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RESEARCH

Fluoride exposure and blood cell markers 
of inflammation in children and adolescents 
in the United States: NHANES, 2013–2016
Pamela Den Besten1*, Christine R. Wells2* and Dawud Abduweli Uyghurturk1 

Abstract 

Background: Ingestion of fluoride in drinking water has been shown to result in increased cellular markers of inflam-
mation in rodent models. However, the approximately 5–10 × increase in water fluoride concentrations required in 
rat and mouse models to obtain plasma fluoride concentrations similar to those found in humans has made relevant 
comparisons of animal to human studies difficult to assess. As an increased white blood cell count (WBC) is a marker 
of inflammation in humans, we used available NHANES survey data to assess the associations between plasma fluo-
ride levels in the U.S. and blood cell counts children and adolescents.  

Methods: Multiple linear regressions were done to determine the association of blood cell counts and plasma fluo-
ride in publicly available NHANES survey data from the 2013–2014 and 2015–2016 cycles. Plasma fluoride concentra-
tion measurements were available only for children aged 6 to 19, inclusive, and therefore this subpopulation was used 
for all analyses. Covariate predictors along with plasma fluoride were age, ethnicity, gender, and Body Mass Index 
(BMI). 

Results: Plasma fluoride was significantly positively associated with water fluoride, total WBC count, segmented neu-
trophils, and monocytes, and negatively associated with red blood cell count when adjusted for age, gender and BMI.

Conclusion: Our finding that neutrophils and monocytes are associated with higher plasma fluoride in U.S. children 
and adolescents is consistent with animal data showing fluoride related effects of increased inflammation. These find-
ings suggest the importance of further studies to assess potential mechanisms that are involved in absorption and 
filtration of ingested fluoride, particularly in tissues and organs such as the small intestine, liver and kidney.
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Background
Fluoride is a highly electronegative anion which, when 
present in saliva or other topical dental products, 
enhances the precipitation of calcium phosphates on the 
tooth enamel surface [1]. The observation that naturally 
fluoridated water was associated with reduced dental 

decay [2] lead the U.S. Public Health Service (PHS) to 
recommend that 1 ppm fluoride be added to the drinking 
water as a public health measure to prevent dental caries. 
In 2015, these recommendations were revised to lower 
the recommended concentration of fluoride in drinking 
water to 0.07 ppm [3]. Current estimates, posted by the 
U.S. Centers for Disease Control and Prevention (CDC), 
are that 73% of community water systems in the U.S. pro-
vide fluoridated water, and 63% of the U.S. population 
receives fluoridated water (https:// www. cdc. gov/ fluor 
idati on/ stati stics/ 2018s tats. htm).
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When ingested, fluoride is first partially absorbed 
(approximately 25%) through the stomach in the form of 
hydrofluoric acid, and most of the remainder is absorbed 
in the small intestine, independent of pH [4, 5]. The 
absorbed fluoride is then filtered by the liver and kid-
ney to achieve the final plasma fluoride concentration. 
In animals, fluoride in drinking water is associated with 
inflammation of the kidneys [6] and the small intestine 
[7–9], shown by increased expression of the inflamma-
tory cytokines TNF-α and IL-1β, and by NF-κB protein.

However, the higher fluoride intake in rodents neces-
sary to obtain plasma fluoride levels similar to those 
found in humans has complicated the interpretation of 
fluoride effects using rodent model systems. These dif-
ferences may be due to anatomical differences [10–12] 
that affect fluoride clearance or other genetic differ-
ences, which result in the approximately 5 to 10 times 
lower plasma fluoride relative to water fluoride concen-
tration in rats or mice as compared to humans. To assess 
the relevance of fluoride-related increases in inflamma-
tion in rats to findings in humans, we utilized data from 
the National  Health and Nutrition  Examination Survey 
(NHANES). Water and plasma fluoride concentrations 
were available for children aged 6–19 in NHANES sur-
veys collected during the 2013–2014 and 2015–2016 
cycles, and therefore we focused our analysis on fluoride-
mediated inflammation in these populations.

Inflammation (both acute and chronic) is related to 
elevated inflammatory cytokines, which recruit and 
increased circulating white blood cells (WBC) [13]. WBC 
counts in NHANES data have been shown to be associ-
ated with factors that cause chronic inflammation such 
an increased Dietary Inflammatory Index (DII)[13] and 
obesity in children [14]. We therefore used available CBC 
(complete blood count) data to test the hypothesis that 
fluoride exposure, as indicated by plasma fluoride con-
centrations, is associated with increased WBC count as a 
biomarker of inflammation.

Materials and methods
Water and plasma fluoride concentrations for both 
the 2013–2014 and 2015–2016 cycles of the NHANES 
survey were measured by the same laboratory at the 
College of Dental Medicine, Georgia Regents Uni-
versity, Augusta, GA. Water was collected from all 
households with survey participants aged birth to 
19  years, and fluoride concentrations were measured 
in duplicate using a fluoride selective electrode (for 
details see https:// wwwn. cdc. gov/ Nchs/ Nhanes/ 2013- 
2014/ FLDEW_H. htm), with a lower limit of detection 
(LLOD) of 0.1  mg/L. Plasma fluoride concentrations 
were measured in duplicate using an ion-specific 

electrode following hexamethyldisiloxane (HMDS) dif-
fusion (see https:// wwwn. cdc. gov/ Nchs/ Nhanes/ 2013- 
2014/ FLDEP_H. htm), with a lower limit of detection of 
0.25  nmol. Subjects with water and plasma fluoride at 
or above the detection limit were included for analysis.

Sampling weights and variance correction variables 
were used when analyzing the combined 2013–2014 
and 2015–2016 NHANES survey data to account for 
the NHANES survey design as recommended by the 
National Center for Health Statistics (NCHS). The sub-
population was defined as those aged 6 to 19  years, 
inclusive, whose fluoride plasma comment code was 
0 (at or above the detection limit), and whose plasma 
fluoride value was less than or equal to five micromo-
lar. We set the upper limit at 5 micromolar fluoride to 
preclude the possible influence of outlier values on our 
analysis. Values as high as 5 micromolar fluoride were 
found in serum of healthy women residing in North-
ern California [15], indicating that this upper limit is 
relevant to healthy populations of individuals living in 
fluoridated communities in the US. Multiple regres-
sion analyses were done to determine the association 
between plasma fluoride concentrations and blood 
cell measures contained in the CBC (for details, refer 
to https:// wwwn. cdc. gov/ Nchs/ Nhanes/ 2015- 2016/ 
CBC_I. htm).

Covariates/ or predictors that were included in the 
multiple regression analysis were age [16], ethnic-
ity [17] and body mass index (BMI) [18], all of which 
have been shown to increase WBC counts in children. 
We also included gender, as women have been shown 
to have lower leukocyte counts than men [19]. We ran 
models including the family poverty to income ratio 
(PIR) as an indicator of socioeconomic status; however, 
this measure was not statistically significantly associ-
ated with changes in WBC counts in any of the models. 
Dependent variables were blood cell counts available in 
this subpopulation.

Statistical analyses
All analyses applied survey weights from the mobile 
exam center visit (i.e., MEC weights) and the strata 
and PSU variables to account for the stratified clus-
tered sampling design and to permit generalization 
to the U. S. population (National Center for Health 
Statistics, 2013). Descriptive statistics and regression 
analyses were performed using Stata 17.0 software. 
Survey-weighted linear regression was used to model 
blood cell counts as a function of plasma fluoride con-
centrations while adjusting for covariates (e.g., gender, 
age and BMI).

https://wwwn.cdc.gov/Nchs/Nhanes/2013-2014/FLDEW_H.htm
https://wwwn.cdc.gov/Nchs/Nhanes/2013-2014/FLDEW_H.htm
https://wwwn.cdc.gov/Nchs/Nhanes/2013-2014/FLDEP_H.htm
https://wwwn.cdc.gov/Nchs/Nhanes/2013-2014/FLDEP_H.htm
https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/CBC_I.htm
https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/CBC_I.htm
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Results
The overall mean and standard deviation water fluoride 
level for this population was mean of 0.56 ± 0.44 and 
ranged from 0.07 to 7.32  ppm fluoride. Plasma fluoride 
levels were a mean of 0.46 ± 0.01 µmolar and ranged 
from 0.25 to 4.32 µmolar. Gender was 54% male and 46% 
female, and the mean age was 12.5 ± 4.7 years of age. BMI 
mean and SD were 22.0 ± 7.5, ranging from 12.3 to 68.6 
(see Table 1). 

The results of our regression analyses, including coef-
ficients, 95% upper and lower confidence intervals 
(brackets) and the p-values for each predictor (plasma 
fluoride, age, ethnicity, gender and BMI) showed that 
plasma fluoride was significantly positively associated 
with water fluoride concentrations (p < 0.001), and WBC 
counts (p = 0.014). Among the different types of white 
blood cells, neutrophils (neutro) (p = 0.028) and mono-
cytes (mono) (p = 0.006) were significantly positively 
associated with plasma fluoride concentrations, whereas 
lymphocytes (lymph), eosinophils (eosino) and basophils 
(baso) were not (see Table 2). 

All other CBC measures (hemoglobin, hematocrit, 
mean cell hemoglobin concentration, red cell distribution 
width, platelet count and mean platelet volume) were not 
significantly associated with plasma fluoride concentra-
tions and are not included in the table.

Discussion
The CBC with 5-part differential, includes red blood 
cell count, red blood cell distribution width, and mean 
cell volume, white blood cell  count, platelet  count and 
mean  platelet volume, measures of  hemoglobin  and 
hematocrit, and sorts the white blood cells into sub-
types. White blood cells are recruited by inflammatory 

cytokines in both acute and chronic inflammation, and 
are a reliable marker of inflammation [13]. Our finding of 
a positive association between WBC counts in children 
aged 6–19 and plasma fluoride concentrations therefore 
suggests an association between fluoride exposure and 
increased inflammation.

Among the different subtypes of white blood cells, 
neutrophils, monocytes, and  lymphocytes respond to 
peripheral inflammation, while eosinphils and basophil 
are most associated with inflammation related to allergic 
responses [20, 21]. Lymphocytes produce antibodies and 
direct cell mediated killing of virus infected and tumor 
cells [22]. Neutrophils represent about 70% of all white 
blood cells, and as they enter the blood stream, neu-
trophils are recruited to sites of tissue damage [23–25], 
where they are then subsequently cleared by monocytes. 
Our finding of a significant postive associations between 
plasma fluoride and both neutrophils and monocytes 
suggests an effect of fluoride on tissue specific inflamma-
tory changes.

The small intestine is one such possible site. In rats, 
ingestion of fluoride in drinking water results in inflam-
matory lesions in the small intestine that appear similar 
to those found in Crohn’s disease [9, 26, 27], an inflam-
matory disease most frequently found in the small intes-
tine. Increased neutrophils [28] and moncytes [29].are 
key players in the chronic inflammation of Crohn’s dis-
ease patients. Chronic kidney disease (CKD) in adults 
is also associated with increased monocyte and neutro-
phils. Consistent with a relationship between fluoride 
and kidney function, a previous report using this same 
NHANES survey data showed a significant association 
between increased plasma fluoride and a decreased glo-
merular filtration rate [30], a marker of reduced kidney 
function [31].

Though we adjusted for gender in our regression anal-
ysis, previous analyses of NHANES data sets show that 
males aged 6 to 19 have relatively higher plasma fluoride 
levels relative to water fluoride concentrations [12]. This 
may be due to differences between males and females in 
fluoride absorption by the kidneys [32] and suggests the 
possibility that that the effects of water fluoridation are 
influenced by relatively higher plasma fluoride levels in 
males.

To determine whether the effects of fluoride on WBC 
counts might be influenced by other environmental con-
taminants, such as arsenic, which is known to be a major 
contaminant of drinking water, we assessed the interac-
tion between fluoride and arsenic in drinking water. We 
found that while arsenic was associated with changes in 
hemoglobin, interactions with fluoride were nonsignifi-
cant (data not shown).

Table 1 Descriptive statistics of the subpopulation of children 
with available plasma fluoride levels

* Subpopulation: weighted values for ages 6 to 19 (inclusive), fluoride plasma 
comment code = 0, and plasma fluoride less than or equal to 5
* Raw N = 3,491; weighted N = 39,133,332

Demographic Characteristic Subpopulation*

Sex; N(%)

 Female 21,100,607 (54%)

 Male 18,032,725 (46%)

Race; N(%)

 Non-Hispanic White 20,782,052 (53%)

 Non-Hispanic Black 5,508,195 (14%)

 Non-Hispanic Asian 1,702,983 (4.4%)

 Hispanic 9,236,116 (24%)

 Other/multicategory 1,903,986 (4.9%)

Age; Mean(sd) 12.52 (4.69)

BMI; Mean(sd) 21.98 (7.46)
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This study was limited by measures included in the 
NHANES data sets. This meant that the study was lim-
ited to children aged 6 to 19 in the 2013–2014 and 
2015–2016 data sets where plasma fluoride analysis was 
included. Systemic inflammation increases with age and 
is a risk factor for multiple health effects [33], so further 
studies to assess the effect of fluoride relative to age in 
adults are warranted.

Other limitations of this study are the cross-sectional 
study design, which precludes the inference of causal-
ity. However, our finding that fluoride was associated 
specifically with the WBC subtypes of neutrophils and 
monocytes, while not affecting lymphocytes, eosinophils 
and basophils, indicates a specific effect of fluoride in 
enhancing inflammation. In animal models, fluoride in 
drinking water has been shown to increase activation of 
NF-kB in cells and organs throughout the body, includ-
ing ameloblasts [34] and liver [35]. NF-kB has a critical 
role in mediating the inflammatory response [36], and 
our report of an association between plasma fluoride 
concentrations and WBC counts in children suggests that 
findings of fluoride associated inflammation in animal 
models, may also be relevant to human populations.

Conclusions
Our findings of an association between plasma fluoride 
concentrations and increased WBC counts in U.S. chil-
dren and adolescents suggest that ingested fluoride may 
be an environmental risk factor for inflammation for this 
population. Dental fluorosis, a biomarker for fluoride 
exposure, has continued to increase in the U.S. [37, 38] 
suggesting increasing population based fluoride expo-
sure. This indicates the need for additional studies to 
assess the effects of fluoride on markers of inflammation 
in adults and vulnerable human populations.
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