infer the population parameters Λ.
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Now, suppose we have a set of Nobs events, {di}, and detection information, {trig}.

We can infer the posterior probability density of the population parameters Λ using

p(Λ|{di}, {trig}, Nobs) ∝
p(Λ)e−αNNNobs

p({di}, {trig}, Nobs)

Nobs∏
i=1

Lobsi , (1.18)

where Lobsi is the event likelihood of the i-th event, which is independent of the selection

effects,

Lobsi =

∫
p(di|θi)p(θi|Λ)dθi. (1.19)

Here, p(Λ) is the prior of the population parameters, and p({di}, {trig}, Nobs) is the evidence

of the data. The important part of the posterior is the detection efficiency α, which is in

the term e−αNNNobs . This term comes from assuming the events are generated from an

inhomogeneous Poisson process, and it penalizes the population model when the expected

number of events (αN) is different from the detected number of events. For example, when

detection efficiency α is higher, the expected number of events is higher, and the population

model is penalized when the detected number of events is lower than the expected number

of events via the term e−αN .
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Chapter 2

Detecting Multiple DLAs per

Spectrum in SDSS DR12 with

Gaussian Processes

2.1 Abstract

We present a revised version of our automated technique using Gaussian processes

(gps) to detect Damped Lyman-α absorbers (dlas) along quasar (qso) sightlines. The main

improvement is to allow our Gaussian process pipeline to detect multiple dlas along a single

sightline. Our dla detections are regularised by an improved model for the absorption from

the Lyman-α forest which improves performance at high redshift. We also introduce a model

for unresolved sub-dlas which reduces mis-classifications of absorbers without detectable

damping wings. We compare our results to those of two different large-scale dla catalogues
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and provide a catalogue of the processed results of our Gaussian process pipeline using

158 825 Lyman-α spectra from sdss data release 12. We present updated estimates for the

statistical properties of dlas, including the column density distribution function (cddf),

line density (dN/dX), and neutral hydrogen density (ΩDLA).

2.2 Introduction

Damped Lyα absorbers (dlas) are absorption line systems with high neutral hy-

drogen column densities (NHI > 1020.3cm−2) discovered in sightlines of quasar spectroscopic

observations [49]. The gas which gives rise to dlas is dense enough be self-shielded from

the ultra-violet background (uvb) [50] yet diffuse enough to have a low star-formation rate

[51]. dlas dominate the neutral-gas content of the Universe after reionisation [52, 5, 53, 7].

Simulations tell us dlas are connected with galaxies over a wide range of halo masses

[54, 55, 18], and at z ≥ 2 are formed from the accretion of neutral hydrogen gas onto dark

matter halos [56, 57]. The abundance of dlas at different epochs of the universe (2 < z < 5)

thus becomes a powerful probe to understand the formation history of galaxies [52, 58].

Finding dlas historically involves a combination of template fitting and visual

inspection of spectra by the eyes of trained astronomers [20, 59]. Recent spectroscopic

surveys such as the Sloan Digital Sky Survey (sdss) [60] have taken large amount of quasar

spectra (∼ 500 000 in sdss-iv [61]). Future surveys such as the Dark Energy Spectroscopic

Instrument (desi1) will acquire more than 1 million quasars, making visual inspection of

the spectra impractical. Moreover, the low signal-to-noise ratios of sdss data makes the

1http://desi.lbl.gov
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task of detecting dlas even harder, and induces noise related detection systematics. Since

the release of the sdss dr14 quasar catalogue [61], visual inspection is no longer performed

on all quasar targets. A fully automated and statistically consistent method thus needs to

be presented for current and future surveys.

We provide a catalogue of dlas using sdss dr12 with 158 825 quasar sightlines.

We demonstrate that our pipeline is capable of detecting an arbitrary number of dlas within

each spectroscopic observation, which makes it suitable for future surveys. Furthermore,

since our pipeline resides within the framework of Bayesian probability, we have the ability

to make probabilistic statements about those observations with low signal-to-noise ratios.

This property allows us to make probabilistic estimations of dla population statistics, even

with low-quality noisy data [62].

Other available searches of dlas in sdss include: a visual-inspection survey [59],

visually guided Voigt-profile fitting [20, 6]; and three automated methods: a template-fitting

method [5], an unpublished machine-learning approach using Fisher discriminant analysis

[63], and a deep-learning approach using a convolutional neural network [4]. Although

these methods have had some success in creating large dla catalogues, they suffer from

hard-to-control systematics due to reliance either on templates or black-box training.

We present a revised version of our previous automated method based on a Bayesian

model-selection framework [3]. In our previous model [3], we built a likelihood function for

the quasar spectrum, including the continuum and the non-dla absorption, using Gaussian

processes [31]. The sdss dr9 concordance catalogue was applied to learn the covariance

of the Gaussian process model. In this paper, we use the effective optical depth of the
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Lyman-series forest to allow the mean model of the likelihood function to be adjustable to

the mean flux of the quasar spectrum, which reduces the probability of falsely fitting high-

column density absorbers at high redshifts. We also improve our knowledge of low-column

density absorbers and build an alternative model for sub-dlas, which are the hi absorbers

with 19.5 < log10NHI < 20. These modifications allow us to extend our previous pipeline

to detect an arbitrary number of dlas within each quasar sightline without overfitting.

Alongside the revised dla detection pipeline, we present the new estimates of dla

statistical properties at z > 2. Since the neutral hydrogen gas in dlas will eventually

accrete onto galactic haloes and fuel the star formation, these population statistics can give

an independent constraint on the theory of galaxy formation. Our pipeline relies on a well-

defined Bayesian framework and contains a full posterior density on the column density and

redshift for a given dla. We thus can properly propagate the uncertainty in the properties

of each dla spectrum to population statistics of the whole sample. Additionally, we are

also able to account for low signal-to-noise ratio samples in our population statistics since

the uncertainty will be reflected in the posterior probability. We thus substantially increase

the sample size in our measurements by including these noisy observations.

2.3 Notation

We will briefly recap the notation we defined in [3]. Imagine we are observing a qso

with a known redshift zQSO. The underlying true emission function f(λrest) (f : X → R) of

the qso is a mapping relation from rest-frame wavelength to flux. We will always assume the

zQSO is known and rescale the observed-frame wavelength λobs to the rest-frame wavelength
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with λrest(= λobs/(1 + zQSO)). We will use λ to replace λrest in the rest of the text because

we only work on λrest.

The quasar spectrum observed is not the intrinsic emission function f(λ). Both

the instrumental noise and absorption due to the intervening intergalactic medium along

the line of sight will affect the observed flux. We thus denote the observed flux as a function

y(λ).

For a real spectroscopic observation, we measure the function y(λ) on a discrete

set of samples λ. We thus denote the observed flux as a vector y, which is defined as

yi = y(λi) with i representing ith pixel. For a given qso observation, we use D to represent

a set of discrete observations (λ,y).

We exclude missing values of the spectroscopic observations in our calculations.

These missing values are due to pixel-masking in the spectroscopic observations (e.g., bad

columns in the CCD detectors). We will use NaN (‘not a number’) to represent those

missing values in the text, and we will always ignore NaNs in the calculations.

2.4 Bayesian Model Selection

The classification approach used in our pipeline depends on Bayesian model selec-

tion. Bayesian model selection allows us to compute the probability that a spectroscopic

sightline D contains an arbitrary number of dlas through evaluating the probabilities of

a set of models {Mi}, where i is a positive integer. This set of Mi contains all potential

models we want to classify: a model with no dla and models having between one dla and

k dlas.
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For each Mi, we want to compute the probability that best explains the data D

given a modelM. To do this, we have to marginalize the model parameters θ and evaluate

the model evidence,

p(D | M) =

∫
p(D | M, θ)p(θ | M)dθ. (2.1)

Given a set of model evidences p(D | Mi) and model priors Pr(Mi), we are able to evaluate

the posterior of a model given data based on Bayes’s rule,

Pr(M | D) =
p(D | M)Pr(M)∑
i p(D | Mi)Pr(Mi)

. (2.2)

We will select the model from {Mi} with the highest posterior. Readers may think of

this method as an application of Bayesian hypothesis testing. Instead of only getting the

likelihoods conditioned on models, we get posterior probabilities for each model given data.

Let k be the maximum number of dlas we will want to detect in a quasar spectrum.

For our multi-dla model selection, we will develop k+2 models, which include a null model

for no dla detection (M¬DLA), models for detecting exactly k dlas (MDLA(k)), and a

model with sub-dlas (Msub). With a given spectroscopic sightline D, we will compute the

posterior probability of having exactly k dlas in data D, Pr(MDLA(k) | D).

2.5 Gaussian Processes

In this section, we will briefly recap how we use Gaussian processes (gps) to

describe the qso emission function f(λ), following [3]. The qso emission function is a

complicated function without a simple form derived from physically motivated parameters.

We thus use a nonparametric framework, Gaussian processes, for modelling this physically

unknown function f(λ). A detailed introduction to gps may be found in [31].
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2.5.1 Definition and prior distribution

We wish to use a Gaussian process to model the qso emission function f(λ). We

can treat a Gaussian process as an extension of the joint Gaussian distribution N (µ,Σ) to

infinite continuous domains. The difference is that a Gaussian process is a distribution over

functions, not just a distribution over a finite number of random variables (although since

we are dealing with pixelised variables here the distinction is less important).

A gp is completely specified by its first two central moments, a mean function

µ(λ) and a covariance function K(λ, λ′):

µ(λ) = E [f(λ) | λ] ,

K(λ, λ′) = E
[
(f(λ)− µ(λ))(f(λ′)− µ(λ′)) | λ, λ′

]
= cov

[
f(λ), f(λ′) | λ, λ′

]
.

(2.3)

The mean vector describes the expected behaviour of the function, and the co-

variance function specifies the covariance between pairs of random variables. We thus will

write the gp as,

f(λ) ∼ GP(µ(λ),K(λ, λ′)). (2.4)

We can write the prior probability distribution of a gp as,

p(f) = GP(f ;µ,K). (2.5)

Real spectroscopic observations measure a discrete set of inputs λ and the corre-

sponding f(λ), so we get a multivariate Gaussian distribution

p(f) = N (f(λ);µ(λ),K(λ,λ′)). (2.6)
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Assuming the dimension of λ and f is d, the form of the multivariate Gaussian distribution

is written as

N (f ;µ,K) =

1√
(2π)ddetK

exp

(
−1

2
(f − µ)⊤K−1(f − µ)

)
.

(2.7)

2.5.2 Observation model

We now have a Gaussian process model for a discrete set of wavelengths λ and

true emission fluxes f . To build the likelihood function for observational data D = (λ,y),

we have to incorporate the observational noise. Here we assume the observational noise is

modelled by an independent Gaussian variable for each wavelength pixel, allowing the noise

realisation to differ between pixels but neglecting inter-pixel correlations.

The noise variance for a given λi is written as νi = σ(λi)
2. σ(λi) is the mea-

surement error from a single observation on a given wavelength point λ. With the above

assumptions, we can write down the mechanism of generating observations as:

p(y | λ,f ,ν) = N (y;f ,V), (2.8)

where V = diag ν, which means we put the vector ν on the diagonal terms of the diagonal

square matrix V.

Given an observational model p(y | λ,f ,ν) and a Gaussian process emission model

p(f | λ), the prior distribution for observations y is obtained by marginalizing the latent
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function f :

p(y | λ,ν) =

∫
p(y | λ,f ,ν)p(f | λ)df

=

∫
N (y;f ,V)N (f ;µ,K)df

= N (y;µ,K + V),

(2.9)

where the Gaussians are closed under the convolution. Our observation model thus becomes

a multivariate normal distribution described by a mean model µ(λ), covariance structure

K(λ, λ′), and the instrumental noise V. The instrumental noise is derived from sdss pipeline

noise, so it is different from qso-to-qso; however, since K encodes the covariance structure

of quasar emissions, K should be the same for all quasars.

As explained in [3], there is no obvious choice for a prior covariance function K

for modelling the quasar emission function. Most off-the-shelf covariance functions assume

some sort of translation invariance, but this is not suitable for spectroscopic observations2.

However, we understand the quasar emission function will be independent of the presence

of a low redshift dla. We also assume that quasar emission functions are roughly redshift

independent in the wavelength range of interest (Lyman limit to Lyman-α), as accretion

physics should not strongly vary with cosmological evolution. We thus build our own custom

µ and K for the gp prior to model the quasar spectra.

2.6 Learning A GP Prior from QSO Spectra

In this section, we will recap the prior modelling choices we made in [3] and the

modifications we made to reliably detect multiple dlas in one spectrum. We first build a

2Detailed explanations are in [3] Section 4.2.1.
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gp model for qso emission in the absence of dlas, the null modelM¬DLA. Our model with

dlas (MDLA) extends this null model. With the model priors and model evidence of all

models we are considering, we compute the model posterior with Bayesian model selection.

The gp prior is completely described by the first two moments, the mean and

covariance functions, which we derive from data. We must consider the mean flux of quasar

emission, the absorption effect due to the Lyman-α forest, and the covariance structure

within the Lyman series.

2.6.1 Data

Our training set to learn our gp null model comprises the spectra observed by sdss

boss dr9 and labelled as containing (or not) a dla by [64]. 3 The dr9 dataset includes

54 468 qso spectra with zQSO > 2.15. We removed the following quasars from the training

set:

• zQSO < 2.15: quasars with redshifts lower than 2.15 have no Lyman-α in the sdss

band.

• BAL: quasars with broad absorption lines as flagged by the sdss pipeline.

• spectra with less than 200 detected pixels.

• ZWARNING: spectra whose analysis had warnings as flagged by the sdss redshift esti-

mation. Extremely noisy spectra (the TOO MANY OUTLIERS flag) were kept.

3However, we use the dr12 pipeline throughout.
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2.6.2 Modelling Decisions

Consider a set of quasar observations D = (λ,y); we always shift the observer’s

frame λobs to rest-frame λ so that we can set the emissions of Lyman series from different

spectra to the same rest-wavelengths. The assumption here is that the zQSOs of quasars are

known for all the observed spectra, which is not precisely true for the spectroscopic data we

have here. Accurately estimating the redshift of quasars is beyond the scope of this paper,

and is tackled elsewhere [65].

The observed magnitude of a quasar varies considerably, based on its luminosity

distance and the properties of the black hole. For the observation y to be described by a gp,

it is necessary to normalize all flux measurements by dividing by the median flux observed

between 1310 Å and 1325 Å, a wavelength region which is unaffected by the Lyman-α forest.

We model the same wavelength range as in [3]:

λ ∈ [911.75Å, 1215.75Å], (2.10)

going from the quasar rest frame Lyman limit to the quasar rest frame Lyman-α. The

spacing between pixels is ∆λ = 0.25Å. Note that we prefer not to include the region past

the Lyman limit. This is partly due to the relatively small amount of data in that region

and partly because the non-Gaussian Lyman break associated with Lyman limit systems

can confuse the model. In particular, it occasionally tries to model a Lyman break with

a wide dla profile with a high column density. We shall see this is especially a problem

if the quasar redshift is slightly inaccurate. The code considers the prior probability of a

Lyman break at a higher redshift than the putative quasar rest frame to be zero and thus

is especially prone to finding other explanations for the large absorption trough.
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To model the relationship between flux measurements and the true qso emission

spectrum, we have to add terms corresponding to instrumental noise and weak Lyman-α

absorption to the intrinsic correlations within the emission spectrum. Instrumental noise

was already added in Eq. 2.9 as a matrix V.

The remaining part of the modelling is to define the gp covariance structure for

quasars across different redshifts. In [3], Lyman-α absorbers were modelled by a single

additive noise term, Ω, accounting for the effect of the forest as extra noise in the emission

spectrum. This is not completely physical: it assumes that the Lyman-α forest is just as

likely to cause emission as absorption.

Here we rectify this by not only including the Lyman-α perturbation term in

our Gaussian process as Ω, but introducing a redshift dependent mean flux (µ(z)) with

a dependence on the absorber redshift (z(λobs)). We model the overall mean model with

a redshift dependent absorption function and a mean emission vector: µ(z) = a(z) ◦ µ.

The notation ◦ refers to Hadamard product, which is the element-wise product between

two vectors or matrices. The covariance matrix is decomposed into AF(K + Ω)AF, where

diag (AF) = a(z) and AF is a diagonal matrix.4 The K matrix describes the covariance

between different emission lines in the quasar spectrum, which we will learn from data. The

AF matrix is applied to K because we assume that K is learned before the absorption noise

a(z) is applied. See Sec2.6.4 for how we learn the covariance.

4A⊺
F = AF because it is diagonal.
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Combining all modelling decisions, the model prior for an observed qso emission

is:

p(y | λ,ν,zQSO,M¬DLA) =

N (y;µ(z),AF(K + Ω)AF + V).

(2.11)

The mean emission flux is now redshift- and wavelength-dependent, so the optimisation steps

will differ slightly from [3]. We will address the modifications in the following subsections.

2.6.3 Redshift-Dependent Mean Flux Vector

In this paper, instead of using a single mean vector µ to describe all spectra, we

adjust the mean model of the gp to fit the mean flux of each quasar spectrum. For modeling

the effect of forest absorption on the flux, we adopt an empirical power law with effective

optical depth τ0(1 + z)β for Lyα forest [66]:

a(z) = exp (−τ0(1 + z)β), (2.12)

where the absorber redshift z is related to the observer’s wavelength λobs as:

1 + z =
λobs
λLyα

=
λobs

1215.7Å

= (1 + zQSO)
λ

1215.7Å
,

(2.13)

so the absorber redshift z(λobs) = z(λ, zQSO) is a function of the quasar redshift and the

wavelength.
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In [3], we assumed the absorption from the forest would only play a role in the

additive noise term (ω) in our likelihood model p(y | λ,ν,ω, zQSO,M¬DLA) with the form:

ω′(λ, λobs) = ω(λ)s(z(λobs))
2; (2.14)

s(z) = 1− exp (−τ0(1 + z)β) + c0, (2.15)

where z is the absorber redshift. The ω(λ) term represents the global absorption noise, and

the s(z) corresponds to the absorption effect contributed by the Lyman-α absorbers along

the line of sight as a function of the absorber redshift z.

Thus in our earlier model the Lyman-α forest introduces additional fluctuations

in the observed spectrum y. This assumption worked well for low-redshift spectra, because

mean absorption due to the Lyman-α forest at low redshifts is relatively small. At high-

redshifts however, the suppression of the mean flux induced by many Lyman-α absorbers

is substantial, see Figure 2.1. In our earlier model, essentially all high-redshift qso spectra

were substantially more absorbed than the mean emission model µ due to absorption from

the Lyman-α forest. To explain this absorption, our model would fit multiple dlas with

large column densities.

We have improved the modelling of the Lyman-α forest by allowing the mean

gp model µ to be redshift dependent, having a mean optical depth following the measure-

ment of [66]:

τeff(z) = τ0(1 + z)γ

= 0.0023× exp (1 + z)3.65,

(2.16)

There are other measurements of τeff at higher precision than [66], [e.g., Ref. [67]]. However,

they are derived from sdss data while [66] was derived from high resolution spectra. We
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therefore choose to use [66] to preserve the likelihood principle that priors should not depend

on the dataset in question.

We include the effect of the whole Lyman series with a similar model, but however

accounting for the different atomic coefficients of the higher order Lyman lines:

τeff,HI(z(λobs); γ, τ0) =

N∑
i=2

τ0
λ1if1i
λ12f12

(1 + z1i(λobs))
γ × I(z1i(min (λobs)),zQSO)(z)

(2.17)

Here f1i represents the oscillator strength and λ1i corresponds to the transition wavelength

from the n = 1 to n = i atomic energy level. We model the Lyman series up to N = 32,

with i = 2 being Lyα and i = 3 Lyβ. The absorption redshift z1i for the n = 1 to n = i

transition is defined by:

1 + z1i =
λobs
λ1i

. (2.18)

The optical depth at the line center is estimated by:

τ0 =
√
π
e2

mec

Nℓfℓuλℓu
b

, (2.19)

where ℓ indicates the lower energy level and u is the upper energy level. For Lyman-

α, we have λℓu = 1215.7 Å and fℓu = 0.4164; for Lyman-β, we have λℓu = 1025.7 and

fℓu = 0.07912. Given Eq. 2.19, we have the effective optical depth for the Lyman-β forest:

τβ =
f31λ31
f21λ21

τ0 =
0.07912× 1025.7

0.4164× 1215.7
× 0.0023 = 0.0004. (2.20)

The mean prior of the gp model for each spectrum is re-written as:

µ(z) = µ ◦ exp (−τeff,HI(z; γ = 3.65, τ0 = 0.0023)). (2.21)
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We will simply write τeff,HI(z) = τeff,HI(z; γ = 3.65, τ0 = 0.0023) in the following text for

simplicity. The new µ is estimated via:

µ =
1

N¬NaN

∑
yij ̸=NaN

yij · exp (+τeff,HI(zij)). (2.22)

Eq. 2.22 rescales the mean observed fluxes back to the expected continuum before the

suppression due Lyman series absorption, hopefully recovering approximately the true qso

emission function f . Figure 2.1 shows the re-trained mean quasar emission model for an

example quasar. The mean model, µ, is much closer to the peak emission flux above the

absorbed forest.

For model consistency, we account for the mean suppression from weak absorbers

in our redshift-dependent noise model ω with:

ω′(λ, λobs) = ω(λ)sF (z(λobs))
2; (2.23)

where sF (z(λobs)) = 1− exp (−τeff,HI(z(λobs);β, τ0)) + c0 . (2.24)

τ0, β, and c0 are parameters that are learned from the data. Figure 2.2 shows the mean

model and absorption noise variance we use, compared to the model from [3].

Note that the mean flux model introduces degeneracies between the parameters

of Eq. 2.24. For example, c0 may be compensated by the overall amplitude of pixel-wise

noise vector ω. For this reason, we should not ascribe strict physical interpretations to the

optimal values of Eq. 2.24. The optimised ω′ is simply an empirical relation modeling the

pixel-wise and redshift-dependent noise in the null model given sdss data.

After introducing the effective optical depth into our gp mean model, we decrease

the number of large dlas we detect at high redshifts and thus measure lower ΩDLA at high
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redshifts (see Section 2.11.3 for more details). This is because, for high redshift quasars,

the mean optical depth may be close to unity. To explain this unexpected absorption, the

previous code will fit multiple high-column density absorbers to the raw emission model,

artificially increasing the number of dlas detected. With the mean model suppressed, there

is substantially less raw absorption to explain, and so this tendency is avoided.

2.6.4 Learning the flux covariance

K and Ω (Eq. 2.11) are optimised to maximise the likelihood of generating the data,

D. The mean flux model is not optimized, but follows the effective optical depth reported in

[66]. Thus we remove the effect of forest absorption before we train the covariance function

and train on D′ = {λ,y ◦ exp (+τeff,HI(z)) − µ(z)} to find the optimal parameters for K

and Ω.

We assume the same likelihood as [3] for generating the whole training data set

(Y):

p(Y | λ,V,M,ω,zQSO,M¬DLA)

=

Nspec∏
i=1

N (yi;µ,K + Ω + Vi),

(2.25)

where Y means the matrix containing all the observed flux in the training data, and the

product on the right hand side says we are combining all likelihoods from each single

spectrum. The noise matrix Ω = diag ω′ is the diagonal matrix which represents the

Lyman-α forest absorption from Eq. 2.24.

M is a low-rank decomposition of the covariance matrix K we want to learn:

K = MM⊤, (2.26)
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where M is an (Npixels×k) matrix. Without this low-rank decomposition, we would need to

learn N2
pixel = 1 217×1 217 free parameters. With Eq. 2.26, we can limit the number of free

parameters to be Npixels×k, where k ≪ Npixels; also, it guarantees the covariance matrix K

to be positive semi-definite. Each column of the M can be treated as an eigenspectrum of

the training data, where we set the number of eigenspectra to be k = 20. We will optimise

the M matrix and the absorption noise in Eq. 2.24 simultaneously.

A modification performed in this work is to, instead of directly training on the

observed flux, optimise the covariance matrix and noise model on the flux with Lyman-α

forest absorption removed (de-forest flux):

y := y ◦ exp (+τeff,HI(z));

Yij := Yij exp (+τeff,HI(z))ij .

(2.27)

We may write this change into the likelihood:

p(Y ◦ exp (+τeff,HI(z)) | λ,V,M,ω, zQSO,M¬DLA)

=

Nspec∏
i=1

N (yi ◦ exp (+τeff,HI(zi));µ,K + Ω + Vi),

(2.28)

where µ is the mean model from Eq. 2.22. The rest of our optimisation procedure follows

the unconstrained optimisation of [3].

We use de-forest fluxes for training as we want our covariance matrix to learn

the covariance in the true emission function. The emission function (like our kernel K)

is independent of quasar emission redshift, whereas the absorption noise is not. We only

implement the mean forest absorption of [66], so we need an extra term to compensate for

the variance of the forest around this mean. We thus still train the redshift- and wavelength-
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Figure 2.1: The effect of the shift to the gp mean vector from the Lyman-α forest effective
optical depth model (µ◦exp (−τ0(1 + z)β)). The dotted red curve shows the mean emission
model before application of the forest suppression. The solid red curve is the mean model
including the forest suppression.
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Figure 2.2: The difference between the original pixel-wise noise variance ω [3] and the
re-trained ω from Eq. 2.28. The re-trained ω decreases because the fit no longer needs to
account for the mean forest absorption.

dependent absorption noise from data. The optimal values we learned for Eq. 2.24 are:

c0 = 0.3050; τ0 = 1.6400× 10−4;β = 5.2714. (2.29)

As we might expect, the optimal τ0 value is smaller than the τ0 = 0.01178 learned in [3],

which implies the effect of the forest is almost removed by applying the Lyman- series forest

to the mean model.
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Figure 2.3: The trained covariance matrix M, which is almost the same as the covariance
from [3]. Note that we normalize the diagonal elements to be unity, so this is more like a
correlation matrix than a covariance matrix. The values in the matrix are ranging from 0
to 1, representing the correlation between λ and λ′ in the qso emission.
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2.6.5 Model evidence

Consider a given qso observation D = (λ,y) with known observational noise ν(λ)

and known qso redshift zQSO. The model evidence for M¬DLA can be estimated using

p(D | M¬DLA, ν, zQSO) ∝ p(y | λ,ν, zQSO,M¬DLA), (2.30)

which is equivalent to evaluating a multivariate Gaussian

p(y | λ,ν, zQSO,M¬DLA)

= N (y;µ ◦ exp (−τ eff,HI),AF(K + Ω)AF + V) .

(2.31)

Here exp (−τ eff,HI) = diag AF describes the absorption due to the forest and modifies the

mean vector µ, the covariance matrix K and the noise matrix Ω to account for the Lyman-

α forest effective optical depth.

2.7 A GP Model for QSO Sightlines with Multiple DLAs

In Section 2.6, we learned a gp prior for qso spectroscopic measurements without

any dlas for our null model M¬DLA. Here we extend the null model M¬DLA to a model

with k intervening dlas, MDLA(k).

Our complete dla model, MDLA, will be the union of the models with i dlas:

MDLA = {MDLA(i)}ki=1. We consider only until k = 4, as dlas are rare events and our

sample only contains one spectrum with 4 dlas.

2.7.1 Absorption function

Before we model a quasar spectrum with intervening dlas, we need to have an

absorption profile model for a dla. Damped Lyman alpha absorbers, or dlas, are neutral
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hydrogen (hi) absorption systems with saturated lines and damping wings in the spectro-

scopic measurements. Having saturated lines means the column density of the absorbers on

the line of sight is high enough to absorb essentially all photons. The damping wings are

due to natural broadening in the line.

The optical depth from each Lyman series transition is

τ(λ; zDLA, NHI) = NHI
πe2f1uλ1u

mec
ϕ(v, b, γ), (2.32)

where e is the elementary charge, λ1u is the transition wavelength from the n = 1 to n = u

energy level (λ12 = 1215.6701 Å for Lyman-α) and f1u is the oscillator strength of the

transition. The line profile ϕ is a Voigt profile:

ϕ(v, b, γ) =∫
dv√
2πσv

exp (−v2/2σ2v)
4γℓu

16π2[ν − (1− v/c)νℓu]2 + γ2ℓu
,

(2.33)

which is a convolution between a Lorenztian line profile and a Gaussian line profile. The

σv is the one-dimensional velocity dispersion, γℓu is a parameter for Lorenztian profile, ν

is the frequency, and u represents the upper energy level and ℓ represents the lower energy

level.

Both profiles are parameterised by the relative velocity v, which means both pro-

files are distributions in the 1-dimensional velocity space:

v = c

(
λ

λ1u

1

(1 + zDLA)
− 1

)
. (2.34)

The standard deviation of the Gaussian line profile is related to the broadening

parameter b =
√

2σv, and if we assume the broadening is entirely due to thermal motion:

b =

√
2kT

mp
. (2.35)
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Introducing the damping constant Γ = 6.265× 108s−1 for Lyman-α, we have the parameter

γℓu to describe the width of the Lorenztian profile

γℓu =
Γλℓu
4π

. (2.36)

Our default dla profile includes Lyα, Lyβ, and Lyγ absorptions. We fix the

broadening parameter b by setting T = 104 K, which increases the width of the dla profile

by 13 km s−1, small compared to the effect of the Lorenztian wings. Thus, for a given qso

and a true emission function f(λ), the function for the observed flux y(λ) is

y(λ) = f(λ) exp (−τ(λ; zDLA, NHI)) exp (−τeff,HI(λobs)) + ϵ, (2.37)

where ϵ is additive Gaussian noise including measurement noise and absorption noise.

Suppose we have a dla at redshift zDLA with column density NHI. We can model

the spectrum with an intervening dla by calculating the dla absorption function:

a = exp (−τ(λ; zDLA, NHI)). (2.38)

We apply the absorption function to the gp prior of y with

p(y | λ,ν, zQSO, zDLA, NHI,MDLA)

= N (y;a ◦ (aF ◦ µ),A(AF(K + Ω)AF)A + V),

(2.39)

where A = diag a.

For a model with k dlas with k ∈ N, we simply take the element-wise product of

k absorption functions:

a(k) =
k∏

i=1

a(λ; zDLAi, NHIi);

diag A(k) = a(k).

(2.40)
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The prior for MDLA(k) would therefore be:

p(y | λ,ν, zQSO, {zDLAi}ki=1, {NHIi}ki=1,MDLA(k)) =

N (y;a(k) ◦ (aF ◦ µ),A(k)(AF(K + Ω)AF)A(k) + V).

(2.41)

Here we briefly review our notations in Eq2.41: a(k), which is parameterised by

({zDLAi}ki=1, {NHIi}ki=1), represents the absorption function with k dlas in one spectrum.

Note that each dla is parameterised by a pair of (zDLA, NHI). aF corresponds to the

absorption function from the Lyman series absorptions, which is derived from [66] in the

form of Eq. 2.21. The covariance matrix K and the absorption model Ω are both learned

from data, as described in Section 2.6.4. V is the noise variance matrix given by the sdss

pipeline, so each sightline would have different V.

2.7.2 Model Evidence: DLA(1)

The model evidence of our dla model is given by the integral:

p(D | MDLA(1), zQSO) ∝∫
p(y | λ,ν, θ, zQSOMDLA(1))p(θ | zQSO,MDLA(1))dθ,

(2.42)

where we integrated out the parameters, θ = (zDLA, log10NHI), with a given parameter

prior p(θ | zQSO,MDLA(1)).

However, Eq. 2.42 is intractable, so we approximate it with a quasi-Monte Carlo

method (qmc). qmc selects N = 10 000 samples with an approximately uniform spatial

distribution from a Halton sequence to calculate the model likelihood, approximating the

model evidence by the sample mean:
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p(D | MDLA(1), zQSO) ≃

1

N

N∑
i=1

p(D | θi, zQSO,MDLA(1)).

(2.43)

2.7.3 Model evidence: Occam’s Razor Effect for DLA(k)

For higher order dla models, we have to integrate out not only the nuisance

parameters of the first dla modelMDLA(1), (θ1) but also the parameters fromMDLA(2) to

MDLA(k),

p(D | MDLA(k), zQSO) ∝∫
p(D | MDLA(k),{θi}ki=1)×

p({θi}ki=1 | MDLA(k),D, zQSO)d{θi}ki=1,

(2.44)

which means we are marginalising {θi}ki=1 in a parameter space with 2 × k dimensions.

The parameter prior of multi-dlas is a multiplication between a non-informative prior

p(θi | MDLA(1), zQSO) and the posterior of the (k − 1) multi-dla model,

p({θi}ki=1 | MDLA(k),D, zQSO) =

p({θi}k−1
i=1 | MDLA(k−1),D, zQSO)p(θk | zQSO,MDLA(1)).

(2.45)

We can approximate this integral using the same qmc method. For example, if we

want to sample the model evidence for MDLA(2), we would need N = 10 000 samples for

each parameter dimension {θi}2i=1, which results in sampling from two independent Halton
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sequences with 108 samples in total. If we want to sample up to MDLA(k) with N samples

for each {θi} from i = 1, ..., k, we would need to have:

p(D | MDLA(k), zQSO)

≃ 1

N

N∑
j(1)=1

1

N

N∑
j(2)=1

1

N

N∑
j(3)=1

. . .
1

N

N∑
j(k)=1

p(D | MDLA(k), {θ1j(1) , θ2j(2) , θ3j(3) , . . . , θkj(k)}, zQSO),

(2.46)

where {j(1), j(2), j(3), . . . , j(k)} indicate the indices of qmc samples. The above Eq. 2.46 is

thus in principle evaluated with Nk samples.

In practice, we only sample N = 10 000 points from p({θi}ki=1 | MDLA(k),D, zQSO)

instead of sampling Nk points, as a uniform sampling of the first dla model may be

reweighted to cover parameter space for the higher order models. A Nk−1 factor of normal-

isation is thus left behind in the summation,

p(D |MDLA(k), zQSO)

≃ 1

Nk

N∑
j=1

p(D | MDLA(k), {θij}ki=1, zQSO)

≃ 1

Nk−1

 1

N

N∑
j=1

p(D | MDLA(k), {θij}ki=1, zQSO)


≃ 1

Nk−1
meanj

(
p(D | MDLA(k), {θij}ki=1, zQSO)

)
.

(2.47)

The additional 1
Nk−1 factor penalises models with more parameters than needed, and can

be viewed as an implementation of Occam’s razor. This Occam’s razor effect is caused by

the fact that all probability distributions have to be normalised to unity. A model with

more parameters, which means having a wider distribution in the likelihood space, results

in a bigger normalisation factor.
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The motivation for us to draw N samples from the multi-dla likelihood function

p({θi}ki=1 | MDLA(k),D, zQSO) is that we believe the prior density we took from the posterior

density ofMDLA(k−1) is representative enough even without Nk samples. For example, if we

have two peaks in our likelihood density p(D | MDLA(1), θ1, zQSO), we expect the sampling

for θ2 in p(D | MDLA(2), {θ1, θ2}, zQSO) would concentrate on sampling the density of the

first highest peak in p(D | MDLA(1), θ1, zQSO) density. Similarly, while we are sampling for

MDLA(3), we expect θ3 and θ2 would cover the first and the second-highest peaks.

To avoid multi-dlas overlapping with each other, we inject a dependence between

any pair of zDLA parameters. Specifically, if any pair of zDLAs have a relative velocity

smaller than 3 000 km s−1, then we set the likelihood of this sample to NaN.

2.7.4 Additional penalty for DLAs and sub-DLAs

In Section 2.7.3, we apply a penalty, Occam’s razor, to regularise dla models

using more parameters than needed. This effect is due to the normalization (to unity) of

the evidence.

In a similiar fashion, and for a similar reason, we apply an additional regularisation

factor between the non-dla and dla models (including sub-dlas). This additional factor

ensures that when both models are a poor fit to a particular observational spectrum, the

code prefers the non-dla model, rather than preferring the model with more parameters

and thus greater fitting freedom. We directly inject this Occam’s razor factor in the model
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selection:

Pr(MDLA | D) =

Pr(MDLA)p(D | MDLA) 1
NPr(MDLA)p(D | MDLA)

+Pr(Msub)p(D | Msub)

 1
N + Pr(M¬DLA | D)

, (2.48)

where N = 104 is the number of samples we used to approximate the parameterised likeli-

hood functions. We evaluated the impact of this regularization factor on the area under the

curve (auc) in the receiver-operating characteristics (roc) plot.5 For N = 104, the auc

changed from 0.949 to 0.960. We considered other penalty values and found that the auc

increased up to N = 104 and then plateaued.

In addition, we found by examining specific examples that this penalty regularized

a relatively common incorrect dla detection: finding objects in short, very noisy low redshift

(z ∼ 2.2) spectra. In these spectra our earlier model would prefer the dla model purely

because of its large parameter freedom. In particular a high column density dla, large

enough that the damping wings exceed the width of the spectrum, would be preferred.

Such a fit exploits a degeneracy in the model between the mean observed flux and the dla

column density when the spectrum is shorter than the putative dla. The Occam’s razor

penalty avoids these spurious fits by penalising the extra parametric freedom in the dla

model.

5See Section 2.11.1 for how we compute our roc plot.
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2.7.5 Parameter prior

Here we briefly recap the priors on model parameters chosen in [3]. Suppose

we want to make an inference for the column density and redshift of an absorber θ =

(NHI, zDLA) from a given spectroscopic observation, the joint density for the parameter

prior would be

p(θ | zQSO,MDLA(1)) = p(NHI, zDLA | zQSO,MDLA(1)). (2.49)

Suppose the absorber redshift and the column density are conditionally independent and

the column density is independent of the quasar redshift zQSO:

p(θ | zQSO,MDLA(1)) =

p(zDLA | zQSO,MDLA(1))p(NHI | MDLA(1))

(2.50)

We set a bounded uniform prior density for the absorber redshift zDLA:

p(zDLA | zQSO,MDLA(1)) = U [zmin, zmax], (2.51)

where we define the finite prior range to be

zmin = max


λLy∞
λLyα

(1 + zQSO)− 1 + 3 000 km s−1/c

minλobs
λLyα

− 1

(2.52)

zmax = zQSO − 3 000 km s−1/c; (2.53)

which means we have a prior belief that the center of the absorber is within the observed

wavelengths. The range of observed wavelengths is either from Ly∞ to Lyα of the quasar

rest-frame (λrest ∈ [911.75 Å, 1216.75 Å]) or from the minimum observed wavelength to

Lyα. We also apply a conservative cutoff of 3 000 km s−1 near to Ly∞ and Lyα. The
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−3 000 km s−1 cutoff for zmax helps to avoid proximity ionisation effects due to the quasar

radiation field. Furthermore, the +3 000 km s−1 cutoff for zmin avoids a potentially incorrect

measurement for zQSO. An underestimated zQSO can produce a Lyman-limit trough within

the region of the quasar expected to contain only Lyman-series absorption, and the code

can incorrectly interpret this as a dla.

For the column density prior, we follow [3]. We first estimate the density of dlas

column density p(NHI | MDLA) using the boss dr9 Lyman-α forest sample. We choose

to put our prior on the base-10 logarithm of the column density log10NHI due to the large

dynamic range of dla column densities in sdss dr9 samples.

We thus estimate the density of logarithm column densities p(log10NHI | MDLA(1))

using univariate Gaussian kernels on the reported log10NHI values in dr9 samples. Column

densities from dlas in dr9 with NDLA = 5 854 are used to non-parametrically estimate the

logarithm NHI prior density, with:

pKDE(log10NHI | MDLA(1))

=
1

NDLA

NDLA∑
i=1

N (log10NHI; li, σ
2),

(2.54)

where li is the logarithm column density log10NHI of the ith sample. The bandwidth σ2 is

selected to be the optimal value for a normal distribution, which is the default setting for

matlab.

We further simplify the non-parametric estimate into a parametric form with:

pKDE( log10NHI = N | MDLA(1)) ≃

q(log10NHI = N) ∝ exp (aN2 + bN + c);

(2.55)
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where the parameters (a, b, c) for the quadratic function are fitted via standard least-squared

fitting to the non-parametric estimate of density pKDE(log10NHI | MDLA(1)) with the range

log10NHI ∈ [20, 22]. The optimal values for the quadratic terms were:

a = −1.2695; b = 50.863; c = −509.33; (2.56)

Note that we have the same values as in [3].

Finally, we choose to be conservative about the data-driven column density prior.

We thus take a mixture of a non-informative log-normal prior with the data-driven prior to

make a non-restrictive prior on a large dynamical range:

p(log10NHI | MDLA(1))

= αq(log10NHI = N) + (1− α)U [20, 23].

(2.57)

Here we choose the mixture coefficient α = 0.97, which favours the data-driven prior. We

still include a small component of a non-informative prior so that we are able to detect

dlas with a larger column density than in the training set, if any are present in the larger

dr12 sample. Note that α = 0.97 is 7% higher than the coefficient chosen in [3], which was

α = 0.90. Our previous prior slightly over-estimated the number of very large dlas.

2.7.6 Sub-DLA parameter prior

As reported in [62], the column density distribution function (cddf) exhibited an

edge feature: an over-detection of dlas at low column densities (∼ 1020 cm−2). This did not

affect the statistical properties of dlas as we restrict column density to NHI ⩾ 1020.3 cm−2

for both line densities (dN/dX) and total column densities (ΩDLA). However, to make our
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method more robust, here we describe a complementary method to avoid over-estimating

the number of low column density absorbers.

The excess of dlas at ∼ 1020 cm−2 is due to our model excluding lower column

density absorbers such as sub-dlas. Since we limited our column density prior of dlas to

be larger than 1020 cm−2, the code cannot correctly classify a sub-dla. Instead it correctly

notes that a sub-dla spectrum is more likely to be a dla with a minimal column density

than an unabsorbed spectrum.

To resolve our ignorance, we introduce an alternative model Msub to account the

model posterior of those low column density absorbers in our Bayesian model selection.

The likelihood function we used for sub-dlas is identical to the one we built for dla model

MDLA(1) in Eq. 2.39 but has a different parameter prior on the column densities p(log10NHI |

Msub). We restricted our prior belief of sub-dlas to be within the range log10NHI ∈

[19.5, 20], and, as we do not have a catalogue of sub-dlas for learning the prior density, we

put a uniform prior on log10NHI:

p(log10NHI | Msub) = U [19.5, 20]. (2.58)

We place a lower cutoff at log10NHI = 19.5 because the relatively noisy sdss data offers

limited evidence for absorbers with column densities lower than this limit.

2.8 Model Priors

Bayesian model selection allows us to combine prior information with evidence

from the data-driven model to obtain a posterior belief about the detection of dlas p(MDLA |

D) using Bayes’ rule. For a given spectroscopic observation D, we already have the ability to
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compute the model evidence for a dla (p(D | MDLA)) and no dla (p(D | M¬DLA)). How-

ever, to compute the model posteriors, we need to specify our prior beliefs in these models.

Here we approximate our prior belief Pr(MDLA) using the sdss dr9 dla catalogue.

Consider a qso observation D = (λ,y) at zQSO. We want to find our prior belief

that D contains a dla. We count the fraction of qso sightlines in the training set containing

dlas with redshift less than zQSO + z′, where z′ = 30 000 km s−1/c is a small constant. If N

is the number of qso sightlines with redshift less than zQSO + z′, and M is the number of

sightlines in this set containing dlas in the quasar rest-frame wavelengths range we search,

then our empirical prior for MDLA is:

Pr(MDLA | zQSO) =
M

N
. (2.59)

We can break down our dla prior Pr(MDLA | zQSO) for multiple dlas in a qso

sightline Pr(MDLA(k) | zQSO) via:

Pr(MDLA(k) | zQSO) ≃
(
M

N

)k

−
(
M

N

)k+1

. (2.60)

For example, M
N represents our prior belief of having at least one dla in the sightline, and

(MN )2 represents having at least two dlas. M
N − (MN )2 is thus our prior belief of having

exactly one dla at the sightline.

2.8.1 Sub-DLA model prior

The column density distribution function (cddf) of [62] exhibited an edge effect

at log10NHI ∼ 20 due to a lack of sampling at lower column densities. We thus construct

an alternative model for lower column density absorbers (sub-dlas, dlas’ lower column

76



density cousins) to regularise dla detections. We use the same gp likelihood function as

the dla model MDLA to compute our sub-dla model evidence p(D | Msub) but with a

different column density prior p(log10NHI | Msub).

There is no sub-dla catalogue available for us to estimate the empirical prior

directly. We, therefore, approximate our sub-dla model prior by rescaling our dla model

prior:

Pr(Msub | zQSO) ∝ Pr(MDLA | zQSO), (2.61)

and we require our prior beliefs to sum to unity:

Pr(M¬DLA | zQSO) + Pr(Msub | zQSO)

+ Pr(MDLA | zQSO) = 1.

(2.62)

The scaling factor between the dla prior and sub-dla prior should depend on our

prior probability density of the column density of the absorbers. Here we assume the density

of sub-dla log10NHI is an uniform density with a finite range of log10NHI ∈ [19.5, 20]. We

believe there are more sub-dlas than dlas as high column density systems are generally

rarer. We thus assume the probability of finding sub-dlas at a given log10NHI is the same

as the probability of finding dlas at the most probable log10NHI, which is:

p(log10NHI = N | {MDLA,Msub}) =

αq(N | MDLA)I(20,23)(N)

+αmax (q(N | MDLA))I(19.5,20)(N)

+(1− α)U [19.5, 23].

(2.63)

Since q(N | MDLA) has a simple quadratic functional form, we can solve the maximum

value analytically, which is max (q(N | MDLA)) ≃ q(N = 20.03 | MDLA).
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We thus can use our prior knowledge about the logarithm of column densities for

different absorbers to rescale model priors:

Pr(Msub | zQSO) =
Zsub

ZDLA
Pr(MDLA | zQSO), (2.64)

where the scaling factor is:

Zsub

ZDLA
=

∫ 20
19.5 p(N | {MDLA,Msub})dN∫ 23
20 p(N | {MDLA,Msub})dN

, (2.65)

which is the odds of finding absorbers in the range of log10NHI ∈ [19.5, 20] compared to

finding absorbers in log10NHI ∈ [20, 23]. Note that we will treat the model posteriors of the

sub-dla model as part of the non-detections of dlas in the following analysis sections.

2.9 Catalogue

The original parameter prior in [3] is uniformly distributed in zDLA between the

Lyman limit (λrest = 911.76 Å) and the Lyα emission of the quasar. In [62], we chose the

minimum value of zDLA to be at the Lyβ emission line of the quasar rest-frame (instead of

the Lyman limit) to avoid the region containing unmodelled Lyβ forest. The primary reason

for this was that the original absorption noise model did not include Lyβ absorption. With

the updated model from Eq. 2.24 we are able to model this absorption. Hence, for our new

public catalogue, we sample zDLA to be from Ly∞ to Lyα in the quasar rest-frame and for

the convenience of future investigators our public catalogue contains dlas throughout the

whole available spectrum, including Lyβ to Ly∞. There is still some contamination in the

blue end of high redshift spectra from the Lyβ forest and occasional Lyman breaks from a

misestimated quasar redshift. In practice we shall see that the contamination is not severe
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except for zDLA > 3.75. However, in the interest of obtaining as reliable dla statistics as

possible, when computing population statistics we consider only 3 000 Å redward of Lyβ to

3 000 Å blueward of Lyα in the quasar rest frame.

In this paper, we computed the posterior probability ofM¬DLA toMDLA(k) mod-

els. For each spectrum, the catalogue includes:

• The range of redshift dla searched [zmin, zmax],

• The log model priors from log Pr(M¬DLA | zQSO), log Pr(Msub | zQSO), to log Pr({MDLA(i)}ki=1 |

zQSO),

• The log model evidence log p(y | λ,ν, zQSO,M), for each model we considered,

• The model posterior Pr(M | D, zQSO), for each model we considered,

• The probability of having dlas Pr({MDLA} | D, zQSO),

• The probability of having zero dlas Pr(M¬DLA | D, zQSO),

• The sample log likelihoods log p(y | λ,ν, zQSO, {zDLA(i)}ki=1, {log10NHI(i)}ki=1,MDLA(k))

for all dla models we considered, and

• The maximum a posteriori (map) values of all dla models we considered.

The full catalogue will be available alongside the paper: http://tiny.cc/multidla_catalog_

gp_dr12q. The code to reproduce the entire catalogue will be posted in https://github.

com/rmgarnett/gp_dla_detection/tree/master/multi_dlas.
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2.9.1 Running Time

We ran our multi-dla code on ucr’s High-Performance Computing Center (hpcc)

and Amazon Elastic Compute Cloud (ec2). The computation of model posteriors of

M¬DLA, Msub, {MDLA(i)}4i=1 takes 7-11 seconds per spectrum on a 32-core node in hpcc

and 3-5 seconds on a 48-core machine in ec2. For each spectrum, we have to compute

10 000 ∗ 5 + 1 log likelihoods in the form of Eq. 2.11. If we scale the sample size from

N = 10 000 to 100 000, it costs 38-52 seconds on a 32-core node in hpcc.

2.10 Example spectra

Here we show a few examples of the fitted gp priors, both to compare our method

to others and to aid the reader in understanding concretely how our method works.

Figure 2.5 shows an example where our new code detects three dlas in a single

spectrum, while the older model detected only one dla as shown in Figure 2.4. Because

the mean quasar model includes a redshift dependent term corresponding to intervening

absorbers, our new mean model can now fit the mean observed quasar spectrum better.

Although we show the sample likelihoods in theMDLA(1) parameter space, our current code

finds these three dlas in the six dimensional parameter space (zDLA(i), log10NHI(i))
3
i=1.

In Figure 2.6 we show a representative sample of a very common case in our

MDLA(1) model. The red curve represents our gp prior on the given spectrum, and the

orange curve is the curve with fitted dlas provided by the cnn model presented in [4]6.

6We used the version of [4]’s catalogue listed in the published paper and found on Google Drive at
https://tinyurl.com/cnn-dlas.
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Figure 2.4: An example of finding dlas using [3]’s model. Here we use the single-dla per
spectrum version of Garnett’s model. Upper: sample likelihoods p(y | θ,MDLA) in the
parameter space θ = (zDLA, log10NHI). Red dots show the dlas predicted by [4], and the
blue squares show the maximum a posteriori (map) prediction of the [3]. Bottom: the
observed spectrum (blue), the null model gp prior (orange), and the dla model gp prior
(Red). So that the upper and bottom panels have the same x-axis, we rescale the observed
wavelength to absorber redshift.
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Figure 2.5: The same spectrum as Figure 2.4, but using the multi-dla model reported
in this paper. Upper: sample likelihoods p(y | θ,MDLA) in the parameter space of the
MDLA(1), with θ = (zDLA, log10NHI). Bottom: the observed spectrum (blue), the null
model gp prior before the suppression of effective optical depth (orange), and the multi-
dla gp prior (Red). The orange curve is slightly higher than the one in Figure 2.4 because
we try to model the mean spectrum before the forest. However, the DLA quasar model
(red curve) matches the level of the observed mean flux better than Figure 2.4 due to the
inclusion of a term for the effective optical depth of the Lyman-α forest.
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We found [4] underestimated the column densities of the underlying dlas in the spectra

due to not modelling Lyman-β and Lyman-γ absorption in dlas, while the predictions of

NHI in our model are more robust since the predicted NHI is constrained by α, β, and γ

absorption. In the spectrum, Lyman-β absorption is clearly visible (although noisy). In

Figure 2.6, [4] has actually mistaken the Lyγ absorption line of the dla for another, weaker,

dla. This demonstrates again the necessity of including other Lyman-series members in

the modelling steps. Since [4] broke down each spectrum into pieces during the training and

testing phases, it is impossible for the cnn to use knowledge about other Lyman series lines

associated with the dlas. Another example, from a spectrum where we detect 2 dlas and

the cnn detects 4 (although at low significance) is shown in Figure 2.7. Here the cnn has

mistaken both the Lyβ and Lyγ absorption associated with the large dla at z ∼ 3 (near the

quasar rest frame) for separate dlas at z = 2.4 and z = 2.22 respectively. The large dla at

z ∼ 3 has been split into two of reduced column density and reduced confidence. The cnn

has also missed the second genuine dla at a rest-frame wavelength of 1025Å, presumably

due to the proximity of an emission line. Our code, able to model the higher order Lyman

lines, has used the information contained within them to correctly classify this spectrum as

containing two dlas.

Figure 2.9 shows an example which was problematic in both the models of [3]

and [4]. This is an extremely noisy spectrum, where the length of the spectrum is not long

enough for us to contain higher order Ly-series absorption or even to see the full length of the

putative Lyman-α absorption. By eye, distinguishing a dla from the noise is challenging.
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observed flux; spec-3816-55272-76
Parks: z_dlas = (2.55,3.43); lognhis=(20.3,20.8); p_dlas=(0.337,1)

 DLA(1): 1; lognhi = (21.1)

Figure 2.6: Blue: the normalised observed flux. The spectral ID represents
spec-plate-mjd-fiber id. Yellow: Parks’ predictions on top of our null model. Our
model predicts only one dla while the cnn model in [4] predicts two dlas. One of the
dlas predicted by [4] is coincident with the Lyγ absorption from our predicted dla. z dla

corresponds to the dla redshifts reported in Parks’ catalogue, and lognhi corresponds to
the column density estimations of Parks’ catalogue. p dla is the dla confidence reported
in Parks. Red: Our current model with the highest model posterior and the maps of
column densities. In this spectrum, we show that it is crucial to include Lyβ and Lyγ
absorption from the dla in the dla profile. It not only helps to localize the dla, but it also
predicts NHI more accurately using information from the Lyβ region. The blue line shows
the observed flux, the red curve is our multi-dla gp prior, and the orange curve shows the
predicted dlas from [4] subtracted from our mean model.
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Parks: z_dlas = (2.22,2.4,2.52,3,3.07); lognhis=(20.7,20.8,20.3,22,21.6); p_dlas=(1,1,1,0.337,0.338)

 DLA(2): 0.971; lognhi = (20.6,22.3)

Figure 2.7: A spectrum in which we detect two dlas. Blue: Normalised flux. Red: gp
mean model with two intervening dlas. Yellow: The predictions from Parks’ catalogue.
Pink: The map prediction of [3] on top of the gp mean model without mean flux sup-
pression. The model posterior from [3] is listed in the legend (1) with the map value of
log10NHI. The column density estimate for the dla near λrest = 1 025Å has large uncer-
tainty (see Figure 2.8). It is thus possible that this dla could be a sub-dla, as preferred
by [4].
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Figure 2.8: The log sample likelihoods for the dla model of the spectrum shown in Fig-
ure 2.7, normalised to range from −∞ to 0. The dla at zDLA ∼ 2.52 could be a sub-dla (as
preferred by [4]), as the log10NHI estimate is uncertain. However, we found that the 2-dla
model posterior log p(MDLA(2) | y,λ,ν, zQSO) = −638 is still higher than the model poste-
rior from combining 1-dla and 1-sub-dla, which is log p(MDLA(1) +Msub | y,λ,ν, zQSO) =

−691.47.

If we examine the sample likelihoods from our model (shown in Figure 2.10), we see that

the dla posterior probability is spread over the whole of parameter space; in other words,

all models are a poor fit for this noise-dominated spectrum. The model selection is thus

really comparing the likelihood function on the basis of how much parametric freedom it

has. After implementing the additional Occam’s razor factor between the null model and

parameterised models (dlas and sub-dlas) described in Section 2.7.4, we found that the

large dla fitted to the noisy short spectrum by [3] was no longer preferred. This indicates

that our Occam’s razor penalty is effective. As shown in Figure 2.16, ΩDLA at low redshifts

is lower than the measurements in [62], indicating that this class of error is common enough

to have a measurable effect on the column density function. We checked that the addition

of the Occam’s razor penalty, ΩDLA is insensitive to the noise threshold used when selecting

the spectra for our sample.
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Figure 2.9: A noisy spectrum at zQSO = 2.378 fitted with a large dla by [3]. Red: The
model presented in this paper predicts no dla detection in thie spectrum. Pink: The map
prediction of [3] on top the gp mean model without the mean-flux suppression. Gold: The
prediction of [4] subtracted from our mean model. Note that [4] also indicates a detection
of a dla at zDLA = 2.53, but outside the range of this spectrum.

Figure 2.10: Top: The sample likelihoods of the spectrum shown in Figure 2.9. The colour
bar indicates the normalised log likelihoods ranging from −∞ to 0. Bottom: The orange
curve indicates the gp mean model before mean-flux suppression, the red curve represents
the mean model after suppression, and the blue line is the normalised flux of this spectrum.
The x-axis of this spectrum is rescaled to be the same as the zDLA presented in the upper
panel.
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There are still some very high redshift quasars (zQSO ≳ 5) where our code clearly

detects too many dlas in a single spectrum, even at low redshift. We exclude these spectra

from our population statistics. At high redshift the Lyman-α forest absorption is so strong

as to render the observed flux close to zero. We thus cannot easily distinguish between the

null model and the dla models. It is also possible that at high redshifts the mean flux

of the forest is substantially different from the [66] model we assume, and that this biases

the fit. Finally, there are few such spectra, and so we cannot rule out the possibility that

covariance of their emission spectra differs quantitatively from lower redshift quasars.

2.11 Analysis of the results

In this section, we present results from our classification pipeline, and we also

present the statistical properties (cddf, line densities dN/dX, and total column densities

ΩDLA) of the dlas detected in our catalogue.

2.11.1 ROC analysis

To evaluate how well our multi-dla classification reproduces earlier results, we

rank our dla detections using the log posterior odds between the dla model (summing up

all possible dla models {MDLA(i)}ki=1) and the null model:

log(odds) =

log Pr({MDLA} | D, zQSO)− log Pr(M¬DLA | D, zQSO),

(2.66)
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where the ranking is over all sightlines. From the top of the ranked list based on the log

posterior odds, we calculate the true positive rate and false positive rate for each rank:

TPR =
TP

TP + FN
;

FPR =
FP

FP + TN
.

(2.67)

The true positive rate is the fraction of sightlines where we detect dlas (ordered by their

rank) divided by the number of sightlines with dlas detected by earlier catalogues. The

false positive rate is the number of detections of dlas divided by the number of sightlines

where earlier catalogues did not detect dlas. In Figure 2.11 we show the tpr and fpr in a

receiver-operating characteristics (roc) plot to show how well our classification performs.

We have compared to the concordance dla catalogue [64] in the hope that it approximates

ground truth, there being no completely reliable dla catalogue.

We also want to know how well our pipeline can identify the number of dlas

in each spectrum. The dr9 concordance catalogue does not count multiple dla spectra,

and so we compare our multi-dla detections to the catalogue published by [4]. Each dla

detected in [4] comes with a measurement of their confidence of detection (dla confidence

or pParksDLA ) and a MAP redshift and column density estimate. We compare our multiple

dlacatalogue to those spectra with pParksDLA > 0.98. The resulting roc plot is shown in

Figure 2.12. We count a maximum of 2 dlas in each spectrum: 3 or more dlas in a single

sightline are extremely rare and do not provide a large enough sample for an roc plot.

Parks’ catalogue is not a priori more reliable than ours, especially in spectra with multiple

dlas, but comparing the first two dlas is a reasonable way to validate our method’s ability

to detect multiple dlas.
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Figure 2.11: The roc plot made by ranking the sightlines in boss dr9 samples using
the log posterior odds of containing at least one dla. Ground truths are from the dr9
concordance catalogue. The orange curve shows the roc plot of our current multi-dla
model, and the blue curve is derived from [3]. In this plot we consider only the model
containing at least one dla p({MDLA} | D), rather than the multiple dlas models, as the
concordance catalogue contains only one dla per spectrum.
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Figure 2.12: The roc plot for sightlines with one and two dla detections, by using the
catalogue of [4] (with dla confidence > 0.98) as ground truth.

These spectra are counted by breaking down each two-dla sightline (either in

Parks or our catalogue) into two single observations. For example, if there are two dlas

detected in Parks and one dla detected in our pipeline for an observation D, we will assign

one ground-truth detection to p(MDLA(1) | D) and assign one ground-truth detection to

p(M¬DLA | D). On the other hand, if there is only one dla detected in Parks and two dlas

detected in our pipeline, we will assign one ground-truth detection to p(MDLA(2) | D) and

one ground-truth non-detection to p(MDLA(2) | D).
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In Figure 2.13, we also analyse the maximum a posteriori (map) estimate of the

parameters (zDLA, log10NHI) by comparing with the reported values in dr9 concordance

dla catalogue. The median difference between these two is −2.2×10−4 (−66.6 km s−1) and

the interquartile range is 2.2× 10−3 (662 km s−1). For the log column density estimate, the

median difference is 0.040, and the interquartile range is 0.26. The medians and interquartile

ranges of the map estimate are very similar to the values reported in [3] with the median

of zDLA slightly smaller and the median of log10NHI slightly larger. Note that the dr9

concordance catalogue is not the ground truth, so small variations in comparison to [3]

can be considered to be negligible. As shown in Figure 2.13, both histograms are roughly

diagonal, although the scatter in column density map is large. Note that our dla-detection

procedure is designed to evaluate the model evidence across all of parameter space: a single

sample map cannot convey the full posterior probability distribution. In Section 2.11.2, we

thus describe a procedure to propagate the posterior density in the parameter space directly

to column density statistics.

2.11.2 CDDF analysis

We follow [62] in calculating the statistical properties of the modified dla catalogue

presented in this paper. We summarise the properties of dlas using the averaged binned

column density distribution function (cddf), the incident probability of dlas (dN/dX),

and the averaged matter density as a function of redshift (ΩDLA(z)).

To plot these summary statistics, we need to convert the probabilistic detections

in the catalogue to the expected average number of dlas and their corresponding variances.
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Figure 2.13: The map estimates of the dla parameters θ = (zDLA, log10NHI) for dlas
detected by our model in spectra observed by sdss dr9, compared to the values reported in
the concordance catalogue. The straight line indicates a perfect fit. Note that the concor-
dance log10NHI values are not ground truth, so the scatter in column density predictions
was expected.

We first describe how we compute the expected number of dlas in a given column density

and redshift bin. Next, we show how we derive the cddf, dN/dX, and ΩDLA(z) from the

expected number of dlas. A sample of n observed spectra contains a sequence of n model

posteriors p1DLA, p
2
DLA, ..., p

n
DLA defined by:

piDLA = p({MDLA} | yi,λi,νi, zQSOi), (2.68)

where i = 1, 2, ..., n is the index of the spectrum, and the dla model here includes all

computed dla models {MDLA} = {MDLA(i)}ki=1, so that k = 4 is the maximum possible

number of dlas in each spectrum in our model.

Suppose the region of interest is in a specific bin Θ, an interval in the parameter

space of column density or dla redshift Θ ∈ {NHI, zDLA}. To compute the posterior of

having dlas in each spectrum in a given bin Θ, piDLA({MDLA} | Θ), we integrate over

the sample likelihoods in the bin and multiply the model posterior by the total piDLA for
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spectrum i:

piDLA({MDLA} | Θ) ∝

piDLA×
∫ Θ

Θ
p(yi | {MDLA},λi,νi, zQSOi, θ)dθ .

(2.69)

θ is either zDLA or log10NHI and θ ∈ Θ = (Θ,Θ).

We calculate the posterior probability of having N dlas by noting that the full

likelihood follows the Poisson-Binomial distribution. Consider a sequence of trials with a

probability of success equal to piDLA({MDLA} | Θ) ∈ [0, 1]. The probability of having N

dlas out of a total of n trials is the sum of all possible N dlas subsets in the whole sample:

Pr(N) =∑
DLA∈FN

∏
i∈DLA

piDLA({MDLA} | Θ)

∏
j∈DLAc

(1− pjDLA({MDLA} | Θ))

(2.70)

where FN corresponds to all subsets of N integers that can be selected from the sequence

{1, 2, ..., n}. The above expression means we select all possible N choices from the entire

sample, calculate the probability of those N choices having dlas and multiply that by the

probability of the other n−N choices having no dlas. If all piDLA({MDLA} | Θ) are equal,

the Poisson-Binomial distribution reduces to a Binomial distribution.

The above Poisson-Binomial distribution is not trivial to compute given our large

sample size. The technical details of how to evaluate Eq. 2.70 efficiently are described in [62].

In short, we use [68]’s theorem to approximate those spectra with piDLA({MDLA} | Θ) <

pswitch = 0.25 by an ordinary Poisson distribution, and evaluate the remaining samples with

the discrete Fourier transform [69]. Our catalogue contains the posteriors of samples in a
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given spectrum. Combined with the above probabilistic description of the total number of

dlas in the entire sample, we are able to obtain not only the point estimation of Pr(N) but

also its probabilistic density interval.

We thus compute the column density distribution function in a given bin Θ =

NHI ∈ [NHI, NHI + ∆NHI] with:

f(N) =
F (N)

∆N∆X(z)
(2.71)

where F (N) = E(N | NHI ∈ [NHI, NHI + ∆NHI]) is the expected number of absorbers at

a given sightline within a column density interval. Thus, the column density distribution

function (cddf) f(N) is the expected number of absorbers per unit column density per

unit absorption distance, within a given column density bin.

The definition of absorption distance ∆X(z) is:

X(z) =

∫ z

0
(1 + z′)2

H0

H(z′)
dz′, (2.72)

which includes the contributions of the Hubble function H2(z)/H2
0 = ΩM(1+z)3+ΩΛ, with

ΩM is the matter density and ΩΛ is the dark energy density.

The incident rate of dlas dN/dX is defined as:

dN

dX
=

∫ ∞

1020.3
f(N | NHI, X ∈ [X,X + dX])dNHI, (2.73)

which is the expected number of dlas per unit absorption distance.

The total column density ΩDLA is defined as:

ΩDLA =

mPH0

cρc

∫ ∞

1020.3
NHIf(N | NHI, X ∈ [X,X + dX])dNHI,

(2.74)

where ρc is the critical density at z = 0 and mP is the proton mass.
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2.11.3 Statistical properties of DLAs

Based on the above calculations, we show our cddf in Figure 2.14, dN
dX in Fig-

ure 2.15, and ΩDLA in Figure 2.16.7 Note that for determining the statistical properties

of dlas, we limit the samples of zDLA to the range redward of the Lyman-β in the qso

rest-frame, as in [62].

Figure 2.14 shows the cddf from our dr12 catalogue in comparison to the dr9

catalogue of [5]. Our cddf analysis combines all spectral paths with qso redshift smaller

than 5, zDLA < 5. The cddf statistics are dominated by the low-redshift absorbers, as

demonstrated in Figure 2.17. The error bars represent the 68% confidence interval, while the

grey shaded area encloses the 95% highest density region. The cddf values in Figure 2.14

are calculated from the posterior distribution directly. We note that there are only two

dlas with map log10NHI > 22.5 in our catalogue with high confidence (pDLA > 0.99). The

non-zero values in the cddf are due to uncertainty in log10NHI, not positive detections.

[5] contains multi-dlas, but, as described in Section 2.2 in their paper, they applied

a stringent cut on their samples with cnr > 3, where cnr refers to the continuum-to-noise

ratio. The cddf of n12 in the Figure 2.14 is thus a sub-sample of their catalogue. We,

on the other hand, use all data even those with low signal-to-noise ratios. Comparing to

our previously published cddf [62], the cddf in this paper shows dla detections at low

NHI are consistent with [5]. Introducing the sub-dla as an alternative model successfully

regularises detections at ∼ 1020 cm−2.8

7The table files to reproduce Figure 2.14 to Figure 2.16 will be posted in http://tiny.cc/multidla_

catalog_gp_dr12q
8Note again the artifact at ∼ 1020 cm−2 will not affect the analyses of dN/dX or ΩDLA as the definition

of a dlas is absorbers with NHI > 1020.3 cm−2.
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Figure 2.15 shows the line density of dlas. Our results are again consistent with

those of [6] and [5] where they both agree. Our detections are between those two catalogues

at low redshift bins and consistent with [6] in the highest redshift bin. Comparing to our

previous dN/dX [62], we moderately regularise the detections of dlas at high redshifts.

This change shows that changing the mean model of the gp to include the mean flux

absorption prevents the pipeline confusing the suppression due to the Lyman alpha forest

with a dla. While the change of posterior modes in dN/dX is large at high redshift bins,

we note that those changes are mostly within 95% confidence interval of our previously

published line densities. All analyses shown measure a peak in dN/dX at z ∼ 3.5. This

may be partially due to zDLA = 3.5 the sdss colour selection algorithm systematic identified

by [70], which over-samples Lyman-limit systems (LLS), especially near the quasar, in the

redshift range 3.0 − 3.6 [71, 72]. Note however that in our analysis neighbouring redshift

bins are highly correlated and so a statistical fluctuation is also a valid explanation. We

have checked visually that our sub-DLA model successfully models spectra with a LLS in

the proximate zone of the quasar emission peak.

Figure 2.16 shows the total column density ΩDLA in dlas in units of the cosmic

density. Our results are mostly consistent with [5] although we have slightly lower ΩDLA at

z ∼ 2. This is due to our Occam’s razor penalty, which suppresses dlas in spectra which

are not long enough to include the full width of the dla. Since these are all low redshift

quasars, this suppresses dla detections at z < 2.3. As discussed in [5], [73], and [62], the

relatively low ΩDLA of [6] is due to the smaller sample size of the sdss dr5 dataset. We also

compare our ΩDLA to that measured by [7] at high redshifts (z = 4 and z = 5). [7] used a
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small but higher signal-to-noise dataset. Our results at z = 4 and z = 5 are consistent with

those from [7]. However, we note that the relatively small sample of [7] may bias it slightly

low, as contributions from dlas with NHI higher than expected to be in the survey will not

be included in their ΩDLA estimate. Our Bayesian analysis includes possible contributions

of undetected dlas with column density up to log10NHI = 23 in the error bars via the prior

on the column density.

Compared to our previously published ΩDLA [62], we found a reduction in ΩDLA

between z = 4 and z = 5. This is due to the incorporation of a better mean flux vector

model, which reduces the posterior density of high-column density systems for high-redshift

absorbers (although within the 95% confidence bars of the earlier work). Our confidence

intervals are also substantially smaller for zDLA ≳ 3.7 than in [62]. This is due to our

inclusion, for the first time, of information from the Lyman-β absorption of the dlas, which

both constrains dla properties and helps to distinguish dlas from noise fluctuations.

We have tested the robustness of our method with respect to spectra with different

snrs and found that, as in [62], the statistical properties predicted by our method are

uncorrelated with the quasar snr. Furthermore, the presence of a dla is uncorrelated with

the quasar redshift, fixing a statistical systematic in the earlier work.

As a cross-check of our wider catalogue, we also tested the cddf, line densities,

and total column densities of the dlas in our catalogue with a full range of zDLA, from

Ly∞ to Lyα. The cddf was very similar to the cddf excluding the Lyβ region shown

in Figure 2.14, but with a moderate increase at high column density. dN/dX was almost
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Figure 2.14: The cddf based on the posterior densities for at least one dla (blue, ‘gp’).
The dlas are derived from sdss dr12 spectra using the method presented in this paper.
We integrate all spectral lengths with z < 5. We also plot the cddf of [5] (n12; black) as a
comparison. The error bars represent the 68% confidence limits, while the grey filled band
represents the 95% confidence limits. Note that our cddf completely overlaps with those
of n12 for column densities in the range 1021 cm−2 < NHI < 1022 cm−2.
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Figure 2.15: The line density of dlas as a function of redshift from our dr12 multi-dla
catalogue (blue, ‘gp’). We also plot the results of [5] (n12; black) and [6] (pw09; grey).
Note that statistical error was not computed in [5].
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Figure 2.16: The total hi density in dlas, ΩDLA, from our dr12 multi-dla catalogue as
a function of redshift (blue, ‘gp’), compared to the results of [5] (n12; black), [6] (pw09;
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identical to Figure 2.15, indicating that the detection of dlas is robust even though we

extend our sampling range to Ly∞. However, ΩDLA increases for 3.5 < zDLA < 4.0. By

visual inspection we found that this is due to the spectra where the quasar redshift from the

sdss pipeline in error and a Lyman break trough appears at the blue end of the spectrum in

a region the code expects to contain only Lyβ absorption. As our model does not account

for redshift errors, it explains the absorption due to these troughs by dlas.

2.11.4 Comparison to Garnett’s Catalogue

To understand the effect of the modifications we made to our model in this paper,

we visually inspected a subset of spectra with high model posteriors of a dla in [3] (pGarnett
DLA )

but low model posteriors in our current model (pDLA). In particular, we chose spectra with

(pGarnett
DLA − pDLA > 0.99).

A large fraction of these spectra falls within the Lyβ emission region. One plausible

explanation is that the Lyβ emission region has a higher noise variance, which makes it

harder to distinguish the dla and sub-dla models. We also checked that we are not

unfairly preferring the sub-dla model during model selection. Our model selection uses the

sub-dla model only to regularise the dla model and does not consider cases where dlas

and sub-dlas occur in the same spectrum. Thus a spectrum with a clear detection of a

sub-dla could fail to detect a true dla at a different redshift. In light of this, we also tested

if combining multi-dla models with a sub-dla affects our results.

We modified the dla model, assuming that the dla and sub-dla models are

independent, to include the sub-dla model prior. We then considered an iterative sampling

procedure: First, we sampled the kth dla likelihood. Next we used the kth dla parameter
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posterior as a prior to sampleMDLA(k) and combineMDLA(k) with the sub-dla model via

sampling a non-informative prior. The full procedure can be written as:

p({θi}ki=1 | M′
DLA(k),D, zQSO) =

(1 + p(θsub | Msub, zQSO))×

p({θi}ki=1 | MDLA(k),D, zQSO),

(2.75)

For computational simplicity, we only consider the modified model until M′
DLA(3); the

probability of M′
DLA(4) is expected to be insignificant comparing to the total dla model

posterior, p({MDLA} | D, zQSO).

In practice, however, we found that this made a small difference to our results,

only marginally modifying the roc curve and cddf. Moreover, the ability of the sub-dla

model to regularize low column density dlas was reduced, so we have preserved our default

model.

2.11.5 Comparison to Parks Catalogue

In this section, we compare our results with [4]. We first show the differences

between our map predictions and Parks’ predictions for dla redshift and column density.

We required pParksDLA > 0.98. We measured the difference in posterior parameters when

both pipelines predicted one dla. As shown in Figure 2.18, both histograms are roughly

symmetric. We measure small median offsets between two pipelines with

median(zMAP
DLA − zParksDLA ) = 0.00010;

median(logNMAP
HI − logNParks

HI ) = 0.016.

(2.76)

We also compared our absorber redshift measurements and column density mea-

surements to Parks’ catalogue for those spectra which we both agree contain two dlas.
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Figure 2.18: The difference between the map estimates of the dla parameters θ =
(zDLA, log10NHI), against the predictions of [4]. We consider spectra which both catalogues
agree contain one dla.

The differences between these two have small median offsets of ∆zDLA = 0.000052 and

∆ log10NHI = 0.006 (and dominated by low column density systems).

We show the disagreement between multi-dla predictions for our catalogue and

Parks’ catalogue in Table 2.1. Note that though the multi-dla detections between our

method and Parks do not completely agree, the level of disagreement is small: 6.1%. More-

over, if Parks predicts one or two dlas, our method generally detects one or two dlas.

There are however some spectra where we detected > 2 dlas, but Parks detected none. To

understand the statistical effect of this discrepancy, we compare our dla properties to those

reported by [4]. We plot the cddf and dN/dX of that catalogue. We assume pParksDLA > 0.9

represents a dla and use zDLA and log10NHI reported in their catalogue in JSON format9.

To compute the sightline path searched over, we assume their cnn model was searching

the range Ly∞ to Lyα in the quasar rest-frame. Note this differs slightly from [4] Section

3.2 where a sightline search radius ranging from 900Å to 1346Å in the quasar rest frame

9https://tinyurl.com/cnn-dlas
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Parks 0 DLA 1 DLA 2 DLAs 3 DLAs 4 DLAs
Garnett with Multi-DLAs

0 DLA 138726 6197 142 6 0
1 DLA 3050 8752 335 4 0

2 DLAs 293 570 566 28 0
3 DLAs 30 39 34 21 0
4 DLAs 5 9 6 1 0

Table 2.1: The confusion matrix for multi-dlas detections between Garnett with multi-
dlas and Parks. Note we require both the model posteriors in Garnett and dla confidence
in Parks to be larger than 0.98. We also require log10NHI > 20.3.

is given. However, we know the centers of dlas should be at a redshift between Ly∞ and

Lyα in the rest frame and modify our search paths accordingly.

Figure 2.20 shows that dN/dX is consistent with [5] for zDLA < 3.5 (although

lower than our measurement at higher redshift). The cnn is thus successfully detecting

dlas, especially the most common case of dlas with a low column density. There are

fewer dlas detected at higher redshift, likely reflecting the increased difficulty for the cnn

of distinguishing dlas from the Lyman-α forest. This is discussed in [4], who note that

the cnn finds it difficult to detect a weak dla in noisy spectra. However, as shown in

Figure 2.19, the cddf measured by the cnn model is significantly discrepant with other

surveys for large column densities. Note that the scale is logarithmic: the cnn is failing to

detect > 60% of dlas with log10NHI > 21. We noticed that large dlas were often split into

two objects with lower column density, which accounts for many of the discrepancies between

our two datasets. We suspect this might be due to the limited size of the convolutional filters

used by [4]. If the filter is not large enough to contain the full damping wings of a given

dla, the allowed column density would be artificially limited.
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Figure 2.19: The column density distribution function from [4], showing that the cnn
algorithm substantially underestimates the number of dlas in the high-NHI regime.
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Figure 2.20: dN/dX from [4]. The dN/dX agrees well with other surveys, but there is a
moderate deficit of dlas at high redshifts.
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2.12 Conclusion

We have presented a revised pipeline for detecting dlas in sdss quasar spectra

based on [3]. We have extended the pipeline to reliably detect up to 4 dlas per spectrum.

We have performed modifications to our model for the Lyman-α forest to improve the

reliability of dla detections at high redshift and introduced a model for sub-dlas to improve

our measurement of low column density dlas. Finally we introduced a penalty on the dla

model based on Occam’s razor which meant that spectra for which both models are a poor

fit generally prefer the no-dla model.

Our results include a public dla catalogue, with several examples shown above

and further examples easily plotted using a python package. We have visually inspected

several extreme cases to validate our results and compared extensively to several earlier

dla catalogues: the dr9 concordance catalogue [64] and a dr12 catalogue using a cnn [4].

Our new pipeline had very good performance validated against both catalogues.

Based on the revised pipeline, we also presented a new measurement of the abun-

dance of neutral hydrogen from z = 2 to z = 5 using similar calculations to [62]. The

statistical properties of dlas were in good agreement with our previous results [62] and

consistent with [5], [6], and [7]. The modifications made, including introducing a sub-dla

model, adjusting the mean flux, and penalizing complex models with Occam’s razor, remove

over-detections of low column density absorbers and make more robust predictions for the

properties of dlas at z > 4. Similarly to previous work, we detect only a small increase in

the cddf for 2 < z < 4, and a similarly moderate increase in the line density of dlas and

ΩDLA over this redshift range.
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gp_dr12q, including a MAT (HDF5) catalogue and a JSON catalogue. README files are

included in each folder to explain the content of the catalogues.
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Chapter 3

Damped Lyman-alpha Absorbers

from Sloan Digital Sky Survey

DR16Q with Gaussian processes

3.1 Abstract

We present a new catalogue of Damped Lyman-α absorbers from SDSS DR16Q,

as well as new estimates of their statistical properties. Our estimates are computed with

the Gaussian process models presented in [3, 8] with an improved model for marginalising

uncertainty in the mean optical depth of each quasar. We compute the column density

distribution function (CDDF) at 2 < z < 5, the line density (dN/dX), and the neutral

hydrogen density (ΩDLA). Our Gaussian process model provides a posterior probability

distribution of the number of DLAs per spectrum, thus allowing unbiased probabilistic
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predictions of the statistics of DLA populations even with the noisiest data. We measure a

non-zero column density distribution function for NHI < 3×1022 cm−2 with 95% confidence

limits, and NHI ≲ 1022 cm−2 for spectra with signal-to-noise ratios > 4. Our results for DLA

line density and total hydrogen density are consistent with previous measurements. Despite

a small bias due to the poorly measured blue edges of the spectra, we demonstrate that

our new model can measure the DLA population statistics when the DLA is in the Lyman-

β forest region. We verify our results are not sensitive to the signal-to-noise ratios and

redshifts of the background quasars although a residual correlation remains for detections

from zQSO < 2.5, indicating some residual systematics when applying our models on very

short spectra, where the SDSS spectral observing window only covers part of the Lyman-α

forest.

3.2 Introduction

Damped Lyman-α absorbers (DLAs) are strong Lyman-α absorption features dis-

covered in quasar spectral sightlines. At the densities required to produce neutral hydrogen

column densities above the DLA threshold, NHI > 1020.3 cm−2 [49], the gas of DLAs is

self-shielded from the ionising effect of the ultra-violet background (UVB) [50] but diffuse

enough to have a low star formation rate [72]. DLAs contain a large fraction of the neutral

hydrogen budget after reionisation [52, 5, 53, 7], which make them a direct probe of the

distribution of neutral gas.

Numerical simulations tell us DLAs are associated with a wide range of halo

masses, with a peak value in the range of 1010 − 1011 M⊙ [54, 55, 18, 74]. Through
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cross-correlating the DLAs with the Lyman-α forest, [75] measured a DLA bias factor

bDLA = 2.17± 0.2. This implies a median host halo mass of ∼ 1012 M⊙, assuming all DLAs

arise from halos of the same mass and. However, a model which assumes a power-law distri-

bution function of DLA cross-section as a function of halo mass is only in marginal tension

with the data [57]. Furthermore, a later measurement from SDSS-DR12 [76] found a bias

factor bDLA = 1.99± 0.11, and a median host halo mass ∼ 4× 1011 M⊙, in good agreement

with simulations. Alternative measurements by cross-correlating with CMB lensing data

are broadly consistent with both simulated DLAs and Lyman-α clustering [77, 78].

In the cosmology context, the Lyman-α forest is a successful probe of matter

clustering between 2 < z < 6 [79, 80, 81, 82, 83, 84]. However, high column density

absorbers such as DLAs will bias cosmological parameter estimates from Lyman-α and

thus need to be masked out [85]. Simulations have been performed to study the effect of

damped absorbers on the Lyman-α 1-D and 3-D flux power spectrum [86, 87], and a recent

Bayesian fitting method has been proposed to better understand how DLA contaminants

affect cosmological inference using the BAO peak [88].

In this work, we present new estimates for the column density distribution function

(CDDF), the abundance of DLAs, and the average neutral hydrogen density at z = 2−5 for

DLAs in the Sloan Digital Sky Survey IV quasar catalogue from Data Release 16 (SDSS-

IV/eBOSS DR16) [89, 90]. We compute DLA population statistics using the Gaussian

process (GP) model presented in [8], a modified version of the machine learning framework

from [3]. We retrain our model on SDSS DR12 [91, 92, 93, 61] and generate a DLA catalogue
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from DR16Q [90]. We compute DLA population statistics from the DLA catalogue, which

update the estimates we made in [62, 8].

The pipeline presented in [3] provided for the first time probabilistic detections of

DLAs in each spectrum, which comes with a posterior distribution on putative DLAs for

the column density and the absorber redshift. With the aid of a full posterior probability

distribution for the number of DLAs in each quasar spectrum, “soft” detections in noisy

data become available. We propagate uncertainties from each individual spectrum into the

global population, without setting any hard threshold on the minimum required probability

for the presence of DLAs. We are thus able to include even noisy spectra in our sample of

DLAs.

[8] added an alternative model for sub-DLAs, which regularised excessive detec-

tions at low column density. We also included absorption from the mean optical depth in

the Lyman-α forest in the GP mean function. This helped prevent the pipeline from us-

ing DLAs to compensate for Lyman-α forest absorption in the spectrum, essential at high

redshift. In this work, we further improve this aspect of our model. We marginalise out

uncertainty in the effective optical depth in each spectrum using the measured mean optical

depth as a prior when computing the evidence for the null, DLA, and sub-DLA models.

Several other DLA search methods for SDSS spectra have been implemented.

These range from visual inspection surveys [59], visually guided Voigt profile fitting [20, 6],

and template fitting [94, 5], to machine learning based methods such as a convolutional

neural network (CNN) approach [4] and an unpublished Fisher discriminant analysis [63].

The CNN method [4] was also run to identify DLAs as part of the SDSS DR16 quasar
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catalogue [90]. We compare the DLAs detected by our GP model and the DLAs in DR16Q

in Section 3.7.

Machine learning methods have also been proposed to classify broad absorption

lines (BALs), including a line-finder based convolutional neural network (CNN) [95] and a

hybrid of a CNN with a principal component analysis [96].

Section 3.3 will briefly outline our modelling decisions and the changes to the

model made in this work. Section 3.3.1 describes the cuts we applied to SDSS DR16Q.

We recap our modelling details in Section 3.3.2. We present our results in Section 3.4,

including the CDDF in Section 3.4.1 and the incidence rate of DLAs and total HI density in

Section 3.4.2. In Section 3.5, we discuss the possible remaining systematics in our method.

Section 3.6 shows population statistics for DLAs in Ly∞ to Lyβ. In Section 3.7, we briefly

compare our DLA catalogue to the DLAs presented in the SDSS DR16Q catalogue, which

implemented a CNN model [4] to classify DLAs. We conclude in Section 3.8.

3.3 Methods

Here we briefly recap our Gaussian process (GP) based framework for detecting

DLAs using Bayesian model selection. We summarise the general approach, while more

comprehensive mathematical details may be found in [3, 8]. A quasar sightline has spec-

troscopic observations D = (λ,y), where λ is a vector of rest wavelength bins, and y is a

vector of observed flux at these wavelength bins. Suppose we have built likelihood functions

for a set of models {Mi}. We can evaluate the posterior probability of a model, M, given
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a quasar observation, D, based on Bayes’ rule:

Pr(M | D) =
p(D | M)Pr(M)∑
i p(D | Mi)Pr(Mi)

, (3.1)

where p(D | M) is the model evidence of the quasar spectrum D given modelM, Pr(M) is

the prior probability of model M, and the denominator on the right-hand-side is the sum

of posterior probabilities of all models in consideration.

Concretely, we have the model without DLAs (M¬DLA), the model with k DLAs

({MDLA(i)}ki=1), and the model with sub-DLAs (Msub). We set k = 3 here, allowing up to

3 DLAs per spectrum. We consider a posterior probability of a sub-DLA, Msub, not to be

a DLA detection, as in [8]. Section 3.3.2 describes the details of how we compute the model

evidence for each model.

Table 3.1 lists mathematical notation and definitions of parameters used through-

out the paper.

3.3.1 Data

Our GP model requires a training set without DLAs for training the null model,

M¬DLA. We use the DLAs in SDSS DR12Q detected by [8] as our true DLA labels. Here

we list the subset of DR12 quasars omitted from our training sample:

• Quasars with zQSO < 2.15, which have almost no Lyman-α forest, are removed.

• BAL: quasars with a broad absorption line (BAL) probability larger than 0.75 (BAL PROB

≥ 0.75) are removed, as suggested by [90]. BAL PROB is derived from QuasarNET [95].
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Table 3.1: Mathematical notations and definitions
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• CLASS PERSON == 30: quasars classified as BALs by human visual inspection are

removed.

• ZWARNING: spectra flagged with ZWARNING for pipeline redshift estimation are removed,

but extremely noisy spectra with TOO MANY OUTLIERS are kept.

We have in total 89, 408 spectra without DLAs for training the null model.

We also use the same above criteria to select the DR16Q spectra for applying our

model. In addition to the above criteria, the DR16Q quasar sample to which our model is

applied is a subset of the full DR16Q sample chosen following additional conditions:

• IS QSO FINAL == 1: We require this flag in the quasar sample, specifying that a

spectrum is robustly classified as a quasar.

• CLASS PERSON == 3 or 0: This flag specifies that the spectrum was classified by a

human as a quasar (3) or was not visually identified (0).

• SOURCE Z: as suggested in Section 3.2 of [90], spectra with Z > 5 and SOURCE Z ==

PIPE have a suspect redshift estimate and should not be used without a careful visual

re-inspection. We thus remove these spectra from our analysis.

Integral to our method is a reliable quasar redshift estimate. It is not trivial to

reliably estimate quasar redshifts in the large samples provided by DR16Q,1 and so we

are careful to use the redshift estimates suggested by [90]. To ensure our quasar redshifts

are as homogeneous as possible, we use Z PCA, the recommended redshift estimate method

for statistical analyses of a large ensemble of quasars. We also remove the spectra where

1Indeed, we have extended our GP framework to provide a quasar redshift estimate [1].
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redshift measurements disagree with each other by more than 0.1, which means we remove

samples with |zi − zj | > 0.1 for zi, zj ∈ {Z PIPE, Z PCA, Z, Z VI}. If Z VI is not present, we

use only the other three redshift estimates. Our final DR16Q sample size contains 159 807

Lyman-α quasar spectra.

3.3.2 Gaussian process model

Consider a distant quasar with a known redshift, zQSO. Each spectroscopic ob-

servation gives us the observed flux, y, on a set of wavelength pixels in observed-frame

wavelengths, λobs. Since the quasar redshift is assumed to be known, we shift into the rest

frame, λ = λobs/(1 + zQSO). Standard errors are provided with each observed flux pixel,

σ(λi), with λi the ith pixel in λ, and we define the noise variance of each observed flux pixel

as νi = σ(λi)
2. Given the observed flux of a quasar, we normalise all flux measurements by

dividing the median flux observed between [1425Å, 1475Å] in the rest-frame, a wavelength

range redwards of the Lyα emission and avoiding major emission lines.

For each quasar observation, we have data D = (λ,y,ν, zQSO). We want to build

a likelihood function to describe this data:

p(y|λ,ν, zQSO),

which is the likelihood of the flux y given all other observed quantities. We model this

likelihood as a Gaussian process:

p(y|λ,ν, zQSO) = N (y;µ,Σ),

where µ is the mean vector of the GP, and Σ is the covariance matrix of the GP. We will

use bold lowercase italics for vectors and bold uppercase letters for matrices.
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Learning the GP null model

A GP is fully specified by its first two central moments: the mean function, µ(λ),

and the covariance kernel, K(λ, λ′), [31]. Our task now is to learn the mean function and

the covariance function from the training set. Suppose we have a set of quasar observations

without any intervening DLAs, {D1,D2, · · · ,DNspec}, where Nspec is the number of quasars

in the training set. We can then learn the mean function by taking a precision weighted

average:

µj =

∑
i

yij ̸=NaN (yij/νij)∑
i

yij ̸=NaN (1/νij)
, (3.2)

where the summation is over i index. j indicates jth pixel in the observed flux, i represents

ith spectrum, and we only average over the non-NaN values. Note this differs from [8],

where we used the mean rather than the precision weighted average. The precision weighted

average can be viewed as a result of using an uninformative prior on µj and an independent

Gaussian likelihood for each yij . If we have a set of normally disturbed flux pixels with

each flux pixel follows yij ∼ N (µj , νij) with known variance νij and an unknown µj with

an uninformative prior, the posterior will be a normal distribution with a new mean equals

a precision weighted average.

Instead of training on the raw observed flux y directly, we follow [8] to train the

mean function and the kernel on the flux after removing the average effect of the Lyman-α

forest, the de-forest flux:

yij ← yij · exp(τeff,HI);

νij ← νij · exp(2 · τeff,HI) ,

(3.3)
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Figure 3.1: Our GP mean function using a precision weighted average of the rest-frame
wavelengths. We extended our model compared [8] (light blue), both bluewards past the
Lyman break at 912Å and redwards past the Siv emission line.

which means we replace observed flux and its variance with the flux and variance before

the suppression of Lyman-α forest. The effective optical depth is parameterised as:

τeff,HI(z(λobs);βMF, τ0,MF) =

N∑
i=2

τ0,MF
λ1if1i
λ12f12

(1 + z1i(λobs))
βMF ,

(3.4)

where λ1i is the transition wavelength from Lyman-α to the ith member in the Lyman

series, f1i represents the oscillator strength, z1i is the absorber redshift, and we set N = 31.

The absorber redshift is written as:

1 + z1i(λ, zQSO) =
λobs
λ1i

=
λ(1 + zQSO)

λ1i
.

(3.5)

We parameterise the effective optical depth by a power-law relation with τ0,MF and βMF

parameters. Here we specify a subscript “MF” to annotate the parameters modified by

mean flux suppression. Fig 3.1 shows our new GP mean function, compared to [8].
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Taking this Lyman-α mean flux into account introduces a dependence on quasar

redshift into the mean function of the GP for each quasar:

µ(λ, zQSO;βMF, τ0,MF) =

µ(λ) · exp(−τeff,HI(z(λ, zQSO);βMF, τ0,MF)) .

(3.6)

µ(λ) is the mean function we learned from Eq 3.2. We learn the mean function on a dense

grid of wavelengths on a chosen rest-frame wavelength range:

λ ∈ [850.75 Å, 1420.75 Å] (3.7)

with a linearly equal spacing of ∆λ = 0.25Å. [8] only modelled the null model in the

Lyman-α region, [911.75Å, 1215.75Å]. We extend the red end of our model to include a

part of the metal line region until 1420.75 Å. This empirically improved the column density

estimation of DLAs near the Lyman-α emission peak, as otherwise part of the damping

wing would go beyond 1215.75 Å when a large DLA is very close to the quasar.

The mean function is thus written as a mean vector µ(zQSO;βMF, τ0,MF) = µ(λ, zQSO;

τ0,MF, βMF) and the kernel is written as a matrix Σ(λ, λ′) = Σ. The covariance matrix’s

optimisation procedure is described in [3, 8]. We factorise the covariance matrix as in [8]:

Σi = A⊤
F (K + Ω)AF + diag νi. (3.8)

The K matrix is a positive-definite symmetric matrix corresponding to the covariance be-

tween each quasar flux pixel. Ω is a diagonal matrix describing the absorption noise:

diag Ω = ω ◦ (1− exp(−τeff,HI(z;β, τ0)) + c0)
2 . (3.9)
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ω is freely optimisable while the Lyman-α flux term, (1 − exp(τeff,HI(z;β, τ0)) + c0)
2, in-

cludes the redshift dependent noise variance with which we model the Lyman-α forest. The

optimised absorption noise parameters used here are:

τ0 = 0.000119 β = 5.15 c0 = 0.146. (3.10)

The AF is a diagonal matrix reflecting the mean vector suppression for each spec-

trum corresponding to the mean flux in the Lyman-α forest:

diag AF = exp (−τ eff,HI(zQSO;βMF, τ0,MF)) . (3.11)

The parameters of this matrix follow the values given in [97], which used a power-law

relation to measure the effective optical depth in the Lyman-α forest in SDSS DR12:

τ0,MF = 0.00554 βMF = 3.182, (3.12)

with associated uncertainty for each parameter:

στ0,MF = 0.00064 σβMF
= 0.074. (3.13)

The instrumental noise is encoded in the diagonal matrix diag νi, where i simply

denotes the ith quasar observation: The final covariance matrix learned from our data is

shown in Fig 3.2. Comparing the kernel matrix we learned in this work to [8], the current

kernel is less noisy and contains several distinct features of emission lines. The reduction

in the noise is due to a larger training set, SDSS DR12Q catalogue, is used for optimising

the kernel.
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Figure 3.2: The correlation matrix learned from data, which is the covariance matrix K
normalised by the diagonal elements. Note that the correlation in the plot is pixel-by-pixel,
and the matrix dimension is 2281× 2281. Different emission lines and the Lyman break are
visible in the plot.
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After having learned the GP null model, we can write down the null model likeli-

hood function:

p(y |λ,ν, zQSO, βMF, τ0,MF,M¬DLA) =

N (y;µ(zQSO;βMF, τ0,MF),A⊤
F (K + Ω)AF + diag νi),

(3.14)

where the notation M¬DLA specifies that our null GP model is conditioned on a training

set without DLAs.

Model evidence for the null model

Once we have trained our GP null model, M¬DLA, according to Section 3.3.2, we

need to integrate out the nuisance parameters associated with Lyman-α forest absorption

to get the model evidence.

In [8], we only took the mean values of the meanflux parameters (βMF, τ0,MF) with-

out their uncertainties, so the model evidence straightforwardly equals to Eq 3.14 without

integration. In this work, we take the uncertainties of meanflux suppression into account

and integrate them out, according to [97] prior. The model evidence thus will be:

p(D | M¬DLA,ν, zQSO) ∝ p(y | λ,ν, zQSO,M¬DLA), (3.15)

where we integrate out (βMF, τ0,MF)

p(y | λ,ν, zQSO,M¬DLA) =∫
p(y | λ,ν, zQSO, βMF, τ0,MF,M¬DLA)

p(βMF)p(τ0,MF)dβMFdτ0,MF

(3.16)
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with

p(βMF) = N (βMF = 3.182, σβMF
= 0.074)

p(τ0,MF) = N (τ0,MF = 0.00554, στ0,MF = 0.00064) .

(3.17)

We then use Quasi-Monte Carlo (qmc) to integrate out the meanflux parameters with 30 000

samples of (βMF, τ0,MF). qmc takes samples from a so-called low-discrepancy sequence,

leading to faster convergence. Here we draw 30 000 samples generated from a scrambled

Halton sequence, which gives samples approximately uniformly distributed on a unit square

[0, 1]2. We then use inverse transform sampling to transform the Halton sequence to the

distribution described in Eq 3.17.

Model evidence for the DLA model

Suppose we have a trained GP null model in Eq 3.14, the DLA likelihood function

will be the null model likelihood function multiplied by Voigt profiles for each line in the

Lyman series of the absorber:

p(y | λ,ν,zQSO, βMF, τ0,MF,

{zDLAi}ki=1, {NHIi}ki=1,MDLA(k))

= N (y;a(k) ◦ µ(zQSO;βMF, τ0,MF),

A(k)(AF(K + Ω)AF)A(k) + diag νi) .

(3.18)

Here A(k) = diag a(k) and a(k) is the function with k voigt profiles, which represents k

DLAs:

a(k) =

k∏
i=1

a(λ; zDLAi, NHIi) . (3.19)

125



a(λ; zDLA, NHI) is a Voigt profile parameterised by the DLA’s redshift, zDLA, and the column

density of the DLA, NHI. The Voigt profile parameterisation used in this work is the same

as [3]. We set the maximum number of DLAs per spectrum at k = 3 in this work, as there

are rarely more than three DLAs per spectrum. As described in [3], the default Voigt profile

we use in this work includes Lyα, Lyβ, and Lyγ absorption, which allows us to constrain

the DLA column density better when the Lyman-β forest is in the observation window.

To get the model evidence, according to Eq 3.18, we need to integrate out the prior

over the DLA parameters and the meanflux parameters (βMF, τ0,MF). For convenience, we

denote the parameters which need to be integrated out by θ = {{zDLAi}ki=1, {NHIi}ki=1, βMF, τ0,MF}.

For the model with a single DLA, we have four parameters θ = {zDLA, NHI, βMF, τ0,MF}.

The model evidence is:

p(y | λ,ν, zQSO,MDLA) =∫
p(y | λ,ν, zQSO, θ,MDLA)p(θ | zQSO,MDLA)dθ.

(3.20)

By assuming each parameter is independent of each other, we factorise the parameter prior

as:

p(θ | zQSO,MDLA)

= p(zDLA | zQSO,MDLA)p(NHI | MDLA)p(βMF)p(τ0,MF),

(3.21)

where we assign the [97] prior for the meanflux parameters as in Eq 3.17. We use the same

prior for column density, p(NHI | MDLA), as [8]. This was trained using kernel density

estimation on the log10NHI distribution from [64] DR9 DLAs with an addition of a 3%

uniform prior.

The zDLA prior is uniform within the search range for DLAs. We set this search

range to be from Lyman-β to Lyman-α. Removing DLAs detected in the Lyman-β forest

126



ensures the purity of DLA samples in deriving the statistical properties of the DLA pop-

ulation. However, to generate a complete catalogue, we also consider a search range from

the Lyman limit to Lyman-β.

We used the same model and priors for the sub-DLA model as in [8]. The sampling

range of the redshifts of sub-DLAs is the same as for the DLA model. Model priors are the

same as [8], based on the DLA catalogue in SDSS DR9 [63].

3.3.3 Example spectra

In this section, we show some example spectra to demonstrate our proposed model.

Figure 3.3 shows an example with prominent DLA features. As shown in the parameter

space (middle plot), the posterior distribution is peaked at the maximum a posteriori (MAP)

values of those two DLAs. Our GP model estimates the parameters of the DLAs with small

uncertainties. As shown in the top plot, our MAP values agree with the column densities

measured by the CNN model reported in the DR16Q catalogue.

Figure 3.4 shows an extremely noisy spectrum, for which our GP model is very

uncertain about the effective Lyman-α absorption in the spectrum. The DLA models are

degenerate with the absorption from the Lyman-α forest. Without modelling the uncer-

tainty in the mean flux, the GP model does not know that the drop in the spectrum can be

explained by Lyman-α forest absorption. It instead fits a big DLA with NHI = 1022.9 cm−2

as its preferred explanation for the drop in flux.
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thing ID = 322010682; z = 3.388, zPCA = 3.388, zPIPE = 3.403, zVI = 3.402; source_z = VI; CLASS_PERSON = 3 (30: BALQSO, 50: Blazar)
normalized flux; spec-6880-56543-478
CNN: z_dlas = (2.91,3.05); lognhis=(20.5,20.8); p_dlas=(1,1)
marginalizing meanflux:  DLA(2): 1; lognhi = (20.6,20.8)

Figure 3.3: An example of a spectrum with distinct DLA features. (Top): The normalised
observed spectrum in rest-frame wavelengths (blue) with the GP model (red) and the de-
tection from the CNN model reported in DR16Q (orange). The title shows a series of
column values in SDSS DR16Q catalogue, including SDSS identifier, best available red-
shift, PCA redshift, SDSS pipeline redshift, redshift from visual inspection, source for the
best available redshift, and object classification from visual inspection (0: not inspected;
1: star; 3: quasar; 4: galaxy; 30: BAL quasar; 50: Blazar(?)). Shaded area (grey) shows
the sampling range of zDLA, which is from Lyβ + 3 000 km s−1 to zQSO − 3 000 km s−1. The
legend shows the spectrum is from spec-6880-56543-478 (spec-plate-mjd-fiber id). The
CNN model (orange) detected two DLAs, with redshifts of zDLA = 2.91, 3.05 and column
densities of log10NHI = 20.5, 20.8, at DLA confidence = 1 for each DLA. Our GP model
(red) also detected two DLAs with the model posterior p(MDLA(2) | D) = 1 and column
densities log10NHI = 20.6, 20.8. (Middle): The sample likelihoods of detecting DLAs
in the parameter space, θ ∈ (zDLA, log10NHI). Colour bar shows the normalised log likeli-
hoods, log p(y | zDLA, log10NHI, τ0,MF, βMF, zQSO,MDLA), with the maximum log likelihood
to be zero. We also show the maximum a posteriori estimates of DLAs in the blue squares.
The posterior distribution sharply peaks at the parameter space, indicating the detection
of these DLAs in high confidence. (Bottom): The observed flux (blue) as a function of
absorber redshifts with the GP model (red) and the GP model before the meanflux suppres-
sion (yellow). The position on the x-axis directly corresponds to the x-axis in the middle
plot.
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thing ID = 484714957; z = 4.603, zPCA = 4.603, zPIPE = 4.622, zVI = 4.61; source_z = VI; CLASS_PERSON = 3 (30: BALQSO, 50: Blazar)
normalized flux; spec-5740-55998-964
CNN: z_dlas = (4.51); lognhis=(20.5); p_dlas=(0.95)
marginalizing meanflux:  DLA(0): 0.998
without marginalizing meanflux:  DLA(1): 0.916; lognhi = (22.9)

Figure 3.4: An example of a noisy spectrum with an uncertain meanflux. The nor-
malised observed spectrum in rest-frame wavelengths (blue) with the GP model (red) and
the detection from the CNN model reported in DR16Q (orange). We also plot the re-
sult without marginalising the uncertainty of meanflux prior (cyan). Shaded area (grey)
shows the sampling range of zDLA, which is from Lyβ+3 000 km s−1 to zQSO−3 000 km s−1.
Our proposed model (red) indicates no DLA in the spectrum, with the null model poste-
rior p(M¬DLA | D) = 0.998. On the other hand, if our model ignores the uncertainty of
(βMF, τ0,MF), it would falsely detect a DLA with p(MDLA | D) = 0.916 with log10NHI = 22.9
(cyan). When marginalising over the uncertainty in effective optical depth, our proposed
model (red) avoids detecting a false-positive large DLA.

3.3.4 Selection on the strength of Occam’s razor

As we use more parameters to compute the DLA or sub-DLA model, the model

selection will prefer to fit a Voigt profile to the GP if all candidate models are poorly fit.

Thus, the DLA or sub-DLA model’s evidence is sometimes too strong compared to the null

model.

The most common poor fit situations are quasar spectra with zQSO < 2.5 and with

low signal-to-noise ratios (SNR). As SDSS optical spectra have a fixed observing window,

quasar spectra with zQSO < 2.5 have an incomplete Lyman-α forest. The constraining

power of the quasar becomes weaker as only part of the data fits into our modelling window,

[850.75 Å, 1420.75 Å]. Thus the DLA model and the null model are closer in likelihood space.
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To avoid this situation, we introduced an additional Occam’s razor in [8], which

is injected in the model selection as:

Pr(MDLA | D) =

Pr(MDLA)p(D | MDLA) 1
NPr(MDLA)p(D | MDLA)

+Pr(Msub)p(D | Msub)

 1
N + Pr(M¬DLA | D)

, (3.22)

Here N is the Occam’s razor penalty, and we used N = 10 000 in [8]. We previously

validated the Occam’s razor strength by matching it to the DR9 concordance catalogue

[63].

In this work, however, we modify our null model to consider uncertainty from

the mean flux measurement, which means it has more parameters. Thus, the null model

gains more constraining power, so a weaker Occam’s razor may be preferable. To make

our model posteriors more consistent with human identifications, we decided to conduct a

visual inspection on a small subset of the spectra.

We first train a model without Occam’s razor and select at random from this

model 239 putative large DLAs with NHI > 1022 cm−2 and 243 putative small DLAs with

1020 ≤ NHI < 1021 cm−2. We visually inspect each spectrum and compute the model

posteriors with a range of strengths for Occam’s razor, N = {1, 10, 100, 1 000, 30 000}. We

then treat each spectrum as a multiple-choice problem: if we think the model posterior of

a given Occam’s razor describes the given spectrum well, then we record one vote for this

value of Occam’s razor. Multiple selections are allowed for each spectrum as the model

posteriors are often very close. After collecting votes, the winning value of Occam’s razor

was N = 1 000, a ten times reduction from our earlier value.
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For quasar spectra with zQSO > 2.5 there are enough data points in the Lyman-α

range that the strength of Occam’s razor has a small effect. We will discuss the effect of

Occam’s razor in Section 3.5. We suggest incorporating variations due to Occam’s razor

into the uncertainty in population statistics for conservative usage.

3.3.5 Summary of the modifications

Here we summarise the modifications we made in this work, comparing to the

model of [8]:

1. Our training set is SDSS DR12 quasar spectra with DLAs detected by [8] removed. We

considered a DLA to be detected if the posterior probability of a spectrum containing

a DLA is larger than 0.9, P (MDLA | D) > 0.9.

2. The wavelength range modelled goes from λrest = 850.75 Å to λrest = 1 420.75 Å.

3. The effective optical depth prior, (τ0, β), is updated from [66] to [97].

4. The uncertainty in the mean flux suppression parameters, τ0 and β, is marginalised

while computing the model evidence.

The first modification gives us a training set size containing 89, 408 spectra without DLAs.

The larger training set better learns the covariance structure of quasar emission lines, which

allows the second modification: expanding the model to cover the Lyman break and Siv

line. The expansion enables the model to use the metal lines to constrain the correlations

of the emission lines in the Lyman-α forest. When using the previous modelling range,

[911.75Å, 1215.75Å], we found that we often detected DLAs with high NHI in the red end
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of the spectrum, where the code inserts a DLA at the quasar redshift to compensate for an

oddly shaped Lyman-α emission line. This was possible because when we cut the spectrum

at a rest frame wavelength 1215.75Å, half of the damping wings were removed, allowing for

more model freedom and dubious NHI estimation.

Third, to make the mean flux suppression prior for (τ0, β) consistent with the

DR12Q training set, we switched to the mean flux measurement based on BOSS DR12Q [97].

Our last modification is marginalising the uncertainty of [97]’s parameters while marginal-

ising the DLA parameters.

To compute the statistical properties of DLAs, we need to convert the posterior

distribution of a DLA in each spectrum into the expected number of DLAs per redshift or

column density bin, for which we use the method described in [62]. We briefly summarise

the modelling decisions we made to produce the DLA samples in the result section:

• Search range: from Lyman-β to Lyman-α.2.

• Maximum number of DLAs: three.

• Maximum zQSO: quasar redshifts < 7.

• DLA redshift 2 < zDLA < 5.

2For the CDDF in [8], we used a sampling range from Lyβ+3000 km s−1 to Lyα−30 000 km s−1 to avoid
finding DLAs in the proximity zone. Here, we instead use Lyβ + 3000 km s−1 to Lyα − 3 000 km s−1. This
has a very moderate effect on our results, however, we provide a check of systematics due to removing DLAs
near to the quasar redshift in Section 3.5.2.
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3.4 Results

3.4.1 Column density distribution function

Figure 3.5 shows the CDDF we estimate from DR16Q spectra. In the following

sections, the CDDF is computed forNHI ∈ [1020, 1023], while the DLA incidence rate dN/dX

and the total HI density in DLAs ΩDLA are computed for NHI ∈ [1020.3, 1023]. Ho20 refers

to [8], a DR12 DLA catalogue that used a modified GP model from [3].

The CDDF is a histogram of column densities normalised by the effective spec-

tral path that could contain DLAs. We count all spectral path with an absorber with

zDLA < 5. Error bars denote the 68% confidence limits, and the grey band represents the

95% confidence limits. Note that the uncertainties here are the statistical uncertainties as-

sociated with the GP model. They do not include uncertainty due to potential systematics.

Section 3.5 will describe how possible systematics would affect the CDDF.

As shown in Figure 3.5, we observe non-zero column density until 3× 1022 cm−2.

Our DR16 measurement is mostly consistent with our previous DR12 measurement until

NHI ≤ 9× 1021. For NHI ≥ 3× 1022, both our DR12 and DR16 measurement are consistent

with zero at 95% confidence level, though there is one bin from DR16 not consistent with

zero (see Table .6).

We also measure no turn over for the CDDF at the high column end, NHI ∼

1021.5 cm−2. It was suggested in [98] that molecular hydrogen sets a maximum NHI so that

steepen the CDDF at the high end. The latest simulated CDDF from simba [99], which
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Figure 3.5: The CDDF, integrated over all z < 5 spectral path, derived from SDSS DR16Q
spectra with our proposed Gaussian process models (GP; blue). The CDDF measurements
from [8] (GP: Ho20; orange) are plotted as a comparison. Error bars show the 68% con-
fidence limits, while grey areas show the 95% confidence limits. Black dots are from [5]
(N12).
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included molecular hydrogen formation in their star formation recipe, predicts no turn over

at the high end, consistent with our measurements.

In Figure 3.6, we plot the CDDF with different Occam’s razor strengths. When

the Occam’s razor strength is weak (N = 30), model selection will find DLAs even though

the SNR is low, so we get more absorbers at both high and low column density ends. On

the other hand, if the razor strength is strong (N = 30 000), model selection will prefer to

avoid finding DLAs at low SNR spectra, which results in a decrease.

However, in general, in Figure 3.6, we observe the razor strength only marginally

affects the CDDF. Thus the small tension at the low end, NHI ∈ [1020, 1020.3], between our

CDDF and N12 is more likely due to other reasons than Occam’s razor.

We show the redshift evolution of the CDDF in Figure 3.7. The downward pointing

symbols indicate the 68% upper confidence limit when the data is consistent with zero at

68% confidence limits. As we can anticipate, for high-redshift quasars with zQSO > 4, since

the flux is highly absorbed, we detect DLAs with larger uncertainties, and the number of

large DLAs is consistent with zero.

In both [62] and [8], we found that the CDDF is getting shallower at z > 4.

However, given our detection for NHI > 4× 1021 at z > 4 is highly uncertain and consistent

with zero detection, this trend is not significant in our current dataset. Instead, the detection

of DLAs with NHI < 4× 1021 at z > 4 is consistent with the measurements at z ∈ [2.5, 4].

We find no strong evidence for an evolution of the slope of the CDDF at z > 4.

One possible reason why we found the CDDF was shallower at z > 4 in [62] and

[8] is absorption due to the Lyman-α forest. When the spectrum is highly absorbed, there
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Figure 3.6: The CDDFs with different Occam’s razor strengths, which discussed in Sec-
tion 3.3.4. Occam’s upper (orange) represents N = 30 000 while Occam’s lower (green)
represents N = 30. We present our main result (GP; blue) with an optimal strength
N = 1 000, which we selected from visually inspecting a subset of the dataset. Note that
the difference between different Occam’s strengths is well within 95% confidence limits.
Black dots are from [5] (N12).
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is a degeneracy between a large DLA and the forest’s absorption. In [62], we did not model

the GP mean as a function of effective optical depth, so it is possible the model was trying

to use DLAs to compensate the excess absorption due to the forest, which results in a

shallower CDDF at z > 4. In [8], the slope of the CDDF is less shallow at z > 4, as we

modelled the effective optical depth into our GP mean. In this work, we integrated out the

measurement uncertainty of the mean flux, and the slope is almost indistinguishable from

the CDDF at z ∈ [2.5, 4]. This may indicate that, to understand the DLAs at z > 4 better,

we need a better measurement for the effective optical depth at z > 4.

One interesting feature in Figure 3.7 is the drop in the amplitude of the CDDF at

z ∈ [2, 2.5]. As we will discuss in Section 3.4.2, the drop of CDDF at the low redshifts also

shows in the DLA incident rate, dN/dX. We will discuss this in more detail in the next

section.

3.4.2 Redshift evolution of DLAs

Figure 3.8 shows the incident rate of DLAs, dN/dX, as a function of absorber

redshift. Our results are consistent with [6] and [8] and are slightly lower than [5]. dN/dX

is sensitive to the weaker DLAs, so the difference between [5] and [6] is likely due to the

false positive rate.

[6] performed a visually-guided Voigt profile fitting on SDSS-DR5. Though their

sample size is smaller, with the help of the human eye, their method is likely less prone

to false positives than the automated template fitting used in [5]. This difference may

also explain the drop in amplitude of the CDDF at z ∈ [2, 2.5]. [6] and [5] have a larger
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Figure 3.7: The CDDF derived from DLAs in a variety of redshift bins. Labels show the
redshift bins in used. We show 68% confidence limits in error bars and 95% confidence
limits in grey areas. If the bin is consistent with no detection at 68% limits, we show a
down-pointing arrow indicating the 68% confidence upper limit.
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discrepancy at z ∈ [2, 2.5], and [5] may overestimate the weak absorbers at this redshift

range where the spectra are short. Our measurement is consistent with [6], which implies

that we detect fewer weak absorbers in low redshift bins and explains the small tension in

the CDDF at low-NHI.

One noticeable feature in dN/dX, which we have not discussed before, is the

decrease of the line density from z = 3.5 to z = 4.0 and another increase at z > 4.0.

This feature is also shown in our Ho20 measurement. The drop of dN/dX at z ∈ [3.5, 4]

is consistent with [6] at 95% confidence limits. One interesting question is whether the

increase from z ∈ [4.0, 4.5] is real. The measurements at z > 4 still have large error bars, so

it is hard to say whether dN/dX at z > 4 is an increase or a flat line. More data, especially

with high SNR, are needed to determine the trend of line density at z > 4.

In Figure 3.9, we show the total HI density in DLAs in terms of cosmic density.

Our results are mostly consistent with [5] at z ∈ [2.5, 3.5]. At higher redshift bins, z > 3.5,

our measurements are consistent with [6] and [7]. [7] used high signal-to-noise spectra from

a smaller survey, so they have larger error bars. Comparing to Ho20, our current ΩDLA has

more mass at low-redshifts (zDLA ∼ 2) and less mass at zDLA ∈ [3.5, 4]. The trend of ΩDLA

in DR16 is shallower than Ho20.

We also plot the ΩDLA measured by [9] in Figure 3.9. We see our DR16 measure-

ment is consistent with [9] even at z > 3.5. There is a slight tension at z < 2.5, which may

be because some low-redshift spectra are too short and noisy to measure column density

confidently using our model. SDSS spectra with zQSO < 2.5 only covers a region from the

Lyα to Lyβ or shorter. When the signal-to-noise is low, it is difficult to identify DLAs even
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Figure 3.8: The incident rate of DLAs as a function of redshift, integrated over log10NHI >
20.3 spectra from our catalogue (GP; blue). We also plot the line densities from [5] (N12;
black) and [6] (PW09; pink), and [8] (GP: Ho20; orange) as comparisons.
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Figure 3.9: The total HI density in DLAs, integrated over DLAs with log10NHI > 20.3 in
our catalogue (GP; blue). For comparison, we plot the measurements from [9] (Berg19;
green line and shaded area), [5] (N12; black), [7] (C15; red), and [8] (GP: Ho20; orange).

using human eyes. As shown in Fig 3.10, a different selection of Occam’s razor could mod-

erately affect the two bins with z < 2.33. The strength of Occam’s penalty corresponds to a

prior belief in detecting a DLA in a short and noisy spectrum, as discussed in Section 3.3.4.

Note that, from Figure 3.7 we see there are no solid detections for NHI > 3× 1021

DLAs at z > 4. In [62], ΩDLA was skewed towards high values at z > 4 even without

real detections of large DLAs. Our result in Figure 3.9 does not have this issue. This may

141



2.0 2.5 3.0 3.5 4.0 4.5 5.0
z

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16
dN

/d
X

N12
PW09
GP
GP Occams upper
GP Occams lower

2.0 2.5 3.0 3.5 4.0 4.5 5.0
z

0.0

0.5

1.0

1.5

2.0

2.5

10
3

×
DL

A

N12
C15
GP
GP Occams upper
GP Occams lower

Figure 3.10: The line density (left) and ΩDLA (right) in DLAs as a function of redshifts
with different Occam’s razor strengths. Occam’s upper (orange) represents N = 30 000
while Occam’s lower (green) represents N = 30. The main result (GP; blue) is computed
with N = 1 000.

indicate our proposed method of integrating out the uncertainty on meanflux measurement

helps us avoid the forest biasing the posterior density of NHI towards the high end.

In general, we observe an increase of ΩDLA from z = 2 to z = 3.5, and a slight

decrease from z = 3.5 to z = 4. For zQSO > 4, the measurement error is larger and less

correlated between redshift bins, as in Ho20. This is reasonable given the lower quasar

number density at high redshift.

Figure 3.10 shows the line density and ΩDLA with various Occam’s razor strengths.

As expected, the razor strengths only moderately affect the statistics of low redshift spectra.

For dN/dX, our results are consistent with [6], even with the weakest razor. N12 still detects

somewhat more weak DLAs than we do, even though we only apply a small penalty for

these short and noisy spectra.
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3.5 Checks for systematics

3.5.1 Effect of signal to noise ratios

Figure 3.11 and Figure 3.12 show the abundance of DLAs from subsets of our

catalogue with various signal-to-noise cuts (SNR), SNR > 2 and > 4. We define our

SNR as the median of the ratio between the flux and the instrumental noise within the

quasar spectrum redwards of the Lyman-α emission peak. This specific choice is to avoid

introducing correlations between the detected DLAs and the SNR. With this definition,

80% of the quasar spectra have SNR > 2, and 46% of the spectra have SNR > 4.

We verify that, in Figure 3.11, the CDDF is not sensitive to the SNR when NHI <

1022 cm−2. However, we note that the highest non-zero column density at 95% confident

limits changed from NHI < 3 × 1022 cm−2 to NHI ≲ 1022 cm−2 for samples with SNR > 4.

This is likely because there are too few high column density absorbers to constrain the

CDDF sufficiently at the high end in the smaller high SNR sample.

We find that our ΩDLA measurement exhibits no systematic correlation with the

SNR cuts. We notice a dependence of SNR on dN/dX at z ∈ [2.0, 2.5], which is due to

the difficulty of finding DLAs in short and noisy spectra. As discussed in Section 3.3.4,

it is hard to find features in these spectra, and the observing window cannot fully cover

a high-NHI DLA profile with damping wings. To secure our samples’ purity, we use an

Occam’s razor penalty which may also introduce this SNR dependence at z ∈ [2, 2.5].

As mentioned in [100], the colour and magnitude criteria used in SDSS for quasar

target selection is biased against dusty DLAs, which harbour a certain amount of cold
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Figure 3.11: The CDDF of DLAs for a subset of samples with different minimal SNRs.
SNR > 2 (orange) excludes 20% of the noisiest spectra, and SNR > 4 (green) excludes 54%
of the spectra. 68% confidence limits are drawn as error bars, while 95% confidence limits
are shown as a grey filled band.
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Figure 3.12: The line density (left) and total NHI mass (right) in DLAs as a function of
absorber redshift from subsets of samples with different minimal SNRs. SNR > 2 (orange)
excludes 20% of the noisiest spectra, and SNR > 4 (green) excludes 54% of the spectra.

neutral gas. [100] showed that in SDSS DR7 this caused ΩDLA to be underestimated by

10− 50% at z ∼ 3. Also, redder quasars containing metal rich dusty DLAs will have lower

SNR in the blue part of the spectrum and thus may be excluded from the sample of [94],

who enforced CNR > 3. This effect is likely to be substantially reduced in our sample,

if present at all, as we use all quasars irrespective of SNR. We also define SNR using the

region redwards of the Lyα emission peak specifically to avoid this kind of selection effect,

and we are using DR16, which has a different and more complex selection function. More

quantitatively, the XQ-100 targets in [9] use only radio-selected quasars, or quasars previ-

ously found by other techniques, and so avoids any SDSS colour selection bias. Figure 3.9

shows that our ΩDLA mostly agrees with [9], implying that colour effects in our sample are

smaller than those in DR7.
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Figure 3.13: The redshift evolution of the incident rate of DLAs, cutting with different
quasar redshift intervals. Any correlation between the absorber properties and the back-
ground quasars redshifts might indicate systematics.
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Figure 3.14: The redshift evolution of the incident rate of DLAs , cutting with different
quasar redshift intervals. Unlike Figure 3.13, we remove the putative absorbers near the
Lyman-α emission line with |zQSO − zDLA| < 30 000 km s−1.

3.5.2 Effect of quasar redshifts

In Figure 3.13, we test our measured dN/dX with different quasar redshift bins.

In a perfect scenario without systematics, we expect that the absorber properties be un-

correlated with the background quasars, as they are widely separated in physical space.

However, Figure 3.13, shows some residual correlation between absorber properties and the

redshifts of the background quasars for DLAs in spectra with zQSO < 3.
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In Figure 3.14, we have investigated removing the sampling range near the quasar

redshift, |zQSO − z| < 30 000 km s−1. We found removing the putative absorbers near the

Lyman-α emission is sufficient to remove the correlation between quasar redshifts and DLA

properties at z < 3. A small tension still exists for the z = 2 bin within 2.5 > zQSO > 2.0

for dN/dX, which may be due to the effect discussed above for SNR, as these very short

spectra are often also noisy.

3.5.3 Additional noise test

To understand the implication of applying Occam’s razor to the model posteriors,

we conduct a test based on adding noise to a DLA spectrum. We choose a quasar spectrum

that we are very confident contains a DLA and add additional Gaussian noise with zero

mean and standard deviation σ to the flux and noise variance.

We then examine changes in the DLA model posterior p({MDLA} | D). This test

will mimic the effect of SNR on the model’s ability to detect the underlying DLAs. For

Occam’s razor N = 30 000, the model posterior is p({MDLA} | D) ≃ 0.9 for σ ≤ 1.5, which

corresponds to SNR ≃ 0.9. On the other hand, for a model without Occam’s razor, the

model posterior is p({MDLA} | D) ≃ 0.9 for σ ≤ 3, which means SNR ≃ 0.5. A strong

Occam’s razor thus introduces false negatives in very noisy spectra. However, by visually

inspecting the flux with σ = 3 we determined that it is almost impossible for humans to

identify the underlying DLA. Therefore, we choose to follow the value (N = 1 000) we

determined in Section 3.3.4.

We were unable to quantify the number of false positives, as our simple assumption

of Gaussian noise rarely produces correlated structures that resemble DLAs. In practice,
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false positives are likely caused by oscillatory structure embedded in the noise, present when

the SNR is extremely low.

3.6 Results with DLAs in the Lyman β region

We have shown the CDDF, dN/dX, and ΩDLA of our GP model in Section 3.4.

In this section, instead of using a sampling range from Lyβ to Lyα, we only compute the

population statistics of DLAs detected within the Lyβ forest region. We set the sampling

range to be Lyman limit +30 000 km s−1 to Lyman-β. We cut off a wider velocity width at

the blue end to avoid counting DLAs detected right on the edge of the Lyman break.

Figure 3.15 shows the CDDF for DLAs in the Lyman β region. As we can see

from the figure, it is mostly consistent with the CDDF from Lyβ-Lyα for NHI < 1021, and

it starts to diverge for NHI > 2022. We visually inspected those spectra and found that they

are mostly due to fitting large DLAs on the spectra’s noisy left edges. This may indicate

that additional regularisation is still needed to avoid spurious detections at the blue end of

high redshift spectra. In particular, if the redshift measurement is slightly inaccurate, parts

of the Lyman break move into our modelling window.

We also show the dN/dX and ΩDLA for DLAs in the Lyman-β forest region in

Figure 3.16. dN/dX in the Lyman-β region is broadly consistent with other measurements,

with the detection consistent with zero at zDLA > 4.

For ΩDLA, in the right panel of Figure 3.16, we observe our measurement is biased

high and highly uncertain for zDLA > 3.5. This may be because our current model can only

poorly estimate the column density from the Lyman-β region from high-redshift quasar
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Figure 3.15: Comparing the CDDFs between the sampling range from Lyβ-Lyα (Blue;
GP) and Ly∞-Lyβ (Red; GP: ly∞-lyb). The error bars are 68% confidence limits, and
the shaded areas are 95% confidence limits. [8] (GP: Ho20; Orange) also used a sampling
range from Lyβ-Lyα.
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Figure 3.16: (Left) The comparison of dN/dX with different sampling ranges, Lyβ-Lyα
(blue) and Ly∞-Lyβ (red). Other plot settings are the same as Figure 3.8. (Right) The
comparison of ΩDLA with difference sampling ranges, Lyβ-Lyα (blue) and Ly∞-Lyβ (red).
Other plot settings are the same as Figure 3.9.

spectra, perhaps due to the high level of absorption from the Lyman-β and Lyman-α forests

at these redshifts. Alternatively, it could again reflect that the mean flux measure is not

certain at these redshifts, so the degeneracy between large DLAs and the effective Lyman-

α/Lyman-β absorption is not fully broken by sampling (τ0,MF, βMF).

3.7 Comparison to the CNN model

SDSS DR16Q includes DLA measurements using the convolutional neural network

(CNN) model of [4]. The DLAs from the CNN model are recorded as CONF DLA, Z DLA, and

NHI DLA columns in the DR16Q catalogue.3

To compare our model and the CNN model, we restrict the zDLA sampling range

of the CNN DLAs to be the same as our GP DLAs. Table 3.2 shows the confusion matrix.

On the existence of DLAs, which means the binary classification of having at least one

3This column is the log column density of the given DLA.
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Table 3.2: The confusion matrix for multi-DLAs detections between the GP and the CNN
model [4]. Note we require both the model posteriors of our GP model and DLA confidence
in Parks to be larger than 0.98. We also require log10NHI > 20.3. The maximum number
of DLAs is fixed to three, and everything larger than three is considered three.

CNN 0 DLA 1 DLA 2 DLAs 3 DLAs
GP with Multi-DLAs

0 DLA 142759 5686 93 2
1 DLA 2397 8007 208 1

2 DLAs 117 234 333 5
3 DLAs 8 6 11 4
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Figure 3.17: (Left) The CDDF of the DLAs detected by the CNN model presented in
[4]. The zDLA and log10NHI values are taken from the SDSS DR16Q catalogue in column
Z DLA and NHI DLA. We require the confidence of DLAs to be larger than 0.98 and set the
search range of the CNN DLAs to be the same as our search range, which is Lyman-β
+3 000 km s−1 to zQSO − 3 000 km s−1. (Right) The line density of the DLAs detected by
the CNN model. All three measurements, GP, PW09, and CNN are consistent on the line
density.

DLA or no DLA, the GP model is ∼ 94.8% in agreement with the CNN model. If we only

consider only spectra with SNR > 6, the rate of agreement climbs to ∼ 96.5%.

We have also checked the CDDF of the CNN DLAs, as shown in Figure 3.17.

The sampling range is restricted to be the same as ours, and we only count the DLAs

with CONF DLA larger than 0.98. The CDDF of the CNN model under-detects DLAs with

NHI > 7 × 1020, compared to N12. We have discussed this issue in Figure 19 of [8]. The
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Figure 3.18: The 2D histograms for zDLA (left) and log10NHI (right) estimated by the
GP code and the CNN. We use the maximum a posteriori (MAP) estimate for parameter
estimation for the GP code. The colourbars indicate the number of DLAs within the bin.
The blue line is a straight line that shows the diagonal line of the 2D histogram.

CDDF of the CNN model in the DR16Q catalogue shows improvements in detecting more

high column density systems comparing to [4], but it is still an order of magnitude lower

than N12 for NHI > 2 × 1021. Thus the lack of high column density systems in the CNN

DLAs, as identified in [8], is still present in the latest catalogue.

The dN/dX of the CNN model, in contrast, mostly agree with our GP measure-

ments. Bins with z > 4.5 are even consistent at the 1-σ level. Since dN/dX is sensitive

to low column density systems, it shows these two codes find consistent small DLAs, but

differ in their column density estimates.

We compare DLAs detected by the CNN and GP codes on a spectrum-by-spectrum

basis in Figure 3.18. As anticipated, the CNN and the GP code have a perfect agreement

in zDLA, but the CNN predicts slightly lower log10NHI than the GP code, consistent with

the CDDF plot in Figure 3.17.
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We visually inspected 319 quasar spectra, where the CNN code strongly disagrees

with the GP code’s detections. As expected, most cases are spectra with low SNRs, where

even human experts will have difficulty identifying DLAs. Besides those low-SNR cases, in

general, the CNN code has false negatives on DLAs overlapping with sub-DLAs or DLAs

very close to each other. There are 24 out of 319 cases which show a clear pattern where

the CNN missed the DLAs when multiple absorption systems are overlapping or nearby.4

Some of these are ambiguous detections, but 9 out of 24 have apparent damping wings on

the absorber.

We show two examples in Figure 3.19. The first one shows a sub-DLA intervening

on the right of the DLA damping wings. Though the damping wings are disturbed by the

sub-DLA, the pattern of a DLA is still visible. The second example shows two DLAs close

to each other, but not close enough to overlap. We suspect these non-detections for the

CNN code are due to the lack of training data for multiple absorption systems (sub-DLAs

or DLAs) close to each other. Since these overlapping cases are rare in the real dataset,

we think one might need to implement simulated DLAs/sub-DLAs to augment the CNN

training set.

3.8 Conclusion

We have presented a new estimate of the abundance of DLAs from z = 2 to z = 5

and a DLA catalogue built from SDSS DR16Q spectra [90] using our Gaussian process

model [3, 8]. We verify our results are in good agreement with previous measurements

4We put the figures for these 24 spectra in here http://tiny.cc/overlapping_dlas for future investi-
gators.
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Figure 3.19: Examples showing (top) the case of a sub-DLA overlapping a DLA and
(bottom) the case of a DLA near to another DLA. The red line indicates the GP code
predictions, and we describe the log10NHI in the legend. We intervene the DLAs from the
CNN model in the DR16Q catalogue onto our null model in the orange line. Both spectra
have high enough SNR: the upper one has SNR = 3.45 while the bottom one has SNR
= 7.52. The damping wings and the Lyman-β absorption lines of the DLAs are visible in
the plots.
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from [5], [6], and [7]. We newly integrate out the uncertainty in the measured mean flux,

which improves our modelling of DLA detection uncertainties for zQSO > 4 without biasing

towards high NHI detections.

We note, nevertheless, that there is a residual dependence on low-redshift spectra

with zQSO < 2.5. This could be due to unmodelled systematics or simply because the low-

redshift optical spectra are incomplete in the Lyman series range, so we can not securely

detect DLAs in low zQSO. Incorporating spectra with shorter observed wavelengths could

potentially verify these detections at zQSO < 2.5.

Our measurement shows the abundance of DLAs and neutral hydrogen increases

moderately over 2 < z < 4, while the trend beyond z = 4 is unclear due to statistical

uncertainties. Larger datasets and better mean flux measurements are needed to give more

robust constraints for DLA detections at z > 4.

Data Availability

Our DLA catalogue is publicly available at http://tiny.cc/gp_dla_dr16q, in-

cluding both MATLAB catalogue and JSON catalogue. A sub-DLA candidate catalogue

is available in JSON format. README files are included to describe the data formats

of both catalogues. The data files for DLA population statistics are also included, in-

cluding CDDF, dN/dX, and ΩDLA with or without SNR cuts. A tutorial for manipulat-

ing the MATLAB catalogue is publicly available at https://github.com/jibanCat/gp_

dla_detection_dr16q_public/tree/master/notebooks as a notebook file. Our GP code
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is also publicly available at https://github.com/jibanCat/gp_dla_detection_dr16q_

public/.
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Chapter 4

Multi-fidelity Emulation for the

Matter Power Spectrum using

Gaussian Processes

4.1 Abstract

We present methods for emulating the matter power spectrum by combining infor-

mation from cosmological N -body simulations at different resolutions. An emulator allows

estimation of simulation output by interpolating across the parameter space of a limited

number of simulations. We present the first implementation in cosmology of multi-fidelity

emulation, where many low-resolution simulations are combined with a few high-resolution

simulations to achieve an increased emulation accuracy. The power spectrum’s dependence

on cosmology is learned from the low-resolution simulations, which are in turn calibrated
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using high-resolution simulations. We show that our multi-fidelity emulator predicts high-

fidelity counterparts to percent-level relative accuracy when using only 3 high-fidelity sim-

ulations and outperforms a single-fidelity emulator that uses 11 simulations, although we

do not attempt to produce a converged emulator with high absolute accuracy. With a

fixed number of high-fidelity training simulations, we show that our multi-fidelity emulator

is ≃ 100 times better than a single-fidelity emulator at k ≤ 2hMpc−1, and ≃ 20 times

better at 3 ≤ k < 6.4hMpc−1. Multi-fidelity emulation is fast to train, using only a simple

modification to standard Gaussian processes. Our proposed emulator shows a new way to

predict non-linear scales by fusing simulations from different fidelities.

4.2 Introduction

Current and next generation large scale structure surveys, such as des1 [101], lsst

(Rubin Observatory)2 [102], euclid3 [103], desi4 [104], and the Roman Space Telescope

(wfirst) [105] will probe gravitational clustering and galaxy formation at small scales with

high accuracy. Thus, the future of cosmology relies on exploiting the information in non-

linear structure formation at small scales, where numerical N -body simulations must be

used to give accurate theoretical predictions.

Cosmological linear perturbation theory provides accurate analytic predictions on

the clustering of mass up to k ∼ 0.1hMpc−1. Despite the success of the standard model

of cosmology, several fundamental physics puzzles are still unanswered: the accelerated

1https://www.darkenergysurvey.org
2https://www.lsst.org
3https://sci.esa.int/web/euclid
4https://www.desi.lbl.gov
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expansion of the Universe [106], the nature of dark matter [107], and the sum of the neutrino

masses [108]. To answer these questions and constrain cosmological parameters using future

surveys, theoretical predictions from numerical simulations must be accurate on smaller

scales than are accessible to linear theory. As a primary summary statistic, the matter

power spectrum needs to be at percent-level precision for k ≲ 10hMpc−1 [26].

Modelling non-linear gravitational clustering is done using N -body simulations,

where a dark matter fluid is sampled by macro-particles and evolved using a smoothed

gravitational force. Each macro-particle is representative of an ensemble of microscopic

dark matter particles. Generations of computational physicists have improved the accuracy

of the gravitational evolution, and created quicker and more scalable algorithms to drive

the mass resolution of the simulations ever higher [109, 110, 111, 112, 113].

The mass resolution necessary to robustly predict the power spectrum at k ∼

10 Mpc/h pushes the computational limits of contemporary supercomputers. To adequately

sample a high-dimensional input parameter space with Markov chain Monte Carlo (mcmc),

millions of samples are needed, while a limited number (at best a few hundred to a few

thousand) of high-fidelity simulations are computationally possible.

An efficient way to perform accurate cosmological inference with a limited number

of simulations is to use emulators. Emulators are flexible statistical models, usually built

with Gaussian processes, which learn the mapping from input cosmological parameters to

summary statistics. This reduces the number of costly forward simulations by effectively

interpolating the function outputs.
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Emulators have been applied extensively in the field of cosmological inference. [27,

114] proposed a cosmic calibration project to make percent-level predictions on the matter

power spectrum using a Bayesian emulator. [28, 115, 116] implemented this cosmic emulator

in their Coyote Universe suite using 37 high-resolution simulations. [117, 118] designed the

Mira-Titan Universe suite to train emulators to make precise theoretical predictions using

36 simulations. The latest Euclid preparation [10] runs 250 simulations (30003 particles) to

prepare their emulator for the matter power spectrum. Besides Gaussian processes, [119]

used a neural network to build a cosmic emulator from 6 380 N -body simulations spanning

580 cosmologies.

Beyond the matter power spectrum, emulators have been trained to predict the

halo mass function [120], the concentration-mass relation for dark-matter haloes [121], the

galaxy power spectrum [122], the galaxy correlation function [123], the halo bias [124], weak

lensing peak counts [125], the cosmic shear covariance [126], weak lensing voids [127], the

21 cm signal [45], and the Lyman-α 1D flux power spectrum [128]. They also have been

used for inferring beyond-ΛCDM cosmologies [129, 130] and f(R) gravity cosmologies [131].

While all these emulators successfully predict summary statistics using high-fidelity

simulations, one question which remains is how to minimize the number of necessary train-

ing simulations to achieve a given accuracy. Here we demonstrate that building cosmolog-

ical emulators from simulations can be improved with multi-fidelity models. Multi-fidelity

models [41] minimize the computational cost by combining the predictive power of sim-

ulations at different resolutions. They fuse the expensive but accurate high fidelity data

with cheaply-obtained low fidelity approximations. One standard model used by the multi-
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fidelity emulation is a multi-output Gaussian process [132]. A multi-output Gaussian process

(multi-output gp) generalizes a single-output gp to multiple outputs, while building a cross-

covariance function to model the shared information between outputs. In this paper, low

and high fidelity correspond to simulations at different resolutions. High-fidelity simulations

have a finer mass resolution while low-fidelity simulations have a coarser mass resolution.

To train the multi-fidelity emulator using as few high-resolution simulations as

possible, we also propose a method for selecting high-fidelity training samples, based on

minimizing the loss computed among the low-fidelity simulations. By optimizing the low-

fidelity emulator’s loss, we show that one can efficiently train a multi-fidelity emulator by

avoiding worst-case combinations of the high-fidelity training samples.

Computational astrophysicists have used methods similar to multi-fidelity mod-

elling to minimize the cost of performing high-resolution simulations [133, 134]. A notable

example is Richardson extrapolation [135], a numerical method to improve a simulation’s

accuracy by combining a sequence of simulations with varied spatial resolutions and fixed

cosmologies. More recently, generative adversarial networks (GAN) have been used to pro-

duce high-resolution density fields [136] and particle displacements [137] from low-resolution

(but larger volume) input data. In principle, such ‘super-resolution’ simulations could be

implemented as a multi-fidelity emulator’s high-fidelity training set, allowing an emulator

to be built to a scale not directly accessible to simulations.

[138, 139] proposed using Bayesian optimization to improve emulator accuracy

by a sequential choice of new simulation points designed to globally optimize the emula-

tor function. Similar approaches to iterative selection of training data in a cosmological
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parameter space have been presented by [140, 141]. Computer scientists and engineers, in-

cluding [142, 143, 144, 145, 146], have extensively studied combining multi-fidelity methods

with Bayesian optimization.5 Multi-fidelity Bayesian optimization arises when a cheaper

approximation to the object function exists.

We present a multi-fidelity emulator for the matter power spectrum, as output by

the cosmological simulation code mp-gadget [148, 149]. In this paper, we target percent

level relative accuracy : how well our emulators can reproduce the matter power spectra at

our highest fidelity. We defer producing an emulator which allows percent level accurate

reconstruction of observations or a hypothetical ideal simulation to future work. The main

goal of this paper is to demonstrate that our multi-fidelity techniques can be used to reduce

the computational budget required for an emulator.

We use two fidelities in a 256 Mpc/h box: a fast but low resolution version with

1283 dark-matter particles and a slow but high resolution version with 5123 particles. Even

with only 3 high-fidelity simulations and 50 low-fidelity simulations, we show that we can

predict the high-resolution matter power spectrum at percent-level accuracy on average at

k ≤ 6.4hMpc−1 at z = 0, with a total computational cost ≲ 4 high-fidelity simulations. Al-

though we only show our application to the matter power spectrum, the methods presented

in this paper could apply to other summary statistics, e.g., the halo mass function or the

Lyman-α 1D flux power spectrum.

[150] showed that the lack of AGN feedback affects a dark matter-only simulation

significantly (compared to the error requirements of upcoming surveys) at k > 0.1hMpc−1.

Furthermore, baryon cooling can alter the power spectrum at k ∼ 10hMpc−1 [151]. How-

5[147] has a subsection that provides a short review on multi-fidelity Bayesian optimization.
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ever, as techniques exist to model this effect in post-processing [152], we defer extending

our technique to hydrodynamical simulations including AGN feedback to future work. Here

we validate that a multi-fidelity emulator is useful in the simplest case: dark matter-only

N -body simulations.

We build two types of multi-fidelity emulators. One uses the linear autoregressive

model of [41] (first-order autoregressive model, AR1), which we will call the “linear multi-

fidelity model.” The second multi-fidelity emulator uses the non-linear fusion model of [153]

(nonlinear auto-regressive Gaussian process, NARGP), and which we call the “non-linear

multi-fidelity emulator.”6 [41] model the scaling factor between fidelities as a scalar, while

[153] allow the scaling factor to depend on input parameters. Our implementation of AR1

and NARGP is based on emukit [155],7 an open-source package for emulation and decision

making under uncertainty, with the modifications mentioned above.8

In Section 4.3, we briefly describe the simulation code, mp-gadget, for train-

ing the emulator. We recap the general formalism of a single-fidelity Gaussian process

emulator in Section 4.4. Section 4.5 describes the formalism of a multi-fidelity emulator

(MFEmulator). We explain our sampling strategy in Section 4.6. Section 4.7 shows the

results, with comparisons between multi-fidelity emulation and single-fidelity emulation.

We summarize the runtime for the mp-gadget simulations in Section 4.8. We conclude

with a summary of key contributions and potential applications of our work in Section 4.9.

6AR1 and NARGP are acronyms used in [153, 154]. In this paper, AR1 and linear multi-fidelity emulator
are interchangeable, and NARGP and non-linear mutli-fidelity emulator are interchangeable.

7https://github.com/EmuKit/emukit
8For a detailed comparison between AR1 and NARGP, see [154]. An example code for the comparison

between AR1 and NARGP can be found in Emukit’s examples.
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Our code for multi-fidelity emulation in the matter power spectrum is publicly available at

https://github.com/jibanCat/matter_multi_fidelity_emu.

4.3 Simulations

We prepare our training set by running dark matter-only simulations using the

massively parallel N -body code mp-gadget [156].9 mp-gadget is a publicly available N -

body+Hydro cosmological simulation code derived from gadget3 [148]. It is parallelized

using a hybrid OpenMP/mpi strategy and has successfully performed a hydrodynamical

simulation using all 8 032 Frontera nodes, a total of 449 792 cores, demonstrating its good

scalability properties. The gravitational forces are computed using a Fourier transform

based particle-mesh algorithm on large scales and a Barnes-Hut tree on small scales.

We initialise our simulations from the linear power spectrum produced by class

[157] at z = 99 using the Zel’dovich approximation [158]. The dark matter particles then

evolve through gravitational dynamics. The matter power spectra are computed from the

output snapshots of mp-gadget, and used as our emulation targets. In this paper, we fix

the IC noise in the nodes and change only the cosmology for the emulator training. We do

not use the “paired and fixed” technique [159], but it would be easy to do so using only low

resolution simulations as these pairings are designed to remove variance on large scales.

The matter power spectrum, P (k), is a compressed summary statistic of the over-

density field, δ(x), evaluated as an angle average of the Fourier-transformed overdensity

9https://github.com/MP-Gadget/MP-Gadget/
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Table 4.1: Notations and definitions

Notation Description

hr High-resolution simulation, 5123 particles
lr Low-resolution simulation, 1283 particles
xi,t Input cosmological parameters at ith simulation

at fidelity t
yi,t Matter power spectrum at ith simulation

at fidelity t, at log scale
nt Number of simulations at fidelity t
Nptl,side Number of particles per box side

field:

P (|k|) = ⟨δ̂∗(k)δ̂(k)⟩, (4.1)

δ̂(k) =

∫
d3rδ(r)e−2πik·r. (4.2)

We measure the power spectrum with a cloud-in-cell mass assignment, which is deconvolved.

The Fourier transform is taken on a mesh the same as the PM grid of the simulation, which

has a resolution of 2 times the mean inter-particle spacing.

For a multi-fidelity problem, our data are from simulations at different resolutions.

Since low resolution simulations are cheaper to obtain (but are only approximations to the

high resolution results), we typically have a limited number of high-fidelity data and many

low-fidelity approximations.

To make the text of this section consistent with the following sections, we provide

some notation to bridge the terminology, summarized in Table 4.1. We have data from s

different fidelities (simulation resolutions). For each fidelity, we have pairs of inputs and

outputs Dt = {xi,t, yi,t} = {xt,yt}, where t = 1, . . . , s denotes the fidelity level from low

to high, and i = 1, . . . , nt where nt is the number of data pairs at fidelity t and i indexes
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each individual simulation. The data pairs Dt = {xt,yt} for our emulation setup are the

cosmological parameters of the simulations and the power spectrum outputs. Here we have

s = 2 for two mass resolutions: 1283 and 5123 dark matter-only simulations. We will denote

1283 as low-resolution (lr, t = 1) and 5123 as high-resolution (hr, t = 2).

Each fidelity will have a different number of simulations, nt. Practically, the

number of lr simulations will be much larger than the number of hr simulations, n1 > n2.

The compute time for lr (Nptl,side = 128) is ∼ 20 core hours and ∼ 2 000 core hours for

hr (Nptl,side = 512). We will empirically show we only need 3 hr and 50 lr to train a

multi-fidelity emulator with an average emulator error per k smaller than 1%.

We do not emulate the matter power spectrum across redshifts, conditioning on a

given redshift bin z0. We generally focus on z0 = 0, but will discuss multi-fidelity emulators

at z0 = 1 and z0 = 2 in Section 4.7.4.

4.3.1 Latin hypercube sampling

As [28] mentioned, a space-filling Latin hypercube design is well suited for gp

emulators of the matter power spectrum. For a training set with d-dimensional inputs and

N simulations, an Nd grid is created first, and simulations are placed on this grid so that

only one simulation is present in any row or column. The Latin hypercube design improves

on random uniform sampling by ensuring that the chosen points do not crowd together in

any subspace.

We apply a Latin hypercube design on the input parameter space, {h,Ω0,Ωb, As, ns}.

We vary the ΛCDM cosmological parameters {h,Ω0,Ωb, As, ns}, which are the Hubble pa-

rameter h = H0/(100 km s−1Mpc−1), the total matter density Ω0, the baryon density Ωb,
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primordial amplitude of scalar fluctuations As, and the scalar spectral index ns. We use

the same set of ΛCDM cosmological parameters as [10], allowing us to compute the relative

errors of our simulations with respect to EuclidEmulator2.

We use bounded uniform priors for the input parameters:

h ∼ U [0.65, 0.75];

Ω0 ∼ U [0.268, 0.308];

As ∼ U [1.5× 10−9, 2.8× 10−9];

ns ∼ U [0.9, 0.99];

Ωb ∼ U [0.0452, 0.0492].

(4.3)

The dark energy density is ΩΛ = 1 − Ω0. The prior volume surrounds the WMAP 9-year

cosmology [160]. The code to handle the simulation input files and Latin hypercube design

is publicly available at https://github.com/jibanCat/SimulationRunnerDM.

4.3.2 Preprocessing of the simulated power spectrum

A numerical simulation is constrained by its box size and number of particles. The

mass resolution limits the smallest scale (the highest k) of the power spectrum. Thus, high-

fidelity simulations can model smaller scales, not fully resolved in low-fidelity simulations,

as shown in Figure 4.1.

For k larger than the mean particle spacing, P (k) differs substantially from the

resolved value, due to artifacts of the macro-particle sampling. The scale of the mean

particle spacing is

kspacing = 2π
Nptl,side

Lbox
, (4.4)
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Figure 4.1: The matter power spectrum output by mp-gadget at different mass resolutions.
The vertical dash lines indicate the mean particle spacing kspacing for a given mass resolution.
(Blue): The matter power spectrum from a dark-matter only mp-gadget simulation with
643 particles. (Orange): The matter power spectrum from mp-gadget with 1283 particles.
(Green): The matter power spectrum from mp-gadget with 2563 particles. (Red): The
matter power spectrum from mp-gadget with 5123 particles. (Purple): Linear theory
power spectrum. The cosmology parameters are h = 0.675,Ω0 = 0.278,Ωb = 0.0474, As =
1.695 × 10−1, ns = 9.405 × 10−1. The dotted line shows the relative error of hr (5123

simulations) compared with EuclidEmulator2 [10], averaged over four different cosmologies.

where Nptl,side is the number of particles per side of the box. For instance, if we have 5123

particles in the box, then Nptl,side = 512. Lbox is the size of the simulation box in units of

Mpc/h.

We use the same set of matter power spectrum k bins for all fidelities. The available

information at small scales is sparse for the low-fidelity spectrum. To resolve the issue, we fix

the k bins to high fidelity and linearly interpolate the low-fidelity power spectrum in a log10
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scale, log10 P (k), onto the high-fidelity k bins. The maximum k is set to be ≃ 6.4hMpc−1

when using Nptl,side = 128 as our low-fidelity training set. However, in practice we found

that 1283 and 5123 simulations shared similar k bins with small offsets at small scales.

We do not model the high-fidelity spectrum with k larger than the maximum k of

the low-fidelity spectrum:

max kt=2 = max kt=1, (4.5)

where t indicates the fidelity level and t = 2 is the highest fidelity. If we do not have any data

at a given k from low-fidelity, we cannot extract the correlations between fidelities without

other more significant assumptions. In other words, the maximum k we can model is limited

by the data available from the low-fidelity simulations, which always have a lower maximum

k than high-fidelity simulations. We note that it is possible to get a higher maximum k by

particle folding or by increasing the size of the PM grid size used for estimating the power

spectrum, although we do not do that here.

We do model the low-fidelity P (k) even on scales smaller than the mean particle

spacing, k > kspacing. We made this particular decision because we have a prior belief

that even though P (k > kspacing) is highly biased, it still captures some information about

how P (k) depends on cosmological parameters. Thus, we should be able to exploit the

correlations between fidelities and improve the emulator accuracy at those scales.

To summarize, we:

1. Use the same set of k bins across different fidelities.

2. Preserve all available P (k) from low-fidelity, even scales smaller than the simulation’s

mean particle spacing.
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4.4 Single-fidelity emulators

Here we briefly recap how we train a single-fidelity emulator. Readers familiar with

this material may wish to skip to Section 4.5. The notation we use in this section follows

those of [153, 154]. Consider a supervised learning problem, in which we wish to learn the

mapping relation, f , between a set of input and output pairs D = {xi, yi} = {x,y}, where

i = 1, . . . , n:

y = f(x), with x ∈ Rd, (4.6)

where d is the dimension of the input space. A Gaussian process (gp) [31] is a probabilistic

framework modelling the observations, y, as drawn from a noisy realization of a single

random function f with a likelihood p(y | f). It models the distribution over f

p(f) = GP(f ;µ,K), (4.7)

with µ the gp mean prior function, which is usually assumed to be a zero mean prior,

and K the covariance kernel function specified by a vector of hyperparameters, θ. For a

given set of inputs, x1, x2, . . . , xn, the kernel function evaluated on these points produces a

symmetric, positive-definite covariance matrix Kij = K(xi, xj ;θ) with K ∈ Rn×n.

The choice of the covariance kernel depends on our prior knowledge about the

data. The hyperparameters of a chosen kernel are optimized by maximizing the marginal

log-likelihood:

log p(y | x,θ) = −1

2
log |K| − 1

2
y⊤K−1y − n

2
log 2π. (4.8)
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For an emulator, the main purpose is to predict an output f∗ = f(x∗) from a new

input point x∗, given the provided data D.

p(f∗ | D, x∗) = N (f∗ | µ∗(x∗), σ2∗(x∗)),

µ∗(x∗) = k∗nK−1y,

σ2∗(x∗) = K(x∗, x∗)− k∗nK−1k⊤∗n,

(4.9)

where µ∗ is the posterior mean and σ∗ is the standard deviation of the uncertainty in the

estimate of the predictions. The vector k∗n is the covariance between the new point and

trained data, k∗n = [K(x∗, x1), . . . ,K(x∗, xn)].

4.4.1 Cosmological emulators

Consider we have a set of dark matter-only simulations with fixed box size and mass

resolution. At each redshift bin z0, we can compute the matter power spectrum, P (k, z =

z0), given a set of input parameters. We will use the log power spectrum, log10 P (k, z = z0),

as our training data.

The training data, D = {xi, yi}, are defined as

xi = [hi,Ω0i,Ωbi, Asi, nsi];

yi = log10 P (k, z = z0),

where i = 1, . . . , n indicates the ith simulation we run with this specific set of input param-

eters.

The rest of the modelling is choosing an appropriate covariance function K(x, x′).

We use a squared exponential kernel and use automatic relevance determination (ard)
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weights for each input dimension. ard assigns each input dimension, xi, a separate hyper-

parameter, wi:

K(x, x′;θ) = σ2 exp

(
−1

2

d∑
i=1

wi(xi − x′i)2
)

(4.10)

where i = 1, . . . , d indicates the dimension of the input space x ∈ Rd. σ2 is the variance

parameter for the squared exponential kernel, {wi}di=1 are the ard weights. {wi}di=1 are

inverse length scales, which define the degree of smoothness at a given input dimension. We

note that we assign independent hyperparameters, θ = {σ2, w1, . . . , wd}, for each k mode.10

A larger wi corresponds to a smaller length scale, reflecting that the learned function varies

more in the ith dimension. On the other hand, a smaller wi implies a larger length scale,

indicating that the learned function is smoother along the ith dimension. ard allows each

dimension of the learned function to have a different degree of smoothness.

We do not decompose the power spectrum into principle components for training

the emulators, as described by [27, 114] because we want to compare single-fidelity em-

ulators to the multi-fidelity emulators, and an MFEmulator only has a limited number of

high-resolution simulations available. In our default case, we only have 3 high-resolution

simulations for an MFEmulator, and it is not sensible to perform dimension reduction on

three power spectra.

To ensure that our single-fidelity emulator is not unfairly disadvantaged in the

comparison with our multi-fidelity emulator by poorly constrained hyperparameters, we

built a single-fidelity emulator which shared kernel parameters across all k modes and

empirically verified that it had similar performance.

10[140] refers to this approach as the many single-output approach (MS).
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4.5 Multi-fidelity emulator

In this section, we describe how we train a multi-fidelity emulator. We outline the

modelling assumptions in Section 4.5.1. Section 4.5.2 describes the formalism of the linear

multi-fidelity emulator proposed by [41], a multi-output gp with a linear correlation between

fidelities. Section 4.5.3 outlines the non-linear multi-fidelity emulator of [153], which models

the correlation between fidelities as a function of cosmological parameters. We follow the

notation and formalism of [41, 153, 154].

4.5.1 General assumptions

Here we outline our modelling assumptions, following the assumptions made in

[41]:

1. Correlations between the code fidelities: For an N -body simulation, the simu-

lation cost depends on the mass resolution. We assume a simulation with a low mass

resolution can approximate a simulation with a high mass resolution. The matter

power spectrum from different fidelities is strongly correlated at large scales since all

fidelities are resolved and the mass resolution has negligible effects. At small scales,

however, we expect different fidelities are only weakly correlated.

2. Smoothness: For an emulation problem, we assume that neighbouring inputs give

similar outputs. For example, suppose two sets of input parameters to mp-gadget

are close to each other. In that case, we assume that an N -body simulation will

provide a similar outcome.
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3. The prior belief on each fidelity is a Gaussian process: We assume a prior

belief that the mapping from code input to output is a Gaussian process for each

fidelity.

The first assumption is the core assumption of a multi-fidelity emulator. Different

levels of the same code are simulating the same physical reality. It is thus reasonable to

assume different code fidelities should correlate at some level. However, a naive simula-

tion, for example, Nptl,side = 16 could only barely approximate a hr with Nptl,side = 512.

Therefore, we should also assume the correlation between fidelities depends on the distance

between two fidelities in the dimension of mass resolution.

There is thus a trade-off between the strength of correlation and the computational

expense: for example, a simulation with Nptl,side = 256 provides more information about a

hr (Nptl,side = 512), but running a 2563 simulation is 8 times most expensive than running

a lr (Nptl,side = 128).

One can select an optimal choice of simulation cost by balancing the computa-

tional time and the emulation accuracy. Here we choose Nptl,side = 128 for our low-fidelity

simulations because:

1. The maximum k is ≃ 6.4hMpc−1, which includes enough non-linear scales to test the

emulation accuracy;

2. A 1283 simulation is 64 times cheaper than a hr, and thus the resolution difference

between Nptl,side = 128 and Nptl,side = 512 is large enough to demonstrate whether

simulations with lower costs can accelerate the training of an emulator.
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In Section 4.7.4, we will show our method is applicable to simulations with different resolu-

tions, Nptl,side = 64 and 256. Empirically, we found that using Nptl,side = 256 as low-fidelity

is similar to Nptl,side = 128, while Nptl,side = 64 gives a worse emulation accuracy.

The second assumption, the smoothness assumption, is the general assumption of

a gp emulator. A gp emulator will have poor accuracy if the code does not behave similarly

with similar input. The smoothness assumption is also the assumption behind the Latin

hypercube sampling scheme [for a detailed discussion, see Ref. [28]].

A multi-fidelity emulation could in principle be implemented using other models

(see [161] for different data-fit models for surrogates). We chose to use gps simply because

their Bayesian approach supports uncertainty quantification and there is a well-developed

community around gp emulation.

4.5.2 Linear multi-fidelity emulator (AR1)

We have multi-fidelity data Dt as described in Section 4.3. A multi-fidelity emula-

tor is essentially inferencing the highest fidelity model conditioned on data from all model

fidelities. The final goal of a multi-fidelity emulator is to find a mapping relation f such

that, from an arbitrary input vector x∗, we can always find the highest fidelity code output:

ys,∗ = f(x∗). (4.11)

As described by [41], a linear autoregressive model can be applied in a multi-fidelity setting

by assuming a hierarchical order between fidelities:

ft(x) = ρt ft−1(x) + δt(x), (4.12)
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where ft is the function emulated by a gp at t fidelity and ft−1 is the function emulated at

the previous fidelity level (t− 1). The linear component of Eq 4.12 is ρt, which models the

correlation between fidelities as a linear relation. δt is a gp modelling the bias term:

δt ∼ GP(µδt ,Kt). (4.13)

We modify Eq 4.12 so inference is performed on each k bin independently. For k = kj , we

have independent kernel and scaling parameters for each k = kj mode. For simplicity, we

will drop the k = kj notation in the rest of the paper:

ft(x) = ρt(ft−1(x)− µt−1) + δt(x). (4.14)

The mean of the bias term, µδt , is assumed to be the zero function. For the low-fidelity

part, we subtract the sample mean of the logarithm training power spectra, log10 P (k), and

model the low fidelity part of the power spectra as a zero mean gp:

(f1(x)− µ1) ∼ GP(0,K1(x1, x
′
1;θ1)). (4.15)

As shown in Figure 4.1, the low-fidelity power spectrum is biased high. We pass variations of

the low-fidelity power spectrum around its mean to the next fidelity to avoid passing biased

outputs. In practice, we found this slightly improves emulation accuracy for multi-fidelity

models.

For the highest fidelity bias function, δs(x), we model the power spectrum using

a zero mean gp without subtracting the sample mean. We do not have enough points at

the highest fidelity for the sample mean to be a good estimate of the true mean. Except

for t = 1, ft(x) is completely determined by ft−1(x), δt(x), and ρt.
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As mentioned by [41], there is a Markov property implied in the covariance struc-

ture of Eq 4.12:

cov
{
ft(x), ft−1(x

′) | ft−1(x)
}

= 0, (4.16)

which is true for all x ̸= x′. Eq 4.16 indicates that if we have ft−1(x), then other input

parameters ft−1(x
′) do not contribute to training ft(x).

The Markovian property also suggests that an efficient training set {D1,D2, · · · ,Ds}

for a multi-fidelity gp is a nested structure:

x1 ⊆ x2 ⊆ · · · ⊆ xs. (4.17)

The above notation says that, given an input point x at fidelity t, there must be an input

x in its lower fidelity u, where u < t and t, u ∈ {1, 2, · · · , s}. The reason for using a nested

experimental design is that since we have xt−1 ⊆ xt, we can immediately get an accurate

posterior ft−1(x) at the x location without interpolating at the t − 1 level. However, in

practice we found our multi-fidelity emulators performed well even without a nested design

in the input space.11

At a given fidelity t, the posterior at a test input x∗ could be written as

p(f∗t | D, x∗) = N (f∗t;µ∗t(x∗), σ2∗t(x∗)) , (4.18)

11Without a nested design in input space, we found, for a multi-fidelity emulator using 50 lr and 3 hr,
the non-nested one is only 5% worse than the nested one on the relative errors.
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where we denote predictions from new inputs as subscript ∗. The predictive mean and

variance are

µ∗t =ρt · µ∗t−1(x∗) + µδt

+ k∗ntK
−1
t [yt − ρt · µ∗t−1(xt)− µδt ];

σ2∗t =ρ2t · σ2∗t−1(x∗) +K(x∗, x∗)− k∗ntK
−1
t k

⊤
∗nt
,

(4.19)

where k∗nt = [Kt(x∗, x1), . . . ,Kt(x∗, xnt)] is a vector of covariance between the new location

and the training locations at fidelity t. Kt = Kt(xt,x
′
t) is the covariance matrix of training

locations at fidelity t.

Covariance kernel

For a linear multi-fidelity emulator, we place an independent squared exponential

kernel on each kj . The mathematical form of the kernel is the same as Eq 4.10.

Having ard weights means we assign different length scales to each dimension so

that the kernel can be trained anisotropically. We found that using ard in the highest

fidelity did not improve the model’s accuracy. Thus, we decided to assign an isotropic

kernel for δs. For a two-fidelity emulator (s = 2), we have 6 hyperparameters in low-fidelity

for each k bin; 5 of them are the length scale parameters and 1 is the variance parameter.

We have 3 hyperparameters for each k bin in high fidelity, with one scale factor ρt between

fidelities, one variance parameter, and one length scale parameter. We have 49 bins in k,

so the total number of trainable hyperparameters is 441.
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Figure 4.2: The learned scale factor between fidelities in the linear multi-fidelity model,
ρ, as a function of k. This scale factor is learned from 50 low-fidelity simulations and 3
high-fidelity simulations.
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Figure 4.2 shows the learned scale factor, ρ.12 ρ is roughly unity at large scales

k ≤ 2hMpc−1, but its value increases dramatically after k > 2hMpc−1. Non-linear physics

becomes important and the low-fidelity simulations become less reliable at small scales,

making the relationship between fidelities non-trivial. We want to emphasize that the scale

factor, ρ, is learned from the multi-fidelity emulator. We did not enforce ρ to be a specific

shape during the training. Because we learn the mapping from lr to hr using the training

data, it is expected that lr runs deviate from hr power spectra. The purpose of multi-

fidelity emulation is to correct these deviations.

4.5.3 Non-linear multi-fidelity emulator (NARGP)

The linear multi-fidelity model in Eq 4.12 assumes the scale factor ρt is independent

of input parameters, x, and so does not model the cosmological dependence of the scale

factor ρt. The non-linear multi-fidelity model proposed by [153] drops this assumption,

allowing the scale factor, ρt(·), to be a function of both input cosmology and output from

the previous fidelity. As for the linear multi-fidelity model, we model the non-linear multi-

fidelity gp independently for each k:

ft(x) = ρt(x, ft−1(x)− µt−1) + δt(x), (4.20)

where ρt(·) is a function of both input parameters x and the previous fidelity’s output. ρt(·)

is modelled as a gp. Eq 4.20 results in a more complicated distribution over ft, a deep

Gaussian process [162]. To avoid added computational and statistical complexity, we follow

12The multi-fidelity scale factor shown Figure 4.2 is ρ2, which is ρt when t = 2. For simplicity, we use ρ
to refer to ρ2 for our multi-fidelity emulators.
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the same approximation as [153] and replace ft−1 in Eq 4.20 with its posterior, f∗t−1. The

result is a regular Gaussian process,

ft ∼ GP(0,Kt), (4.21)

whose kernel can be furthermore decomposed:

Kt(x, x
′) =Ktρ(x, x′;θtρ) ·Ktf (f ′∗t−1(x), f ′∗t−1(x

′);θtf )

+Ktδ(x, x′;θtδ),

(4.22)

where f ′∗t−1 ≡ f∗t−1(x)− µt−1 for simplicity. The first kernel Ktρ models the cosmological

dependence of the scale factor ρ. Next, Ktf models the covariance of the output passing from

the previous fidelity to the current level. The final term Ktδ models the model discrepancy

between fidelities. For the lowest fidelity, the matter power spectrum is only modelled with

Ktδ .

Each kernel in Eq 4.22, (Ktρ ,Ktf ,Ktδ), is modelled as a squared exponential kernel.

Suppose we assign a different length scale parameter for each x dimension. Ktρ will have d+1

hyperparameters, Ktf will have 2 hyperparameters, and Ktδ will have d+1 hyperparameters.

As for the linear emulator, we found no improvement in accuracy in practice by using ard

for the high-fidelity model. Thus, we have 2 hyperparameters for each kernel in high fidelity

and d + 1 hyperparameters for low-fidelity. To be explicit, in the high-fidelity model, Ktρ

has 2 hyperparameters, Ktf has 2 hyperparameters, and Ktδ has 2 hyperparameters. For

d = 5, we have 6 hyperparameters for low-fidelity and 6 for high-fidelity models at each k

bin.
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Halo Model Interpretation

The formulation of our multi-fidelity emulator bears a marked resemblance to the

equations which form the basis of HALOFIT [46], and are themselves motivated by the halo

model [47, 48]. This correspondence allows us to provide a physical interpretation of our

results. In the halo model, matter clustering is schematically divided into two components:

a two-halo term and a one-halo term. The two-halo term arises from correlations between

halos on largre scales, while the one-halo term, which has a weaker dependence on cosmology,

is sensitive to the density profile inside each halo. We can model this by splitting the non-

linear power spectrum

PNL(k) = PQ(k) + PH(k) . (4.23)

The quasilinear term PQ(k) is a two-halo term, while PH(k) is a one-halo term. The two-halo

term can be modelled by the linear theory power spectrum filtered by a window function

W (M,k):

PQ(k) = PL(k)

(∫
W (M,k)dM

)2

. (4.24)

The window function depends on the halo mass function and halo bias, encodes how virial-

isation displaces the linear matter field, and tends to unity on large scales.

There is a clear connection between this model and the form of our multi-fidelity

emulator. Eq 4.12 (AR1) and Eq 4.20 (NARGP) move between fidelities via two terms: a

scaling factor ρ and an additive factor δt. The correlations between fidelities are strong on

large scales, and so ρ → 1 as k → 0. ρ is analogous to the quasilinear window function,

except that it filters not the linear theory power spectrum PL, but the low-fidelity N -body
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model ft−1(x). In the context of the halo model, it extrapolates the existing quasilinear

halo filtering to include lower mass halos not included in the low-fidelity simulation.

The additive factor δt, which is important on small scales, is analogous to the

one-halo term. It models the difference in halo shot noise and internal halo profiles between

resolutions. Notice that δt, like the one-halo term, depends only weakly on cosmology, as

evidenced by it requiring only one length-scale hyperparameter.

4.6 Sampling Strategy for High-Fidelity Simulations

In this section, we will describe how we select the training simulations for our

multi-fidelity emulators. We will first describe the nested structure implemented in multi-

fidelity emulators in Section 4.6.1. Section 4.6.2 explains how we find the optimal choice of

high-fidelity training simulations.

4.6.1 Nested training sets

The proposed sampling scheme for training and testing is shown in Figure 4.3. The

corresponding output power spectra are shown in Figure 4.4. In Figure 4.3, the sampling

is done using two different Latin hypercubes:

1. Training simulations: a Latin hypercube with 50 points. hr points are a subset of lr

points.

2. Testing simulations: another Latin hypercube with 10 points.
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Figure 4.3: Two 2-D cross-sections of the 5-D samples of input parameters. The input
parameters are designed with a nested structure, x1 ⊆ x2, between hr and lr. (Blue):
x1, 50 sampling points in lr. (Orange): x2, 3 sampling points in hr. The selection of
these 3 points is chosen by the procedure described in Section 4.6.2, which minimizes the
lr error in the low-fidelity only emulator. (Green): 10 points from the hr testing set,
which is a different Latin hypercube than x1.
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Figure 4.4: Training (left) and testing (right) data for the multi-fidelity emulator. (Left):
50 low-fidelity training simulations (blue) and 3 high-fidelity simulations (orange) used in
a 50lr-3hr emulator. A hr is a 5123 simulation and a lr is a 1283 simulation. Both hr
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subset of the low-fidelity simulation hypercube. (Right): 10 high-fidelity test simulations
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3. We use the notation “X lr-Y hr emulator” to represent a multi-fidelity emulator

trained on X number of low resolution simulations and Y number of high resolution

simulations.

The first hypercube with 50 points ensures that we will have a nested experimental design.

The second hypercube is to ensure we will not test on the training simulations during the

validation phase. In practice, we found that the emulation accuracy roughly converged with

∼ 30 lr points.

4.6.2 Optimizing the loss of low-fidelity simulations

For a multi-fidelity problem, we want to minimize the required high-fidelity train-

ing simulations to achieve a given accuracy. We search for the optimal subset of lr points

to simulate at hr by picking the subset that would minimize the low fidelity training set’s

single-fidelity emulator errors. In our experiments with two fidelities, s = 2, there are(
n1

n2

)
possible combinations for x2, which are input parameters for the high-fidelity data,

D2 = {x2,y2}.

Retraining low-fidelity only emulators on all possible subsets of the low fidelity

grid is computationally intensive. For example, selecting two samples out of 50 points

means that we have to train
(
50
2

)
= 1 225 low-fidelity emulators. To save computational

cost, we employed a greedy optimization strategy. Instead of exploring all possible subsets,

we grew the subset one point at a time, fixing the previously chosen points. As a further

optimisation, we used the same set of kernel hyperparameters for all k bins.
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Consider S, a potential D2 with x2 ⊂ x1. We train a low-fidelity only emulator

based on Eq 4.8 using the n2 low-fidelity points in S and get a gp:

p(f∗ | S, x∗) = N (f∗ | µ(i)∗ (x∗), σ
(i)
∗ (x∗)2), (4.25)

which is the posterior as described in Eq 4.9.

With the trained low-fidelity only emulator in Eq 4.25, we can test this single-

fidelity emulator’s performance by predicting the rest of the data in the low-fidelity Latin

hypercube. To evaluate the accuracy, we compute the mean squared error by averaging

over the test data:

MSE = E[(y∗ − µ(i)∗ (x∗))2], (4.26)

where {(x∗, y∗)} are the low-fidelity data pairs from the rest of the Latin hypercube,

{(x∗, y∗)} ∈ {D1 − S} . (4.27)

This simply means that we test the single-fidelity emulator on the available data not included

in the training subset.

Suppose we repeat the training of single-fidelity emulators until we train all pos-

sible subsets in the low-fidelity hypercube. We will now have
(
n1

n2

)
trained single-fidelity

emulators. Each single-fidelity emulator will provide a mean squared error, which is the

test error that the emulator generates against the low-fidelity hypercube test data. To select

the optimally trained emulator, we compute

S∗ = arg minS∗(E[(y∗ − µ(i)∗ (x∗))2]), (4.28)
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where we find the subset S∗ which minimizes the mean squared errors on the test set. We

use S∗ as our high-fidelity training set D2 under the nested experimental design. To be

explicit:

x2 = xS∗ ⊂ x1, (4.29)

where x2 are the selected high-fidelity input points, xS∗ are the input points from the

selected subset S∗ (which minimize the low-fidelity emulator mean squared error), and x1

are the low-fidelity input points.

This strategy assumes that the effect of a sampling scheme on a low-fidelity emu-

lator is the same as that on a corresponding multi-fidelity emulator. For example, suppose

∆Ωb is crucial for learning how the low-fidelity power spectrum y1 changes for inputs x1. In

that case, we expect that information about ∆Ωb can also effectively change the high-fidelity

spectrum y2.

The above assumption could be violated if the power spectra at small scales, which

are not included in the low-fidelity data, behave very differently from those at large scales.

This could happen if the smoothness length scale acts very differently between low-fidelity

and high-fidelity data for a given input dimension. For example, imagine that a parameter,

θ, has a small effect on the outcomes of low-fidelity simulations, but a large effect on the

outcomes of high-fidelity simulations.

Figure 4.5 shows the mean squared errors computed from 643 single-fidelity em-

ulators and 2563 single-fidelity emulators. First, note that the selection of the training

simulations affects the emulator accuracy. Second, the low-fidelity emulator errors are cor-

related with their higher fidelity counterparts. This suggests that a low-fidelity emulator can
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serve as a guide for placing high-fidelity training simulations. The HR parameter choices

used in Section 4.7 were selected with an earlier version of our model using 643 particle

simulations. We checked that using either 643 or 1283 for selection gave almost the same

emulation accuracy for a non-linear 50 lr-3hr emulator, though one of the selected samples

is different.

In practice, we find the procedure above can prevent us from selecting the hr

combination that will give us the worst multi-fidelity emulation result. Although we have

tested that our procedure works for the matter power spectrum, we would suggest that when

emulating a new summary statistic (e.g., the halo mass function), the reader investigates

the effectiveness of this method using small test cases. We may in future work investigate

using Bayesian optimization [e.g., Ref. [143, 144, 145]] to select the optimal hr samples for

multi-fidelity training.

4.7 Results

This section shows the interpolation accuracy of multi-fidelity methods and com-

pares our multi-fidelity emulators to single-fidelity emulators. Section 4.7.1 compares test

set emulator errors for the linear multi-fidelity emulator (AR1) and non-linear multi-fidelity

emulator (NARGP). Section 4.7.2 compares a multi-fidelity emulator to two kinds of single-

fidelity emulators: high-fidelity only and low-fidelity only. We also compare the emulator

accuracy as a function of core hours for both multi-fidelity emulators and single-fidelity

emulators.
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Figure 4.6: Predicted divided by exact power spectrum from a 50 lr-3hr emulator using
a linear multi-fidelity method (AR1). Different colours correspond to 10 test simulations
spanning a 5-D Latin hypercube. The shaded area indicates the worst-case 1− σ emulator
uncertainty. There is one test simulation driving the larger error compared to the non-linear
one in Figure 4.7.

To test how much a multi-fidelity emulator can improve with more training sim-

ulations, Section 4.7.3 shows the emulator errors with more lr or hr training simulations.

Finally, Section 4.7.4 checks the performance of the multi-fidelity method for other emula-

tion settings.

4.7.1 Comparison of Linear and Non-Linear Emulators

Figure 4.6 and Figure 4.7 show the predicted power spectrum divided by the exact

power spectrum for simulations in the testing set. Both emulators, linear (AR1) and non-
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Figure 4.7: Predicted divided by exact power spectrum from a 50 lr-3hr emulator using
a non-linear multi-fidelity method (NARGP). Different colours correspond to 10 test sim-
ulations spanning a 5-D Latin hypercube. The shaded area indicates the worst-case 1 − σ
emulator uncertainty. Note that the y-scale in this plot is the same as Figure 4.6.
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linear (NARGP), are trained with 50 low-fidelity simulations and 3 high-fidelity simulations.

We will call these emulators “50 lr-3hr emulators” for simplicity. A non-linear (linear)

multi-fidelity emulator requires at least 3 (2) hr simulations for training and has ≲ 2%

(≲ 5%) worst-case accuracy per k bin. For a linear multi-fidelity emulator, the minimum

required number of hr simulations is 2, reflecting the lower number of hyperparameters in

the kernel.

Figure 4.8 shows a comparison between a linear multi-fidelity emulator and a non-

linear multi-fidelity emulator in relative emulator error. We include linear and non-linear

50 lr-3hr emulators. We define the relative emulator error:

Emulator Error =

∣∣∣∣Ppred

Ptrue
− 1

∣∣∣∣ . (4.30)

Ppred is the predicted power spectrum from the multi-fidelity emulator, and Ptrue is the

power spectrum from the high-fidelity test simulation.

Figure 4.8 shows that the linear 50 lr-3hr emulator predicts an average error

< 1% per k bin for k ≤ 4 hMpc−1 and < 2% per k bin for 4 < k ≤ 6.4 hMpc−1. The

non-linear multi-fidelity emulator predicts an average error ≲ 1% per k bin, which implies

we only need 3 hr to achieve a percent-level accurate emulator using the non-linear multi-

fidelity method. At k ≤ 3hMpc−1, both emulators predict mostly the same accuracy, but

the non-linear one performs better at smaller scales k > 3hMpc−1.

We found that the non-linear multi-fidelity emulator outperforms the linear one

in all aspects. For simplicity, we will only show the non-linear multi-fidelity models in the

following sections, but we note that a linear multi-fidelity model is still useful when only
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Figure 4.9: Non-linear multi-fidelity emulator (blue) with 50 lr and 3 hr simulations,
compared to single-fidelity emulators with 3 hr (orange) and with 11 hr (green). Shaded
area indicates the maximum and minimum emulation errors. The computational cost for a
50 lr-3hr emulator ≃ 9 000 core hours while the single-fidelity emulator with 11 hr requires
≃ 25 000 core hours. However, a 50 lr-3hr emulator still outperforms an 11hr emulator.

two hr simulations are available. We also found that, for the linear model, changing from

50 lr-3hr emulator to 50 lr-2hr emulator only slightly degrades the overall accuracy.

4.7.2 Comparison to single-fidelity emulators

Comparison to high-fidelity only emulators

Figure 4.9 shows a comparison between a non-linear 50 lr-3hr emulator and high-

fidelity only emulators. The high-fidelity only emulators are single-fidelity emulators trained

solely on hr simulations. The non-linear multi-fidelity emulator outperforms the single-
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fidelity emulator with 11 hr at all k modes. It also predicts a worst-case error smaller

than the worst-case error from the 11hr single-fidelity emulator. At k ≤ 2hMpc−1, the

multi-fidelity emulator performs much better than the single-fidelity emulators. Since lr

simulations can predict accurate power spectrum at large scales k ≤ 2hMpc−1, we expect

a single-fidelity emulator requires ∼ 50 hr to compete with the 50 lr-3hr emulator on

large scales. A hr is ≃ 64 times more expensive than a lr, thus the core time for a 50 lr-

3hr emulator is ≃ 4 hr. The non-linear multi-fidelity outperforms a single-fidelity 11hr

emulator with ≃ 3 times lower computational cost.

The error reduction rate is the relative error of a single-fidelity emulator divided

by the error of a multi-fidelity emulator. Both linear and non-linear 50 lr-3hr emulator

show an error reduction rate of ≃ 100 for k ≤ 0.5hMpc−1, ≃ 100 times better than the

single-fidelity counterpart using 3 hr. At smaller scales k > 3hMpc−1, the multi-fidelity

emulators are ≃ 20 times (non-linear), and ≃ 10 times (linear) better than their single-

fidelity counterpart.

Comparison to low-fidelity only emulators

Figure 4.10 shows a single-fidelity emulator trained on 50 lr simulations, compared

to a non-linear 50 lr-3hr emulator. Figure 4.10 demonstrates how multi-fidelity modelling

improves the emulator accuracy at each k scale. At k ≲ 3hMpc−1, multi-fidelity modelling

uses 3 hr to correct the resolution and reduce the average emulator error from ≲ 5% to

≤ 1%. A low-fidelity emulator predicts a biased power spectrum beyond k = 3hMpc−1.

However, the multi-fidelity method can moderately correct the bias and reduce the error
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Figure 4.11: Core hours for running the training simulations versus emulation errors
for high-fidelity only emulators (orange) and low-fidelity only emulators (blue), linear
multi-fidelity emulators (AR1) with 2 hr (green), and non-linear multi-fidelity emulators
(NARGP) with 3 hr (purple). The numbers in the labels indicate the number of training
simulations used in the emulator. For multi-fidelity emulators, X-Y , X is the number of
low-resolution and Y is the number of high-resolution training simulations. The dots show
the average errors. The upper shaded areas show the maximum emulator errors among 10
test simulations. The lr samples beyond 100 are drawn from a separate Latin hypercube
with 400 samples. For LF-only emulators, we only calculate the relative errors for k ≤ 3.

to ≲ 1%. Again, the multi-fidelity technique can use a few hr simulations to calibrate the

resolution difference.

Core hours versus emulator errors

Figure 4.11 shows the average relative emulator error as a function of core hours

for performing the training simulations. The emulator errors shown in Figure 4.11 are

averaged over all k modes, so each emulator corresponds to a single point in the plot.
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An ideal emulator will be on the left bottom corner, implying both low cost and high

accuracy. The slope of a given emulator in the plot indicates how easily we can improve the

emulator with more training data. A steeper (more negative) slope means we can increase

the emulator accuracy with a lower cost.

We notice three types of emulators are clustered in separate regions in the plot.

The low-fidelity only emulator (LF-only) has the lowest cost and shows no noticeable im-

provement from increasing training simulations from 50 to 400 lr. The high-fidelity only

emulator (HF-only) shows an accuracy improvement with more hr simulations from 3 hr

to 11 hr. However, performing one hr requires ∼ 2 000 core hours, making the HF-only

emulator much more expensive than the other two emulators in the plot.

In Figure 4.11, the non-linear multi-fidelity emulator (NARGP) shows a compute

time similar to 3 hr simulations but has better accuracy than the HF-only emulator. It also

presents a steeper slope than the HF-only emulator, indicating we can efficiently increase the

accuracy using low-cost lr simulations. From 10 lr-3hr emulator to 50 lr-3hr emulator,

it shows that we can decrease the error from ∼ 0.02 to ∼ 0.003 using an additional ∼ 800

core hours. From 50 lr-3hr emulator to 400 lr-3hr emulator, we also see a mild decrease

of error but not as steep as 10lr-3hr to 50lr-3hr.

We also include the linear model (AR1) to demonstrate the performance of the

multi-fidelity method when there are only 2 hr available. The linear model also shows a

steep improvement slope from 10lr-2hr to 50lr-2hr. However, we notice that the linear

model with 2 hr is slightly worse than the non-linear one with 3 hr.
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Figure 4.12: Relative emulator error of non-linear N lr-3hr emulator colour coded with
different number of lr training simulations, with N ∈ {10, 20, 30, 40, 50}. The same as

Figure 4.8, solid lines represent the average error from test simulations, 1
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and shaded areas show the maximum and minimum test errors.

Figure 4.11 demonstrates that a multi-fidelity emulator can provide good accuracy

with a much lower cost than HF-only emulators. It also points out that we can efficiently

improve the accuracy of a multi-fidelity emulator using cheap low-fidelity simulations.

4.7.3 Varying the number of training simulations

Effects of more low-resolution training simulations

The benefit of using a multi-fidelity emulator is that we can improve the emulator

accuracy using extra low-fidelity simulations. Figure 4.12 shows the emulator error colour

coded by the number of lr training simulations. With more lr training data, the emulator

200



10−1 100

k(h/Mpc)

0.000

0.005

0.010

0.015

0.020

0.025

0.030
|P

p
re

d
ic

te
d
(k

)/
P

tr
u

e(
k

)
−

1|
Non-linear MF: 50-3

Non-linear MF: 50-5

Non-linear MF: 50-7

Non-linear MF: 50-9

Figure 4.13: Relative emulator errors from non-linear 50 lr-N hr emulator with N = 3
(blue), N = 5 (orange), N = 7 (green), and N = 9 (red) hr training simulations. Solid
lines are the average test errors. Shaded areas show the maximum and minimum test errors.

performance improves at both large and small scales. We only show the non-linear emulator

here for simplicity, but we observe a similar trend in the linear emulator. For Nlr-3hr with

N ∈ {10, 20, 30, 40, 50} emulators, the last k bin gives 3.77%, 1.16% , 1.15% , 0.97%, and

1.04% emulator errors, indicating an increase of accuracy with more lr training simulations.

Dividing the errors into large and small scales at k = 1hMpc−1, the average emulator errors

are 0.65%, 0.22%, 0.10%, 0.09%, and 0.09% for k ≤ 1hMpc−1 and 1.60%, 1.04%, 0.60%,

0.61%, and 0.56% for k > 1hMpc−1. The decrease in error is nearly saturated with ∼ 40

lr simulations.
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Effects of more high-resolution training simulations

In Figure 4.13, we add more hr training simulations to our multi-fidelity emulator.

The 50 lr-Nhr emulator with N ∈ {3, 5, 7, 9} shows no improvement in average error with

more hr, although the worst case error improves noticeably for the 50 lr-9hr emulator.

One reason may be stochasticity in the training set due to simulation modelling error, which

is around 1%, and limits the prediction accuracy. In particular, mp-gadget simulations

with 5123 particles may not be fully converged on small scales, and this limits the emulator’s

learning. Another possibility is that the prior from 50 low-fidelity simulations may be too

hard to overcome with only 9 hr simulations.

To improve multi-fidelity emulator accuracy further, one could build a more com-

plicated model than the one proposed in this paper. The improvement from the linear to

the non-linear model shows that different decisions about the scaling factor ρ could bet-

ter predict the non-linear structure. However, those complicated models will require more

high-fidelity training simulations. We will leave more complex modelling structures to future

work.

4.7.4 Effect of other emulation parameters

The resolution of low-fidelity simulations

We have so far tested multi-fidelity emulators using 1283 simulations (lr) as low-

fidelity and 5123 simulations (hr) as high-fidelity. Figure 4.14 shows non-linear 50 lr-3hr

emulators using different mass resolutions, 643 and 2563 simulations, as low-fidelity.
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Figure 4.14: Relative emulator errors for 50 lr-3hr emulator emulators using different
qualities of lr simulations. (Blue): using 1283 simulations as low-fidelity training simu-
lations. (Orange): using 643 simulations as lr, which are ≃ 8 times cheaper than 1283

simulations. (Green): using 2563 simulations as lr, which are ≃ 8 times most expensive
than 1283 simulations. Shaded area shows the maximum and minimum errors among ten
test simulations.
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A 643 simulation is ≃ 512 times cheaper than a hr but has a smaller maximum

k with max (k) ≃ 3hMpc−1. It produces percent level accuracy for k ≤ 1hMpc−1 and

has worst-case errors < 5% at small scales k ≥ 1hMpc−1. A 2563 simulation is ≃ 8 times

cheaper than a hr simulation, so the computational cost for a 50 lr-3hr emulator is ≃ 9

hr simulations. This emulator mildly outperforms the emulator where lr is 1283, with

an average percent-level emulation until k ≃ 12hMpc−1, but at a substantially increased

computational cost.

Figure 4.14 demonstrates that one can fuse various qualities of lr with hr sim-

ulations to build a multi-fidelity emulator. Figure 4.14 also shows that the multi-fidelity

emulator’s accuracy depends on the correlation between lr and hr. A 643 simulation is only

a rough approximation to its 5123 counterpart, so the emulator that uses 643 simulations

as low-fidelity is less accurate than the others in Figure 4.14.

Emulation at z = 1 and z = 2

This section examines the performance of a non-linear emulator at higher redshifts,

z = 1 and z = 2. Figure 4.15 shows the emulator error of a non-linear 50 lr-3hr emulator

at z = 0, 1, 2. The mean error at z = 1 is smaller than the z = 0 error at k ≤ 2hMpc−1

while it is larger for k > 2hMpc−1. This result shows that it is easier to train the correlation

between fidelities at large scales k ≤ 2hMpc−1 while harder to train at small scales k >

2hMpc−1. The emulator at z = 2 also shows a better performance than z = 0 at large

scales, k ≤ 2hMpc−1, but the error diverges to ∼ 10% on smaller scales, k > 2hMpc−1.

The improved performance on large scales may be because at higher redshifts the matter
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Figure 4.15: Relative emulator errors for a non-linear emulator at different redshifts, z ∈
{0, 1, 2}. Note the y-axis is in log10 scale. The larger error in the z = 2 emulator at k >
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Figure 4.16: The matter power spectrum at z = 2, output by mp-gadget with different
mass resolutions. The vertical dash lines indicated the mean particle spacing kspacing for
a given mass resolution. (Blue): The matter power spectrum from dark-matter only mp-
gadget simulation with Nptl,side = 64. (Orange): The matter power spectrum from mp-
gadget with Nptl,side = 128. (Green): The matter power spectrum from mp-gadget with
Nptl,side = 256. (Red): The matter power spectrum from mp-gadget with Nptl,side = 512.
(Purple): Linear theory power spectrum.

power spectrum is closer to linear theory and so the correlation between fidelities is easier

to learn.

Figure 4.16 shows the matter power spectrum at z = 2, with the same cosmological

parameters as Figure 4.1 and indicates a potential explanation. At z = 2, the low-fidelity

simulation contains a systematic at the scale of the mean inter-particle spacing, related

to the initial spacing of particles on a regular grid. This systematic is a transient and

disappears by z = 0. However, at redshifts where it is present it implies that the low
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fidelity simulations contain very little cosmological information on scales near their mean

interparticle spacing, k ≃ 3hMpc−1 and thus cannot significantly improve the emulation

accuracy. It may be possible to improve performance at high redshift with the use of other

pre-initial conditions such as a Lagrangian glass [163].

4.8 Runtime

We ran our simulations using mp-gadget on UCR’s High Performance Computing

Center (hpcc) and the Texas Advanced Computing Center (tacc). The standard compu-

tational setup was 256 mpi tasks per simulation for both hr (5123 dark matter particles)

and lr (1283 dark matter particles). The runtime was ∼ 20 core hours for lr and ∼ 2 000

core hours for hr, with a fixed boxsize 256 Mpc/h. The computational time for a 643 sim-

ulation was ∼ 1.5 core hours with 64 mpi tasks and ∼ 280 core hours for a 2563 simulation

with 256 mpi tasks.

The computational cost for training a non-linear 50 lr-3hr emulator (NARGP)

was ≃ 0.5 hours and ≃ 1.6 hours for a linear 50 lr-3hr emulator (AR1) on a single core.

For a single-fidelity emulator, it was ≃ 2 minutes on one core. The compute time could

be further improved by parallelizing the hyperparameter optimization for each k bin. The

compute time for optimizing the choice of hr using low-fidelity emulators was ∼ 3 hours

for selecting 3 hr (on one core). The run time was ≃ 12 seconds for evaluating 10 test

simulations.
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4.9 Conclusions

We have presented multi-fidelity emulators for the matter power spectrum. Multi-

fidelity methods fuse together N -body simulations from different mass resolutions to im-

prove interpolation accuracy. Multi-fidelity emulators use many low-fidelity simulations

to learn the power spectrum’s dependence on cosmology, correcting for their low resolu-

tion by adding a few high-fidelity simulations. The result is equivalent in accuracy to a

single-fidelity emulator performed entirely with much more costly high-fidelity simulations.

A multi-fidelity emulator’s physical motivation can be understood using the halo model:

low-fidelity simulations capture the two-halo term at large scales, while a few high-fidelity

simulations are used to learn the (almost cosmology independent) one-halo term at small

scales.

We have also proposed a new sampling strategy which uses low-fidelity simulations

as a prior to place high-fidelity training simulations. We choose our high-fidelity training

samples by optimizing the low-fidelity emulator’s error. In this way, the input parameters

at which to run hr simulations can be optimized without knowledge of the hr output.

We showed that single-fidelity emulator errors are correlated between different fidelities,

indicating that a lower fidelity emulator can serve as a good prior for picking hr simulation

points.

Our best multi-fidelity emulator achieved percent level accuracy using only 3 hr

simulations and 50 lr simulations, with a total computational cost ≲ 4 hr simulations. We

showed it outperforms a single-fidelity emulator with 11 hr simulations. We expect that a
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single-fidelity emulator would require ∼ 50 hr simulations to compete with the multi-fidelity

one at large scales, k ≤ 2hMpc−1.

In this paper, we used 1283 simulations as our low-fidelity training sample and 5123

simulations as high-fidelity, with a fixed 256 Mpc/h box. However, Figure 4.14 indicates

our method still has a good performance when extended to other resolutions. We tested

our emulator with a series of 10 hr simulations in a Latin hypercube. Two types of multi-

fidelity emulators, linear (AR1) and non-linear (NARGP), are used. We showed that both

emulators perform similarly at large scales, while the non-linear one has a better accuracy

at small scales.

We focussed on z = 0, but also investigated higher redshifts. Higher redshift power

spectra behave more linearly than at z = 0, so it is easier to learn the large-scale correlation

between fidelities. However, the low-fidelity power spectra are less reliable beyond the

mean particle spacing at higher redshifts, inducing some difficulty modelling small scales

with k > 2hMpc−1.

Our multi-fidelity emulators could provide percent-level predictions for future

space- and ground-based surveys at a minimum computational cost. All current emula-

tors are single-fidelity, training only on expensive high-fidelity simulations. A single-fidelity

emulator requires at least ∼ 40 simulations to give percent-level accuracy in a ΛCDM Uni-

verse. For example, [28] use 37 simulations to emulate a 5-dimensional ΛCDM model. [10]

use ∼ 200 high-fidelity simulations (30003 dark matter particles) to achieve the upcoming

Euclid mission’s desired accuracy in an 8 dimensional parameter space.
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Our multi-fidelity methods can also be used to improve the existing single-fidelity

emulators. For example, suppose we have run 50 high-resolution simulations to build an

emulator. We can perform 3 additional super high-resolution simulations and combine them

to build a super-resolution multi-fidelity emulator. The choice of these 3 simulations could

be selected via the optimization strategy proposed in this paper. Instead of performing super

high-resolution simulations, one could use generative adversarial network techniques [see,

Ref. [137]] to generate super-resolution simulations and combine them with a multi-fidelity

emulator.

Besides increasing the resolution, multi-fidelity methods could also be used to

decrease the emulation uncertainty of an existing emulator by extending it with many low

resolution simulations. This indicates a low-cost way to enhance current emulators. Multi-

fidelity emulators may make possible efficient expansion of the prior parameter volume.

Since high-fidelity simulations are only used to calibrate the resolution, they might not

need to span the whole parameter space, implying we can expand the sampling range of an

existing emulator by extending the low-fidelity sampling range. We will leave this technique

to future work.

In this work, we have tested our multi-fidelity emulators with 5123 resolution and

a relatively small box 256 Mpc/h. In future we will apply the framework developed here

to create a production quality emulator using higher particle load simulations (e.g., 20483

particles) in larger boxes. Other summary statistics, including the halo mass function and

the cosmic shear power spectrum, could also be emulated using the same framework.
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The multi-fidelity framework may also be extended to hydrodynamical simulations,

which are much more costly than their dark matter-only counterparts. No production

hydrodynamical emulators including galaxy formation effects such as AGN feedback yet

exist.13 However, AGN feedback significantly affects the matter power spectrum at k >

0.1hMpc−1 [150] and pressure forces can affect the power spectrum at k ∼ 10hMpc−1

[151]. Thus practical exploitation of the small-scale information from future surveys will

require the development of hydrodynamical emulators. By decreasing the computational

cost of an emulator by a factor of ≈ 3 and still outperforming a single-fidelity emulator, the

work presented here makes emulation development substantially more practical.

Software

We used the GPy [165] package for Gaussian processes. For multi-fidelity kernels,

we moderately modified the multi-fidelity submodule from emukit [155].14 We used the

mp-gadget [149] software for simulations.15 We generated customized dark matter-only

simulations using Latin hypercubes a modified version of SimulationRunner.16

Data Availability

The code to reproduce a 50 lr-3hr emulator is available at https://github.com/

jibanCat/matter_multi_fidelity_emu alongside the power spectrum data.

13[36] has a neural net emulator trained with 4 233 (magneto-)hydrodynamical simulations in a relatively
small box, 25Mpc/h. [164] has an hydro-emulator using baryonification methods for BACCO simulations.

14https://github.com/EmuKit/emukit
15https://github.com/MP-Gadget/MP-Gadget
16https://github.com/sbird/SimulationRunner
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Chapter 5

MF-Box: Multi-fidelity and

multi-scale emulation for the

matter power spectrum

5.1 Abstract

We introduce MF-Box, an extended version of MFEmulator, designed as a fast sur-

rogate for power spectra, trained using N-body simulation suites from various box sizes

and particle loads. To demonstrate MF-Box’s effectiveness, we design simulation suites that

include low-fidelity suites (L1 and L2) at 256 Mpc/h and 100 Mpc/h, each with 1283 parti-

cles, and a high-fidelity suite (HF) with 5123 particles at 256 Mpc/h, representing a higher

particle load compared to the low-fidelity suites. MF-Box acts as a probabilistic resolution

correction function, learning most of the cosmological dependencies from L1 and L2 sim-
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ulations and rectifying resolution differences with just 3 HF simulations using a Gaussian

process. MF-Box successfully emulates power spectra from our HF testing set with a relative

error of < 3% up to k ≃ 7hMpc−1 at z ∈ [0, 3], while maintaining a cost similar to our pre-

vious multi-fidelity approach, which was accurate only up to z = 1. The addition of an extra

low-fidelity node in a smaller box significantly improves emulation accuracy for MF-Box at

k > 2hMpc−1, increasing it by a factor of 10. We conduct an error analysis of MF-Box based

on computational budget, providing guidance for optimizing budget allocation per fidelity

node. Our proposed MF-Box enables future surveys to efficiently combine simulation suites

of varying quality, effectively expanding the range of emulation capabilities while ensuring

cost efficiency.

5.2 Introduction

Over the past decade, cosmological large-scale structure surveys have evolved in-

creasingly in resolution and size. As observations probe more non-linear structures with

high precision, theoretical predictions must be highly accurate to match the observational

errors at corresponding small scales. The only way to achieve such accurate predictions

is by running N -body simulations. However, including expensive numerical simulations in

the cosmological inference will require ∼ 106 likelihood evaluations using simulations, i.e.,

∼ 106 numerical simulations in the Markov Chain Monte Carlo (MCMC) sampling, making

it impractical to use simulations for Bayesian inference directly.

In the development of statistical surrogate modeling, emulators emerged as a

Bayesian approach to analyze simulations and perform fast function predictions [166, 30,
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167]. In cosmology, emulators have been widely used as a fast surrogate model to replace

the expensive likelihood evaluations in the MCMC sampling. For example, using surrogate

models to replace the Boltzmann code in cosmological inference [168, 169, 170, 171, 172, 173].

With a large number of training samples (∼ O(104−106)), these Boltzmann code emulators

have successfully improved the speed of the current parameter estimation pipeline. Another

approach is using surrogates to replace MCMC to emulate the posterior distribution directly,

reducing the overall required number of likelihood evaluations [174].

Unlike the emulators for Boltzmann codes, likelihood evaluations based on numer-

ical simulations, such as cosmological N -body simulations, are more expensive per training

sample. Therefore, only a limited number of full-size training simulations (∼ O(101− 102))

are computationally available. Emulation based on numerical simulations has been imple-

mented in various cosmological applications: the matter power spectrum [28, 116, 118, 175,

11], baryonfication simulations [32, 176], arbitrary cosmology [129], f(R) gravity [177, 178],

weak lensing [126, 179, 180], halo mass function [124, 181, 182], 21-cm power spectrum [45]

and global signal [183, 184, 185], and Lyman-α forest [128, 138, 130, 186, 187, 188]. All

these emulators are self-consistent and can replicate the simulations as surrogate models to

accelerate the parameter inference pipeline.

Emulators have also been used in several current surveys. [189] used an emulator

on Dark Energy Survey year 3 data (DES Y3) for cosmic shear peak statistics. [190] used an

emulator on SDSS quasars and galaxies. Beyond cosmological inference, [191] uses emulation

to calibrate the galaxy formation simulations. [192, 193] build emulators to quantify the

subgrid feedback effects in the hydrodynamical simulations. Emulators have also been used
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in a wide range of disciplines, for example, exoplanet [194], gravitational wave [195], stellar

population synthesis [196], heavy-ion physics [197, 198], astrochemistry [199], and biology

[200].

The computational costs of cosmological emulators are rapidly increasing, driven

by an increase in both survey accuracy and number of model parameters. Over the past

few years, cosmological emulators based on N -body simulations have evolved from five-

dimensional cosmology (e.g., wCDM in Coyote Universe [28]) to higher dimensions, for

example, eight-dimensional w0waCDM+
∑
mν cosmology in [11] and Mira-Titan Universe

[118, 201]. The increase in dimensionality means the number of simulations required for

training an accurate emulator also needs to increase dramatically. For instance, EuclidEmu-

lator2 requires more than 200 high-resolution simulations with 30003 in an eight-dimensional

cosmology. Moreover, when the astrophysics effects are not ignorable for cosmological in-

ference [176, 32, 202], more expensive simulations, such as hydrodynamical simulations

including baryonic effects, must be used for training realistic emulators. This increase in

computational cost poses a challenge for the implementation of emulators in future surveys,

making them prohibitively expensive and difficult to adopt unless the efficiency of emulation

techniques can be improved.

An efficient approach to reducing the computational cost is building emulators

using multi-fidelity emulation (MFEmulator), which allows simulations with different particle

loads to be combined [16]. [42] showed that it is possible to construct a realistic emulator

using hydrodynamical simulations through the MFEmulator technique, emulating Lyman-α

forest with sub-percent test accuracy using only 6 high-fidelity simulations. In [16, 42], we
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assumed the particle load is the only fidelity variable. This is a limitation, as simulation

volumes also correlate with the accuracy of a simulation: With a constant particle load,

larger box sizes enhance accuracy at larger scales but diminish it at smaller scales due to

reduced mass resolution. Smaller volumes with the same particle load can capture finer

small-scale details, though a minimum box size requirement exists [29, 26]. Here we show

that the cost of training a MFEmulator can be further reduced by having multiple fidelities

which vary both simulation volumes and particle loads.

The multi-fidelity method we use, based on [41, 16], is just one of many multi-

fidelity techniques. [161] surveyed the multi-fidelity methods in uncertainty quantification,

inference, and optimization. A few popular methods include the control variate technique,

which has been applied in cosmology in [203, 204] on reducing the variance of the covariance

matrix, and multi-level or multi-stage Markov Chain Monte Carlo [205, 206], which use low-

fidelity models to reduce the number of expensive likelihood evaluations in MCMC. Though

multi-level MCMC is a promising method, its practical use requires running thousands of

N -body simulations in the sampler, which is not yet applicable to cosmological inference.

Another similar method is using deep learning methods to learn the mapping from low-

to high-resolution simulations to directly generate the snapshots of the ‘super-resolution’

simulations [207, 136, 208]. While this method shows promise, it is currently limited to a

single cosmology and is not yet suitable for inference.

The statistical and computer science literature already contains work on multi-

fidelity techniques with more than one low-fidelity node. [144, 145] considered a multi-

information source framework, which combines more than one information node to achieve
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an overall lower variance. In this work, we use a graphical Gaussian process, based on a di-

rected acyclic graph [197], to predict high-fidelity simulations using low-fidelity simulations

in two different simulation volumes.

A design using multiple low-fidelity nodes can be helpful in several ways. One

example, which we will show in this work, is enhancing the resolution at small scales using

an additional low-fidelity node with a smaller box size. A cosmological simulation has strict

volume requirements to ensure that the base mode is linear and to beat cosmic variance.

However, it also needs high enough particle load (or spatial resolution) to capture the non-

linearities at small scales. MFEmulator provides a way to improve small-scale structures

using a simulation suite from a lower particle load. Nevertheless, the non-linear information

in a lower particle-load simulation is also limited. An economical way to resolve small scales

is to run simulations in small boxes to increase the spatial resolution by sacrificing some

large-scale information.

Another approach to minimizing the number of training simulations is Bayesian

optimization, where a sequential choice of new training simulations is designed to optimize

the likelihood function globally. For example, [138, 139, 140] implemented Bayesian opti-

mization in the cosmological inference. Similar approaches, such as [141, 209, 210, 190],

iteratively train emulators on the high likelihood regions of the parameter space, thus min-

imizing the overall training samples to achieve accurate posterior distribution. Our multi-

fidelity emulation is a complimentary technique, which can be combined with Bayesian

optimisation for the lowest computational cost.
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This paper presents MF-Box, extending our previously developed MFEmulator to

allow multiple low-fidelity nodes in a multi-fidelity emulator. MF-Box uses the multi-fidelity

graphical Gaussian process model (GMGP) [197] to emulate high-fidelity simulations using

low-fidelity simulations from two different simulation volumes. A GMGP model is an ex-

tension of the traditional KO model [41] and NARGP model [153]. The difference is that

a GMGP allows multiple nodes in a fidelity while KO or NARGP models assume one node

per fidelity. For example, in our case, the low-fidelity nodes include separate box sizes with

the same particle load, resolving different scales of the Universe.

Our references to low- and high-fidelity nodes are based on a relative scale within

the context of our multi-fidelity framework. We do not directly compare these definitions

to other matter power spectrum emulators. Our primary goal is to demonstrate the effec-

tiveness of MF-Box as a probabilistic resolution correction tool. This allows us to correct

the resolution of a low-fidelity emulator, approximating higher particle loads using a limited

number of high-fidelity simulations.

Consequently, the focus of our discussion on emulation error revolves around pre-

dicting unseen high-fidelity simulations in the test set. This choice is intentional, as it

allows us to assess how well MF-Box can upscale a low-fidelity emulator when predicting

high-fidelity simulation outputs. It is worth highlighting that the framework we present

here can be adapted for use with various other summary statistics emulators, accommodat-

ing different definitions of low- and high-fidelity nodes as needed.

We will also present an analysis of the emulation errors in relation to the com-

putational budget. Previous studies [197, 211] have demonstrated that Gaussian process
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emulator errors can be bounded by a power-law function. In this paper, we model the

emulation error from MF-Box as a power-law function of the number of training simulations

and empirically infer the emulator error function from our MF-Box results. By utilizing

this empirical error function, we can estimate the emulation error associated with a given

multi-fidelity design, as well as determine the optimal budget allocation for each node. This

error analysis serves as a useful guide for future development of MFEmulator techniques.

In Section 5.3, we will describe our simulations and experimental design. Sec-

tion 5.4 will review the single-fidelity emulator as well as three multi-fidelity emulation

methods, namely AR1, NARGP, and MF-Box. Our sampling strategy for selecting input

cosmologies for high-fidelity simulations will be outlined in Section 5.5. Empirical inference

of the emulation error function will be discussed in Section 5.6. Section 5.7 will present the

results of MF-Box, followed by the conclusion in Section 4.9.

5.3 Simulations

We perform dark matter-only simulations using the open source MP-Gadget code

[149],1 an N -body and smoothed particle hydrodynamical (SPH) simulation code derived

from Gadget-3 [148] and used to run the astrid simulation [39, 212], a large-scale high-

resolution cosmological simulation with 250 Mpc/h containing 2×55003 particles. The base

of MP-Gadget is Gadget-3, but, among other improvements, it has been rewritten to take

advantage of shared-memory parallelism and the hierarchical timestepping from Gadget-4

[213]. Detailed descriptions of the simulation code can be found in [39].

1https://github.com/MP-Gadget/MP-Gadget/
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Table 5.1: Low- and high-fidelity simulation suites used in our study. The definition of
low- and high-fidelity nodes is based on a relative scale specific to our approach and is not
intended for direct comparison with other matter power spectrum emulators.

Simulation Box Volume Npart Node Hour

L1 (256 Mpc/h)3 1283 ∼ 1.0
L2 (100 Mpc/h)3 1283 ∼ 1.7
HF (256 Mpc/h)3 5123 ∼ 140
Test (256 Mpc/h)3 5123 ∼ 140

We start the simulations at z = 99 and finish at z = 0. The initial linear

power spectrum and transfer function are produced by CLASS [157] at z = 99 through

the Zel’dovich approximation [158]. We assume periodic boundary conditions. We use a

Fourier-transform-based particle-mesh method on large scales for the gravitational forces

and a Barnes-Hut tree [110] on small scales. Table 5.1 summarizes the simulation volumes

and particle loads used in this paper. We use the same set of low-fidelity (L1) and high-

fidelity (HF) pairs as in [16], with an additional low-fidelity node (L2) to demonstrate the

emulation using simulations from different box sizes. However, the framework presented

in this paper is generalizable to more than two low-fidelity nodes. Fig 5.1 shows a visual

illustration for the dark-matter only simulations used in this paper.

Our emulation target is the matter power spectrum, P (k), a summary statistic of

the over-density field. We measure the matter power spectrum with a cloud-in-cell mass

assignment. We use the built-in power spectrum estimator from MP-Gadget; the power

spectrum is thus generated on a mesh the same size as the simulation’s PM grid, which is 3

times the mean interparticle spacing. The multi-fidelity emulation framework we introduce
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Figure 5.1: Illustration of the MF-Box framework and the dark-matter only simulations
performed at z = 0. MF-Box provides a emulation framework to connect power spectra (de-
noted as f(θ), where θ is the input cosmology) from low-fidelity simulations (L1 and L2) to
high-fidelity simulations (HF), providing an efficient emulation framework in predicting HF
power spectra using only a few HF simulations augmented with many low-fidelity simula-
tions with various volumes. ρ is a learnable multiplicative resolution correction parameter,
and δ is a learnable additive resolution correction parameter. Details of the MF-Box model
can be found in Section 5.4.2. The particle loads and box sizes for each simulation are
listed in Table 5.1. (a.) Large-scale structures of each simulation are shown. Simulations
L1 and L2 have the same particle load (Nptl,side = 128), but L1 has a smaller box size
(100 Mpc/h). As a result, the large scales of L1 resemble those of the high-fidelity (HF)
simulation, while L2 lacks the necessary large-scale information to match HF. (b.) Zoomed-
in view (25.6 Mpc/h) of the small scales from (a.). L1 lacks structures due to the sparsity
of particles at this scale, whereas L2 captures more structures by utilizing a smaller box
size. As a result, L1 resembles HF at small scales due to its finer mass resolution.
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Figure 5.2: Matter power spectra from dark-matter only MP-Gadget simulations with var-
ious fidelities, conditioning on the same cosmology. The top panel shows the power spectra
from a large-box low-fidelity (L1; blue), a small-box low-fidelity (L2; black), and a large-box
high-fidelity simulations (HF; yellow). The numeric values for different fidelities of simula-
tions are tabulated in Table 5.1. The 2nd, 3rd, and bottom panels show the ratios of L1/HF
(red) and L2/HF (black) simulations, conditioned on different redshift bins, z = 3.0, 0.5, 0.
(Bottom panel): We also show the ratio between (L1, L2) and the linear theory power
spectrum from CLASS at large scales. The solid lines show the median and shaded areas
show the 68% quantiles across 60 different cosmologies.
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here is also applicable to other implementations of power spectrum calculations, such as

those generated by NBodyKit [214].

Figure 5.2 shows an example of our emulation target: matter power spectra from

different resolutions, where the low-fidelity simulations (L1 and L2) have two different box

sizes. L1 simulations are in the same box size (256 Mpc/h) as high-fidelity simulations (HF)

with the same initial condition seeding; whereas, L2 simulations have a smaller box size

(100 Mpc/h) than L1 and HF. In principle, L2 can capture more small-scale structures due

to its smaller box size. Indeed, as shown in the 2nd, 3rd, and bottom panels in Figure 5.2,

L2 is more accurate than L1 at small scales. For example, at z = 3, L2/HF is closer to 1

than L1/HF at small scales (k > 0.6hMpc−1).

Note that L2 is not necessarily better than L1 in matching the HF simulations. L1

matches the HF power spectrum extremely well at large scales, while L2 performs better at

small scales. Therefore, the accuracy of the different simulations are not in a monotonically

increasing sequence. Thus the [41] method we used in [16] cannot be directly applied to

this example.
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Figure 5.3: Experimental design of low- and high-fidelity simulations in this work. The prior
volume is chosen to be the same as EuclidEmulator2 [11]. Crosses (black) are the input
parameters for the low-fidelity simulations (both L1 and L2). Circles (red and yellow) are the
parameters for high-fidelity simulations, which is a subset of the low-fidelity experimental
design. We use max-min Sliced Latin Hypercube (SLHD) [12] for the LF design, containing
20 slices with 3 samples in each slice. Red and Yellow circles show two of the slices, which
we select to be the input parameters for HF simulations.

224



Figure 5.3 shows our experimental design in the input parameter space, corre-

sponding to the prior range of

Ω0 ∼ U(0.24, 0.4);

Ωb ∼ U(0.04, 0.06);

h ∼ U(0.61, 0.73);

As/10−9 ∼ U(1.7, 2.5);

ns ∼ U(0.92, 1),

(5.1)

where Ω0 is the total matter density parameter in the Universe, Ωb is the total baryon

density parameter, h is the dimensionless Hubble parameter, As is the spectral amplitude

and ns is the spectral index.

We generated 60 Latin hypercube samples using max-min Sliced Latin Hypercube

[12], including 20 slices with 3 samples in each slice. We will discuss SLHD in Section 5.5.1.

SLHD partitions the design into several equal slices (or blocks). Each slice itself is also

a Latin hypercube design, as well as the whole design. We thus choose one of the Latin

hypercube slices as our high-fidelity input. By using SLHD, we can avoid the design points

of the HF node clustered in the corner of the prior volume. We ran L1 and L2 nodes using

the same cosmological parameters (although this is not required by the GMGP from [197]).

We summarize the notation used in this paper in Table 5.2.
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Table 5.2: Notations and definitions

Notation Description

HF High Fidelity
LF Low Fidelity
θ Input cosmological parameters
f(θ) Summary statistics (matter power spectrum

in this work) corresponding to input parameters.
Nptl,side Number of particles per box side
AR1 Autoregressive GP

[41]
NARGP Non-linear autoregressive GP

[153]
GMGP Graphical GP [197]
MFEmulator Multi-fidelity cosmological emulator

[16]
MF-Box Multi-fidelity cosmological emulator

with different box sizes in low fidelity.

5.4 Emulation

Emulation predicts the output from expensive cosmological simulations. First, a

handful of simulations are run at carefully chosen experimental design points as a training

set. Next, a surrogate model (an emulator) fits the prepared training set to predict simu-

lation output. The trained emulator will be a proxy for the simulation results, allowing for

inexpensive evaluation of a likelihood function.

In Section 5.4.1, we will briefly review emulation using a Gaussian process. Sec-

tion 5.4.2 will review how we can extend the Gaussian process emulator to model simu-

lations from different qualities using a multi-fidelity emulator, MFEmulator. Our earlier

multi-fidelity technique based on the KO method [41] will be reviewed in Section 5.4.2.

Section 5.4.2 will review an extension of the KO method based on a deep Gaussian process,
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NARGP [153]. Section 5.4.2 describes a graphical-model Gaussian process model (GMGP)

[197], an extension of NARGP to allow more than one node in the same fidelity.

5.4.1 Gaussian process emulator

A Gaussian process (gp) regression model [31] is widely used as a cosmological

emulator. A gp provides closed-form expressions for predictions. In addition, a gp naturally

comes with uncertainty quantification, which is handy for inference framework and Bayesian

optimization. In emulation, a gp can be seen as a Bayesian prior for the simulation response.

It is a prior because the emulator model is chosen to ensure smoothness in the simulation

response before data are collected [30].

Let θ ∈ Θ ⊆ Rd be the input cosmologies for the simulator, and f(θ) be the

corresponding output summary statistic. This work assumes that the summary statistic is

the non-linear matter power spectrum. A gp regression model is a prior on the response

surface of our simulated matter power spectrum:

p(f) = GP(f ;µ, k), (5.2)

where µ(θ) = E[f(θ)] is the mean function, and k(θ,θ′) = Cov[f(θ), f(θ′)] is the covariance

kernel function. The mean function is usually assumed to be a constant or zero mean

unless there is prior knowledge about the mean function. In this work, we assume a zero

mean function. The covariance kernel function is typically chosen as a squared exponential

function (radial basis function, RBF) to return a smooth response surface.

Suppose we run the simulations at n carefully chosen input cosmologies, D =

{θ1, · · · ,θn}, and we compress each simulation into the corresponding matter power spec-
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trum, y = {f(θ1), · · · , f(θn)}. Conditioning on this training data and optimizing the hy-

perparameters using maximum likelihood estimation, we can get the predictive distribution

of f at a new input cosmology θ∗, f∗ = f(θ∗), through a closed-form expression

p(f∗ | y∗,D,θ) = N (f∗ | µ∗(θ∗), σ2∗(θ∗)), (5.3)

where the mean and variance are

µ∗(θ∗) = k(θ∗,D)⊺K(D)−1y;

σ2∗(θ∗) = k(θ∗,θ∗)− k(θ∗,D)⊺K(D)−1k(θ∗,D).

(5.4)

The vector k(θ∗,D) = [k(θ∗,θ1), · · · , k(θ∗,θn)] represents the covariance between

the new input cosmology, θ, and the training data. The matrix K(D) is the covariance of

the training data.

Although we do not explicitly state this in the notation, we let f(θ) be a single-

value output. If the target summary statistic is a vector, we let the Gaussian process model

each bin separately. It will be more apparent why we make this modeling decision in later

sections (Section 5.4.2). The primary reason is that the correlation between low-fidelity

and high-fidelity summary statistics changes depending on the scales. The multi-fidelity

method can only capture scale dependence if we model the scales separately.2

5.4.2 Multi-Fidelity Emulation

We briefly recap the multi-fidelity emulation framework we proposed in [16]. We

will first review the Kennedy-O’Hagan model (autoregressive GP; AR1) [41] and NARGP

2An alternative way is to apply a co-kriging kernel to model the covariance for each vector element. We
do not do that in this work because we found the single-output gp is enough for our cosmological emulation
purpose, so there is no need to introduce another layer of complexity.
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(non-linear autoregressive GP) [153] in Section 5.4.2 and Section 5.4.2, respectively. We

do not change our AR1 and NARGP modeling presented in [16], except we simplified the

notations to only two fidelities. Finally, we will introduce the GMGP model [197], combining

simulations from different box sizes.

Kennedy O’Hagan Method

[41] proposed a linear autoregressive GP to model the response surfaces of a se-

quence of computer codes with increasing fidelity. For simplicity, we assume there are only

two fidelities: dark-matter only simulations with fewer particles in low fidelity (LF) and

with more particles in high fidelity (HF).

Let {yLF,yHF} be the matter power spectrum in the training set, where yLF =

{fLF(θLFi )}nLF
i=1 and yHF = {fHF(θHF

i )}nHF
i=1 . Here nLF and nHF are the number of simulations

in the low and high fidelity. The KO method models the multi-fidelity emulator as:

fHF(θ) = ρ · fLF(θ) + δ(θ), (5.5)

where ρ (the scale parameter) is a trainable parameter describing the amount of common

behavior in low- and high-fidelity response surfaces. δ(θ) is a GP that models the remaining

bias, modeling the variability that cannot be captured by correlating LF to HF. In the

context of the matter power spectrum, the ρ · fLF(θ) term dominates at the large scales

describing the two-halo term while δ(θ) dominates at the small scales describing the one-

halo term.

We normalize the matter power spectra into a logarithmic scale. The sample mean

is subtracted from the LF log power spectra to keep the output close to zero, while the HF
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log power spectra are passed directly to the training:

yLF ← log yLF − E[log yLF];

yHF ← log yHF.

(5.6)

Not subtracting the mean spectrum of HF simulations is a compromise decision. Our

benchmark multi-fidelity emulator uses only 3 HF samples, and the sample mean of 3 power

spectra will often deviate substantially from the true mean spectrum. Instead, we entirely

rely on the bias term, δ(θ), to compensate for the deviation caused by not subtracting the

mean.

As mentioned in [16], the ρ parameter has to be scale-dependent (as a function of

k) to model the scale-dependent correlation between high- and low-fidelity. Here we use the

same method as [16], where we assume Equation 5.5 is a single-output GP model and build

a KO model for each k bin of the data. In this way, we can model ρ as a function of k.

We also assign different KO models to different redshifts. We note that it is

possible to assume a smooth function to model ρ(k, z), and we may examine this in future

work.

Non-linear Autoregressive Gaussian Process (NARGP)

Another multi-fidelity method we used in [16] is the non-linear autoregressive GP,

or NARGP, developed by [153]. NARGP is a modification of the KO method to allow

non-linearity in the scale parameter, ρ, through a deep GP [162]. In cosmic emulators, it

means that we allow ρ to vary as a function of cosmology.
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Let fHF(θ) be the high-fidelity and fLF(θ) be the low-fidelity power spectra as

functions of cosmology, θ. NARGP models the multi-fidelity problem as:

fHF(θ) = ρ(θ, fLF(θ)) + δ(θ), (5.7)

Here, ρ is modeled as a GP and is a function of the cosmologies, θ, and the output from

the previous fidelity, fLF(θ). We follow the approximation made in [153] to simplify the

computation of a deep GP to two separate GPs. The approximation is done by replacing

the fLF(θ) with its posterior, f∗,LF(θ). Eq 5.7 can thus be further reduced to a regular GP

with a kernel function K:

fHF ∼ GP(0,K) (5.8)

with

K(θ,θ′) = Kρ(θ,θ′) ·Kf (f∗,LF(θ), f ′∗,LF(θ′)) +Kδ(θ,θ
′). (5.9)

We integrate the bias GP and the scale parameter GP here into one single GP with a

composite kernel. Each kernel, (Kρ,Kf ,Kδ), is a squared exponential kernel. Kδ models

the bias term, and the scale parameter GP is factorized into the Kf , modeling the covariance

between LF output posteriors. Kρ models the cosmological dependence of ρ.

Graphical Multi-fidelity Gaussian Process (GMGP)

Here we briefly explain a new multi-fidelity model using a graphical model Gaus-

sian process (GMGP), first introduced in [197]. A similar approach is the multi-information

source method [145], which allows multiple low-fidelity nodes (information sources) to re-

solve a single high-fidelity truth. However, we find the model in [197] is methodologically
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closer to what we applied before in [16], and so use this technique for our emulation problem

for low-fidelity nodes with different box sizes.

The graphical GP model [197] utilizes a directed acyclic graph to model multi-

fidelity data. Instead of assuming the fidelities of a simulation code form a monotonically

increasing sequence in accuracy, a GMGP allows the fidelities to have a directed-in tree

structure. [197] has a thorough mathematical description for applying GMGP in an arbi-

trarily directed in-tree structure. Thus each high fidelity node has more than one corre-

sponding low fidelity node, a common situation as there are many ways to approximate

high fidelity simulations.

We use the simplest case of the tree structure, illustrated in Fig 5.1, with two low

fidelity nodes and one high fidelity node. In the case of N -body simulations, one may vary

not only the number of particles, but also the box size of the simulation. Thus we can use

a low-fidelity simulation with a smaller box size to improve emulation at the high-fidelity

node. We will call this tree “MF-Box” throughout the rest of the paper. In the following

text, we will assume L1 is the low-fidelity node that has 1283 particles. L2 has the same

number of particles as L1 but a smaller box size (100 Mpc/h), and HF is the high-fidelity

node with 5123 particles and the same box size as L1 (Table 5.1).

The deep GMGP model (dGMGP) we use from [197] is an extension of NARGP,

where [197] implemented a specific kernel structure allowing low-fidelity information from

multiple nodes to be passed to the HF node3. For the directed graph in Fig 5.1, the dGMGP

3Since we found NARGP outperformed AR1 in [16] for the matter power spectrum case, we will use
dGMGP instead of the GMGP extended from the AR1 model.
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model can be written as:

fHF(θ) = ρ({ft(θ) : t ∈ L1, L2},θ) + δ(θ). (5.10)

Here we pass the cosmologies θ and the outputs from L1 and L2 to the ρ function. We

make the same approximation as in Section 5.4.2, so we can train the deep GP recursively:

We first train the low-fidelity emulators on L1 and L2, respectively. Then, we sample the

output posteriors from the L1 and L2 emulators and use them as the training input for

Eq 5.10.

Similar to NARGP, we use a composite kernel for the high-fidelity GP in the

dGMGP:

KdGMGP(θ,θ′) =

Kρ(θ,θ′) ·Kf (f∗,LF(θ), f∗,LF(θ′)) +Kδ(θ,θ
′),

(5.11)

where the above expression is the same as Eq 5.9 except that Kf takes the outputs from

both L1 and L2 emulators as inputs,

Kf (f∗,LF(θ), f∗,LF(θ′)) =

Klinear(f∗,LF(θ), f∗,LF(θ′))+

Krbf(f∗,L1(θ), f∗,L1(θ′)) ·Krbf(f∗,L2(θ), f∗,L2(θ′)).

(5.12)

Here, Krbf is a radial basis kernel, and Klinear is a linear kernel, which can be expressed

more explicitly as

Klinear(f∗,LF, f
′
∗,LF) = σ21f∗,L1f

′
∗,L1 + σ22f∗,L2f

′
∗,L2,

where σ21 and σ22 are the hyperparameters of the linear kernel. A linear kernel in a Gaussian

process is equivalent to a Bayesian linear regression.4 The multiplication in the kernel

4See the kernel cookbook: https://www.cs.toronto.edu/~duvenaud/cookbook/.
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operation means an “AND” operation, showing high covariance only if both kernels have

high values. The addition operator means an “OR” operation, indicating the final covariance

is high if either of the kernels gives a high value. The intuition here is that the linear kernel

encodes the linear regression part while the multiplication of RBF kernels encodes the non-

linear transformation from L1 and L2 nodes to the HF node

5.5 Sampling strategy for high-fidelity simulations

This section describes the method used for selecting the input parameters for our

high-fidelity training simulations. Following [197], we employ a Sliced Latin Hypercube

Design (SLHD) [215, 12] to assign input parameters for the high-fidelity (HF) nodes. Each

slice (or subset) in an SLHD is a Latin hypercube and thus can be served as the design

points for the HF node. This approach offers a less computationally intensive and more

straightforward implementation compared to the grid search method utilized in our previous

work [16]. The details of SLHD will be discussed in Section 5.5.1, and our process for

selecting the optimal HF design from the SLHD will be discussed in Section 5.5.2.

5.5.1 Sliced Latin hypercube design (SLHD)

Sliced Latin Hypercube Design (SLHD) is a type of Latin hypercube that can be

partitioned by slices or blocks, each of which contains an equal number of design points.

Each slice is itself a Latin hypercube. SLHD ensures the space-filling property both in the

whole design and in each slice. Therefore, SLHD is an intuitive choice for a multi-fidelity

problem.
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Suppose we have an SLHD for the LF node. We can use one of the slices to

generate simulations for the HF node, which ensures that both the LF and HF nodes

are in Latin hypercubes. Another advantage of SLHD is that we can directly obtain a

nested experimental design where the LF samples form a superset of the HF samples, i.e.,

θHF ⊂ θLF. As mentioned in [41], a nested design is an efficient training set for a multi-

fidelity model because it allows us to obtain an accurate posterior fLF(θ) at location θ

without interpolating at the low fidelity.

SLHD, initially proposed by [215], is a technique developed for applying the Latin

hypercube design to categorical variables. [12] later developed an efficient method for

constructing optimal SLHD designs. The number of categories for categorical variables

is usually fixed based on qualitative properties, making it challenging to apply a Latin

hypercube design to such variables. However, SLHD addresses this challenge and enables

the use of Latin hypercube designs with categorical variables. In SLHD, a Latin hypercube

is divided into equal slices along the dimensions associated with categorical variables, while

non-categorical dimensions are still sampled with ordinary Latin hypercube sampling. The

usage of SLHD in the context of modeling the multi-fidelity problem was demonstrated in

[197]. Furthermore, SLHD has also been employed in cosmology, specifically by the Dark

Emulator [181].

For implementation, we use the maximin SLHD package, maxminSLHD,5 in R [12].

We set the number of design points to 3 for each slice and the number of slices to 20. In

total, we have 60 design points. We assign the SLHD with 60 points to LF and select one

5https://rdrr.io/cran/SLHD/man/maximinSLHD.html

235

https://rdrr.io/cran/SLHD/man/maximinSLHD.html


10−1 100

k [h/Mpc]

10−4

10−3

10−2

10−1

〈‖
P
pr
ed
/P

tr
u
e
−

1‖
〉

Best slice

Other SLHD slices

Figure 5.4: MF-Box’s emulation errors, averaged over redshift bins and test simulations,
using 60 L1, 60 L2, and 3 HF (see Table 5.1). Here, we show the emulation minimum and
maximum errors using different slices from SLHD (blue shaded area), and the best slice
found by the grid search method is labeled as yellow.

slice as our HF design. We use 60 LF points in this work because we learned in [16] that

∼ 50 simulations are enough for a 5 dimensional emulation problem.

5.5.2 Selecting the optimal slice

Slices in SLHD are Latin hypercubes in smaller sizes. In principle any slice should

produce reasonably good emulation, as the points in each slices span parameter space.
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However, in practice some slices still perform somewhat better than others, as

shown in Figure 5.4. We use a procedure similar to our grid search approach in [16] to

avoid choosing the worst slice. The procedure is described below:

1. Prepare SLHD for LF simulation suite.

2. Build low-fidelity only emulators (LFEmu) for each slice, compute the interpolation

error for each LFEmu, testing solely on the LF simulation suite.

3. Select the slice which can best minimize the interpolation error.

Note that we do not use any HF simulations in the above procedure. The se-

lection entirely relies on the LF simulation suite. The underlying assumption is that the

interpolation error of the low-fidelity node is correlated with the interpolation error of the

high-fidelity node. We labeled the selected slice in Figure 5.3. We will use the best slice as

our HF training set for the results in Section 5.7.

To summarize, SLHD is a special kind of LHD, with each slice in the SLHD being

a Latin hypercube as well as the whole design. We thus can assign HF nodes with a slice (or

slices) of SLHD, making both LF and HF nodes Latin hypercubes. In the end, we describe

a procedure to avoid choosing the worst slice for training a MFEmulator.

5.6 Computational budget estimation

In this section, we present our approach to quantifying the optimal allocation of

simulation budgets across different fidelities. Building upon the error bounds established

in [197], we have made modifications to adapt them to our specific context, as described in
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Section 5.6.1. We approximate the emulation errors of our MF-Box using the form of [197]

and empirically infer the error function of the emulator for various training designs, denoted

as (nL1, nL2, nHF). Our objective is to utilize this empirical error function to determine

the most cost-effective strategy for assigning low- and high-fidelity simulations in order to

achieve optimal accuracy.

In Section 5.6.1, we present an approximate error function for our MF-Box emulator

in predicting high-fidelity simulation outputs. Next, in Section 5.6.2, we show the analysis

for assigning optimal computational budgets to low- and high-fidelity simulations, under the

assumption that the emulator error follows the approximate error function. In Section 5.6.3,

we empirically estimate the approximate error function of the MF-Box by analyzing the

average emulator errors obtained from 144 distinct MF-Box training results. Finally, we

determine the optimal number of low- and high-fidelity simulations required for achieving

accurate power spectra emulation using the MF-Box approach.

5.6.1 Error bounds for Gaussian process emulators

[197] presents an error bound for a multi-fidelity emulator, and for the case of two

low-fidelity nodes, the form is given by ∼ O(ρL1 · n
− νL1

d
L1 + ρL2 · n

− νL2
d

L2 + n
− νHF

d
HF ), where

(ρL1, ρL2) are the scale parameters for the L1 and L2 nodes, respectively. (νL1, νL2, νHF) are

positive spectral indices, and (nL1, nL2, nHF) represent the number of training simulations

at the L1, L2, and HF nodes, respectively. While this bound does not directly apply to our

case, we utilize the form of the bound as an approximate model for the MF-Box error and

empirically determine the parameters by fitting them to the MF-Box emulation results using

different multi-fidelity designs, i.e., varying combinations of (nL1, nL2, nHF).
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The equation below represents the error function of the MF-Box emulator we want

to infer. Note that our discussion primarily focuses on the emulation error when predicting

“high-fidelity” power spectra. This emphasis aligns with the core objective of MF-Box,

which is to correct the resolution of low-fidelity simulations for accurate predictions of their

high-fidelity counterparts.

Φ(nL1,nL2, nHF) =
1

N

N∑
i=1

∣∣∣∣fHF(θi)−mfHF
(θi)

fHF(θi)

∣∣∣∣
≈ Φ̃(nL1, nL2, nHF)

= η · (ρL1 · n
− νL1

d
L1 + ρL2 · n

− νL2
d

L2 + n
− νHF

d
HF ),

(5.13)

where N = 10 test simulations in a Latin hypercube are used to average the emulation

relative error. The emulator error function Φ(nL1, nL2, nHF) represents the average relative

error of the MF-Box as a function of the number of simulations in L1, L2, and HF nodes.

To estimate this error function, we have already averaged the emulation error across k

bins, enabling us to obtain an approximation of the error as a function of the design points

(nL1, nL2, nHF). Then, we infer the parameters of this error function from the MF-Box

emulation results, as denoted by the ≈ sign in Eq 5.13. The normalization factor of the

functional form in Eq 5.13 is determined by the free parameter η.

An important term in Eq 5.13 is the one describing how the error scales with an

increasing number of simulations, n
− 1

d
t , where t ∈ L1,L2,HF. This scaling term comes

from the fact that the fill distance is proportional to O(n
− 1

d
t ), where d is the number of

dimensions in a space-filling design [211].

To determine the parameters of Φ̃(nL1, nL2, nHF), we employ Markov Chain Monte

Carlo (MCMC) inference based on 144 distinct MF-Box emulators that were trained with
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varying numbers of (nL1, nL2, nHF). Specifically, we generated MF-Box emulators using

[12, 18, 24, · · · , 60] L1/L2 points and [2, 3, · · · , 18] HF points, resulting in a total of 144

emulators. For simplicity, we only considered cases where the number of simulations in L1

and L2 nodes was equal, i.e., nL1 = nL2, as the costs of L1 and L2 nodes are similar, there-

fore, choosing between them is not important. To simplify the notation, we employ nLF to

represent the number of training points in both the L1 and L2 nodes. Figure 5.5 presents

the average relative errors, Φ(nL1, nL2, nHF), for all 144 designs under consideration.

For each pixel in Figure 5.5, we compute the average emulator relative error across

10 test simulations and multiple k bins across a redshift range, z ∈ [0, 0.2, 0.5, 1, 2, 3]. To

solve the parameter estimation problem, we employ Markov Chain Monte Carlo (MCMC)

inference with a Gaussian likelihood, 6

Φ̃(nL1, nL2, nHF)

= η · (ρL1 · n
− νL1

d
L1 + ρL2 · n

− νL2
d

L2 + n
− νHF

d
HF )

∼ N (µ = Φ(nL1, nL2, nHF), σ2 = Φvar(nL1, nL2, nHF)).

(5.14)

Here, Φ(nL1, nL2, nHF) represents the average relative errors, while Φvar(nL1, nL2, nHF) de-

notes the variance of the relative errors across 10 test simulations.

The results of our MCMC analysis, including the priors and posteriors, are sum-

marized in Table 5.3. The posteriors show that νL1 ≃ νL2 and ρL1 ≃ ρL2, indicating that

both L1 and L2 nodes contribute to improving the accuracy of the emulator in a similar

manner. In contrast, the power-law index νHF for the HF node is approximately twice

as large as νL1 and νL2, suggesting that the HF node has a more pronounced impact on

6We use the PyMC package version 4 [216] for the MCMC inference.
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Figure 5.5: Relative errors plotted against the number of LF and HF design points in a
MF-Box emulator. Here, LF refers to the combined number of L1 and L2 points, where LF
= nL1 = nL2. The plot reveals a trend of decreasing errors as the number of low-fidelity
training simulations increases. However, due to the limited number of high-fidelity points
compared to LF points, the decreasing trend is relatively modest.
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Table 5.3: MCMC analysis of Eq 5.13: 1
N

∑N
i=1

∣∣∣fHF(θi)−mfHF
(θi)

fHF(θi)

∣∣∣ = Φ(nL1, nL2, nHF) ≈

η · (ρL1 · n
− νL1

d
L1 + ρL2 · n

− νL2
d

L2 + n
− νHF

d
HF ). The notation {Φ(nL1,j , nL2,j , nHF,j)}144j=1 means all

144 MF-Box emulator errors used for parameter estimation. The column “Posterior (50%)”
reports the medians of the posteriors of the parameters, and “Posterior (25%, 75%)” reports
the 25% and 75% quantities of the posterior distributions.
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enhancing the emulator’s accuracy compared to the LF nodes. Table 5.3 shows that the

parameters in Eq 5.13 are reasonably well-defined. Thus, we will use the median of the

posterior as point estimates for the error function for the remainder of this paper.

5.6.2 Optimal number of simulations per node

Eq 5.13 models the emulation error, Φ(nL1, nL2, nHF), which behaves as a combi-

nation of power-law functions of the number of simulations in each node, namely LF or HF.

The primary goal of an emulator is to better represent the original simulator by minimizing

the prediction error, subject to a limited computational budget, denoted by C. By using

Φ(nL1, nL2, nHF), we can determine the optimal number of simulations per node, given the

computational budget available for running each node.

Consider a two-fidelity emulator consisting of two low-fidelity nodes, L1 and L2,

where ρL1,L2 are the scale parameters and (nL1, nL2, nHF) represent the number of simula-

tions in L1, L2, and HF nodes, respectively. Our goal is to minimize the emulation error

while subject to a limited budget.

nL1 · CL1 + nL2 · CL2 + nHF · CHF ≤ C, (5.15)

where we know the ratios between the costs of HF and LF nodes (L1 and L2) are CHF
CL1
≃ 140

and CHF
CL2
≃ 140/1.7, from Table 5.1.

The Lagrangian for optimizing the error subjecting to the cost is:

L(nL1,nL2, nHF, λ) = η(ρL1 · n
− νL1

d
L1 + ρL2 · n

− νL2
d

L2 + n
− νHF

d
HF )

+ λ(nL1 · CL1 + nL2 · CL2 + nHF · CHF − C),

(5.16)
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Here, λ is the Lagrange multiplier. To find the optimal number of (nL1, nL2, nHF) minimizing

the emulation error, we use the 1st order derivative conditions of the Lagrangian,

∂L(nL1, nL2, nHF, λ)

∂nL1
= 0;

∂L(nL1, nL2, nHF, λ)

∂nL2
= 0;

∂L(nL1, nL2, nHF, λ)

∂nHF
= 0,

(5.17)

resulting in

η
νL1
d
ρL1 · n

− νL1+d

d
L1 = λCL1 ⇒ nL1 ∝ (

νL1ρL1
CL1

)
d

νL1+d

η
νL2
d
ρL2 · n

− νL2+d

d
L2 = λCL2 ⇒ nL2 ∝ (

νL2ρL2
CL2

)
d

νL2+d

η
νHF

d
n
− νHF+d

d
HF = λCHF ⇒ nHF ∝ (

νHF

CHF
)

d
νHF+d .

(5.18)

Here, the intuition is relatively straightforward: the number of simulations required is

inversely proportional to the cost of each simulation at a given fidelity. However, if we

observe a strong correlation between fidelities (i.e., if ρL1,L2 is large), then we should use

more low-fidelity simulations because they are less expensive.

To ensure that Eq 5.18 identifies local minima instead of maxima, we can verify

the positivity of the second-order derivatives of the Lagrangian.

∂2L(nL1, nL2, nHF, λ)

∂n2L1
= ηρL1

νL1(νL1 + d)

d2
n
− νL1+2d

d
L1 > 0;

∂2L(nL1, nL2, nHF, λ)

∂n2L2
= ηρL2

νL2(νL2 + d)

d2
n
− νL2+2d

d
L2 > 0;

∂2L(nL1, nL2, nHF, λ)

∂n2HF

= η
νHF(νHF + d)

d2
n
− νHF+2d

d
HF > 0.

(5.19)

The parameters (νL1, νL2, νHF), (ρL1, ρL2, ρHF), and η are all positive, while the dimension

of the input space, d, must be a positive integer. Similarly, the number of simulations

(nL1, nL2, nHF) must be positive integers as well. Therefore, all second-order derivatives are

positive, indicating that Eq 5.18 minimizes the emulation error.
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In the special case where ν ≡ νLF = νHF, Eq 5.18 simplifies to the optimal budget

identified in [197]:

nLF
nHF

=

(
ρLFCHF

CLF

) d
ν+d

, (5.20)

where the ratio of LF/HF training sample sizes is inversely proportional to the cost of each

simulation per run and directly proportional to the correlation with the high-fidelity node.

5.6.3 Empirical estimate of the error function

In this section, we present the predicted errors of MF-Box obtained from our MCMC

analysis. We explore the impact of different MF-Box designs on error predictions. Finally, we

discuss the choices of the optimal number of simulations for MF-Box based on the analysis

presented in Section 5.6.2.

We illustrate the predicted emulation errors in Fig 5.6, categorized by MF-Box

models with varying LF and HF points. The predictions align with the overall trend of the

data, except when nLF is low, where the limited availability of LF training points leads to

suboptimal training performance.

Fig 5.7 and Fig 5.8 depict the predicted relative errors as a function of LF and HF

points, respectively. Both figures exhibit a power-law trend characterized by a negative spec-

tral index, indicating that the error decreases as the number of training points increases. For

example, in Fig 5.7, theX lr-3hr emulator emulators (X ∈ {12, 18, 24, 30, 36, 42, 48, 54, 60})

follow this trend concerning the number of LF points, suggesting that achieving further ac-

curacy improvements becomes challenging once a sufficient number of LF points are used.
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Figure 5.6: Inferred relative errors for all available MF-Box emulators are displayed. Each
subplot corresponds to a fixed number of HF points (as indicated in the title) with varying
LF points (on the x-axis). The red curves represent the median predictions (50% posterior).
Blue lines indicate the average relative errors obtained from the MF-Box emulators, while
the error bars represent the standard deviation of relative errors across 10 simulations in the
test set. The shaded area depicts the 25% and 75% confidence interval of the predictions
based on the inference results. Overall, the relative errors demonstrate a decreasing trend
as the number of LF and HF points increases.
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Figure 5.7: Inferred relative errors as a function of LF points. Shaded area shows the 25%
and 75% confidence interval of the prediction from the inference result.
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Figure 5.8: Inferred relative errors as a function of HF points. Shaded area shows the 25%
and 75% confidence interval of the prediction from the inference result.
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How much the error can be reduced by increasing the number of LF points is also influenced

by the correlation between LF and HF simulations, which is controlled by the ρ parameter.

A higher value of ρ indicates that LF points can more effectively reduce the error.

On the other hand, incorporating additional HF points can also enhance accuracy.

In Fig 5.7, increasing the number of points in the HF node from 3 to 18 shifts the power-law

function towards lower values, which itself follows the trend in Fig 5.8. Similarly, as more

HF points are included in the training, achieving further emulation accuracy becomes more

challenging.

Fig 5.9 displays the predicted error functions Φ(nL1, nL2, nHF) for different MF-Box

emulator designs. We compile these predictions to create a plot of emulator error versus

budget size. The bottom left region of the plot represents the most economical budget

setup, where the error is minimized relative to the allocated budget.

Based on the predictions in Figure 5.9, we can determine the optimal number of

simulations (nL1, nL2, nHF) for achieving a desired level of average accuracy. For instance,

if we aim for at least 1% average error, the optimal choice is (nL1 = 30, nL2 = 30, nHF = 3),

which corresponds to a cost of approximately 500 L1 simulations. Note that a minimum of 3

HF simulations (∼ 420 L1 simulations) is required to train a MF-Box in our power spectrum

emulation problem. Similarly, if we aim for at least 0.5% average error, the optimal setup

becomes (nL1 = 60, nL2 = 60, nHF = 4). However, a slightly higher cost is required for the

setup with (nL1 = 50, nL2 = 50, nHF = 5), which yields a similar error.

In Figure 5.9, the purple dashed curve represents the predicted error of 60 lr-[2-

10]hr emulators, illustrating the trend of increasing the number of HF points while keeping
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Figure 5.9: The predicted emulator errors as a function of the budget size, in the unit of the
number of LF simulations. The predictions are based on the medians of the parameter pos-
teriors presented in Table 5.3. The plot shows the predicted error functions using different
combinations of LF and HF nodes. The red, yellow, blue, and black curves represent the
predicted error functions with varying LF nodes and a fixed HF node (nHF = 3, 4, 5, 6). In
contrast, the purple dashed curve represents the predicted error function with varying HF
nodes and a fixed LF node (nLF = 60). The green dotted line illustrates the error function
corresponding to the optimal budget (Eq 5.21). The vertical gray dotted lines indicate the
budget size in terms of the number of HF simulations. The horizontal gray dotted lines
denote the predicted errors at the levels of (1%, 0.5%, 0.3%).
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a fixed number of 60 LF nodes. At the point of (60 LF, 3 HF), the error decrease exhibits

a similar gradient to [12-200] lr-3hr emulator, but it shows a steeper gradient after 4 HF

points. This result suggests that adding more LF or HF nodes does not necessarily lead to

superior performance compared to each other.

Under the assumptions outlined in Section 5.6.2, we can determine an optimal

number of simulations (nL1, nL2, nHF) for a MF-Box to achieve the best emulation accuracy

within a given computational budget. The optimal ratio between the number of HF and

LF simulations can be expressed as:

n
− νLF+d

d
LF = n

− νHF+d

d
HF

CLF

CHF

νHF

ρLFνLF
. (5.21)

Here, LF is either L1 or L2. CLF and CHF represent the computational cost of one simulation

in the LF and HF, respectively.

In Figure 5.9, the green dotted line represents the optimal budget according to

Eq 5.21. When nHF = 2.5, the optimal number of low-fidelity simulations is (nL1, nL2) =

(80, 60), which is close to our initial setup of MF-Box with (nL1 = 60, nL2 = 60, nHF = 3).

Moreover, the design of (nL1 = 60, nL2 = 60, nHF = 4) is also nearly optimal (close to the

green dotted line), as demonstrated in Figure 5.9.

In summary, this section introduces an approach to model the average emulation

error of MF-Box as a function of LF and HF points using an approximate error model based

on power-law functions. Through empirical analysis of 144 MF-Box designs with various

configurations, we have inferred this error model. We demonstrate that this empirical

model can guide the selection of an optimal design within a given computational budget,

facilitating the construction of accurate emulators in a resource-efficient manner.

251



5.7 Results

This section will demonstrate the emulation accuracy achieved by incorporating

simulations with different box sizes through MF-Box for correcting the resolution of low-

fidelity emulators to predict high-fidelity counterparts. The emulation error in this section

is computed using a hold-out test set comprising 10 high-fidelity (HF) simulations, carefully

selected from a separate Latin hypercube that was not part of the training set. Here, we will

use MF-Box to denote the emulators using the GMGP model [197] with the graph structure

in Figure 5.1. Section 5.7.1 will show how MF-Box’s accuracy improves by adding an L2

node in 100 Mpc/h. Section 5.7.2 will show how MF-Box’s accuracy changed as a function

of L2 box size, from 100 Mpc/h to 256 Mpc/h. Finally, Section 5.7.3 show the runtime

comparison between single-fidelity emulators, MFEmulator (including AR1, NARGP) and

MF-Box.

5.7.1 MF-Box accuracy (256 + 100 Mpc/h)

This section shows how the emulation error changed when a suite of small-box

simulations is included as a second LF node, L2, through MF-Box. More precisely, we use

two LF nodes:

• L1: 1283 simulations with 256 Mpc/h;

• L2: 1283 simulations with 100 Mpc/h.

The information about the training simulations is summarized in Table 5.1.
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Figure 5.10: Relative errors averaged over z = [0, 0.2, 0.5, 1, 2, 3] for different multi-fidelity
models, AR1 (blue), NARGP (red), and MF-Box (yellow). The MF-Box model uses 60 L1
(256 Mpc/h), 60 L2 (100 Mpc/h), and 3 H (256 Mpc/h) simulations for training. Both AR1
and NARGP use 60 L1 and 3 HF for training. The shaded area is the variance among
different test simulations.
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Figure 5.11: Relative errors averaged over all k modes (split into large and small scales) for
different multi-fidelity models (AR1 (blue), NARGP (red), and MF-Box (yellow)), broken
down into different redshift bins. The grey dashed line is the HF-only emulator using 3
H simulations, and the solid grey line is the LF-only emulator using 60 L1 simulations.
The shaded area is the variance among different test simulations. MF-Box improves the
emulation at small scales at higher redshifts (z ≥ 1). We do not include the variance of
LFEmu (60L1) because the variance is too large.

Figure 5.10 shows the emulation error averaged over redshift bins, z ∈ [0, 3], by

using different multi-fidelity models, AR1, NARGP, and MF-Box. All three models perform

similarly at large scales (k < 2hMpc−1). The main difference is MF-Box performs better at

k ≥ 2hMpc−1 while AR1 and NARGP have an error bump at 10% level.

In the right panel of Figure 5.11, we can easily see the 10% error bump exists at

z = 1−3 at small scales (k ≥ 1hMpc−1). The small-scale improvement in the right panel is

not a surprise. The additional low-fidelity node in a smaller box (L2) brings more accurate

small-scale statistics than L1, making MF-Box outperform AR1 and NARGP. MF-Box stays

≃ 1% error within the redshift range z ∈ [0, 3], in contrast to AR1 and NARGP where the

error increases from ≃ 1% to ≃ 20% (from z = 0 to z = 3).
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Figure 5.12: Relative error as a function of the number of HF training points for different
multi-fidelity methods: AR1 (blue), NARGP (red), and MF-Box (yellow). The range of the
number of HF points is relatively small, so the error estimate trend is unclear. However, in
general, the emulation error decreases with more HF points. (Left) Averaged relative error
for z ∈ [0, 0.2, 0.5]. (Right) Averaged relative error for z ∈ [1, 2, 3].

The bump in interpolation error in AR1 and NARGP at z > 1 is due to the feature

at the initial inter-particle spacing at these redshifts, corresponding to the initial particle

grid, as mentioned in [16]. The mean particle spacing of the initial condition appears as

a delta function in the matter power spectrum at high redshift. This feature eventually

disappears, erased by gravitational interactions. The L2 and high fidelity box, however,

both have a smaller mean inter-particle spacing and thus show the delta function on smaller

scales, beyond those we wish to emulate. Using the information the L2 simulations provide,

MF-Box is able to maintain similar accuracy across z ∈ [0, 3].

The left panel of Figure 5.11 shows the redshift trend at large scales, indicating

no significant difference between AR1, NARGP, and MF-Box. The slightly worse accuracy

in MF-Box is probably because MF-Box has more hyperparameters to fit, making it slightly

more difficult to reach ∼ 0.1% accuracy.
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Figure 5.13: Relative errors for AR1 (blue), NARGP (red), and MF-Box (yellow) as a func-
tion of LF points, splitting into two redshift bins. (Left) Averaged error for z ∈ [0, 0.2, 0.5].
(Right) Averaged error for z ∈ [1, 2, 3].

Figure 5.12 shows the AR1, NARGP, and MF-Box accuracies as a function of the

number of HF points, splitting into two redshift bins. The left panel shows the accuracy

averaged over the low redshift bins, z ∈ [0, 0.2, 0.5], where NARGP and MF-Box perform

similarly and outperform the AR1 model. It is not a surprise that NARGP and MF-Box

perform similarly since MF-Box is an extension of NARGP.

The left panel of Figure 5.12 shows that the error is almost flat as a function of

HF points. In Section 5.6, we showed that the emulator error is a power-law function of the

number of training points. Here, the emulation accuracy is likely limited by the intrinsic

accuracy of our 5123 HF simulations, so it is hard to get improvement at the sub-percent

level.7 The right panel of Figure 5.12 shows that MF-Box performs better than the other

two models by a factor of ∼ 5− 10.

7As discussed in [16], our HF power spectra are ∼ 0.1− 10% error compared with EuclidEmulator2.
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Figure 5.13 shows the averaged emulation error as a function of LF points. We

see a mild improvement at low-redshift bins (left panel) by adding more LF points for

all three models. At the higher redshift bins (right panel), AR1 and NARGP cannot be

easily improved by adding more LF training simulations. This is likely because the error is

dominated by the delta function in L1 at small scales. MF-Box achieves an average error at

the 1% level with 30L1+30L2+3HF, as expected from Section 5.6.

In summary, we show that the improvement of MF-Box happens at small scales

(k > 2hMpc−1) at the higher redshift bins (z ∈ [1, 2, 3]). This is primarily because the L1

node at these redshifts has the delta function feature from the initial particle grid dominating

on small scales.

5.7.2 Emulation with various box sizes

In Section 5.7.1, we have learned that we can achieve better emulation performance

by incorporating a low-fidelity node in a smaller box. This section examines how MF-Box’s

emulation error changed as a function of the L2 box size.

Figure 5.14 shows the emulation error as a function of L2 box size, averaging over

all k bins and splitting into two redshift bins. We include AR1, NARGP, and MF-Box. In

this section, we use the L2 node as the LF node for both AR1 and NARGP. The left panel

shows the error at the low-redshift bin (z ∈ [0, 0.2, 0.5]). AR1 and NARGP have < 1%

error with L2 = 256 Mpc/h, but the error gets worse when the L2 box size becomes smaller

due to the cosmic variance at large scales. On the other hand, MF-Box error stays flat for

L2 ∈ [100, 224] Mpc/h.
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Figure 5.14: Relative errors of multi-fidelity emulation as a function of L2 boxsize, for AR1
(blue), NARGP (red), and MF-Box (yellow). Note that we use L2 instead of L1 for AR1
and NARGP models.

The right panel of Figure 5.14 shows the error versus L2 box size at the high-

redshift bin, z ∈ [1, 3]. All models show a decrease in error using a smaller L2 box size in

training. This is mainly due to the feature at the initial inter-particle spacing mentioned in

Section 5.7.1. If a smaller L2 is used, the feature moves to smaller scales, away from those

we are emulating, causing a decline of error from the large L2 box to the small L2 box size.

To help visualize the performance change on different scales, we show in Figure 5.15

the emulation error as a function of k, averaged over all redshift bins. As Figure 5.15 shows,

for different L2 sizes, MF-Box accuracy only changes at the small scales with k > 3hMpc−1.

This is not a surprise because all MF-Box models share the same L1 node (1282 simulations

in 256 Mpc/h), and thus the emulation at large scales stays the same. The NARGP shown

in Figure 5.15 uses L2 with 100 Mpc/h as a low-fidelity node. Its performance is worse than

MF-Box with L2 = 100 Mpc/h at all k bins.
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Figure 5.15: Relative errors averaged over redshift bins, as a function of k modes. MF-Box

with 224 Mpc/h L2 (blue), MF-Box with 160 Mpc/h L2 (yellow), and MF-Box with 100 Mpc/h
L2 (red). The gray dashed line is the NARGP model uses 100 Mpc/h L2.
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To sum up, the error of MF-Box changed as a function of L2 box size: using a

smaller L2 can result in better MF-Box accuracy. The improvement caused by L2 is mostly

at small scales (k > 2hMpc−1) at higher redshift bins (z = 1, 2, 3).

5.7.3 Runtime comparison

We will compare the costs of each method in this section. Figure 5.16 shows the

error of different emulators as a function of node hours for the training simulations. A

similar compute time versus accuracy plot can be found in Figure 4 of [16], albeit only for

z = 0. We performed the MP-Gadget simulations at High-Performance Computing Center

(HPCC) at UC Riverside,8 each compute node has 32 intel Broadwell cores.

To understand Figure 5.16, we can start with the high-fidelity only emulators

([3-11] HF). This is the emulator we would train before we have multi-fidelity methods.

HF-only emulator shows a steady improvement with an increase in run time. However, the

error gradient gets flatter with more training points, indicating the difficulty of improving

an emulator at a highly accurate regime.

This trend is intuitive because the error of an emulator roughly scales as a power-

law function, (number of training points)−
ν
d . Each line in Figure 5.16 is a segment of differ-

ent power-law models. In this view, we can see AR1 and NARGP follow two very similar

trends, except one has a lower mean emulation error.

Switching the focus to MF-Box, we can see the mean error of the power law is

∼ 6−8 times better than AR1 and NARGP. The error for both AR1 and NARGP plateaus,

8https://hpcc.ucr.edu
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Figure 5.16: Runtime comparison in node hours. We average the error across redshift bins
z = [0, 0.2, 0.5, 1, 2, 3] and average across k bins. AR1 and NARGP perform similarly to
MF-Box at z < 1. Dashed lines are the predicted error based on the error function Eq 5.13,
which we inferred in Section 5.6.
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implying that adding new simulations will not increase the emulator’s accuracy. The only

way to improve the emulation at a similarly good efficiency is using small-box simulations

through MF-Box.

Recall the HF/L1 ratios in Figure 5.2. L1 is roughly at ∼ 5% error at large scales.

On the other hand, the L2-only emulator is at ∼ 10% error. Using a MF-Box, the information

carried by L1 and L2 is corrected to be at ∼ 0.5% level, which is a substantial improvement

given that only 3 HF simulations are utilized to establish correlations between fidelities.

5.8 Conclusions

In this work, we show that our multi-fidelity emulation, MF-Box (model structure

refers to Figure 5.1, and simulation data refer to Table 5.1), can combine simulations from

different box sizes to achieve improved overall emulator accuracy. MF-Box has a higher

accuracy improvement per CPU hour than the multi-fidelity method with only one box

size. The framework is adaptable to different simulation suites and emulation problems.

We summarize the key contributions of this work below:

1. Propose a new multi-fidelity emulation, MF-Box, combining information

from different simulation box sizes: Using the in-tree graph of GMGP [197], we

can fuse cheap low-fidelity simulations from multiple box sizes in one unified machine-

learning model. Simulations in a large box capture large-scale statistics, while the

simulations in a small box can improve small-scale statistics. Previously, the cheapest

way to improve MFEmulator was by increasing the particle load in the low-fidelity
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node, which scales as ∼ O(N3
ptl,side). MF-Box opens a new avenue to add additional

information to the multi-fidelity emulation framework in a cheaper way.

2. Leverage accurate and systematic-free information from L2 to improve

multi-fidelity emulation accuracy: L2 provides unique information absent in L1,

and also acts as a cross-check for L1. Systematic errors or unknown bugs in low-fidelity

nodes can limit the effectiveness of multi-fidelity methods, as it relies on existing

information. [16] identified such a limitation, noting that systematic errors present in

the low-fidelity node can make achieving high accuracy difficult. MF-Box helps resolve

the systematic in one low-fidelity node by introducing an additional L2 node without

the systematic. It is worth noting that systematic errors may exist in both L1 and L2

nodes, but MF-Box can help mitigate these errors by cross-checking the information

provided by two nodes, as long as the systematic errors are present at different scales.

3. Power-law analysis of emulation errors in multi-fidelity modeling with

MF-Box: In Section 5.6, we present an error analysis of MF-Box models. We empirically

estimate the emulation error function, which follows a power-law decay with respect

to the number of training simulations. This explains why it is difficult to improve

single-fidelity emulators which are already percent-level accurate. Multi-fidelity em-

ulation shows advantageous in reducing the overall cost and time required to achieve

high accuracy. The estimated error function can also serve as a guide for optimiz-

ing resource allocation across fidelity nodes, facilitating the development of accurate

emulators in a more efficient use of resources.
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MF-Box also opens up opportunities to experiment with different ways to implement

multi-fidelity emulation in cosmology. The second low-fidelity node, L2, can be anything

that brings new information to a multi-fidelity emulator. For example, it could be a node

that runs using hydrodynamical simulations, or a node that uses a linear perturbation theory

code. One example could be L1 runs with dark-matter only simulations at high-resolution,

L2 runs with hydrodynamical simulations at low resolution (and in a small box), and an

HF node as hydrodynamical simulations at high-resolution. This way, the cosmological

dependence of the baryonic effects is captured by L2, and L1 gives us highly accurate

gravitational clustering. MF-Box, using a different box size in an additional low-fidelity

node, is just a simple example to demonstrate the flexibility of this method.

The main remaining limitation of our multi-fidelity emulation framework is that

the highest fidelity node must be in the training set, and encompass the largest box and

highest resolution. In other words, our multi-fidelity framework cannot extrapolate to

predict the results of a simulation with a resolution higher than the high-fidelity node.

Future applications of our multi-fidelity emulation include applying the MF-Box to

the accurate high-resolution simulations, where the resolution can match the future exper-

iments. We may also apply MF-Box to different cosmological probes, especially applying to

the beyond 2-point statistics, such as weak lensing peak counts and scattering transform

coefficients.
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Chapter 6

Investigating the mixing between

two black hole populations in

LIGO-Virgo-KAGRA GWTC-3

6.1 Abstract

We introduce a population model to analyze the mixing between hypothesised

power-law and ∼ 35M⊙ Gaussian bump black hole populations in the latest gravitational

wave catalog, GWTC-3, estimating their co-location and separation. We find a relatively

low level of mixing, 3.1+5.0
−3.1%, between the power-law and Gaussian populations, compared

to the percentage of mergers containing two Gaussian bump black holes, 5.0+3.2
−1.7%. Our

analysis indicates that black holes within the Gaussian bump are generally separate from

the power-law population, with only a minor fraction engaging in mixing and contributing
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to theM∼ 14M⊙ peak in the chirp mass. This leads us to identify a distinct population of

Binary Gaussian Black Holes (BGBHs) that arise from mergers within the Gaussian bump.

We suggest that current theories for the formation of the massive 35M⊙ Gaussian bump

population may need to reevaluate the underlying mechanisms that drive the preference for

BGBHs.

6.2 Introduction

Gravitational wave astronomy is shifting focus from in-depth analysis of single

events to population inference that addresses key questions in astrophysics [13, 217], fun-

damental physics [218], and cosmology [219]. Research using the third Gravitational-

Wave Transient Catalog (GWTC-3) [220], published by the LIGO Scientific Collabora-

tion [219], Virgo Collaboration [221], and KAGRA Collaboration [222], demonstrated this

[223, 224, 225, 226]. GWTC-3 has become a vital tool for understanding binary black hole

(BBH) formation physics (e.g., Ref.[227, 228, 225, 229, 13]). Investigating the formation

history of BBHs through a single gravitational wave (GW) event is a difficult task. How-

ever, the population analysis of numerous merging BBH events can provide insights into

their formation channels (e.g., [230, 227]). For example, the lack of black holes with masses

∼ 2− 5M⊙ [231, 232, 233, 234] may indicate maximum neutron star masses [235, 236, 237],

and also the timescale related to supernova explosions (such as [238, 239, 240]) and mass

transfer (e.g., [241]).

LIGO-Virgo-KAGRA’s (LVK, hereafter) population analysis of the GWTC-3 cat-

alog indicates distinct substructures within the primary black hole mass spectrum [13].
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In the primary mass distribution, two prominent peaks are observed at m1 ∼ 10M⊙ and

m1 ∼ 35M⊙ with high significance. Another peak, at m1 ∼ 20M⊙, appears to be less

certain. The peak at approximately 10M⊙ is postulated to exist above the black hole-

neutron star (BH-NS) low-mass gap and can arise from the stellar initial mass function

(IMF). The corresponding peak in the binary black hole (BBH) mass function could be

attributed to the evolution of binary star systems [13, 241, 242]. Several options have been

suggested to explain the peaks at m1 ∼ 20M⊙ and m1 ∼ 35M⊙. A popular explana-

tion for the peak at around m1 ∼ 35M⊙ is that it results from pulsational pair-instability

supernovae (PPSNe) originating from stars initially ranging between 100M⊙ and 150M⊙

[243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253], though some recent studies suggest

the 35M⊙ peak is unlikely to be due to the PPSNe [254, 255]. The pair-instability mecha-

nism also predicts a sharp cutoff at masses greater than 40M⊙, attributed to the absence

of remnants from pair-instability supernovae occurring in stars with initial masses rang-

ing from 150M⊙ to 250M⊙. Other exotic formation channels that may explain the 35M⊙

peak include primordial black holes [256, 257, 258, 259], massive triple stars [260, 261],

low-metallicity star progenitors [262], and hierarchical mergers [263].

As the number of BBH detections from gravitational wave observations increases,

it becomes feasible to test BBH formation channels by examining the statistical properties

of the population of secondary black holes. In situations where black holes merge within

dense environments (e.g. star clusters), following a dynamical channel, the underlying mass

distribution would likely appear similar as the comparable component masses have a higher

binding energy [264, 265, 266], though it is possible for a dynamical channel to produce
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unequal component mass binaries through ultra-wide binaries [267]. While the isolation

formation channel (“field binaries”) prefers BBHs with comparable masses [268], some iso-

lation channels can produce unequal component masses [269, 270]. This variation could be

influenced by a range of uncertain physical processes, such as the binary IMF [271], the

evolution of binary star systems [272, 273, 269, 270], and possible mechanisms like mass

transfer or inversion [274, 275, 276, 277].

A widely used parameterization for the BBH mass spectrum is the Power-law+Peak

model [249], which involves modeling a combination of the primary mass (m1), the heavier

black hole in the BBH, and the mass ratio (q = m2/m1 < 1), representing the ratio between

the secondary and primary masses. The Power-law+Peak model posits a power-law func-

tion with a Gaussian peak for the primary mass distribution, while the physical distinction

between primary and secondary masses is modeled using a power-law model on the mass

ratio. This approach has been utilized in several studies (e.g., [278, 279, 14, 229, 280, 281]).

Beyond the Power-law+Peak model, Ref. [282, 266] explore various models for the secondary

mass spectrum in BBHs.

In this paper, we construct a population model to estimate the mixing fractions

between the populations of black holes from the power-law distribution (corresponding to

the peak at m1 ∼ 10M⊙) and those from the Gaussian bump (at m1 ∼ 35M⊙). We

want to understand how likely it is for black holes originating from different peaks to mix

in the Universe, forming the BBHs we observe. Inferring the mixing fraction between the

power-law and Gaussian peak populations can provide new perspective into BBH formation

mechanisms. For instance, low mixing between the two populations might indicate that
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black holes produced by different formation mechanisms remain separated, with binaries

likely forming within their respective populations.

Our population model begins by forward-sampling black hole masses from either

a power-law or Gaussian mass spectrum. Each pair in a BBH is then sampled from a

mixture of these mass populations. We vary the relative abundance in the mixture model,

thus controlling the mixing fraction between the power-law and Gaussian mass populations.

Using a mixture of power-law and Gaussian populations ensures our primary mass function

aligns well with the Power-law+Peak model from Ref. [13].

Our inference suggests that a significant portion (approximately 5.0+3.1
−1.7% of the

total population) of the BBHs consist of Binary Gaussian Black Holes (BGBHs), where

both black holes originate from the ∼ 35M⊙ Gaussian bump. We also observe a low mix-

ing fraction between the power-law and the Gaussian bump, 3.1+5.0
−3.1%, indicating that the

Gaussian bump black holes are primarily separate from the power-law population. An-

other interesting aspect of our model is the alignment of the second chirp mass peak at

M ∼ 14M⊙ with the mixing between the power-law distribution peak (∼ 10M⊙) and the

Gaussian distribution peak (∼ 35M⊙), calculated asM∼ (10M⊙×35M⊙)3/5

(10M⊙+35M⊙)1/5
≃ 15M⊙. Among

notable features in the black hole mass spectrum, the second peak around m1 ∼ 20M⊙ has

been identified as marginally significant in primary mass [283, 280, 284, 285]. However, its

nature remains debated. Some argue it may be a result of Poisson fluctuations within the

power-law function [284], while others suggest that the corresponding second peak in the

chirp mass spectrum (M∼ 14M⊙) is more pronounced than the primary mass substructure
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[285]. Our inference suggests a way to interpret theM∼ 14M⊙ chirp mass peak as a result

of mixing between two populations with different formation mechanisms.

This paper is structured as follows: Section 6.3 introduces our population model

for BBHs. Section 6.4 outlines the Bayesian inference approach we employ, taking into

account detection efficiency. Section 6.5 presents our inference results and the predicted

black hole mass functions. Section 6.7 offers concluding remarks.

6.3 Population Model

In this section, we discuss our BBH population model designed to understand

the mixing between different black hole populations. Our population model is detailed in

Section 6.3.1, where we discuss the three different subpopulations of BBHs and the forward

model for generating samples of BBHs. Next, in Section 6.3.2, we show the exploratory

models of the predicted chirp mass and mass ratios according to different parameters of the

population model. In Section 6.3.3, we discuss a method for acquiring fiducial parameters

for our population mixture model.

6.3.1 Population model: Subpopulations

In this section, we discuss the reasoning behind our population model, which is

motivated by the Gaussian bump in the primary mass function. LVK population analysis

identified a notable Gaussian peak mixed into the primary mass function [13], with the

mixing fraction represented by λpeak ∼ 3.8+5.8
−2.6%, suggesting roughly 3.8% of the primary

mass black holes are from the Gaussian distribution.
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To begin, our population model assumes the black holes in BBHs are drawn from

either a power-law distribution or a Gaussian distribution. This points to three distinct

subpopulations of BBHs in our model: Power-Power (PP), Power-Gaussian (PG), and

Gaussian-Gaussian (GG).

• Power-Power (PP) model: A black hole from the Power-law population merging an-

other power-law population black hole.

• Gaussian-Gaussian (GG) model: A black hole from the Gaussian population merging

with another Gaussian population black hole. If the fraction of GG events is high

relative to PG events, then it is likely Gaussian bump black holes are separate from

the rest of the black holes. We name this population of BBHs as BGBHs.

• Power-Gaussian (PG) model: A black hole from the Power-law population merging

with a black hole from the Gaussian population. If the fraction of PG events is high

relative to GG events, then it is likely that the Gaussian bump black holes are mixed

with the rest of the black holes.

A cartoon version representing these three scenarios can be found in Fig 6.1. Measuring

a high fraction of GG events alongside a low fraction of PG events would suggest that

the Gaussian bump is separate from the power-law population. Conversely, a significantly

high fraction of PG events suggests that they are part of a singular, co-located population

containing a mixture of black holes. The co-location (and separation) here refers to a

broader concept of co-locating (and separation) in the phase space of space or time.

We chose to use a broad definition of co-location (and separation) because the

GWTC data only provides measurements of BBH mergers. Therefore, the separation of
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the Gaussian peak population in the measured mass spectrum is not necessarily due to

spatial separation. There are some degeneracies, such as these black holes being temporally

separated (formed at different redshifts). Therefore, in this work, when we say that BH

populations are separate, this could imply that they are distributed separately in space or

time.

Following Ref. [249], we define the power-law population as

B(m | −α, δm,mmin,mmax) =

m−α

Zm(mmin,mmax)
S(m | mmin, δm).

(6.1)

Here, −α represents the spectral index of the power-law. The Zm(mmin,mmax) is the

normalization factor for the power-law

Zm(mmin,mmax) =
m−α+1

max −m−α+1
min

−α+ 1
(6.2)

with the smoothing function at the low-mass end

S(m | mmin, δm) =(
exp

(
δm

m−mmin
+

δm
m−mmin − δm

)
+ 1

)−1 (6.3)

where S(m | mmin, δm) = 0 for m < mmin and S(m | mmin, δm) = 1 for m ≥ mmin+δm. That

is, a smoothing kernel in the range mmin ≤ m < mmin + δm. Additionally, we incorporate a

parameter for the maximum mass cutoff, mmax. The same smoothing kernel is also applied

to the Gaussian distribution

G(m | µ, σ, δm,mmin) =

1

σ
√

2π
e−

1
2(m−µ

σ )
2

S(m | mmin, δm).

(6.4)

Here, µ is the mean and σ is the standard deviation. Our power-law and Gaussian models

are the same as the ones in the Power-law+Peak model [249]. We do not explicitly model
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the primary and secondary mass spectra, instead we draw black hole masses from one of the

population models. Explicitly modelling the primary and secondary requires us to ensure

that the primary is the more massive object, which makes our model more complex.

Next, we build a forward model that draws samples of BBHs. We do not directly

model the primary and secondary masses, but instead, we model the mass function of the

component black holes in binaries. For clarity, when referencing arbitrary masses in a BBH

system, we will use ma and mb. We will use the chirp mass and mass ratio as observables,

which are derived from ma and mb samples we draw from the subpopulation model. For

PP subpopulation, the two-dimensional (ma,mb) probability density is given by:

pPP(ma,mb | −α, δm,mmin,mmax) ∝

B(ma | −α, δm,mmin,mmax)B(mb | −α, δm,mmin,mmax),

(6.5)

For GG subpopulation, the probability density is

pGG(ma,mb | µ, σ, δm,mmin) ∝

G(ma | µ, σ, δm,mmin)G(mb | µ, σ, δm,mmin).

(6.6)

And for the PG subpopulation, the probability density is

pPG(ma,mb | −α, µ, σ, δm,mmin,mmax) ∝

B(ma | −α, δm,mmin,mmax)G(mb | µ, σ, δm,mmin).

(6.7)

Here, we do not repeat the sampling for ma ∼ G and mb ∼ B because we assume the shape

parameters are the same for ma and mb, so the (ma,mb) labels are interchangeable in this

sampling.

Since we are not modeling the primary and secondary mass directly, we cannot

directly use the probability density of (ma,mb) as a likelihood function and apply it on
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Figure 6.1: A cartoon illustrates the mixing scenarios used in this work. The size of the
circles represents the masses of the black holes, while the color indicates the underlying
population. If the power-law and Gaussian bump BHs are mixed, as in the PG model,
the resulting two-dimensional probability density of chirp mass and mass ratio (M, q) will
exhibit a distinct morphology, as shown in Figure 6.2.

the data. Instead, we convert the (ma,mb) parameters into quantities that we observe in

gravitational events, i.e., chirp mass and mass ratio, (M, q), with M = (mamb)
3/5/(ma +

mb)
1/5 and q = min(ma,mb)/max(ma,mb). They have the same statistical information

as (ma,mb) and are some of the more directly measured parameters in gravitational wave

events. In addition, in this paper, we focus on the binary-centric properties, i.e., the mixing

fractions of BBH subpopulations; it is thus reasonable to use chirp mass and mass ratio

(the properties specific to BBHs) over component masses.
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After defining the three different subpopulation models, we can now construct a

mixture model to infer the relative abundances of the three subpopulations:

p(M, q | ψPP, ψPG, ψGG,−α, µ, σ, δm,mmin) ∝

ψPP pPP(M, q | −α, δm,mmin,mmax)+

ψPG pPG(M, q | −α, µ, σ, δm,mmin,mmax)+

ψGG pGG(M, q | µ, σ, δm,mmin),

(6.8)

where (ψPP, ψPG, ψGG) are the relative abundances for PP, PG, and GG subpopulations,

with ψPP + ψPG + ψGG = 1 and ψPP, ψPG, ψGG ∈ [0, 1].

The PG subpopulation is the key to measuring the mixing between the power-law

and Gaussian bump populations. The Power-law+Peak models the mass ratios from all

BBHs as a single power-law, which does not allow us to separate the contributions of PG,

PP, and GG to the mass ratio distribution. Even if the mass ratio from Power-law+Peak

prefers equal-mass binaries, this preference could be driven by the majority of power-law

black holes. Our model allows us to separate the mass ratio contribution of the PG from the

rest of the BBHs, providing a more direct measurement of the separation of the Gaussian

bump.

6.3.2 Visualizations of the population model

To help gain intuition for the population model, we generate histograms from the

Monte Carlo samples of the three subpopulations across the parameter space of (M, q),

shown in Figure 6.2. Each subpopulation covers a unique region within this (M, q) space.
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Figure 6.2: Map of likelihood density in chirp mass (M) versus mass ratio (q) space for
three subpopulation models, PP, PG, and GG. The shape parameters, λ = (−α, µ, σ) =
(−3.66, 31.59, 5.51) used to generate the map come from the average mass spectrum of the
GWTC-3’s Power-law+Peak model as derived in Section 6.3.3.
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Figure 6.3: The one-dimensional marginal distribution of the two-dimensional density shown
in Figure 6.2. The chirp mass spectrum, as shown in the upper panel, features three peaks
at M ∼ 8M⊙, 14M⊙, and 28M⊙. The mass ratio spectrum reveals a bump at q ∼ 0.2 for
the PG population, highly equal-mass binaries in the GG population, and a smooth mass
ratio distribution for the PP population.

These distinct areas will aid in determining the mixing fraction of each subpopulation in

the gravitational wave data.

Figure 6.3 shows the 1-D marginal distributions derived from each subpopulation

model. The chirp mass distributions align with the three peak structures observed in the

GWTC-3 chirp mass spectrum, i.e., (8M⊙, 14M⊙, 28M⊙). The mass ratio distributions

exhibit a bump at q ∼ 0.2 for the PG population, highly equal-mass binaries in the GG

population, and a smooth mass ratio distribution for the PP population.

Figure 6.4 illustrates various potential outcomes of our population model with

different values for the spectral index. We have fixed the relative abundances for each

subpopulation model at equal weights, (ψPP, ψPG, ψGG) = (1/3, 1/3, 1/3). The spectral

index, −α, is varied from −7 to −2. A flatter spectral index results in a more diffuse

(less peaked) density of the PP and PG models in the (M, q) space. Conversely, a steeper
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Figure 6.4: The exploratory models with varying spectral indices, −α, in the space of chirp
mass and mass ratio, (M, q). It ranges from a flat spectral index (left panel) to a sharp
spectral index (right panel). In these exploratory plots, each subpopulation model has the
same relative abundance, 1/3.

spectral index (e.g., −α = 7) results in a more distinct separation of the density of each

subpopulation model in the (M, q) space.

Figure 6.5 presents the 1D marginal distributions with varying spectral indices.

The relative abundances are set to (ψPP = 0.92, ψPG = 0.03, ψGG = 0.05), which are close

to the inferred relative abundance from the model averaging results in Section 6.5.2. The

chirp mass spectrum exhibits three peaks at M∼ 8M⊙, 14M⊙, and 28M⊙ for −α ≲ −3.7.

For −α ≳ −3.7, the chirp mass spectrum shows a relatively uniform density across the mass

ratio spectrum.

6.3.3 Average mass spectrum

Our model operates on the average mass spectrum for individual black holes,

treating black hole masses without distinguishing them as primary or secondary. Thus,

the fiducial values for our model’s shape parameters, λ = (−α, µ, σ), will be different from

those defined by the Power-law+Peak published in GWTC-3. We transform the primary

and secondary masses, (m1,m2), from the Power-law+Peak into a single black hole mass

spectrum. We then fit a combination of the power-law and Gaussian model to this average
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Figure 6.5: The exploratory models with varying spectral indices, −α, on the chirp mass
(p(M)) and mass ratio (p(q)) marginal distributions. The relative abundance is fixed to
(ψPP, ψPG, ψGG) = (0.92, 0.03, 0.05), matching the maximum a posteriori (MAP) of the
model averaging results in Section 6.5.2.
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mass spectrum, obtaining the fiducial values for our population model. This single mass

spectrum reflects what we aim to represent by (ma,mb). Throughout the paper, this will

be referred to it as the “average mass spectrum” for black holes.

The primary mass distribution in the Power-law+Peak is parameterized as a com-

bination of a power-law and a Gaussian distribution:

p(m1 | −α, δm,mmax,mmin, µ, σ, λp) =

(1− λp)B(m1 | −α,mmax,mmin, δm)

+ λpG(m1 | µ, σ,mmin, δm).

(6.9)

Note that we have integrated the smoothing kernel directly into the functions of G and B.

Besides the primary mass model, the Power-law+Peak model also includes a mass ratio

model conditioned on m1, which is parameterized as follows:

p(q | β,m1,mmin, δm) ∝ qβS(qm1 | mmin, δm). (6.10)

Here, the S function refers to the smoothing kernel, as previously presented in Eq 6.3.

This function is a conditional probability for the secondary mass, represented as q m1. The

desired average mass spectrum combines both (m1,m2).

Unfortunately, there is no straightforward analytical method to transform the

probability density function of Power-law+Peak model to an average mass spectrum. This

difficulty is primarily because of the smoothing kernel at the low-mass end in both primary

mass and mass ratio parameterizations. Even if we were to ignore this smoothing kernel,

the combination of the probability density functions between m1 and q via m2 = qm1 would

still lead to the m2 integral that is not computable analytically. Therefore, we have opted

for a numerical strategy to acquire the average mass spectrum from Power-law+Peak.
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the best-fit mass spectrum with the fiducial values of our population model. The data points
represent the Monte Carlo samples from the Power-law+Peak with best-fit parameters from
[13], with the Poisson uncertainty of the Monte Carlo samples. The purple line represents
the best-fit power-law function with a Gaussian peak to the sampled average mass spectrum.
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We generate Monte Carlo samples for (m1,m2) using the fiducial values from

Ref. [13] (see Table 6.1), then merge these samples to create a unified average mass spectrum.

We then apply a Kernel Density Estimation (KDE) on the combined values of (m1,m2),

thereby deriving the average mass spectrum. This spectrum, shown in Figure 6.6, generally

preserves the original shape of the Power-law+Peak model. We fit a mix of the power-law

and Gaussian model to this numerically-derived average mass spectrum using the same

parameterization in Eq 6.9. From this fitting, we obtain the new shape parameters as

fiducial values for our population model.

Table 6.1 shows the best-fit parameters from fitting the average mass spectrum.

The power-law spectral index, α, rises from around 3.5 to roughly 3.7. This shows a steeper

power-law shape in the average mass spectrum than in the primary mass. This is expected,

given that the secondary mass is lighter than the primary one, leading to a steeper average

power-law. The Gaussian bump shifts from around 33.5 M⊙ to approximately 31.5 M⊙,

with its standard deviation expanding from around 4.6 M⊙ to roughly 5.6 M⊙. We outline

the details of this average mass spectrum fitting procedure in Appendix. .4.

6.4 Population Inference

In this section, we explain the population inference framework implemented in

this work. Section 6.4.1 specifies the posterior of the mixing fractions that we aim to infer,

taking into account the detection efficiency of the gravitational wave detectors. Section 6.4.2

demonstrates the model averaging approach we have adopted to marginalize over the shape

parameters.
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Table 6.1: The fiducial shape parameters for our population model, transforming the fiducial
values of Power-law+Peak to our average mass spectrum parameterization. The uncertainty
in converting the shape parameters from one population model to another can be arbitrarily
small, depending on the number of Monte Carlo samples used to construct the KDE for the
average mass spectrum. Therefore, we do not include this uncertainty in the table. We do
not vary mmin or mmax.
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6.4.1 Inference Framework

We now discuss how we infer the hyperparameters of the population model. The

population inference is determined using a set of Nobs gravitational wave events with data

di for the ith event. The set of data for the entire catalog will be denoted as {di}. In

this work, we use GWTC Releases 1, 2, and 3 with a selection criteria specified by a

False Alarm Rate (FAR) < 1 yr−1, which includes 73 BBH events. For GWTC-1, we

use the re-analysis of the events in GWTC-2.1 1 [286]. Compared to Ref. [13], we do not

include GW170817, GW200105 162426, and GW190426 152155, as their chirp masses are below

the minimum chirp mass of our population model. For this work, we use only the event

posteriors of chirp mass and mass ratio with a combined analysis of C01:IMRPhenomXPHM

[287] and C01:SEOBNRv4PHM [288] waveforms.

We define some notation below to align with the notation in the literature. We

differentiate between the event parameters, θ = {M, q}, and the population hyperparam-

eters, Λ. The population hyperparameters encompass the mixing fractions, or relative

abundances, which are given by ψ = {ψPP, ψPG, ψGG}, as well as the shape parameters,

symbolized by λ ≡ (−α, µ, σ). We use the subscript a denotes which hyperparameter set

comes from which subpopulation model, namely classa ∈ {classPP, classPG, classGG}. For

clarity, we use a = {PP,PG,GG} to represent each model. The mixing fractions and shape

parameters jointly describe the entire population model: Λ ≡ λ ∪ψ.

1https://zenodo.org/records/6513631
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Our primary goal is to infer the relative abundance of each subpopulation model,

and the mixing fraction posterior is defined as follows [289, 290, 291, 292]

p(ψ | {di}, {trig}, Nobs,λ) ∝

p(ψ)p(trig | Λ)−Nobs

p({di}, {trig}, Nobs)

Nobs∏
i=0

Lobsi .

(6.11)

Here, we use a Dirichlet prior over the mixing fractions, ψ:

p(ψPP, ψPG, ψGG | α1, α2, α3) =

1

B(α1, α2, α3)

(
ψα1−1
PP + ψα2−1

PG + ψα3−1
GG

)
.

(6.12)

Here, the normalization factor, B(α1, α2, α3), is a multivariate beta function

B(α1, α2, α3) =
Γ(α1)Γ(α2)Γ(α3)

Γ(α1 + α2 + α3)
. (6.13)

We use a Dirichlet prior to ensure that the mixing fractions sum up to one, ψPP + ψPG +

ψGG = 1. This reduces the number of parameters we need to infer to two. We opt for

a non-informative prior, setting (α1, α2, α3) = (1, 1, 1). This ensures we do not initially

favor any specific mixing fraction. The relative abundances, (ψPP, ψPG, ψGG), physically

represent the fraction of BBHs coming from each mixing scenario.

Our population model adopts the average mass spectrum approach (see Sec-

tion 6.3.3), so it starts with the shape parameters that are close to the best-fit fiducial

values from GWTC-3’s Power-law+Peak. This work primarily focuses on estimating the

mixing fraction between the 35M⊙ Gaussian bump and the power-law population, not ac-

curately estimating the shape parameters. To simplify the computation, the uncertainty

in the shape parameters is taken into account through model averaging. We use a set of

pre-computed models within a Latin hypercube of shape parameters, which will be detailed

in Section 6.4.2.
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In Eq. 6.11, we have implicitly marginalized over the total rate of BBH merg-

ers [293]. We have incorporated the concept of “detection” in the formalism by introducing

the trigger term, {trig}, into our notation. This term represents the criteria that determines

if an individual event is selected, typically based on a specific signal-to-noise threshold of

the observational instrument. Mathematically, the probability of detection given an actual

realization of data is defined as

p(trig|di) =


0 ρ(di) < ρthreshold ,

1 ρ(di) ≥ ρthreshold ,
(6.14)

where ρ(di) defines some deterministic calculation on the data (the signal-to-noise ratio, for

example) which classifies data as containing an event or not, based on some threshold value

ρthreshold. This notation is inherited from Ref. [294] which gives a detailed explanation

of work originally derived in past literature [289, 290, 291, 292]. We use p(trig | Λ) to

represent the detection efficiency, which quantifies the proportion of detectable sources

based on the population model represented by population parameters, Λ. The detection

efficiency, p(trig | Λ), can be explicitly expressed as follows:

p(trig | Λ) =

∫
dd

∫
dθ p(trig | d)p(d | θ)p(θ | Λ)

=

∫
dθ p(trig | θ)p(θ | Λ).

(6.15)

Here, p(trig | θ) is known as the detection probability and depends on the event parameters,

θ, not population parameters, Λ. Note that the concept of detection fundamentally relies

exclusively on the data itself, p(trig | d) defined above, and is only connected to the event

parameters θ through the event likelihood p(d | θ). The detection probability implicitly
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marginalizes over this hierarchical relationship. Mathematically, this quantity is defined as

p(trig | θ) ≡
∫
p(trig | d)p(d | θ)dd . (6.16)

As an approximation to this integral, we use the calculation for detection probability

graphically shown in Fig. (3) of Ref. [295] denoted as pdet(θ) in that work, which is pre-

marginalized over extrinsic parameters (sky location and orientation) using standard distri-

butions (uniform on the sky and uniform in orientation) [296, 297, 298]. The details of that

calculation can be found in Ref. [295], for example, but essentially amounts to evaluating

this sky-location-averaged detection statistic as a function of the SNR for an optimally ori-

ented binary. We neglect the BH spin in this calculation, which should have a small effect

on the population-averaged detection rate or the sensitive volume. While spins can drasti-

cally increase the detectability of individual events (e.g. [299, 300]), the quantity of interest

in hierarchical inference is Eq. 6.15, which includes information about the distribution of

spins coming from a population model. As the latest inference on the spin distributions

of BBH indicate a distribution clustered around χeff ∼ 0, this factor should be negligible.

See Ref. [299] and their calculation of the impact on the detectable volume for isotropi-

cally distributed spins (the distribution most consistent with LVK’s results), which indeed

shows negligible impact. This means p(trig | θ) simply involves an integral over the mass

parameters M and q.

We evaluate Eq. 6.15 with a fixed Power Spectral Density (PSD) function for

all events, where we use the analytic AdVMidHighSensitivityP1200087 [301, 302] PSD

throughout this work, but we also discuss the impact of using different PSDs in Appendix .5.

The pre-marginalized approach in Ref. [295] factors out the detector dependent quantities
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from SNR on pdet(θ) is explained in Ref. [268, 303, 304]. In this work, injections with

expected SNR less than 8 (ρthreshold = 8) are not considered detected. To calculate the

SNR, we employed the IMRPhenomD [305, 306, 307]. We discuss the priors used in calcu-

lating pdet(θ) in Appendix .5. While this semi-analytic method is an approximation of the

more accurate method (which involves injecting signals from known distributions into the

entire detection pipeline ontop of real data), it has been utilized extensively in the liter-

ature (e.g., [234, 308, 279, 299]) and shown to accurately capture the salient features of

selection bias [223, 298, 309, 310]. The main approximations of this method relevant to

this study relate to the non-Gaussian and non-stationarity of gravitational wave detectors,

which are reasonable approximations in current detector networks.

In practice, we numerically estimate the detection efficiency by Monte Carlo sam-

pling the event parameters, θ, under a given set of population parameters, Λ:

p(trig | Λ) ≈ 1

S

S∑
i=0

p(trig | θi);

θi ∼ p(θ | Λ),

(6.17)

where we generate S = 500 000 samples of event parameters according to p(θ | Λ). For the

event parameters θ, we use primary/secondary masses and luminosity distance, L. For the

primary and secondary masses, we sample from the population model. For the luminosity

distance, we sample with a prior of p(L) ∝ L2, which is uniform in volume.

The mixture model construction allows us to simplify the estimation of detection

efficiency to the sum of detection efficiency of each subpopulation model:

p(trig | Λ) =
∑

a={PP,PG,GG}
ψap(trig | λ, classa);

p(trig | λ, classa) =

∫
dθp(trig | θ)p(θ | λ, classa).

(6.18)
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This substantially simplifies computing the detection efficiency. In practice, we pre-compute

Monte Carlo samples from subpopulation models with a fixed set of shape parameters, λ.

Therefore, we can quickly compute the p(trig | Λ) via a weighted sum by varying mixing

fractions, ψ.

For the likelihood of each data set di, Lobsi ≡ p(di|Λ), we ultimately compare the

distribution of the event parameters to the predictions from our population model. For

each event, i, the likelihood is

Lobsi =
∑

a={PP,PG,GG}
p(classa | Λ)p(di | classa,Λ),

=
∑

a={PP,PG,GG}
ψa p(di | classa,λ),

(6.19)

where p(classa | Λ) is the prior probability that an event belongs to each subpopulation

model. Eq 6.19 describes the likelihood of the data marginalized over the class of the event.

We can explicitly write it as

p(di | classa,λ) =

∫
dθ p(di | θ)p(θ | classa,λ), (6.20)

where the integral can be approximated via importance sampling [311]∫
dθ p(di | θ)p(θ | classa,λ) ≈

1

S

S∑
c=0

p(θc | classa,λ)

π(θc)

(6.21)

with

θc ∼ p(θ | di). (6.22)

Here, p(θ | di) is the event posterior provided by LVK’s template fitting. We need to divide

the posterior by the event parameter prior, π(θ), to get the likelihood for each event. The
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event parameter priors used by LVK are

π(M) ∝M

π(q) ∝ (1 + q)2/5

q6/5
.

(6.23)

Finally, p(θc | classa,λ) represents evaluating the event posterior samples on the

histogram likelihoods shown in Figure 6.2. Thus, Eq 6.21 simply states that we evaluate

the Monte Carlo samples of event likelihoods on the numerical probability density derived

from the histograms.

6.4.2 Model averaging

We describe our numerical method to integrate the population posterior over ψ

with a fixed set of shape parameters λ in Eq 6.11. Our primary goal is to infer ψ, not

accurately estimate the shape parameters, λ. One way to marginalize over the uncertainty

of λ in this case is through model averaging. We run a fixed set of 1,000 choices for the

shape parameters, λ, and obtain the MCMC posterior of ψ for each mixture model. For

the model averaging approach, we approximate the marginalization by treating each λ as

a model, and we use the posterior of λ to weight the contribution of each model to the

population posterior through a Monte Carlo sum with a discrete set of λ:

p(ψ | {di}, {trig},Nobs) ≃

1

S

S∑
j=1

p(ψ | {di}, {trig}, Nobs,λ
j)×

p(λj | {di}, {trig}, Nobs)

(6.24)

with

λj ∼ p(λ). (6.25)
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The shape parameters in the λ space have a prior volume α ∼ U(1, 6), µ ∼ U(25, 40), and

σ ∼ U(3, 8). We sample λ using a Latin hypercube, maximizing coverage of the parameter

space. This effectively searches the hyperspace of λ and marginalizes out uncertainty in

the shape parameters. The posterior p(λ | {di}, {trig}, Nobs), is obtained by evaluating the

model evidence for all events, where we assume a uniform, model prior for each choice of

(−α, µ, σ).

6.5 Results

In this section, we present the inference results of our population model. First, in

Section 6.5.1, we discuss the inference results of the population model with fixed shape pa-

rameters, as obtained from the average mass spectrum approach. Subsequently, we present

the results of model averaging in Section 6.5.2, where we marginalize over the shape pa-

rameters.

6.5.1 Fiducial model

We have obtained the fiducial shape parameters, (−α, µ, σ, δm,mmax,mmin), from

the average mass spectrum as detailed in Section 6.3.3. The posterior distribution for the

mixing fraction is shown in Figure 6.7. The 95% posterior confidence intervals for the mixing

fractions are (ψPP = 92.9+2.2
−11.1%, ψPG < 8.7%, ψGG = 7.1+4.8

−3.0%). Interestingly, the mode of

the relative abundance of the PG mixing, ψPG, is consistent with zero. This indicates some

evidence for the separation of the two populations, based on the fiducial shape parameters.
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Figure 6.7: Posterior probability for mixing fraction parameters, ψ under different model
assumptions (“Fiducial” model in purple and the “Model Averaging” in green). Two ex-
treme hypothetical scenarios are also shown: (1). Red error bars show the case where the
Gaussian bump is completely separate from the power-law population. (2). Black error bars
show the case where the Gaussian bump and power-law populations are co-located. These
hypothetical scenarios are defined using λpeak = 3.8+5.8

−2.6% for the Gaussian bump reported
in LVK [13]. The orange dashed lines represent the “Partially Separate/Co-located” sce-
nario, showing a situation in which a portion of the Gaussian bump black holes is co-located
with the power-law distribution, while the remainder is separate.
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To illustrate two extreme situations, we define two hypothetical population model

scenarios: “Completely separate” and “Co-located.” In the “Completely separate” scenario,

we assume that the power-law and Gaussian populations are entirely separate, resulting in

no PG mixing. The relative abundances of the PP and GG populations reflect the fractions

of power-law and Gaussian populations in the single-mass distribution, respectively. For

the completely separate scenario, we adopt (ψPP, ψPG, ψGG) = (96.2+2.6
−5.8%, 0.0%, 3.8+5.8

−2.6%).

The choice of ψGG = 3.8+5.8
−2.6% is based on the relative abundance of the Gaussian bump

from the Power-law+Peak model, with the 90% credible intervals reported in Ref. [13]

indicating a relative abundance of the Gaussian bump, λpeak = 3.8+5.8
−2.6%. Assuming

the Gaussian bump population is separate from the power-law, this implies a GG mix-

ing with a relative abundance of approximately 3.8+5.8
−2.6% and a zero mixing abundance,

ψPG ≈ 0%. In the “Co-located” scenario, we assume the power-law and Gaussian pop-

ulations are completely mixed together, resulting in the mixing fraction of PG equal to

2× λpeak(1− λpeak), giving (ψPP, ψPG, ψGG) = ((1− λpeak)2, 2× λpeak(1− λpeak), λ2peak) ≈

(92.5+5.1
−10.8%, 7.3

+11.7
−5.1 %, 0.1+0.8

−0.1%). Interestingly, Figure 6.7 suggests that the posterior dis-

tribution from the fiducial model prefers the “Completely separate” scenario over the “Co-

located” scenario, although the error bars from each scenario remain substantial.

Figure 6.8 presents the predicted primary/secondary mass functions and mass

ratio based on our fiducial inference. For comparison, we also include the Power-law+Peak

model with its fiducial parameters obtained from Ref. [13] (also see Table 6.1). The primary

mass functions show good agreement, which is expected given that in Section 6.3.3 we

have constructed our average mass spectrum to match the Power-law+Peak model. The
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Figure 6.8: Predicted primary/secondary mass and mass ratio functions from the model
averaging inference (in light green) and the fiducial inference (in purple). The solid lines
represent the MAP and the shaded areas represent the 95% confidence intervals. The light
green lines represent predicted functions sampled from the posterior probability of both ψ
and λ. The underlying black dashed lines represent the fiducial model of Power-law+Peak
from GWTC-3, with the corresponding fiducial parameters detailed in Table 6.1. The 95%
confidence interval for the “Fiducial” inference reflects only the posterior uncertainty in ψ
and does not include uncertainty regarding λ. As we fix the minimum mass (mmin) and
the maximum mass (mmax), the shape uncertainty at the low and high mass ends is not
incorporated.

secondary mass functions exhibit some differences. The bump in m2 is approximately at

∼ 30M⊙ for both population models. However, the power-law component in the Power-

law+Peak is comparatively flatter. This discrepancy might arise from an inherent difference

between these two models. The Power-law+Peak models the m2 via a power-law mass ratio,

while our model assumes an average mass spectrum for both m1 and m2. It could mean that

the secondary mass spectrum would appear much sharper under our model’s assumptions.

Nevertheless, due to the limited dataset size of GW events, inferring the massive end of

the mass spectrum remains highly uncertain. Since the primary focus of this paper is on

estimating the mixing fraction, we do not emphasize the differences at the tail of the mass

spectrum nor trying to infer mmax.
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6.5.2 Model averaging

Figure 6.7 compares the posterior of the mixing fractions, p(ψ | {di}, {trig}, Nobs),

(“Model Averaging” in green) with the posterior from the fiducial shape parameters (“Fidu-

cial”), p(ψ | λfid, {di}, {trig}, Nobs). It shows a shift in the posterior mode to approximately

the 68− 95% confidence contour. Additionally, the posterior width for the mixing fractions

narrows, suggesting that the fiducial shape values do not provide the best fit to the data and

has a lower model evidence. Otherwise, model averaging would result in an increased width

of the posterior. This is expected as our population model differs from the Power-law+Peak

model, so the fiducial shape parameters do not provide the best fit to the data. The un-

certainty in the predicted mass spectrum, as illustrated in Figure 6.8, increases under the

“Model Averaging” approach, particularly due to the varying spectral index of the power-

law. This increase in uncertainty suggests that, with a flexible power-law model (with a

varying spectral index), our mixture model gets a better fit to the data. This better fit is

attributed to the fact that both PP and PG models can better explain the observed data,

leading to narrower posteriors of the mixing fractions.

The posterior for the mixing fractions, (ψPP, ψPG, ψGG) = (91.9+3.2
−6.8%, 3.1+5.0

−3.1%,

5.0+3.2
−1.7%), indicates that at a 95% confidence level, approximately 3.1% of the binaries in

the catalog can be attributed to the mixing of the populations. In Figure 6.7, compared with

the “Completely separate” scenario (red error bars) and the “Co-located” scenario (black

error bars), we observe that, even with varying shape parameters, the model averaging

result still shows a preference for the “Completely separate” scenario between the Gaussian

and power-law populations. Nonetheless, there is a notable shift in the mode of PG mixing
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Figure 6.9: The model evidences from 1,000 population inferences utilized in the “Model
Averaging”, namely, p(λ | {di}, {trig}, Nobs), where we treat each set of λ as a model. The
colors indicate the model evidence for each of the shape parameters, (−α, µ, σ). There is
no obvious correlation between σ and µ, but there is some weak correlation between α and
µ with correlation ≃ −0.3.

to a slightly higher value, ψPG = 3.1+5.0
−3.1%, which suggests that the PG mixing posterior

now locates itself between the “Completely separate” and “Co-located” scenarios.

Figure 6.9 shows the model evidences for each population model used in the model

averaging approach. The peaks of the model evidences, compared to the fiducial values from

the average mass spectrum (which is at the center of the prior volume), are shifted towards

slightly lower µ and a steeper spectral index (higher −α). The shape parameters at the

maximum model evidence are (−α, µ, σ) = (−5.3675, 29.3125, 4.2675), which represents

a slight shift in the shape parameters compared to the fiducial values. There is a ≃ −0.3

correlation between the α and the location of the Gaussian bump, µ. Namely, with a steeper

slope of the power-law, the Gaussian bump has to move to a lower mass to compensate.
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The underlying mass spectrum (black) is from the Flexible Mixture model [14], and utilizes
fitting results from Ref. [13].

Figure 6.10 presents the predicted chirp mass spectrum from each subpopulation

model and compares these predictions with the Flexible Mixture model from Ref. [13]. The

BBH chirp mass spectrum’s three-peak structure is captured by the PP (M ∼ 8M⊙), PG

(M ∼ 14M⊙), and GG (M ∼ 28M⊙) subpopulations. We do not vary mmin, resulting

in an overconfidence in the low-mass of the PP model compared with the predictions of

the Flexible Mixture model. However, the relative abundances of both the PG and GG

subpopulations align well with the second and third peaks of the chirp mass spectrum.

Our inference results suggest a high fraction of GG mixing and a low fraction of

PG mixing (ψGG > ψPG), indicating that the 35M⊙ Gaussian bump BHs are likely separate

from the rest of the population and forming BGBHs. Existing theoretical models for the

Gaussian bump thus need to account for the separation of the Gaussian bump black holes

from the rest of the black hole population.
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6.6 Discussion

6.6.1 High Proportion of Gaussian-Gaussian BBHs.

Figure 6.7 shows a substantial fraction of Gaussian bump black holes merging with

other objects from the Gaussian bump (BGBHs), implying that the Gaussian bump popula-

tion is almost distinct from the power law population. This high fraction of BGBHs presents

challenges to existing black hole formation theories. There are at least three explanations

which could potentially explain the result: (1). A cluster of stars forming simultaneously in

cosmic time, undergoing supernova explosions, and consequently producing dense environ-

ments of ∼ 35M⊙ stellar remnants. (2). Mass segregation [312] in a stellar cluster, causing

∼ 35M⊙ black holes to gravitate towards the cluster’s core and merge predominantly with

similar-mass black holes. (3). A distinct population of ∼ 35M⊙ black holes with a distinct

spatial distribution, or a different set of host halos, from the black holes in the power-law

subpopulation.

The prevailing explanation for the ∼ 35M⊙ Gaussian bump is PPSNe, or the

mass accumulation before the pair-instability cutoff at ≳ 40M⊙. The population of BGBHs

challenges our understanding of how PPSNe binaries form, particularly how PPSNe can

generate BGBHs without becoming bound to lighter black holes. One possible explanation

is the formation of clusters composed exclusively of PPSNe black holes or PPSNe rem-

nants. However, the specific process behind such cluster formation has not been thoroughly

explored or discussed in the literature. Another explanation is that these massive BGBHs

could come from binary star systems (e.g., see Ref. [313]), where both stars are already very
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massive and in the range to produce PPSNe. However, the kicks from supernova explosion

of massive stars will likely destroy the binary system and make them unbound.

Next, mass segregation (see Ref. [314]) within stellar clusters might lead to the

formation of BGBHs. Heavier black holes sinking to the cluster’s center would merge with

similar-mass counterparts. This requires an explanation for the production of a high abun-

dance of ∼ 35M⊙ black holes, potentially through PPSNe or PBHs acting as gravitational

centers around which globular clusters form (e.g., Ref. [315]).

Another possibility is Pop III stars [316, 262], forming massive stars at high red-

shifts that evolve into ∼ 35M⊙ black hole at the same time (e.g., Ref. [262]). To form

BGBHs, this scenario requires these stars to form in clusters and evolve simultaneously

into supernovae, thus forming BBHs within the same population. This hypothesis could be

further tested through its contributions to cosmic reionization around z ≃ 6. However, it’s

unclear why Pop III stars would preferentially form black holes around ∼ 35M⊙, but not

beyond 40M⊙, given the absence of pair-instability limitations at such low-metallicity.

Another explanation for a high fraction of BGBHs is PBHs, which are distributed

more like the dark matter halo and thus distinct from luminous matter. If such PBHs

exist with masses around ∼ 35M⊙, they would predominantly merge within their group.

Gravitational microlensing constrains the fraction of dark matter in the form of PBHs to

be less than 10% of the halo [317, 318, 319, 320, 321]. However, the merger rate of PBHs

remains highly uncertain (e.g., see Ref.[258, 259]), making it difficult to predict if ψGG is

consistent with PBHs.
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6.6.2 Limitation on the Interpretation of the Mixing Fraction Posterior.

A limitation in comparing two hypothetical scenarios using λpeak to estimate mix-

ing fractions is that the Power-law+Peak model only measures the Gaussian bump’s fraction

in the primary mass spectrum, not across all black holes in the Universe. Thus, using λpeak

as a proxy for the bump’s overall abundance may not be directly applicable. However, this

approach likely provides a conservative estimate for ψGG of “Completely separate,” since

the primary mass in a BBH is heavier, suggesting ψGG could be overestimated using λpeak.

Our interpretation of Figure 6.7 remains unchanged, the mixing fraction posterior aligning

better with the “Completely separate” scenario.

Even if we assume there is no robust estimate of λpeak, by definition, the “Com-

pletely separate” scenario would yield ψPG = 0%, which is more consistent with our infer-

ence results than the “Co-located” scenario, which requires ψPG > ψGG, given the power-law

abundance is much higher than the Gaussian bump. To make our ψGG = 5.0+3.2
−1.7% poste-

rior consistent with the “Co-located” case, the relative abundance of the Gaussian bump

would need to be approximately 18 − 28% of all black holes which form BBHs, a signifi-

cant difference from the λpeak measurement which would be obvious in the inferred primary

mass spectrum from GWTC-3. We therefore argue that our inference still suggests that a

separate population causes the Gaussian bump in the GWTC-3 catalog.

We assume fixed (mmin,mmax), which restricts the explanatory power of the PP

and PG models. Secondly, we categorize the black hole population into either a Gaussian

bump or a power-law, but the true BBH population might be more complex, containing

more than two subpopulations. Another limitation of our mixing approach is that it does not
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consider second generation mergers (e.g., [322]), which could be important for the massive

end of the mass spectrum. We also did not model the common envelope or isolated channel

BBHs. However, we can interpret PP, PG, and GG as isolated channels going through

different IMF and metallicity environments, e.g., Ref. [323] can produce PG BBHs (30-10

M⊙) with low-metallicity progenitors with initial q < 0.5.

6.7 Conclusion

In this paper, we explore the substructure within the black hole mass spectrum,

specifically focusing on the m1 ∼ 35M⊙ Gaussian bump in the primary mass spectrum

and the M ∼ 14M⊙ peak in the BBH chirp mass spectrum. We investigate these sub-

structures through a two-population mixing scenario, examining a power-law and Gaussian

population of black holes in the Universe. We define three mixing scenarios: PP binaries,

where the power-law population mixes with itself; PG binaries, involving a mix between

the power-law population and the Gaussian bump black hole population; and GG binaries,

where Gaussian bump black holes merge with themselves. A mixture model was developed

to measure the relative abundance of each scenario. The fiducial inference results, align-

ing with the primary mass spectrum of the Power-law+Peak model without varying the

shape parameters of the power-law and Gaussian bump, suggest (ψPP = 92.9+2.2
−11.1%, ψPG <

8.7%, ψGG = 7.1+4.8
−3.0%). As we vary the shape parameters, including the spectral index of

the power-law and the location and width of the bump, our model averaging results indi-

cate (ψPP = 91.9+3.2
−6.8%, ψPG = 3.1+5.0

−3.1%, ψGG = 5.0+3.2
−1.7%). Both sets of results highlight a

relatively low PG mixing fraction and a high GG binary mixing fraction, indicating a pref-
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erence in the GWTC-3 catalog data for a “Completely separate” scenario. This suggests

that 35M⊙ Gaussian bump black holes are likely separate from the rest of the population.

Our population model’s predicted chirp mass spectrum and the relative abun-

dance of each mixing scenario align well with the Flexible Mixture model results presented

in Ref. [13]. The second chirp mass peak at M∼ 14M⊙ closely matches the relative abun-

dance of PG binaries, suggesting partial mixing between the power-law and Gaussian bump

populations. Although these populations are likely separated, a fraction mixes, giving rise

to the second chirp mass peak.

Most past formation channels explaining the 35M⊙ Gaussian bump focus on the

primary mass spectrum rather than the 2D BBH mass space. For instance, PPSNe are a

popular mechanism for the Gaussian bump, facing challenges in explaining BGBH formation

without pairing with lighter black holes. One possibility is that such PPSNe Gaussian bump

black holes are typically found in star clusters, where mass segregation might facilitate their

merger with similar black holes. However, the likelihood of mass segregation and the fraction

of Gaussian bump black holes within star clusters remain uncertain. Other formation

channels, such as black holes originating from low-metallicity Pop III stars or primordial

black holes, could also account for the high fraction of BGBHs, given their separation from

other high-metallicity stellar-origin black holes. These channels might explain the separate

population of BGBHs, but the precise mechanisms for producing∼ 35M⊙ black holes remain

unknown and challenging to pinpoint.

We also acknowledge limitations in our population inference, such as the inflex-

ibility of the power-law population model. However, we anticipate that enhancing model

302



flexibility will likely not significantly alter our current interpretations, due to large error

bars and the GWTC-3 catalog’s limited size. We suggest that future work on the formation

of Gaussian bump black holes should consider the separation of this population, and the

potential channels for forming BGBHs.

Facilities: LIGO, Virgo

Software: PyMC5 [324], scipy [325], bilby [326, 327], pycbc [302], arviz [328], corner.py

[329], matplotlib [330].
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Chapter 7

Conclusions

In this thesis, we have presented three different applications of Bayesian modeling

in astrophysics: the Gaussian process finder of the damped Lyman-α absorbers (Chapter 2

and Chapter 3), the multi-fidelity emulator of the matter power spectrum (Chapter 4 and

Chapter 5), and the Bayesian hierarchical inference of the binary black hole mass spectrum

(Chapter 6). A common theme in these applications is the use of the Bayesian modeling to

understand the underlying physics of the data in a model-driven way.

The Gaussian process finder demonstrates a way to probabilistic model the de-

tection of DLAs at a single quasar spectrum level. This hybrid approach combines the

atomic physics and the data-driven quasar emission model to infer the DLA parameters.

The common difficulty in applying parametric Bayesian modeling to low-level data analysis

is the complexity of the likelihood function or the data noise model, which is usually hard

to model. The Gaussian process finder provides a way to model the data noise model in a

non-parametric way through machine learning.
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The multi-fidelity emulator demonstrates a way to make the complex and slow

theory model applicable to the fast and efficient data analysis. The common difficulty in

applying the theory model to the data analysis is the computational cost of the theory

model. In most of the cosmological data analysis, the theory model is usually a simulation

code, which is computationally expensive to run. The multi-fidelity emulator provides an

efficient way to predict the simulation function at any input parameters by using the data

from the lower fidelities. This opens a new way to apply the traditionally slow and expensive

simulation codes to various data analysis tasks, such as the parameter inference, the model

selection, and the optimization.

The population inference of the binary black hole demonstrates a way to build a

hierarchical model to understand a catalog of events. The common difficulty in applying the

population model to the data analysis is the selection bias due to the detection efficiency.

The population inference provides a way to propagate the measurement uncertainty from

each individual event to the population level and simultaneously correcting the selection

bias of the catalog.

The above three Bayesian models deal with three different levels of data anal-

ysis: the low-level single observation analysis, the catalog-level population analysis, and

the theory-level simulation analysis. The Gaussian process finder is a relatively low-level

data analysis, where the goal is to build a DLA catalog from inferring the DLA properties

from each quasar spectrum. The population inference tells us how to properly propagate a

catalog of detections to the physical parameters of the true population. Finally, the emu-
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lator approach brings the complex theory model to the data analysis level, allowing us to

interpret the data from the first principle.

Science-wise, there are some future directions to extend the works in this thesis.

For the Gaussian process finder, the DLA catalog has been proved to be useful in constrain-

ing the neutral content of the Universe and studying the systematic bias of the Lyman-α

forest cosmology. Though DLAs are well-studied in the terms of cosmology, its lower column

density cousins, the Lyman limit systems (LLSs), are less studied. The LLSs are the sys-

tems with column density 1017.2 ≤ NHI < 1020.3 cm−2, and they are the transition between

the DLAs and the Lyman-α forest. As the future Lyman-α forest P1D measurements from

the DESI survey are coming, the cosmological systematic bias from the LLSs will be more

important. Nevertheless, the LLSs are less studied because they are more abundant and

harder to detect at the level of low-resolution SDSS spectra. If we can extend the Gaussian

process finder to the LLSs and build a robust LLS catalog, we can provide a more complete

picture of the cosmological effects of these high column density absorbers in spectroscopic

surveys.

For the multi-fidelity emulator, the current work has demonstrated the cost for the

emulator training can be largely reduced by using the low-fidelity data. One of the future

directions is to extend the emulator to a much higher dimensionality, such as emulators for

beyond ΛCDM cosmologies. Another potential direction is to extend the cosmic emulator to

the subgrid model emulator in the hydrodynamical simulations (e.g., the subgrid emulator

in the FLAMINGO simulations [193]).
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For the black hole mixture model, the current framework measures the co-location

and separation of the binary black hole populations in a phenomenological way. One of the

future directions is to extend the population model to include spins and redshifts, which can

provide more information on the formation channels mentioned in Chapter 6. As the number

of detected events increases in the future, the information beyond the mass spectrum will

be crucial to understand the nature of the 35M⊙ bump and testing the scenarios such as

the mass segregation, the low-metallicity pop-III stars, and the primordial black holes, etc.

I end this thesis with a quote from Laplace, which is also the epigraph of the E.T.

Jaynes’ book Probability Theory: The Logic of Science [331]:

“Probability theory is nothing but common sense reduced to calculus; it enables
us to appreciate with exactness that which accurate minds feel with a sort of
instinct for which of themselves they are unable to account.” – Pierre-Simon
Laplace, 1819.
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F. Grupp, L. Guzzo, W. Holmes, F. Hormuth, H. Israel, K. Jahnke, E. Keihanen,
S. Kermiche, C. C. Kirkpatrick, B. Kubik, M. Kunz, H. Kurki-Suonio, S. Ligori,
P. B. Lilje, I. Lloro, D. Maino, O. Marggraf, K. Markovic, N. Martinet, F. Marulli,
R. Massey, N. Mauri, S. Maurogordato, E. Medinaceli, M. Meneghetti, B. Metcalf,
G. Meylan, M. Moresco, B. Morin, L. Moscardini, E. Munari, C. Neissner, S. M.
Niemi, C. Padilla, S. Paltani, F. Pasian, L. Patrizii, V. Pettorino, S. Pires, G. Po-
lenta, M. Poncet, F. Raison, A. Renzi, J. Rhodes, G. Riccio, E. Romelli, M. Roncarelli,
R. Saglia, A. G. Sánchez, D. Sapone, P. Schneider, V. Scottez, A. Secroun, S. Serrano,
C. Sirignano, G. Sirri, L. Stanco, F. Sureau, P. Tallada Cresṕı, A. N. Taylor, M. Tenti,
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I. Tereno, R. Toledo-Moreo, F. Torradeflot, L. Valenziano, J. Valiviita, T. Vassallo,
M. Viel, Y. Wang, N. Welikala, L. Whittaker, A. Zacchei, and E. Zucca. Euclid prepa-
ration: IX. EuclidEmulator2 - power spectrum emulation with massive neutrinos and
self-consistent dark energy perturbations. MNRAS, 505(2):2840–2869, August 2021.

[12] Shan Ba, William R. Myers, and William A. Brenneman. Optimal sliced latin hyper-
cube designs. Technometrics, 57(4):479–487, 2015.

[13] R. Abbott, T. D. Abbott, F. Acernese, et al. Population of Merging Compact Bi-
naries Inferred Using Gravitational Waves through GWTC-3. Physical Review X,
13(1):011048, January 2023.

[14] Vaibhav Tiwari. VAMANA: modeling binary black hole population with minimal
assumptions. Classical and Quantum Gravity, 38(15):155007, August 2021.

[15] Ming-Feng Ho, Simeon Bird, and Roman Garnett. Damped Lyman-α absorbers from
Sloan digital sky survey DR16Q with Gaussian processes. MNRAS, 507(1):704–719,
October 2021.

[16] Ming-Feng Ho, Simeon Bird, and Christian R. Shelton. Multifidelity emulation for
the matter power spectrum using Gaussian processes. MNRAS, 509(2):2551–2565,
January 2022.

[17] Ming-Feng Ho, Simeon Bird, Martin A. Fernandez, and Christian R. Shelton. MF-
Box: multifidelity and multiscale emulation for the matter power spectrum. MNRAS,
526(2):2903–2919, December 2023.

[18] Andrew Pontzen, Fabio Governato, Max Pettini, C. M. Booth, Greg Stinson, James
Wadsley, Alyson Brooks, Thomas Quinn, and Martin Haehnelt. Damped Lyman α
systems in galaxy formation simulations. MNRAS, 390(4):1349–1371, November 2008.

[19] Keir K. Rogers, Simeon Bird, Hiranya V. Peiris, Andrew Pontzen, Andreu Font-
Ribera, and Boris Leistedt. Simulating the effect of high column density absorbers on
the one-dimensional Lyman α forest flux power spectrum. MNRAS, 474(3):3032–3042,
March 2018.
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Nathalie Palanque-Delabrouille, Isabelle Pâris, Patrick Petitjean, Yodovina Pǐskur,
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Miralda-Escudé, Heather L. Morrison, Fergal Mullally, Demitri Muna, Hitoshi Mu-
rayama, Adam D. Myers, Tracy Naugle, Angelo Fausti Neto, Duy Cuong Nguyen,
Robert C. Nichol, David L. Nidever, Robert W. O’Connell, Ricardo L. C. Ogando,
Matthew D. Olmstead, Daniel J. Oravetz, Nikhil Padmanabhan, Martin Paegert,
Nathalie Palanque-Delabrouille, Kaike Pan, Parul Pandey, John K. Parejko, Isabelle
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Aubourg, Stephen Bailey, Robert H. Barkhouser, Julian E. Bautista, Alessandra
Beifiori, Andreas A. Berlind, Vaishali Bhardwaj, Dmitry Bizyaev, Cullen H. Blake,
Michael R. Blanton, Michael Blomqvist, Adam S. Bolton, Arnaud Borde, Jo Bovy,
W. N. Brandt, Howard Brewington, Jon Brinkmann, Peter J. Brown, Joel R. Brown-
stein, Kevin Bundy, N. G. Busca, William Carithers, Aurelio R. Carnero, Michael A.
Carr, Yanmei Chen, Johan Comparat, Natalia Connolly, Frances Cope, Rupert A. C.
Croft, Antonio J. Cuesta, Luiz N. da Costa, James R. A. Davenport, Timothée
Delubac, Roland de Putter, Saurav Dhital, Anne Ealet, Garrett L. Ebelke, Daniel J.
Eisenstein, S. Escoffier, Xiaohui Fan, N. Filiz Ak, Hayley Finley, Andreu Font-Ribera,
R. Génova-Santos, James E. Gunn, Hong Guo, Daryl Haggard, Patrick B. Hall, Jean-
Christophe Hamilton, Ben Harris, David W. Harris, Shirley Ho, David W. Hogg,
Diana Holder, Klaus Honscheid, Joe Huehnerhoff, Beatrice Jordan, Wendell P. Jor-

320



dan, Guinevere Kauffmann, Eyal A. Kazin, David Kirkby, Mark A. Klaene, Jean-
Paul Kneib, Jean-Marc Le Goff, Khee-Gan Lee, Daniel C. Long, Craig P. Loomis,
Britt Lundgren, Robert H. Lupton, Marcio A. G. Maia, Martin Makler, Elena
Malanushenko, Viktor Malanushenko, Rachel Mandelbaum, Marc Manera, Claudia
Maraston, Daniel Margala, Karen L. Masters, Cameron K. McBride, Patrick McDon-
ald, Ian D. McGreer, Richard G. McMahon, Olga Mena, Jordi Miralda-Escudé, Anto-
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coffier, Matthew Evatt, Parker Fagrelius, Xiaohui Fan, Kevin Fanning, Arya Farahi,

324



Jay Farihi, Ginevra Favole, Yu Feng, Enrique Fernandez, Joseph R. Findlay, Dou-
glas P. Finkbeiner, Michael J. Fitzpatrick, Brenna Flaugher, Samuel Flender, Andreu
Font-Ribera, Jaime E. Forero-Romero, Pablo Fosalba, Carlos S. Frenk, Michele Fuma-
galli, Boris T. Gaensicke, Giuseppe Gallo, Juan Garcia-Bellido, Enrique Gaztanaga,
Nicola Pietro Gentile Fusillo, Terry Gerard, Irena Gershkovich, Tommaso Giannan-
tonio, Denis Gillet, Guillermo Gonzalez-de-Rivera, Violeta Gonzalez-Perez, Shelby
Gott, Or Graur, Gaston Gutierrez, Julien Guy, Salman Habib, Henry Heetderks,
Ian Heetderks, Katrin Heitmann, Wojciech A. Hellwing, David A. Herrera, Shirley
Ho, Stephen Holland, Klaus Honscheid, Eric Huff, Timothy A. Hutchinson, Dragan
Huterer, Ho Seong Hwang, Joseph Maria Illa Laguna, Yuzo Ishikawa, Dianna Ja-
cobs, Niall Jeffrey, Patrick Jelinsky, Elise Jennings, Linhua Jiang, Jorge Jimenez,
Jennifer Johnson, Richard Joyce, Eric Jullo, Stéphanie Juneau, Sami Kama, Armin
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[133] Zarija Lukić, Casey W. Stark, Peter Nugent, Martin White, Avery A. Meiksin, and
Ann Almgren. The Lyman α forest in optically thin hydrodynamical simulations.
MNRAS, 446(4):3697–3724, February 2015.

[134] Nicolas Chartier, Benjamin Wandelt, Yashar Akrami, and Francisco Villaescusa-
Navarro. CARPool: fast, accurate computation of large-scale structure statis-
tics by pairing costly and cheap cosmological simulations. arXiv e-prints, page
arXiv:2009.08970, September 2020.

[135] L. F. Richardson. The Approximate Arithmetical Solution by Finite Differences
of Physical Problems Involving Differential Equations, with an Application to the
Stresses in a Masonry Dam. Philosophical Transactions of the Royal Society of Lon-
don Series A, 210:307–357, January 1911.

[136] Doogesh Kodi Ramanah, Tom Charnock, Francisco Villaescusa-Navarro, and Ben-
jamin D. Wandelt. Super-resolution emulator of cosmological simulations using deep
physical models. MNRAS, 495(4):4227–4236, July 2020.

[137] Yin Li, Yueying Ni, Rupert A. C. Croft, Tiziana Di Matteo, Simeon Bird, and
Yu Feng. AI-assisted super-resolution cosmological simulations. arXiv e-prints, page
arXiv:2010.06608, October 2020.

[138] Keir K. Rogers, Hiranya V. Peiris, Andrew Pontzen, Simeon Bird, Licia Verde, and
Andreu Font-Ribera. Bayesian emulator optimisation for cosmology: application to
the Lyman-alpha forest. JCAP, 2019(2):031, February 2019.

[139] Florent Leclercq. Bayesian optimization for likelihood-free cosmological inference.
PhRvD, 98(6):063511, September 2018.

328
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P. Fouqué, J. F. Glicenstein, B. Goldman, A. Gould, D. Graff, M. Gros, J. Haissinski,
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S. Coughlin, S. Galaudage, C. Hoy, M. Hübner, K. S. Phukon, M. Pitkin, M. Rizzo,
N. Sarin, R. Smith, S. Stevenson, A. Vajpeyi, M. Arène, K. Athar, S. Banagiri,
N. Bose, M. Carney, K. Chatziioannou, J. A. Clark, M. Colleoni, R. Cotesta, B. Edel-
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The calculation of the Poisson-Binomial process in Eq. 2.70 computes the prob-

ability of N dlas within a given column density or redshift bin on the sample poste-

riors piDLA(θ) = p({MDLA} | yi,λi,νi, θ, zQSOi), where i represents the index of the

quasar sample. However, with more than 1 dla, we will not just have parameters in

two-dimensions θ = (log10NHI, zDLA) but also parameters from the second or third dlas

{θj}kj=1 = {(log10NHIj , zDLAj)}kj=1, with k dlas. It is thus not straightforward to see how

we can calculate the Poisson-Binomial process on the sample posteriors with more than 1

dla.
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Here we provide a procedure to calculate the sample posteriors of the second dla

given the parameters of the first dla. The sample posteriors of the second dla could be

written as:

p(2nd DLA at θ = (log10NHI, zDLA))

=

∫
1st DLA∈θ′

p(1st DLA at θ′ and 2nd DLA at θ)dθ′

=

∫
θ′
p(θ, θ′ | MDLA(2),D)dθ′

(.1)

where we marginalize the first dla at parameters θ′ = (log10NHI
′, z′DLA) with a given 2nd

dla parameter θ = (log10NHI, zDLA). We can furthermore write the joint posterior density

into a likelihood density using Bayes rule:

p(θ,θ′ | MDLA(2),D)

∝p(D | θ, θ′,MDLA(2))p(θ
′, θ | MDLA(2))

=p(D | θ, θ′,MDLA(2))p(θ | MDLA(1))

p(θ′ | MDLA(1),D)

(.2)

where the joint prior density p(θ′, θ | MDLA(2)) could be written as a product of a non-

informative prior and an informed prior.

The posterior density of the second dla could thus be expressed as a discrete sum

over θ′ at the informed prior density:

p(2nd DLA at θ)

∝
∫
θ′
p(D | θ, θ′,MDLA(2))p(θ | MDLA(1))

p(θ′ | MDLA(1),D)dθ′

≃ 1

N

N∑
i=1

p(D | θ, θ′i,MDLA(2))p(θ | MDLA(1)),

(.3)
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where

θ′i ∼ p(θ′ | MDLA(1),D). (.4)

However, for each θ, we only have one θ′. We thus can simplify the discrete sum

as:

p(2nd DLA at θ)

∝ p(D | θ, θ′i,MDLA(2))p(θ | MDLA(1)),

(.5)

where the non-informative prior p(θ | MDLA(1)) expresses the way we sample θ for p(2nd DLA at θ).

To get the normalized posterior density for the 2nd dla, we can directly normalize

on the joint likelihood density:

p(2nd DLA at θ)

=
p(D | {θ, θ′}j ,MDLA(2))∑N
j=1 p(D | {θ, θ′}j ,MDLA(2))

=
p(D | {θ, θ′}j ,MDLA(2))

N2 1
N2

∑N
j=1 p(D | {θ, θ′}j ,MDLA(2))

=
1

N2

p(D | {θ, θ′}j ,MDLA(2))

p(D | MDLA(2))

(.6)

We thus can compute the posterior density for the first dla and second dla at a

given θ:

p(1 or 2 DLAs at θ)

=Pr(MDLA(1))p(1st DLA at θ)

+ Pr(MDLA(2))p(2nd DLA at θ)

(.7)
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log10 NHI f(NHI) (10−21) 68% limits (10−21) 95% limits (10−21)

20.0− 20.1 0.413 0.405− 0.422 0.398− 0.430
20.1− 20.2 0.241 0.235− 0.247 0.229− 0.252
20.2− 20.3 0.175 0.171− 0.180 0.167− 0.184
20.3− 20.4 0.136 0.132− 0.139 0.129− 0.142
20.4− 20.5 0.101 [9.88− 10.41]× 10−2 [9.63− 10.67]× 10−2

20.5− 20.6 7.60× 10−2 [7.40− 7.80]× 10−2 [7.21− 8.00]× 10−2

20.6− 20.7 5.20× 10−2 [5.06− 5.36]× 10−2 [4.91− 5.50]× 10−2

20.7− 20.8 3.84× 10−2 [3.73− 3.96]× 10−2 [3.63− 4.07]× 10−2

20.8− 20.9 2.52× 10−2 [2.44− 2.60]× 10−2 [2.37− 2.69]× 10−2

20.9− 21.0 1.67× 10−2 [1.61− 1.72]× 10−2 [1.56− 1.78]× 10−2

21.0− 21.1 1.03× 10−2 [9.94− 10.75]× 10−3 [9.57− 11.15]× 10−3

21.1− 21.2 7.21× 10−3 [6.92− 7.49]× 10−3 [6.65− 7.78]× 10−3

21.2− 21.3 4.17× 10−3 [3.99− 4.37]× 10−3 [3.81− 4.56]× 10−3

21.3− 21.4 2.87× 10−3 [2.74− 3.01]× 10−3 [2.62− 3.14]× 10−3

21.4− 21.5 1.49× 10−3 [1.41− 1.58]× 10−3 [1.33− 1.68]× 10−3

21.5− 21.6 8.71× 10−4 [8.23− 9.31]× 10−4 [7.76− 9.79]× 10−4

21.6− 21.7 4.03× 10−4 [3.74− 4.41]× 10−4 [3.46− 4.69]× 10−4

21.7− 21.8 2.15× 10−4 [1.96− 2.37]× 10−4 [1.77− 2.60]× 10−4

21.8− 21.9 1.41× 10−4 [1.29− 1.56]× 10−4 [1.17− 1.70]× 10−4

21.9− 22.0 4.75× 10−5 [4.04− 5.70]× 10−5 [3.56− 6.41]× 10−5

22.0− 22.1 2.08× 10−5 [1.70− 2.64]× 10−5 [1.32− 3.21]× 10−5

22.1− 22.2 8.99× 10−6 [7.49− 13.49]× 10−6 [6.00− 16.49]× 10−6

22.2− 22.3 4.76× 10−6 [3.57− 7.14]× 10−6 [2.38− 9.52]× 10−6

22.3− 22.4 1.89× 10−6 [9.46− 37.83]× 10−7 [9.46− 56.74]× 10−7

22.4− 22.5 3.00× 10−6 [2.25− 3.76]× 10−6 [1.50− 4.51]× 10−6

22.5− 22.6 5.97× 10−7 [5.97− 17.90]× 10−7 [5.97− 29.83]× 10−7

22.6− 22.7 0 0− 9.48× 10−7 0− 9.48× 10−7

22.7− 22.8 3.76× 10−7 [3.76− 11.29]× 10−7 [3.76− 11.29]× 10−7

22.8− 22.9 0 0− 2.99× 10−7 0− 5.98× 10−7

22.9− 23.0 0 0− 2.38× 10−7 0− 4.75× 10−7

Table .1: Average column density distribution function for all dlas with 2 < z < 5. The
table is generated by using p({MDLA} | y,λ,ν, zQSO). See also Figure 2.14.
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z dN/dX 68% limits 95% limits

2.00− 2.17 0.0309 0.0302− 0.0317 0.0294− 0.0325
2.17− 2.33 0.0448 0.0438− 0.0458 0.0428− 0.0468
2.33− 2.50 0.0497 0.0485− 0.0510 0.0474− 0.0521
2.50− 2.67 0.0528 0.0514− 0.0542 0.0501− 0.0556
2.67− 2.83 0.0676 0.0658− 0.0694 0.0641− 0.0711
2.83− 3.00 0.0721 0.0700− 0.0743 0.0680− 0.0764
3.00− 3.17 0.0760 0.0734− 0.0788 0.0709− 0.0814
3.17− 3.33 0.0846 0.0811− 0.0885 0.0779− 0.0919
3.33− 3.50 0.0824 0.0785− 0.0868 0.0747− 0.0910
3.50− 3.67 0.0835 0.0786− 0.0888 0.0737− 0.0937
3.67− 3.83 0.0738 0.0671− 0.0806 0.0618− 0.0873
3.83− 4.00 0.0594 0.0512− 0.0675 0.0454− 0.0757
4.00− 4.17 0.0665 0.0570− 0.0797 0.0475− 0.0892
4.17− 4.33 0.1033 0.0893− 0.1228 0.0726− 0.1396
4.33− 4.50 0.0966 0.0805− 0.1208 0.0644− 0.1409
4.50− 4.67 0.1137 0.0885− 0.1453 0.0632− 0.1706
4.67− 4.83 0.1131 0.0754− 0.1634 0.0503− 0.2011
4.83− 5.00 0 0− 0.057 0− 0.085

Table .2: Table of dN/dX values from our multi-dla catalogue for 2 < z < 5. The table is
generated by using p({MDLA} | y,λ,ν, zQSO). See also Figure 2.15.

z ΩDLA(10−3) 68% limits 95% limits

2.00− 2.17 0.385 0.371− 0.400 0.358− 0.416
2.17− 2.33 0.532 0.516− 0.550 0.501− 0.568
2.33− 2.50 0.645 0.620− 0.679 0.596− 0.720
2.50− 2.67 0.653 0.624− 0.689 0.598− 0.728
2.67− 2.83 0.786 0.759− 0.814 0.732− 0.841
2.83− 3.00 0.792 0.764− 0.822 0.737− 0.850
3.00− 3.17 0.910 0.865− 0.972 0.826− 1.046
3.17− 3.33 1.051 1.002− 1.101 0.957− 1.154
3.33− 3.50 0.958 0.891− 1.031 0.829− 1.106
3.50− 3.67 1.297 1.220− 1.380 1.147− 1.455
3.67− 3.83 1.303 1.222− 1.391 1.144− 1.486
3.83− 4.00 0.891 0.742− 1.052 0.639− 1.205
4.00− 4.17 0.993 0.746− 1.245 0.564− 1.488
4.17− 4.33 1.519 1.341− 1.718 1.168− 1.923
4.33− 4.50 1.085 0.880− 1.325 0.702− 1.695
4.50− 4.67 1.741 1.282− 2.224 0.666− 2.851
4.67− 4.83 1.239 0.826− 1.712 0.484− 2.222
4.83− 5.00 0 0− 0.213 0− 0.492

Table .3: Table of ΩDLA values. The table is generated by using p({MDLA} | y,λ,ν, zQSO).
See also Figure 2.16.
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Table .4: Table of dN/dX values, integrated over all putative absorbers with NHI > 1020.3

in our catalogue.

z dN/dX 68% limits 95% limits

2.00− 2.17 0.0337 0.0330− 0.0345 0.0323− 0.0352
2.17− 2.33 0.0429 0.0421− 0.0438 0.0413− 0.0446
2.33− 2.50 0.0462 0.0452− 0.0472 0.0443− 0.0481
2.50− 2.67 0.0493 0.0482− 0.0505 0.0471− 0.0516
2.67− 2.83 0.0620 0.0606− 0.0634 0.0592− 0.0649
2.83− 3.00 0.0660 0.0643− 0.0678 0.0627− 0.0695
3.00− 3.17 0.0704 0.0683− 0.0726 0.0663− 0.0747
3.17− 3.33 0.0745 0.0719− 0.0774 0.0695− 0.0800
3.33− 3.50 0.0763 0.0729− 0.0800 0.0696− 0.0833
3.50− 3.67 0.0777 0.0735− 0.0821 0.0697− 0.0862
3.67− 3.83 0.0632 0.0586− 0.0688 0.0539− 0.0735
3.83− 4.00 0.0648 0.0585− 0.0720 0.0522− 0.0792
4.00− 4.17 0.0581 0.0507− 0.0670 0.0447− 0.0745
4.17− 4.33 0.0709 0.0620− 0.0842 0.0532− 0.0953
4.33− 4.50 0.1024 0.0896− 0.1216 0.0736− 0.1376
4.50− 4.67 0.0827 0.0689− 0.1057 0.0552− 0.1241
4.67− 4.83 0.1041 0.0818− 0.1413 0.0669− 0.1636
4.83− 5.00 0.0676 0.0507− 0.1184 0.0169− 0.1522

.2 Tables for CDDF, dN/dX, and ΩDLA

.3 Tables of the measurements for DLAs in SDSS DR16

.4 Likelihood Function of Average Mass Spectrum Fitting

In Section 6.3.3, we discuss how we obtain the fiducial parameters for our mixture

model through fitting the average mass spectrum of the Power-law+Peak model. In this

appendix, we describe the detailed procedures of this fitting.

We first forward sample the (m1,m2) pairs using the Power-law+Peak model (with

the fiducial parameters in Table 6.1), consisting of a m1 function in Eq. 6.9 and a power-law
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Table .5: ΩDLA values, integrated over all putative absorbers with NHI > 1020.3 in our
catalogue.

z ΩDLA(10−3) 68% limits 95% limits

2.00− 2.17 0.582 0.550− 0.619 0.520− 0.659
2.17− 2.33 0.610 0.576− 0.651 0.548− 0.694
2.33− 2.50 0.691 0.664− 0.722 0.638− 0.755
2.50− 2.67 0.647 0.621− 0.676 0.596− 0.706
2.67− 2.83 0.770 0.738− 0.809 0.711− 0.855
2.83− 3.00 0.747 0.723− 0.773 0.701− 0.799
3.00− 3.17 0.789 0.758− 0.829 0.729− 0.896
3.17− 3.33 0.850 0.810− 0.909 0.773− 1.042
3.33− 3.50 0.908 0.855− 0.962 0.792− 1.019
3.50− 3.67 1.019 0.953− 1.087 0.866− 1.166
3.67− 3.83 0.664 0.604− 0.731 0.550− 0.806
3.83− 4.00 0.887 0.781− 1.000 0.683− 1.112
4.00− 4.17 0.562 0.508− 0.622 0.457− 0.684
4.17− 4.33 1.061 0.843− 1.337 0.708− 1.675
4.33− 4.50 1.507 1.252− 1.810 1.038− 2.182
4.50− 4.67 0.595 0.473− 0.737 0.373− 0.892
4.67− 4.83 0.913 0.657− 1.208 0.465− 1.498
4.83− 5.00 1.221 0.449− 1.995 0.127− 2.449

q function in Eq. 6.10. Then we concatenate a series of (m1,m2) pairs to a 1-D array of

black hole masses, assuming primary and secondary masses are arbitrary labels.

With a 1-D array of the forward sampled black hole masses, we apply a KDE to

obtain the probability density function of this 1-D array, pKDE(m). We want to know how

much the shape parameters, the spectral index and the location and standard deviation of

the Gaussian bump change after we concatenate the (m1,m2) into a 1-D array. Then, we

assume the average mass spectrum (pave(m)) follows the power-law + peak structure and

fit it to pKDE(m):

pave(m | −α, δm,mmax,mmin, µ, σ, λp) =

(1− λp)B(m | −α,mmax,mmin, δm)

+ λpG(m | µ, σ,mmin, δm).

(.8)
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Table .6: The column density distribution function integrated over all spectral lengths
within 2 < z < 5.

log10 NHI f(NHI) (10−21) 68% limits (10−21) 95% limits (10−21)

20.0− 20.1 0.371 0.365− 0.378 0.358− 0.385
20.1− 20.2 0.235 0.230− 0.240 0.225− 0.244
20.2− 20.3 0.170 0.166− 0.173 0.162− 0.177
20.3− 20.4 0.128 0.125− 0.131 0.122− 0.134
20.4− 20.5 9.58× 10−2 [9.36− 9.80]× 10−2 [9.15− 10.02]× 10−2

20.5− 20.6 7.16× 10−2 [6.99− 7.33]× 10−2 [6.83− 7.50]× 10−2

20.6− 20.7 5.09× 10−2 [4.97− 5.23]× 10−2 [4.85− 5.35]× 10−2

20.7− 20.8 3.56× 10−2 [3.47− 3.66]× 10−2 [3.38− 3.75]× 10−2

20.8− 20.9 2.45× 10−2 [2.38− 2.52]× 10−2 [2.31− 2.59]× 10−2

20.9− 21.0 1.64× 10−2 [1.59− 1.69]× 10−2 [1.55− 1.74]× 10−2

21.0− 21.1 1.06× 10−2 [1.02− 1.09]× 10−2 [9.92− 11.29]× 10−3

21.1− 21.2 6.96× 10−3 [6.72− 7.22]× 10−3 [6.48− 7.47]× 10−3

21.2− 21.3 4.58× 10−3 [4.41− 4.77]× 10−3 [4.25− 4.94]× 10−3

21.3− 21.4 2.66× 10−3 [2.55− 2.79]× 10−3 [2.43− 2.91]× 10−3

21.4− 21.5 1.51× 10−3 [1.44− 1.60]× 10−3 [1.36− 1.68]× 10−3

21.5− 21.6 9.95× 10−4 [9.43− 10.56]× 10−4 [8.91− 11.08]× 10−4

21.6− 21.7 4.82× 10−4 [4.52− 5.23]× 10−4 [4.18− 5.57]× 10−4

21.7− 21.8 2.60× 10−4 [2.39− 2.84]× 10−4 [2.18− 3.08]× 10−4

21.8− 21.9 1.50× 10−4 [1.35− 1.69]× 10−4 [1.23− 1.83]× 10−4

21.9− 22.0 7.73× 10−5 [6.98− 8.86]× 10−5 [6.03− 9.81]× 10−5

22.0− 22.1 4.34× 10−5 [3.74− 5.09]× 10−5 [3.30− 5.69]× 10−5

22.1− 22.2 1.43× 10−5 [1.19− 2.02]× 10−5 [8.33− 23.80]× 10−6

22.2− 22.3 1.13× 10−5 [8.51− 15.12]× 10−6 [6.62− 17.96]× 10−6

22.3− 22.4 3.75× 10−6 [3.00− 6.01]× 10−6 [1.50− 8.26]× 10−6

22.4− 22.5 2.39× 10−6 [1.79− 4.77]× 10−6 [5.96− 59.63]× 10−7

22.5− 22.6 1.42× 10−6 [9.47− 28.42]× 10−7 [4.74− 37.90]× 10−7

22.6− 22.7 7.53× 10−7 [3.76− 15.05]× 10−7 0− 2.26× 10−6

22.7− 22.8 5.98× 10−7 [2.99− 11.96]× 10−7 0− 1.79× 10−6

22.8− 22.9 7.12× 10−7 [4.75− 14.24]× 10−7 [2.37− 16.62]× 10−7

22.9− 23.0 5.66× 10−7 [1.89− 9.43]× 10−7 0− 1.32× 10−6
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Here, m refers to the black hole mass regardless of the labels of primary/secondary m1 and

m2. The likelihood function for finding the best-fit shape parameters is:

logL(θ) =

−1

2

∑[
log(2πσ2) +

(pKDE(m)− pave(m | θ))2

σ2

]
.

(.9)

Here, we fit the parameters of θ = (−α, δm, µ, σ, λp) but fix (mmax,mmin) to the input

values to the forward sampling of the Power-law+Peak model. The prior for each shape

parameter is listed in Table .7. The high mass end of the pKDE(m) has numerical noise

due to a lack of Monte Carlo samples to reconstruct the correct Power-law+Peak through

a KDE. To avoid this artifact affecting the fit, we let σ scale as the Poisson error

σ = σ0

√
pKDE(m)

N
, (.10)

where N is the total number of the Monte Carlo samples used to build the KDE probability

density function. Ideally, with a larger number of samples, the numerical uncertainty is

smaller. We assume a broad prior for the scaling constant σ0 for this numerical uncertainty,

σ0 ∼ LogNormal(µ = 0, σ = 1). (.11)

The fitting gives σ0 = 15+2
−2 with 2-σ error.

.5 Fiducial Inference with a Different Power Spectral Den-

sity

In this work, we utilize the analytical Power Spectral Density (PSD), AdVMidHighSensitivityP1200087 [301]

from PyCBC [302] and the IMRPhenomD [305, 306, 307] waveform model, to calculate the
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Table .7: The prior for shape parameters in the average mass spectrum fitting.

Parameter Description Prior

δm The δm for the low-mass mass spectrum smoothing U(0, 10)
mmax Maximum mass bound for the power-law model -
mmin Minimum mass bound for both power-law and Gaussian models -
−α Spectral index of the power-law U(1, 6)
µ Mean of the Gaussian model U(20, 50)
σ Standard deviation of the Gaussian model U(1, 6)
λp Mixing fraction of the Gaussian model U(0, 0.5)

detection efficiency of our population model across different subpopulations. The detec-

tion probability, pdet(θ), is computed following the approach from Ref. [295]. We employ

a pre-marginalized version that excludes detector-dependent variables, focusing instead on

primary mass, secondary mass, and luminosity distance, where θ = (m1,m2, L). We set

ρthreshold = 8, meaning that we consider a trigger to be a detection if the SNR is above 8.

Population models aim to establish physically motivated priors for black hole prop-

erties. Our work specifically targets the modeling of the black hole mass spectrum. For

each subpopulation model, we sample black hole masses (ma,mb) and convert these val-

ues to (m1,m2). These Monte Carlo samples are utilized to determine detection efficiency.

Given that our model does not account for luminosity distance, we introduce a prior on

the luminosity distance, p(L) ∝ L2, within a range of (5, 5000) Mpc, ensuring it is uniform

across the survey volume.

In principle, the most robust approach for calculating detection efficiency requires

marginalizing over the PSDs from various survey operational periods. Throughout this

study, we have utilized an analytical PSD, AdVMidHighSensitivityP1200087. Therefore,

our goal here is to assess the sensitivity of our inference results to different PSDs, ensuring
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Figure .1: Fiducial MCMC chains using various Power Spectral Densities (PSDs) in the
computation of the detection probability, pdet. Four different PSDs are utilized: the
analytical PSD (AdVMidHighSensitivityP1200087), the PSD from the GWTC-1 event
(GW150914 095045), the PSD from the GWTC-2 event (GW190916 200658), and the PSD
associated with the GWTC-3 event (GW200322 091133). There is no evident shift in the
posterior with different PSDs.
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that our conclusions are not significantly impacted by the choice of PSD and that our PSD

approximation is sufficient.

Figure .1 presents the “Fiducial” inference results regarding the mixing frac-

tions using various PSDs, including those from GWTC-1 (GW150914 095045), GWTC-2

(GW190916 200658), and GWTC-3 (GW200322 091133). We observe minimal shifts in the

mode of the posterior distribution (less than 1-sigma), with the exception that the width of

the posterior for the AdVMidHighSensitivityP1200087 PSD is slightly broader than that

of the others. This suggests that the impact of using different PSDs on the main results

(Figure 6.7) presented in this paper is negligible.
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