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ABSTRACT: California’s dairy sector accounts for ∼50% of anthropogenic CH4
emissions in the state’s greenhouse gas (GHG) emission inventory. Although California
dairy facilities’ location and herd size vary over time, atmospheric inverse modeling
studies rely on decade-old facility-scale geospatial information. For the first time, we
apply artificial intelligence (AI) to aerial imagery to estimate dairy CH4 emissions from
California’s San Joaquin Valley (SJV), a region with ∼90% of the state’s dairy
population. Using an AI method, we process 316,882 images to estimate the facility-
scale herd size across the SJV. The AI approach predicts herd size that strongly (>95%)
correlates with that made by human visual inspection, providing a low-cost alternative
to the labor-intensive inventory development process. We estimate SJV’s dairy enteric
and manure CH4 emissions for 2018 to be 496−763 Gg/yr (mean = 624; 95%
confidence) using the predicted herd size. We also apply our AI approach to estimate
CH4 emission reduction from anaerobic digester deployment. We identify 162 large
(90th percentile) farms and estimate a CH4 reduction potential of 83 Gg CH4/yr for
these large facilities from anaerobic digester adoption. The results indicate that our AI approach can be applied to characterize the
manure system (e.g., use of an anaerobic lagoon) and estimate GHG emissions for other sectors.

KEYWORDS: artificial intelligence, methane, greenhouse gas, emission, dairy, aerial image

1. INTRODUCTION

Methane (CH4) is a short-lived greenhouse gas (GHG) and is
about 80 times more potent over a 20 year time scale than
carbon dioxide (CO2).

1 In California, accounting for CH4
emissions is essential because California committed to
reducing GHG emissions through a series of legislations,
including Senate Bill 32 requiring statewide emissions to be
40% below 1990 levels by 2030.2 Specific to source emissions,
Senate Bill 1383 requires reducing CH4 emissions from dairy
manure management by 40% below the 2013 levels by 2030.3

Because California’s dairy accounts for ∼50% of the state’s
total anthropogenic CH4 emissions,4 quantifying dairy CH4
emissions is critical for implementing California’s climate
change laws. Due to California’s position (∼20% of the US
total5) in the US dairy industry, understanding California’s
dairy CH4 can offer useful emission quantification and
mitigation strategies beyond the state level.
Many CH4 emission quantification studies have been

conducted in California using multiplatform atmospheric
measurements, including ground and satellite observations.
As a result, the state total CH4 emission estimates started
converging, with different studies reporting statistically
consistent estimation results.6,7 However, quantifying dairy-
specific CH4 emissions, separate from other sources, remains a
challenge due to substantial uncertainties associated with

emission estimation.7 One remedy to this considerable
uncertainty in dairy CH4 quantification is to use a spatially
accurate representation of dairy facilities in time and space. In
this work, a dairy facility represents the whole farm, typically
associated with enteric (e.g., a free stall barn) and manure (e.g.,
an anaerobic lagoon) emission sources.
Although dairy facilities’ size varies over time, recent inverse

modeling studies in California continue to use decade-old
facility-scale geospatial information.6,8,9 Airborne imaging can
identify dairy farms and estimate CH4 emissions directly from
those facilities.10 However, this approach requires significant
resources for a regional-scale operation and has a detection
limit, only capturing emissions larger than a certain level
(typically 2−10 kg CH4 h

−1). In addition, because the location
and size of dairy facilities change over time depending on
socio-economic conditions (e.g., high-cost feeds), more
accessible approaches to continuous monitoring of dairy
emissions are necessary.
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This work develops a prediction system for dairy enteric and
manure CH4 emissions by combining expert knowledge in
GHG emissions with artificial intelligence (AI). Utilizing aerial
imagery produced annually, we apply state-of-the-art AI
methods to predict dairies’ location and herd size in
California’s San Joaquin Valley (SJV), which accounts for the
vast majority of the state’s dairy emissions.4,6 We then estimate
spatially explicit dairy CH4 emissions by combining the AI-
predicted herd size with known emission factors (EFs).
This work describes a method to update dairy emissions in a

timely fashion when new imagery is available. For example,
applying our AI system to the aerial imagery from the National
Agriculture Imagery Program (NAIP) used in this study can
update dairy CH4 emissions annually. Because we focus on
estimating emissions at the annual scale comparable to existing
bottom-up inventories such as California’s state inventory and
Vista-CA,11 this work does not attempt to simulate the short-
duration dynamic variability of dairy CH4 emissions. Recently,
Marklein et al.11 updated California dairies’ spatial information,

manually identifying facilities. Although manual identification
of dairy farms’ location and size by human visual inspection is
likely more accurate than the current AI algorithms, it requires
considerable human effort. This work offers a low-cost method
to identify dairy farms’ location and size at the same time as
imagery availability and to estimate the dairy population,
subsequently updating spatially resolved emissions in combi-
nation with the estimated population and EFs. Thus, this work
is likely to influence future emission quantification efforts
directly, including atmospheric inverse modeling based on
ground-based (e.g., Jeong et al.6) or satellite (e.g., Turner et
al.12) platforms.

2. DATA AND METHODS

2.1. Aerial Imagery Processing. Aerial imagery from
NAIP is used for training our AI model. Note that we use “AI”
to broadly represent the process of mimicking the human mind
by machines. Later, we define the terminology for AI more
specifically to be consistent with the task we implement. The

Figure 1. Example NAIP imagery: (A) downloaded NAIP imagery for California’s Tulare County and (B) zoom-in view of a subset region of (A)
with the grid of tile polygons overlaid. In (A), the blue line represents Tulare County’s boundary. We download NAIP imagery only for the areas
where active dairy operations are occurring to reduce the number of images to be processed (e.g., excluding the Sierra foothill region). The red
rectangle in (A) shows the bounding box for the area shown in (B). In (B), the red square polygons represent the bounding boxes of individual
image tiles into which we divide the entire imagery inside the red rectangle shown in (A).
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NAIP aerial imagery is acquired during the agricultural growing
seasons in the continental US and is available to the public at a
0.6 m resolution.13 Because the NAIP imagery is made
available within a year of acquisition, we can essentially update
dairy emissions annually using the NAIP imagery.
Figure 1A shows the NAIP imagery for Tulare County,

which has the largest dairy population in California. The
imagery in Figure 1A shows only the subregion of Tulare
County used in this study, removing the areas (e.g., pastureland
at the Sierra foothills) with a low probability of dairy farms’
presence. Note that while Figure 1 shows processed images for
Tulare County as an example, we process NAIP images for
SJV’s all eight counties (see Table S1). We process the imagery
in Figure 1A into 49,884 individual image tiles, with each tile
having an area of 305 × 305 m2 (see Figure 1B for a grid of
image tiles). The total number of individually processed image
tiles for each county is presented in Table S1 in the Supporting
Information. More details for image processing are provided in
Text S1 of the Supporting Information.
To train the AI model, we need two types of images for each

of the training, validation, and testing steps: a raw image
(NAIP imagery in our case) and a mask (i.e., a labeled image).
To construct datasets for training, validation, and testing (see
Table S2 for each step’s number of images), we manually
delineate boundaries of open (dry) lots or free stall barns
among different components for a dairy facility creating
boundary polygons. A free stall barn is a roofed housing
structure, mostly without walls for ventilation. An open lot is
an open space without vegetation but often includes shading
structures or feed lanes. Many SJV dairy farms have both free
stall barns and open lots (see Figures 2 and S1 for example
images). Based on the analysis of data from the study of Salas
et al.9 (Figure S2), we assume that the dairy population for a
given facility is proportional to the dairy’s combined size for
the free stall barn and/or the open lot where dairy cows are
housed. Although this assumption may not hold in some cases,
increasing the uncertainty, we note a strong correlation

between our area-based population estimates and the results
from human surveys11 (see Figure 4). We estimate CH4
emissions as a function of the dairy population and report
uncertainty for CH4 emissions only (not for the dairy
population) at the state level, as in the study of Marklein et
al.11

2.2. Deep Learning Image Segmentation. We identify
dairy facilities at the pixel level on an NAIP image using a deep
learning (DL) method. DL is a subset of a family of machine
learning, which is, in turn, a kind of AI. DL primarily relies on
artificial neural networks (ANNs), a set of algorithms imitating
the human brain’s processing.14 Here, we use AI to represent
the broad approach to problem-solving using algorithms to
mimic human cognitive functions while referring to DL as a
class of machine learning algorithms with multiple (i.e., deep)
layers in the neural network. The term “deep” in DL indicates
multiple layers for transforming the data from which more
complex and abstract features (e.g., the car’s curvature rather
than a simple line) are extracted progressively.
This work uses image segmentation among different DL

computer vision approaches because we need to infer the
probability of assigning a label to each image pixel instead of
image-level classification. Using image segmentation, for
example, rather than predicting whether an image includes a
black bear or a grizzly bear, we are interested in predicting the
pixel-level location of a black or grizzly bear in the image. Also,
our 1.36 m pixel-level image segmentation is different from
Handan-Nader and Ho’s approach,15 which uses an image-
level classification method to detect pig and poultry feeding
operations and relies on class activation mapping for facility-
level detection. Our pixel-level segmentation allows for directly
calculating each image’s dairy farm (spatial) area, a key variable
for emission estimation, by combining dairy pixels in the
image. Pixel-level image segmentation applications include self-
driving cars,16 road extraction,17 detection of deforestation,18

and medical imaging.19 For example, image segmentation can
locate tumors, partitioning a medical image into cancer and
nontumor segments.20 We provide more details for image
segmentation in Text S2.
Specific to our task of identifying dairy farms, a convolu-

tional neural network (CNN) is used among different DL
architectures. A CNN is a type of deep neural network and is
used as a common choice for computer vision applications, as
in this work.21 We apply a CNN in a supervised learning
setting, providing both raw images and masks to the CNN
model. Thus, our CNN model learns a set of functions that
map the input (image) to the output (mask) based on input−
output pairs provided in the training dataset.
Among different CNNs, we apply the U-Net architecture20

(see Text S3 for U-Net details), which is known to perform
well with a relatively small number of training datasets. U-Net
was initially developed for medical imaging.20 The U-Net-
based approach is useful for our study because the total
number of statewide dairy farms is less than 2000,11 from
which we subsample a smaller number of images for the
training process. Note that a dairy farm can be associated with
multiple image tiles because of its high resolution. We combine
a U-Net variant (see Figure S3 for U-Net’s basic structure)
with pretrained base models and image augmentation
algorithms. The technique to use pretrained models is called
“transfer learning”. Details for transfer learning and image
augmentation are described in Texts S4 and S5, respectively.

Figure 2. Example of image segmentation for dairy facilities from the
testing step. Each image segmentation case consists of three
components (columns in this figure). NAIP, GTM, and PM represent
NAIP images, ground truth masks, and predicted masks, respectively.
Thus, this figure shows a total of 30 prediction results, with each row
showing three prediction cases.
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For implementation, this work uses Keras (https://keras.io/
), a high-level neural network interface for the well-known AI
platform, TensorFlow (https://www.tensorflow.org/). For this
work’s specific image segmentation task, we use the
Segmentation Models Python library developed for CNN
image segmentation based on Keras and TensorFlow.22

Although the specific CNN model used in this study is a U-
Net variant, for the sake of simplicity, we use the term “DL
model”, which is a broader description for the sets of
algorithms for image segmentation than the CNN model, to
represent our image segmentation model.
Ten different models are evaluated based on pretrained

models and non-dairy fractions. The non-dairy fraction
represents the ratio of the number of non-dairy images to
the total number of images in our dataset. In training the DL
model, we need image tiles with non-dairy pixels only in
addition to images containing dairy pixels. This is because the
DL model uses both dairy and non-dairy images as inputs
while processing 316,882 image tiles for the entire SJV.
Overall, we find that the models using dairy and non-dairy
images together perform better than those using only dairy
images. We present a complete list of evaluation results for
each combination of pretrained models and non-dairy fractions
in Table S3 of the Supporting Information.
2.3. Dairy Facility Area Estimation. We use the dairy

facility’s (free stall barns and open lots) spatial area as a basis
for estimating the dairy population, which is subsequently used
for emission estimation combined with EFs. In practice, the
facility area is used as a weight to scale the county-level dairy
population. Our DL model identifies individual dairy pixels in
an image tile (305 × 305 m2 or 224 × 224 pixels) and
calculates the dairy’s total area within the image tile. Because
we use a very high resolution of 1.36 m, we can also construct
each facility’s boundary. In addition, because of the high
resolution, multiple image tiles can constitute a single facility.
By combining facility boundaries from multiple image tiles, we

construct individual facilities’ boundaries and estimate the
facility-level population, which is described later (see Figure S6
for the facility-level population distribution).
We aggregate the spatial areas calculated from a cluster of

identified dairy pixels into a grid with a 0.1° (∼10 km)
resolution. A vast majority of atmospheric inverse modeling
studies for CH4 are conducted at kilometers to tens of
kilometer scales.6−8,23,24 We use this gridded area information
in the subsequent analysis for dairy population and emission
estimation, which are described in Texts S6 and S7 of the
Supporting Information, respectively. We compare our gridded
product with CALGEM6 and Vista-CA by Marklein et al.11 We
note that the native resolution of the product by Marklein et
al.11 is at the facility level but that study uses the spatial
resolution of 0.1° for comparison with other spatial
inventories, including CALGEM.

3. RESULTS AND DISCUSSION

3.1. Estimation of Dairy Facility Areas. We process SJV-
wide 316,882 image tiles using the DL model to separate each
image tile into dairy and non-dairy pixels. We demonstrate the
DL model’s image segmentation capability in Figure 2. The
image segmentation examples in Figure 2 are from the testing
step based on the parameters optimized from the training step.
Thus, the DL model has not seen the images previously, and
the testing result assesses the model’s performance. As shown
in the figure, our DL model performs well, yielding an overall
accuracy of ∼0.9 (i.e., ∼90%; see Table S3 for accuracy). We
provide more description of the image segmentation results in
Text S2 in the Supporting Information.
We calculate dairy facilities’ spatial areas (in m2) from the

DL model’s predicted image segmentation. Recall that each
image pixel has a fixed area of 1.36 × 1.36 m2. We then predict
the dairy population as a function of the dairy facility’s spatial
area, assuming that the dairy population is generally propor-
tional to the facility’s size based on the analysis (see Figure S2)

Figure 3. Estimated dairy facility area (in ×103 m2) by the DL model. (A) Estimated dairy facility area for individual image tiles (each tile area =
305 × 305 m2) and (B) gridded dairy facility area at 0.1°. In (A), the circles show the locations of the 9161 (out of 316,882) image tiles identified
as including dairy facilities. In (A), both the circle size and color are used to show dairy facilities’ spatial area. The blue-colored polygons in (A,B)
represent the San Joaquin air basin boundary, which includes eight counties (gray polygons).
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using data from the study of Salas et al.9 Figure 3A shows the
dairy facilities’ areas (i.e., open lot and free stall barn areas)
predicted by the DL model from the processing of 316,882
image tiles across the SJV. We estimate that 9161 image tiles
are associated with dairy operations.
We show the gridded version of Figure 3A in Figure 3B,

aggregating the predicted area for individual image tiles (305 ×
305 m2) into a 0.1° resolution grid. Therefore, this gridded
map represents the total dairy facility area (in m2) within each
0.1° grid pixel. We use this gridded area map to estimate the
dairy population, which is subsequently used to estimate dairy
CH4 emissions. The area map indicates that large dairy clusters
are located in the southern SJV that includes Tulare County,
which accounts for ∼30% of SJV’s total dairy population.25

Also, Figure 3B shows a substantial concentration of dairy
facilities in Stanislaus and Merced counties of the northern
SJV. This area prediction result indicates that the DL model
captures the SJV dairy population’s overall spatial distribution
expected from the US Department of Agriculture’s (USDA’s)
county-level dairy dataset.25 The DL-predicted county-level
(aggregated) dairy farm area strongly correlates with USDA’s
county-level dairy population, yielding a Pearson correlation
coefficient (r) of 0.97 (see Figure S4). This statistic suggests
that the DL-predicted area explains ∼95% variability in the
USDA dairy population. Note that the county-level dairy area
is predicted by our DL model, independent from the USDA
dairy population.

3.2. Spatially Explicit Dairy Population. We estimate
the dairy population by apportioning USDA’s county-level
population25 based on the dairy facility areas. Using USDA’s
county-level data essentially removes the county-level bias in
the predicted population, although individual dairies’ pop-
ulation within each county could be biased. SJV’s dairy
population for each county is presented in Table S7. We
evaluate our DL model’s capability for estimating dairy
population by comparing it with the Vista-CA dairy inventory
developed by Marklein et al.11 Marklein et al. identify
individual facilities through visual inspection and estimate
each facility’s herd size using reported data from the State
Water Resources Control Board and other local sources.11

Thus, we believe that the Vista-CA database compiled by
Marklein et al.11 represents the most updated and accurate
spatial inventory of California’s dairy population.
Figure 4A shows the 0.1° pixelwise herd population

correlation between the DL model prediction and Vista-CA.
In this comparison, we remove 0.1° pixels identified as non-
dairy by both the DL model and Vista-CA. As shown in the
figure, the prediction correlates strongly with Vista-CA,
yielding a Pearson correlation coefficient (r) of 0.95. We also
compare the two model results using violin plots where the
kernel probability density (KPD) is shown along with boxplots
(Figure 4B). While the boxplot shows summary statistics such
as the median and interquartile ranges (IQRs), KPD reveals
the data’s full probability distribution. The two KPDs
estimated using a Gaussian kernel are very similar. Also, the

Figure 4. Comparison of dairy population estimates between the DL approach and the Vista-CA dairy product. (A) Pixel-level (at 0.1°) correlation
between the DL-predicted and Vista-CA dairy populations, (B) violin plot, (C) gridded DL-predicted dairy population (at 0.1°), and (D) gridded
Vista-CA dairy population (at 0.1°). In (A), the dashed line represents the 1:1 line. In (B), the violin plot shows the kernel density for the dairy
population data used in (A), and boxplots are shown inside the violin plots. While the boxplot shows statistics such as median and IQR, KPD in the
violin plot reveals the data’s full probability distribution. Also, as shown in (B), the KPD in the violin plot is a rotated density, where the Y-axis
represents the random variable, which is usually shown on the X-axis of a density plot.
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two boxplots (inside the violin plots) show that the IQRs from
the two models overlap, suggesting similar variance. Based on
the three statistical summaries (i.e., r, KPD, and IQR), we
conclude that our DL-based population is comparable with a
population estimate made by human visual inspection.
Dairy population maps (at 0.1°) from this work and Vista-

CA are shown in Figure 4C,D, respectively. Consistent with
the results in Figure 4A,B, the two maps show a similar spatial
distribution of herd populations. Although our DL model
prediction is comparable to the benchmark spatial inventory by
human inspection, Vista-CA, we observe some differences
between the two models. In this pixelwise comparison, the DL
model predicts dairy farms in areas where Vista-CA estimates
no dairy farm. In Fresno County, for example, the DL model
predicts that there are dairy pixels with small populations,
while Vista-CA does not show dairy farms. This is the false-
positive case when the DL model misclassifies some of the
non-dairy landscape for dairy farms due to similar color or
texture (e.g., idle fields in brown color). Furthermore, Vista-CA
includes recently closed dairies, some of which may still be

identified as dairy farms by the DL model. This segmentation
error is a challenge to be addressed in a future work, for
example, by incorporating multispectral satellite data. Ha et
al.26 showed that the image segmentation accuracy was
improved by combining RGB images with thermal infrared
information.
In addition, this work assumes that the dairy farm size is

represented by the total area of the open lot and free stall barn.
This approach assumes that both the open lot and the free stall
barn would have the same per-unit-area population density
in reality, the two may have different densities. Our DL model
does not distinguish open lots from free stall barns in the
image segmentation process. Thus, this limitation in separating
open lots from free stall barns may yield additional uncertainty
at the facility scale, which is not accounted for in this work but
can be an important research topic for future AI-based dairy
inventory development.

3.3. Emission Estimation. We compare our DL-model-
estimated emissions (see Text S7) with spatially explicit dairy
emissions from the CALGEM emission model6 and Vista-

Figure 5. Comparison of annual dairy CH4 emission estimates: (A) pixel-level (at 0.1°) correlation between the DL-predicted and CALGEM dairy
CH4 emissions (B) same as (A) but between the DL model and Vista-CA, (C) histogram comparison between the DL model and Vista-CA, (D)
DL-predicted gridded CH4 emissions (at 0.1°), (E) gridded Vista-CA emissions (at 0.1°), and (F) the difference (D minus E). In (A−C), we
remove the pixels for which both the models predict zero emissions. In (A,B), the dashed line represents the 1:1 line.
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CA.11 We first compare our DL model with CALGEM, which
has been used in multiple atmospheric inverse modeling
studies.6−8,24,27 Figure 5A shows that our DL-model-predicted
emissions correlate well (r value = 0.80) with CALGEM in the
pixelwise (0.1°) comparison. Marklein et al.11 also find that
Vista-CA correlates favorably with CALGEM (r value = 0.77),
while they report relatively low spatial correlations with two
other emission models by Hristov et al.28 and Maasakkers et
al.29 with r values of 0.58 and 0.25, respectively. The dairy CH4
emission estimate (624 Gg/yr) for the SJV from our DL model
is slightly higher than that from CALGEM (598 Gg), which
was calibrated to match the 2012 inventory from the California
Air Resources Board (CARB). CALGEM’s 80% level spatial
correlation with our DL model suggests that the two emission
models share some of the underlying spatial characteristics of
SJV’s dairy emissions.
We compare our DL model’s emission estimates with Vista-

CA (SJV total = 693 Gg) in Figure 5B. As shown in the figure,
the spatial correlation at 0.1° is close to 1 with an r value of
0.96. This high correlation would mean that our DL model
captures 92% (0.962 = 0.92) of Vista-CA’s variability in a linear
regression setting. This result demonstrates a significant
potential of our DL approach, which is nearly as good at
estimating spatial dairy emissions as human visual inspections.
We note that the small discrepancy between our DL model
and Vista-CA is a combined result of differences in the EFs
applied and errors (e.g., in assigning population to each pixel)
from both the models.
We analyze the impact of the emission difference between

DL and Vista-CA on predicted CH4 mixing ratio concen-
trations, which is the critical variable in atmospheric inverse
modeling. For this mixing ratio analysis, we simulate CH4
mixing ratios using dairy emissions from the DL model and
Vista-CA and compare the two results (see Figure S7). The
mixing ratio comparison suggests that in a typical atmospheric
inverse modeling setup, atmospheric measurements can
constrain the DL-model-derived emissions as effectively as
Vista-CA, given the two models’ strong correlation in both
spatially resolved emissions and mixing ratios. This comparison
further indicates that the DL model can essentially replace
Vista-CA as an alternative a priori emission product in a typical
inverse modeling exercise for SJV’s CH4 emission quantifica-
tion. We describe the mixing ratio comparison details in Text
S8 of the Supporting Information (also see Figure S7).
We further evaluate our DL model’s estimated emissions,

comparing them with Vista-CA generated by more labor-
intensive visual inspection of dairy locations and the review of
dairy permit records. Figure 5C shows the histograms (i.e.,
discrete count) and KPDs from the two models. The two
models show similar probability densities, illustrating the DL
model’s capability to capture Vista-CA’s overall emission
distribution. However, as described in the population
estimation, our DL model tends to overcount low-emission
pixels due to classification errors while underestimating
emissions for other high-flux pixels. We can better observe
this result using spatial emission maps (Figure 5D−F). For
example, in Fresno County, the DL model (Figure 5D)
predicts relatively small emissions (<1 Gg CH4 per pixel) near
Sierra Nevada’s foothill region where dairy emissions are not
expected or negligible from Vista-CA, as seen in Figure 5E.
This difference is because the DL model misclassifies some
non-dairy pixels (with a similar color and texture to dairy
facilities) as dairy pixels. The difference plot in Figure 5F

shows that the DL model generally underestimates emissions
from the dairy hot spots. This difference is also shown in
Figure 5C, where the KPD shows that Vista-CA is more right-
skewed with a mean value of 4.23 Gg than the DL model
(mean = 3.67 Gg).
Many factors affect the accuracy of the DL model’s

performance for image segmentation. The technical factors
include model architecture (e.g., the structure of the CNN),
the pretrained model, and the DL modeling platform (e.g.,
TensorFlow). Image-related factors (e.g., image quality and the
number of training images) can be more significant players in
the DL model performance than technical factors.30 This work
only implemented a limited number of combinations from the
technical and image-related factors, and the model perform-
ance may be associated with this limitation. For example, the
disagreement between our DL model and Vista-CA is likely
attributable to the relatively small number of training datasets,
even though we used image augmentation. Future studies are
necessary to improve the prediction accuracy by exploring a
more comprehensive set of technical factors as well as more
training and testing datasets.
Although our primary goal is to evaluate the DL model’s

performance against Vista-CA, we conduct a simple compar-
ison between DL model emission estimates and those using
the Next Generation Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS-NG).10 For comparison with our
work, we derive CH4 emissions for 130 dairy facilities from
204 dairy/manure distinct sources quantified by AVIRIS-NG
using a hierarchical spatial clustering method implemented in
R (https://cran.r-project.org, specifically R’s stats package).
While we report annual emissions, AVIRIS-NG emissions are
estimated from short-duration field campaigns. The emission
comparison between DL and AVIRIS-NG is presented in
Figure S5 of the Supporting Information with some caveats,
including the temporal scale difference. AVIRIS-NG shows
more superemitters relative to the DL model, while the DL
model’s mean (0.96 Gg; median = 0.88) is higher than that
(0.83 Gg; median = 0.55) of AVIRIS-NG by 16%. In addition
to the temporal scale difference, the incongruity between the
two estimates may be attributed to the uncertainty in the EFs
and the DL model’s dairy population estimates as well as
AVIRIS-NG’s estimation uncertainty. We also note that
AVIRIS-NG’s estimates are associated with detection limits
(typically >2 kg/h).
We estimate the SJV-wide uncertainty in dairy CH4

emissions using the uncertainty estimate from the US EPA
(Environmental Protection Agency) inventory.31 We use
simplified EFs (in units of CH4 kg/head) for both enteric
fermentation and manure management. Thus, our method for
uncertainty estimation is similar to the first approach used by
Marklein et al.,11 which is based on the US EPA inventory. The
EPA inventory estimates the emission uncertainty range (as a
percentage deviation from the central estimate) to be from
−11 to 18% and −18 to 20% for enteric fermentation and
manure management, respectively. As in the studies of
Marklein et al.11 and Jeong et al.,32 we assume that this
fractional uncertainty from EPA applies to our regional scale
analysis. Because our image segmentation is associated with
∼10% error (see Table S3), we add this additional 10% error
to the EPA’s fractional uncertainty for enteric fermentation and
manure management. We sample the dairy cow population
with 10% uncertainty due to segmentation errors and then
multiply the sampled population by EFs, which are sampled
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from lognormal distributions (see Text S9 in the Supporting
Information). Based on EPA’s uncertainty and the additional
10% segmentation error, we estimate that SJV dairy CH4
emissions are 496−763 Gg/yr at 95% confidence (see Figure
S8). In this estimation, we assume lognormal distributions for
both enteric and manure emissions due to the asymmetric
percentage deviation from the mean. The estimation detail is
presented in Text S9 of the Supporting Information.
3.4. Application for Anaerobic Digestion Deploy-

ment. Anaerobic digestion (AD) is the degradation and
stabilization of organic substrates in the absence of oxygen by
microorganisms. These processes produce CH4-rich biogas
that can be used as an energy source directly or cleaned to
generate biomethane for vehicle use or pipeline injection.
Interest in AD of manure for biogas production and waste
management has increased with policies, such as Senate Bill
1383, mandating the reduction of short-lived climate
pollutants.3 Dairy digesters, which include closed systems as
well as covered lagoons, are mature technologies. However,
these technologies have high upfront capital costs and must
meet complex regulations and standards. Deployment in
locations where clusters of dairies could invest in and share
the infrastructure could overcome this challenge but requires
dairy facilities’ spatial location and size information.
The AI approach presented in this study can play an

important role in overcoming this challenge, particularly
offering updated spatial information of dairy facilities and
their size. Dairy clusters have been identified through public
reporting and used in financial feasibility analysis to determine
project viability.33 Our AI approach could be applied to detect
clusters of dairy facilities where waste or biogas can be
processed together to achieve economies of scale. Used in
combination with geospatial analysis techniques, such an
approach would facilitate the down-selection of dairy clusters
based on essential characteristics such as proximity to roads
and natural gas transmission pipelines. The rapid development
of deployment and monitoring guidance-based AI approaches
can dramatically improve the return on investment (ROI) and
the life-cycle CH4 reduction performance of the state’s
investments in AD.
Reviewing the large (90th percentile) farms, we find 162

farms with herd sizes ranging from 2334 to 8433 cows (see
Figure S6 for the farm-level herd size distribution). Assuming a
0.3 m3 CH4 per kg volatile solid loaded biomethane production
factor and AD’s 75% efficiency for CH4 capture,

11 we estimate
247 Gg CH4/yr biomethane production for the SJV.
Biomethane production factors used in the literature range
from 0.24 to 0.4 m3 CH4 per kg volatile solid loaded,34,35

which results in a biomethane production for the SJV between
198 and 329 Gg CH4/yr. We also estimate a CH4 reduction
potential of 83 Gg CH4/yr, assuming CARB’s EF for AD4 for
these large facilities. When we vary the EF for AD from 3 to
20%, reflecting low to high leakage rates,36 the CH4 reduction
potential varies from 67 to 91 Gg CH4/yr. Our estimate is
higher than the reduction potential (26 Gg CH4/yr) estimated
by Marklein et al.,11 who evaluate emissions reductions for only
100 farms that have or are scheduled to have digesters.
3.5. Potentials and Future Applications of AI. For the

first time, we introduce an AI-based low-cost approach to
estimating dairy CH4 emissions that can be directly used in
atmospheric inverse modeling studies for emission quantifica-
tion. We estimate SJV’s dairy CH4 emissions for 2018 using
aerial imagery and DL AI. Our work demonstrates an AI-based

approach’s capability to develop spatially resolved emissions
more frequently and efficiently. We estimate SJV’s dairy CH4
emissions, which correlate very well (>95%) with those of
Vista-CA compiled by human visual surveys. As a direct
application of our approach, we estimate the biomethane
production and AD’s CH4 emission reduction from the 90th
percentile facilities predicted by our DL model.
We see the potential that our DL approach can be improved

beyond the demonstrated results in this work. The result can
be refined by combining the images used in this work (i.e.,
natural color images) with multispectral satellite images26 and
different pretrained models. Particularly, multispectral images
can provide more information (e.g., thermal property and
moisture content) in addition to those (e.g., texture and color)
extracted from visible spectral images. We have tested only a
limited number of model architectures from the AI technology
perspective, although we trained our DL model using 10
different combinations of pretrained models and non-dairy
fractions. The image segmentation result (Table S3) suggests
that training the DL model including images without dairy
farms improves the segmentation accuracy compared to the
case with dairy images only (i.e., a non-dairy fraction of 0).
Model training with more non-dairy images with similar color
and texture to dairy images could reduce the misclassification
error (e.g., confusion between dairy and idle lands), which may
constitute the object of future studies. Furthermore, the U-Net
architecture employed in this work yields comparable results to
Vista-CA using only ∼2000 images (Table S2) for model
training. Our result reinforces the previous finding that U-Net
performs well with a relatively small number of training
datasets,20 which can be a significant implication for future
earth science applications of DL where preparing training
datasets is costly.
Our result suggests that the methods developed in this work

can be applied to other future works. For instance, performing
image segmentation on lagoons as an additional separate
category would better characterize the manure management
system. This additional feature would require preparing the
training dataset where anaerobic lagoons are masked differently
from open lots or free stall barns. Also, our methods can be
used to estimate emissions for other GHG sectors. For
example, we could apply DL models to detect the natural gas
infrastructure, power plants, large manufacturing facilities, and
landfills using very high-resolution satellite imagery. Currently,
many inventories rely on emitters’ voluntary reporting, and
compiling spatiotemporal data from the emitters is done
manually.37,38 Expanding on this work, we can use various AI
technologies to detect unreported emission sources, add
spatiotemporal information to the reported raw data, and
automate many of the reporting processes.15

While we only show a fraction of what AI technology can do
to solve pressing climate change problems, our work suggests
that AI can perform what humans used to do to address
environmental challenges, with a comparable quality but in an
automated manner. Furthermore, we note that our approach
could offer the greatest benefit at the continental or global
scale where human inspection is costly and challenging to
apply repeatedly.
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