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ABSTRACT OF THE DISSERTATION

Using Emerging Next-Generation Sequencing Technologies to Enhance the Lifecycle of
Biopharmaceuticals

by

Isaac Sam Shamie

Doctor of Philosophy in Bioinformatics & Systems Biology

University of California San Diego, 2022

Professor Nathan E. Lewis, Chair
Professor Chris Benner, Co-Chair

Biopharmaceuticals are emerging as a promising avenue for treating a range of diseases ', and
bringing down the costs of production, as well as monitoring the response to treatment, is of high
importance. One technology to assist in these needs is next generation sequencing (NGS). In this

dissertation, I use emergent NGS techniques to provide valuable resources in two important cell types, the

X1V



Chinese hamster ovary (CHO) cell-line in Chapter 2, and CD34+ haematopoietic stem and progenitor

cells (HSPCs) in Chapter 3.

CHO cells are currently the most used cell line for producing recombinant monoclonal antibodies,
and optimization of this cell line including media control and gene engineering has brought down
production costs 2. However, costs can still be prohibitive, and the genome resources required for novel
gene engineering techniques are limited by the resolution of the genome annotation. In Chapter 2, I revise
the TSS genome annotation using two different TSS sequencing techniques across multiple tissues in the
Chinese hamster. TSSs were detected in 15308 protein-coding genes, and detected TSSs in 13037 of these
genes had TSSs revised by at least 10 base pairs from the nearest NCBI RefSeq TSS. More promoter
motif elements were detected at the revised TSSs than at the NCBI TSSs. To demonstrate the accuracy
and functionality of our revised TSS annotation we activated the dormant Mgar3 gene in CHO cells by

CRISPR activation * using a novel identified TSS.

CD34+ HSPC cells are the target in cytokine therapies to recruit cells to differentiate into desired
immune lineages. Studying the clonal lineage multipotent capacity is important for understanding cellular
response to therapy. Recent studies have shown that there is heterogeneity in HSPC clones, which are
cells from the same phylogenetic origin, in both their growth and hematopoietic multipotent capacity.
However, tracking HPSC clones in humans is limited. In Chapter 3, clonal heterogeneity is tracked across
multiple donors in steady-state and in response to ex vivo cytokine cocktail using mitochondrial
single-cell ATAC-seq. Cells are grouped into clones using naturally occurring somatic mitochondrial
mutations, and their lineages assessed using regulatory regions in the nuclear open-chromatin. Larger
clones make up a large fraction of donor HSPC donor populations, with no clone preferentially
responding to culture. Most clones show multipotent capacity, differentiating into multiple immune

lineage progenitors.

XV



Overall, this dissertation provides an improved genome annotation in CHO cells and an analysis

on HSPC lineage bias in steady-state and in response to cytokine treatment.
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CHAPTER 1: INTRODUCTION

1.1 Biotherapeutics as emerging therapies

In 1982 the FDA approved the first biotherapeutic drug, Humulin, a human insulin recombinant
protein produced in bacterial cells *°. Since then the number of biotherapeutics, described by the World
Health Organization as “biological medicinal products using genetically engineered bacteria, yeast, fungi,
cells or even whole animals and plants” ®, has widely expanded. This includes therapies such as
recombinant protein (RP) Enbrel, a fusion antibody for treating autoimmune diseases; cytokine-based
therapy such as interleukin-2 to treat cancers; and autologous gene-therapy to treat sickle-cell disease 7.
316 biopharmaceuticals were on the market in 2018 !, and as of November 2021 there are 621
FDA-licensed biologics (the biological therapeutic product) *, including monoclonal antibodies (mABs),
hormones, clotting factors, and engineered cell-based products. Discovery of effective small molecule
therapies has been in decline, leading to more research and investment into biotherapies. There are
pressing needs, however, to both bring down production costs of these therapies °'? and to understand the

downstream physiological effects of these molecules *°.

1.2 NGS technologies for advancing biotherapeutic development and monitoring

Complementing the research into biotherapies over the last 15 years is the rise of diverse and
cost-effective next-generation sequencing (NGS) technologies, which perform millions of reactions in
parallel to provide a high-throughput and sensitive technique to measure multiple molecules at once "'.

1819 "and the first human genome solely

NGS has revolutionized how we understand molecular biology
using this technique was published in 2008 *° (the first human genome published in 2000). As the cost of
sequencing decreases annually, genetic testing, and mapping model organisms’ genomes were promised

to revolutionize our approach to human medicine. It was realized early on, however, that the genome was

just the start to creating breakthrough therapeutics at a rapid pace, and NGS technology was then further


https://paperpile.com/c/GUGQPJ/DdEnK+uou65
https://paperpile.com/c/GUGQPJ/EYwO1
https://paperpile.com/c/GUGQPJ/YDlPb
https://paperpile.com/c/GUGQPJ/lAQqB
https://paperpile.com/c/GUGQPJ/RqppH
https://paperpile.com/c/GUGQPJ/yR6rX+nRI6b+6ln87+XRvyc
https://paperpile.com/c/GUGQPJ/W9TBT+RTKHE+XLIVL+U6Ths
https://paperpile.com/c/GUGQPJ/pg3M0
https://paperpile.com/c/GUGQPJ/DtR7C+OUIBJ
https://paperpile.com/c/GUGQPJ/69kh5

developed to not just study ‘genomics’, which measures an organism's complete set of DNA, but to
investigate other areas of “-omics”. This includes transcriptomics, which, depending on the technique,
measures expression of different RNA molecules; epigenomics, which measures different epigenomic
signatures depending on the technique; and more recently, single-cell -omics, which measures the
molecule type of interest in multiple single cells at once. Additionally, multi-omics allows the
simultaneous measurements of distinct types of macromolecules. While -omics has been informative in
developing and measuring effects of biotherapies, there still appears to be gaps in incorporating new NGS
techniques to develop novel therapies 22, Further, when producing therapeutics, much of the research is
based on private datasets and proprietary knowledge, and there is a lack of focus on creating useful shared
resources, widening information gaps that when filled, can benefit the entire field. When developing and
testing novel therapies such as cytokine therapy and stem-cell transplantation, we want to understand the
effects on the body in high resolution, which NGS provides. In this work, I help create valuable resources
using recently-developed NGS techniques to the general biopharmaceutical industry to assist in producing

and monitoring effects of biotherapies with two examples.

1.3 Characterizing the transcriptional architecture in industrially-relevant CHO cells

The Chinese hamster ovary (CHO) cell-line is one of the most used mammalian cell-line for
production of recombinant proteins such as Enbrel and mABs '. After their immortalization, %, their
popularity as biotherapeutic producers rose due to their high growth rate >, ease of genetic manipulation,
and ability to produce complex post-translationally modified proteins that are not immunogenic in
humans #*. Optimizing CHO cells to increase production quantity and improving quality has been a
priority to reduce costs. Over the past few decades, these optimization efforts have progressed from
engineering the media and bioreactors to transgene codon sequence and more recently, cell engineering

26,27

and synthetic biology
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Genome sequencing efforts in both CHO cells and the Chinese hamster have helped our ability to
engineer CHO cells *3°. To improve cell performance and product quality, NGS technologies have been
used to develop metabolic models, find differentially expressed genes between high- and low-producing
cell lines, and discover context-specific promoters *'*°. Costs, however, are still prohibitive, and
differential expression does not provide enough actionable direction, as often dozens to hundreds of genes
are detected across conditions. This has led the field to consider genetic engineering the host CHO cells

3637 or in a systematic and unbiased manner through large-scale genetic screens * to

either rationally
better characterize gene effects. CRISPR activation (CRISPRa **) and other genetic engineering methods
could prove instrumental to improving therapeutic protein production. To engineer gene expression,
however, knowledge of the underlying regulatory elements is critical. This is due in part to the fact that
the Chinese hamster genome annotation, which maps the gene regions in the genome, remains far from
complete, especially for the approximately 50% of genes that are silenced in CHO cells, including many
needed for producing more human-like proteins *. Specifically, no method that maps transcription start
sites (TSSs) has been used in mapping the hamster annotation. TSS mapping is vital for using genetic
engineering techniques such as CRISPRa and CRISPR inhibition (CRISPRi) relying on the guide RNAs
targeting within 150 basepairs of the gene start site *>*. In Chapter 2, to assist in production of RPs, I
intend to refine and extend the transcript annotation of the Chinese hamster using sensitive transcription
start-site sequencing (TSS-Seq) methods. I will then demonstrate how this refinement can aid further

optimization of the cell-line to produce recombinant proteins through effective gene engineering using

CRISPR activation (CRISPRa).

1.4 Tracking clonal lineage bias in clinically-relevant HSPCs

Biotherapies targeting the immune-system have achieved recent success with the development of
cytokine-based therapies, stem-cell targeted gene therapies, and CAR-T therapy. In beta-globin gene
therapy in sickle-cell disease patients, CD34+ haematopoietic stem and progenitor cells (HSPCs) cells are

either taken from the patient (‘autologously’) or from a donor (‘allogenic’), and genetically modified to
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carry the therapeutic gene, and are then placed into the patient. These cells can then differentiate into
circulating blood cells with the corrected gene, effectively treating the disease. Issues remain, however, in
generating sufficient cells as well as tracking the lineage fates of the genetically modified HSPC clones
once transplanted in the donor. CD34+ HSPCs are also an important target for different cytokine therapies

4142 such as with interleukin-2 *, to promote

that aim to recruit specific immune cells to a disease
differentiation of T- cells (amongst others), and Flt31 to promote dendritic cell differentiation ***°. The
long-term effect of these HSPC cells, including their growth and lineage potential, still remains an active
area of research ***, Early hematopoietic stem cells (HSCs) are single cells with the potential to
reconstitute the blood cell population, and HSC clones are downstream cells coming from the same HSC.
These clones grow and respond differently to treatment. Recent studies have also shown that genetic
mutations in specific clones increase their growth rate and correlates with bone-marrow malignancies
#9751 Detecting a clone's potential for differentiating into different progenitor lineages, or its multipotency,
in these HSCs is hampered by our ability to track cell clonal relationships in a human along with their
downstream immune lineages. Studying HSPC lineage fate requires delineation of cell history, which
requires the use of ‘barcode’, which is usually a nucleotide sequence to identify the cell, that can be
passed onto daughter cells. Due to the limitation of inserting exogenous barcodes in healthy humans,
tracking clonal relationships in humans has been limited to gene-therapy transplant studies, and cancer
cells using somatic mutations. Single-cell NGS techniques that capture the epigenome and transcriptome
have been used to infer lineage and clone relationships, but these measurements do not directly capture
these cell relationships 3.

In Chapter 3, we explore clonal size heterogeneity and lineage-bias in native hematopoiesis as
well as in response to cytokines in humans and mice. This establishes a baseline to understand the

therapeutically relevant BM CD34+ cells.
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1.5 Overview

In Chapter 2, I revise the Chinese Hamster transcription start-site annotation using multiple
complementary NGS techniques (GRO-seq **, 5’GRO-seq **, csRNA-seq *°, ribosomal RNA-depleted
RNA-seq and ATAC-seq *, by capturing and confidently mapping nascent TSSs in CHO-K1 cells, 10
CH-derived tissues and hamster bone marrow derived macrophages (BMDMs). TSSs detected are
integrated across all tissues to revise gene TSSs annotated by NCBI, and discover additional unannotated
TSSs. These TSSs improve the capture of initiator and TATA-box motif elements compared to the prior
annotation. Additionally, TSSs specific to certain tissues that corroborate with prior known tissue specific
genes, as well as shared and distinct promoter elements across samples. A new TSS in MGATS3 is then

corrobarated using CRISPRa to produce a clinically-relevant glycan.

In chapter 3, lineage bias is assessed across CD34+ HSPC clones in both native steady-state
hematopoiesis across multiple healthy donors, and in response to cytokine treatment. This is done using a
recently developed NGS technique that tracks cell clonality using somatic mitochondrial (MT) variants as
naturally occurring barcodes, as well as nuclear open-chromatin regions to inform cell lineage through
their epigenome. The technique, mitochondrial single-cell assay for transposase-accessible chromatin
sequencing (mt-scATAC-seq), takes advantage of the MT’s small genome size, high-mutation rate, and
high per-cell copy-numbers to find both persistent and novel variants in cells of known phylogenetic
(clonal) relationship. In this study, I show donors can be multiplexed in a sample and separated using
germline MT mutations, and define clones using somatic MT mutations. Clonal detection showed that a
few larger clones make up a large fraction of the clone population. Cells were then clustered using their
open-chromatin regions and assigned lineage types based on functional annotation of these regions,
including proximity to lineage genes and exposed lineage motifs in a cell. Most clones carry multipotent
capacity, producing multiple downstream lineages. This capacity was further measured using the entropy

of a clone’s lineage fate, and is found to be consistent across clones.
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Together, this dissertation provides improved understanding of biotherapeutically relevant cell

types.



CHAPTER 2

2.1 Abstract

Chinese hamster ovary (CHO) cells are widely used for producing biopharmaceuticals, and
engineering gene expression in CHO is key to improving drug quality and affordability. However,
engineering gene expression or activating silent genes requires accurate annotation of the underlying
regulatory elements and transcription start sites (TSSs). Unfortunately, most TSSs in the published
Chinese hamster genome sequence were computationally predicted and are frequently inaccurate. Here,
we use nascent transcription start site sequencing methods to revise TSS annotations for 15,308 Chinese
hamster genes and 3,034 non-coding RNAs based on experimental data from CHO-K1 cells and 10
hamster tissues. We further capture tens of thousands of putative transcribed enhancer regions with this
method. Our revised TSSs improves upon the RefSeq annotation by revealing core sequence features of
gene regulation such as the TATA box and the Initiator and, as exemplified by targeting the
glycosyltransferase gene Mgat3, facilitate activating silent genes by CRISPRa. Together, we envision our
revised annotation and data will provide a rich resource for the CHO community, improve genome

engineering efforts and aid comparative and evolutionary studies.

2.2 Introduction

Chinese hamster ovary (CHO) cells are the predominant mammalian system for large-scale
production of clinical therapeutic proteins '. They are valued for their high growth rate %, ease of genetic
manipulation and ability to properly fold, assemble and produce complex post-translationally modified
proteins that are not immunogenic in humans %. As of 2018, 84% of FDA approved monoclonal
antibodies were produced in CHO cells ' and by sales in 2020, 5 out of the top 10 drugs are CHO-derived
recombinant proteins *’. Optimizing CHO cells to increase production quantity and quality has been a
priority for efforts to reduce the costs of biopharmaceuticals. Over the past few decades, these
optimization efforts have progressed from engineering the media and bioreactors to transgene codon

sequence and more recently, cell engineering and synthetic biology 26"
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Genome sequencing efforts for CHO cells and the Chinese hamster ** have been fundamental
for studying and engineering CHO cells. In particular, they enabled systematic identification of genes
associated with improved cell performance and product quality %5658 Fyrthermore, the sequences
enabled the implementation of CHO cell engineering using tools including transcription activator-like
effector nucleases (TALENS, !, RNA-directed DNA methylation (RADM) 2, CRISPR-Cas9 *) and others
for genetic screens and the targeted inhibition or activation of genes *’**. However, the Chinese hamster
genome annotation remains far from complete, especially for the approximately 50% of genes that are
silenced in CHO cells, including many needed for producing more human-like proteins **. CRISPR
activation (CRISPRa ** and other genetic engineering methods could be instrumental to improve
therapeutic protein production. However, to engineer gene expression, knowledge of the underlying

regulatory elements is critical.

Recruitment of the RNA Polymerase II pre-initiation complex (RNAPII) by CRISPRa or
blocking of the RNAPII by CRISPR inhibition (CRISPRi) and promoter editing *** require knowledge of
the polymerase’s native transcription start site (TSS). Unfortunately, the vast majority of TSSs in the
Chinese hamster RefSeq annotation were predicted computationally
(https://www.ncbi.nlm.nih.gov/genome/annotation_euk/process/) and may not correspond to the actual
start sites in vivo. While previous work annotated 6,547 TSSs using steady-state 5’'RNA ends by cap
analysis gene expression (CAGE) in CHO cells %, the data and annotation are not publicly available.
Consequently, current inaccuracies in the annotation of the Chinese hamster genome and its TSSs present

a major hurdle for targeted engineering of gene expression in CHO cells.

To remedy this issue, we generated multiple complementary experimental data types to accurately
capture nascent transcription start sites (TSSs) at single nucleotide resolution [5’GRO-seq >, csRNA-seq
3 GRO-seq **], expressed genes (ribosomal RNA-depleted RNA-seq), small RNAs [sRNA-seq *°] and
open chromatin (ATAC-seq >%). To more comprehensively define regulatory elements in CHO cells,
including for silenced genes, we interrogated not only CHO K1 cells but also 10 tissues and bone marrow
derived macrophages (BMDMs) from Chinese hamsters of the original colony where CHO cells were
derived *. Through this work, we developed a comprehensive compendium of Chinese hamster gene
expression, including genes, enhancers, unstable divergent transcripts, diverse non-coding RNAs and their

respective TSSs. Given their importance in deploying CRISPRa, we further analyzed the TSSs of
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protein-coding genes. These data enabled us to accurately annotate the TSS or TSSs of 15 308
protein-coding genes and 3,034 non-coding RNAs. Notably, for 13,037 (85% of observed genes) genes,
all detected TSSs were revised by >10 base pairs (bp) from the nearest NCBI RefSeq TSS, and 2607
(17%) by >150 bp. To demonstrate the accuracy and functionality of our revised TSS annotation we
activated the dormant Mgat3 (B-1,4-mannosyl-glycoprotein 4--N-acetylglucosaminyltransferase) in
CHO cells by CRISPRa * using a novel identified TSS. In addition to accurate TSSs, the data generated
provide insights into the DNA motifs and transcriptional regulatory pathways underlying tissue specificity
in hamsters. Together, we envision our data and revised TSS annotation for the Chinese hamster will
provide a rich resource for the CHO community, facilitate integrating the Chinese hamster into
comparative studies, and improve engineering and manipulation for optimizing the production of

therapeutic recombinant proteins in CHO cells.

2.3 Materials and Methods

2.3.1 Sample preparation

Female Chinese hamsters (Cricetulus griseus) were generously provided by George Yerganian
(Cytogen Research and Development, Inc.) and housed at the University of California San Diego animal
facility on a 12h/12h light/dark cycle with free access to normal chow food and water. All animal
procedures were approved by the University of California San Diego Institutional Animal Care and Use
Committee in accordance with University of California San Diego research guidelines for the care and use
of laboratory animals. None of the used hamsters were subject to any previous procedures and all were
used naively, without any previous exposure to drugs. Euthanized hamsters were quickly chilled in a wet
ice/ethanol mixture (~50/50), organs were isolated, placed into Trizol LS, flash frozen in liquid nitrogen
and stored at -80°C for later use. CHO-K1 cells were grown in F-K12 medium (GIBCO-Invitrogen,
Carlsbad, CA, USA) at 37°C with 5% CO..

2.3.2 Bone marrow-derived macrophage (BMDM) culture

Hamster bone marrow-derived macrophages (BMDMs) were generated as detailed previously
in%. Femur, tibia and iliac bones were flushed with DMEM high glucose (Corning), red blood cells were

lysed, and cells cultured in DMEM high glucose (50%), 30% L929-cell conditioned laboratory-made
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media (as source of macrophage colony-stimulating factor (M-CSF)), 20% FBS (Omega Scientific), 100
U/ml penicillin/streptomycin+L-glutamine (Gibco) and 2.5 pg/ml Amphotericin B (HyClone). After 4
days of differentiation, 16.7 ng/ml mouse M-CSF (Shenandoah Biotechnology) was added. After an
additional 2 days of culture, non-adherent cells were washed off with room temperature DMEM to obtain
a homogeneous population of adherent macrophages which were seeded for experimentation in Nunc Cell
Culture dishes (Thermo Scientific) overnight in DMEM containing 10% FBS, 100 U/ml
penicillin/streptomycin+L-glutamine, 2.5 pg/ml Amphotericin B and 16.7 ng/ml M-CSF. For Kdo2-Lipid

A (KLA) activation, macrophages were treated with 10 ng/ml KILA (Avanti Polar Lipids) for 1 hour.

2.3.3 RNA-seq

RNA was extracted from organs that were homogenized in Trizol LS using an Omni Tissue
homogenizer. After incubation at RT for 5 min, samples were spun at 21,000 g for 3 min, supernatant
transferred to a new tube and RNA extracted following manufacturer’s instructions. Strand-specific total
RNA-seq libraries from ribosomal RNA-depleted RNA were prepared using the TruSeq Stranded Total
RNA Library kit (Illumina) according to the manufacturer-supplied protocol. Libraries were sequenced

100 bp paired-end to a depth of 29.1-48.4 million reads on an Illumina HiSeq2500 instrument.

2.3.4 csRNA-seq protocol
Capped small RNA-sequencing was performed identically as described in *°. Briefly, total RNA

was size selected on 15% acrylamide, 7 M UREA and 1x TBE gel (Invitrogen EC6885B0OX), eluted and
precipitated over night at -80°C. Given that the RIN of the tissue RNA was often as low as 2, essential
input libraries were generated to facilitate accurate peak calling . csRNA libraries were twice cap
selected prior to decapping, adapter ligation and sequencing. Input libraries were decapped prior to
adapter ligation and sequencing to represent the whole repertoire of small RNAs. Samples were quantified

by Qbit (Invitrogen) and sequenced using the Illumina NextSeq 500 platform using 75 cycles single end.

2.3.4 Global run-on nuclear sequencing protocol

Nuclei from hamster tissues were isolated as described in ®’. Hamster BMDM and CHO nuclei
were isolated using hypotonic lysis [10 mM Tris-HCI pH 7.5, 2 mM MgCl,, 3 mM CaCl,] with 0.1% and
0.5% IGEPAL, respectively. Nuclei were flash frozen and later 0.5—-1 x 106 nuclei in 200 pl
GRO-freezing buffer [S0 mM Tris-HCI pH 7.8, 5 mM MgCl,, 40% Glycerol] were used in reactions with
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3x NRO buffer [15 mM Tris-Cl pH 8.0, 7.5 mM MgCl,, 1.5 mM DTT, 450 mM KCI, 0.3 U/ul of
SUPERase In, 1.5% Sarkosyl, 366 uM ATP, GTP (Roche) and Br-UTP (Sigma Aldrich) and 1.2 uM CTP
(Roche, to limit run-on length to ~40 nt)] as described in . Run-on reactions were stopped, purified and
GRO-seq and 5’GRO-seq libraries generated exactly as described in ®. BrU enrichment was performed
using a BrdU Antibody (Sigma B8434-200 pl Mouse monoclonal BU-33) coupled to Protein G (Dynal
1004D) beads. For each sample, 3 x 20 pul of Protein G beads were washed twice in DPBS+0.05% Tween
20 (DPBS+T) and then the antibody coupled in a total volume of 1 ml DPBS+T under gentle rotation.
About 1 pl of antibody was used per 8 pl of beads. Samples were amplified for 14 cycles, size selected for

160-250 bp and sequenced on an Illumina NextSeq 500 using 75 cycles single end.

2.3.5 Assay for transposase-accessible chromatin sequencing (ATAC-seq) protocol

Approximately 150 k nuclei in 22.5 pl GRO freezing buffer (isolated as described for GRO-seq
above) were mixed with 25 pl 2x DMF buffer [66mM Tris-acetate (pH = 7.8), 132 K-Acetate, 20 mM
Mg-Acetate, 32% DMF] and tagmented using 2.5 ul DNA Tn5 (Nextera DNA Library Preparation Kit,
[llumina) added. The mixture was incubated at 37°C for 30 min and subsequently purified using the
Zymogen ChIP DNA purification kit (D5205) as described by the manufacturer. DNA was amplified
using the Nextera Primer Ad1 and unique Ad2.n barcoding primers using NEBNext High-Fidelity 2x
PCR MM for 8 cycles. PCR reactions were purified using 1.5 volumes of SpeedBeads in 2.5 M NaCl,
20% PEG8000, size selected for 140-240 bp fragments and sequenced using the Illumina NextSeq 500

platform using 75 cycles single end. This size range was selected to enrich for nucleosome-free regions.

2.3.6 CRISPRa
CRISPRa was carried out as previously described in *’. Briefly, guide RNAs (gRNAs) were

designed in a region proximal to our new revised TSS for Mgat3 (NCBI GenelD: 100689076) and
prioritized based on off-targets/proximity to the TSS. Target sequences and gRNA oligos are listed in
Tables S2.2 and S2.3, respectively. gRNAs were transfected along with a dCas9 VPR fusion plasmid
[VPR-dCas9 (addgene #134601)] into mutant CHO-S cells carrying knockouts of Mgat4a,4b and 5,
St3gal3,4 and 6, B3gnt2, Sppl3 and Fut8 in biological triplicates. Non-targeting gRNAs were transfected
with (NT-gRNA) and without VPR-dCas9 (NT-Cas9) as controls. Two days after transfection, cells were

harvested to assess activation via qRT-PCR (in technical triplicate) and N-glycan analysis. Transcript
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levels were normalized to the mean of Hprt and Gnbl and relative expression levels were calculated using

the 2-AACt method ©.

2.3.7 Glycan quantification

N-Glycans were fluorescently labeled and quantified via LC-MS as described previously in *’.
Briefly, the supernatant was concentrated using Amicon® Ultra-4 Centrifugal Filter Units. Secretome
proteins were fluorescently labeled with GlycoWorks RapiFluor-MS N-Glycan Kit (Waters, Milford,
MA). N-linked glycan analysis was performed by LC-MS using a Waters Acquity Glycan BEH Amide
130 A, 2.1 mm x 150 mm, 1.7 um column (Waters, Milford) with a Thermo Ultimate 3000 HPLC with
the fluorescence detector coupled online to a Thermo Velos Pro lontrap MS (run in positive mode) and a
separation gradient of 30-43% buffer. The amount of N-glycan was measured by integrating the areas
under the normalized fluorescence spectrum peaks with Thermo Xcalibur software (Thermo Fisher

Scientific) giving normalized, relative glycan quantities.

2.3.8 RNA-seq processing
Sequence data for all RNA-seq (ribosomal-depleted RNA-seq, csRNA-seq, S'GRO-seq,

sRNA-seq, GRO-seq), data were quality controlled using FastQC (v0.11.6. Babraham Institute, 2010),
and cutadapt v1.16 7 was used to trim adapter sequences and low quality bases from the reads. Reads
were aligned to the Chinese hamster genome assembly PICR and annotation GCF_003668045.1, part of
the NCBI Annotation Release 103. Sequence alignment was accomplished using the STAR v2.5.3a

aligner "' with default parameters. Reads mapped to multiple locations were removed from analysis.

2.3.9 ATAC-seq processing
Sequence data for ATAC-seq was processed using the ENCODE ATAC-seq pipeline

(https://github.com/kundajelab/atac_dnase pipelines). The reads were trimmed using cutadapt v1.9.1.
Reads were aligned using Bowtie2 v2.2.4 7 to the same Chinese hamster genome. Peaks were called
using MACS2 v2.1.0 ™ with a P-value of 0.01 and replicates were merged using irreproducible discovery
rate (IDR) ™ of 0.1. The fold-change value is the number of normalized counts over the local background,

taken as a 10,000 bp surrounding region.

2.3.10 Detecting TSSs
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To call TSS peaks, the Homer * version 4.10 TSS pipeline was used with the command
‘findPeaks -style tss’ (http://homer.ucsd.edu/homer/ngs/tss/index.html). Briefly, fragment lengths are set
to 1, and 150 bp regions significantly enriched with fragments above the local genomic background
region, as well as 2-fold above the input data (GRO-seq and sSRNA-seq). FDR correction of 0.01 across
peaks in each sample was used. The samples are then merged together into our initial, putative
experimental TSSs. Additionally, the total RNA-seq was used to call TSSs as stable if reads are identified

between -100 and +500 bp upstream of the TSS.

Sample peaks were merged using the mergePeaks command in Homer. If samples have
overlapping peaks, they are combined into one, where the start position is the minimum start position and
the end is maximum end position. When merging the replicate peak expression in the same biological

sample, the average counts per million (CPM) was used.

2.3.11 Revised promoter annotation

To annotate protein-coding TSSs, a distance threshold from the original annotations was
enforced. Ultimately, we retained TSSs that are within -1000 bp and +1000 bp from the initial reported
TSS. Additionally, TSSs found in introns, coding sequences, and opposite strand TSSs (divergent
transcripts) found in the TSS region were removed (Figure S2.1). There were two annotations used in this
study to provide gene promoter landmarks, one from the NCBI RefSeq Annotation 103 release using the
PICR genome, and the other with both NCBI’s annotation and a proteogenomics annotation

(doi:10.7303/syn17037372) that used RNA-seq, proteomics and Ribo-seq to refine gene mappings °.

When samples are merged together, the TSSs that are merged may be offset by a few bp. Our
revised annotation TSS location is assigned as the CHO TSS location if there is one present, or the
location of the TSS in the sample which had the highest expression in CPM. An additional annotation

integrating promoter TSSs found in either annotation is also reported.

The annotation provided (Supplementary Data 2-3 in ”’) includes the chromosome, start position
(0-based index similar to bed format), strand, position, corresponding gene name, corresponding
transcript, comma-separated list of biosamples that express the TSS, and a confidence score signifying the

TSS having 2 CPM in at least 2 5'GRO-seq and/or csRNA-seq experiment.
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2.3.12 Distal TSSs
Distal TSSs (dTSSs), or intergenic TSSs, were defined as being >1000 kilobase pairs (kbp) away

from an annotated gene (ncRNA and protein-coding).

2.3.13 RNA-seq/TSS-seq comparison
To compare RNA-seq to TSS-seq, we used 1558 CHO samples of different lines that were a

combination of in-house and public samples (see Table S2.4 for accession IDs). These were quantified
and converted into transcript per kilobase gene per million mapped reads (TPM) using Salmon with

default parameters®.

2.3.14 Read histograms

For Figure 2.2A-B, Homer annotatePeaks.pl with the -hist command was used to construct the
histogram with a bin size of 1 bp, and the CPM per TSS was calculated. We restrict the maximum number

of tags to count per nucleotide to 3 to prevent high-expressing TSSs from saturating the signal.

2.3.15 Motif analysis

Motif analysis of the core promoter elements the Initiator element and the TATA-Box seen in
Figure 2.2 were done using FIMO of the MEME Suite 5.0.2 package with default parameters 7, scanned
across a 150 bp window centered on the TSS. Position weight matrix scores of the motifs are summed
across all TSSs and converted into a log,-likelihood ratio score for each motif with respect to each

sequence position and then converts these scores to P-values, with a cutoff of 0.0001.

For motif analysis in Figure 2.3, the promoter regions were -300 bp to +100 bp downstream of
each TSS using Homer command ‘findMotifsGenome.pl” with parameters ‘-size -300,100 -len 6,8,10°.
For each sample, protein-coding TSSs with log2 CPM of 2 standard deviations above the mean were
taken as enriched promoters. The background chosen was randomly selected GC-controlled regions. The
negative log.P-value of the top 3 enriched motifs from each sample are taken and the TFs were clustered

based on their enrichment P-values.

2.3.16 Tissue-specific gene enrichment analysis (TSEA)
TSEA was done using the webserver http://genetics.wustl.edu/jdlab/tsea/. This performs

enrichment analysis using Fisher’s Exact test, and the Benjamini-Hochberg corrected log P-values were
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used for Figure 2.3D. Unique genes for each sample were defined as only one sample having an observed

promoter in that gene. Homologous genes to the human set in TSEA were taken using gene names.

2.3.17 GlycoGene database

Human glycosylation genes and their associated enzyme classes were taken from the ‘Enzymatic

Activity’ section of the GlycoGene Database %. Homologous genes were taken as described above.

2.4 Results

Nascent 5' RNA sequencing across hamster tissues enables accurate reannotation of RNA start sites
at single nucleotide resolution

Algorithms predicting gene annotations rely on highly conserved features such as protein
domains (https://www.ncbi.nlm.nih.gov/genome/annotation_euk/process/). Consequently, although gene
exon regions are commonly assigned correctly, the annotations of their TSSs, and each associated
promoter, are often inaccurate, as these features evolve rapidly and can relocate to non-homologous
regions *'. To correctly annotate the TSS of protein genes and non-coding RNAs (e.g. pri-miRNAs,
IncRNAs and snoRNAs), it is necessary to experimentally determine these features. We therefore
captured [5'GRO-seq **, csRNA-seq *°], active transcription [GRO-seq *'], expressed genes (ribosomal
RNA-depleted RNA-seq), small RNAs [sSRNA-seq *°], and open chromatin [ATAC-seq *] in CHO-K1
cells as well as ten tissues and bone marrow derived macrophages (BMDMs) in female hamsters from Dr
George Yerganian, representing the original colony from which CHO cells were derived in 1957
(Figure 2.1A; Figure S2.1A and Table S2.1). Unlike RNA-seq, 5'GRO-seq and csRNA-seq provide
accurate TSSs of stable transcripts such as mRNAs (Figure 2.1B) or ncRNAs but also unstable RNAs
such as enhancers RNAs (Figure 2.1C) **% at single nucleotide resolution. Even for highly expressed
genes, such as the Eukaryotic Translation Elongation Factor 1 Alpha (Eeflal), RNA-seq and related
methods that capture the complete transcriptome have limited information about the exact location where
genes start and often fall short in the detection of the TSSs for less abundant transcripts (Figure 2.1).
Capturing the TSSs of nascent transcripts further helps to avoid potential false-positive 5'ends caused by

RNA processing or recapping of cytosolic (steady-state) mRNAs .
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Figure 2.1 A Chinese hamster Transcriptome Atlas.

(A) Overview of datasets generated to identify transcription start sites. * Denote cell lines, ** denote primary cells.
(B and C) IGV viewer of data. Units are in counts per million (CPM) (B) Example transcription start site at
single-nucleotide resolution as defined by 5'GRO-seq and csRNA-seq (using GRO-seq and sRNA-seq as input,
respectively) of the focused Eukaryotic Translation Elongation Factor 1 Alpha (Eefl A1) promoter in CHO cells and
diverse tissues. Brain RNA-seq reads are shown in orange. (C) Example of unstable transcription start sites of
enhancer RNAs that are poorly detected by conventional RNA-seq at the Sp1 ‘super enhancer’ locus in CHO cells.
Note: Raw IGV browser visualization data are provided in Figure S2.3. (D) Number of TSSs captured, grouped by
TSS type and samples detected in (E). Cumulative plot across all samples of protein-coding genes with a TSS
detected by csRNA-seq and/or 5'GRO-seq enrichment over GRO-seq and/or csRNA-seq. Sorted by taking CHO as
the first sample, followed by hamster tissues.
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As the primary goal of this study was the determination of confident TSSs, we employed two
independent nascent TSS methods, csRNA-seq and 5'GRO-seq. However, while csRNA-seq accurately
captures TSSs from total RNA, 5'GRO-seq requires several million purified nuclei, which was not
feasible for some tissues. Using csRNA-seq allowed us to expand our analysis across more diverse
hamster tissues. In addition, we employed GRO-seq and small RNA-seq (SRNA-seq) data as a
background control (also known as input) to boost the confidence of TSS calls by 5’GRO-seq and
csRNA-seq, respectively (Figure S2.1B). Next, we integrated ATAC-seq to filter TSSs that mapped
outside of open chromatin regions (Figure S2.4A). Finally, as nascent TSS methods detect both stable and
unstable TSSs, we used conventional ribosomal RNA-depleted RNA-seq to assign TSSs as stable if
RNA-seq coverage was detected between -100 and +500 base pairs from the TSS *. Integrating these
multiple independent data sets also enabled an intrinsic quality control metric and highlighted the
confidence of captured TSSs. For example, the correlation among 5'GRO-seq replicates and between
5'GRO-seq and csRNA-seq were highly consistent in their position and expression strength (Pearson
correlation of » = 0.96 and r = 0.88, respectively, Figure S2.2). A list of the 71 datasets generated in this
study is provided in Table S2.1. These data capture over 210 000 transcribed regions at single-nucleotide
resolution (Figure 2.1D, Figure S2.3A-C, Supplementary Data 1 in ”’) and provide a comprehensive
view of the hamster transcriptome. The majority of these regions (n = 154 736) mark putative distal
regulatory elements (sometimes referred to as ‘enhancers’ for simplicity *) and unstable divergent
transcripts, two common hallmarks of mammalian gene expression 3%, as well as 3560 non-coding
RNAs (Figure 2.1D). Importantly for protein engineering, we focus on the detected TSSs that mark the
promoter or promoters of a cumulative 15 308 RefSeq protein-coding genes captured and their revised
promoter TSSs (Figure 2.1E, Supplementary Data 2 in ”’). Functional gene groups that were less covered
by our data include those associated with olfaction, taste, the male sex organ (testis), development and the
adaptive immune system (Figure S2.3D-E). Together, our experimental data provide accurate TSSs for
72% of annotated hamster protein-coding genes and 3034 non-coding RNAs. We additionally leverage
promoter TSSs predicted by a recent proteogenomics annotation 7 to detect and revise additional

promoters (Supplementary Data 3 in ”’).
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Realignment of NCBI Chinese hamster RefSeq TSSs exposes key features of transcription

Genome annotations are an essential part of many sequencing and bioinformatic analyses and
TSSs provide the foundation for accurate annotation of 5’ ends. We therefore tested the rigor of our
experimentally determined protein-coding TSSs and our revised annotation using a number of
independent measures. First, we evaluated the relationship of our revised TSSs to the Chinese hamster
RefSeq TSSs (GCF_003668045.1). TSSs called by either 5’GRO-seq or csRNA-seq displayed similar
distributions (Figure 2.2A). However, both experimentally determined TSSs displayed a clear offset from
the RefSeq annotation. A comparable offset was also observed for protein-coding TSSs measured in
diverse tissues (Figure 2.2B). To further explore these differences we next plotted the proximate DNA
nucleotide frequency distributions for both RefSeq and our revised TSS. Basal transcription factors often
bind core promoter elements to recruit and position the RNAP II transcription complex which
preferentially initiates on purines **°. These nucleotide preferences are clearly visible when analyzing the
human RefSeq (GRCh38) annotation and in our revised hamster annotation, but not in the current Chinese
hamster RefSeq annotation (Figure 2.2C). In addition to the increased information content in the
TSS-proximate nucleotide frequencies, the TATA box and Initiator (Inr) core promoter elements **%,

were found at the expected -30 and +1 bp positions respectively in the human RefSeq and in our revised

hamster annotations, but not the old RefSeq annotation (Figure 2.2D).
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Figure 2.2 An experimental realignment of TSS annotation for the
Chinese hamster uncovers expected genomic elements

A comparison of our TSSs to Chinese hamster RefSeq annotation
GCF _003668045.1 (A andB) Average normalized CPM around
protein-coding reference TSSs. (A) Comparison of experimentally
defined TSSs from CHO cells by 5'GRO-seq and csRNA-seq relative
to the RefSeq annotation. (B) Comparison of experimentally defined
TSSs from representative tissues relative to the RefSeq annotation. (C)
Nucleotide frequency plots of TSSs and their relative information
content in Human RefSeq, Chinese hamster RefSeq, and our revised
Chinese hamster annotation. (D) Frequency of positional core
promoter elements: the TATA box and the Initiator that are commonly
found at -30 and +1, relative to the TSS. (E) Frequency of distance
between revised TSSs observed and the nearest RefSeq TSS. (F)
Summary of total protein-coding and non-distal ncRNA TSSs
observed and their distances to RefSeq TSSs.
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Next, we utilized published epigenetic chromatin states from CHO samples ** which revealed a
striking enrichment of our revised TSSs in the ‘active promoter’ category, highlighting that our
experimental CHO dataset is consistent with prior published CHO chromatin states (Figure S2.4B). On
the contrary, both our revised promoter TSSs and the NCBI Refseq TSSs fell into more quiescent states,
suggesting these regions are near silenced CHO genes. Lastly, we integrated 1558 CHO RNA-seq
samples 3% to assess potential false positive and false negative TSSs in our revised annotation. Genes
where we failed to experimentally detect a TSS showed little to no expression across the CHO RNA-seq
datasets while those where we captured a CHO TSS were consistently expressed (Figure S2.5),

suggesting a low false discovery rate.

Overall, the distance of protein-coding TSSs to the nearest RefSeq TSS varied widely (Figure
2.2E), with a median distance of 158 bp (Figure 2.2F). Notably, RefSeq promoters (that represent
different transcript isoforms) with a detectable TSS were revised by a median of 54 bp, and 5552 of the
promoter TSSs were revised by >150 bp. When we look further at the smallest revision across the
promoter TSS’ of each gene, the median distance is 40 base pairs. Importantly, 13,037 were revised >10
bp, and 2607 >150 bp (Figure 2.2E-F). ncRNAs TSSs also varied, and had a median distance of 83 bp,
and 1,198 revised by >150 bp (Figure 2.2F). In summary, these observations provide an independent
validation for our revised annotation and stress the importance of experimental TSS data for accurate

genome annotations.

Tissue-specific TSS and gene expression patterns in the Chinese hamster

Capturing the protein-coding TSSs across tissues and cell lines revealed that about 1/3 of
annotated genes were ubiquitously expressed, while only a comparatively small number of genes were
tissue-specific (Figure 2.3A). Using ribosomal-depleted RNA-seq to measure the steady-state
transcriptome highlights the variation of gene expression across tissues (Figure 2.3B). The number of
genes with detected mRNA were 9596 and 9850 in bone marrow-derived macrophages (BMDMs, pooled
rested and stimulated conditions) and CHO cells, respectively. Meanwhile, the number spanned from
9782 genes with measured mRNA in the pancreas to 13,007 in the brain (Figure 2.3B). The number of
tissue-specific genes is related to the tissues' degree of specialization and the number of different cell
types found within the tissue, but also affected by high abundance transcripts that can hinder detection of

less abundant ones *’. In the pancreas, for example, much of transcription is directed towards expressing
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secretory enzymes such as chymotrypsinogen or carboxypeptidase *®, while in the brain, a higher diversity

of transcripts are expressed *'%°.
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Figure 2.3 Composition of diverse tissue-specific Chinese hamster transcriptomes

(A) Experimentally detected genes and the number of tissues wherein they were confidently
expressed, as defined by csRNA-seq and 5'GRO-seq. (B) Cumulative plot of the distribution of
transcript abundance as defined by RNA-seq in various tissues. The transcriptome of highly
specialized tissues such as the heart or the pancreas is more dominated by the high expression of a
small set of specific RNAs than those of complex tissues such as the brain. (C) Comparison of
gene expression distributions across tissues as defined by csRNA-seq and 5'GRO-seq. (D)
Tissue-specific gene enrichment analysis (TSEA) comparing the gene expression patterns of our
samples as defined by csRNA-seq and 5'GRO-seq to orthologous human pre-defined
tissue-specific genes. -loge (P-value) values are shown. (E andF) Motif analysis with Homer.
Significance of hypergeometric enrichment of the motifs shown as -loge (P-value). (E)
Transcription factor motifs (top 3 per sample) enriched in TSSs for each tissue highlight
conservation and factors involved in maintaining tissue-specific expression patterns. (F)
Transcription factor motifs enriched in all protein-coding gene-associated TSSs in the revised
TSS annotation.
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Of the genes for which TSSs were confidently detected, 40% were expressed in all 12 tissues or
cell types and another 19% were found in 11 samples. Approximately 8% of captured genes were unique
to a tissue or cell type which increased to 18% and 25% for genes expressed in <3 or <5 samples,
respectively (Figure 2.3C). The genes underlying these tissue-specific gene expression signatures in
hamsters at large resembled those of analogous human tissues, as determined by Tissue-Specific Gene
Enrichment Analysis (TSEA ', Figure 2.3D). Capturing the TSS of a given gene across multiple tissues
provided an additional control, in addition to our use of two distinct methods for TSS detection.
Nevertheless, for many conserved genes (in which at least one TSS was detected in each sample), the
respective promoters detected differed among tissues (Figure S2.6D). Additionally, within conserved
promoters, there were small but slight shifts of the called tissue TSS from the revised TSS annotation
(Figure S2.6E), together showing a remarkable diversity in 5" ends. This finding highlights regulatory

plasticity as a critical factor to maintain gene expression in distinct cell types.

To gain insights into the underlying regulatory program, we next probed the promoters of
tissue-specific genes’ promoters for differentially enriched transcription factor binding motifs. To do this,
we used Homer to scan for known motifs 300 bp upstream to 100 bp downstream of TSSs unique to a
sample (see Materials and Methods section). The top 3 enriched motifs from each sample and their
enrichment values are shown in Figure 2.3E. We found key regulators or lineage determining
transcription factors with preferential expression and binding sites for each tissue such as RFX factors for
the brain ', HNF1 '® and PPARa factors for the kidney and liver '®!% or the MADS-box transcription
factors Mef2b,c and d for the heart and muscle (Figure 2.3E) '’ Closely related tissues, such as
muscle and heart or liver and kidney, displayed a combination of shared and unique factors, which also
became apparent for other tissues when more motifs were integrated into the analysis. This observation is
in line with the hypothesis that tissue-specific regulatory pathways arise by tinkering with existing

pathways, rather than complete innovation %1%

of regulatory elements needed. On the other hand,
ubiquitously expressed genes were enriched for the binding motifs of strong, ubiquitous activators such as
SP2/KLF family members '"°, ETS factors or NFY (Figure 2.3F). Together, these findings argue that a
comparatively large fraction of genes, including ubiquitous transcription factors, ensure the cell's vital

core programs, while a smaller number of genes effectively facilitates specialization. Moreover, our
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identification of tissue-specific genes and transcription factors enriched in their promoters are consistent

with other mammals, further validating our revised TSSs and RNA-seq data.

Profiling diverse hamster tissues identifies TSSs for important, but silenced genes in CHO cells

While CHO cells are exceptional protein production hosts, many genes that could improve
product quality or quantity lay dormant. Indeed, about 50% of genes, including many that contribute to
important human post-translational modifications, are silent **. We detected TSSs for only 46% of all
protein-coding genes in CHO cells (Figure 2.1E). Integrating our TSSs from ten tissues and macrophages
! confidently defined TSSs from an additional 5458 protein-coding genes. In addition, we identified
alternative promoters responsible for transcript isoforms for 55% of the RefSeq annotated protein-coding
promoters (Figure S2.6C). Our revised TSS annotation provides multiple promoters per gene along with
additional promoters uncharacterized in RefSeq (Figure S2.6A-B). This isoform annotation is important
as it facilitates the tailored expression of protein isoforms that can exhibit differential activity or distinct
functions '"*!"3, This characterization of >15 k protein-coding genes and >20 k annotated promoters
provide the necessary foundation for ongoing efforts to optimize drug production in CHO cells through
engineered activation of dormant genes. Given that most protein therapeutics are glycosylated, and the
glycans can impact drug safety, efficacy and half-life "%, we next specifically investigated
glycosylation-related genes in the context of our updated annotation (Figure 2.4A). When examining
CHO homologues of curated human glycosylation enzymes, we detected dozens of TSSs across diverse
classes of glycosylation enzyme genes (Figure 2.4A). Together, these new annotations should open up

new possibilities for engineering gene expression programs, such as glycosylation in CHO cells.
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Figure 2.4 Experimentally measured TSSs facilitates genome
engineering to humanize glycosylation

(A) List of human glycosylation enzyme classes detected in our samples as
defined by 5'GRO-seq/csRNA-seq in the Chinese hamster. The number of
genes expressed in CHO cells (blue) and additional genes for which
experimental TSSs were discovered in our tissue samples (red) are shown.
(B) Overview of the RefSeq TSS targeted by guide RNAs with CRISPRa to
induce Mgat3 expression in CHO cells. The Mgat3-encoded
glycosyltransferase catalyzes the addition of bisecting N-acetylglucosamine
on glycoproteins, but is silenced in CHO cells. (C) Quantitative RT-PCR
measurement of Mgat3 expression in CHO cells and upon activation by the
three designed gRNAs using our new TSSs. As a control, the cells were
transfected with NT-gRNA (gRNA-Ctrl) or NT-gRNA and VPR-dCas9
(Cas9-Ctrl). (E) Comparison of the levels of bisecting N-acetylglucosamine
in secretome following CRISPRa. As a control, the cells were transfected
with NT-gRNA (gRNA-Ctrl). (E) Overview: Experimental TSS facilitates
efficient engineering of Mgat3 in an upstream promoter.
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TSS detected in upstream promoter facilitates CRISPR activation of the dormant gene Mgat3 in
CHO

To test the feasibility of genome engineering based on our revised annotations we aimed to

115

activate Mgat3 (Figure 2.4B), which is naturally dormant in CHO cells '~ using a novel identified

alternative promoter stable TSS that is 25,481 bp upstream of the promoter previously used for Mgat3

activation *7. Mgat3 is required for bisecting N-acetylglucosamines which play an important role in

116,117

regulating complex glycosylation maturation and impact antibody effector function and is hence

well studied in both humans and CHO cells.

CRISPR/Cas9 enables rapid and cost-effective genome editing, gene inhibition (CRISPRi), and
activation (CRISPRa) without altering the native DNA sequence **%, However, the success of these and
similar precise genome engineering approaches depends on accurate gene annotations **!'"®, Given that
Mgat3 has previously been targeted by CRISPRa *’, we used this experimental system to show that the
gene can be activated by targeting an experimentally identified promoter, even when located >25 kb away
from the RefSeq gene TSS. To activate Mgat3 we designed three CRISPR guide RNAs (gRNAs)
complementary to the DNA sequence near our alternative TSS (Figure 2.4C). CRISPRa resulted in a
mean of 94-,109-, and 64-fold upregulation of Mgat3 using the three different gRNAs individually (n =3
samples each), and 73-fold for a mixture of the 3, as measured by qRT-PCR (Figure 2.4D). To test if the
activation of Mgat3 transcripts impacts glycan synthesis, we measured the relative abundance of glycans
on the secretome. This analysis revealed that while undetectable in control cells, 1.08% of glycans were
bisecting N-acetylglucosamines after Mgat3 activation (Figure 2.4E). Together, these data show the use
of our revised annotation for genome engineering. With our newly reported TSSs for 15,308 genes across

>30 000 detected promoters, we anticipate further usage of these TSSs for cell line engineering.

2.5 Discussion

In this study we measured and analyzed the coding and non-coding RNA in the Chinese hamster
genome using steady state and nascent RNA sequencing experiments for diverse hamster tissues and cell

lines. Through this we were able to comprehensively map TSSs for >70% of annotated Chinese hamster
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genes and non-coding RNAs, including many genes normally silenced in CHO cells. Importantly, these
experimentally determined TSS enabled us to realign current RefSeq TSSs, which were predominantly
computationally predicted and often inaccurate. Unlike the previous RefSeq TSS, our revised TSSs
annotations display expected DNA nucleotide frequency features such as the Initiator motif or the TATA
box in the core promoter. Furthermore, we demonstrated that accurate TSSs and knowledge of alternative
promoters can be used to activate a silenced gene of interest using CRISPRa. Through this we present a

resource to guide genome editing and genomic analysis of CHO cells.

Here, we captured 30 760 nascent protein-coding TSSs corresponding to 15 308 genes, along
with 3560 ncRNAs (IncRNA, miRNA, snRNA, snoRNA and tRNA), and 176 914 distal peaks (enhancer
RNAs etc.). This resource provides rich information for precise cell engineering. Furthermore, including
diverse hamster tissues helps in efforts to fine tune existing CHO gene regulatory programs, as well as
activate genes or pathways naturally encoded in the Chinese hamster genome but dormant in CHO cells.
Our TSSs are a prerequisite for the design and testing of gRNAs and eventually, an effective gRNA
library for the activation of diverse Chinese hamster genes by CRISPRa (Figure 2.4F). It can also
complement existing data on epigenetic markers of CHO cells in efforts to find endogenous promoters
that avoid silencing seen with common viral promoters or harness endogenous regulatory circuits

involved in ER stress or cold shock .

Our transcriptomic datasets also provide a comprehensive resource for future research and
discovery. In addition to our gene-centric atlas of Chinese hamster TSSs reported here, our data cover a
plethora of transcriptomic features that remain to be explored including miRNAs, pri-miRNAs and well
over a 100 k putative distal regulatory elements that are commonly referred to as enhancers
(Supplementary Data 2 in ”’). Although beyond the focus of this manuscript, this extensive, transcript
stability-independent resource of TSSs could also aid to improve our understanding of how gene
expression is regulated in hamsters and how tissue-specific regulatory programs emerged. While a key
advantage of CRISPRa is the ability to activate desired genes independent of tissue-specific transcription
factors, future engineering efforts may be more tailored towards adjusting transcriptional programs, rather
than one or a few specific genes. For example, our definition of transcription factors that were highly
enriched in the promoters of tissue-specific genes provides a first step to advance our understanding of

which and why specific genes or pathways are silent in CHO cells. Improved knowledge of how gene
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regulatory networks function in hamsters may ultimately allow us to predict how activation of one gene
impacts the hamster regulome and to eventually fine-tune desired regulatory programs, rather than
individual genes '*°. Going beyond capturing TSSs, our data also contain maps of open chromatin, as
defined by ATAC-seq, nascent transcription, as defined by GRO-seq, and mature RNAs, as defined by
ribosomal RNA-depleted RNA-seq for CHO cells, hamster macrophages and diverse hamster tissues that
were primarily used in this study as a critical input for the identification of high-confidence TSSs. Our
data thus also provide a rich resource for future studies and enable the integration of the Chinese hamster

into comparative or evolutionary studies, for example, as an outgroup to mice .

In summary, our data have enabled the development of a compendium of experimentally defined
TSSs and transcriptomic features from multiple tissues and cell types from the same hamster colony from
which CHO cells were generated. Our revised annotation shows considerable improvement over the
current RefSeq by several measures including agreement with published RNA-seq datasets, TSS
information content as well as core promoter motifs. More broadly, these findings emphasize the
importance of refined TSS mapping methods such as 5'GRO-seq/GROcap or csRNA-seq for accurate
annotation of a gene’s 5" end. The TSS is a landmark in gene regulation and its accuracy becomes
imperative in an era of genetic engineering. We further envision that our data and annotation will provide
a rich resource for the CHO community and beyond as the Chinese hamster is further included in
comparative and evolutionary studies. At its core, the improved TSSs map will aid CHO gene engineering
efforts aiming to improve the quality and quantity of desired recombinant proteins and ultimately reduce

drug manufacturing costs.

2.6 Data Availability

All sequencing data are submitted to the Gene Expression Omnibus (GEO) with GEO ID
GSE159044. The Supplementary Data provided is also uploaded to Synapse (synapse.org), with ID
syn22969187. This includes our revised protein-coding promoter TSS annotation, in which each of TSS
has an associated RefSeq transcript and gene association. This is done for both NCBI RefSeq
(Supplementary Data 2 in ’") and with RefSeq in conjunction with the proteogenomics annotation
reported in ® (Supplementary Data 3 in 7). Open-chromatin regions merged across samples are provided

on synapse as a bed file as well.
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In addition, we release all our TSSs detected (Supplementary Data 1 in ”7), which include distal
TSSs (putative enhancer regions, divergent transcripts), as well as non-coding RNA promoter TSSs and
protein-coding TSSs, along with the CPM from each tissue per TSS and the respective TSS locations of

the tissue if it expressed that TSS. This will allow researchers studying regulatory elements to have easy

access to a comprehensive TSS dataset.
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Figure S2.1 Computational workflow for TSS annotation
(A) Bioinformatics pipeline for promoter TSS annotation. This shows the steps required along with
the commands used to run these steps. (B) Scheme of transcription start site identification for
csRNA-seq, and how stable TSSs are called.
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Figure S2.2 TSS similarity across experiments

(A) Density plot of the distance between peaks in different CHO replicates relative to a
CHO GROcap sample B. CHO csRNA and GROcap sample A are shown nearby. (B)
Number of overlapping total TSSs across all CHO replicates. (C) Density scatterplot of
CHO replicates. Values are in log2 CPM. Left: CHO GRO-cap A vs csRNA-seq (pearson
r=0.88, p-value < 0.001) Right: CHO GRO-cap replicates. (r=0.96, p-value < 0.001).
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Figure S2.3. TSS sequencing highlights diversity of regions captured.

(A) IGV browser shots from Eukaryotic Translation Elongation Factor 1 Alpha 1Gene and (B) promoter. (C) IGV
browser shot of the Sp1 “super enhancer”. (D) Enriched pathways using DAVID and gene ontology using Metascape
(E) of genes for which TSSs were not detected in our samples.
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Figure S2.4. Epigenetic characterization of protein-coding experimental TSSs.

(A) ATAC-Seq pileup over TSS regions. Values are -log10 p-value of the base pair being in
open-chromatin. Top: Histogram of a CHO ATAC-Seq sample using all revised protein-coding TSSs
that were expressed in CHO. Bottom: The same regions, in heatmap form, where each row is a revised
TSS. (B) Overlap of protein-coding TSS with chromatin modifications: our experi- mental CHO TSSs,
our updated annotation (all protein-coding revised TSSs) and the RefSeq TSSs grouped by chromatin
state made using chromHMM with histone marks from CHO in Feichtinger et al. 2016.
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Figure S2.5. Detected TSSs found in expressed CHO genes.

Violin plots of gene expression in CHO cells, grouped based on
experimental TSS findings. 1,558 RNA-seq samples were used across
different CHO cell lines and experiments. Expression is increased in
genes where there are TSSs.
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based on integrating the tissue TSSs, and the initial tissue TSSs in the same promoter region in conserved promoters
(each tissue having a detected TSS in the promoter).
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Table S2.1 Samples and sequencing experiments in the Chinese hamster and CHO cells

Biological Source 5'GRO-seq GRO-seq csRNA-Seq sRNA-seq ATAC-seq RNA-seq
CHO K1 2 2 1 1 2 0
Bone-marrow derived

macrophages (BMDMs) 1 1 0 0 2 0
BMDMs with 1h Kdo2-

Lipid A (KLA) 1 1 0 0 2 0
Brain 1 1 2 1 1 2
Heart 0 0 2 1 1 1
Kidney 1 1 2 1 1 1
Liver 1 1 2 1 1 1
Lung 1 1 2 1 1 1
Mixed Tissues 0 0 2 1 0 1
Muscle 0 0 2 1 0 1
Pancreas 0 0 2 1 0 1
Reproductive Tract 0 0 2 1 0 1
Spleen 0 0 2 1 1 1
Sum 8 8 21 11 12 11

Table S2.2 Mgat3 gRNA target sequences

Mgat3

gRNA_1
gRNA_2
gRNA_3

Target sequence

CTAGCTCTAGAAGCCGTCTTGG
ATATCAAACTCCCACTAGCAGG
TAAAGTCCAAGCATGCTAGAGG

Table S2.3 Mgat3 gRNA sequences

Name

CHOoptPICR_Mgat3_gRNA1_Fwd
CHOoptPICR_Mgat3_gRNA2_Fwd
CHOoptPICR_Mgat3_gRNA3_Fwd
CHOoptPICR_Mgat3_gRNA1_Rev
CHOoptPICR_Mgat3_gRNA2_Rev
CHOoptPICR_Mgat3_gRNA3_Rev

oligo
GGAAAGGACGAAACACCGCTAGCTCTAGAAGCCGTCTGTTTTAGAGCTAGAAAT
GGAAAGGACGAAACACCGATATCAAACTCCCACTAGCGTTTTAGAGCTAGAAAT
GGAAAGGACGAAACACCGTAAAGTCCAAGCATGCTAGGTTTTAGAGCTAGAAAT
CTAAAACAGACGGCTTCTAGAGCTAGCGGTGTTTCGTCCTTTCCACAAGATAT
CTAAAACGCTAGTGGGAGTTTGATATCGGTGTTTCGTCCTTTCCACAAGATAT
CTAAAACCTAGCATGCTTGGACTTTACGGTGTTTCGTCCTTTCCACAAGATAT
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Table S2.4 CHO RNA-seq
Accession IDs for data in Figure
S2.5
Public RNA-seq CHO data that
was used for Supplementary
Figures, in addition to
unpublished CHO datasets.
ERR359637
ERR359638
ERR366009
ERR366010
SRR035274
SRR035275
SRR035276
SRR035277
SRR035278
SRR035279
SRR035280
SRR035281
SRR035282
SRR035283
SRR035284
SRR035285
SRR950107
SRR950108
SRR950109
SRR1516214
SRR1516215
SRR1516216
SRR1516217
SRR2922597
SRR2922598
SRR2922599
SRR2922600
SRR2922601
SRR2922602
SRR2922603
SRR2922604
SRR2922605
SRR2922606
SRR3401745
SRR3401746
SRR3401747
SRR3401748
SRR3401749
SRR3401750
SRR3401751
SRR3401752
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3.1 Abstract

The biased commitment of hematopoietic stem cells (HSC) to myeloid, erythroid, and lymphoid
lineages is influenced by cell-intrinsic and epigenetic differences in the HSC population. To investigate
the nature of lineage commitment bias in human HSC, we use mitochondrial single cell (sc)
RNA-Sequencing (mt-scATAC-Seq) which exploits somatic mutations in mitochondrial DNA, acting as
natural barcodes, to track the ex vivo differentiation potential of HSC to myeloid and erythroid cells.
Clonal lineages of human CD34+ cells and their mature progeny were normally distributed across the
hematopoietic lineage tree without evidence of significant skewing. These data suggest that the variation

in stem cell lineage commitment is restricted in normal bone-marrow hematopoiesis.
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3.2 Introduction

Hematopoietic stem cells (HSCs) are classically considered to have the capacity for complete
regeneration of the hematopoietic compartment. More recent analyses indicate additional complexity and
heterogeneity in the HSC compartment, with lineage-restricted or lineage-biased HSCs considered a
feature of mammalian hematopoiesis '*'""**. In humans, bone-marrow CD34+ cells were discovered to
contain both stem and progenitor cells (HSPCs) with different lineage differentiation capabilities '*>'37,
including long-term HSCs (LT-HSCs), which can re-populate the required downstream lineages but who’s
heterogeneity in self-renewal and differentiation capabilities are still being uncovered. Understanding the
hematopoietic capacity in HSC ‘clones’ (cells related to the same HSC) in the BM and other adult tissues
requires precise delineation of differentiation trajectories from stem cells to mature cells at single-cell
resolution. Clonal relationships between HSPC and mature hematopoictic lineages have also been
explored using inducible DNA “barcoding” methodologies during embryogenesis or postnatal life, or
upon the transplantation of virally-transduced barcoded single HSCs to lethally-irradiated or
hemo-ablated adult murine or NHP recipients ** '**. In humans, however, in vivo clonal-barcoding has
been limited to xenograft transplantation, cancer clonality, and integration site tracking of gene-edited
HSPCs in patients receiving gene-therapy '*'*. The identification of cell surface markers that are
enriched in specific subsets of HSPCs has enabled the prospective isolation of HSPC subpopulations for
cellular and biochemical analysis ex vivo, and for precise cellular tracking of HSC and their progeny in
transplanted mice. In mice and humans, next generation sequencing (NGS) and gene expression analyses
have identified differentially expressed surface receptor genes modulated within the LT-HSC and
downstream multipotent progenitor (MPP) populations, and enabled development of antibodies for

purification and phenotypic analysis '**'5!

, although numerous distinct definitions still currently exist for
them. More recently, HSPC subtypes have been assigned using single-cell NGS that measures a cell’s

transcriptome or epigenome. Coupled with computational lineage-tracing techniques > these

methods have revealed overlapping subtypes as FACS-based methods, but with additional diversity and

44


https://paperpile.com/c/GUGQPJ/GUY4v+pYUZT+bM9pH+65Z87+q3Qc6+ybDX6+qUgpI+CJUd2+rfZSW+XU9cE+5NKVh+5YzUi+Ue78J+ediba
https://paperpile.com/c/GUGQPJ/pqUrc+2Vfh3+V1GRD
https://paperpile.com/c/GUGQPJ/PH9Vg+mdT6R+DFkR7+vtylA+6YDyT+dRnnK+4PYKP
https://paperpile.com/c/GUGQPJ/bX6YP+y6soy+CIStB
https://paperpile.com/c/GUGQPJ/k9Nit+Cxkwh+Pw8tv+vlHJQ
https://paperpile.com/c/GUGQPJ/DDyVA+bIG2A+Tslwq+1hzhO

characterization. However, these studies infer cell lineage trajectories using computational trajectory
inference and dimensionality reduction methods, which assumes a direct coupling of the transcriptome or
epigenome to cell clonality **.

Tracking related cells in humans in vivo and ex vivo is limited due to the inability to add genetic
barcodes or transplantation in healthy humans. Detecting clones in intact cells is sometimes done using
their somatic mutation similarities, but this suffers from low mutation rate and coverage. Recently,
Ludwig et al. '** reported that mitochondrial somatic mutations can be used as natural barcodes to track
single-cells, and a later protocol deemed deemed mitochondrial single-cell ATAC-seq (mt-scATAC-seq)
was developed that simultaneously measures mitochondrial (MT) DNA and nuclear open-chromatin
regions in single cells '°°. Using mitochondrial variants to track clones is advantageous due to the MT
genome having a high per-cell copy-number, a smaller genome, a higher mutation rate than the nuclear
genome, and factors such as random genetic drift and relaxed replication allow the genome to reach
higher heteroplasmic proportion (fraction of MT copies with a variant) '*>°"%° Additionally, lineage bias
of HSPC progenitors can be assessed using the detected lineage markers in the open-chromatin regions of
the nuclear genome.

Here we report on inherent HSC lineage bias potential in steady-state and cultured HSPC CD34+
cells’ lineage potential using mt-scATAC-seq. We find heterogeneity in HSPC clonal sizes, with a few
larger clones making up a large fraction of the population. Lineage markers, as determined using the
open-chromatin epigenome, were assigned to cells, and limited differences in lineage bias across the
HSPC clones. Overall, our data supports a model of hematopoiesis where HSC drives multi-lineage

reconstitution of mammalian hematopoiesis without substantial lineage bias.
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3.3 Results

3.3.1 mt-scATAC-seq defines clonal lineages in mobilized human CD34+ cells

To study differentiation of primary human CD34+ cells to committed myeloid and erythroid cells,
we purified G-CSF-mobilized CD34+ cells from healthy donors, and cultured them for 72 hours in the
presence of a cytokine cocktail made of SCF/IL-3/IL-6/F1t3L/G-CSF/GM-CSF. Donor CD34+ cells were
multiplexed in three batch experiments for single cell capture and library preparation before or after
culture (Figure 3.1A, Table S3.1, see Methods). Cells from eight healthy donors were analyzed in total,
and Donors 1-4 contained verified mutations associated with clonal haematopoiesis of indeterminate
potential ', We utilized mitochondrial DNA somatic mutations that were defined by scATAC-Seq to
generate lineage-specific ‘natural’ barcodes, which were inherited by clones that originated from one
single CD34+ cell to delineate clonality of these CD34+ stem cells and their progeny. In parallel, the
lower-coverage reads in nuclear open-chromatin regions were used for assigning cell lineages by
assessment of differential peaks in gene regulatory regions. These techniques allowed us to track the fate
of these CD34+ HSPCs to assess their lineage potential at single cell level. This modified protocol
exploits a fixation step and a modified permeabilization protocol to retain mitochondria in cells for
subsequent capture and library preparation (see Methods, and '*°). Compared to scRNA-Seq with custom
amplification of mitochondrial reads, this method achieves near complete coverage of the mitochondrial
genome for optimal variant calling and cellular ‘barcoding”. Examination of single cell coverage across
each mitochondrial DNA position in different donors yielded consistent high-level coverage of greater
than 50x-100x in a minimum of 1000 cells (Figure 3.1B-C and Figure S3.1A). Although there was
variable read coverage across sequencing runs, uniform coverage across the MT genome was observed
(Figure 3.1B). Low-quality cells and MT alleles with low coverage and base-quality were filtered, and
then additional variants were excluded using the Mitochondrial Genome Analysis Toolkit (MGATK) ',
which removes variants with a low correlation of allelic reads across strands and a low variance-mean

ratio (Figure 3.S1B, see Methods). To de-multiplex each donor across conditions we used the Vireo
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algorithm on germline MT variants (Figure 3.S2, see Methods). The donor predicted variant
allele-frequency (VAF) revealed up to 28 (Figure S3.2B,E, Table S3.2) variants of high mean VAF (mean
>0.7 in donor, <0.1 in others), highlighting many donor-specific variants, primarily transition mutations
(Figure S3.2C). Performance was assessed by varying the number of donors and calculating the model
loss, and the ‘elbow rule’ finds that the true number of donors is the inflection point in which performance
gain is reduced with additional donors added to the model (Figure S3.2D). More donors did lead to lower
recovery of donor specific variants (Figure S3.2E), which is possibly due to having less unique variants

across more donors, but was still able to separate the donors confidently.
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Figure 3.1 mt-scATAC-seq defines clonal lineages in mobilized human CD34+ cells

(A) Overview of mitochondrial mt-scATAC-seq workflow (B) Coverage across MT genome in single-cells across
sequencing experiments. Black line is the mean at each position (C) Number of MT positions covered across a
range of cells and coverage thresholds in the S1 input sample
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3.3.2 Single CD34+ stem cells expand into clones of variable sizes identified by mitochondrial
variants

Clone assignment is critical to track the fate of CD34+ stem cells at the single cell level. In
addition to the separation of donors using donor-specific germline variants, we used somatic MT variants
to facilitate clone assignment in human CD34+ cells pre- and post- cytokine-driven differentiation at 72
hours of ex vivo culture. To achieve this goal, we used a previously reported approach '** and detected
clones using a community-based k-nearest neighbors (KNN) clustering algorithm on VAFs across
single-cells. After removing clones with fewer than 5 cells, we detected 26-50 clones per donor (Table
3.1). We find that a few clones make up majority of the population in donor 1 (Figure 3.2A, Table 3.1),
with 25% of the clones making up 50% of the number of cells in the HSPC pool, followed by longer tail
of small clones, with 77.7% making up 90%. Interestingly, no clone in Donor 1 appeared to be
preferentially expanded in culture (Figure 3.2B), suggesting that both large and small clones are actively
contributing to hematopoiesis. Similar clone size heterogeneity was seen across donors (Table 3.1, Figure
3.2E), although the donors that were sequenced after culture appeared to have larger clones make up a
larger fraction of their population (donors 5-8, Figure 3.2E). This could be in part due to some clones
preferentially expanding in culture that was not observed in donor 1 and donor 2 due to lower number of
cells detected (Table S3.1). The clones detected had a range of distinct MT variants that separated those
cells from the other clones (Figure 3.2C, Figure 3.2D). However, as the MT genome is heteroplasmic,
clone assignment was based on VAF rather than binary variant calls. Indeed, cells in clones were
distinguished across a range of VAF (Figure S3.3). Interestingly, we noticed that some variants were
shared across clones, seen in variant 5581G (i.e. allele G at position 5581 of the MT genome) (Figure
3.2D). These variants shared across clones are predicted to have arisen from a common ancestral stem
cell. We note that variant loss is also possible, as clones ‘D1.30” (numbered by size) and “D1.32 in donor
1 share barcode 14233G but clone '“D1.32’ is missing 5581G. We also compared different variant-calling
and clone-detection workflows (see Methods), and find a high concordance of cell pair clonal

relationships observed across parameters (Figure S3.4A-B), but we did find lower performance when the
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number of nearest neighbors in the KNN algorithm was low (resulting in larger, more sparse clusters),
leading to lower consistency in clones detected when re-running the method in subsampled cells (Figure

S3.4C, see Methods).
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Figure 3.2 Single CD34+ stem cells expand into clones of variable sizes identified by
mitochondrial variants

(A-D) Clones detected in donor 1 (A) Number of cells in each clone, colored by condition. (B)
Scatterplot of number of cells across input and cultured cells. Pearson correlation r and p-value
shown. (C) Barcodes detected in representative clones. In blue is the percent of cells with the
barcode in the clone, and in orange is the percent in cells outside of the clone, shown for the top
distinguishing barcodes for each clone. (D) Average VAF of each variant in each clone. Max
cut-off at 0.2. Variant types shown for each variant and number of cells for each clone. (E)
Cumulative distribution of the number of cells captured with increasing number of clones, sorted
by largest to smallest, across all donors
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Table 3.1 Clonal detection of human CD34+ BM cells using MT variants across 8 donors

Number of cells in clone Number of nuclear peaks Number of cells in clone
(fraction of donor)

Number of mean +/- std median | max mean +/- std median max = mean +/- std = median = max
clones
Donor

Donor 1 36 101.61 +/- 79.23 73 429 5612.50 +/- 355.74 5611 6406 0.03 +/- 0.02 0.02 0.12
Donor 2 26 100.85 +/-70.69 97.5 | 317 5405.59 +/- 531.32 5389 7457 0.04 +/-0.03 0.04 0.12
Donor 3 34 38.62 +/- 24.36 41 91  3095.06 +/- 644.63 = 3020 5184 0.03 +/-0.02 0.03 0.07
Donor 4 27 76.11 +/- 48.80 62 247 | 3216.47 +/- 366.80 3154 3892 0.04 +/-0.02 0.03 0.12
Donor 5 33 63.39 +/- 74.85 26 264  3016.17 +/-517.84 3042 3895 0.03 +/-0.04 0.01 0.13
Donor 6 35 56.63 +/- 52.50 40 193  3324.59 +/- 492.69 3352 4498 0.03 +/-0.03 0.02 0.1
Donor 7 1 30.68 +/- 40.60 10 213  3029.99 +/- 567.27 2948 4437 0.02 +/- 0.03 0.01 0.17
Donor 8 50 35.58 +/- 39.73 23 180 2401.89 +/- 573.19 2281 3902 0.02 +/-0.02 0.01 0.1

3.3.3 mt-scATAC-seq identifies variable cell lineages in human CD34+ stem cell ex vivo culture
After we successfully identified the clonal lineage of CD34+ human HSPCs in each multiplexed
donor using the mitochondrial open-chromatin captured by mt-scATAC-seq, we then used the nuclear
genomic open-chromatin that was captured from the same experiments to identify active genomic loci to
assign cell lineage therefore address the differentiation potential of each CD34+ cell. To achieve this goal,
nuclear open-chromatin reads were processed using conventional scATAC-Seq tools, enabling dimension
reduction and cell clustering. Quality control of experiments showed a comparable number of detected
peaks across experiments (Figure S3.5). Focusing on the two donors that had both steady-state and
cultured for 72 hours, we used the Signac protocol to integrate sample data, preprocess, and binarize data
from cells (see Methods). These cells were embedded into a 2D map using uniform manifold
approximation & projection (UMAP) and clustered. We identified 12 populations in the CD34+ cells
before- and after- 72h cell culture based on analysis of the gene activity scores in exonic and promoter
regions that were demonstrated to be critical for each cell lineage (Figure 3.3, Table S3.3). As peaks were
also found in intergenic and other non-coding regions (Figure S3.5D), we confirmed markers using

1

ChromVar transcription factor (TF) activity ' as well, based on the TF motifs detected in a cell’s

open-chromatin peaks. We found that in different clusters gene activity scores are enriched at regions that
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regulate the differentiation of HSPCs towards unique blood cell lineages, indicating the lineage-fate of
each cluster of these ex vivo cultured CD34+ human HSPCs (Figure 3.3C). Among these clusters, 4
clusters display high KIT activity suggesting they are HSPC subsets. The trajectory of SPI1 activity from
these clusters towards other clusters supports this annotation. The enrichment of CPOX/ANK1 identifies
a megakaryocyte progenitor (MkP) cluster. Elevated activity at HBB/HBG2 suggests 1 cluster with
erythrocyte potential. The combination of SPI1, FLT3, ATP8B4 suggests myeloid lineage potential in
several clusters and these 5 clusters could then be further identified as monocytes, neutrophils, other
granulocytes, and pDC based on analysis in gene regions shown in Figure 3C. Notably there is 1 cluster
that displays pre-B phenotype, and was lost in post-culture samples (Figure 3.3B). Analysis of TF
activities between clusters using chromVAR '®! supports the cell lineage assignment in each cluster
(Figure 3.3D). We additionally ran the same pipeline by integrating cells across all 8 donors (Figure
S3.6A), found similar UMAP lineages, and found cultured cells more represented in downstream
progenitor lineages (Figure S3.6B-D). The number of peaks detected across the UMAP was similar,
although it was elevated in the detected pDC lineage (Figure S3.5C). Additionally, we found multiple
clusters of similar type, such as two neutrophil clusters, that were not able to be resolved (Figure 3.5A).
To validate the results of mt-scATAC-seq we performed flow cytometry in parallel. Dimension
reduction and automated clustering were performed on human CD34+ cells before- and after- 72h culture
based on surface protein expression levels of HSPC markers CD34/CD117 (c-Kit), lymphoid lineage
markers CD3/CD19/CD56, granulocyte lineage markers CD66b/FceRla/Siglec8, monocyte lineage
markers CD14/CD16/CD86/CD11¢c, and additional developmental and maturation markers
CD45/CD10/CD101/CD11b/HLA-DR. The result revealed high consistency with the mt-scATAC-seq that
13 clusters were identified including 4 HSPC subsets, 1 granulocyte-like cluster, 1 classical monocyte
cluster, 1 non-classical monocyte cluster, 1 pre-B and 1 pDC cluster, 1 additional CD34+ cluster and 3
CD34- clusters (Figure S3.7). Similar to the mt-scATAC-seq results, the single pre-B and single pDC
clusters disappeared after 72h cell culture, suggesting that these two populations may be a result of

cross-contamination from the CD34+ cell sorting and undergo cell death in the ex vivo culture. On the
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other hand, the frequency of these clusters identified by mt-scATAC-seq and flow cytometry are highly
consistent (Figure 3.3F), suggesting the results from mt-scATAC-seq are valid. These results together,
demonstrate that the CD34+ cells that were enriched from mobilized human blood consist of
heterogeneous HSPC populations, and may differentiate into variable lineages of cells ex vivo in the

presence of the cytokine cocktail made of SCF/IL-3/IL-6/F1t3L/G-CSF/GM-CSF. (Figure 3.3B).
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Figure 3.3 mt-scATAC-seq identifies variable cell lineages in human CD34+ stem cell
steady-state and in ex vivo culture

2D UMAP embedding of single-cells in sequencing run S1 (2 donors) using nuclear
ATAC-seq regions (A) UMAP of single-cells, with each cell colored by cluster labels, and
manual HSPC type annotation overlaid on UMAP (B) UMAP split by conditions and
colored by assigned cluster labels. (C-D) Lineage markers used to inform annotation (C)
Gene activity scores for select markers overlaid on UMAP (D) Transcription factor activity
scores for select markers
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3.3.4 mt-scATAC-seq reveals minimum lineage-bias in steady-state and ex vivo differentiation of
human CD34+ cells

We next looked to evaluate the multipotency of these clones and assess their lineage-bias by
mt-scATAC-seq. When overlaying cells from clones on the UMAP using the donors in input and culture
(Figure 3.4A), and analyzing their distribution (Figure 3.4C), clones appeared randomly clustered with
negligible evidence of lineage bias. Interestingly, while we detected variation in clone size within each
cluster, most sizes are within a similar range. We tested if any clone was biased to certain HSPC clusters
using a hypergeometric test on clone sizes in the input condition (see Methods). We found no biased
clones in donor 1, but 4 clone-cluster pairs significant in donor 2. Clone ‘D2.22” is significant in both
pDC and pre-B annotated cells, clone ‘D2.11” in granulocytes, and ‘D2.17’ in the HSPC 4 cluster
(Benjamini-Hochberg adjusted p-value < 0.1). These were smaller clusters, but were not the only clones
exclusively having these cells (Figure 3.4B). However, as mentioned earlier, the pDC and B-cells were
not found in the ex vivo differentiated condition (Figure 3.3C). We also compared clone lineage bias from
the clusters found across all donors (Figure 3.5). We looked to assess lineage bias in each clone using the
entropy metric (see Methods), which measures how much information is conveyed in a distribution-if a
clone is biased to one clone, it will have lower entropy. We see little variability across clone entropy, and
the lower entropy clones were smaller (Figure 3.5C). We then examined the lineage proportions in each
clone, and found that this varied widely across lineages (Figure 3.5D). Mainly, most clones were found in
the first two HSPC clusters and a sizable fraction in the MkP population. However, the variation across
clones within each lineage was smaller within each lineage compared to between them (Figure 3.5D).
This was also measured across all donors using entropy in each lineage, converting the clonal counts into
probability distributions for each lineage. (see Methods). Most donors shared similar entropy values,
although Donors 5-8, which underwent ex vivo culture, had lower entropy in lymphoid based clusters
(Figure 3.5D). While the majority of clones showed no skewing across clusters, we also determined if the
resolution of clone detection influenced these data. To do this, we examined individual MT variant

barcodes across the HSPC clusters and were unable to find significant biases across the clusters in donor 1
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and donor 2 (Figure S3.8). Together, our data suggests that detectable HSPC clones have multi-potent

capacity contributing to hematopoiesis in humans.
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Figure 3.4. mt-scATAC-seq reveals minimum lineage-bias in the ex vivo differentiation of human CD34+ cells
Left: donor Donor 1, Right: Donor 2 (A) Cells in representative clone in each donor embedded in UMAP (B-D)
Lineage fates of cells in input (B) Raw cell counts in each clone, colored by lineage cluster (C) Percent of immune
lineage clusters across each clone for donors. Boxed values are significant (p<0.1) according to hypergeometric and
non-parametric tests. (D) Percent of lineage in a clone, across all clones. (E) Same as (B), but for cells in 72 hour
culture. Legend is the same as (B).
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Figure 3.5. Minimum lineage-bias in human CD34+ HSPC clones across all donors

(A) Distribution of cells on UMAP, colored by annotated cluster labels (B) Proportion of cells across HSPC clusters
in each donor (C) Entropy of lineage fate in each clone, sorted by rank within each donor. Same color legend as in
(b) (D) Entropy of clonal bias in each lineage for each donor. Same color legend as in (B). Black line is maximum
entropy possible given the maximum number of clones observe across donors.
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3.4 Discussion

Here we report on tracking clonal HSPCs and their lineage commitment potential in humans and
mice using cutting-edge NGS tools and innovative approaches. We provide evidence that CD34+ clones
can proliferate and differentiate towards myeloid, lymphoid, and erythroid lineages without substantial
variation across HSC clones. In humans, mt-scATAC-seq can be used to simultaneously track MT
variants and open-chromatin regions in single-cells. Clones in the input CD34+ fraction are distributed
diversely by ATAC—-Seq signature, and differentiate to diverse lineages upon culture, suggesting that the
MT variants found in clonal lineages are being inherited from a LT-HSC, and not from lineage-restricted
progenitor cells. Longer term culture may enable dominant outgrowth of specific lineages and mask the
true potential of CD34+ clonal lineages to generate diverse hematopoietic cell types '*. These data are
consistent with flow cytometric analysis of cultured cells over 72h. In total, we find little evidence of bias
in lineage commitment in mobilized primary human peripheral blood CD34+ cells and in 72-hour

cytokine culture ex vivo.

The methodology in this report also provides an opportunity to enhance the study of human
HSPC ex vivo and in vivo. The study of genetic and biochemical regulators of HSC proliferation and
differentiation can be explored using diverse methodology including clonal culture assays, single cell
transcriptomics and epigenomics, and in vivo differentiation and function '2, The effects of hematopoietic
growth factors, inflammatory cytokines and pathogen-derived molecules on gene expression, cell
function, and engraftment, can also be explored with higher resolution and confidence in the cell type in
question. Barcoding and transplantation techniques provide excellent clone-detection methods, however
the cellular and immune response to these editing techniques can introduce confounding effects that
require consideration in experimental and therapeutic design, a factor that is avoided using naturally

155,156,163,164

occurring mitochondrial DNA barcodes . mt-scATAC-seq allows for clonal detection of intact
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cells using MT barcodes as somatic mutations. We were able to multiplex donors by adopting a method to
computationally separate donors using MT somatic mutations. As with all barcoding strategies, the
limitations of our study include the sensitivity of the number of clones detected to coverage. Smaller
clones may go undetected if they are present in low frequencies, and those may exhibit bias. However,
prior studies have suggested those are not significant contributors to haematopoiesis at the time of
sampling. Our ability to observe multipotent clones across conditions in high and low cell numbers
suggest this impact is limited with this method. Single-cell NGS has allowed for rapidly advancing
characterization of lineage subtypes '**13*1971% This experiment also enables the assignment of lineage
subtypes using nuclear chromatin accessibility at gene promoters, and is corroborated by flow cytometric

analysis. These findings argue against substantial lineage bias in hematopoietic stem cells in humans.

3.5 Methods

Human primary cells samples

Cryopreserved CD34 + hematopoietic stem and progenitor cells were obtained from an industrial
partner (Donors 1-4, Donors A-D for FACS sorting) or StemCell Technologies (Donors 5-8). The
industrial partner samples contained healthy donors aged 51-64 with verified mutations associated with
clonal hematopoiesis of indeterminate potential (CHIP) '®°. Samples, where applicable, were cultured for
72 hours in a cytokine culture consisting of SCF/IL-3/IL-6/FIt3L/G-CSF/GM-CSF. The CD34 + samples

were de-identified and processed in both the mtscATAC-seq library preparation and FACS sorting.

mtscATAC-seq library preparation

mt-scATAC-seq libraries were generated by adapting the 10X Genomics protocol for single cell
ATAC seq, according to modifications made by Lareau et al. '*°. This modified protocol exploits a fixation
step and a modified permeabilization protocol to retain mitochondria in cells for subsequent capture and

library preparation (Figure 3.1A). Whole cells were retained following an adapted protocol of 10X
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Genomics Single-cell ATAC-seq *°. Digitonin and Tween 20 were omitted in the lysis and wash buffers
to generate a higher retention of mitochondrial DNA fragments per single cell. Cells were also fixed in
1% Formaldehyde to decrease the chance of mitochondrial DNA fragments from cross contaminating
upon lysis. Compared to scRNA-Seq with custom amplification of mitochondrial reads, this method
achieves near complete coverage of the mitochondrial genome for optimal variant calling and cellular

‘barcoding”.

Each patient sample was counted using a hemocytometer as well as a (insert Tali counter name).
Whole cells were obtained by following the demonstrated protocol Nuclei Isolation for Single Cell ATAC
sequencing (CG000169) with modifications made by Lareau et al. and as stated here. Once samples were
thawed from liquid nitrogen according to common practice. Patient samples were fixed for 10 min at
room temperature in 1% Formaldehyde or 1% Paraformaldehyde in PBS, subsequently glycine was added
at a concentration of 0.125 M to quench the reaction. Cells were then washed twice in PBS in a low
binding Eppendorf tube and centrifuged for 5 min at 400g in 4C then recounted utilizing the same method
as before. Samples were then multiplexed by taking the same amount of cells per patient sample to get a
total number of cells above 100,000 to account for any cell loss. If the cell count total for all patient
samples was going to be less than 100,000 after pooling the cells, we followed the “Low Cell Input
Nuclei Isolation” in the appendix. Whole cells were then retained by removing Tween 20 and Digitonin
from the wash and lysis buffer as done by Lareau et al. Note that the samples were incubated in lysis
buffer for exactly 3 min on ice prior to washing. After centrifugation of sample at 500 rcf for 5 min, the
cell supernatant was discarded and the cell pellet was resuspended in a calculated volume of 1X Diluted
Nuclei buffer—The calculated volume corresponding to the previous cell concentration count obtained.
Cells were counted a final time and then processed according to the Chromium Single Cell ATAC
Solution user guide using the Chromium Next GEM Single Cell ATAC Library Kit, Chromium Next

GEM Single Cell ATAC Gel Bead Kit, Chromium Next GEM Chip H Single Cell Kit, and Single Index
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Kit N Set A. Lastly, quality control (QC) tests were run on each library prep using Agilent TapeStation

High Sensitivity D1000 (Agilent) and Qubit dsDNA HS Assay kit (Invitrogen) prior to sequencing.

Processing of mt-scATAC-seq sequencing fragments

Processing of mt-scATAC-seq reads was performed similarly to '*°. Briefly, fastq files were
aligned using cellranger-atac v6.1.1 to the hg38 genome. We used the blacklisted genome from *° by
hard-masking nuclear regions that align to the MT with single bp errors. Cell barcodes and

open-chromatin peaks were called and filtered using cellranger.

Variant calling in the MT genome

We filtered cells with less than 200 bps in the MT genome and removed fragment duplicates. The
coverage for those cells are shown in Figure 3.1B. After, we filtered for cells and positions with high
quality. Specifically, we removed positions with less than ten cells with at least 50x coverage, and with
less than 10 cells having 5x coverage of a putative variant at that position. Additionally, the cells required
an average Phred base quality score (BQ) of over 20 at the putative variant. After this, we use MGATK
filters, which remove variants with low strand concordance and low variance-mean ratio for each variant
across all cells in a sample. The thresholds used were the same as in the original paper, with concordance

of 0.65 and log 10 variance-mean ratio of -2.

Separating multiplexed donor cells

To separate donors from the same sequencing run, we use the algorithm Vireo ', which is a
variational bayesian inference algorithm that reconstructs each donor's allele frequency profile (the
donor’s mean AF is the latent variable) and assigns a probability of each cell to that donor. Any cell with
less than 0.9 probability to be assigned to a clone is removed. The algorithm also assigns a ‘doublet’

probability for each cell, which is the likelihood of the cell being part of multiple donors versus one. Cells
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with more than 0.1 probability of a doublet were also removed. To ensure the donors we called were
correct, we varied the number of donors in Vireo +/- 2 from the true number of donors. The model’s

reconstruction error is saved for each, and the ‘elbow rule’ is used, which finds the error’s inflection
point upon increasing the number of donors. Donor specific homozygous variants were calculated as

having a mean AF greater than 0.9 In all our cases, the true number of donors is where the elbow occurs.

Clonal detection using MT barcodes

After computationally separating the donors, we imputed single-cell variant AF for high-coverage
positions to reduce spurious clone-calling, and then re-ran MGATK, which gave a new set of called
variants for each donor. To detect cells of the same clone, we used the k-nearest-neighbors leiden-based
community detection algorithm, similar to '*. The resolution parameter was set to 30, as after varying that

number we find it is robust from 30-50, and the cosine distance cutoff of the algorithm was set to 3.5.

We used three different variant processing methods to merge variants across conditions, and
examined internal consistency across the different methods (Figure S3.4). Method ‘intersect’ took
variants that only overlapped in both conditions (if there were any) after de-multiplexing, while method
“union’ took all variants found just before running MGATK. We ultimately used union-mgatk”, which
takes all variants before running MGATK, imputes high-coverage positions, and reruns MGATK on each

donor. Additionally, k=30 was used in the KNN algorithm after running for k as 3, 30 and 50.

To measure consistency across workflows, for each pair of workflows, we looked at each cell pair
and determined if they were either a) assigned the same clone in both methods (Positive [P]-Positive) b)
assigned different clones in both methods (Negative [N]-Negative) c) assigned the same clone in one
method but not the other (P-N & N-P). We find that there is concordance across the methods (Figure
S3.4A-B). Although the number of clones detected did change, the variant barcodes were able to be

distinguished across the methods..
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To calculate the percentage of cells with the barcode in a clone and outside a clone in Figure
3.2C, we binarized variants with a minimum of 2 reads and an AF frequency of 0.001. The top 3 variants
with the highest positive difference in percentage between clones and non-clones were chosen. For
Figure 3.2D, complete-linkage using cosine similarity was used, setting AF of >0.2 to 0.2 to improve
visibility. Barcodes with an average of less than 0.01 in each clone was removed. For SF4, the distribution
of each barcode was plotted across cells in each clone. We used a boxenplot with default parameters in
seaborn v0.11.2 , which is a modified form of a boxplot that better represents the distribution for large

data ',

Processing single-cell nuclear open-chromatin regions

We next examined the peaks detected using the nuclear open-chromatin reads in each cell.
Briefly, we followed the Signac (V1.4) protocol to integrate the different conditions, preprocess and
binarize the cells, run latent-semantic indexing (LSI), followed by UMAP dimensionality reduction, and
KNN Louvain clustering to assign cluster labels. In Figure 3.3 and Figure 3.4 the integration was done
across the Input and 72h culture for the sequencing batch S1, while Figure S3.5, Figure S3.6, and Figure

3.5 was done by integrating across all sequencing runs.

For open-chromatin regions, when aggregating across experimental runs, we take the detected
peaks and merge them by expanding the peaks when there is overlap across runs. Peaks less than 20 bp
and > 10,000 bp were removed and fragment counts re-computed. We create a Signac model and remove
regions with less than 10 cells, and cells with less than 200 features. We additionally filter by keeping
peaks with: a) at least 10 and less than 15,000 fragments b) with at least 15% of the nucleotides in reads
found in the peak is actually covered in the peak (since a read can span the peak region and outside the
region). We also keep cells a) with a nucleosome signal of at least 4 (‘i.e. the ratio of mononucleosomal to

nucleosome-free fragments per cell’), b) with a TSS enrichment of at least 0.2 (as defined here:

67


https://paperpile.com/c/GUGQPJ/orauk

https://www.encodeproject.org/data-standards/terms/), and ¢) with a ratio of reads aligned to blacklist
regions over reads aligned to peaks less than 0.05.

After this, we binarize the peaks and run term frequency—inverse document frequency (TF-IDF)
followed by SVD, which combined is the latent-semantic indexing method. UMAP is then run on
dimensions 2-50, as the first factor correlates with depth. After this, we integrate across runs using
FindIntegrationAnchors of the Seurat package '"' using the Isi transformed data. After integration, we run
UMAP on dimensions 2 to 30 of the integrated Isi components, then cluster using FindNeighbors and

FindClusters with the SLM algorithm.

Annotating cell clusters using lineage markers

Cells were annotated by taking known lineage markers of both gene activity and TF activity and
overlaying the density of the feature across the UMAP embedding. Gene activity scores for each gene was
calculated by summing the number of peaks found in a gene and 2 kb upstream. Feature counts for each
cell are divided by the total counts for that cell, multiplied by the median gene activity in that cell, and
then natural-log transformed to get the activity score. TF activity was calculated using the chromVAR '*!
extension in Signac, which estimates activity based on the number of TF motifs detected in a cell’s
open-chromatin peaks. Manual annotation was performed on the clusters using both the gene and TF

activity in known markers.

Hypergeometric test to measure lineage bias in clones

To detect clonal bias towards a specific lineage, we used the hypergeometric cumulative
distribution test for each clone-cluster pair, and p-values were adjusted using Benjamini-Hochberg to
control the false discovery rate. A significance threshold of 0.1 was used, but to account for clone and
cluster sizes affecting the test, we created a non-parametric null distribution in which the cluster labels for

each cell were shuffled 1000 times and the p-values for each clone-cluster pair computed. The p-values in
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each simulation were used as a background distribution, and empirical p-values were calculated for each

clone-cluster pair, a significance of p=0.1 was used in reporting significance values in Figure 3.4.

Clone and lineage entropy measures

In order to measure the lineage-bias a clone has, we used the entropy metric (Figure S3.5B). To
do this, we first removed the ‘HSPC’ lineage clusters and calculated the frequency in each clone, which
was used as the probability distribution. We then calculated the standard entropy measure using entropy
from the SciPy v1.7.3 stats package '*. To calculate the maximum entropy possible, we took the largest
number of clones across donors, and calculated the entropy over a uniform distribution across those
clones (so for 50 clones, the probability for each clone will be 1/50). Entropy was also calculated in each
lineage, which is measuring if there are clones over- or under-represented across lineages (Figure S3.5C).
For a single lineage, we took all the clone proportions in that lineage, and then converted them into a

probability distribution by dividing by their sum.

Flow-cytometry
Flow-cytometry was done for four healthy CD34+ donors, and culturing was done as mentioned
above. The markers used for the UMAPs in Figure S3.7 were HLA-DR, CD117, CDl1l1¢, CD11b, CD34,

CD10, CD45, CDS86, FceRla, CD16, CD14, CD66b, CD101, Siglec8, CD3, CD19, CD56.
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3.6 Supplementary Figures and Tables
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Figure S3.1 Coverage and variants called in mt-scATAC-seq experiments

(A) Detecting the number of cells with a certain number of fragments (coverage) across
each position in the MT genome (B) MGATK algorithm used to call variants in the MT
genome. Each point is a variant, and variants colored red pass the variance-mean ratio
(VMR) and strand concordance thresholds.

Table S3.1 mt-scATAC-seq sequencing results

Number of  Cells that pass nuclear Cells that pass MT coverage

Experiment Condition donors in group open-chromatin QC QC and open-chromatin QC Variants

S1 Cultured 2 7651 6907 75
S1 Input 2 6848 6500 197
S2 Input 2 4769 4214 107
S3 Cultured 4 12009 11203 312
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Figure S3.2. Cells are confidently assigned to a donor in a multiplexed run using germ-line MT variants

Experiment batch S1 containing 2 donors across two conditions was de-multiplexed. (A) The Vireo algorithm
assigns a probability for each cell to a donor. This is done across all conditions for those multiplexed donors. Each
row is a cell and each column is a donor. (Maximum of 1000 cells randomly chosen for visualization). For the
conditions, red=input, blue=culture (B) The mean allele frequency for cells of the same predicted donor. The top
variants in each donor is shown. (C) Transitions and transversions detected in each donor. Donor-specific variants
defined as having greater than 0.8 VAF in over 90% of donor-assigned cells. (D) An elbow plot that plots the model
loss ('"ELBQ") over varying the number of donors d. The point of decreasing model performance gains is the ideal
parameter, which is 2 here (E) Same as (A) and (B), but for experiments batch S2 and batch S3
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Table S3.2 Summary of donor
Donor variants defined as mean VAF>0.7 in donor, <0.1 in others

Experiment | Number of cells after | Number of unique donor

Donor Batch ID demultiplexing variants in batch Verified CHIP mutations
Donor 1 S1 7002 17 Y
Donor 2 S1 5691 25 Y
Donor 3 S2 1730 19 Y
Donor 4 S2 2367 25 Y
Donor 5 S4 2630 20 N
Donor 6 S4 2605 23 N
Donor 7 S4 1675 1 N
Donor 8 S4 2414 19 N
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Figure S3.3. Variant allele frequency distribution in cells across clones VAF distribution in cells in each clone
across variants used to detect clones in Donor 1
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Figure S3.4. Comparing clone-calling workflows

Methods 'intersect', 'union', 'union-mgatk’, (see Methods) and k nearest neighbor of 3, 30, and 50 were
compared (A) Comparing each method by finding the number of cell pairs that are either in the same
clone or in different clones in both methods. The score is then normalized to the total number of cell
pairs. (B) Same as a, but only looking at scores in which both methods assign the pair of cells to the same
clone. (C) Subsampling cells from 10-99% 1000 times, calculating adjusted normalized mutual
information between clones in sub-sampled run and the full population.
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Figure S3.5. Detecting nuclear open-chromatin peaks

(A) Number of detected open-chromatin peak regions per cell (B)
Number of fragments that are non-duplicated and pass QC filters (see
Methods) (C) Number of peaks detected for each cell overlaid on
UMAP (D) Annotating peaks based on location relative to a gene.

Table S3.3 Lineage markers used to inform cell lineage cluster assignment

Lineage Type Markers

Stem—>progenitor cells KIT SPI1

Myeloid lineage FLT3 | ATP8B4
Erythroid lineage CPOX ANK1

B cell lineage HBB HBG2
pre-Bcells VPREB1| CD81 CD79B
Monocyte lineage IRF8 CTSz LYz
pDC KCNK1 = PROC | NCR2
Basophil (granulocytes) IL18R1 | IL1RL1 | IL5RA
Eosinophil (granulocytes) CLC PRG2
Neutrophil MPO ELANE PRTN3
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Figure S3.7 FACS sorting highlights differentiated lineages in CD34+ HSPCs after cytokine culture
UMAP of fluorescent markers enables lineage cluster detection in 4 donors in both input and cytokine culture. Top
2 rows: UMAP for all donors combined; bottom 2 rows: each donor separate
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Figure S3.8. MT barcodes across lineage clusters

(A) MT variants across UMAP for selected variants in donor 1 (B-D) Donor 1 and Donor 2 shown (B) Total cell
counts (log2) for barcodes (af>0.01, coverage>10) across hematopoietic clusters. (C) Similar to B, but normalized
within each variant. (D) Cell-by-variant VAF heatmap for top differentiating variants in donors Donor 1 and Donor

2 ordered by single-linkage hierarchical clustering within each HSPC type followed by clustering on HSPC types.
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3.7 Data Availability

Raw sequencing files will be submitted to NCBI’s SRA upon acceptance of the manuscript for

publication.
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CONCLUSION

In this dissertation, I argue for using more novel NGS techniques to help push our understanding of the
production of biotherapeutics as well as tracking cellular response. This is done through establishing
resources for CHO cells and CD34+ HSPCs in healthy donors. I show that transcription start site
sequencing methods used in CHO cells and the Chinese hamster can be used to improve the genome
annotation, and that these can be used for gene activation in CHO cells. Additionally, examining CD34+
cells in steady-state and ex vivo culture, we find that clones exhibit multipotency, suggesting the detected

clones come from early HSCs, and treatment should lead to balanced response across different clones.
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