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Abstract

Background: Heritability and mode of inheritance of spontaneous diabetes mellitus

(DM) in American Eskimo Dogs (AED) are unknown.

Objective: Investigate the heritability and mode of inheritance of DM in AED.

Animals: An extended family of AED including 71 AED without DM, 47 AED with an

unknown phenotype, and 38 AED with spontaneous DM.

Methods: Retrospective evaluation of inheritance. A logistic regression model was

formulated to evaluate the heritability of DM, including effects of sex and neuter sta-

tus. Subsequently, complex segregation analysis was employed to investigate the

inheritance pattern of DM in AED. Six plausible models were considered, and the

Akaike Information Criterion was used to determine the best of the biologically feasi-

ble models of inheritance of DM in AED.

Results: Heritability of DM in AED is estimated at 0.62 (95% posterior interval

0.01-0.99). Predicted DM probabilities for neutered females (NF), intact females (IF),

neutered males (NM), and intact males (IM) were 0.76, 0.11, 0.63, and 0.12, respec-

tively. There was no overlap between the 95% posterior intervals of disease probabil-

ities in NF and IF or in NF and IM. Complex segregation analysis suggested that the

mode of inheritance of DM in AED is polygenic, with no evidence for a single gene of

large effect.

Conclusions and Clinical Importance: The estimated heritability of DM in AED is high

but has low precision. Diabetes mellitus transmission in AED appears to follow a

polygenic inheritance. Breeders could successfully implement a breeding program to

decrease the incidence of DM in AED.

K E YWORD S

canine, genetic risk, non-Mendelian, polygenic

1 | INTRODUCTION

Heritability and mode of inheritance of middle-aged onset diabetes

mellitus (DM) have not been reported in dogs with spontaneous dis-

ease. However, breed predisposition to DM suggests a genetic com-

ponent, which can vary with geographic location. In the United States,

Abbreviations: AED, American Eskimo Dog; AIC, Akaike Information Criterion; AKC,

American Kennel Club; DM, diabetes mellitus; IF, intact females; IM, intact male; NF,

neutered females; NM, neutered males; ROC curve, receiver operating characteristic curve.
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the Samoyed, Miniature Schnauzer, Miniature Poodle, Pug, Toy Poo-

dle, and Australian Terrier breeds are at increased risk for DM.1,2 In

Sweden, the Australian Terrier, Samoyed, Swedish Elkhound, and

Swedish Lapphund breeds have increased incidence of DM, whereas

in the United Kingdom, the Samoyed, Tibetan Terrier, Cairn Terrier,

Dachshund, Doberman Pinscher, Miniature Schnauzer, Siberian Husky,

Scottish Terrier, West Highland White Terrier, Miniature Poodle, and

Border Collie breeds are at highest risk for DM.3,4 Familial DM occurs

in Samoyeds and Keeshonds although the age of onset of DM in this

inbred family of colony Keeshonds was unusually young (2-6 months of

age) compared to the mean age of onset of DM in the general dog pop-

ulation, which is about 9 years of age.5-7 The mode of inheritance of

this unusually young age of onset DM in Keeshonds was suggested to

be autosomal recessive.6 The American Eskimo Dogs (AED) have not

been reported to be at an increased risk for DM, although AED

breeders have recognized the problem and subsequently charged an

Ad Hoc Diabetes Committee (https://www.aedca.org/AdHocDiabetes/

diabetes-main.html).

There are associations between DM and single nucleotide poly-

morphisms in different genes in various breeds of dogs4,8-11 but not in

AED. There is an association between the risk of DM and single nucle-

otide polymorphisms in the insulin gene region in Jack Russell Terriers

and Cocker Spaniels, in the cytotoxic T-lymphocyte-associated pro-

tein 4 in mixed breed dogs, Samoyed, Miniature Schnauzer, West

Highland White Terrier, Border Terrier, and the Labrador Retriever

breeds, in inflammatory mediators, protein tyrosine phosphatase non-

receptor type 22, mitochondrial transfer RNA for protein translation,

paired box 4, and hepatocyte nuclear factor 4a in several breeds, in

the zinc finger protein 57 of Bichon Frise and Samoyed breeds, and in

the dog leukocyte antigen of dogs not stratified by breed.4,8-11

Although ample evidence exists that there is a genetic risk for DM

in dogs, the heritability and mode of inheritance of DM in dogs are

not known. Heritability and mode of inheritance must be investigated

in breed-specific studies because prior research suggests that the

genetic architecture of DM differs by breed.1-6,9-11 The goals of this

study were therefore to investigate the heritability and mode of inher-

itance of DM in AED. It was hypothesized that the heritability of DM

in AED is high and that the mode of inheritance is polygenic with sev-

eral large effect loci.

2 | MATERIALS AND METHODS

2.1 | Study population

An online questionnaire (http://www.vet.upenn.edu/diabetes) designed

to investigate the prevalence of spontaneous DM in dogs across the

United States was launched in April 2017 and widely distributed

(Appendix S1). Owners of all dogs, regardless of breed and whether

the dog had DM, were encouraged to complete the survey. The sur-

vey was promoted electronically among veterinary students and fac-

ulty at 21 academic institutions and directly to owners of dogs who

were examined at 10 private referral practices and 8 academic institu-

tions by placing self-standing flyers advertising the survey in waiting

areas (Appendix S1). The survey was also featured on the American

Kennel Club (AKC) website and numerous breed-specific kennel clubs

including the AED National Club, which also promoted the survey to

their members electronically. Additionally, social media was used

to promote the survey (Appendix S1). Data collected for all dogs

included age at the time of survey completion, breed, sex, neuter sta-

tus, age at the time of neuter, presence or absence of DM, AKC or

United Kennel Club number if available, names and contact informa-

tion of immediate relatives if known, and owner contact information.

Additional data collected for dogs with DM included neuter status

before diagnosis of DM, age at the time of DM diagnosis, clinical signs

recorded at the time of DM diagnosis, and the dose, frequency, and

name of the insulin product used for treatment of the dog. For the

purposes of this study, only data regarding AED were analyzed. Amer-

ican Eskimo Dogs were included in the study if they were entered into

the survey by the end of April 2018. In addition to the survey, owners

and breeders of AED within the United States were contacted directly

and identical data were collected from them in this manner. Purebred

status and ancestry of AED were confirmed with review of AKC or

United Kennel Club pedigrees. American Eskimo Dogs with DM were

included only if the owner had an AKC or United Kennel Club regis-

tered pedigree and if the owner could be contacted to confirm the

diabetic phenotype. Furthermore, dogs with DM were included only if

at least 1 owner of 1 ancestor could be contacted to verify the pres-

ence or absence of DM in this ancestor. American Eskimo Dogs with-

out DM or with an unknown phenotype were included only if they

were directly related (eg, sibling, offspring, parent, grandparent) to a

dog with DM. American Eskimo Dogs from countries other than the

United States and Canada were excluded.

2.2 | Definition of phenotype

Dogs were defined as cases with DM if their owner asserted that a

veterinarian had diagnosed the dog with DM. Dogs were defined as

controls that do not have DM if their owner reported that the dog

had no clinical signs consistent with DM (polyuria, polydipsia, poly-

phagia, weight loss) and was not being treated with insulin. Dogs were

defined as having an unknown phenotype if their owner could not be

contacted. Sex was classified as neutered females (NF), intact females

(IF), neutered males (NM), and intact males (IM).

2.3 | Estimation of heritability

Logistic regression (logit) was chosen to model this binary disease out-

come (dogs with or without DM). Disease risk was modeled as a func-

tion of sex and neuter class, and a presumed quantitative genetic

contribution. The probability of disease was defined as pij for the ith

sex and neuter class (i = NF, IF, NM, IM), and the jth dog and the logit

of this probability was defined as θij = log[pij/(1 − pij)]. The logit was

modeled as a function of sex and neuter class and a quantitative geno-

type, and the linear model was as follows: θij = μ + sexi + aj + ej, where

μ is an unknown constant common to all dogs, sexi is the additive con-

tribution of the ith sex and neuter class to the risk of disease, aj is the
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additive genetic contribution to the risk of disease for the jth ( j = 1,

2, 3, …) dog, and ej is an unknown random residual contribution to the

risk of disease particular to the jth dog. This unknown residual risk of

disease (ej) represents a function of unknown environmental factors,

which could include diet, exercise, climate, and veterinary care. It is

important to recognize that the dogs in this set of data are related to

one another such that the covariance among relatives is accommo-

dated by the inclusion of the additive genetic contribution (aj).

Likelihood-based software to evaluate a binary trait among relatives

is not readily available. Among publicly available software, there is a

Bayesian-oriented package called MCMCglmm, available in the public

domain language R. However, in data sets of this size and structure, the

built-in priors for the variances used in MCMCglmm (ie, the inverse-

Wishart) often lead to poorly converged posterior densities. Such was

the case with the present set of data. Accordingly, for the analyses pres-

ented here, the Bayesian statistical language Stan, executed with the

public domain language R, was used (Appendix S2).12,13 The Stan lan-

guage provides the user with more flexibility in the definition of prior

densities, especially for the unknown variances. In this way, it was possi-

ble to build a hierarchical Bayesian model with weakly informative prior

distributions for the unknown effects, a model that can better stabilize

the estimation of the posterior density, especially in data sets with such

a limited number of samples accompanied by a complex pedigree.14

The outline for the Bayesian animal model used in this study is the

one established by Damgaard.15 In this approach, which accommo-

dates the contributions of relatives to the risk of disease, the user

must provide Mendelian sampling terms for gametic effects, which

are values that incorporate known parentage and parental inbreed-

ing.16 Once computed, the Mendelian sampling terms can then be

included as input to the analysis so that the genetic covariance struc-

ture dictated by the pedigree is built properly.15

An important component of any Bayesian analysis is the definition

of the prior distributions of the unknown parameters. Although a thor-

ough description of Bayesian analysis is beyond the scope of this

report, readers can nonetheless be aware that a Bayesian analysis is

built around the recognition that the “posterior density is proportional

to the likelihood times the prior density.” It is the posterior density

(“posterior” to the collection of data) that serves as the mechanism for

evaluating the patterns (if any) observed in the risk of disease in this

pedigree. The likelihood for disease was defined above, that of a simple

binary variable (formally called a Bernoulli variable). Next, we must out-

line our assumptions about the prior distributions of our unknown

parameters (where “prior” is meant to convey our thoughts about these

unknown values before data collection). The adjective “weakly,” which

was used above in the discussion of prior distributions, is intended to

convey that we harbor no strongly held opinions about the values of

the unknown parameters before data collection, preferring to let the

data inform us of the patterns reflected in the data. Accordingly, if the

prior beliefs are “weakly” held, then the posterior largely reflects the

likelihood (ie, “posterior density is proportional to the likelihood times

the prior”), which is a result that is not too distant from the basis of

classical statistics where likelihoods form the basis for all parameter

estimates, hypothesis tests, and detection of patterns in the data.

Defining the prior distributions of these unknown parameters, it

was assumed that the intercept (μ) and sex contribution (sexi) were

each drawn from a normal distribution, 1 with mean zero and a vari-

ance of 16 (ie, N[0, 16]). This choice for priors is intended to reflect,

as best as can be done, the classical application of a mixed linear

model; a model that contains fixed effects (ie, sex) and random effects

(ie, animal contributions). Moreover, this binary trait is evaluated on

the logit scale, and a variance of 16 on this log scale is sufficiently

large so as to serve as a weakly informative prior for these unknown

intercept and sex effects.17,18 The additive genetic effects (aj) in this

model were assumed to be drawn from the multivariate normal distri-

bution, with a null mean and a variance-covariance matrix of A σ2a .

Naturally, A is the known numerator relationship matrix (ie, a table of

values that holds the relationships among all pairs of animals in the

study, as well as every dog's inbreeding coefficient) and σ2a is defined

as the unknown additive genetic variance of disease risk. In this for-

mulation, it was assumed that the prior distribution for the unknown

genetic standard deviation (σa) was drawn from the positive values of

a Cauchy (0, 2.5), as advocated for weakly informative prior distribu-

tions for unknown variances in logistic models.17,19 Finally, the resid-

ual term (ej) was assumed to be drawn from a standard normal density

[i.e., N(0, 1)] as required for this parameterization of a binary trait anal-

ysis.20 Heritability (h2), a measure of the inheritance of disease risk, is

the proportion of all the observed variation in disease risk that can be

assigned to variation in additive genetic effects. Accordingly, the heri-

tability of disease risk was estimated as h2 = σ2a= σ2a +1
� �

.20

Application of this Bayesian framework to the analysis of the data

is reliant upon the efficient simulation of random numbers in a pro-

cess broadly titled as Markov Chain Monte Carlo.14 The objective is

to draw random numbers that behave as if they were drawn from the

posterior distribution, remembering that the goal is to learn about the

posterior distribution. That is, the Markov Chain Monte Carlo is capa-

ble of determining which random draws make sense in the context of

the assembled data and priors and which random draws are less likely

to lead to a meaningful posterior. As a result, much of the emphasis in

evaluating the qualities of a Bayesian analysis focuses on this series of

randomly drawn numbers. One of the additional advantages of the

Stan language, beyond its flexibility, is the implementation of a Hamil-

tonian Monte Carlo simulation, which is a directed-search process

borrowed from physics (specifically, Hamiltonian mechanics) and

made additionally more efficient by the application of a No U-Turn

sampler (the so-called NUTS sampler). The objective of this simulation

process is to provide representative samples of the unknown parame-

ters of the model (eg, the effects of sex, the unknown genetic

variance), thereby producing values which can be interpreted as repre-

sentative of the possible effects of sex and genetic variation. The sim-

ulation process was conducted from 4 independent sampling sets,

called chains, where each chain was built on a draw of 40 000 total

samples. However, the early samples are usually not informative

because of the Markov Chain nature of this process. For the purpose

of this analysis, the first 15 000 samples of the total 40 000 were dis-

carded. Moreover, because consecutive samples in a Markov Chain
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are likely to be correlated to one another (and a truly random sample

with which to work is required), only every 25th generated sample

was kept and the preceding 24 sampled values were discarded. In this

way, each chain generated 1000 parameter estimates (ie, [40000

− 15 000]/25 = 1000), and thus 4000 samples were generated across

all 4 chains. Ensuring the convergence of this process to a consistent

set of random samples was visualized through trace and other diag-

nostic plots of all the unknown parameters and computation of the

Gelman-Rubin statistic for convergence being below 1.05.21,22

Finally, it is important to determine how well this logistic model

fits the data that have been collected. The goodness-of-fit for logistic

models is most easily visualized through a receiver operating charac-

teristic (ROC) curve.23 This plot is taken from the sensitivity and speci-

ficity (actually, 1 − specificity) of the model to accurately predict

animals with and without disease. The most common way to summa-

rize the ability of the model to discriminate between cases and con-

trols is through the area under the curve, where values exceeding

0.90 are usually interpreted as evidence of a model with an excellent

fit. One can also use an ROC curve to estimate the threshold probabil-

ity of declaring a dog as affected. The predictions of a logistic regres-

sion are probabilities on a scale from 0 to 1, whereas the actual

observations of disease are binary (eg, yes or no). The ROC curve can

be used as a guide in evaluating at what predicted probability value

there is the greatest accuracy in assigning a dog to affected versus

unaffected. Because the Stan language also permits the generation of

model predictions, the predicted probability of disease values was

used to create an ROC curve, evaluate the area under the curve, and

estimate the threshold in probability for dogs to be scored as affected

using the R-language package pROC. 21,24

2.4 | Complex segregation analysis

An additional objective of this work was to evaluate whether a single

gene of large effect might impact the risk of DM in AED. A complex

segregation analysis was performed using the publicly available

package SEGREG, 1 of several programs available in the S.A.G.E. (v6.4)

library.25,26 Implementation of this analysis, however, required the elimi-

nation of “loops in the pedigree,” a well-known challenge in the applica-

tion of the Elston-Stewart algorithm.27,28 Charting the path of a putative

single locus through a pedigree requires an unambiguous means of

ascertaining the probability that an offspring has received a given allele

from both parents. This is the foundation of the Elston-Stewart algo-

rithm, which computes the genotype transmission probabilities from

parents to offspring. “Loops in the pedigree,” or more precisely the pres-

ence of consanguineous matings, confound the ability to track the origin

of alleles and genotypes. In such scenarios, the calculation of genotype

probabilities, genotypic transmission probabilities, and most importantly,

the likelihood of a given phenotype being impacted by all possible puta-

tive genotypes, becomes impossible. Accordingly, before the complex

segregation analysis, a loop-breaking algorithm was implemented.29

After the implementation of the loop-breaking algorithm, the rec-

onfigured pedigree included 200 dogs in 1 large family, where dogs

were duplicated to remove loops generated by inbreeding. For example,

if 1 dog was related to 2 different families, this dog was duplicated and

1 duplicate remained in 1 family whereas the other duplicate was intro-

duced to the other family. Although likely to decrease the power to

detect the linkage of a major locus, the strategy employed was intended

to minimize the impact of this pedigree simplification.

The subsequent analysis applied a model intended to mimic the

logistic regression model outlined above, including a term for the sex

of each dog, and a parameter to accommodate shared polygenic terms

of family members, as well as the putative major locus effects.28 As

outlined, various models with and without Mendelian transmission

were evaluated to establish or exclude the potential presence of a sin-

gle gene of large effect.25 Six models were considered. The simplest

was a sporadic model, which considers no putative major locus effect,

but does consider a term for sex and an accommodation of a poly-

genic contribution to disease.28 This was followed by an evaluation of

3 simple mixed major locus models, considering a dominant, recessive,

or codominant major locus, all of which follow the expected transmis-

sion of alleles outlined by Mendel. That is, for putative major geno-

types AA, AB, and BB, the transmission probability for the A allele of

these genotypes is set at 1.0, 0.5 and 0.0, respectively. Next, a model

that considers environmental transmission of disease, where the poly-

genic term is removed and the transmission probabilities are set to

being identically equal to the estimated allele frequency for all 3 puta-

tive major genotypes, was examined. Finally, a general model was

considered where the transmission probabilities of the A allele were

estimated from the data set. The Akaike Information Criterion (AIC), in

which the goodness-of-fit is evaluated with a penalty for the number

of parameters estimated, was used to compare models. The AIC is

intended for model comparisons, where the model with the smallest

AIC is typically considered the best balance between maximizing the

likelihood with the smallest number of meaningful parameters. Such is

the case here, with 1 subtle distinction. That is, the model considered

to be best should also be biologically feasible. Of the biologically feasi-

ble models, the 1 with the smallest AIC was considered the most

appropriate for the data.

The age at DM diagnosis was normally distributed based on visual

inspection and the Skewness/Kurtosis test. Analysis of variance was

therefore used to compare the age at DM diagnosis in dogs of different

sex and neuter status. However, age of death or age at the time of data

entry was not normally distributed among dogs without DM. Therefore,

a two-sample Wilcoxon rank-sum (Mann-Whitney) test was used to

compare the median age of dogs without DM to the median age of dogs

with DM. A P-value <.05 was considered significant. These statistical

analyses were performed using a statistical software package (Stata, ver-

sion 14.0 for Mac; Stata Corp, College Station, Texas).

3 | RESULTS

3.1 | Study population

The study population included 156 AED, all of which were members

of an extended family of inter-matings. Of these 156 AED, 109 had a

known phenotype: 71 dogs were unaffected by DM (controls), and
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38 dogs had DM (cases). Forty-seven dogs had an unknown pheno-

type. Of the 38 AED with DM, 16 were enrolled from the survey and

22 were enrolled from other outreach. Ten AED with DM resided in

Canada but were sired by a dog residing in the United States and born

from the United States AED breeding pool. All other study dogs

resided in the United States.

Among the 38 AED with DM, 13 were NF, 10 were IM, 10 were

IF, and 5 were NM at the time of DM diagnosis. Mean (±SD) age of

the 38 AED at the time of DM diagnosis was 6.3 ± 2.4 years. There

was no significant difference between the mean age of NF (5.7

± 2.6 years), IF (6.7 ± 1.9 years), NM (6.7 ± 2.7 years), and IM (6.6

± 2.6 years) at the time of DM diagnosis (P = .72). Median age of

66 of 71 dogs without DM, for which age at death or age at the time

of data entry was known, was 13 years (range, 1-16.5 years) and was

significantly higher than the median age of dogs with DM at the time

of DM diagnosis (6.5 years, range 1-11 years, P < .0001). Age of

neuter was known in 25 dogs with DM and 5 dogs without

DM. Median age of neuter in 17 females with DM, 8 males with

DM, 3 females without DM, and 2 males without DM was 4.0 years

(range 0.3-10 years), 2.9 years (range 0.5-8 years), 6.5 years (range

5.6-14.6 years), and 1.5 years (range 0.5-2.5 years), respectively.

Thirty-seven of the DM cases were confirmed to have not

received any steroid medication within 1 month before the diagnosis

of DM; 1 intact female AED diagnosed with DM received a steroid

medication within 1 month of DM diagnosis. This dog received twice

daily insulin injections for 2.5 years after the steroid medication was

discontinued and before its death of lymphosarcoma. Thirty-four of

the 38 AED with DM were treated with twice daily SC insulin injec-

tions on a regular basis. Four AED with DM were not insulin treated.

Three of these 4 dogs were euthanized at the time of DM diagnosis

and the fourth dog survived untreated for 1 month before euthanasia.

Owners of 596 AED completed the survey. Five hundred sixty-

seven of these entries were excluded because they described AED

without DM that were not directly related to dogs with DM or whose

owners could not be contacted to verify the phenotype. However,

13 dogs with DM who were entered into the survey were also

excluded from the study because they were not AKC or United Ken-

nel Club registered, or because the owner could not be contacted to

F IGURE 1 An illustration of a
pedigree of 122 American Eskimo Dogs.
Males are portrayed as squares and
females are portrayed as circles. The
illustration includes all 38 case dogs with
diabetes mellitus (DM) (designated in red),
all 71 control dogs without DM
(designated in blue), and 13 of 47 dogs
with unknown phenotype (designated in
orange). Only 13 dogs with unknown
phenotype are portrayed for graphic
logistical reasons
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verify the phenotype. The AKC states that the number of AED

puppies from AKC litters between 2008 and 2017 was 5673 (person-

nel communication, AKC Canine Health Foundation Raleigh, NC

27675).

3.2 | Pedigree analysis

An illustration of the pedigree of 122 AED is provided in Figure 1.

Results of the logistic regression analysis are summarized in Table 1.

Most notable in this table is the estimate of heritability, where the

mean value of the Markov Chain Monte Carlo samples is 0.62, accom-

panied by a posterior interval that spans all possible values of herita-

bility. Figure 2 demonstrates this visually, being a plot of the

frequency of each heritability value for each of the 4 chains that were

simulated. Although unimodal, one can readily see that in a sample of

this size where all the animals in the data are relatives of one another,

the peak of this distribution still encompasses a broad set of plausible

estimates.

The half-Cauchy distribution (half because only positive values

were considered), which was used for the prior of the additive genetic

SD, does not have a defined mean. With a simple random number

generator available in R,2 the mean and median of a half-Cauchy

(0, 2.5) were readily computed as 21.4 and 2.5, respectively. Translat-

ing these half-Cauchy variables to represent heritability, the expected

mean and median of the prior for heritability would be 0.71 and 0.86,

respectively. In a sample of this size, the prior density is strongly,

although not completely, reflected in the posterior density.

Table 2 provides a summary of the results of the complex segrega-

tion analysis, which are reported on a logistic scale. For brevity, results

in Table 2 are reported for intact males, although all sexes provided

similar values. The major locus models (dominant, recessive, and

codominant) did not provide a significant improvement over the spo-

radic model, as judged by the larger AIC values for the major locus

models. Although the general model provided the smallest AIC, it

would be misleading to characterize this as providing the best expla-

nation for the observed patterns of DM in this pedigree. The general

model is not biologically feasible because the major locus transmission

probabilities, which were estimated to be 0, 1.0, and 0.93 for the

putative major locus genotypes of AA, AB, and BB, respectively

(Table 2), are far from those dictated by the laws of Mendelian segre-

gation. The Mendelian values, should a major locus be segregating in

this pedigree, would approximate the expected transmission probabili-

ties of 1.0, 0.5, and 0.0, for AA, AB, and BB, respectively. The sporadic

model, which included only a polygenic term, provided a better biolog-

ical explanation for the underlying genetic mechanisms of DM than

did the general model permitting non-Mendelian segregation of a

putative major locus.

Figure 3 presents the ROC curve taken from the predicted proba-

bilities of disease as they were estimated in our Bayesian logistic

model and serves as a means to quantify how well this model fits the

data used to estimate the unknown sex and additive genetic parame-

ters. The area under the curve, computed with the R-package pROC

using the average values of the predicted probability of disease, was

found to be 0.96, which suggests a very strong fit between observed

and predicted disease states in this relatively small sample of dogs. 24

Moreover, the estimated threshold for predicting dogs as affected

would be when the logistic model predictions of disease exceed 0.23,

a value that would result in a specificity of 0.90 and a sensitivity

of 1.0.

TABLE 1 Heritability and predicted
probabilities of diabetes mellitus (DM) by
sex, as estimated by a mixed logistic
regression model in American
Eskimo Dogs

Parameter Estimate

Lower 95%
posterior
interval limit

Upper 95%
posterior
interval limit

Predicted probability [DM|IF] 0.11 0.02 0.27

Predicted probability [DM|NF] 0.76 0.36 0.96

Predicted probability [DM|IM] 0.12 0.01 0.29

Predicted probability [DM|NM] 0.63 0.14 0.96

h2 0.62 0.01 0.99

Abbreviations: DM, diabetes mellitus; IF intact female; IM intact male; NF neutered female; NM

neutered male.

F IGURE 2 Posterior density plot of heritability for each of the
4 Markov Chain Monte Carlo simulations
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4 | DISCUSSION

The large heritability point estimate of 0.62 indicates that there could

be 1 or more loci with a profound impact on DM in AED. However, the

wide 95% posterior interval, which spans the entire region of possible

heritability estimates from 0 to 1, indicates that the magnitude of inher-

itance of DM should be interpreted with caution. It is important to be

mindful of the fundamental of Bayesian analysis, which assumes that

the “posterior is proportional to the likelihood times the prior.” That is,

in a data set of this size, the likelihood will not exert as large an

influence on the posterior as we might prefer. Although the prior for

the additive genetic SD is intended to be only weakly informative, the

prior can exert more impact on the posterior density than is intended if

the likelihood is also weakly informative. The estimated point heritabil-

ity of 0.62 is slightly smaller than that expected from the half-Cauchy

variables, indicating that the likelihood is providing some, although not

a substantive amount, pressure to shrink heritability from our prior

values. Nevertheless, these results are still encouraging, suggesting that

breeders of AED could be successful in mounting a breeding program

directed at reducing the incidence of DM in this breed. If the mean of

the posterior of heritability is accepted as the most reasonable estimate

for the data available, there remains the suggestion that there could be

1 or more loci with a significant effect on DM in AED, prompting the

implementation of a complex segregation analysis.

The sporadic model, which included only a polygenic term, provided a

better explanation for the underlying genetic mechanisms of DM than the

major locus models. The general model is used to affirm a suspicion that

1 of the major locus models can explain the mode of inheritance if a major

locus model has a smaller AIC than the sporadic model. However, in this

study, the sporadic model had a smaller AIC than any of the major locus

models, and, therefore, the general model was not used to affirm the supe-

riority of any of the major locus models. The small AIC of the general

model reflects a statistical rather than a biological finding. In any other sta-

tistical setting, that model with the lowest AIC is thought to provide the

best explanation of the phenomenon under study. In this instance, how-

ever, that would not be the case, for the general model presented in

Table 2 would lead to the conclusion that the major locus is inherited in a

non-Mendelian fashion, which is a biological impossibility. As a result, the

patterns of disease inheritance witnessed in this pedigree do not seem to

be the result of a segregating locus of large effect. The likelihoods can also

be used to contrast models with the likelihood ratio test, providing a possi-

ble test of significance. However, the small differences in AIC are a clear

enough indication that no significant improvement of the model can be

found in the incorporation of a putative major locus.

TABLE 2 Genetic models tested and
their results from the complex
segregation analysis of diabetes in intact
male American Eskimo Dogs

Model q μAA μAB μBB τAA τAB τBB AIC

Sporadica … −1.14 … … … … … 148.6

Dominantb 0.76 −1.78 −1.78 2.82 1.0 0.5 0.0 148.9

Recessiveb 0.25 1.86 −1.77 −1.77 1.0 0.5 0.0 148.8

Codominantb 0.73 −1.54 −2.64 2.86 1.0 0.5 0.0 150.6

Environmentalc 0.34 −2.01 −2.01 0.38 0.34d 0.34d 0.34d 152.1

Generale 1.00 −3.31 −0.08 −2.59 0.0 1.0 0.93 123.9

Abbreviations: q = frequency of the A allele; μAA, μAB, μBB are logistic model parameter estimates for the

putative major locus genotypes for intact males; τAA, τAB, τBB are the transmission probabilities for the

putative A allele; AIC is the Akaike Information Criterion.
aThe sporadic model considers no putative major locus effect but does consider a term for sex and an

accommodation of a polygenic contribution to disease.
bThe dominant, recessive, or codominant models are simple mixed major locus models, which follow the

expected transmission of alleles outlined by Mendel.
cIn the environmental model the polygenic term is removed and the transmission probabilities are set to

being identically equal to the estimated allele frequency for all 3 putative major genotypes.
d0.34 = q in the environmental model.
eIn the general model the transmission probabilities of the A allele were estimated from the data set.

F IGURE 3 Receiver operating characteristic (ROC) curve for the
predicted probability of diabetes mellitus in the logistic model for
each of the 4 Markov Chain Monte Carlo simulations
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The complex segregation analyses suggest that the best model to

describe the mode of inheritance of DM in AED is the polygenic spo-

radic model. Therefore, it may be concluded that a mixed model of

inheritance (one with a locus of large effect modified by many addi-

tional loci of relatively smaller impact on disease risk) is not a plausible

explanation for the pattern of inheritance of DM in this complex AED

pedigree. It can be further concluded that DM transmission in AED

follows a polygenic inheritance pattern with several large effect

loci. This conclusion is in agreement with prior studies that have

demonstrated associations between DM and single nucleotide poly-

morphisms in different genes in various breeds of dogs.4,8-11 Breed-

matched genome-wide association studies could help identify single

nucleotide polymorphisms associated with DM in AED.

The challenge of estimating heritability in a relatively small data set

is clear. However, over 600 AED were screened for possible inclusion

into this study. Given the small population size of AED, with fewer than

6000 AKC registered AED born in the past 10 years, a reasonably large

proportion of the AED population was actually screened for inclusion in

this study. However, it is possible that sampling was not random and

that the results are therefore not reflective of the heritability of DM in

the breed at large. For example, it is possible that owners of dogs with

DM were overrepresented because they were interested in contribut-

ing information to the study with the hope of improving the under-

standing of DM heritability in their dogs. Alternatively, it is possible

that owners of dogs with DM were underrepresented because they

were hesitant to share the disease status of their dogs.

An unexpected observation is reflected in the predictions of disease

risk across sex classifications reported in Table 1. The 95% posterior

interval for the predicted probability of DM in NF AED does not over-

lap with the 95% posterior interval for the predicted probability of DM

in IF or IM AED. The conclusion from these data is that in AED, NF are

at significantly higher risk for DM than IF and IM. This finding contra-

dicts the current understanding that IF dogs are at increased risk for

DM because higher progesterone and growth hormone concentrations

contribute to insulin resistance, and because neutering can result in

remission of DM, but is consistent with other inherited endocrine con-

ditions that have a lower prevalence in intact dogs when compared to

neutered dogs.30-33 Importantly, the age of dogs with DM in the differ-

ent sex categories was not different, suggesting that another unac-

counted for variable associated with neuter status could be influencing

this finding. Recall bias in which owners erroneously reported the neu-

ter status of their dog in relation to the timing of DM diagnosis could

contribute to this finding. Selection bias, in which owners of IF dogs

with DM were hesitant to contribute data to the study because the

dog was still breeding or had been bred, is also possible. Given the

many biases that could have contributed to this finding and the physio-

logic rationale for prevention of DM with neutering, it is still rec-

ommended to neuter dogs as a measure of decreasing the risk of

DM. Additional breed-wide prospective studies are warranted to con-

firm the relationship between neuter status and DM in AED.

American Eskimo Dogs from countries other than the United

States and Canada were excluded by design because geographic loca-

tion can influence disease risk. 34 The Canadian dogs included in this

study were directly related to dogs residing in the United States.

Future studies of DM in AED in other geographic regions are needed

to determine if the heritability patterns of DM in AED reported here

are unique to North America or observed worldwide. Future studies

focusing on the heritability patterns of DM in the Nordic Spitz clade,

which includes the AED, Icelandic Sheepdog, Keeshonds, Norwegian

Elkhound, and Swedish Vallhund breeds, would also be interesting.34

This study has several limitations, including small sample size and

possible recall and selection biases as described above. Furthermore,

some dogs that are currently healthy could develop DM in the future,

and this might contribute to phenotype misclassification. However,

dogs in the control group were significantly older than dogs with DM

at the time of DM onset, minimizing the risk that control dogs will

develop DM after study enrollment. Finally, not all dog owners could

be contacted, and as a result, some dogs had an unknown phenotype.

In conclusion, the heritability estimate of DM in this AED popula-

tion is high with a mode of inheritance that is consistent with a poly-

genic, non-Mendelian pattern of disease transmission. Judicial

breeding practices should be successful at decreasing the incidence of

DM in AED; breeders will need to be particularly diligent as DM onset

in AED occurs at about 6 years of age, so it is likely for dogs to be

bred before their DM phenotype is known. This study demonstrates

that the genetic nature of DM in AED underscores the importance of

tracking lineage of breeding dogs. For instance, breeders could select

sires and dams, who are not related to dogs with DM or closely

related to one another, while being mindful of avoiding genetic bottle-

necks in small populations. Future genome-wide association studies

could help identify single nucleotide polymorphisms in genes that

increase the risk for DM in AED. Studies of the heritability and mode

of inheritance of DM in other breeds are needed to determine if the

findings of this study are unique to AED or shared by other breeds.
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