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ABSTRACT OF THE DISSERTATION

Provably correct optimization and estimation:

continuous, discrete, and dynamical

by

Jonathan Michael Bunton

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2023

Professor Paulo Tabuada, Chair

Many engineering tasks are, at their core, a series of large, high-stakes decision-making

problems. Generally we are faced with some issue to resolve, then asked to incorporate all

of the relevant information, context, and data to produce the best solution possible. Often

we can only determine if we made an optimal choice in hindsight, but we generally take

comfort in knowing that every decision we have made so far is the best possible given all of

our current information.

When synthesizing the information, context, and data into a decision-making problem,

we are implicitly creating an optimization problem, asking ourselves to determine the option

that satisfies our specifications while performing the best, according to some chosen metric.

While many tasks may be framed this way, the resulting optimization problems are not

necessarily computationally tractable.

The first part of this thesis considers one such class of typically intractable optimization

problems: problems with joint continuous and discrete decision variables. This class of

problems is NP-Hard to solve in general, but we show that by leveraging submodularity,
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a property of functions over partially-ordered sets, we can identify a new special subset

for which we provide provably exact algorithms that run in polynomial time. In the larger,

decision-making context, this result should provide the trepidatious engineer with confidence

that, given all the data, constraints, and information they have at the current moment, they

have selected the best possible solution.

Many optimization problems still fall outside of this special subset, where the functions

involved are not submodular. We address part of this issue by showing how some prob-

lems outside this class–in particular, quadratic optimization problems with combinatorial

regularizers–may be approximately solved by instead solving a suitably chosen surrogate

problem from within our previously identified subset. The suboptimality of this approach is

then naturally bounded by the distance between the original optimization problem and our

class of submodular ones.

The second part of this thesis considers nonlinear state estimation. In this scenario, we

collect measurements from a nonlinear system (e.g., a mobile robot), and from the knowledge

of the system’s dynamics and these measurements are asked to estimate the system’s state

as accurately as possible. In this dynamic estimation context, we are faced with a sequence

of these optimization problems (select the best choice of state), each closely related to the

previous.

Feedback control typically relies on such an estimate of the system state provided by an

estimation scheme. These estimates, however, are always affected by errors that have non-

negligible impacts on control performance. Various stabilizing and safety-critical control

frameworks address this issue, but all require some characterization of the current estima-

tion error to determine when to apply more or less conservative control inputs. Current

methods of bounding these errors either take a very coarse worst-case bound or employ

computationally expensive time-varying set-valued methods.

To tackle this problem, we turn to a state estimation scheme based on polynomial least-

squares, termed Savitzky-Golay filtering. This scheme relies on approximating the output
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of the system and its derivatives via polynomial least-squares, then using information about

the system dynamics to convert these derivatives into an estimate of the system state. Our

analysis presents a new, online error bound that highlights the connection between the

suboptimality of the optimization problem’s solution and the quality of the state estimate.

In our analysis, we show several intuitive properties of these bounds, with the main intuition

that when the system dynamics are well-behaved and the measurements are noiseless, the

function approximation task becomes easier and the guarantees tighten.

Further, these error bounds provide an online, deterministic measure of uncertainty,

which a downstream control algorithm can use to adapt its levels of robustness in real-time.

This particular interaction appeals to the simple intuition that a robot should only make

aggressive maneuvers when it is highly confident in its current position. The frameworks

of measurement-robust control barrier functions and robust control Lyapunov functions in

particular are immediate candidates for this type of interface, as they would naturally ac-

commodate the estimation error while maintaining safety and stability guarantees.
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CHAPTER 1

Summary

In model selection problems for machine learning, the desire for a well-performing model

with meaningful structure is typically expressed through a regularized optimization problem.

In many scenarios, however, the meaningful structure is specified in some discrete space,

leading to difficult nonconvex optimization problems. In this part of the thesis, we connect

the model selection problem with structure-promoting regularizers to submodular function

minimization with continuous and discrete arguments. In particular, we leverage the theory

of submodular functions to identify a class of these problems that can be solved exactly and

efficiently with an agnostic combination of discrete and continuous optimization routines. We

show how simple continuous or discrete constraints can also be handled for certain problem

classes, and extend these ideas to a robust optimization framework. We also show how

some problems outside of this class can be embedded within the class, further extending

the class of problems our framework can accommodate. Finally, we numerically validate

our theoretical results with several proof-of-concept examples with synthetic and real-world

data, comparing against state-of-the-art algorithms.
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CHAPTER 2

Introduction

In many machine learning tasks, we require a model that not only performs a specified

task well, but also has some meaningful structure. Models with meaningful structure can,

for example, be easier to understand and implement. The desire for both accuracy and

meaningful structure is usually expressed in a regularized optimization problem:

minimize
x∈X

f(x) + λg(x). (2.0.1)

In this problem, x is a choice of model parameters from a parameter space X , f : X → R is a

function that describes the misfit of the model with the selected parameters to the given task

(e.g., empirical risk), g : X → R is a function that expresses the deviation of our selected

model parameters from some desired structure, and λ ∈ R≥0 is a tradeoff parameter.

Problem (2.0.1) becomes difficult when the desired model structure is an inherently dis-

crete property, but the model parameters are continuous values x from a continuum X . A

prime example of this issue arises in feature selection for sparse regression, where we seek a

linear predictor x∗ ∈ X ⊆ Rn such that:

x∗ ∈ argmin
x∈X

∥Ax− b∥22 + λ∥x∥0, (2.0.2)

for some A ∈ Rm×n and b ∈ Rm, with ∥x∥2 the standard Euclidean norm on Rm, and

∥x∥0 the ℓ0 pseudo-norm that counts the number of nonzero entries in the predictor x. The

desired structure, in this case, is a sparse predictor x ∈ X . Sparsity, however, only depends

on the combinatorial choice of zero entries in the model parameters x, whereas the model

also requires a choice of continuous values for x ∈ X .

3



Problems with this mixed dependence on both continuous and discrete properties of the

model parameters such as (2.0.2) are notoriously difficult, and even NP-Hard in general

[Rau10]. A typical workaround is to replace the function describing model structure, g

in problem (2.0.1), with a continuous relaxation that is more amenable to optimization.

One of the more celebrated instances of this approach is the relaxation of the ℓ0 pseudo-

norm in (2.0.2) to the convex ℓ1 norm ∥x∥1, which instead sums the absolute values of the

vector x. While this relaxation still encourages the intended structure, the minimizer for the

relaxed problem does not necessarily correspond to the minimizer for the initially specified

problem [BJM12]. Moreover, the well-known conditions for sparse recovery in regression

problems, such as Restricted Isometry Properties [CT05], Null Space Properties [Rau10], and

Irrepresentability Conditions [ZY06], are not applicable to more general discrete functions

g.

In contrast, in this work we identify conditions that allow us to directly solve the origi-

nally posed regularized model-fitting problem (2.0.1) exactly and efficiently. To derive our

new conditions, we leverage submodularity, a property of functions that defines a bound-

ary between easy and hard optimization problems. Our approach stands in stark contrast

to existing methods, which either focus on submodularity in purely one domain [Bac19] or

relies on restricted isometry or strong convexity constants that are NP-Hard to compute

[EKD18, EJ20].

Traditionally, submodularity is defined for functions on bounded discrete sets, where

arbitrary function minimization is NP-Hard. When a function is submodular, however, it can

be minimized exactly in polynomial time [Sch03]. The definition of submodularity extends

to continuous functions as well, and recently the associated optimization guarantees have

also been extended [Bac19, BLK17]. In particular, if a continuous function is submodular,

it can also be minimized exactly in polynomial time.

The natural next question–which is addressed in this work–to ask is if submodularity

still defines a boundary between easy and hard mixed optimization problems such as (2.0.1),
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where the function f in (2.0.1) is continuous, but the function g has a discrete co-domain.

Our work explores this boundary and identifies sufficient conditions, based on the submodu-

larity of both functions, under which the exact solution of problem (2.0.1) can be efficiently

computed.

Exploiting submodularity in these mixed scenarios is not a new idea, given its utility in

discrete optimization problems. Notable uses include establishing approximation guarantees

for greedy algorithms applied to sparsity-constrained optimization [EKD18], or in producing

tight convex relaxations for set-function descriptions of desired sparsity patterns [BJM12].

As highlighted above, [Bac19] shows that if a continuous function is submodular, it can

be discretized into a discrete submodular function, which can then be minimized exactly in

polynomial time. However, this discretization is only valid for compact subsets of continuous

spaces and necessarily introduces discretization error into the produced solution.

In a line of work similar to this one, authors in [EJ20] propose converting the mixed

problem to a purely discrete one without discretizing. They then advocate using a specific

submodular set function minimization algorithm for solving the discrete problem, and give

approximation guarantees under the assumption that the functions are nearly submodular.

Our proposed approach is similar, but our work instead focuses on finding conditions under

which an arbitrary choice (of potentially more efficient) algorithms produce exact results,

which leads to their choice as a special case.

The sufficient conditions we require may be violated in practice. Traditionally, vio-

lations of submodularity are handled by suitably relaxing the definition with an additive

or multiplicative constant and propagating the constant through a particular algorithm

[EJ20, EKD18]. Alternatively, in this work we find a sub-class of optimization problems

that we can always lift into problems that satisfy our assumptions. Moreover, we prove that

the solution of the lifted problem gives a near-optimal solution to the original. Our lifting

approach stands in stark contrast to existing methods, as it is algorithm-independent with

a guarantee that is easy to compute rather than tied to a specific algorithm and dependent
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on constants that are NP-Hard to compute [EJ20, EKD18].

We make several technical contributions, namely:

(i) We identify new sufficient conditions, based on submodularity, under which the regu-

larized model selection problem (2.0.1) can be solved efficiently and exactly;

(ii) We extend this theory to accommodate simple continuous and discrete constraints on

the model parameter for some problem classes;

(iii) We highlight the utility of exact solutions for robust optimization scenarios;

(iv) We show that problems violating our sufficient conditions can be lifted to problems that

do satisfy them, and whose solutions correspond to optimal or near-optimal solutions

of the original problem;

(v) We numerically validate the correctness of our theory with examples from sparse re-

gression and retail price optimization.

2.1 Submodular Functions on Lattices

In this work, we consider optimization problems defined on two sets: an uncountably infinite

set, typically Rn or a subset thereof referred to as a continuous set, and a countable set,

typically finite and referred to as a discrete set. Because we would like to efficiently solve

optimization problems defined on both continuous and discrete sets, we study a structure

that can allow efficient optimization in both cases: submodularity.

Submodularity is typically defined as a property of set functions, which are functions

that map any subset of a finite set V to a real number, i.e., f : 2V → R. More generally,

however, submodularity is a property of functions on lattices which can be continuous or

discrete sets.
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Let X be a set equipped with a partial order of its elements, denoted by ⪯. For any two

elements x,x′ ∈ X we define their least upper bound, or join, as:

x⋎x′ = inf{y ∈ X : x ≤ y, x′ ≤ y}. (2.1.1)

Dually, we define their greatest lower bound, or meet, as:

x⋏x′ = sup {y ∈ X : y ≤ x, y ≤ x′} . (2.1.2)

If for any two elements x,x′ ∈ X , their join, x⋎x′, and their meet, x⋏x′, exist and are in

X , then the set X and its order define a lattice. We write the lattice and its partial order

together as (X ,⪯), but will often write just X when the order is clear from context. If a

subset S ⊆ X is such that for any two of its elements x,x′ ∈ S, both their join, x⋎x′, and

their meet, x⋏x′, are in S, the subset S is called a sublattice of X [DP02].

As an example, consider a finite set of elements V . Then its power set, 2V (the set of all

its possible subsets), forms a lattice when ordered by set inclusion, ⊆. Under this order, the

join of any two elements X,X ′ ⊆ V is their set union, X ∪X ′ ⊆ V , and dually, their meet

is their set intersection X ∩X ′ ⊆ V .

We can also endow continuous sets with partial orders that define lattices. Recent work

has brought attention to Rn equipped with the partial order ⪯, defined as:

x⪯x′ ⇔ xi ≤ x′
i for all i = 1, 2, ..., n, (2.1.3)

where ≤ denotes the usual order on R.

Under this order, the join and meet operation for any two elements x,x′ ∈ Rn are

element-wise maximum and minimum, respectively, meaning:

(x⋎x′)i = max{xi,x
′
i}, for all i = 1, 2, ..., n, (2.1.4)

(x⋏x′)i = min{xi,x
′
i}, for all i = 1, 2, ..., n. (2.1.5)
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Given a lattice X , consider a function f : X → R. The function f is submodular on the

lattice X when the following inequality holds for all x,x′ ∈ X :

f(x) + f(x′) ≥ f(x⋎x′) + f(x⋏x′). (2.1.6)

The function f is monotone when it satisfies:

x⪯x′ =⇒ f(x) ≤ f(x′). (2.1.7)

When working with the lattice (2V ,⊆), the submodular inequality (2.1.6) becomes:

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B) for all A,B ⊆ V. (2.1.8)

Similarly, the monotonicity implication (2.1.7) becomes:

A ⊆ B =⇒ f(A) ≤ f(B). (2.1.9)

Minimizing or maximizing an arbitrary set function is NP-Hard in general. If the set func-

tion is submodular, however, it can be exactly minimized and approximately maximized

(up to a constant-factor approximation ratio) in polynomial time [Sch03, NWF78]. The

computational tractability of submodular optimization for set functions has a variety of ap-

plications in countless fields such as sparse regression, summarization, and sensor placement

[EKD18, LB11, KGG06].

When working with the lattice (Rn,⪯), a function f : Rn → R is submodular when:

f(x) + f(x′) ≥ f(max{x,x′}) + f(min{x,x′}) for all x,x′ ∈ Rn, (2.1.10)

where the maximum and minimum operations are performed element-wise, as expressed in

(2.1.4) and (2.1.5). When f is twice differentiable, submodularity on Rn is equivalent (see

[Top98, Bac19]) to the condition:

∂2f

∂xi∂xj

≤ 0 for all i ̸= j. (2.1.11)
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Perhaps surprisingly, the guarantees associated with submodular set function optimization

extend to functions that are submodular on Rn. In particular, submodular functions on Rn

can be minimized over a bounded sublattice in polynomial time (see [Bac19]), and can be

approximately maximized with constant-factor approximation ratios [BMB16, BLK17].

2.2 Problem Formulation

In this section, we bridge continuous and discrete submodular function minimization in one

unified problem statement. We do this by drawing inspiration from the field of structured

sparsity, where the choice of zero entries in real-valued decision variables is viewed as a

coupled discrete and continuous problem [Bac13, Bac11].

To highlight the connection with structured sparsity problems, for n ∈ Z>0, we denote

by [n] the set {1, 2, ..., n}, and by 2[n] the set of all possible subsets of [n]. Define the map

supp : Rn → 2[n] as:

supp (x) = {i ∈ [n] | xi ̸= 0}. (2.2.1)

In words, supp returns the set of indices where the vector x is nonzero. Consider arbitrary

functions f : Rn → R and g : 2[n] → R. Problems of the form:

minimize
x∈Rn

f(x) + g(supp (x)), (2.2.2)

often arise in structured sparse optimization, where the preferences in discrete selections

(the zero entries of x) are expressed through the function g. As a special case, if we let

f(x) = ∥Dx− b∥22 with D ∈ Rm×n and b ∈ Rm and define g(A) = |A| as the cardinality of

the set A, (2.2.2) becomes:

minimize
x∈Rn

∥Dx− b∥22 + ∥x∥0, (CS)

where ∥ · ∥0 denotes the ℓ0 pseudo-norm. The problem (CS) is a form of the well-studied

compressed sensing problem, which is NP-Hard in general [Rau10].
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Generalizing the idea of making continuous decisions through the choice of x in (2.2.2),

and discrete decisions through the choice of the zero entries of x, we consider two lattices,

(X ,⪯) and (Y ,⊑), related by a map η : X → Y . We let f : X → R be a function describing

the cost of assignments of variables in X , and similarly let g : Y → R describe the associated

cost of choices in Y . Then, we seek the optimal point x∗ ∈ X in the problem:

minimize
x∈X

f(x) + g(η(x)). (P)

Although we will eventually let X describe continuous choices and Y describe associated

discrete ones, our theoretical results do not rely on the cardinality of the lattices X and Y .

Intuitively, problem (P) asks for the element x ∈ X which incurs minimum cost in X ,

as measured by f(x), and in Y , as measured by g(η(x)). Given that the special case of

(CS) is already hard in general, with no additional structure on f , g and η, this problem is

hopelessly difficult. To provide the necessary structure, we make the following assumptions.

Assumptions. Consider the lattices (X ,⪯) and (Y ,⊑) and the maps η : X → Y, f : X →

R, and g : Y → R. We make the following assumptions:

1. The functions f and g are submodular on the lattices X and Y, respectively,

2. The function g is monotone on Y,

3. For all x,x′ ∈ X :

η(x⋎x′)⊑ η(x)⊔ η(x′), η(x⋏x′)⊑ η(x)⊓ η(x′).

Remark 1. If the map η : X → Y satisfies Assumption 3, it is an order-preserving join-

homomorphism, meaning it maintains the order and joins of elements in X . (Prop. 2.19 in

[DP02]) Explicitly, Assumption 3 is equivalent to the condition that for any x,x′ ∈ X :

x⪯x′ ⇒ η(x)⊑ η(x′),

η(x⋎x′) = η(x)⊔ η(x′).

Despite this equivalence, we leave Assumption 3 as written above for clarity in future proofs.
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We highlighted the lattices (Rn,⪯) and (2[n],⊆), but for the map supp : Rn → 2[n]

to satisfy Assumption 3, we must restrict the domain of f to only only the first orthant,

(Rn
≥0,⪯). As mentioned by [BLK17], this issue can often be resolved by considering an

appropriate orthant conic lattice, which views Rn as a product of n copies of R and selects a

different order for each copy. Alternatively, any least-squares problem such as (CS) can be

lifted to a non-negative least-squares problem, allowing us to satisfy Assumption 3 with the

map supp, but potentially no longer satisfying Assumption 1 (see Appendix A).

Assumption 1, which requires f and g to be submodular can be restrictive in practice.

To mitigate this, in Section 6 we show how some specific problem instances that do not

satisfy Assumption 1–in particular when f is quadratic–can be lifted to a new optimization

problem that satisfies all the required assumptions. We then derive conditions under which

solving the new, lifted problem still provides a solution to the original problem that violated

Assumption 1. In contrast, the more typical way of handling non-submodular f involves

relaxing the definition of submodularity (2.1.6) to include an additive or multiplicative con-

stant and propagating it through a chosen algorithm to give near-optimality guarantees.

[EJ20, EKD18] Our suggested lifting, however, sidesteps the need for a particular algorithm

while still providing optimality or near-optimality guarantees.
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CHAPTER 3

Solving an Equivalent Problem

In this section, we outline our approach for solving the problem (P) by defining a related

optimization problem on a single lattice. We then prove that this related problem is a

submodular function minimization problem, and that by solving it we recover a solution to

(P). Finally, we highlight some conditions under which solving this related problem is a

polynomial time operation.

3.1 The Equivalent Submodular Minimization Problem

As expressed above, the problem (P) asks for the a choice of x ∈ X and associated η(x) ∈ Y .

Our key observation is that we could instead ask for a choice of y ∈ Y and best associated

x ∈ X , leading to the problem:

minimize
y∈Y

g(y) + min
x∈X

η(x)=y

f(x).

In the special case of (CS) explored earlier, this equivalent problem becomes:

minimize
S∈2[n]

|S|+ min
x∈Rn

≥0

supp(x)=S

∥Ax− b∥22.

While this new problem is clearly the same as (CS), the innermost minimization is over the

set of x ∈ Rn
≥0 such that supp (x) = S, or equivalently, xi ̸= 0 for all i ∈ S, and xi = 0 for all

i /∈ S. This feasible set is not a closed subset of Rn
≥0, and thus the corresponding minimizer

of this innermost problem may not exist [BL06].
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With this issue in mind, we instead consider a slight relaxation of the above problem:

minimize
y∈Y

g(y) +H(y), (P-R)

where we have defined the function H : Y → R as:

H(y) = min
x∈X

η(x)⊑y

f(x). (3.1.1)

In the special case of (CS), this relaxation produces the problem:

minimize
S∈2[n]

|S|+ min
x∈Rn

≥0

supp(x)⊆S

∥Ax− b∥22, (CS-R)

where the innermost minimization is instead over the set of x ∈ Rn
≥0 such that xi = 0 for all

i /∈ S, which is a closed subset of Rn
≥0.

We now prove that under Assumptions 1-3, the relaxed problem (P-R) is a submodular

minimization problem, and that by solving it we can recover the corresponding minimizer for

(P). As established above, minimizing functions on finitely presentable distributive lattices

is efficient when the functions are submodular, so we show that the relaxed problem (P-R)

is a submodular function minimization problem on Y .

Theorem 2. Under Assumptions 1-3, the function g+H : Y → R is submodular on Y, and

therefore the relaxed problem (P-R) is a submodular function minimization problem over Y.

Moreover, let y∗ ∈ Y be the minimizer for the problem (P-R), and let x∗ ∈ X be such that:

x∗ ∈ argmin
x∈X

η(x)⊑y∗

f(x).

Then x∗ is a minimizer for the problem (P).

To prove this result, we require a few technical lemmas.

Lemma 1. Let (X ,⪯) and (Y ,⊑) be lattices with the map η : X → Y satisfying Assumption

3. Then the set:

D = {(x,y) ∈ X ×Y | η(x)⊑y} , (3.1.2)

is a sublattice of the product lattice, X ×Y.
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Proof. On the product lattice, the join of any two elements (x,y), (x′,y′) ∈ D is denoted by

∨D, and defined as:

(x,y) ∨D (x′,y′) = (x⋎x′,y⊔y′).

Then, we note that for this same (x,y), (x′,y′) ∈ D:

η(x⋎x′)⊑ η(x)⊔ η(x′)⊑y⊔y′,

where we first used Assumption 3, then the fact that (x,y), (x′,y′) ∈ D. Therefore, the pair

(x⋎x′,y⊔y′) is also in D.

Because (x,y) and (x′,y′) were arbitrary, this holds for all of D. A dual analysis follows

for the meet operation.

The sublattice D is useful as the only pairs of (x,y) ∈ X ×Y considered in the problem

(P-R) are those that are in D. The following theorem then uses this sublattice to prove that

H is submodular. The result is a simple application of an established theorem in literature,

but we include its proof here for completeness.

Theorem 3. (Application of Theorem 2.7.6 in [Top98]) Let f : X → R, g : Y → R, and

η : X → Y be maps satisfying Assumptions 1 and 3. Then the function g+H : Y → R, with

H defined as in (3.1.1), is submodular on Y.

Proof. To prove this statement, we take two points y,y′ ∈ Y and compare the values of the

function g+H, verifying the submodular inequality (2.1.6). We note that for any y,y′ ∈ Y ,

there are corresponding z, z′ ∈ X such that:

z ∈ argmin
x∈X

η(x)⊑y

f(x) ⇒ H(y) = f(z),

z′ ∈ argmin
x∈X

η(x)⊑y′

f(x) ⇒ H(y′) = f(z′).
(3.1.3)
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By definition, (z,y) and (z′,y′) are both in the subset D as defined in (3.1.2). Then, it

follows:

g(y) +H(y) + g(y′) +H(y′) = g(y) + f(z) + g(y′) + f(z′)

≥ g(y⊔y′) + g(y⊓y′) + f(z⋎ z′) + f(z⋏ z′),

where we first used (3.1.3) and then the submodularity of f and g.

By Lemma 1, D is a sublattice of X ×Y , and so the pairs (z⋎ z′,y⊔y′) and (z⋏ z′,y⊓y′)

are also in D, meaning:

η(z⋎ z′)⊑y⊔y′,

η(z⋏ z′)⊑y⊓y′.

Therefore z⋎ z′ and x⋏x′ are feasible points in the minimization defining H(y⊔y′) and

H(y⊓y′), respectively, in (3.1.1). We then have, as desired:

g(y) +H(y) + g(y′) +H(y′) ≥ g(y⊔y′) + g(y⊓y′) + f(z⋎ z′) + f(z⋏ z′)

≥ g(y⊔y′) + g(y⊓y′) + min
x∈X

η(x)⊑y⊔y′

f(x) + min
x∈X

η(x)⊑y⊓y′

f(x)

= g(y⊔y′) +H(y⊔y′) + g(y⊓y′) +H(y⊓y′).

Because g+H is submodular on Y , solving (P-R), is an instance of submodular function

minimization. What remains is to show that solving this relaxed problem allows us to also

solve to the original problem, (P).

Lemma 2. Let y∗ ∈ Y be a minimizer for the relaxed problem (P-R), and let x∗ ∈ X be

such that:

x∗ ∈ argmin
x∈X

η(x)⊑y∗

f(x).

If g satisfies Assumption 2, then x∗ is a minimizer for the problem (P).
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Proof. To prove this lemma, we consider an optimal z∗ ∈ X for problem (P) and verify that

the proposed minimizer, x∗ ∈ X , has the same cost.

We first note that by the optimality of z∗ in problem (P):

f(z∗) + g(η(z∗)) ≤ f(x∗) + g(η(x∗)). (3.1.4)

Additionally, we have:

f(z∗) + g(η(z∗)) ≥ min
x∈X

η(x)⊑ η(z∗)

f(x) + g(η(z∗)) (minimizing, as z∗ is feasible)

= H(η(z∗)) + g(η(z∗)) (definition of H)

≥ H(y∗) + g(y∗) (optimality of y∗ in P-R)

= f(x∗) + g(y∗) (definition of x∗).

This sequence of inequalities implies:

f(z∗) + g(η(z∗)) ≥ f(x∗) + g(y∗). (3.1.5)

By construction, there are exactly two possible relationships between x∗ and y∗.

Case 1: η(x∗) = y∗. In this case, (3.1.5) becomes:

f(z∗) + g(η(z∗)) ≥ f(x∗) + g(y∗) = f(x∗) + g(η(x∗)).

Then, combining inequality (3.1) with (3.1.4), we have that:

f(z∗) + g(η(z∗)) ≥ f(x∗) + g(η(x∗)) ≥ f(z∗) + g(η(z∗))

⇒ f(z∗) + g(η(z∗)) = f(x∗) + g(η(x∗)),

and therefore x∗ is also a minimizer for problem (P).

Case 2: η(x∗)<y∗. In this case, because g is monotone, g(y∗) ≥ g(η(x∗)). Using this

fact, we can lower bound the right-hand side of (3.1.5):

f(z∗) + g(η(z∗)) ≥ f(x∗) + g(y∗)

≥ f(x∗) + g(η(x∗)).

At this point, we have obtained (3.1), and we can follow the argument used in Case 1.
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This series of results gives rise to Theorem 2, which provides sufficient conditions under

which we can transform problem (P), an optimization problem on two lattices, into problem

(P-R), a submodular function minimization problem on a single lattice.

Proof. (Theorem 2)

Under Assumptions 1 and 3, Theorem 3 states that the function g+H : Y → R is submodular

on the lattice Y . Therefore, solving (P-R) is a submodular function minimization problem

over Y , and the first part of the theorem is proved.

Under Assumption 2, by Lemma 2, given the minimizer y∗ of (P-R), the point x∗ ∈ X

defined by:

x∗ ∈ argmin
x∈X

η(x)⊑y∗

f(x),

is a minimizer in the original problem (P).

3.2 Solving (P-R) in Polynomial Time

Despite the submodular structure of the functions, we can only truly solve (P-R) in polyno-

mial time if Y is a finitely presentable distributive lattice and evaluating H is a polynomial

time operation. The functionH, however, is implicitly defined through an optimization prob-

lem on a subset of X (3.1.1). Solving the problem (P-R) in polynomial time then requires

solving these smaller optimization problems defining H efficiently.

We are particularly interested in joint continuous and discrete optimization, such as

when (X ,⪯) = (Rn
≥0,⊑) and (Y ,⪯) = (2[n],⊆) connected by the map supp : Rn

≥0 → 2[n] as

expressed in (2.2.1). In this case, evaluating H requires solving the optimization problem:

minimize
x∈Rn

≥0

supp(x)⊆A

f(x), (3.2.1)

for any A ∈ 2[n]. While (3.2.1) is a continuous submodular minimization problem, the

set R≥0 is not a bounded sublattice. Moreover, algorithms for solving the submodular set

17



function minimization (P-R) require an accurate oracle model for g+H. As discussed above,

continuous submodular minimization algorithms introduce discretization error, thus limiting

the accuracy of the evaluations of H. Continuous submodularity alone appears limited in

this way, hence, we may consider an alternative problem structure that allows for algorithms

to produce efficient and arbitrarily accurate solutions of (3.2.1): convexity.

Note that in the sub-problem (3.2.1), for any A ∈ 2[n], the feasible set is a convex subset

of Rn
≥0. If the function f : Rn

≥0 → R was convex, then we could use any generic convex

optimization routine to solve (3.2.1). We already assumed that f is submodular on Rn
≥0,

but submodular functions are neither a subset nor a superset of convex functions, so we

can also require that f is convex. For example, any separable convex function f satisfies

this assumption, as do convex quadratic functions with non-positive off-diagonal entries, or

functions on Rn that can be identified as the Lovász extension of submodular set functions.

Under this assumption, evaluating H, and by extension solving (P), is efficient.

Corollary 1. Let f : Rn
≥0 → R be a submodular and convex function on (Rn

≥0,⪯), Y be

a finitely presentable distributive or diamond modular lattice, g : Y → R be a monotone

submodular set function, and let η : Rn
≥0 → Y satisfy Assumption 3. Further assume that

for every y ∈ Y, the set of x ∈ X such that η(x)⊑y is a convex subset of Rn
≥0. Then the

problem:

minimize
x∈Rn

≥0

f(x) + g(η(x)),

can be solved in polynomial time.

Proof. Assumptions 1, 2, and 3 are satisfied by the lattices (Rn
≥0,≤), (Y ,⊑), and the func-

tions η : Rn
≥0 → Y , f : Rn

≥0 → R and g : Y → R. By Theorem 2, we can solve the problem

(P) by instead minimizing the submodular function g+H over Y , i.e., solving problem (P-R).

Submodular function minimization over finitely presentable distributive and diamond

modular lattices has polynomial complexity in the size of its representation–which is finite
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by assumption–and the number of function evaluations of H. Because f is convex, and for

any y ∈ Y the minimization defining H(y) is a convex set, evaluating H(y) is a convex opti-

mization problem. Convex optimization is a polynomial time operation, therefore evaluating

H is also a polynomial time operation, and the total complexity of solving (P-R) using this

oracle for H is polynomial in both n and the size of the representation of Y .

Our theory is agnostic to the choice of subroutines both for evaluating H and solving the

set function minimization problem. If we assume f is convex, evaluate it through convex

optimization, and use projected subgradient descent on the Lovàsz extension of g + H as

the algorithm for solving the set function minimization, we recover exactly the approach

proposed by [EJ20].

Convexity of f is not the only assumption that leads to tractable evaluations of H. As

an alternative, we could consider a nonconvex quadratic form for f : Rn
≥0 → R:

f(x) = xTQx+ pTx, (3.2.2)

with Q ∈ Rn×n and p ∈ Rn. The assumption that this quadratic function is submodular on

Rn
≥0 is equivalent to the condition:

∂2f

∂xi∂xj

= Qij ≤ 0, for all i ̸= j.

Moreover, for a given A ∈ 2[n], our sub-problem instance (3.2.1) is a constrained, nonconvex

quadratic program:

minimize
x∈Rn

xTQx+ 2pTx

subject to x ≥ 0

xi = 0, i /∈ A.

(3.2.3)

Researchers [KK03] have established that nonconvex quadratic programs satisfying submod-

ularity admit tight semidefinite program relaxations. In particular, we have the following

theorem:
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Theorem 4. (Theorem 3.1 in [KK03]) Let Q ∈ Rn×n have nonpositive off-diagonal entries.

Let tr : Rn×n → R denote the trace of a matrix, diag : Rn×n → Rn denote the diagonal

entries of the matrix, and let ⪰ indicate the positive semidefiniteness of a symmetric matrix.

Further, for any A ∈ 2[n], let ZAc denote the rows and columns of Z with indices not in the

set A. Consider the semi-definite program:

minimize
z∈Rn

Z∈Sn
tr (QZ) + 2pTz

subject to tr (ZAc) ≤ 0

diag (Z) ≥ 01 zT

z Z

 ⪰ 0,

Given the solution (Z∗, z∗) to this SDP, the vector x∗
i =

√
Z∗

ii, i = 1, ..., n is a minimizer for

the non-convex quadratic program (3.2.3).

Because semi-definite programs can be solved in polynomial time, we could use this

relaxation to evaluate H for any subset A ∈ 2[n] in polynomial time. As before, this ability

would produce an identical statement to Corollary 1, but for functions f of the form (3.2.2)

that satisfy submodularity.
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CHAPTER 4

Constrained Optimization

In this and the following sections, we extend our framework both theoretically and algorith-

mically for the specific case of the lattices (Rn
≥0,⪯) and (2[n],⊆), connected by the support

map supp : Rn
≥0 → 2[n].

In many problems, we may be interested in optimization over a feasible strict subset

C ⊂ Rn
≥0. Unfortunately, submodular function minimization and maximization subject to

constraints is NP-Hard in general [FI11]. This difficulty arises because arbitrary subsets of

a lattice rarely define sublattices.

One simple class of problems whose feasible sets are not sublattices are problems with

budget constraints :

minimize
x∈Rn

≥0

f(x) + g(supp (x))

subject to
∑n

i=1Wi(xi) ≤ B,

(4.0.1)

with Wi : R≥0 → R strictly increasing functions for i = 1, 2, ..., n and B ∈ R>0 a “budget”.

When confronted with constrained optimization problems such as (4.0.1), one common

approach is to add a Lagrange multiplier µ ∈ R≥0 and instead solve the unconstrained

problem:

minimize
x∈Rn

≥0

f(x) + g(supp (x)) + µ
n∑

i=1

Wi(xi). (4.0.2)

For the correct choice of µ ∈ R≥0, solving the regularized problem (4.0.2) can be equivalent

to solving the constrained problem (4.0.1) [NKA11, SJ19]. Because (4.0.1) is non-convex,
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identifying when this approach is valid requires some careful detail. When possible, however,

determining the µ that renders the two problems equivalent is typically a difficult task.

Our work in this section relies on the following result that relates parameterized families

of submodular set function minimization problems to a single convex optimization problem.

Theorem 5. (Proposition 8.4 in [Bac13]) Let h : 2[n] → R be a submodular set function,

and hL : Rn → R its Lovàsz extension (which is therefore convex). If, for some ϵ > 0,

ψi : R≥ϵ → R is a strictly increasing function on its domain for all i = 1, 2, ..., n, then the

minimizer u∗ ∈ Rn
≥0 of the convex optimization problem:

minimize
u∈Rn

≥0

hL(u) +
n∑

i=1

∫ ϵ+ui

ϵ

ψi(µ)dµ, (4.0.3)

is such that the set Aµ = {i ∈ [n] : u∗
i > µ} is the minimizer with smallest cardinality for

the submodular set function minimization problem:

minimize
A∈2[n]

h(A) +
∑
i∈A

ψi(µ), (4.0.4)

for any µ ∈ R≥ϵ.

In the following subsections we identify classes of problems that allow the regularized

problem (4.0.2) to be expressed in the form given by (4.0.4). Theorem 5 then provides

a single convex optimization problem we can solve to recover the solution to (4.0.2) for

all possible values of the regularization strength µ. In prior work, this same theory was

applied to purely discrete submodular minimization problems [FI11], and purely continuous

submodular minimization problems [SJ19], but our work lies between these two extremes.

4.1 Support Knapsack Constraints

We first consider a knapsack constraint, meaning the function W has the form:

W (x) =
∑

j∈supp(x)

wj,

22



for some w ∈ Rn
>0. The regularized problem (4.0.2) in this case is:

minimize
x∈Rn

≥0

f(x) + g(supp (x)) + µ
∑

j∈supp(x)

wj.

Because W is a set function in this case, the relaxed problem (P-R) becomes:

minimize
A∈2[n]

g(A) +H(A) +
∑
j∈A

ψj(µ), (4.1.1)

where we have defined ψj(µ) = µwj for each j = 1, 2, ..., n. Because wj > 0 for all j, these

functions are strictly increasing, and we have a problem in the form (4.0.4). By Theorem 5,

we can solve the convex optimization problem:

minimize
u∈R≥ϵ

gL(u) +HL(u) +
1

2

n∑
j=1

wju
2
j ,

then appropriately threshold the solution to recover the solution to (4.1.1) for all possible

values of µ ∈ R≥ϵ. Because ψj is finite and strictly increasing on all of R, we can simply

select ϵ = 0.

Given the solutions to the regularized problem Aµ specified by Theorem 5, we select

the set Aµ with smallest µ ∈ R such that the constraint W (x) ≤ B is satisfied. Note

however, that we only recover the solution for any given B ∈ R≥0 if the elements of u∗ are

unique [Bac13]. Otherwise, we only recover the solutions for a few particular values of B.

If these elements are unique, however, we can use the result of Theorem 2 to compute the

minimizer in the original optimization problem over Rn
≥0. Moreover, by the same argument

as in [NKA11], this solution corresponds to the solution of the original constrained problem.

4.2 Continuous Budget Constraints

As shown above, the Lovàsz extension lets us handle problems with discrete budget con-

straints, so a natural next step is to consider continuous budget constraints, meaning con-
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tinuous functions W : Rn
≥0 → R, such that:

W (x) =
n∑

i=1

Wi(xi),

with each Wi : R≥0 → R a strictly increasing function. With this particular W , the regular-

ized optimization problem (4.0.2) with Lagrange multiplier µ ∈ R≥0 becomes:

minimize
x∈Rn

≥0

f(x) + g(supp (x)) + µ
n∑

i=1

Wi(xi).

To recover the problem form (4.0.4) specified by Theorem 5, we further assume that f :

Rn
≥0 → R is separable, i.e., f(x) =

∑n
i=1 fi(xi). In this case, the relaxed optimization

problem (P-R) is:

minimize
A∈2[n]

g(A) +
∑
i∈A

Hi(µ), (4.2.1)

where we defined Hi : R>0 → R as the function:

Hi(µ) = min
z≥0

fi(z) + µWi(z), i = 1, 2, ..., n, (4.2.2)

and assumed (without loss of generality) that Wi(0) = fi(0) = 0.

To apply Theorem 5, we need Hi : R>0 → R to be strictly increasing on its domain. We

verify this property in the following proposition, whose proof we detail in Appendix B.

Proposition 1. The function Hi : R≥0 → R≤0 defined in (4.2.2) is monotone in µ for all

i = 1, 2..., n. It is strictly increasing for all µ ∈ [0, c], where c ∈ R≥0 is the smallest constant

such that Hi(c) = 0. In addition, Hj is constant and zero on the interval [c,∞[.

Because the only point at which Hi is not strictly increasing occurs when its value is

exactly zero (implying that allowing the element xi to be nonzero provides no decrease in

continuous cost), the desired result from Theorem 5 still holds with only a minor modification,

the details of which we also defer to Appendix B.

It then follows from Theorem 5 that by solving the single convex optimization problem:

minimize
u∈Rn

≥0

gL(u) +
n∑

i=1

∫ ϵ+ui

ϵ

Hi(µ)dµ, (4.2.3)
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we can recover the solution to a family of regularized optimization problems (4.2.1). As

before, we select the set Aµ with the largest µ ∈ R≥ϵ such that the budget constraint

W (x) ≤ B is satisfied. As discussed above, we only recover the solution for all B ∈ R≥0

if the elements of u∗ are all unique. Within each choice of support, simple convex duality–

which we can apply when fi and Wi are convex functions–guarantees the existence of a

µ ∈ R≥0 that renders the constrained problem and the regularized problem equivalent.
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CHAPTER 5

Robust Optimization

Joint continuous and discrete optimization problems can easily arise as sub-problems in larger

contexts. For example, in robust optimization, we seek to solve an optimization problem while

remaining resilient to worst-case problem instances.

5.1 Motivating Example from Multiple Domain Learning

Recent work by [QZT19] highlighted the concept of multiple domain learning, where a single

machine learning model is trained on sets of data from K different domains. By training

against worst-case distributions of the data in these domains, they show that the resulting

machine learning model often achieves lower generalization and worst-case testing errors.

In particular, let the training data for a learning model be S = {S1, S2, ..., SK} with Si

the data from domain i. We also let fi : W → R for i = 1, 2, ..., K be the empirical risk of

the model on the data from each domain i, given parameters in some convex subsetW ⊆ Rn.

The proposed robust optimization problem is then:

minimize
w∈W

max
p∈C

K∑
i=1

pifi(w),

with C = {p ∈ RK
≥0 |

∑K
i=1 pi ≤ 1}, the simplex. If we additionally reward the use of data

from domain i (or equivalently, penalize the worst-case distribution of data for including

domain i), then we form the robust continuous and discrete optimization problem:

minimize
w∈W

max
p∈C

K∑
i=1

pifi(w)− g(supp (p)),
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with g : 2[K] → R a monotone submodular set function. By considering a penalty on the

set of nonzero entries of the worst-case distribution, we encode some prioritization of which

domains are more or less relevant to us in our application. Then by Theorem 5, we can solve

the inner maximization problem (with an appropriate change of signs) by adding a Lagrange

multiplier µ and solving a related convex problem.

5.2 General Results

More generally, robust optimization problems can often be expressed as a min-max saddle

point optimization problem of a function q : X × Y → R:

maximize
x∈X

min
y∈Y

q(x,y). (5.2.1)

This problem is interpreted as maximizing the function q(x,y) with respect to our available

parameters x ∈ X ⊆ Rn, under the worst case choice of additional problem parameters

y ∈ Y ⊆ Rm [BEN09].

Given some appropriate structure for the function q, the min-max problem (5.2.1) is

surprisingly tractable. If we define Q : X → R as:

Q(x) = min
y∈Y

q(x,y),

we can express the saddle-point problem (5.2.1) as:

maximize
x∈X

Q(x). (5.2.2)

If the function q(x,y) is concave in x for any fixed y ∈ Y , then the function Q is also concave

in x [BL06]. Moreover, we can compute a subgradient of Q at any x0 ∈ X as:

∇xQ(x0) = ∇xq(x0,y
∗),

y∗ ∈ argmin
y∈Y

q(x0,y).
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In other words, efficiently solving the minimization problem defining Q for an x0 ∈ X also

gives a subgradient of Q. Because Q is concave in x, even a straightforward algorithm such

as projected subgradient ascent in the problem (5.2.2) will converge to a global optimum.

In this work, we showed that minimization problems in the form of (2.2.2) with functions

satisfying Assumptions 1-3 can be solved efficiently. Suppose then, that the function q : X×Y

is of the form:

q(x,y) = f(x,y) + g(η(y))

with f : X × Y → R concave in x for any fixed y and also convex and submodular on

Y ⊆ Rn
≥0 in y for any fixed x. If η : Y → L satisfies Assumption 3, g : L → R is monotone

and submodular, and we assume the set of y ∈ Y such that η(y)⊑ ℓ is a convex subset for

any ℓ ∈ L, then the robust optimization problem (5.2.1) becomes:

maximize
x∈Rn

min
y∈Y

f(x,y) + g(η(y)). (5.2.3)

For a given x0 ∈ Rn, we view the selection of y ∈ Y as a worst-case, or “adversarial”

choice of parameters for the function f . The penalty on η(y) suggests that the adver-

sarial parameters are selected while considering some preferred structure, such as sparsity.

Submodularity here, implies that this adversary pays diminishing prices as it increases the

number of parameters it uses.

In addition, Q becomes:

Q(x) = min
y∈Y

f(x,y) + g(η(y)),

which is still the minimum of a family of concave functions, and therefore amenable to

subgradient ascent methods as discussed above. A subgradient of Q can easily be computed

as:

∇xQ(x0) = ∇xq(x0,y
∗) = ∇xf(x0,y

∗),

y∗ ∈ argmin
y∈Y

f(x0,y) + g(η(y)).

We collect these ideas into the following theorem.
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Theorem 6. Consider the robust optimization problem (5.2.3). Assume f : X ×Y → R

is concave in x ∈ X for any fixed y ∈ Y, and also convex and submodular in y ∈ Y

for any fixed x ∈ X . Let η : Y → L satisfy Assumption 3, g : L → R be a monotone

submodular function and assume that for a given ℓ ∈ L, the set of y ∈ Y such that η(y)⊑ ℓ

is a convex subset of Y. Moreover, let Y be a finitely presentable distributive lattice. For

any ϵ ∈ R>0, let T ∈ Z>0 be of order O( 1
ϵ2
), meaning as T tends to infinity, there exists a

constant M ∈ R>0 such that T ≤ M
ϵ2
. Then T iterations of projected subgradient ascent using

step lengths ηi =
1√
T
produces, in polynomial time, iterates x(i) ∈ X for i = 1, 2, ..., T such

that 1
T

∑T
i=1Q(x

(i)) ≤ Q(x∗) + ϵ.

The computational complexity of this approach may be high, as projected subgradient

ascent can be slow in practice. However, each sub-problem instance involves a mixed con-

tinuous and discrete optimization problem, so this complexity is warranted.
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CHAPTER 6

Relaxing Submodularity

For the results of Theorem 2 and therefore Corollary 1 and its extensions to apply, Assump-

tions 1-3 must be met. There are, however, situations where these assumptions may not

hold. For example, consider again a quadratic form for f : Rn
≥0 → R:

f(x) = xTQx+ pTx, (6.0.1)

and a monotone and submodular set function g : 2[n] → R. Then the general lattice opti-

mization problem (P) becomes:

minimize
x∈Rn

≥0

ℓ(x) := xTQx+ pTx+ g(supp (x)). (6.0.2)

The assumption that f is submodular on (Rn
≥0,⪯) is equivalent to:

∂2f

∂xi∂xj

= Qij ≤ 0, for all i ̸= j.

Moreover, for Corollary 1 to apply, we also need the matrix Q to be positive semidefinite.

These two assumptions are unlikely to both be met by quadratic forms resulting from real

data.

Typically, violations of submodularity are handled by suitably relaxing the definition of

submodularity with an additive or multiplicative constant [EKD18, DK18]. This constant

is then propagated through the particular algorithm choice, providing a similarly relaxed

optimality guarantee [EJ20].

Alternatively, our work focuses on finding exact solutions to these joint problems in an

algorithm-agnostic and efficient way. In this spirit, we show in this section how quadratic
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problems such as (6.0.2) can be embedded in another optimization problem satisfying As-

sumptions 1-3. We then prove conditions under which the solutions to this lifted optimization

problem–which can be efficiently found, since Assumptions 1-3 are now satisfied–correspond

to an exact solution of the original quadratic problem (6.0.2).

6.1 Lifting Non-submodular Quadratics

Given the quadratic form for f as in (6.0.1), we can decompose the matrix Q ∈ Rn×n into

its submodular and non-submodular parts additively:

Q = Q− +Q+, (6.1.1)

Q−
ij =


Qij, i = j or Qij ≤ 0,

0, otherwise,

Q+
ij =


Qij, i ̸= j and Qij > 0

0, otherwise.

(6.1.2)

Then, we define a new, lifted quadratic function f̃ : Rn
≥0 × Rn

≥0 → R as:

f̃(z,w) =
1

2

 z

w

T Q− Q+

Q+ Q−

 z

w

+
1

2

q
q

T  z

w

 . (6.1.3)

The lifted function f̃ also has some nice properties that we can use to our advantage.

Lemma 3. The function f̃ : Rn
≥0 × Rn

≥0 → R defined in (6.1.3) is such that for all (z,w) ∈

Rn
≥0 × Rn

≥0:

f̃(z,w) = f̃(w, z), (6.1.4)

and for all x ∈ Rn
≥0:

f̃(x,x) = f(x). (6.1.5)

We can similarly lift the function g : 2[n] → R to the function g̃ : 2[n] × 2[n] → R, defined

simply as:

g̃(S, T ) =
1

2
(g(S) + g(T )) . (6.1.6)
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The lifted function g̃ satisfies the same symmetry and embedding properties as the lifted

function f̃ .

Lemma 4. The function g̃ defined in (6.1.6) is such that for all (S, T ) ∈ 2[n] × 2[n]:

g̃(S, T ) = g̃(T, S), (6.1.7)

and for all A ∈ 2[n]:

g̃(A,A) = g(A). (6.1.8)

With the lifted functions f̃ and g̃ in hand, we define a lifted version of the original

quadratic optimization problem (6.0.2):

minimize
(z,w)∈Rn

≥0×Rn
≥0

ℓ̃(z,w) := f̃(z,w) + g̃ (supp (z) , supp (w)) . (6.1.9)

If we were to solve this lifted problem and find a solution on the diagonal, i.e., a solution

(z∗,w∗) such that z∗ = w∗, we immediately recover the solution to the original quadratic

problem (6.0.2).

Lemma 5. If the solution to the lifted problem (6.1.9), denoted (z∗,w∗) ∈ Rn
≥0×Rn

≥0 is such

that z∗ = w∗, then the point x∗ = z∗ = w∗ is an optimal solution to the original quadratic

problem (6.0.2).

Proof. By Lemmas 3 and 4, we know that:

ℓ̃(z∗,w∗) = ℓ(z∗) = ℓ(w∗).

Further, by the optimality of (z∗,w∗) and by shrinking the feasible set, we have:

ℓ̃(z∗,w∗) = ℓ(z∗) ≤ min
z,w∈Rn

≥0

ℓ̃(z,w) ≤ min
z,w∈Rn

≥0
z=w

ℓ̃(z,w) = min
x∈Rn

≥0

ℓ(x).

Therefore, the points z∗ and w∗ are also minimizers of the original problem (6.0.2).
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By Lemma 5, the solution to our initial quadratic problem is embedded in the new lifted

problem (6.1.9). To use this result, however, we need two key ingredients: the ability to

solve the lifted problem exactly and efficiently, and a way to easily produce solutions on the

diagonal.

6.2 Efficiently solving the lifted problem

The lifted quadratic problem (6.1.9) has a nearly identical form to the original problem

(6.0.2), but now satisfies Assumptions 1-3, as we prove next. As a result, we can use the

approach outlined in Section 3.2 to solve the lifted problem.

To discuss Assumption 1 and submodularity, we define a partial order and lattice on the

lifted space Rn
≥0×Rn

≥0 so that we can discuss submodularity. In particular, we consider the

partial order ≪, defined as:

(z,w)≪(z′,w′) ⇔ z⪯ z′ and w⪰w′, (6.2.1)

where ⪯ denotes the partial order on Rn previously defined in (2.1.3). In words, we order the

first part of each pair of vectors in the typical fashion, but reverse the order for the second

part. This choice of partial order also defines the join and meet operations:

(z,w) ≪ (z′,w′) = (z⋎ z′,w⋏w′) (6.2.2)

(z,w)

≪

(z′,w′) = (z⋏ z′,w⋎w′), (6.2.3)

where ⋎ and ⋏ are the join and meet operations on (Rn,⪯) defined in (2.1.4) and (2.1.5).

By construction, then, the lifted quadratic function f̃ is submodular on this lattice.

Moreover, since it is a quadratic form, simple conditions guarantee its convexity. We pur-

sue convexity here to leverage faster exact algorithms for solving the problem, rather than

the more general approach for continuous submodular minimization. Applying the contin-

uous submodular minimization algorithm to this lifted problem while using arbitrarily fine

discretization may be of future independent interest.
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Lemma 6. The function f̃ : Rn → Rn defined in (6.1.3) is submodular on the lattice (Rn ×

Rn,≪). Further, f̃ is convex if and only if both Q and Q+ −Q− are positive semidefinite.

Proof. We first note that the lattice (Rn × Rn,≪) is an orthant conic lattice, as defined by

[BLK17]. Therefore, by Proposition 2 of [BLK17], f̃ is submodular on this lattice if and only

if:

∂2f̃

∂xi∂xj

≤ 0, (6.2.4)

for all i, j = 1, 2, ..., n or i, j = n+ 1, n+ 2, ..., 2n with i ̸= j and:

∂2f̃

∂xi∂xj

≥ 0, (6.2.5)

for all i = 1, 2, ..., n and j = n+1, n+2, ..., 2n. For our lifted function f̃ , its Hessian matrix

is exactly:

∂2f̃

∂x2
=

Q− Q+

Q+ Q−

 .
By their construction, the matrices Q+ and Q− satisfy both (6.2.4) and (6.2.5), and f̃ is

submodular on (Rn × Rn,≪).

For convexity, we note that the Hessian matrix must be positive semidefinite. By the

matrix similarity:

1

2

I −I

I I

Q+ Q−

Q− Q+

 I I

−I I

 =

Q+ −Q− 0

0 Q+ +Q−

 ,
this holds only when Q = Q+ +Q− and Q+ −Q− are positive semidefinite.

Similarly, we define a lattice in the lifted discrete space 2[n] × 2[n] using the partial order

⋐ defined as:

(S, T ) ⋐ (S ′, T ′) ⇔ S ⊆ S ′ and T ⊇ T ′.
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The join and meet operations on (2[n] × 2[n],⋐), denoted by ⋐ and

⋐

respectively, are:

(S, T ) ⋐ (S ′, T ′) = (S ∪ S ′, T ∩ T ′)

(S, T )

⋐

(S ′, T ′) = (S ∩ S ′, T ∪ T ′).

We can then easily establish that the lifted function g̃ is submodular on the lifted discrete

lattice.

Lemma 7. If the function g : 2[n] → R is monotone and submodular, then the lifted function

g̃ defined in (6.1.6) is submodular on the lattice (2[n] × 2[n],⋐). Moreover, it is monotone

and submodular on the product lattice, (2[n] × 2[n],⊆).

Proof. Take a set (S, T ) ∈ 2[n]×2[n] and another set (S ′, T ′) ∈ 2[n]×2[n]. Then by definition,

we have:

g̃(S, T ) + g̃(S ′, T ′) =
1

2
(g(S) + g(T ) + g(S ′) + g(T ′))

≥ 1

2
(g(S ∩ S ′) + g(S ∪ S ′) + g(T ∩ T ′) + g(T ∪ T ′))

= g̃ ((S, T ) ⋐ (S ′, T ′)) + g̃ ((S, T )

⋐

(S ′, T ′)) ,

where the inequality follows from the submodularity of g, with ⋐ and

⋐

the join and meet

operations associated with the partial order ⋐ on 2[n] × 2[n]. By grouping terms differently,

we also see that g̃ is also monotone and submodular on the more typical product lattice

(2[n] × 2[n],⊆).

Because g̃ is monotone on the product lattice and h̃ is submodular on (Rn
≥0×Rn

≥0,≪),

Lemma 2 applies, and we can define the parameterized function h̃ : 2[n] × 2[n] → R:

h̃(S, T ) = min
z,w∈Rn

≥0

supp(z)⊆S
supp(w)⊆T

f̃(z,w), (6.2.6)

and then the solution to:

minimize
S,T∈2[n]×2[n]

g̃(S, T ) + h̃(S, T ) (6.2.7)
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corresponds to a solution of the lifted problem (6.1.9).

Finally, note that Assumptions 1 and 3 are satisfied by f̃ , g̃, the lattices (2[n] × 2[n],⋐)

and (Rn
≥0×Rn

≥0,≪), and the mapping supp : Rn
≥0×Rn

≥0 → 2[n] × 2[n]. Therefore, we have

the following direct corollary of Theorem 2.

Corollary 2. The function h̃ : 2[n] × 2[n] is submodular on the lattice (2[n] × 2[n],⋐).

Finally, if the non-submodular contribution to the quadratic form is not too large, par-

ticularly if Q+ −Q− is positive semidefinite, then by Lemma 6 f̃ is also convex. Under this

assumption, Corollary 1 applies, so we can solve the lifted optimization problem exactly in

polynomial time.

Corollary 3. Under the same assumptions as Corollary 1, if Q and Q+ − Q− are both

positive semidefinite matrices and g : 2[n] → R is monotone and submodular, then the lifted

quadratic optimization problem (6.1.9) can be solved exactly in polynomial time.

6.3 Guarantees

Corollary 3 in the previous subsection showed that a quadratic problem that does not satisfy

Assumptions 1-3 can be lifted to another quadratic problem that does. Moreover, under mild

assumptions on the problem data, the lifted problem can be solved exactly in polynomial

time. The question then arises: is this lifted problem’s solution useful?

Lemma 5 stated that if we are lucky enough to compute a minimizer to the lifted problem

on the diagonal, then it is also necessarily a minimizer of the original quadratic problem.

If we are unlucky, however, we would like to still to construct a minimizer of the original

problem using the solution we found. The following result shows that this is indeed possible.

Lemma 8. Let (z∗,w∗) ∈ Rn
≥0×Rn

≥0 be a solution to the lifted quadratic optimization problem

(6.1.9). If:

(z∗ −w∗)TQ−(z∗ −w∗) ≤ 0, (6.3.1)
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then both (z∗, z∗) and (w∗,w∗) are also minimizers of the lifted problem. By extension, z∗

and w∗ are minimizers of the original quadratic problem (6.0.2).

Proof. By Proposition 6 (in the appendix), we have that:

ℓ̃(z∗, z∗) + ℓ̃(w∗,w∗) = 2ℓ̃(z∗,w∗) + (z∗ −w∗)TQ−(z∗ −w∗).

Re-arranging, and applying the optimality of (z∗,w∗), it follows that:

(z∗ −w∗)TQ−(z∗ −w∗) = ℓ̃(z∗, z∗)− ℓ̃(z∗,w∗)︸ ︷︷ ︸
≥0

+ ℓ̃(w∗,w∗)− ℓ̃(z∗,w∗)︸ ︷︷ ︸
≥0

≥ 0.

Next, by assumption, (z∗ −w∗)TQ−(z∗ −w∗) ≤ 0, and therefore:

ℓ̃(z∗, z∗)− ℓ̃(z∗,w∗) + ℓ̃(w∗,w∗)− ℓ̃(z∗,w∗) = 0.

If we again re-arrange and apply the optimality of (z∗,w∗), we find:

0 ≤ ℓ̃(z∗, z∗)− ℓ̃(z∗,w∗) = ℓ̃(z∗,w∗)− ℓ̃(w∗,w∗) ≤ 0,

and therefore we have:

ℓ̃(z∗, z∗) = ℓ̃(z∗,w∗) = ℓ̃(w∗,w∗),

and by Lemma 5 the points z∗ and w∗ are both minimizers of the original quadratic problem

(6.0.2).

Note then that for any minimizer (z∗,w∗) of the lifted problem (6.1.9), by the submodu-

larity of f̃ and g̃ and the definition of the lattice (Rn
≥0 ×Rn

≥0,≪), we can also construct the

minimizer (z∗⋎w∗, z∗⋏w∗) and its counterpart, (z∗⋏w∗, z∗⋎w∗). If any of these mini-

mizers satisfy the criteria of Lemma 8, then we immediately recover an optimal solution of

the original quadratic problem.

The conditions required by Lemma 8 are in fact not only sufficient, but necessary. In

particular, any two solutions that are on the diagonal must satisfy them. We defer its proof

to the appendix because of its similarity to the proof of Lemma 8.
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Lemma 9. If (z∗, z∗) and (w∗,w∗) are minimizers of the lifted problem (6.1.9), then:

(z∗ −w∗)TQ−(z∗ −w∗) ≤ 0.

Lemmas 8 and 9 show that the easily verified quadratic form condition on the solutions

to the lifted problem are both necessary and sufficient. In practice, we can simply solve the

lifted problem and then check if the condition holds.

What might happen if the conditions of Lemma 8 are not satisfied, but we use its sug-

gested minimizer anyways? It turns out that these solutions are still nearly optimal, with

the distance from optimality measured using the same necessary and sufficient condition in

Lemmas 8 and 9.

Lemma 10. Let x∗ ∈ Rn
≥0 be a minimizer of the original quadratic problem (6.0.2), and

(z∗,w∗) ∈ Rn
≥0 × Rn

≥0 be a minimizer of the lifted quadratic problem (6.1.9). Then:

min{ℓ(z∗), ℓ(w∗)} ≤ ℓ(x∗) + (z∗ −w∗)TQ−(z∗ −w∗).

Proof. Again applying Proposition 6, we have:

ℓ̃(z∗, z∗) + ℓ̃(w∗,w∗) = 2ℓ̃(z∗,w∗) + (z∗ −w∗)TQ−(z∗ −w∗).

Then, applying the optimality of (z∗,w∗), we upper bound the right hand side:

ℓ̃(z∗, z∗) + ℓ̃(w∗,w∗) = 2ℓ̃(z∗,w∗) + (z∗ −w∗)TQ−(z∗ −w∗)

≤ 2ℓ̃(x∗,x∗) + (z∗ −w∗)TQ−(z∗ −w∗).

If we divide by two note that the minimum is less than the average, we have:

ℓ̃(z∗,w∗) ≤ 2ℓ̃(x∗,x∗) + (z∗ −w∗)TQ−(z∗ −w∗)

⇒ min{ℓ̃(z∗, z∗), ℓ̃(w∗,w∗)} ≤ ℓ̃(x∗,x∗) +
1

2
(z∗ −w∗)TQ−(z∗ −w∗).

Then, by Lemmas 3 and 4, this implies the result:

min{ℓ̃(z∗, z∗), ℓ̃(w∗,w∗)} = min{ℓ(z∗), ℓ(w∗)} ≤ ℓ(x∗) +
1

2
(z∗ −w∗)TQ−(z∗ −w∗).
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This series of results suggests the following approach for quadratic problems that vio-

late Assumption 1: lift the problem to a higher-dimensional one satisfying all the required

assumptions, solve the new lifted problem, then check if the conditions for Lemma 8 are

satisfied. If so, then construct the associated minimizer of the original problem. If the con-

ditions are not satisfied, the value we computed immediately gives an additive bound on the

suboptimality of the result.
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CHAPTER 7

Examples and Computational Evaluation

In this section, we illustrate the proposed theoretical results on several numerical examples

involving optimization on the lattices Rn
≥0 and 2[n]. We compare against two state-of-the-

art techniques: a direct application of the continuous submodular function minimization

algorithms outlined by [Bac19], and the projected subgradient descent method proposed in

[EJ20].

The algorithms for continuous submodular function minimization operate by discretizing

the domain Rn
≥0 into k discrete points in each dimension, converting the continuous opti-

mization problem into a submodular minimization problem over a bounded integer lattice.

In our examples, we consider the domain [0, 1]n ⊆ Rn
≥0 and set the discretization level to

k = 51 unless otherwise specified. The algorithms for continuous submodular function mini-

mization then solve an equivalent convex optimization problem (defined using a generalized

Lovász extension for the integer lattice) using projected subgradient or Frank-Wolfe tech-

niques. In our implementation, we use the Pairwise Frank-Wolfe algorithm to solve this

convex problem, with all relevant results plotted in blue and labeled Cont Submodular.

The projected subgradient method is known to provide approximation guarantees even

in the non-submodular case [EJ20], but as shown in Section 3.2, amounts to a specific

choice of algorithms in our theory. The algorithm operates by solving an equivalent convex

optimization problem–in particular, minimizing the Lovász extension of g +H over [0, 1]n–

using projected subgradient descent. To implement this approach, we use IBM’s CPLEX 12.8

constrained quadratic program solver in MATLAB to evaluate the function H (as expressed
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in (3.1.1)) and use Polyak’s rule for updating the step size. The relevant results are plotted

in red, and labeled PGD + CPLEX in figures.

Our approach is agnostic to the choice of convex optimization and submodular set func-

tion minimization routines, so we also use CPLEX to evaluate H. To highlight the utility

of an algorithm-agnostic approach, we also implement an active-set method for fast non-

negative quadratic programming to evaluate H [BD97]. For the submodular set function

minimization algorithm, we use the minimum-norm point algorithm from [FI11] as imple-

mented in MATLAB by [Kra10], coupled with the semi-gradient lattice pruning strategy

proposed by [IJB13] which has quadratic complexity and drastically reduces the problem

size. Our results are plotted in black, and labeled MNP + CPLEX and MNP + FNNQP in

figures.

The various methods are given identical cost functions to minimize, and are run un-

til either convergence to suboptimality below 10−4 or a maximum of 100 iterations. The

experiments were all run on a laptop with an AMD Ryzen 9 4900HS CPU and 16GB of

RAM.

7.1 Regularized Sparse Regression

We first examine a regularized sparse regression problem, similar in spirit to (CS). Consider

some x ∈ Rn
≥0, D ∈ Rm×n, b ∈ Rm, and define the function f : Rn

≥0 → R as:

f(x) = ∥Dx− b∥22. (7.1.1)

Then define the monotone submodular set function g : 2[n] → R as:

g(A) =


λ [(n− 1) + max(A)−min(A) + |A|] , A ̸= ∅,

0 A = ∅,
(7.1.2)

with λ ∈ R≥0, and max(A) and min(A) denoting the largest and smallest index element,

respectively, in the set of indices A. This choice of g in the sparse regression problem (P)
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places a high penalty on large sets of nonzero entries in the vector x ∈ Rn
≥0 that are far apart

in index.

We generate a series of random problem instances with m = n satisfying the assumption

of submodularity on Rn
≥0 and also the convexity condition of Corollary 1. Let chol : Rn×n →

Rn×n denote a Cholesky decomposition of a positive semidefinite matrix, and construct the

matrix D in (7.1.1) as:

D = chol

(
1

2
(C+CT ) + nI

)
, Cij ∼ unif(−1, 0), for all i, j = 1, 2, ..., n.

This construction guarantees that the function f in (7.1.1) is both convex and submodular

on Rn
≥0, satisfying the conditions for Corollary 1. For the parameter b ∈ Rm, we use the

signal in the top plot of Figure 7.1, and we set the regularization strength to λ = 0.05 so

that both the functions f and g play nontrivial roles in the combined objective function.

We plot the results from each algorithm in Figure 7.1. Because the minimizer of the

optimization problem is a representation of b using structured sparse columns of D, we

show the the reconstructed vector Dx produced by each algorithm in the second, third, and

fourth plots of Figure 7.1. Because there is no reliance on discretization, both the projected

subgradient descent and minimum-norm point algorithms produce a much smoother result,

as expected.

In the bottom left plot of Figure 7.1, we show the cost achieved over iterations of each

algorithm. The minimum-norm point converges almost immediately to the globally optimal

cost, while the projected subgradient descent method takes longer to achieve the same cost.

In contrast, the discretization error associated with the continuous submodular function

minimization approach prevents it from ever achieving the true optimal cost, by a small

amount.

Finally, over a small window of problem sizes, we show the running times of each algo-

rithm in the bottom right plot of Figure 7.1. Interestingly, our approach presents a com-

promise between the slow optimality of the projected subgradient descent method and the
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fast but inexact continuous submodular function minimization algorithm. Moreover, when

we take advantage of the extra problem structure to use specialized algorithms, we achieve

comparable running times to the continuous submodular minimization algorithm.

7.2 Signal Denoising

We next study a simple denoising example, where we consider a signal x ∈ Rn
≥0, which is

corrupted by some additive disturbance w ∈ Rn, with w ∼ N (0, 0.1I). We would like to

recover the signal x from the noisy measurements y = x + w, under the assumption that

the true signal x is smooth (meaning variations between adjacent entries ought to be small),

and that the meaningful content arrived in a small number of contiguous sets of entries.

We can express the desire to match the noisy signal y with a smooth one with the convex

and submodular function f : Rn → R defined as:

f(x) =
1

2
∥x− y∥+ µ

n−1∑
i=1

(xi − xi+1)
2 . (7.2.1)

The first term promotes matching the slightly corrupted signal, while the quadratic penalty

on adjacent entries of x ∈ Rn
≥0 promotes smoothness.

Similarly, we can express the knowledge of a small and contiguous set of nonzero entries

in the vector x with the monotone submodular set function g : 2[n] → R defined by:

g(A) = λ (|A|+#int(A)) , (7.2.2)

where λ ∈ R≥0, and the function #int(A) counts the number of sets of contiguous indices in

the set A. This set function is smallest on subsets with a small number of entries that are

adjacent in index.

For experiments, we use the signal x ∈ Rn
≥0 shown in the top plot of Figure 7.2, with the

noise-corrupted measurements x+w = y ∈ Rn with an example shown in dotted orange. We

then let µ = 0.8 in (7.2.1) and λ = 0.05 in (7.2.2) so that the overall problem’s cost function

43



10 20 30 40 50 60 70 80 90 100 110

vector index

0

0.5

1

Provided Signal

Signal

10 20 30 40 50 60 70 80 90 100 110

vector index

0

0.5

1

Min Norm + CPLEX Reconstruction

Signal

MNP + CPLEX/FNNQP

10 20 30 40 50 60 70 80 90 100 110

vector index

0

0.5

1

Projected (Sub)Gradient Reconstruction

Signal

PGD + CPLEX/FNNQP

10 20 30 40 50 60 70 80 90 100 110

vector index

0

0.5

1

Cont Submodular Reconstruction

Signal

Cont Submodular

0 20 40 60 80 100

Iteration

1080

1090

1100

1110

1120

1130

1140

C
o

s
t

Objective Value

PGD + CPLEX/FNNQP

Cont Submodular

MNP + CPLEX/FNNQP

20 40 60 80 100

Problem Dimension (n)

10
-5

10
0

10
5

T
im

e
 (

s
)

Runtime Scaling Comparison

PGD + CPLEX

PGD + FNNQP

Cont Submodular

MNP + CPLEX

MNP+FNNQP

Figure 7.1: Results from the sparse regression problem simulations. The reconstructed signal

representations using columns of D created by each algorithm are shown in the second, third,

and fourth plot. Note the solutions produced by projected subgradient and the minimum-

norm point algorithm are identical. We plot the cost function value over each algorithm’s

iterations in the bottom left, while in the bottom right we compare the running times of the

algorithms over a small window of problem dimensions.
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has nontrivial contributions from both the smoothness-promoting function and the sparsity-

inducing regularizer. In this case, for the continuous submodular algorithm we discretize the

compact set [0, 1]n ⊆ Rn into k = 51 distinct values per index.

We show the resulting denoised signals in the second, third, and fourth plots in Figure

7.2, with the running time comparison over a small window of problem dimensions in the

bottom right. The discretization of the domain in the continuous submodular function

minimization approach produces artifacts in the reconstructed signal, whereas the result of

the projected subgradient and minimum-norm point algorithms are smoother with smaller

sets of nonzero entries. We see once more that our proposed minimum-norm point algorithm

poses a compromise between speed and accuracy, providing guaranteed global optimality

without the high running time of projected subgradient descent. Moreover, when we use

more specialized algorithms for each sub-problem, we achieve competitive performance with

the continuous submodular minimization algorithm.

We also compare the objective value achieved during the iterations of each algorithm for

a single instance in the bottom left plot of Figure 7.2 with n = 100. Again, the minimum-

norm point algorithm converges almost immediately to the minimum alongside the projected

subgradient method, while the continuous submodular function minimization approach’s

discretization error prevents it from achieving full global optimality.

7.3 Price optimization with start-up costs

In price optimization problems, we are asked to determine prices for a set of products that

maximizes the expected profit while considering any inter-product demand effects caused by

these prices [IF16, IF17]. Usually this process relies on a simple predictive model for the

relationship between the price of an item and its demand, which we can easily derive with

a regression technique. Given a predictive model of the pricing-demand relationship and

a characterization of our cost for each product, we want to determine the optimal pricing
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Figure 7.2: Results of the denoising problem simulations. The true signal and its noisy

counterpart are shown in the top plot. The second, third, and fourth plots show the denoised

signals produced by each of the three algorithms. Note that the results from the minimum-

norm point algorithm and the projected subgradient descent method are identical. The

bottom left plot shows the objective value across iterations for n = 100, and bottom right

shows the running times of each algorithm for a window of problem dimensions.
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strategy that maximizes our profit.

Let ci ∈ R≥0 and pi ∈ R≥0 denote the cost and retail price per unit, respectively, of each

item of each item i = 1, 2, ..., n. Let the function d : Rn
≥0 → Rn

≥0 be the predictive demand

model, meaning that given a set of prices p it estimates the number of sales (or demand)

of the products. The estimated total profit of a pricing p can then be described by the

function:

f(p) =
n∑

i=1

(pi − ci)d(p)i. (7.3.1)

Without loss of generality, we assume there is a minimum loss we are willing to accept for

each item, meaning there is a lower bound p ∈ Rn
≥0, and that if pi = p

i
, we will not sell

product i.

While the expression for profit (7.3.1) includes the cost of each item, it does not account

for any start-up costs associated with providing them. In particular, to provide an item, we

may have to order it from a supplier and have it shipped to our facilities, paying various

logistical fees to do so. We pay these fees regardless of the quantity of products, meaning

they are a function purely of which items we choose to stock. Moreover, in many cases these

logistical costs are lumped together between items, such as when sourcing multiple products

from the same supplier.

More mathematically, assume we have k ∈ Z>0 groups of products with shared start-up

costs, with each group represented as a subset Gi ⊆ [n], each with some start-up cost wi.

Then the total incurred start-up costs of a subset of provided products S can be expressed

with a set function g : 2[n] → R:

g(S) =
∑
k∈[n]

S∩Gk ̸=∅

wi. (7.3.2)

We apply this set function to the set of products we choose to sell, supp
(
p− p

)
⊆ [n]. In

this work, without loss of generality we let p = 0, which implies that an item priced at
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pi = p
i
earns no reward and also has no impact on the demand of the other products. By

carefully defining the demand model d and costs c, we can enforce this property for any

desired minimum price p.

The true underlying demand model d is unknown in practice. In a small time window,

however, we can use historical data to build a local linear approximation for it, d̂ : Rn
≥0 →

Rn
≥0:

d̂(p) = β p+α,

with β ∈ Rn×n and α ∈ Rn. The entries βij describe the impact that the price of product

i has on the demand for product j, sometimes referred to as the elasticity of demands [IF16,

IF17]. Using this model, the estimated expected profit (7.3.1) is a quadratic function:

f(p) =
n∑

i=1

(pi − ci)d̂(p)i = pT β p+ pT (α−βT c)− cT α .

Combining the expected profits with the start-up costs, we are faced with the optimization

problem:

minimize
p

−pT β p− pT (α−βT c) + cT α+g
(
supp

(
p− p

))
subject to p ≥ p.

(7.3.3)

We create this scenario with real retail sales data collected from a UK-based online retail

store available in the UCI Machine Learning Repository [DG17, CSG12]. We use this data

to estimate the matrix β ∈ Rn×n and vector α ∈ Rn with simple ridge regression. To make

the pricing problem (7.3.3) well-posed, we also enforce a weak diagonal dominance constraint

on β. In addition to making the problem well-posed, this constraint enforces the intuition

that the most relevant factor in each product’s demand is its own prices.

Even with a diagonal dominance constraint, the cross-terms βij with i ̸= j can easily be

either positive or negative, depending on the demand and price relationships of the products.

As a result, we cannot directly apply our parameterization method. We can, however, use the
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Figure 7.3: Results of the price optimization problem simulations. We show the running

times of each algorithm for various problem sizes (left) and the achieved cost across iterations

of the algorithms for a problem of size n = 20 (right). The dotted line below indicates the

guaranteed lower bound on the optimal solution provided by our lift.

quadratic structure of (7.3.3) and follow the results of Section 6 to lift the pricing problem

into a new quadratic problem amenable to our parameterization approach.

We compare our parameterization approach to solving (7.3.3) against the projected sub-

gradient descent method applied directly to the original quadratic program for 100 iterations.

This algorithm gives near-optimality guarantees, but explicitly computing the associated

bound is NP-Hard. Alternatively, our quadratic lifting approach gives an easily computable

additive suboptimality guarantee in Lemma 10 at the cost of solving a larger problem in-

stance. This trade-off is highlighted in the plot of running times across varying problem sizes

and the achieved cost across over iterations of each algorithm for an instance of n = 20 in

Fig. 7.3.

We could also, in principle, use the continuous submodular minimization algorithm to

solve the lifted quadratic problem. However, this approach will still suffer inaccuracy from the

discretization step, and further, runs slower than the other algorithms that take advantage

of the quadratic problem structure.
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Figure 7.4: Results highlighting the role of the discretization resolution k on the continuous

submodular algorithm’s optimality (left) and running times (right) in an instance of the

sparse regression problem with n = 100.

7.4 Discretization Error Dependence

In this section, we explore the relationship between the continuous submodular function

minimization algorithm’s discretization error and its running time. To this end, we ran

instances of the sparse regression example with the modified range function penalty, using a

discretization resolution in each dimension ranging from k = 50 to k = 400.

The minimum cost achieved at each discretization level k is shown in the left plot of

Figure 7.4. Similarly, the associated running times of the algorithm are shown in the right-

hand plot of Figure 7.4. Interestingly, near the value of k = 250, the achieved cost becomes

effectively optimal, but the running time increases by an order of magnitude.

To give a coarse estimate on the origin of higher running times for projected subgradient

descent and the minimum-norm point algorithms, we note that the computational cost of

each iteration is dominated by the cost of computing the Lovàsz extension of H. This com-

putation has time complexity O(n log n+ nEO), where EO is the complexity of evaluating

H. If H is evaluated through convex optimization, many generic interior-point methods

have time complexity that is approximately EO = O(n3). Therefore, each iteration of the
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minimum-norm point algorithm and the projected subgradient descent algorithm might have

complexity on the order of O(n log n+n4). When using the fast non-negative quadratic pro-

gramming algorithm, however, each evaluation operation is typically much lower than the

generic O(n3). Moreover, the lattice reduction technique of [IJB13] runs in approximately

O(n2), and reduces the problem size drastically in many problems, as seen above.
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CHAPTER 8

Conclusions

In this work, we showed that model-fitting problems with structure-promoting regularizers

could be expressed as optimization problems defined over two connected lattices. Using sub-

modularity theory, we derived conditions on these functions and their domains under which

we can directly solve these problems exactly and efficiently. We focused on continuous and

Boolean lattices, and derived conditions under which an agnostic combination of submod-

ular set function minimization and convex optimization algorithms can compute the exact

solution in polynomial time.

We then extended this theory to handle optimization problems with simple continuous

or discrete budget constraints on the model parameters. We did this by naively adding

the constraint to the cost with a Lagrange multiplier, but then used submodular function

theory to solve for all possible Lagrange multiplier values with a single convex optimization

problem. We also highlighted robust or adversarial optimization scenarios, where our exact

solutions could provide subgradients to be used in globally convergent ascent methods.

Finally, we acknowledged there may be scenarios where our sufficient conditions are vio-

lated, and sought a way to weaken them without sacrificing our algorithm-agnostic approach.

To do so, we identified a class of quadratic programming problems that can be lifted to

problems satisfying our conditions. We then proved that the solutions of the lifted problem–

which can then be found in polynomial time using our previously developed techniques–give

provably optimal or near-optimal solutions to the original problem. Moreover, the addi-

tive approximation bound we provide is simple to compute, unlike existing guarantees in
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literature that involve constants that are NP-Hard to compute.

53



Part II

Estimation
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CHAPTER 9

Summary

Feedback control typically relies on an estimate of the system state provided by an estimation

scheme. These estimates, however, are always affected by errors that have non-negligible

impacts on control performance. Various stabilizing and safety-critical control frameworks

address this issue, but all require some characterization of the current estimation error to

determine when to apply more or less conservative control inputs. Current methods of

bounding these errors either take a very coarse worst-case bound or employ computationally

expensive time-varying set-valued methods.

This part of the thesis fills the missing gap in these works, presenting new determin-

istic worst-case error bounds for a state estimation scheme for generic nonlinear systems.

Crucially, these error bounds can be efficiently computed in real-time and shrink or grow

depending on the current system behavior and the current measurement quality. These

new, lightweight, “online” error bounds can directly interface with the aforementioned

measurement-robust control frameworks, resulting in less conservative control actions while

retaining safety and stability guarantees.
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CHAPTER 10

Introduction

In feedback control, one typically builds a full or partial-state feedback control law to accom-

plish the desired control task. This is particularly true in safety-critical scenarios, where one

must prioritize the system’s safety above all else. Almost all of these techniques for nonlinear

control–particularly in safety-critical control–rely on knowledge of the system state. In prac-

tice, this means that the state feedback control law is designed first, and then implemented

using, not the true system state, but an estimate from a separately designed state estimator.

While theoretically justified in some cases, the choice of estimation scheme can have

major impacts on the overall control performance. It is well-known, for example, that stabi-

lizing control laws for nonlinear systems may catastrophically fail when instead given a state

estimate [Kha15].

Many modern nonlinear control techniques have been developed that accommodate the

inherent imperfect knowledge of the state in a measurement-robust or uncertainty-aware

framework. For example, the robust control Lyapunov and Barrier function frameworks

have both been adapted to handle uncertainty in estimation [Fre96, CST21, AP23]. These

frameworks, however, must assume some bound on the state estimation error and employ

more conservative control actions depending on the magnitude of the error bound. In safety-

critical control, for example, the measurement-robust barrier function framework effectively

“inflates” the unsafe set and attempts to maintain a harsher safety criterion [CST21]. Beyond

conservative control inputs, loose bounds can also lead to issues where a guaranteed safe

control input does not exist.
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What these existing measurement-robust frameworks lack is an estimation scheme that

comes with error guarantees that vary with time in order to be less conservative, as noted in

[AP23]. When equipped with such an estimation method, the measurement-robust control

frameworks can adapt to be more or less conservative as the estimation error bounds grow

or shrink. This adaptation may even be necessary in order to properly guarantee the safety

or stability of the closed-loop system.

Many nonlinear estimation methods–even classic algorithms such as the Extended Kalman

Filter (EKF)–already have some form of time-varying error guarantee [Kha15]. When these

guarantees exist, however, they typically include a fixed inflation to accommodate the worst-

case measurement noise or disturbances in the system, in a manner akin to input-to-state

stability (ISS) bounds [SL16]. These bounds are then always “inflated” regardless of the

actually experienced measurement noise or disturbances, even if the observer itself may be

performing better in some periods than others.

Alternatively, there exist set-valued observers that hold on to tight, time-varying er-

ror bounds that may shrink or grow depending on the exact sequence of system outputs.

Set-valued observers, however, are typically only available for highly structured or linear

systems [KY22]. Even when available, these methods are often extremely computationally

demanding, limiting their practical utility [ST99].

In this work, we present an estimation scheme based on numerical differentiation that

directly targets these issues: it possesses deterministic, time-varying bounds that adapt

online to the experienced measurement noise and system disturbances. These new guar-

antees can directly be handed to any measurement-robust control framework, where their

time-varying nature permits more aggressive control actions when the estimation method is

more confident. Moreover, since these guarantees are deterministic worst-case bounds, any

measurement-robust control law based on these values will yield deterministic worst-case

correctness proofs.
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CHAPTER 11

Problem setup and background

We consider nonlinear control systems of the form:

ẋ = f(x, u)

y = h(x, u),
(11.0.1)

where for all t ∈ R≥0, x(t) ∈ Rn is the state, u(t) ∈ Rm is the input, and y(t) ∈ Rp is the

output. We assume that the map f is sufficiently regular for solutions of (11.0.1) to exist

and be unique for all t ≥ 0 and x(0) ∈ Rn.

We are interested in estimating the state x(t) of the system (11.0.1) at some time t ∈

[t0, tN ] given (possibly noise-corrupted)N+1 sampled-data measurements of y(t) at a window

of times {t0, t1, ..., tN}. For this problem to be well-posed, we make the following standing

assumption.

Assumption 1. The control system (11.0.1) is differentially observable of order d. In

particular, there exists a (possibly time-dependent) continuous function L that maps the d

derivatives of the output y(t) and input u(t) to the state x(t). More explicitly, L is such that:

(y(t), ẏ(t), ..., y(d), u(t), u̇(t), ..., u(d)(t))
L7−→ x(t).

As described in [Ber19, DFG01], places where the map L fails to exist are called singular

observations.
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11.1 Related work

A number of frameworks have addressed the interface between uncertainty in the system

state and control in the context of stability and safety. We only discuss non-stochastic

methods here, as they are closer to our work and its deterministic guarantees. From the

perspective of stability, there are characterizations of ISS with respect to estimation errors,

which guarantee that bounded errors cannot unboundedly destroy stability [KSW01]. In

practice, however, there is no method for creating controllers that enforce this particular

form of ISS for arbitrary nonlinear systems [Fre95].

Other works developed notions of robustness to estimation errors, leading to the con-

cepts of robust control Lyapunov functions (CLFs) and measurement-robust control barrier

functions (CBFs) [Fre96, CST21, AP23]. Both of these schools of thought, however, rely on

a characterization of the estimation error that is valid at any instant of time. Loose offline

characterizations of this uncertainty can lead to overly conservative controls, or worse, issues

of feasibility from a lack of “guaranteed safe/stable” control actions.

On the estimation side of this problem, there are many methods for state estimation

that possess a time-varying error bound. Perhaps the most straightforward to understand

are set-valued observers, wherein a tight approximation (polyhedral, ellipsoidal, or a hyper-

rectangle) of the possible states of the system is propagated through the dynamics at each

step [ST99]. This tighter representation is less conservative, but comes at the cost of limited

applicability and often prohibitively large amounts of computation and memory.

More familiar observers possess asymptotic guarantees, and even ISS-like guarantees are

often established [SL16]. Even these ISS guarantees, however, rely on some a priori estimate

of the worst-case measurement noise for all time, then inflate the estimation guarantees

for all time accordingly. Some promising and recent notions of ISS observers with “fading

memory” exist through the use of input-to-state dynamical stability, but the error bounds

provided by these estimators are not always available in real-time to mitigate the issues in
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measurement-robust control [DN15].

While developing observers for systems such as (11.0.1), one natural thought is to directly

leverage Assumption 1 and consider derivative estimation equivalent to state estimation

[Ber19]. This idea is not new, and many existing works connected numerical differentiation

techniques to state estimation dating back to the 1990s, proving that these estimation tech-

niques can produce globally bounded error [Dio07]. The existing guarantees, however, are

strictly offline: given some estimate of the output’s nonlinearity and magnitude of the noise,

a single static error bound is provided for all time.

In this chapter, we show that these offline guarantees can be significantly tightened and

made online. In particular, we prove a time-varying estimation error bound for Savitzky-

Golay filtering that can be computed online with a simple multiplication by a fixed pre-

computed matrix. Moreover, we show in experiments that these online bounds are orders of

magnitude tighter than the previously established offline bounds.
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CHAPTER 12

Savitzky-Golay filtering

The differential observability condition effectively equates estimating the state of the control

system with estimating its output and derivatives. As such, we will construct a method for

estimating d derivatives of the output from sampled-data measurements that possesses the

online error bounds we seek.

We propose a state estimation framework built on a classical scheme for numerical dif-

ferentiation: polynomial least-squares, or Savitzky-Golay filtering [SG64].

In Savitzky-Golay filtering, we build a local (in time) approximation of the output signal y

by fitting a window of N+1 samples in some interval [ti, tf ] ⊆ R with a degree-d polynomial.

We then estimate the d derivatives of y at some time in this window τ ∈ [ti, tf ] by differenti-

ating the polynomial approximation to y at τ . Finally, we apply the map L from Assumption

1 to produce a state estimate x̂(τ). Notably, if the samples are uniformly spaced, this entire

process becomes a single matrix multiplication with a fixed matrix computed offline.

In this section, we appeal to the following intuition: for a well-posed fitting procedure,

the residuals from the least-squares regression should naturally measure fit quality. By

residuals, we mean the misfit between the polynomial p and the output y at the sampled

outputs. These residuals may be high or low depending on the actual measurement noise

and nonlinearities at any given time, rather than being fixed a priori. Our main results

formalize this intuition by connecting the online residuals to a deterministic worst-case error

bound on the derivative estimation error during Savitzky-Golay filtering.
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CHAPTER 13

Online error bounds

We assume that the output function h for the control system (11.0.1) is such that the output

y is continuous and d + 1-times differentiable. For simplicity of analysis, we discuss only

scalar outputs (m = 1), as the generalization to higher dimensions is straightforward.

We then approximate the output locally with a degree-d polynomial p : R → R of the

form:

p(t) = a0 + a1t+ · · ·+ ad−1t
d−1 + adt

d. (13.0.1)

Given N + 1 measurements of the output y at times {t0, t1, ..., tN} ⊆ R, each corrupted

by some noise signal e(ti), ti ∈ {t0, t1, ..., tN}, we determine the polynomial p by minimizing

the squared error in the following optimization problem:

minimize
a∈Rd+1

N∑
i=0

∥[y(ti) + e(ti)]− p(ti)∥22. (13.0.2)

Note that we do not have access to y(ti), only its noisy measurements y(ti) + e(ti) at each

sampled time.

13.1 Error bounds on derivatives

First, we state our main result which holds with equality.

Theorem 7. Choose any subset of sample times D := {s0, s1, ..., sd} ⊆ {t0, t1, ..., tN} with

cardinality |D| = d + 1 ≤ N + 1, and let p : R → R be any degree-d polynomial. Define
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the degree-d polynomial “residual interpolant” rD associated with p, i.e., the polynomial such

that:

y(si)− p(si) = rD(si) for all si ∈ D. (13.1.1)

Then for any t ∈ [s0, sd], it holds that:

y(k)(t)− p(k)(t) = r
(k)
D (t) +

y(d+1)(ξ)

(d− k + 1)!

d−k∏
i=0

(t− νi), (13.1.2)

where si ≤ νi ≤ si+k for each i = 0, 1, ..., d− k and ξ ∈ [s0, sd].

Proof. Define the auxiliary function Q : R → R as:

Q(t) = y(t)− p(t)− rD(t).

By construction, Q is continuous and at least d + 1-times differentiable with at least d + 1

zeroes in the interval [s0, sd]. In particular, its zeros are each of the si ∈ D. By repeated

applications of Rolle’s Theorem, Q(k) has at least d − k zeros, each denoted by νi, with

νi ∈ [si, si+k].

Consider another function H : R → R defined as:

H(z) = Q(k)(z)− α
d−k∏
i=0

(z − νi), (13.1.3)

for some α ∈ R. Note that for any chosen t ∈ [s0, sd] with t ̸= νi for all i = 0, 1, ..., d − k,

there exists a choice of α ∈ R such that H(t) = 0. We will derive an explicit expression for

this α in terms of y(d+1).

Because H(t) = 0 for t ∈ [s0, sd], then H is d − k + 1 times differentiable with at

least d − k + 2 zeros in the interval [s0, sd]. In particular, H(z) = 0 when z = νi, with

i = 0, 1, ..., d − k, and also at the prescribed z = t. Again using repeated applications of

Rolle’s Theorem, the d − k + 1 derivative of H then has at least one zero in the interval
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[s0, sd], meaning there exists some ξ ∈ [s0, sd] (depending on t) such that:

H(d−k+1)(ξ) = Q(k+(d−k+1))(ξ)− α(d− k + 1)!

0 = Q(d+1)(ξ)− α(d− k + 1)!

= y(d+1)(ξ)− α(d− k + 1)!

⇒ α =
y(d+1)(ξ)

(d− k + 1)!
,

where in the third equality we abused the fact that p, rD, and eD are degree-d polynomials.

Simply plugging this value for α into (13.1.3) and re-arranging, we find:

H(t) = 0 = Q(k)(t)− y(d+1)(ξ)

(d− k + 1)!

d−k∏
i=0

(t− νi)

= y(k) − p(k) − r
(k)
D (t)

− y(d+1)(ξ)

(d− k + 1)!

d−k∏
i=0

(t− νi)

⇒ y(k) − p(k) = r
(k)
D (t) +

y(d+1)(ξ)

(d− k + 1)!

d−k∏
i=0

(t− νi),

for all t ∈ [s0, sd] as desired.

Note that Theorem 7 is an equality, meaning there is no tighter bound for a given polyno-

mial p. Our choice of polynomial p, however, will change the values (and derivatives) of the

residual interpolant rD, suggesting we choose p that minimizes its impact (e.g., least-squares).

The equality (13.1.2) also behaves in expected ways for specific cases. If there is no

measurement error e(ti) = 0 and the function y is a polynomial of degree at most d, then

the interpolating polynomial p has zero residuals, y(d+1) is uniformly zero, and therefore

(13.1.2) guarantees zero misfit everywhere in the interval. Similarly, when the number of

points and degree of the polynomial are equal (d = N), (13.1.2) immediately recovers the

guarantee associated with interpolating polynomials.

Despite its tightness, Theorem 7 relies on knowledge of parameters that we do not have

access to in reality: the noise-free values of y(d+1)(ξ), the times νi, and the underlying
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true misfit y(ti) − p(ti). In practice, we only have access to the measured (noise-impacted)

residuals, y(ti) + e(ti) − p(ti), and perhaps a uniform bound on the noise and value of

y(d+1)(ξ). In the following corollary, we loosen the equality in (13.1.2) by only relying on

these assumptions.

Corollary 4. Assume that |y(d+1)(ξ)| ≤ M for all ξ ∈ [s0, sd], and that the measurement

noise is uniformly bounded by |e(si)| ≤ E for all si ∈ D. If the subset D has maximal

inter-sample spacing si+1 − si ≤ δ, then:

|y(k)(t)− p(k)(t)| ≤
∑
si∈D

∣∣∣l(k)i (t) (y(si) + e(si)− p(si))
∣∣∣

+ E
∑
si∈D

|l(k)i (t)|+Mδd−k+1,
(13.1.4)

where li : R → R with i = 0, 1, ..., d are the Lagrange basis polynomials for D:

li(t) =
∏

sj∈D\{si}

t− sj
si − sj

. (13.1.5)

Proof. We begin by simply applying the triangle inequality to the right-hand side of (13.1.2):

|y(k)(t)− p(k)(t) ≤ |r(k)D (t)|+ |y(d+1)(ξ)|
(d− k + 1)!

d−k∏
i=0

|t− νi|

≤ |r(k)D (t)|+ M

(d− k + 1)!

d−k∏
i=0

|t− νi|.

Then note that the interpolating polynomial rD can be explicitly written as a function of its

interpolation sites using the Lagrange basis for D, as defined in (13.1.5):∣∣∣∣ dkdtk rD(t)
∣∣∣∣ =

∣∣∣∣∣ dkdtk ∑
si∈D

li(t) (y(si)− p(si))

∣∣∣∣∣
=

∣∣∣∣∣∑
si∈D

l
(k)
i (t) (y(si) + e(si)− p(si))− l

(k)
i (t)e(si)

∣∣∣∣∣
≤
∑
si∈D

∣∣∣l(k)i (t) (y(si) + e(si)− p(si))
∣∣∣+ ∣∣∣l(k)i (t)e(si)

∣∣∣
≤
∑
si∈D

∣∣∣l(k)i (t) (y(si) + e(si)− p(si))
∣∣∣+ E

∣∣∣l(k)i (t)
∣∣∣ .
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Finally, we note that each of the νi is in the interval [si, si+k]. By assumption, each of these

intervals is at most size kδ. The product term is upper bounded by a choice of t that is at

one end of the polynomial, which we can use as a lazy bound:

M

(d− k + 1)!

d−k∏
i=0

|t− νi| ≤
M

(d− k + 1)!

d−k∏
i=0

(i+ 1) · kδ

=Mδd−k+1.

While this bound is valid, it can easily be sharpened by characterizing this product for the

specific choice of t where estimation is relevant. Combining these terms, we recover the

desired result.

We have now removed any unknown quantities from Theorem 7, meaning Corollary 4

presents an online-computable bound characterizing the error in derivative estimation. In-

terestingly, this bound may vary in time with the fit residuals y(ti) + e(ti) − p(ti), which

formalizes the intuition that “good polynomial fits” should produce better estimates, regard-

less of the standing assumptions on the system.

While the bounds in Corollary 4 are in principle “online computable”, their practical value

only holds if they are also computationally lightweight. Implementing both Savitzky-Golay

filters and evaluating Corollary 4’s bounds are computationally efficient. The filtering itself

is a simple matrix multiplication of the current window of outputs by a fixed N +1×N +1

fitting matrix. The bounds require the measured residuals (one more matrix multiply and

a vector subtraction) followed by a simple inner product with a (fixed, offline-computable)

vector of l
(k)
i (t) evaluations at the estimation time of interest t ∈ [t0, tN ].

Both Theorem 7 and Corollary 4 hold for an arbitrary degree-d polynomial p and its mea-

sured residuals. In practice, the Savitzky-Golay scheme uses the least-squares polynomial,

which is clearly useful because it indirectly minimizes the individual measured residuals in

the bound (13.1.4). Notably, if we are able to use an interpolating polynomial, then all

residuals are zero and the guarantee given by Corollary 4 collapses to the usual guarantee
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given for polynomial interpolation.

One of the main motivations for using least-squares over interpolation is the ability to

“smooth out” the impact measurement noise. This property is implicit in (13.1.4), where

we can reduce the magnitude of the terms involving measurement noise by shrinking the

values of the Lagrange basis polynomials l
(k)
i (t) associated with the subset D. To shrink

these values, we must select a subset of times D ⊆ {t0, t1, ..., tN} that is spaced as far apart

as possible. If the polynomial p was selected with least-squares, then the term associated to

its residuals maintains the same uniform bound regardless of the subset of fitting points D.

This property holds as the ℓ2 norm always upper bounds the ℓ∞ norm (which we could choose

to optimize instead while still applying Corollary 4). As we select a subset D with larger

inter-sample times, however, the final term in (13.1.4) representing the output’s deviation

from polynomial grows. Choosing the best subset D ⊆ {t0, t1, ..., tN} optimizes the trade off

between smoothing and accuracy.

In principle, we could solve the combinatorial problem of choosing the subset D ⊆

{t0, t1, ..., tN} with cardinality |D| = d + 1 that minimizes the bound (13.1.4) each time

we make a derivative estimate. This approach is clearly intractable, but we can easily ap-

proximate it by choosing a small family of different subsets (e.g., by parameterizing the

subset by several choices of inter-sample spacing δ) and evaluating (13.1.4) for each subset

choice online, always claiming the tightest guarantee achieved by this family. Similarly, we

could select the subset D a priori by assuming some fixed maximum values for the measured

residuals and optimizing (13.1.4) over D, but this reduces the dynamic properties of the

bound.

13.2 From derivatives to state

Up to this point, we have discussed only online error bounds for derivative estimation. We

can transfer these error bounds from the space of derivative estimates to state estimates in
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a number of ways, such as interval analysis techniques. In practice, we may use whichever

method provides the tightest guarantees, but for completeness, we state a naive but imme-

diate result for the special case of Lipschitz continuous observability maps.

Theorem 8. Assume that the function L in Assumption 1 is globally Lipschitz continuous

with Lipschitz constant L, and let x̂(t) denote the result of composing L with estimates of

y and its d derivatives from a degree-d polynomial p : R → R. Under the same setting as

Corollary 4, there exists a nondecreasing function α : R → R from the measured polynomial

fit residuals to the estimation error:

|x(t)− x̂(t)| ≤ α

(∑
si∈D

|y(si) + e(si)− p(si)|

)
.

If an explicit expression for the observation map L is not known, we could follow the

steps proposed in [GM90] and solve the observation equations (or the equations governing

the derivatives) for the state via Newton’s method. The error bounds would then propagate

through the convergence guarantees of this method.

The process outline above produces a state estimate for the time t ∈ [t0, tN ] where the

derivative estimation takes place. Depending on when this time is chosen, there is necessarily

a delay in the state estimate. We could choose to estimate derivatives at the most recent

time tN ∈ [t0, tN ], but differentiating fitting polynomials at their endpoints is notoriously

inaccurate [BT04]. This difficulty is also reflected in the bounds given from Corollary 4,

which are maximized when evaluated at t0 and tN .

We could also counteract the estimation delay by evolving the estimate from Theorem

8 forward with the differential equation model (11.0.1). We could even use an Extended

Kalman Filter (EKF) initialized at the delayed estimate x̂(t) to both remove the delay and

tighten the bounds from Theorem 8 when the EKF’s local exponential convergence can be

guaranteed [DFG01, Dio07].
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CHAPTER 14

Experiments and evaluation

In this section, we validate the theoretical bounds from Corollary 4 in a couple simple

examples. In each case, we show that our online error bounds are orders of magnitude

tighter than more standard offline bounds, and vary with time depending on the system

dynamics.

14.1 Lorenz Attractor System

We consider the Lorenz attractor system dynamics with a single output:

ẋ1 = σ · (x2 − x1)

ẋ2 = x1 · (ρ− x3)− x2

ẋ3 = x1x2 − βx3

, y = x1,

where we set the parameters σ = 10, ρ = 28, and β = 8
3
. We use a sampling frequency of

100Hz (inter-sample time δ = 0.01 seconds) and apply a Savitzky-Golay filter to fit a degree

d = 3 polynomial to sliding windows of 20 measurements. We differentiate this polynomial

at the midpoint, and in our comparisons we use the delayed value of the system output and

state (meaning we do not consider the effects of estimation lag). We derive the error bounds

on the state estimate by performing interval analysis on an explicit expression for the map

from Assumption 1.

To highlight the online nature of our bounds, we add bounded (E = 0.5) measurement

errors to the system only during times t ∈ [1.6, 3.3], and otherwise we have zero noise.
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Crucially, we supply the bounds in Corollary 4 with the same value of E = 0.5 at all

times, meaning we are always theoretically accommodating these measurement errors, even

when none are present in the system. We also provide the bounds with a uniform bound

|y(d+1)| ≤ 96733, which is valid for all time.

For comparison, we also plot some naive offline bounds derivable via Taylor series analysis,

identical to those given in [Dio07]. We omit the derivation of these bounds here for brevity,

but the interested reader may find them in Appendix D. In 14.1, we show the error in the

estimated output derivatives on a log-scale plot, highlighting that our new online bounds

are orders of magnitude tighter. In addition to always being tighter, these bounds may

adapt naturally the noise in the measurements. Furthermore, the measurement errors are

bounded E = 0.5 and so the output’s value (i.e., the estimate of the state x1) cannot be more

accurate than this fundamental limit. Similarly, the output’s derivative estimation error is

always lower bounded by 2E
δmax

≈ 20, and 4E
δ2max

≈ 800 for the second derivative, where δmax

is the largest possible inter-sample spacing. Our error bounds in Fig. 14.1 show that our

method is provably near these fundamental limits in the noiseless regime.

This same phenomenon is apparent in Fig. 14.2, where we plot the state of the system

(blue) alongside the state estimate (dashed red) with error bounds (red shading). The

bounds naturally accommodate the extreme noise levels, but immediately tighten when no

measurement errors are present. Moreover, the the map L from Assumption 1 naturally

incorporates the system dynamics, which is why at some particular times the bounds increase,

despite no measurement errors being added.

14.2 Ackerman Steering Model

We also consider a more physical system for a two-axle Ackerman steering model with “GPS”

position outputs, whose states and dynamics are illustrated in Fig. 14.3.

We set the axle separation ℓ to 0.5, and use a sampling frequency of 100Hz (δ = 0.01),
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Figure 14.1: Error in the the derivative estimation for the Lorenz system. The true estimation

error is shown in blue, with dashed red lines and shading indicating the online error bounds

of Corollary 4. The solid black lines denote offline bounds.
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Figure 14.2: State estimates for the Lorenz system. The true state is shown in blue, with

dashed red lines and red shading indicating the state estimate and online error bounds of

Corollary 4. Note that the system produces a singular measurement around t = 0.5.
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• 

X1 == X4 COS X3 
• 

X2 == X4 sin X3
. 

X 

X3 == -f tan x5
• 

X4 == U1 

Figure 14.3: A diagram illustrating the states of the Ackerman steering model.

fitting a degree d = 5 polynomial to the data using a sliding window of 50 measurements.

We inject bounded measurement errors with magnitude E = 0.025 only in the interval

t ∈ [4.9, 9.8].

Here we show the state estimates (with error bounds) in Fig. 14.4. Notably, in the interval

where there were measurement errors, the bounds naturally inflate slightly and become less

“smooth”. The local dynamics of the vehicle, however, impact precisely how much inflation

occurs.
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Figure 14.4: State estimates for the Ackerman model. The true state is shown in blue, with

dashed red lines and red shading indicating the state estimate and online error bounds of

Corollary 4. The spike in x3 at t ≈ 6 is caused by numerical angle wrapping artifacts, since

x3 lies on the manifold S. Spikes in x5, however, are caused by singular measurements, as

estimating x5 effectively computes the curvature of the vehicle path.
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CHAPTER 15

Conclusions

In this chapter, we presented new deterministic worst-case error guarantees for a nonlin-

ear state estimation scheme. Most importantly, our error bounds are easy to compute

online and shrink or grow depending on the system behavior. These new “online” error

bounds can easily interface with existing measurement-robust control frameworks, reducing

the inherently conservative nature of these methods. A promising direction of future work

would study the interaction of these observers with the control law, effectively ensuring

not measurement-robust safety, which requires strong assumptions on the available control

actions, but certifiable safety.

We validated this estimator and its guarantees with two different nonlinear systems,

verifying their performance and tightness. In the future, this principle of relating fitting

“residuals” to estimation errors could be extended to more classical estimators, proving new

“online” error bounds for other families of nonlinear observers.
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Part III

Appendices
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APPENDIX A

Submodularity, Lattice Morphisms, and Least Squares

There is a massive body of work that identifies conditions under which compressed sensing

problems of the form:

minimize
x∈Rn

∥Ax− b∥22 + |supp (x) |, (A.0.1)

for A ∈ Rm×n (with normalized unit norm columns, without loss of generality) and b ∈ Rm

can be efficiently solved by a convex relaxation of the ℓ0 pseudo-norm to the ℓ1 norm:

minimize
x∈Rn

∥Ax− b∥22 + ∥x∥1,

with ∥x∥1 =
∑n

i=1 |xi|. The majority of these conditions rely on the matrix A being “close

to an isometry”, or “nearly orthogonal”. In this appendix, we highlight how these near-

orthogonality conditions on the matrix A can be related to the assumptions made in this

work.

Interestingly, any least-squares problem in the form of (A.0.1) can be written as a least-

squares problem over Rn
≥0, by considering auxiliary variables:

x = x+ − x−, x+,x− ∈ Rn
≥0.

Using these new variables, the least squares problem (A.0.1) becomes:

minimize
x+,x−∈Rn

≥0

∥∥∥∥∥∥
[
A −A

]x+

x−

− b

∥∥∥∥∥∥
2

2

+ |supp
(
x+ − x−) |.
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If we assume (without loss of generality) that at most one of x+
i or x−

i are nonzero for each

i = 1, 2, ..., n, then we can equivalently write:

minimize
x+,x−∈Rn

≥0

x+

x−

T  ATA −ATA

−ATA ATA

x+

x−

− 2bT
[
A −A

]x+

x−


+ |supp

(
x+
)
|+ |supp

(
x−) |.

In this lifted problem, Assumption 1 states that the cost function must be submodular on

Rn
≥0 × Rn

≥0. For our lifted problem’s cost function, this assumption is equivalent to the

condition:

(
ATA

)
ij
≤ 0, for all i ̸= j

−
(
ATA

)
ij
≤ 0, for all i, j.

This set of conditions in turn implies that
(
ATA

)
ii
≥ 0 for all i, which is always satisfied,

but also that
(
ATA

)
ij
= 0 for all i ̸= j.

By this analysis, any arbitrary least-squares problem with a monotone subset penalty

can be converted to a nonnegative least-squares problem satisfying Assumptions 1-3 and

the required convexity for Theorem 2 if A is orthogonal. The nearness of the matrix A to

satisfying this condition is often measured with the notion of its coherence:

max
i ̸=j

(
ATA

)
ij
,

which is commonly used to identify well-structured instances of least-squares problems

[Rau10].
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APPENDIX B

Continuous Budget Constraints

In this appendix, we prove the relevant results for continuous budget constraints. We let

fi : R≥0 → R and Wi : R≥0 → R be continuous functions such that fi(0) = Wi(0) = 0 for all

i = 1, 2, ..., n. We further assume that each Wi is strictly increasing for each i. Then define

the function Hi : R≥0 → R≤0:

Hi(α) = min
z≥0

fi(z) + αWi(z). (B.0.1)

We first note that Hi is monotone in α.

Proposition 2. The function Hi : R≥0 → R≤0 is monotone in α for all i = 1, 2, ..., n. It

is strictly increasing for all α ∈ [0, c], where c ∈ R≥0 is the smallest constant such that

Hi(c) = 0. Additionally, Hi is constant and zero on the interval [c,∞[.

Proof. Consider α, β ∈ R≥0, with α ≤ β, and define the points zα ∈ R≥0 and zβ ∈ R≥0 as:

zα ∈ argmin
z≥0

fi(z) + αWi(z),

zβ ∈ argmin
z≥0

fi(z) + βWi(z).

Note that for any α ∈ R≥0, because z = 0 is a feasible point in the minimization defined in

(B.0.1):

Hi(α) = min
z≥0

fi(z) + αWi(z)

≤ fi(0) + αWi(0) = 0,
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thus Hi is bounded above by zero. Moreover, observe that by optimality of zα:

Hi(α) = fi(z
α) + αWi(z

α) ≤ fi(z) + αWi(z), for all z ≥ 0.

Moreover, because Wi(0) = 0 and Wi is increasing, Wi(z) ≥ 0. Then, because α ≤ β:

Hi(α) = fi(z
α) + αWi(z

α)

≤ fi(z) + αWi(z)

≤ fi(z) + βWi(z), for all z ≥ 0.

This inequality is strict when α < β and Wi(z
α) ̸= 0, or equivalently Hi(α) < 0. In

particular, because zβ ≥ 0:

Hi(α) ≤ fi(z
β) + βWi(z

β) = Hi(β),

with strict inequality when Hi(α) < 0. Therefore Hi is monotone and strictly increasing for

all α ∈ R≥0 such that Hi(α) < 0. Because it is also bounded above by zero, monotonicity

implies that once Hi(c) = 0 for some c ∈ R≥0, it is zero for all β ≥ c.

Let g : 2[n] → R be a monotone submodular set function, and consider a family of

optimization problems parameterized by µ ∈ R≥0:

minimize
A∈2[n]

g(A) +
∑
i∈A

Hi(µ). (B.0.2)

Given Proposition 2, we know that Hi(0) ≤ 0 for all i = 1, 2, ..., n. If there exists an

i ∈ [n] such that Hi(0) = 0, Proposition 2 further states that Hi(α) is also zero for all α ≥ 0.

Moreover, because g is monotone, we know:

g(A) +
∑
i∈A

Hi(α) = g(A) +
∑

i∈A\{j}

Hi(α)

≥ g(A \ {j}) +
∑

i∈A\{j}

Hi(α).
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In words, because g is monotone and Hi(α) is zero for all α, we can always reduce the cost

of a subset by removing i. Equivalently, we can simply remove i from the ground set of

elements.

We then follow the analysis in [Bac13], generalizing as needed to accommodate for the

non-strict monotonicity of Hi.

Proposition 3. (Proposition 8.2 in [Bac13]) Let Aα and Aβ be minimal (i.e., smallest in size)

minimizers for (B.0.2) with respective parameters α and β, with α < β. Then Aβ ⊆ Aα.

Proof. By the optimality of Aα and Aβ, we have:

g(Aα) +
∑
i∈Aα

Hi(α) ≤ g(Aα ∪ Aβ) +
∑

i∈Aα∪Aβ

Hi(α) (B.0.3)

g(Aβ) +
∑
i∈Aβ

Hi(β) ≤ g(Aα ∩ Aβ) +
∑

i∈Aα∩Aβ

Hi(β). (B.0.4)

If we sum these inequalities and apply the submodularity of g, we have:

g(Aα ∪ Aβ) + g(Aα ∩ Aβ) +
∑

i∈Aα∪Aβ

Hi(α) +
∑

i∈Aα∩Aβ

Hi(β)

≥ g(Aα) + g(Aβ) +
∑
i∈Aα

Hi(α) +
∑
i∈Aβ

Hi(β)

≥ g(Aα ∪ Aβ) + g(Aα ∩ Aβ) +
∑
i∈Aα

Hi(α) +
∑
i∈Aβ

Hi(β). (B.0.5)

Subtracting equations (B.0.3) and (B.0.4) from (B.0.5), we have:∑
i∈Aα∪Aβ

Hi(α) +
∑

i∈Aα∩Aβ

Hi(β) ≥
∑
i∈Aα

Hi(α) +
∑
i∈Aβ

Hi(β)

⇒
∑

i∈Aβ\Aα

[Hi(β)−Hi(α)] ≤ 0. (B.0.6)

By Proposition 2, as α < β, each Hi(β)−Hi(α) in the summation (B.0.6) is strictly positive,

or Hi(α) = Hi(β) = 0. But if Hi(α) = Hi(β) = 0, as g is monotone, we may remove i from

both Aα and Aβ and decrease the cost in (B.0.2), contradicting the minimality of Aα and

Aβ.
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By this argument, the left-hand side of inequality (B.0.6) is the sum of strictly positive

terms. However, it is bounded above by zero, so it must therefore be the empty summation,

i.e., Aβ \ Aα = ∅, and therefore Aβ ⊆ Aα.

We now identify a related convex optimization problem:

minimize
u∈Rn

≥0

gL(u) +
n∑

i=1

∫ ϵ+ui

ϵ

Hi(α)dα. (B.0.7)

A classical result in submodular function theory establishes that the Lovàsz extension gL

is convex if and only if g is submodular [Lov83]. Moreover,
∫ ϵ+ui

ϵ
Hi(α)dα is convex if and

only if Hi is monotone in α, which is true by Proposition 2. Therefore, problem (B.0.7) is a

convex optimization problem.

We now establish a relationship between the parameterized family of set function mini-

mization problems (B.0.2) and the convex optimization problem (B.0.7).

Proposition 4. (Proposition 8.3 in [Bac13]) Given the (minimal) solutions Aα to the set

function minimization problem (B.0.2) for all values of the parameter α ≥ ϵ, define the

vector u∗ ∈ Rn
≥0 defined by:

u∗
i = sup ({α ∈ R≥0 | i ∈ Aα}) .

Then the vector u∗ is the minimizer of the convex optimization problem (B.0.7).

Proof. For α ≥ 0 small enough (as, without loss of generality, Hi(0) < 0 for all i), we have

Hi(α) < 0 for all i = 1, 2, ..., n. Because g is monotone, for this α, the optimal Aα is equal

to {1, 2, ..., n}, and thus u is well defined for all i = 1, 2, ..., n.

For simplicity, we use the notation {u ≥ µ} to denote the set:

{u ≥ µ} = {i ∈ {1, 2, ..., n} | ui ≥ µ},
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for any u ∈ Rn and µ ∈ R. Then for any µ ≥ 0, we have:

gL(u) +
n∑

i=1

∫ ϵ+ui

ϵ

Hi(µ)dµ = gL(u+ 1ϵ)− ϵg({1, 2, .., n}) +
n∑

i=1

∫ ϵ+ui

ϵ

Hi(α)dα

=

∫ ∞

0

g({u+ 1ϵ ≥ µ})dµ+
n∑

i=1

∫ ϵ+ui

ϵ

Hi(α)dα− ϵg({1, 2, ..., n})

=

∫ ∞

ϵ

[
g({u+ 1ϵ ≥ µ}) +

n∑
i=1

1{ui+ϵ≥µ}Hi(µ)

]
dµ, (B.0.8)

where we used the indicator function defined as:

1{ui
∗+ϵ≥µ} =


1, u∗

i + ϵ ≥ µ

0, otherwise.

In the right-hand side of (B.0.8), every µ ≥ ϵ in the integral defines a set function

minimization for which the optimal subset is Aµ. Because we constructed u∗ as the minimizer

to each of these optimal subsets, the value at u∗ must be lower than all other u, leading to

the inequality:

gL(u
∗) +

n∑
i=1

∫ ϵ+u∗
i

ϵ

Hi(µ)dµ ≤
∫ ∞

ϵ

[
g({u+ 1ϵ ≥ µ}) +

n∑
i=1

1{uj+ϵ≥µ}Hj(µ)

]
dµ

= gL(u) +
n∑

i=1

∫ ϵ+u∗
i

ϵ

Hi(µ)dµ,

for all other u ∈ Rn
≥0, and therefore u∗ is optimal for (B.0.7).

Proposition 4 establishes the relationship between the parameterized family of optimiza-

tion problems (B.0.2) and the convex optimization problem (B.0.7). We state the next

theorem without proof, as it requires no special modifications for our conditions.

Proposition 5. (Proposition 8.4 in [Bac13]) If u∗ is the minimizer for the convex optimization

problem (B.0.7), then for all µ ≥ ϵ, the minimal minimizer of the corresponding set function

minimization in (B.0.2) is:

Aµ = {i ∈ {1, 2, ..., n} | u∗
i > µ}.
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This sequence of propositions ultimately abuses the interpretation of the Lovàsz extension

as an integral, and states that optimizing over the integral itself (the convex problem) and

optimizing over the integrated functions for all integration variables (the set functions) is

equivalent.

A noteworthy addendum is that in the definition of Hi, we could equivalently perform

scalar minimization over a closed subset of R≥0, and the analysis would still follow through.

This alteration would result in effectively “capping” the Hi functions from below, which

retains the monotonicity properties necessary for the proofs.
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APPENDIX C

A useful symmetry property

The lifted quadratic cost function c̃ : Rn
≥0×Rn

≥0 → R satisfies a convenient property that we

abuse to prove several results. We prove it here.

Proposition 6. Let ℓ̃ be defined as in (6.1.9). Then for any (z,w) ∈ Rn
≥0×Rn

≥0, we have:

ℓ̃(z, z) + ℓ̃(w,w) = 2ℓ̃(z,w) + (z−w)TQ−(z−w). (C.0.1)

Proof. We proceed by directly computing:

ℓ̃(z, z) + ℓ̃(w,w) = f(z) + g(supp (z)) + f(w) + g(supp (w))

= zTQ+z+ zTQ−z+ zTp+wTQ+w +wTQ−w +wTp

+ g(supp (z)) + g(supp (w)).

Then, adding and subtracting the missing cross term, we have:

ℓ̃(z, z) + ℓ̃(w,w) = zTQ+z+wTQ+w + zTp+wTp+ g(supp (z)) + g(supp (w))

+ zTQ−z+wTQ−w

= 2ℓ̃(z,w) + zTQ−z− 2zTQ−w +wTQ−w

= 2ℓ̃(z,w) + (z−w)Q− (z−w)

We also provide a proof that the condition on the minimizers of the lifted problem is not

only sufficient, but necessary.
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Lemma 11. If (z∗, z∗) and (w∗,w∗) are minimizers of the lifted problem (6.1.9), then:

(z∗ −w∗)TQ−(z∗ −w∗) ≤ 0.

Proof. Note that by the submodularity of ℓ̃, if (z∗, z∗) and (w∗,w∗) are minimizers of the

lifted problem (6.1.9), then their join and meet, (z∗⋎w∗, z∗⋏w∗) and (z∗⋏w∗, z∗⋎w∗),

respectively, are also minimizers. Then, working through the proof of Lemma 8 backwards

proves the result.
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APPENDIX D

Offline guarantees

We show here how the guarantee given by Corollary 4 can be immediately used to derive a

fully offline guarantee for estimation. Recalling Corollary 4 here for clarity:

Corollary 5. Assume that |y(d+1)(ξ)| ≤ M for all ξ ∈ [s0, sd], and that the measurement

noise is uniformly bounded by |e(si)| ≤ E for all si ∈ D. If the subset D has maximal

inter-sample spacing si+1 − si ≤ δ, then:

|y(k)(t)− p(k)(t)| ≤
∑
si∈D

∣∣∣l(k)i (t) (y(si) + e(si)− p(si))
∣∣∣

+ E
∑
si∈D

|l(k)i (t)|+Mδd−k+1,
(D.0.1)

where li : R → R with i = 0, 1, ..., d are the Lagrange basis polynomials for D:

li(t) =
∏

sj∈D\{si}

t− sj
si − sj

. (D.0.2)

D.1 Explicitly bounding residuals

In order to transition the guarantee given by (D.0.1) from one that depends on the online

residuals to a fully offline bound, we simply need to bound the worst-case values of these

residuals. By assuming a global limit ||y(d+1)(t)| ≤ M for all t ∈ R≥0, we can immediately

derive this bound with a simple application of the Taylor Remainder Theorem.

Corollary 6. Assume |y(d+1)| ≤M for all t ∈ R. Then for any time t ∈ R, the least-squares
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polynomial pLS : R → R fit to the window of N + 1 data points satisfies the bound:

|y(k)(t)− p
(k)
LS(t)| ≤M

(
L(k)(t)δd+1

(d+ 1)!

√
2S2(d+1)

(⌈
N + 1

2

⌉)
+ δd−k+1

)
+ EL(k)(t)

(√
N + 1 + 1

)
,

where we have defined:

L(k)(t) =
∑
si∈D

|l(k)i (t)|.

Proof. First, consider any sequence of N+1 measurements, from which we have constructed

the least-squares polynomial pLS. Then (D.0.1) states:

|y(k)(t)− p
(k)
LS(t)| ≤

∑
si∈D

|l(k)i (t) (y(si) + e(si)− pLS(si)) |+ E
∑
si∈D

|l(k)i (t)|+Mδd−k+1

≤
∑
si∈D

|l(k)i (t)| · |(y(si) + e(si)− pLS(si)|+ E
∑
si∈D

|l(k)i (t)|+Mδd−k+1.

(D.1.1)

Now we also consider the degree d Taylor approximation to y, denoted pT : R → R, expanded

about some time t0 ∈ [s0, sd]. By construction, the Taylor approximation satisfies:

y(t)− PT (t) =
y(d+1)(c)

(d+ 1)!
(t− t0)

d+1, (D.1.2)

for some c ∈ [s0, sd].

To finish our conversion to an offline bound, we need to characterize the weighted sum of

the residual errors in (D.1.1). Consider any single residual from this summation and note:

|y(si) + e(si)− pLS(si)| ≤ max
si∈D

|y(si) + e(si)− pLS(si)| (D.1.3)

≤ max
i=0,1,...,N

|y(ti) + e(ti)− pLS(ti)| (D.1.4)

≤

√√√√ N∑
i=0

|y(ti) + e(ti)− pLS(ti)|2, (D.1.5)
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where the final inequality arises by the fact that the ℓ2 norm always upper bounds the ℓ∞

norm. Next we recall that the least-squares polynomial achieves minimal ℓ2 norm of its

residuals, and further that the degree d Taylor polynomial pT is feasible in the associated

optimization problem. Therefore, we have the bound:

|y(si) + e(si)− pLS(si)| ≤

√√√√ N∑
i=0

|y(ti) + e(ti)− pT (ti)|2. (D.1.6)

Next, by directly applying (D.1.2) and the triangle inequality for the ℓ2 norm, we have:

|y(si) + e(si)− pLS(si)| ≤

√√√√ N∑
i=0

∣∣∣∣y(d+1)(c)

(d+ 1)!
(ti − t0)d+1 + e(ti)

∣∣∣∣2 (D.1.7)

≤

√√√√ N∑
i=0

∣∣∣∣y(d+1)(c)

(d+ 1)!
(ti − t0)d+1

∣∣∣∣2 +
√√√√ N∑

i=0

|e(ti)|2 (D.1.8)

≤

√√√√( |y(d+1)(c)|
(d+ 1)!

)2 N∑
i=0

|ti − t0|2(d+1) +

√√√√ N∑
i=0

|e(ti)|2 (D.1.9)

=
|y(d+1)(c)|
(d+ 1)!

√√√√ N∑
i=0

|ti − t0|2(d+1) +

√√√√ N∑
i=0

|e(ti)|2. (D.1.10)

Next, we recall our global bounds, in particular that |y(d+1)(t)| ≤ M for all t ∈ R, and also

that the measurement errors are bounded, |e(ti)| ≤ E for all ti. We immediately recover the

following:

|y(si) + e(si)− pLS(si)| ≤
M

(d+ 1)!

√√√√ N∑
i=0

|ti − t0|2(d+1) +
√
(N + 1)E2 (D.1.11)

=
M

(d+ 1)!

√√√√ N∑
i=0

|ti − t0|2(d+1) + E
√
N + 1. (D.1.12)

Lastly, we note that we may only claim the inequality given by Corollary 4 when considering

a t ∈ [s0, sd]. We may place the expansion point for our Taylor approximation t0 anywhere

in our window of interest, and by lazily selecting t0 to be the median in the window of N +1
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points, we can bound:

√√√√ N∑
i=0

|ti − t0|2(d+1) ≤

√√√√√⌈N+1
2 ⌉∑

i=1

2 (i · δ)2(d+1) (D.1.13)

≤ δd+1

√√√√√2

⌈N+1
2 ⌉∑

i=1

i2(d+1). (D.1.14)

since the maximal inter-sample spacing is δ. We note here that the final summation is a

power sum, typically denoted by:

S2(d+1)

(⌈
N + 1

2

⌉)
=

⌈N+1
2 ⌉∑

i=1

i2(d+1), (D.1.15)

for which various closed-form expressions exist. A more naive (and definitively looser) bound

for these terms could easily be derived by bounding every term |ti−t0| by the maximal window

length, instead deriving the bound:√√√√ N∑
i=0

|ti − t0|2(d+1) ≤

√√√√ N∑
i=0

(Nδ)2(d+1) (D.1.16)

=
√
N + 1(Nδ)(d+1). (D.1.17)

Finally, we return to our bound for a single term (D.1.12), applying the power sum bound

(D.1.15) and find:

|y(si) + e(si)− pLS(si)| ≤
M

(d+ 1)!

√√√√ N∑
i=0

|ti − t0|2(d+1) + E
√
N + 1 (D.1.18)

≤ Mδd+1

(d+ 1)!

√
2S2(d+1)

(⌈
N + 1

2

⌉)
+ E

√
N + 1. (D.1.19)

Or alternatively, choosing the looser bound (D.1.17):

|y(si) + e(si)− pLS(si)| ≤
M

√
N + 1(Nδ)d+1

(d+ 1)!
+ E

√
N + 1. (D.1.20)
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Finally, we can return to the full weighted sum (D.1.1) to find:

|y(k)(t)− p
(k)
LS(t)| ≤

∑
si∈D

|l(k)i (t)| ·

[
Mδd+1

(d+ 1)!

√
2S2(d+1)

(⌈
N + 1

2

⌉)
+ E

√
N + 1

]
(D.1.21)

+ E
∑
si∈D

|l(k)i (t)|+Mδd−k+1. (D.1.22)

For notational cleanliness, we define L(k)(t) =
∑

si∈D |l(k)i (t)|, and re-arrange terms to see:

|y(k)(t)− p
(k)
LS(t)| ≤M

(
L(k)(t)δd+1

(d+ 1)!

√
2S2(d+1)

(⌈
N + 1

2

⌉)
+ δd−k+1

)
(D.1.23)

+ EL(k)(t)
(√

N + 1 + 1
)
. (D.1.24)

The exact algebraic form of the bound in Corollary 6 is complicated, but it does exhibit

some key behaviors we would expect. For example, hgiher derivative orders have weaker

guarantees. In particular, the value of δd−k+1 increases and the values of L(k)(t) increase

monotonically with increasing k. Additionally, as the sampling time decreases (δ shrinks),

the guarantees become tighter.

One key behavior exhibited in the bound from Corollary 6 is that it consists of two terms,

one which is proportional to the measurement error bound E, and one which is proportional

to the “ill-conditioning” of the target functionM . This type of bound not only makes sense,

but has its theoretical roots in ill-posed inverse problem theory [Dio07, Kir11].

D.2 Directly using least-squares

A final observation is that we could have derived the offline guarantee in Corollary 6 through

the lens of a pure least-squares analysis.

In particular, Savitzky-Golay filtering solves the least squares problem:

minimize
a∈Rd+1

∥Y + Z − Fa∥22, (D.2.1)

91



where Y ∈ RN+1 and Z ∈ RN+1 denote the measurement and noise vectors, and F ∈

RN+1×d+1 is the relevant Vandermonde matrix of polynomial regression coefficients. Explic-

itly, these matrices are:

Y =


y(t0)

y(t1)

· · ·

y(tN)

 , Z =


e(t0)

e(t1)

· · ·

e(tN)

 , F =


1 t0 t20 · · · td0

1 t1 t21 · · · td1
...

...
...

...
...

1 tN t2N · · · tdN

 . (D.2.2)

The solution of this optimization problem is a set of coefficients aLS ∈ Rd+1 for the least-

squares polynomial. To evaluate it and its derivatives at a point, we may consider the

“evaluation matrix” B(t) ∈ Rd×d+1:

B(t) =


1 t t2 · · · td

0 1 2t · · · dtd−1

...
...

...
...

...

0 0 · · · · · · d!

 , (D.2.3)

which is built such that B(t)aLS ∈ Rd produces a vector containing the Savitzky-Golay filter

estimates of the d derivatives of y at the time t.

As we did in the proof of Corollary 6, we note that the degree d Taylor approximating

polynomial expanded about some t0 is also feasible for the optimization problem (D.2.1).

The Taylor approximation corresponds to a set of coefficients aT ∈ Rd+1, and in particular

we know (via the Taylor Remainder Theorem) that:

Y = FaT +RT , (D.2.4)

where the errors RT are derived from (D.1.2). We actually know from our work in Corollary

6 that these bounds will consist of two terms, one relating to the d+ 1 derivative bound M

and one relating to the measurement noise bound E, with powers of the inter-sample spacing

δ.

Using this simple observation, we can directly derive a simple offline bound.
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Lemma 12. Let the vector of remainders for a degree d Taylor approximation of y about

t ∈ R be defined as RT (as we did in (D.2.4)). Then the least-squares estimator has error

bounded by:

|y(k)(t)− ŷ(k)(t)| = |y(k)(t)− [B(t)aLS]k| ≤ |Bk(t)F
†|∞ (|RT |∞ + E) , (D.2.5)

where F † ∈ Rd+1×N+1 denotes the Moore-Penrose pseudo-inverse of the matrix F .

Proof. Directly computing:

|y(k)(t)− [B(t)aLS]k| = |y(k)(t)− [B(t)aT ]k + [B(t)aT ]k − [B(t)aLS]k|. (D.2.6)

Because we have considered the Taylor series expanded about the time t, the error in its

approximation of y(k)(t) is exactly zero for all orders k ≤ d. Then, using our definition of

the residual vector in (D.2.4) and the closed form expression for the least-squares solution

to the optimization problem (D.2.1), we have:

|y(k)(t)− [B(t)aLS]k| = |[B(t)F †(Y +RT )]k − [B(t)F †(Y + Z)]k| (D.2.7)

≤ |[B(t)F †(RT − Z)]k| (D.2.8)

≤ ∥B(t)F †(RT − Z)∥∞ (D.2.9)

≤ ∥B(t)F †∥∞∥RT − Z∥∞ (D.2.10)

≤ ∥B(t)F †∥∞ (∥RT∥∞ + ∥Z∥∞) (D.2.11)

≤ ∥B(t)F †∥∞ (∥RT∥∞ + E) , (D.2.12)

where we slightly abused notation to use ∥ · ∥∞ to denote the ℓ∞ vector norm and also the

operator infinity norm of a matrix.

These guarantees, while very direct, obfuscate the roles of the relevant design parameters.

In particular, the smoothing properties of least-squares and the roles of the residual are all

hidden within the complicated pseudo-inverse of the Vandermonde matrix F . We opted for

the form o guarantees in the main body of this work because they provide a more explicit

characterization of the tradeoffs between various design parameters in the estimator.
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