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Abstract

The nature of consciousness has been a long-debated concept
related to human cognition and self-understanding. As AI sys-
tems become more capable and autonomous, it is an increas-
ingly pressing matter whether they can be called conscious. In
line with narrative-based theories, here we present a simple but
concrete computational criterion for consciousness grounded
in the querying of a virtual self-representation. We adopt a re-
inforcement learning (RL) setting and implement these ideas
in SubjectZero, a planning-based deep RL agent which has an
explicit virtual self-model and whose architecture draws sim-
ilarities to multiple prominent consciousness theories. Being
able to self-localize, simulate the world, and model its own
internal state, it can support a primitive virtual narrative, the
quality of which depends on the number of abstractions that the
underlying generative model sustains. Task performance still
ultimately depends on the modeling capabilities of the agent
where intelligence, understood simply as the ability to model
complicated relationships, is what matters.
Keywords: artificial intelligence, consciousness, reinforce-
ment learning

Introduction
Artificial intelligence and cognitive science loosely form a
primal-dual problem pair. Both are progressing at great
speed, but there still remains a duality gap, at the heart of
which stands artificial consciousness and the question of how
experiences could arise in a formal computational setting.
Despite multiple promising theories (Dennett, 1993; Clark,
1998; Pfeifer & Bongard, 2006; Tononi, 2004; Lamme, 2006;
Baars, 1993), capturing the subjective nature of what it’s like
(Nagel, 1980) has proved very difficult so far.

To make progress, we intentionally adopt an approach of
ultra-simplification. In what follows, we first build a shared
understanding of how subjective experiences can be reduced
to variable processing and how the self can be reduced to a
virtual representation of a look-alike agent similar to us. Sub-
sequently, we present an algorithm designed to embody the
essential characteristics necessary for having experiences. At
all times the guiding principles in our reasoning are concep-
tual simplicity and concreteness.

Agency. Agency is the ability to exert purposeful change
in the environment. Each one of us can be viewed accord-
ing to two different perspectives – first, as an individual with
a given personality (Allport, 1937) – and second, as a bio-
logical agent capable of adapting to an environment and har-
vesting rewards (Sutton & Barto, 2018). Let us call the first

perspective the humanistic one, and the second perspective
the reinforcement learning one.

The RL perspective belongs to the real physical world,
where there are clear-cut limits on what is possible and what
is not. It emphasizes an environment in which we are reward-
maximizing agents. And the rewards which we maximize are,
at least in their very basis, biochemical (Schultz, Dayan, &
Montague, 1997). It is only through our biochemistry that we
perceive various states of the world as pleasant or unpleasant,
desirable or undesirable (Rolls, 2000). Our base reward func-
tions are hard-coded by evolutionary processes and we rarely
can change them willingly (Cosmides & Tooby, 1994).

The humanistic perspective is based on the view of a per-
son – an individual with inherent qualities, values and worth.
This representation does not entail agency and exists only in-
side the mental model of the world constructed by our brains
(Johnson-Laird, 1983). There are no limits to the world states
here as we can imagine or believe anything. Our identities,
memories, and anticipations exist only in this virtual abstract
space, likely with the purpose of giving us a better representa-
tion for dealing with long-term tasks requiring extended plan-
ning in the present (Oyserman, Elmore, & Smith, 2012).

A generative model. It is useful to think of this virtual
space as a generative predictive model of the world around
us (Tenenbaum, Kemp, Griffiths, & Goodman, 2011; Clark,
2013), irrespective of whether the brain actually works like
that. We can generate future representations of the world –
anticipations – or past representations from sparse signals –
memories. Our world models are flexible and efficient: they
can condition their representations on physical signals or vir-
tual ones (Friston, 2010). We can associate states of the world
to biochemical rewards (Berridge & Robinson, 1998), as well
as physical sensory triggers like vision, hearing, and smell to
imaginations and memories.

The virtual self. Inside one’s world model, there is a rep-
resentation for a person, who looks like them, talks like them,
and behaves like them. This representation is built from mul-
tiple signals gathered through time: reflections in the mir-
ror (Rochat, 2003), correlations between personal actions and
subsequently obtained biochemical rewards (Schultz et al.,
1997), and feedback from other agents. Natural language is a
communication interface to these representations (Chomsky,
2002; Pinker, 1994). During our early development, each one
of us labels these features “I”, “me”, or “self”, at which point
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one can refer to a person who looks like them and behaves
like them. We call this an identity in this paper – an explicit
virtual representation of a physical agent who is identical in
appearance, preferences, and behaviour to us.

It is our belief that the self-awareness in each and every
one of us is as simple as described. One needs to recog-
nize themself first in the third person perspective, as their own
doppelgänger, and only then can those learned features be re-
named. Just like the word “chair” refers to the mental repre-
sentation of a chair, so does the word “I” refer to the mental
representation of a particular human exactly like us.

Consciousness. Using this relation between the physical
agent and their virtual representation, we can provide a com-
putational definition for consciousness. Consciousness is the
process of continuously associating the sensory information
processed by an agent in the physical world to their virtual
“self” representation. The association can be understood as
the querying, or conditioning on, or projecting sensory fea-
tures onto the virtual representation. Self-awareness, under-
stood as only having access to an explicit virtual “self” model,
is a necessary but insufficient condition for consciousness.

Minimalist nature. This approach to handling conscious-
ness is minimalist, but concrete enough to be implementable
in practice. It abstracts away any relation to the sensor modal-
ities, autonomy, task selection, and even intelligence. The
latter of these is understood simply as the ability to model
complicated relationships. Thus, intelligence is only crucial
to develop accurate and realistic self-representations.

Contributions. We highlight that the reasoning above rep-
resents a pragmatic, implementable, and simplified computa-
tional model for consciousness. Driven by the desire to assess
its utility, our main contribution is the implementation and
evaluation of a digital agent which puts this model to prac-
tice. We do not claim novelty for the ideas established in this
paper, though we have taken great care in presenting them in
a way that emphasizes the physical-virtual nature, which we
believe is key to understanding consciousness.

Related Work
From the cognitive science side, prominent theories of con-
sciousness like recurrent processing theory (Lamme, 2006,
2010, 2020), global workspace theory (Baars, 1993, 1997),
and higher-order theories (Lau & Rosenthal, 2011; Lycan,
2001; Brown, Lau, & LeDoux, 2019) focus on the neurosci-
entific and computational processes underpinning conscious-
ness – whether it is by recurrent processing, by a global fi-
nite information store, or by representations about represen-
tations. They do not address how these computational aspects
relate to the feeling of what it’s like. The attention schema
theory (Graziano, 2017) claims that the brain builds a map of
its own attention just like it builds a map of the body. While
useful in explaining self-attention, this still does not explain
the content of our perceptions. To some extent this is ad-
dressed by the sensorimotor theory (O’regan & Noë, 2001),
which claims that our experiences are formed by attending to
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Figure 1: A schematic of our approach. A physical agent
simulates a virtual model of the environment, projects the
sensory information to the virtual agent and plans its actions.

specific contingencies relating the sensory input and our ac-
tion outputs. Further, embodied cognition theories (Varela,
Thompson, & Rosch, 2017), assert that the experiences of an
agent are dependent on and reflect also the biological con-
straints of the body and the environment.

The above theories provide a fairly good understanding of
the real information in an experience, and what computational
mechanisms are needed to effect it. But our experiences are
continuous, temporally-correlated, and thus merge into “nar-
ratives”. According to Dennett (1993), there are multiple
narrative drafts consistent with one’s sensory experience
and they constantly compete with each other, prompting some
of them to fade out or dominate our consciousness. The corti-
cal conductor theory (Bach, 2019) provides similar reason-
ing. Overall, this view of consciousness as a narrative fits well
with the more general predictive processing belief (Friston,
2010) and resonates deeply with the generative modeling and
the humanistic view presented above. Our work is grounded
in that context. We cannot comment on other theories, such
as IIT (Tononi, 2004, 2012), which do not easily offer simi-
lar generative explanations. We also do not make any claims
as to which anatomical regions are responsible for producing
experiences (Merker, 2007; Crick & Koch, 1990).

On the machine learning side, RL methods like Muzero
(Schrittwieser et al., 2020), Perceiver (Jaegle, Gimeno, et al.,
2021; Jaegle, Borgeaud, et al., 2021), Dreamer (Hafner, Lil-
licrap, Ba, & Norouzi, 2019), and AdA (Team et al., 2023)
all focus on important aspects – planning, attention, world
models, adaptability to new tasks – but do not have an ex-
plicit virtual self-model, synchronized to the acting agent.
Schmidhuber (1991) claims that due to the feedback present
in the world model, self-introspective capabilities can be ob-
served. We find this only natural, albeit still reactive to the
agent’s own “reflection”. This aspect is present also in LLMs
where even though they can plan their own verbal outputs
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(Wei et al., 2022; Yao et al., 2023), any self-modeling aris-
ing from the autoregressive token generation is still implicit.
To address this issue, we believe the agent needs to have ex-
plicit semantic information of themself and the capability to
self-identify – something we implement in our solution.

It is not uncommon to explicitly engineer different priors
within the agent’s behaviour. Curiosity and intrinsic motiva-
tion have been explored in great depth as ways to deal with
sparse rewards and to learn meaningful skills even in the pres-
ence of no task-specific supervision (Barto, 2013; Eysenbach,
Gupta, Ibarz, & Levine, 2018; Pathak, Agrawal, Efros, &
Darrell, 2017; Aubret, Matignon, & Hassas, 2019; Burda,
Edwards, Pathak, et al., 2018; Burda, Edwards, Storkey,
& Klimov, 2018). Similarly, risk-sensitive agents (Dabney,
Ostrovski, Silver, & Munos, 2018) can prioritize actions
favourable to their risk-seeking profile. Nonetheless, while
having inductive biases resembling curiosity and risk aver-
sion, these agents do not have the semantic understanding to
recognize or interpret them as such.

Overall, we believe that cognitive theories need to be for-
malized in a computational setting to make them more con-
crete, while in the machine learning contexts one needs to en-
gineer explicit self-modeling. The resulting model will speak
the language of both fields, bridging the gap between them.
This is what we attempt in this work.

Environment, Body, and Experiences
The virtual agent is embodied in a physical agent and thus
has to account also for the system complexity of the physical
body. This requires access to sensors and actuators.

Sensors. Humans have many sensors for processing infor-
mation external to the body, including photo-, mechano-, and
thermoreceptors. They convert physical quantities like light
photons, pressure, and temperature into electric impulses.
But we also have baro- and chemoreceptors for interocep-
tion. Thus, similar to how we recognize objects external to
the body, we can recognize states internal to it (Craig, 2002).

Actuators. They convert electric impulses into muscle
contractions for locomotion in the external environment and
chemical secretions for regulation in the internal one. We do
not have awareness over them as such low-level process at-
tention may be superfluous for high-level decision making.

Neurons. The action potentials of neurons can be inter-
preted as both data features to be processed and instructions
for other cells. Depending on the wiring, neural networks
can act as generators, selectors, modulators, or feature ex-
tractors. Likewise, a semantic classifier alone does not distin-
guish whether the input neural spikes represent real sensory
data, e.g. an object we are looking at, or have been generated
by another neural module, such as when we are imagining the
object. This aspect, combined with recurrence, allows for a
digital agent to simulate different futures or pasts.

Subjective experiences in humans serve an information
processing role. It is useful to distinguish hot from cold,
or hunger from thirst because these experiences are crucial

for survival. And the underlying information processing is
more variable, owing to the unique connections in each indi-
vidual’s cortex, rather than subjective. The subjective aspect
likely results from the brain constructing an interpretation of
the temporally correlated sensory features which constitutes
the story in which the virtual agent exists (Seth, 2013).

We consider a simple example. Suppose a bear is charging
at you. The sudden novel data from the external environment
enter the brain and activate the autonomic nervous system,
triggering a fight-or-flight response and raising one’s pulse
and breathing rate. In turn, interoceptors detect the increased
pressure, providing information about the body’s reaction to
the outside event. Thus, real information both external and
internal to the body is available for processing by the cortex.

It is by processing this real data that “subjective” experi-
ences are formed. By predicting and generating features cor-
responding to colour, spatial positions, tactile sensations, au-
ditory frequency, semantics, all conditioned on the raw sen-
sory data, the brain effectively reconstructs the agent’s en-
vironment, along with itself in it (Friston, 2010). Since the
processed features are saved into memory, they can be re-
called in the future. We highlight that the agent’s subjec-
tive experiences are part of its world model and, therefore,
must be themselves generated. Thus, the agent believes that
it feels, where beliefs can be understood simply as state fea-
tures with high probability under one’s own generative world
model. Recalling these features from memory simply recon-
structs the story in which the agent “feels”. As a consequence
of these mechanics, the resulting world interpretations can be
considered intrinsic, private, and ineffable. Their existence
can be verified only if the agent reports so.

Implementation
Here we build a planning-based RL agent which has an ex-
plicit learned self-representation on which its behaviour is
conditioned. We consider the Atari Arcade Learning Envi-
ronment (Bellemare, Naddaf, Veness, & Bowling, 2013) – a
staple benchmark for classic RL agents like DQN (Mnih et
al., 2015), C51 (Bellemare, Dabney, & Munos, 2017), and
MuZero (Schrittwieser et al., 2020). We showcase our proto-
type approach on Pong. The other environments are left for
the future when we scale up the agent. We call our agent Sub-
jectZero, because it is based on MuZero (Schrittwieser et al.,
2020) while having explicit self-representation.

We consider the visual observations from the environment
to represent a flat world in which the agent lives. They also
contain sufficient information for the agent to observe itself –
a necessary condition in order to learn a self-representation.
The reward function, according to which rewards are gener-
ated, is fixed and exogenous to the virtual self. Having the
agent come up with tasks is possible by sampling different
reward functions but is not crucial for our setup so we do not
discuss it in details. Since the self-representation abstracts the
data modality, we believe the Atari setting is a good candidate
for a simple environment on which to experiment.
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Figure 2: Architecture of SubjectZero. A convolutional feature extractor obtains high level features Fext from the visual
sensory inputs. An object locator predicts object coordinates from those features. They are trained in a supervised manner with
the ground truth locations. The predicted object coordinates are encoded and added to a number of learned object representa-
tions Fobj. An interoceptive component produces features Fint which are supervised by the reward function, or a similar signal
modeling the agent’s body. They are added to the object corresponding to the agent itself. Subsequently, an attention block
aggregates all available features, producing Fcomb. From it, an actor, critic, reward, and dynamics network branch out. Their
outputs are used by the Monte Carlo Tree Search (MCTS), similar to MuZero. Yellow components are learnable networks. Red
components are explicit and interpretable semantic objects meaningful in the world model. Orange objects are latent signals
which are not interpretable but are useful for processing. Most time indices for the current step are omitted for clarity.

Architecture. Figure 2 shows the proposed architec-
ture. The agent receives temporally stacked grayscaled visual
frames as input. A convolutional feature extractor, roughly
corresponding to brain areas V1, V2, and V5 (for motion), ex-
tracts a low-dimensional latent representation Fext from the
sensory observations. These features correspond to the real
sensory information external to the physical agent.

We model the agent’s body by introducing a custom
environment-specific function r̃ that returns a scalar value
similar to the reward. This function is fixed by the algorithm
designer and represents all the immutable feedback loops and
self-regulating mechanisms that the body possesses. Its out-
put is a numeric label, representing the body’s reaction to
outside events, and for Pong it is based on whether the ball
is beyond the position of any of the players:

r̃ =


−1, if xball > xplayer

1, if xball < xopponent

0, otherwise.
(1)

Crucially, by predicting this numeric label using a neural
network, the agent obtains latent features Fint, correspond-
ing to the interoceptive assessment of its own body’s state.
We purposefully choose r̃ to be very similar to the actual re-
ward function r to allow the agent to condition any down-
stream processing on this early “estimated reward”. This is
uncommon in model-based RL, where the estimated reward

is treated as an output, only ever used for the final action-
selection, not for conditioning intermediate representations.

The latent state Fext is passed to an object locator, a small
fully-connected network which outputs (x,y) coordinates for
each of a number of learnable objects, as well as confidences
α for whether they are present in the current state. The co-
ordinates represent the pixel locations in the coordinate sys-
tem of the visual input image. While a human can effortlessly
model the surrounding real 3D geometry, our Atari agent lives
in these flat images and for it the only geometry that matters
is that of the pixels. The object locator corresponds to the
dorsal visual stream in the brain.

We endow the agent with the capacity to represent a lim-
ited number of objects or concepts explicitly. The seman-
tics of these objects are represented by vectors Fobj, learned
using gradient descent. Since they are not in the network
weights, they are explicit representations. Such vectors are
similar to token embeddings in NLP, learnable camera poses
in SLAM (Sucar, Liu, Ortiz, & Davison, 2021; Z. Zhu et al.,
2022), and object queries in DETR-like models (Carion et
al., 2020; X. Zhu et al., 2020). In the case of Pong, we use
just 3 representations corresponding to the two paddles and
the ball. Once trained, these representations remain fixed at
test time. They are roughly equivalent to explicit semantic
memory in humans. Explicit episodic memory is given by
the replay buffer and implicit procedural memory is provided
by the weights of the policy network.
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Figure 3: Predictions. We showcase samples from different test runs. The player is the right paddle. Scores are shown at the
top. In all cases the agent accurately predicts the object visibilities and locations. The ball is colored green, red, or orange
based on the agent’s own prediction of whether the current observed state is beneficial, harmful, or neutral, as given by the
interoception module. Overall, the agent learns to play Pong effortlessly while at the same time being able to self-localize.

Subsequently, the agent uses learnable positional encod-
ings to embed the predicted locations to the object semantics,
according to the estimated visibility, obtaining features F+

obj.
This operation fuses positional and semantic information, in
effect representing the object at that particular location as a
single vector. The environment features Fext are encoded sim-
ilarly to yield F+

ext. We add the interoceptive features Fint to
one of the vectors in F+

obj – that which represents the agent
itself, obtaining F++

obj . The resulting vectors can be thought of
as objects in context. At this point, the features Fext represent
the current state, as informed by the agent’s sensors, while
F++

obj - the objects along with their locations and semantics.
We combine them by using a simplified cross-attention

block (Vaswani et al., 2017) where the queries are the object
vectors and the lookup keys are the state features F+

ext. We
compute the attention coefficients without further aggrega-
tion, and use them to modulate the addition of F+

ext and F++
obj :

Fcomb = F+
ext +σ(F+

obj(F
+
ext)

T)F++
obj . (2)

Here, σ(·) is a softmax activation. In essence, this opera-
tion adds the semantic information for the objects into only
those spatial positions from the state feature map which are
relevant for that object. This produces enhanced features
Fcomb, containing the semantic object information at the right
spatial locations. All computations here preserve spatial rela-
tionships, similarly to the retinotopic map in V1 and, overall,
this part corresponds to the posterior parietal cortex, which
summarizes the spatial object relations in the scene.

From the object-focused latent state Fcomb we have stan-
dard branching policy, value, reward, and state dynamics
networks. These components allow the agent to simulate fu-
ture state dynamics and plan its actions accordingly. We fol-
low the discrete planning approach of MuZero (Schrittwieser
et al., 2020) and utilize Monte Carlo tree search (MCTS) for
the action-selection. The planning and policy modules corre-
sponds to the prefrontal cortex. The reward and value predic-
tors are related to the ventral striatum in the human brain.

We also utilize an additional self-supervision loss, as in
Ye, Liu, Kurutach, Abbeel, and Gao (2021), which forces
states close to each other to also have similarly close repre-
sentations. This component is used only for practical reasons
to increase the sample efficiency of our method.

Training. Our implementation is based on the LightZero
library (Niu et al., 2023). We train the localization and intero-
ceptive networks using supervised learning. The ground truth
labels for the object locations are obtained from the game’s
underlying RAM state. The mapping from raw bytes to pixel
locations was estimated manually by us and is environment-
dependent. For a more general treatment of unsupervised ob-
ject discovery, where it is difficult to obtain ground truth an-
notations, we recognize that more sophisticated methods are
needed (Locatello et al., 2020).

Future simulation. Our agent can accurately localize the
objects, as shown in Figure 3. But we can also compose
the locator with the dynamics predictor, to localize objects in
imagined future trajectories. To that end, since the dynamics
predictor returns the next Fcomb, we train the locator and the
interoception network to produce accurate coordinates from
both Fext and Fcomb. This allows the agent to produce mean-
ingful object tracklets from within its own imaginations, as
shown in Figure 4. MuZero can also construct virtual trajec-
tories, but they are represented as dense latent features. Com-
pared to them, SubjectZero can apply in the simulated future
any network that assigns meaning to the hidden vectors.

Properties
As a consequence of its architecture and design, the agent
proposed above has the following properties:

1. It can self-localize. By training it to predict the locations
of objects, one of which is itself, it learns to predict its own
location from its own visual appearance.

2. It can track objects across sequences of frames. This results
from the technical fact that when training, predictions are
matched to ground truth annotations always by index, as
opposed to e.g., by total distance, as in Carion et al. (2020).

3. It can represent its own body’s state. By predicting and
conditioning downstream calculations on features con-
structed from the body itself, it learns how the collected
rewards and subsequent actions relate to its interoceptive
and proprioceptive data. This is similar to the sensorimo-
tor theory (O’regan & Noë, 2001).

4. The representation of its virtual-self is explicit and is stored
exactly in one of the learned vectors Fobj. By predicting
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real pixel coordinates this representation is also grounded
to the real physical environment, not the one in its dy-
namics predictor. Since the self-representation is used to
compile information from its surroundings, the agent es-
sentially conducts a query on its virtual self.

5. Related to the recurrent processing theory (Lamme, 2006),
the dynamics predictor is recurrent and forms the backbone
for the simulated rollout needed for action selection. The
overall process is control through simulation. To take an
action, the agent self-localizes, combines static knowledge
with the dynamic surroundings, simulates possible futures
and selects the action yielding the most beneficial future.

6. In the attention block, the agent’s attention is spread out
over the features. But if we use multiple attention heads,
this would create different narratives for what the agent
attends over. If they are then merged, the resulting bottle-
neck will force the different narratives to compete, which
is similar to the multiple drafts theory (Dennett, 1993).

7. By disabling the attention to some of the features, different
altered states of consciousness can be modeled. Removing
the explicit object localization will make the agent consider
the effects of other objects only implicitly, as if only by
reaction and instinct. Removing the interoceptive features
will prevent any aspects of the body to ever be considered.

Access consciousness. In principle, the attention weights
used for aggregating information can themselves become the
ground-truth targets of another network that will predict them
from sensory data. This will allow the agent to predict its own
attention, similar to the attention schema theory (Graziano,
2017). Furthermore, using the predicted attention features
as additional inputs to the dynamics predictor, policy, or any
other component can be interpreted as access consciousness
(Block, 1995), i.e., making the agent’s own attention acces-
sible to the generative story. We do not implement it here
because the predicted attention map does not contain infor-
mation related to the task itself and is unneeded. Perhaps in
a multi-task setting, where the only information that transfers
between different tasks is that related to the body, explicit
modeling of the agent’s own attention will be invaluable.

Phenomenal consciousness. We highlight that the pre-
sented agent naturally does not have humanlike experiences.
However, by accurately modeling its own body’s state, and
by being able to self-localize, it has enough functionality to
construct a primitive virtual narrative in which it exists and
feels. In fact, in this narrative existence is the default, because
of how the architecture has been constructed. Thus, the pre-
sented setup is enough to represent a virtual self Fobj1, located
at (x,y) within the scene Fext, with preferences given by the
reward function, and current experiences Fint. With more such
abstractions, the narrative will only become richer and more
convincing. Verbal explanations can then be built on top of
these features to report on them and communicate. The result-
ing agent will be constrained by its generative world model to
believe that it exists, without understanding why and how.

Conditioning: no movement Conditioning: move up

Sa
m

pl
e 

2
Sa

m
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e 
1

Figure 4: Imagined trajectories. Our agent can track objects
in the imagined future, conditional on its own actions. The
rows show two different samples at test time. The columns
show two different action sequences - one in which the agent
does not move, and one in which it moves up. The imagined
trajectories are consistent with these actions.

Conclusion
In this work we have projected the problem of conscious-
ness from the abstract opaque philosophical setting into a
concrete and verifiable reinforcement learning one. We pre-
sented a simple high-level functional definition of conscious-
ness based on the querying of a virtual self-representation
and have described SubjectZero, a planning RL agent, which
incorporates explicit self-modeling by construction and has
many desirable properties and characteristics, reminiscent of
those believed to govern consciousness in humans.

Compared to methods specialized in reasoning about ob-
ject permanence (Traub et al., 2022), event segmentation
(Gumbsch, Adam, Elsner, Martius, & Butz, 2022), or plan-
ning using the learned model (Hafner, Lillicrap, Norouzi, &
Ba, 2020), our approach focuses on establishing the minimal
elements needed to build a virtual story in which the agent
lives. This generative story allows us to talk about subjective
experiences in a formal computational setting, thereby pro-
viding an improved understanding of artificial cognition. In
general, we anticipate that combining deep learning with cog-
nitive architectures will be a fruitful and meaningful endeav-
our and will open up the doors to many full stack cognitive
engineering solutions in the future.

The practical benefits of such a line of work will be
improved interaction with AI systems, more interpretable
and grounded decision-making, better alignment with goals,
tasks, or desires. On the conceptual side, we hope this ap-
proach leads to further insights in these fields.
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