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Abstract: The last 10 years witnessed an acceleration of our understanding of what genetic factors
underpin the risk of breast cancer. Rare high- and moderate-penetrance variants such as those in
the BRCA genes account for a small proportion of the familial risk of breast cancer. Low-penetrance
alleles are expected to underlie the remaining heritability. By now, there are about 180 genetic
polymorphisms that are associated with risk, most of them of modest effect. In combination, they can
be used to identify women at the lowest or highest ends of the risk spectrum, which might lead to
more efficient cancer prevention strategies. Most of these variants were discovered in populations
of European descent. As a result, we might be failing to discover additional polymorphisms that
could explain risk in other groups. This review highlights breast cancer genetic epidemiology
studies conducted in Latin America, and summarizes the information that they provide, with special
attention to similarities and differences with studies in other populations. It includes studies of
common variants, as well as moderate- and high-penetrance variants. In addition, it addresses the
gaps that need to be bridged in order to better understand breast cancer genetic risk in Latin America.

Keywords: genetic epidemiology; breast cancer; Latin America

1. Introduction

Breast cancer is the most common cancer in women, and a major public health concern
worldwide [1]. Improvements in screening, early detection, and treatment led to decreased mortality,
a 12% decrease between 2002 and 2012 [2,3]. Breast cancer is a complex trait determined both by genetic
and non-genetic factors and, in most cases, without a clear pattern of inheritance [4,5]. Twin studies
have reported a heritability of 27–31% in Nordic populations [5–7], and recent analysis based on
genome-wide association studies (GWAS) on individuals of American and European ancestry have
reported a heritability between 9 to 13% [8,9].

Only a relatively small proportion of breast cancers can be explained by the presence
of high-penetrance genetic mutations, such as those in the BRCA1 and BRCA2 genes [10–19].
These, together with mutations in genes of intermediate penetrance such as ATM, BARD1, PALB2,
and CHECK2, explain ~20–25% of breast cancer risk [20], leaving a considerable proportion of
heritability still to be explained by low-penetrance variants. Breast cancer GWAS were instrumental in
the discovery of multiple single-nucleotide polymorphisms (SNPs), starting with relatively modest
sample sizes in 2007 [21–23] and developing into major consortiums that now include more than
200,000 women [21–51]. These SNPs are not very informative on their own, but together may account
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for ~44% of the familial relative risk [34]. However, only a small proportion of samples included in
these large efforts are from United States (US) minority populations (e.g., Hispanics/Latinas, African
Americans).

Latin American populations are diverse, not only culturally, but also in their genetic ancestry
composition [52,53]. This diversity is likely to have an impact on the distribution of genetic
determinants of breast cancer risk in different regions. The aim of this review was to highlight breast
cancer genetic epidemiology studies conducted in Latin America and to summarize the information
that they provide, addressing gaps that need to be bridged in order to better understand breast cancer
risk in Latin America.

For paper retrieval, we combined search terms such as “breast cancer” (breast cancer subtypes),
“genetics” (genetic variant, genetic polymorphism, SNP, genetic mutation, BRCA), “case–control study”
(cases/controls, cases–controls, cases, controls), and “Latinas” (Latinas, Hispanics, Latin America,
South America) in the PubMed database (https://www.ncbi.nlm.nih.gov/pubmed/). We also
added to these terms the name of each Latin American country. We complemented the search
by reviewing manuscripts cited in the selected papers. We focused on studies with case series,
cohorts, or case/control design, conducted in Latin America and that included genetic factors as main
predictors. In some instances, we make reference to studies conducted in or including US Latinas.
We only included studies published in the English language. We did not narrow the search by date;
the selected studies were published between 2008 and 2018.

2. BRCA1 and BRCA2 Mutations in Latin America

The Hereditary Breast and Ovarian Cancer (HBOC) syndrome is caused by loss-of-function
mutations in the BRCA1 and BRCA2 genes and explains approximately 16% of inherited breast
cancers [13]. Despite being relatively rare, pathogenic variants in the BRCA genes are associated with
substantial increases in risk of breast, ovarian, and other cancers [18,54–60]. The comparison of the
prevalence of BRCA1/BRCA2 pathogenic variants across studies in Latin America is confounded by
variation in the study design, such as the approach for patient accrual, inclusion criteria, and screening
technology. Nevertheless, available evidence points to marked differences in the carrier prevalence
in different populations. Latin American countries, for which prevalence was assessed in unselected
breast cancer patient cohorts, report a similar prevalence to that of non-Hispanic Whites (NHW) in the
US; this includes Brazil [61], Colombia [62], Cuba [63], Mexico [64,65], Peru [66], and Puerto Rico [67],
for which the prevalence in unselected breast cancer cases was shown to be below 5%. Differences in the
relative proportion of BRCA1 to BRCA2 carriers were also observed. While most countries report higher
frequencies of BRCA1 mutations, in Costa Rica, Cuba, Puerto Rico, and Uruguay, BRCA2 mutations
are predominant [68]. This is expected to impact the clinical presentation of HBOC in those countries,
as each gene is associated with differences in the age of onset, molecular profile, and the magnitude of
risk spectrum of associated cancers [18,69].

Founder Mutations and Regional Heterogeneity

Three founder mutations were shown to account for 79% of the BRCA1/BRCA2 carriers in
the Ashkenazi Jewish population [70]. In Latin America, these known founder Jewish mutations
were reported to be recurrent (35% of mutation carriers) in a Jewish population of Buenos Aires,
illustrating the immigration history of this country [71]. The BRCA1 185delAG (c.68_69delAG,
rs80357914) is the most common pathogenic variant with the largest geographical span as it was
shown to be recurrent in Argentina, Brazil, Mexico, and Peru [68,72]. In Mexican Americans, haplotype
analysis demonstrated that this mutation was on the same genetic background as the Jewish founder
mutation [73]. Founder mutations were also reported in Brazil, Chile, Colombia, Mexico, and more
recently in Puerto Rico [67,72,74,75]. In addition to founder mutations, several countries reported
the presence of recurrent mutations, but the data regarding a common origin or ancestor were not
assessed [74]. It was estimated that less than 10% of the BRCA pathogenic variants reported in the

https://www.ncbi.nlm.nih.gov/pubmed/


Genes 2019, 10, 153 3 of 25

literature were observed in more than one country of Latin America and the Caribbean [68,76,77].
In a large cohort distributed across 11 Brazilian states, some recurrent mutations were restricted to
defined regions of the country, while other areas displayed significant heterogeneity [78]. In Colombia,
despite a more modest sample size, a recent study reported a very low frequency of known Colombian
founder mutations, which was associated with variations in geographic origin of the cohort within the
country [79]. The genetic heterogeneity of Latin America populations suggests that further sequencing
of patients in different countries and regions would be required to properly characterize geographical
variation in the BRCA mutation spectrum and to provide adequate recommendations and treatment
in women from Latin America. A previous review by Dutil et al. provided additional information
regarding specific BRCA mutations in Latin American women [68]. In addition to mutations in
the BRCA genes, there are other high-penetrance mutations that are uncommon in the population
(e.g., TP53, PTEN, and STK11), which are associated with well-known familial syndromes [80–82].
For example, the c.1010G>A (rs121912664) variant in the TP53 gene, best known as R337H, was found
in 2–7% of Brazilian breast cancer patients [83–85].

3. Breast Cancer Candidate Gene Studies in Latin America

Polymorphisms in moderate- and low-penetrance genes may be relatively common in the
population, and collectively confer a small to moderate increased relative risk for breast cancer [86].
Common polymorphisms located within genes in known cancer-related pathways are good candidates
for investigation in the context of a case–control design and were explored in multiple Latin American
studies (Table 1).
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Table 1. Summary results from breast cancer candidate gene studies in Latin America showing a positive association with cancer risk (p ≤ 0.05).

Country Gene Variant Risk Genotype vs.
Common Genotype

OR (95% CIs)
p-Value Model Design Reference

FOXP3 rs2232365A>G AA vs. GG 1.93 (1.01–3.66)
p = 0 046 Controlled by age 117 cases and 300 controls Banin Hirata et al., 2017 [87]

Brazil

MTHFR rs1801133C>T TT vs. (CC + CT) 2.53 (1.08–5.93)
p = 0.03

Adjusted for age, alcohol and smoking
consumption, and BMI 100 cases and 144 controls Zara-Lopes et al., 2016 [88]

CYP1A1 rs1048943A>G (AG + GG) vs. AA 1.50 (1.14–1.97)
p = 0.004 Adjusted for age and ethnic origin 742 cases and 742 controls Oliveira et al., 2015 [89]

IL-18
rs1946518C>A CC vs AA 2.78 (1.39–5.59)

p = 0.004 Adjusted for age and BMI 154 cases and 118 controls Back et al., 2014 [90]

rs187238G>C (GG + GC) vs. CC 3.89 (1.43–10.64)
p = 0.008

GSTM1 rs366631C>T −/− vs. (+/− and +/+) 2.40 (1.1–5.6)
p =0.04 Not adjusted 49 cases and 49 controls Possuelo et al., 2013 [91]

miR-196a2 rs11614913C>T (TC+ TT) vs. CC 1.50 (CI not provided)
p = 0.014

Adjusted for age, race, menarche age, menopausal
status, smoking habits, and first-degree breast

cancer family history
388 cases and 388 controls Linhares et al., 2012 [92]

Chile

pre-mir-423 rs6505162C>A AA vs. CC 1.70 (1.0–2.0)
p = 0.05 In families with at least three BC and/or OC cases

440 cases a and 807 controls Morales at al., 2016 [93]

pre-mir-618 rs2682818C>A CA vs. CC 1.60 (1.0− 2.4)
p = 0.04

In families with a single case, diagnosed at ≤ 50
years of age

pre-mir-27a rs895819A>G GG vs. AA 0.30 (0.1–0.8)
p = 0.01 In families with 2 BC and/or OC cases

PALB2
rs152451A>G AG vs. AA 2.0 (1.2–3.1)

p < 0.01 In families with at least three BC and/or OC cases 436 cases a and 809 controls Leyton et al., 2015 [94]

rs45551636C>T CT vs. CC 3.0 (1.2–6.8)
p < 0.01

TOX3 rs3803662C>T TT vs. CC 2.38 (1.44–3.90)
p = 0.0003 In families with at least 2 BC and/or OC cases 344 cases a and 801 controls Elematore et al., 2014 [95]

2q35 rs13387042 G>A AA vs. GG 1.99 (1.25–3.14)
p = 0.0015

FGFR2
rs2981582C>T CT vs. CC 2.00 (1.26–3.23)

p = 0.002 In families with a single case, diagnosed
at ≤ 50 years of age 351 cases a and 802 controls Jara et al., 2013 [96]

rs2420946C>T TT vs. CC 2.05 (1.16–3.63)
p = 0.009

rs1219648A>G GG vs. AA 2.06 (1.16–3.66)
p = 0.011

MAP3K1 rs889312A>C CC vs. AA 1.96 (1.13–3.37)
p = 0.016
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Table 1. Cont.

Country Gene Variant Risk Genotype vs.
Common Genotype

OR (95% CIs)
p-Value Model Design Reference

BARD1 rs28997576C>G CG vs.CC 3.4 (1.2–10.2)
p = 0.04 In families with at least three BC and/or OC cases

322 cases a and 570 controls Gonzalez-Hormazabal et al., 2012 [97]

XRCC3 rs861539C>T
TT vs. CC 3.2 (1.40–1.72)

p = 0.006 In families with at least three BC and/or OC cases

TT vs. CC 2.44 (1.34–4.43)
p = 0.003 Not adjusted 267 cases a and 500 controls Jara et al., 2010 [98]

ATM

rs1801516G>A (GA + AA) vs. GG 2.52 (1.33–4.77)
p = 0.008 Not adjusted 42 cases a and 200 controls Tapia et al., 2008 [99]

rs1801516G>A GA vs. GG 1.74 (0.96–3.16)
p = 0.048 Not adjusted 126 cases a and 200 controls Gonzalez-Hormazabal et al., 2008 [100]

IVS24-9delT T(-T) vs. TT 1.74 (0.96–3.16)
p = 0.048

IVS38-8T>C TC vs. TT 3.09 (1.11–8.59)
p = 0.024

RAD51 rs1801320G>C (GC + CC) vs. GG 2.17 (1.11–4.24)p = 0.020 In patients <50 years at diagnosis 143 cases a and 247 controls Jara et al., 2007 [101]

Ecuador
AKT1 rs3803304C>G GG vs. CC 5.20 (1.3–20.9)

p ≤ 0.05 Not adjusted 91 cases 185 controls Lopez-Cortes et al., 2018 [102]

MTHFR rs1801133C>T TT vs. CC 2.9 (1.2–7.2)
p = 0.025 Not adjusted 114 cases and 195 controls Lopez-Cortes et al., 2015 [103]

Mexico

RETN rs1862513C>G (CG + GG) vs. CC 1.62 (1.025–2.557)
p = 0.03791 Not adjusted

100 cases and 308 controls Muñoz-Palomeque et al., 2018 [104]

CAP1 rs35749351G>A (GA + AA) vs. GG 2.19 (1.075–4.475)
p = 0.0277 Not adjusted

ABCB1 rs1045642C>T
CC vs. TT 2.91 (1.48–5.74)

p = 0.001 Not adjusted 243 cases and 118 controls Jaramillo-Rangel et al., 2018 [105]

CT vs. CC 2.27 (1.11–4.67)
p = 0.023 In premenopausal women 248 cases and 180 controls Gutierrez-Rubio et al., 2015 [106]

CYP1B1 rs1056827G>T TT vs. GG 1.21 (0.85–1.72)
p = 0.04

Adjusted for age, years of education, first-degree
relative with breast cancer, age at first full-term

pregnancy, breastfeeding at first birth, consumption
of alcohol and tobacco, and genetic ancestry (Native

American, European, and African).

952 cases and 998 controls * Garcia-Martinez et al., 2017 [107]

GSTM1 rs366631C>T
TT vs. (CC + CT) 1.30 (1.02–1.8)

p = 0.04 Not adjusted 558 cases and 276 controls Soto-Quintana et al., 2015 [108]

TT vs. (CC + CT) 2.19 (1.50–3.21)
p = 0.001 Not adjusted 243 cases and 118 controls Jaramillo-Rangel et al., 2015 [109]

MTHFR rs1801133C>T TT vs. CC 2.50 (1.6–3.8)
p = 0.0001 Not adjusted 497 cases and 339 controls Ramos-Silva et al., 2015 [110]

CBS 844ins68 (−/+) vs. (−/−) 2.2 (1.5–3.3)
p = 0.0001 Not adjusted 323 cases and 371 controls Gallegos-Arreola et al., 2014 [111]
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Table 1. Cont.

Country Gene Variant Risk Genotype vs.
Common Genotype

OR (95% CIs)
p-Value Model Design Reference

ATM IVS24-9delT T(-T) vs. TT 3.02 (1.24–7.30)
p = 0.0122 Not adjusted 94 cases and 97 controls Calderón-Zúñiga et al., 2014 [112]

GSTP1 rs1695A>G GG vs. AA 3.28 (1.44–7.50)
p = 0.005 In premenopausal women 150 cases and 382 controls Martinez-Ramirez et al., 2013 [113]

eNOS 4a/b
polymorphism ab vs. bb 2.0 (1.3–3.1)

p = 0.001 Not adjusted 429 cases and 281 controls Ramírez-Patiño et al., 2013 [114]

CYP1A1 rs1048943A>G GG vs. AA 2.77 (1.30–5.89)
p = 0.009 In premenopausal women 150 cases and 382 controls Martinez-Ramirez et al., 2013 [113]

rs4646903T>C CC vs. TT 3.38 (1.05–10.87)
p = 0.041 In postmenopausal women 91 cases and 94 controls Moreno-Galvan et al., 2010 [115]

FGFR2 rs2981582C>T TT vs. CC 1.69 (1.25–2.27)
p = 0.001

Adjusted by design for place of residence,
health service institution membership,

and 5-year age interval
687 cases and 907 controls * Murillo-Zamora et al., 2013 [116]

Puerto Rico RAD23B rs1805329C>T TT vs. (CT + CC) 3.14 (1.65–5.97)
p < 0.001

Adjusted for age, civil status, education level,
and contraceptive use 228 cases and 418 controls Perez-Mayoral et al., 2013 [117]

CI: confidence interval; BC: breast cancer; BMI: body mass index; OC: ovarian cancer; OR: odds ratio. a Patients were tested for BRCA1/2 mutations. * Population-based controls.
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3.1. DNA Repair Genes

DNA repair is crucial for normal cell function, and common polymorphisms in DNA repair
genes or genes that play a role in DNA repair pathways are potential candidates for association with
breast cancer risk. Several studies in Latin America assessed the association between DNA repair gene
variants and breast cancer risk [94,97–101,110,112,117–123]. Candidate genes that were most studied
are those that code for proteins that interact with BRCA1/2 or that are involved in the same pathway.
ATM is a protein kinase that finds double-strand breaks in DNA and controls the mechanism of DNA
repair [124]. Three case–control studies assessed the effect of variants in the ATM gene in Chile and
Mexico [99,100,112]. In both countries the variants c.3285-9delT (rs1799757), c.5497-8T>C (rs3092829),
and c.5557G>A (rs1801516) were reported to be associated with breast cancer risk.

The BARD1 protein heterodimerizes with BRCA1 and induces translocation and retention of
BRCA1 into the nucleus [125]. The c.1670G>C (rs28997576) variant was assessed in case–control studies
from several populations [97,126–132]. In Chile, this variant was associated with an increased breast
cancer risk in families with strong family history [97]. Two other variants were detected in a cohort of
124 Peruvian triple-negative breast cancer patients: the pathogenic c.334C>T (rs758972589) variant and
the probably pathogenic c.1622C>A (rs777937955) variant [122].

Three other BRCA1 and BRCA2 functionally related genes were screened in Latin American
populations. PALB2 binds BRCA2 and recruits it to BRCA1 foci on damaged DNA [133].
Leyton et al. screened this gene in 100 Chilean breast cancer patients negative for BRCA1/2 mutations
and found two variants, c.1676A>G (rs152451) and c.2993C>T (rs45551636), that were associated
with breast cancer risk in a subsequent case–control study [94]. CHEK2 protein is activated by ATM
and phosphorylates BRCA1 [134]. The CHEK2 c.1100delC truncating mutation, which increases the
risk of breast cancer twofold, was widely analyzed. This mutation has a frequency of 0.3–1.2% in
European populations [135] and case-only studies in Brazil, and case–control studies in Colombia
and Chile concluded that this variant is almost absent in these populations [119,123,136,137]. AKT1 is
frequently mutated in mammary tumors [138]. Activated AKT1 phosphorylates a large number of
downstream substrates that play a crucial role in tumor growth and survival [139]. Lopez-Cortes et
al. [102] analysed six SNPs (c.49G>A (rs121434592), c.956A>G (rs12881616), c.1070T>C(rs11555432),
c.1162C>A (rs11555431), c.1172+23A>G (rs2494732), and c.1172+69G>C (rs3803304)) in AKT1 and
its association with breast cancer risk, as well as histopathological and immunohistochemical
characteristics, in 276 Ecuadorian mestizo women. They found that the intronic SNP rs3803304
was associated with breast cancer risk. Moreover, they found that the heterozygous genotype CG of
that SNP had a significantly different frequency between intrinsic subtypes (p ≤ 0.05), with luminal
B showing the highest frequency (63.6%). This result suggests that the SNP rs3803304 may affect
DNA transcription, acting as a risk factor for breast cancer in Ecuadorian mestizo population living in
high altitudes.

Polymorphisms within two DNA double-strand break repair genes, XRCC3 c.722C>T (rs861539)
and RAD51D c.698A>G (rs28363284), were assessed for their association with breast cancer risk
in high-risk families in Chile without known BRCA1/2 mutations [98]. Only the variant in the
XRCC3 gene yielded a statistically significant result [98]. In relation to DNA single-strand break
repair genes, a case–control study in Puerto Rico tested associations between SNPs in the xeroderma
pigmentosum (XPC and XPD) and ultraviolet (UV) excision repair protein (RAD23B) genes and
breast cancer risk [117]. They hypothesized that genetic variation in the nucleotide excision repair
pathway genes could modulate DNA repair capacity and contribute to breast cancer risk and found
an association between RAD23B and breast cancer risk, and between XPC and RAD23B and DNA
repair capacity in the cases [117]. Similarly, a Mexican study reported a significant association
between the c.1196A>G (rs25487) variant of the XRCC1 gene and breast cancer risk [121]. Variants in
TP53, which is an important gene in DNA-repair related pathways [140], were reported in Brazilian
populations [83–85,114,141–145]. Four case-control studies assessed the rs1042522 (c.215C>A) variant,
reporting negative results. The heterozygous frequency ranges between 40 and 60% and the frequency
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of the homozygous genotype is ~10%. These frequencies are also similar to the frequencies in the
healthy population [141–144]. Even though the prevalence of this mutation is variable across different
populations, these results are similar to the average frequencies observed worldwide [146]. Three other
studies evaluated the c.1010G>A (rs121912664) variant, which was found in 2–7% of breast cancer
patients and absent in controls [83–85].

3.2. Genes Involved in Amino-Acid and Nucleic-Acid Metabolism

The thymidylate synthase (TS) gene produces an enzyme that is involved in one-carbon
metabolism and is crucial for DNA synthesis. A study in Mexico explored the association
between polymorphisms in the TS gene and breast cancer risk and reported negative results [118].
Other case–control studies in Mexico, Ecuador, and Brazil [88,103,110,111,147] evaluated the association
between polymorphisms in the methylenetetrahydrofolate reductase (MTHFR) and cystathionine β

synthase (CBS) genes, which are involved in the processing of amino acids, and breast cancer risk.
Four out of five studies found a positive association [88,103,110]. López-Cortés et al. [103] did not
find statistically significant differences between breast cancer subtypes but reported an association
between the heterozygous C/T and homozygous mutant T/T genotypes for the c.665C>T (rs1801133)
polymorphism, and a lower MTHFR messenger RNA (mRNA) expression in triple-negative breast
cancer (TNBC) tumors. The 5-methyltetrahydrofolate-homocysteine methyltransferase (MTR) gene,
also involved in the amino-acid synthesis pathway, was tested in a Brazilian population with no
significant results [147].

3.3. Genes Involved in Hormone Metabolism, and Hormone Receptor, Co-Activator, or Suppressor Genes

Sex hormones, their receptors, and other relevant components within their pathways, are thought
to be involved in breast cancer development because of their role in cell growth and proliferation.
Analyses of a limited number of candidate variants in hormone receptor genes (estrogen (ESR1),
androgen (AR), and progesterone receptors (PGR)) yielded mostly negative results except in
secondary stratified analyses (by body mass index or use of hormone replacement therapy) [148–152].
Studies conducted in Latin America focused on the ESR1, PGR, COMT, CYP19A1, and CYP1A1
genes [89,113,115,120,150,153]. One of these studies reported a positive association between an Alu
insertion in the PGR gene and breast cancer risk [120], while other studies revealed statistically
significant associations for polymorphisms within the CYP1A1 gene [113,115].

3.4. Extracellular Matrix Components

Matrix metalloproteinases (MMPs) are enzymes that can degrade the extracellular matrix and
basement membrane and are thought to play an important role in cell proliferation, migration,
differentiation, apoptosis, and angiogenesis [154]. A large study including US Hispanic/Latina
women tested associations between polymorphisms in MMP-1, MMP-2, MMP-3, and MMP-9 genes
and breast cancer risk [155]. Significant associations were found for intronic SNPs in the MMP-1
(c.625+332G>A, rs996999), MMP-3 (c.1229+495C>T, rs650108), and MMP-9 (c.1331-163G>T, rs3787268)
genes among women with high Native-American ancestry [155]. A study conducted in Mexico
reported a strong association between the MMP-2 c.-1586C>T polymorphism (rs243865) and breast
cancer risk [156]. Other studies in Argentinian and Brazilian populations reported negative results for
two SNPs (c.781G>A, rs11895564 and c.3841C>T, rs121912467) in the integrin subunit α6 (ITGA6) gene
and the c.-1562 C>T (rs3918242) polymorphism in the MMP-9 gene, respectively [157,158].

3.5. Inflammation and Energy Balance

Different analyses conducted in the Breast Cancer Health Disparities Study samples analyzed tag
SNPs in genes related to inflammation and energy balance, taking into account possible interactions
with body mass index [159–164]. Few Latin American studies tested the association between genes in
inflammation and energy balance pathways and breast cancer risk (TNF-α, RETN, CAP1, and PTGS2
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genes). No association was detected for nine SNPs evaluated within the PTGS2 gene [165]. The TNF-α
c.-308G>A (rs1800629) polymorphism was found to be associated with breast cancer risk in a study
conducted in Mexico [166], and another Mexican study found associations between the RETN
c.-225C>G (rs1862513) and CAP1 c.881G>A (rs35749351) polymorphisms and breast cancer risk [104].

3.6. Genes Associated with Tumoral Immunity

Two studies assessed polymorphisms related to tumor immune response in Brazilian populations,
and both of them found statistically significant associations with breast cancer risk [87,90].
Tumor-infiltrating regulatory T cells (Tregs) possess relevant roles in tumor immunity. When activated
by tumor-associated antigens, they can suppress specific antitumor immune responses [167]. Forkhead
box P3 (FOXP3) is a transcription factor essential for the development and functions of Treg
cells [87,168]. It was also reported as being expressed in breast cancer cells, and its expression is
associated with a better prognosis after neoadjuvant chemotherapy in HER2-overexpressing breast
cancer patients [168]. Banin Hirata et al. (2017) analyzed two FOXP3 SNPs (c.-22-902A>G (rs2232365)
and c.-23+2882C>A (rs3761548)) and their possible association with susceptibility and clinical outcomes.
They reported associations between genotypes and clinical characteristics for specific breast cancer
subtypes [87], suggesting that FOXP3 may influence clinical outcome according to intrinsic subtype
and might be a marker for aggressive disease. Another study reported associations between two SNPs
in the promoter of the IL-18 gene, c.-838C>A(rs1946518) and c.-368G>T (rs187238), and breast cancer
risk [90]. IL-18 is a pleiotropic cytokine that promotes antitumor pro-inflammatory responses and
is highly expressed in breast cancer tumors in mice and in serum of breast cancer patients [169,170].
Predictive models showed that these SNPs might impair the binding of some transcription factors,
decreasing promoter activity [171,172].

3.7. Metabolism of Xenobiotic Compounds and Oxidative Stress

Selenoproteins were shown to have a redox function and to decrease oxidative stress. One study
tested the association between SNPs in different selenoprotein-related genes (GPX1, GPX2, GPX3,
GPX4, SELS, SEP15, SEPN1, SEPP1, SEPW1, TXNRD1, and TXNRD2) and breast cancer risk in US
Latinas, finding mostly negative results except when analyses were stratified by genetic ancestry
and by tumor subtype [173]. Other studies were conducted in Mexico and Brazil and investigated
multiple genes: CYP2W1, CYP4F11, CYP8A1, and CYP1B1 [174], which are important in the activation
of carcinogenic compounds; ABCB1, which encodes the MDR1 protein, [105,106] and is involved in
the elimination of xenotoxic agents; GSTM1 and GSTP1, members of the glutathione S-transferase
(GST) gene family [91,108,109,113]; and eNOS, which can react with other free radicals and damage
DNA [114]. Results for the CYP genes were mostly negative, except for CYP1B1 [107], while positive
associations were reported for the GSTM1 deletion (tagged by rs366631), and ABCB1 c.3435C>T
(rs1045642), GSTP1 c.313A>G (rs1695), and eNOS polymorphisms [91,105,106,108,109,113,114,174].
A study that included 275 Mexican women enrolled in the Ella Binational Breast Cancer Study reported
that the T allele of the c.3435C>T polymorphism located in exon 26 of the ABCB1 gene was an important
risk factor for breast cancer in premenopausal women and specifically for the TNBC subtype [106].
This polymorphism does not change the amino-acid sequence, but is associated with a decrease in
ABCB1 function, and reduced mRNA and/or protein expression, which might impact the metabolism
and posterior elimination of toxic and carcinogenic compounds inducing cellular accumulation leading
to cancer development [106,175].

3.8. Non-Coding RNAs

Non-coding RNAs participate in complex networks involved in cancer pathways. MicroRNAs
are short non-coding RNAs with relevant roles in the physiological control of cell homeostasis as they
regulate the expression of hundreds of genes though direct binding to their mRNAs [176]. SNPs on
microRNA precursors (pre-microRNAs) can influence the processing into their functional mature



Genes 2019, 10, 153 10 of 25

forms; moreover, SNPs in the mature forms may affect the strength of regulation of their target
mRNAs. Two studies tested the association of SNPs within microRNAs in Latina patients [92,93].
The first study assessed the effect of the miR-196a2 rs11614913 SNP in a Brazilian population and
revealed that the T allele was associated with increased breast cancer risk, while the CC genotype
had a protective effect [92]. In a Chilean study, SNPs in pre-miR-27a, pre-miR-196a2, pre-miR-423,
pre-miR-618, and miR-608 were tested for their association with breast cancer risk [93]. The authors
found that the pre-miR-423 rs6505162 and pre-miR27a rs895819 SNPs were associated with breast
cancer risk in individuals with a strong family history and with a moderate history of breast cancer,
respectively, and that the pre-mir-618 rs2682818 was associated with an increased risk in non-familial
early-onset breast cancer [93].

4. Genome-Wide Association Studies in Latin America

The first GWAS on Latina women was published in 2014 [40], reporting genome-wide statistically
significant results for two linked SNPs 56 kb upstream of the ESR1 gene (rs140068132 and rs147157845).
These SNPs have a frequency of between 5% and 23% in Latin American populations and are practically
absent in all other groups. The minor allele was protective, with an associated odds ratio (OR) of
0.60 (95% confidence interval (CI): 0.53–0.67) and was more protective for estrogen-receptor-negative
(ER−) (OR: 0.34; 95% CI: 0.21–0.54) than for estrogen-receptor-positive disease (OR: 0.63; 95% CI:
0.49-0.80) [40]. An additional GWAs and fine mapping analysis of the 6q25 region in an extended
sample identified three new SNPs associated with breast cancer risk [177].

Some studies conducted in Latin America replicated selected loci that were discovered in breast
cancer GWAS conducted in samples of European origin: two in Chile and one in Mexico [95,96,116].
These studies tested the association between SNPs in FGFR2, TOX3, and MAP3K1 genes and the 2q35
and 8q24 loci, that were replicated in different populations [178–184]. FGFR2 and MAP3K1 are tyrosine
kinases. FGFR2 mediates signaling of fibroblast growth factors, MAP3K1 is involved in apoptosis
signaling, and TOX3 is a nuclear protein that acts as a chromatin remodeler. Altered expression of these
proteins was described in breast cancer pathogenesis [185–187]. Two studies assessed the association
between SNPs in FGFR2 (c.109+906T>C (rs2981582), c.109+1899A>G (rs2420946), 109+7033T>A
(rs1219648), MAP3K1 (rs889312), TOX3 (rs3803662), 2q35 (rs13387042), and 8q24 (rs13281615) and
breast cancer risk in Chilean patients [95,96]. They found associations for SNPs on FGFR2, MAP3K1,
TOX3, and 2q35, but not for 8q24 [95,96]. Another analysis of the FGFR2 rs2981582 polymorphism
in the Mexican population reported an interaction between the FGFR2 polymorphism and alcohol
intake [116]. The first breast cancer GWAS in US Hispanic/Latinas also replicated previous associations,
with most of the SNPs being concordant in terms of direction and magnitude of association with those
reported in Europeans or Asians [40].

5. Genetic Ancestry and Breast Cancer Risk

There is a heterogeneous genetic background in Latin American populations, with regional
variation in the relative proportions of the three main ancestral continental influences: Indigenous
American, European, and African. A study conducted in US Hispanic/Latinas from the Bay Area first
reported the association between genetic ancestry and breast cancer risk [188]. Women with higher
European ancestry had an increased risk of breast cancer compared to women with higher Indigenous
American ancestry. Subsequent studies in Latin American populations (two in Mexicans and one
in Colombians) replicated this finding [189–191]. A study from Uruguay did not find a statistically
significant difference in genetic ancestry between breast cancer cases and controls, possibly due to the
lack of statistical power given the size of the sample and the relatively small proportion of Indigenous
American ancestry in this population [192]. The original finding that genetic ancestry was associated
with breast cancer risk in Latinas was followed by an admixture mapping [193] analysis and a breast
cancer GWAS [40], which we previously mentioned, and led to the discovery of a protective genetic
variant near the ESR1 gene mostly observed in women of Indigenous American ancestry.
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A large proportion of the case/control studies described in Section 3 did not adjust for genetic
ancestry, which is a known confounder in genetic epidemiology studies. Self-reported ethnicity is a
useful way to control for population stratification on an ethnicity-matched case–control study design
from comparable geographical regions [194]; however, this methodology is logistically challenging and
costly. In addition, given the complex genetic substructure of Latin American populations, it is highly
recommended to adjust for covariates that capture the ancestry composition of cases and controls
using panels of ancestry informative markers or genome-wide genotype data [195].

6. Conclusions and Perspectives

In this review, we presented a summary of genetic association studies in Latin American women,
including studies of relatively rare high-penetrance mutations and those discovered using candidate
gene approaches or GWAS, which tend to be of moderate or small effects but are more common.

In recent years, a picture of the BRCA1- and BRCA2-associated hereditary breast cancers in
Latin America emerged. While still incomplete, available evidence points to a unique genetic
make-up characterized by remarkable diversity across and within countries [68,74,75,196]. Yet, a better
understanding of the prevalence and types of mutations underlying hereditary breast cancers in
Latin American women is a necessary step for informing the strategies for the detection and clinical
management of carriers. The use of affordable targeted mutation panels presents an attractive solution
in settings with limited resources, which are common in many Latin American countries, provided
that larger studies representative of the population of interest are conducted during variant discovery.
These populations also present unique opportunities to contribute to the classification of variants of
unknown significance. In recent years, clinical testing for hereditary breast cancer transitioned from
BRCA1 and BRCA2 analysis to extended panels of genes including high- and moderate-penetrance risk
genes. Although this approach became standard of care in the US, the data on the use of these panels
in Latin American populations are sparse. In parallel to emerging efforts aimed at describing the
molecular characteristics of hereditary breast cancers in Latin America, there is a need to improve access
to genetic testing and for the development of supporting infrastructures in cancer risk assessment,
education, and genetic counseling [197,198].

Risk prediction models that combine non-genetic and genetic risk factors were developed
and are constantly being improved [199–202]. Taken separately, variants of small effect sizes have
limited impact on breast cancer risk prediction, but when combined into polygenic risk scores (PRS),
the magnitude of their effect on risk may equal or surpass those of pathogenic variants in moderate-risk
genes [203]. Prediction models that are usually applied are based on research conducted in European
populations [204]. Because GWAS SNPs are selected for their tagging properties rather than their
potential functional significance, known differences in linkage disequilibrium structures in populations
of the world [205] are likely to confound replication studies and the clinical validity of the European
GWAS SNPs. Recently, Wang et. al. demonstrated that 30–40% of the SNPs commonly used to estimate
breast cancer PRS have inconsistent directionality in African American populations and, consequently,
performed poorly in this group [206].

Progress in the discovery of population-specific breast cancer genetic risk variants in this region
is limited by different factors, such as the slower incorporation of new genotyping and sequencing
technologies, and the relatively small samples sizes partly due to the paucity of National Cancer
Registries and the inconsistent collection of biospecimens (i.e., tumor blocks) for research (Table 2).
On average, approximately half of the genome of Latina American women is of European origin and,
therefore, much larger sample sizes would be required if similar results as for the European genome
are to be expected for the Indigenous American component. We cannot assume that only overlapping
variants between different ancestral genomes will be associated with risk and, therefore, we need
to focus our efforts to reduce research disparities by expanding available resources to include large
cohorts and case–control studies of diverse populations in and outside the US.
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Table 2. Breast cancer genetic epidemiology in women of Latin American origin: Current limitations
and possible solutions.

Current Limitations Possible Solutions

Diverse genetic backgrounds and mutational frequencies
among Latin American populations.

• Foster collaborations between Latin American countries.
• Account and stratify for ancestry proportions.

Small sample size in comparison with studies including
European and European American individuals.

• Promote access and exchange of information among researches to
establish research partnerships within and across countries to
generate large consortiums for joint data analysis.

• Homogenize the design and data processing of studies from
different countries to facilitate data sharing and sample pooling.

• Extension of National Cancer Registries and quality improvement,
including biospecimen collection.

Limited access to high-cost technologies for variant discovery
in multiple Latin American countries.

• Promote collaborative relationships with specialized multicenter
initiatives to reduce costs and assure quality control.

• Promote collaborations that allow Latin American countries to
access technologies in the United States and other countries
(e.g., European countries, Australia, Japan, etc.) with appropriate
data sharing protocols that allow analyses to be conducted by
scientists in Latin America.

Inequality in access to healthcare by genetic ancestry might
limit the representation of highly Indigenous American

women in genetic studies.

• Foster active role of public hospitals in patient accrual.
• Decentralization of institutions in charge of

patient/individual accrual.

There are ongoing efforts to improve homogeneity of study design and increase sample size in
studies in Latin America. In 2009, the Center for Global Health of the US National Cancer Institute
(NCI) created the US-Latin America Cancer Research Network (LACRN), a collaborative management
structure that includes Argentina, Brazil, Chile, Mexico, and Uruguay [207]. In 2011 the US–LACRN
launched the “Molecular Profiling of Stage II and III Breast Cancer in Latin American Women Receiving
Standard of Care Treatment (MPBC)” study. Future studies will involve genetic ancestry estimation,
sequencing of high-penetrance genes, whole-exome sequencing, and identification of circulating tumor
cells and cell-free DNA. The Molecular Subtypes of Premenopausal Breast Cancer in Latin American
Women (PRECAMA) study is an effort led by the International Agency for Research on Cancer (IARC)
involving data harmonization and standard protocols for recruitment of premenopausal breast cancer
cases and controls, collection and storage of blood samples, tumor block fixation and handling, and
pathology review in Chile, Colombia, Mexico, and Costa Rica [208]. Similarly, the EPIGEN-Brazil
Initiative aims to study the association between genetic variants found in the Brazilian population and
complex diseases, taking into account its complex admixture genetic background [209]. Many studies
in Latin America are based on the recruitment of cases only and, therefore, cannot be included in larger
studies based on case–control comparisons. However, efforts such as the Consortium for the Analysis
of the Diversity and Evolution of Latin America, the Candela project, which aims to characterize
the physical appearance and to examine the genetic and social background of 7342 subjects from
Mexico, Colombia, Peru, Chile, and Brazil [210], could be leveraged to complement case-only designs.
Another such resource is the Chile Genomico Project, aimed at describing the genomic structure of the
Chilean population based on the contribution of the Indigenous Americans, European, and African
populations. So far, they have genotyped 3500 individuals (chilegenomico.cl; Accessed February 10th
2019). Finally, the Mexico Biobank Project has created a nation-wide DNA biobank that facilitates
research on complex diseases and aims to characterize the population genetics of native and admixed
Mexicans (mxbiobankproject.org; Accessed February 10th, 2019).

To conclude, large collaborative international efforts that include knowledge and technology
exchange and transfer will lead to studies with appropriate sample sizes and approaches to discover
rare high-penetrance polymorphisms, as well as low-penetrance variants in Latin American women
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from different regions and with different ancestral proportions. Only then will we be able to provide
appropriate genetic risk estimates and care to women of Latin American origin worldwide.
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