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ABSTRACT OF THE DISSERTATION

Deep Learning for the Analysis of Latent Fingerprint Images

by

Jude C. Ezeobiejesi

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, March 2019

Dr. Bir Bhanu, Chairperson

Latent fingerprints are fingerprint impressions unintentionally left on surfaces at a crime scene. The

accuracy of latent fingerprint identification by latent fingerprint forensic examiners has been the

subject of increased study, scrutiny, and commentary in the legal system and the forensic science

literature. Errors in latent fingerprint matching can be devastating, resulting in missed opportunities

to apprehend criminals or wrongful convictions of innocent people. Latent fingerprint comparison is

increasingly relied upon by law enforcement to solve crime, and prosecute offenders. The increasing

use of this service places new strains on the limited resources of the forensic science delivery system.

Currently, latent examiners manually mark the region of interest (ROI) in latent fingerprints and use

features manually identified in the ROI to search large databases of reference full fingerprints to

identify a small number of potential matches for subsequent manual examination. Given the large

size of law enforcement databases containing rolled and plain fingerprints, it is very desirable to

perform latent fingerprint processing in a fully automated way.

This dissertation proposes deep learning models and algorithms developed in the context

of machine learning for automatic latent fingerprint image quality assessment, quality improvement,
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segmentation and matching. Techniques that help speed-up convergence of a deep neural network

and achieve a better estimation of the relation between a latent fingerprint image patch and its

target class are also proposed. A unified frequency domain based framework for latent fingerprint

matching using image patches, as well as a novel latent fingerprint super-resolution model that uses

a graph-total variation energy of latent fingerprints as a non-local regularizer for learning optimal

weights for high quality image reconstruction, are also presented. Using the deep learning models,

this dissertation aims at providing an end-to-end automatic system that solves the problems inherent

in latent fingerprint quality assessment, quality improvement, segmentation and matching.
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Chapter 1

Introduction

The accuracy of latent fingerprint identification by latent fingerprint forensic examiners

has been the subject of increased study, scrutiny, and commentary in the legal system and the foren-

sic science literature. Errors in latent fingerprint matching can be devastating, resulting in missed

opportunities to apprehend criminals or wrongful convictions of innocent people. Latent fingerprint

image quality assessment provides an indication as to whether the latent fingerprint is a good can-

didate for further analysis and feature annotations. Figure 1.1 shows latent fingerprints of different

qualities. Currently, latent fingerprint examiners assign one of the following values to a given latent

fingerprint image: value for individualization (VID), value for exclusion only (VEO), and no value

(NV). Latent fingerprints marked as VID have sufficient salient information for matching. Latent

fingerprints identified by latent examiners as VEO and NV are generally considered to be valuable

and are subject to further processing [29]. As reported by Yoon et. al. [149], 63% of VEO latents in

NIST SD27 [7] and WVU [3] latent fingerprint databases can be identified at rank 100 while 40%

can be identified at rank 1. Incorrect NV determination for a latent fingerprint could result in missed
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opportunity to identify a crime suspect. Latent experts process latent fingerprints by manually mark-

ing the regions-of-interest (ROIs) in latent fingerprints and using the ROIs to search large databases

of reference fingerprints and identify a small number of potential matches for manual examination.

The poor quality and often complex image background and overlapping patterns characteristic of

latent fingerprint images make it very challenging to separate the fingerprint ROIs from complex

image background and overlapping patterns [153]. In addition, latent fingerprints may contain few

minutiae and no singular structures. Matching algorithms that entirely rely on minutiae or alignment

of singular structures fail when those structures are missing.

There is also the need to improve the quality of latent fingerprint images to enhance the

effectiveness and reliability of matching algorithms. Image image super-resolution (SR) is a tech-

nique for generating high-resolution images from low-resolution images by reconstructing the high-

frequency components containing details missing from the low-resolution images. Given that there

is a natural redundant recurrence of fingerprint patches within the same scale and across different

scales of a fingerprint image, it is possible to recover the best possible resolution of each pixel in

the image using super-resolution.

This thesis proposes a deep learning model for latent fingerprint quality assessment that

eliminates the need for manual feature markup. It presents a unified frequency domain based frame-

work for patch similarity learning, minutiae detection and matching. Similarity scores between

patches from the latent and reference fingerprints are determined using a distance metric learned

with a convolutional neural network. Minutiae detection in correlated patches is done using a

convolutional neural network trained with minutiae patches. The matching score is obtained by

fusing the patch and minutiae similarity scores. A novel latent fingerprint super-resolution model
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Figure 1.1: NIST SD27: Latent fingerprints images of different qualities: (a) good, (b) bad, and (c)
ugly.

(LAFISR) that uses a graph-total variation energy of latent fingerprints as a non-local regularizer

for learning optimal weights for high quality image reconstruction, is also presented. Chapters 2, 3,

4 and 5 present the details of the deep learning models and algorithms developed in the context of

machine learning for automatic latent fingerprint image quality assessment, quality improvement,

segmentation and matching.
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Chapter 2

Data Diffusion for the Segmentation of

Latent Fingerprints

Patch based latent fingerprint segmentation falls into the category of tasks where the struc-

ture of the input distribution may not reveal enough information about the conditional densities of

the target classes from the input examples. For such tasks, deep learning algorithms tend to perform

poorly with respect to convergence and minimization of validation errors. Inspired by the principle

of information diffusion, a dataset diffusion technique that enables a deep neural network converge

faster and achieve a better estimation of the relation between a latent fingerprint image patch and its

target class (fingerprint or non-fingerprint) is proposed in this chapter. Experimental results show

that using a derived dataset to train and validate a deep neural network for latent fingerprint image

segmentation leads to faster convergence of the deep learning algorithm, marked improvement in

segmentation accuracy and better generalization of the trained model to unseen examples.

The proposed dataset diffusion technique speeds-up convergence and minimizes valida-
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Figure 2.1: Sample latent fingerprints from NIST SD27 showing three different quality levels (a)
good, (b) bad, and (c) ugly.

tion errors of a deep neural network for patch based latent fingerprint image segmentation. A sim-

ilar idea based on the principle of information diffusion has been used by researchers in situations

where the neural network failed to converge despite adjustments of weights and thresholds [72],

[96]. In [23], the authors described datasets for such tasks as “uncooperative input distributions”

and proposed training deep network with “a mixed training criterion that combines the unsupervised

objective and a supervised objective”.

The rest of the chapter is organized as follows: Section 2.1 presents a review of recent works in data

augmentation and latent fingerprint segmentation while section 2.1.2 describes the contributions of

this chapter. Section 2.2 highlights our technical approach and presents dataset diffusion as well

as an overview of Restricted Boltzmann Machine (RBM), the building block of our deep learning

model. Features for complex texture characterization that were used for dataset diffusion are also

presented in this section. The experimental results and performance evaluation of our proposed ap-

proach are presented in Section 2.3. This section also discusses dataset derivation based on diffusion

and highlights the impacts of diffusing the training dataset with the selected texture features on the

performance of the network. Section 2.4 contains the conclusions and future work.
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2.1 Related Work and Contributions

2.1.1 Related Work

Data augmentation

Data augmentation plays an important role in boosting the performance of object recog-

nition systems. It involves the application of domain-specific transformations to expand a dataset.

Data augmentation can be done by using transformations in the data-space to generate additional

data samples or creating additional data samples in the feature-space through synthetic over-sampling

[143].

Elastic distortion is a data augmentation technique that gives large degrees of freedom

in stroke forms, without varying the topological structure of the data [120]. Previous works have

used data augmentation techniques based on elastic distortions and affine transformations to im-

prove classifier performance. In [125], Simard et. al applied elastic distortions to existing examples

in MNIST handwritten digit dataset to expand the dataset. Using the expanded dataset and convo-

lutional neural networks, they achieved a (2003) state-of-the-art performance (0.4% error) on the

MNIST handwritten digit dataset. In [44], the authors performed data augmentation by randomly

generating transformations from a set of possible transformations. They demonstrated that data

augmentation by elastic distortion gives great boost to classification performance. Xu et. al. [144]

improved Relation Classification by Deep Recurrent Neural Networks with data augmentation based

on leveraging the directionality of relations. In their work, they used directionality of relationships

to create mappings of subject-predicate and object-predicate components of a relation. They used

the new data samples that resulted from the mappings to augment the original data samples.
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Our work is inspired by the data augmentation techniques used in the works referenced

above. Unlike data augmentation which increases the number of data samples, our dataset diffusion

approach extends the dimension of the dataset with texture features computed from the dataset.

Segmentation of latent fingerprints

A number of recent studies have been carried out on latent fingerprint segmentation. In

[153], [39], [78], and [124], the authors performed latent fingerprint image segmentation by ana-

lyzing ridge frequency and orientation properties of the ridge valley patterns to determine the area

within a latent fingerprint image that contains the fingerprint. Choi et al. [39], used orientation

tensor approach to extract the symmetric patterns of a fingerprint and removed the structural noise

in background. They used a local Fourier analysis method to estimate the local frequency in the la-

tent fingerprint image and located fingerprint regions by considering valid frequency ranges. They

obtained candidate fingerprint (foreground) regions for each feature (orientation and frequency) and

then localized the latent fingerprint regions using the intersection of those candidate regions. Karimi

et al. [78] estimated local frequency of the ridge/valley pattern based on ridge projection with vary-

ing orientations. They used the variance of frequency and amplitude of ridge signal as features

for the segmentation algorithm. They reported segmentation results for only two latent fingerprint

images and provided no performance evaluation. Short et al. [124] proposed the ridge template

correlation method for latent fingerprint segmentation. They generated an ideal ridge template and

computed cross-correlation value to define the local fingerprint quality. They manually selected

6 different threshold values to assign a quality value to each fingerprint block. They neither pro-

vided the size and number for the ideal ridge template nor reported an evaluation criteria for the

segmentation results. Zhang et al. [153] proposed an adaptive total variation (TV) model for latent
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fingerprint segmentation. They adaptively determined the weight assigned to the fidelity term in

the model based on the background noise level. They used it to remove the background noise in

latent fingerprint images. Cao et al. [31] used ridge structure dictionary to segment latent fingerprint

images. Ruangsakul et al. [111] used an algorithm based on spatial-frequency domain analysis to

group blocks of latent fingerprints into sub-bands. They sort the subbands and group related spectra

to obtain segmentation results. Zhu eta al. [155] used convolutional neural networks to classify

multi-sized overlapping patches of a latent fingerprint image as either fingerprint or background.

They computed score maps based on the classification results and generated segmentation masks by

thresholding the score map to segment the latent fingerprint image.

Our approach uses a deep architecture that learns features from a diffused dataset of latent

fingerprint image patches and uses the learnt features to classify the patches into fingerprint and

non-fingerprint classes. The patches classified as fingerprint patches are assembled to form the

segmented latent fingerprint.

The work described in this chapter has evolved from our earlier preliminary work [53,

55]. In [53], patch based latent fingerprint segmentation was performed by using fractal dimension

features computed from latent fingerprint patches to train a weighted extreme learning machine

ensemble classifier. The patches were classified into fingerprint and non-fingerprint classes and the

final segmentation result was obtained by quilting the patches classified as fingerprint. In [55], we

proposed a deep learning model for latent fingerprint segmentation that learns representations of

raw latent fingerprint image patches via identity mapping. Features were extracted from the learned

representations and used to classify the image patches and the results of the classification were used

for latent fingerprint image segmentation. This chapter is different from [53], [55] in the following

8



aspects: (a) In-depth theoretical and empirical discussions on the selection of features for dataset

diffusion are presented. (b) An algorithm for selecting minimal (optimal) number of features used

for dataset diffusion to balance model complexity and error on the training data is also presented.

(c) Post processing of segmentation results is done via connected component size filtering to obtain

segmented regions-of-interest (ROIs) results. (d) Visual segmentation results are presented and

compared with the state-of-the-art segmentation results and better quantitative and visual results

are obtained. (e) The quality of the segmentation results is evaluated with respect to matching

performance, and detailed experimental results are presented. (f) The matching performance of the

proposed segmentation method is compared with the state-of-the-art matching results and better

results are obtained.

2.1.2 Contributions

The main contributions of this chapter are as follows:

• We proposed a method for diffusing the latent fingerprint dataset using features that charac-

terize complex texture in latent fingerprint images.

• We performed experiments which support the hypothesis that using derived dataset to train

and validate the deep network leads to faster convergence of the deep learning algorithm and

yields marked improvement in segmentation accuracy compared to current algorithms, as

well as better generalization to unseen examples.

• Texture features and variations of texture features have been used for latent fingerprint seg-

mentation. Our approach is the first to use them to extend patch dataset to speed-up conver-

gence and minimize validation errors of a deep neural network for patch based segmentation
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of latent fingerprint images.

• We performed detailed experiments for evaluation of segmentation results with respect to the

matching performance. These results show better than state-of-the-art performance.

2.2 TECHNICAL APPROACH

Our approach involves partitioning a latent fingerprint image into 8x8 non overlapping

blocks and computing texture features for each block. We select optimal subset of texture using

deep learning. Using dataset diffusion, we extend the vector of 64 elements representing each block

with a vector of the selected features to form a diffused dataset. After normalizing the diffused

dataset to zero-mean and unit-standard deviation, we learn a set of stochastic features that model a

distribution over image patches using a generative multi-layer feature extractor. We use the learned

features to train a single hidden layer perceptron classifier that classifies the patches into fingerprint

and non-fingerprint classes.

The block diagram of our proposed approach is shown in Figure 2.2. In the patch extrac-

tion stage, we extract 8x8 image patches from latent fingerprint images to create a patch dataset.

Texture features are computed from the dataset in the compute features stage. In the dataset dif-

fusion stage, the patch dataset is diffused with the features computed in the previous stage. After

normalization, the diffused patch dataset is fed to the deep learning model. We used a 7-layer ar-

chitecture featuring an input layer, 5 hidden layers consisting of Restricted Boltzmann Machines

(RBMs) and a single hidden layer perceptron for deep learning, feature extraction and classifica-

tion, and a two-neuron output layer. In the last stage, we separately assemble the patches classified

as fingerprints and non-fingerprint to obtain the segmented fingerprint, and non-fingerprint images,
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respectively.

• Post-Processing: After quilting the patches classified as fingerprint, we compute the connected

components in the resulting image and filter out regions whose area and eccentricity denoted by

ac and ec, respectively, are outside empirically defined thresholds. The eccentricity of a connected

component is defined as the ratio of the distance between the foci of the connected component and

its major axis length [9]. It is calculated as

ec =
df
dv

(2.1)

where df is the distance from the center to the focus of the connected component, and dv is the

distance from the center to a vertex. We use empirically determined thresholds of ac > 100 and

ec < 0.5. A connected component is retained if its ac > 100 and its ec < 0.5. The final segmented

fingerprint is obtained after the filtering operation.
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Figure 2.2: Proposed architecture for deep learning, feature extraction and classification. It consists
of a stack of RBMs and a single layer perceptron (Li refers to Layer i, i = 0, . . . , 6). It has a
receptive field of 9x9, feature dimension of 1,200 and was trained for 50 epochs using a batch size
of 100, learning rate of 0.001, and 0.7 momentum. The hyper-parameters and values used to train
and validate the model were selected based on the performance of the network on the validation set.
The choice of 8x8 patch size is based on its optimality [53].
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2.2.1 Dataset Diffusion

Given a datasetX = {p1, p2, · · · , pk}, we define the diffusion of X as X̂ = {p1, p2, · · · , xm},

where m > k and each xi, k < i < m is an element from n-tuples of real numbers (r1, r2, · · · , rn),

with the totality of n-space denoted as Rn. In other words, X̂ is obtained by extending X with new

elements from Rn. The purpose of dataset diffusion is to minimize reconstruction error and avoid

over-fitting during the learning phase of the deep neural network. This leads to a trained model

that generalizes well to unseen examples. We perform data diffusion by computing texture features

from the patch dataset and selecting the subset of features which when used to diffuse the dataset,

yielded the minimum reconstruction error and the best segmentation performance compared to the

other candidate feature subsets.

Selecting features for dataset diffusion

We selected features used for dataset diffusion based on the level of their positive con-

tributions to the neuronal activation potential of the neurons in the DANN network. The neuronal

activation potential contributions of the features were determined by analyzing the activation func-

tion values of the first layer of the our DANN network. The goal was to identify the contribution

of each feature to the activation of the neurons that participate in the reconstruction of the input

examples. This was done by examining the first hidden layer average activation potential of each

feature (over all training examples). Following the analysis, we were able to identify the features

that participated positively in the activation of the neurons in the DANN network. The higher the

activation potential of a feature, the more likely it will contribute to the learning of input repre-

sentation, reconstruction and discrimination. We performed 25 training epochs using training and
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validation dataset diffused with 20 texture features. Out of 5 models resulting from the training and

validation, we selected the model with the minimum input reconstruction and classification errors,

and performed activation potential analysis on that model to identify the features that made the most

positive contribution to the neuronal activation potentials.

• Analyzing activation potentials

The activation potential of kth hidden neuron in a neural network is given by

ak = wTk x+ bk (2.2)

where wk is the weight of the out-going connection from the kth neuron, bk is the bias associated

with the kth neuron, and x is the input vector. The activation potential contributed by the jth

dimension of N training examples connected to the kth hidden neuron of the first hidden layer of

the DANN is given by

cjk =
ak
N

(2.3)

The total contribution of the kth input dimension to the activation potential of the all hidden neurons

in the first hidden layer (L1) of the DANN is given by

ck =

|L1|∑
j=1

cjk (2.4)

We analyzed the activation potentials of the neurons in the first hidden layer of our network to

identify the features to use in diffusing our dataset. The analysis identified the following for each of

the 20 features shown in Table 2.1.

• The number of neurons where the feature’s contribution to the neurons activation potential is

greater than zero.
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Figure 2.3: Features and their contributions to the neuronal activation potential. (a) shows the
positive neuronal activation potential contributions by the candidate features as percentages of the
total positive activation potential of all hidden neurons in L1, while (b) shows each candidate feature
and the number of neuronal activation potentials of all hidden neurons in L1 having its positive
contribution.

• The percentage of its positive contribution to the activation potential of all neurons in the

hidden layer being analyzed.

• The net positive contribution of the feature to the activation potential of all neurons in the

hidden layer being analyzed.

Table 2.1 and Figure 2.3 provide a summary of the results of the neuronal activation po-

tential analysis. We selected the initial set of features used in diffusing the latent fingerprint dataset

using their total positive neuronal activation potential contribution (PNAPC) shown in column 5 of

Table 2.1. Given that the higher the activation potential of a feature, the more likely it will contribute

to learning, we assumed that features with high PNAPC are more likely to influence the participa-

tion of the neurons in the input reconstruction and subsequent reduction of the reconstruction error.

Based on the minimum description length principle, we used algorithm 1 to optimize the length of

feature set used to diffuse the latent fingerprint dataset.
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1 2 3 4 5 6 7 8

Feature Type Positive Count Negative Count PNAPC PNAPC (%) TNAP (%) Selected

Energy-1 Gabor 342 458 46.46 0.98 1.13

Frequency Gabor 352 448 44.63 0.94 1.13 7

Autocorrelation GLCM 333 467 52.22 1.10 1.26

contrast GLCM 369 431 46.45 0.98 0.73

Correlation GLCM 372 428 50.95 1.07 0.58

Cluster Prominence GLCM 386 414 49.58 1.05 0.57

Cluster Shade GLCM 354 446 46.07 0.97 1.15 7

Dissimilarity GLCM 340 460 45.34 0.96 1.13 7

Energy-2 GLCM 336 464 43.88 0.93 1.12 7

Entropy GLCM 340 460 43.74 0.92 1.11 7

Homogeneity GLCM 356 444 47.53 1.00 1.14

Maximum Probability GLCM 354 446 46.42 0.98 1.14

Sum of Average GLCM 382 418 48.27 1.02 0.57

Difference of Variance GLCM 371 429 48.63 1.03 0.57

Fractal Dimension (FD) Fractal Dimension 375 425 48.61 1.03 0.57

Average FD Fractal Dimension 377 423 49.18 1.04 0.57

Standard Deviation FD Fractal Dimension 345 455 46.34 0.98 1.14

Lacunarity Fractal Dimension 350 450 44.57 0.94 1.13 7

FD spatial frequency Fractal Dimension 343 457 46.88 0.99 1.13

Spatial frequency Spatial Frequency 358 442 46.74 0.99 1.14

Table 2.1: Features and their contributions to the neuronal activation potential. Column 3 in the table
shows the number of neuron in the first hidden layer L1 where the feature contributed positively to
the neuronal activation potential. Column 4 shows the number of neuron in L1 where the feature
contributed negatively to the neuronal activation potential. The total positive neuronal activation
potential contribution (PNAPC) by each feature over all neurons in L1 are shown in column five.
PNAPC is shown as percentages in column 6. The total (positive and negative) neuronal activation
potential contributions (TNAP) over all neurons in L1 are shown in column 7. Column 8 indicates
whether the feature was selected as part of the feature set that is further refined using Algorithm 1.
PNAPC threshold of 0.98% was used in selecting the candidate features.
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Minimum Description Length Feature Selection

Selecting the minimal (optimal) set of features is important because using more features

than necessary increases system complexity and may not lead to better performance [26]. Using

many features to diffuse the dataset implies using a complex model to approximate the training

dataset. The minimum description length principle (MLDP) states that a simple model is better that

a complex model [108]. Given that the patch dataset is inherently noisy, a complex model will likely

over-fit the training data due to its sensitivity to noise, leading to degradation of the performance

of the model on unseen examples. We performed experiments to determine a set of features and

length of features which when used to diffuse the dataset yielded the best classifier performance.

Starting with the initial set F of features selected via deep learning, we ran several experiments

each time diffusing the dataset with feature vector of length k using Algorithm 1, while keeping

other model training parameters constant. In each step, we picked k features where k ∈ S and S

is the set of all subsets (powerset) of S = 2|F |. After each step, we removed all subsets that were

used in the preceding step from S before proceeding with the next step. We assessed the goodness

of each feature vector subset s by examining the mean square reconstruction error (MSRE) and

classification error cost (EC) obtained when the model was trained with s. MSRE defined as:

MSRE =
1

V

V∑
i=1

|υi − υ̂i|2 (2.5)

where υi refers to a training sample, υ̂i refers to its learned representation and V is the number of

training samples. EC is defined as:

EC =
1

V

V∑
i=1

|ci − ĉi|2 (2.6)
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Figure 2.4: Plot showing length of features used in dataset diffusion vs. validation error. It can be
seen from the plot that the best performance was obtained with feature set of length 6. The length of
the set of featured selected via deep learning was 14. This plot shows that using 6 of the 14 features
was better than using all the 14 selected features in diffusing the latent fingerprint patch dataset.

where ci is the expected class of sample υi and υ̂i is the predicted class. The feature vector subset

with the minimum costs and minimum length was chosen to diffuse the patch dataset. If no subset

met both cost and length criteria, we chose the one with the minimum costs. Figure 2.4 shows the

plot of validation error against length of feature set. The minimum validation error was obtained

with a feature subset of length 6. . After diffusing the patch dataset with the selected feature subset,

each image patch previously represented with a vector of 64 elements was now represented with 70

element (64+6). To create a new square matrix representation of each image patch, we introduced

a padding with 11 zeros to get 81 = 9x9. Doing so did not degrade the performance of the model

being trained because zero-padding does not add any information to the padded data [24].
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Algorithm 1 Minimum Description Length Feature Selection.
1: procedure SELECTFEATURE(W ) . Initial Set of Selected Features via Deep Learning

2: r ← 2 . Number of features to start with

3: f ← {first two features from W}

4: St ← ∅

5: while SFD 6= ∅ do . We are done if W is empty

6: St ← St ∪ f . Select first r elements from W

7: Sp ← PowerSet(St) . Compute powerset of St

8: Sd ← {d|d ∈ Sp and k ∈ f and k /∈ d}

9: Ss ← Sp \ Sd . Remove all sets in Sp containing none of the elements in f

10: for s ∈ Ss do

11: X̂ ← diffuse the training dataset X with s

12: Train model with X̂

13: MSREs ←MSRE obtained using X̂ . Pre-training phase mean square

reconstruction error

14: ECs ← EC obtained using X̂ . Fine-tuning phase error cost

15: Remove s from Ss

16: r ← r + 1 . Add the next feature from W

17: f ← {next feature from W}

18: return the s with min(Length), min(MSRE) and min(EC) . Return the optimal feature

subset
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Figure 2.5: Graphical depiction of RBM with binary visible and hidden units. x̂i, i = 1, . . . , 4, are
the visible units while hk, k = 1, . . . , 3, are the hidden units. bx̂i , i = 1, . . . , 4, are the biases for
the visible units and chk , k = 1, . . . , 3, are the biases for the hidden units.

2.2.2 Restricted Boltzmann Machine

A Restricted Boltzmann Machine is a stochastic neural network that consists of visible

layer, hidden layer and a bias unit [71]. A sample RBM with binary visible and hidden units is

shown in Figure 2.5. The energy function Ef of RBM is linear in its free parameters and is defined

as [71]:

Ef (x̂, h) = −
∑
i

bix̂i −
∑
j

cjhj −
∑
i

∑
j

x̂iwi,jhj (2.7)

where x̂ and h represent the visible and hidden units respectively, W represents the weights con-

necting x̂ and h, while b and c are biases of the visible and hidden units, respectively. The Ef can

be written in matrix form as:

Ef (x̂, h) = −bT x̂− cTh− x̂TWh (2.8)

The probability distributions over visible or hidden vectors are defined in terms of the energy func-

tion [71]:

P (x̂, h) =
1

ω
e−Ef (x̂,h) (2.9)

where ω is a partition function that ensures the probability distribution of over all possible

configurations of the hidden or visible vectors sum to 1. The marginal probability of a visible vector
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P (x̂) is the sum over all possible hidden layer configurations [71] and is defined as:

P (x̂) =
1

ω

∑
h

e−Ef (x̂,h) (2.10)

RBM has no intra-layer connections and given the visible unit activations, the hidden unit activations

are mutually independent. Also, the visible unit activations are mutually independent given the

hidden unit activations [35]. The conditional probability of a configuration of the visible units is

given by

P (x̂|h) =

n∏
i=1

P (x̂i|h), (2.11)

where n is the number of visible units. The conditional probability of a configuration of hidden

units given visible units is

P (h|x̂) =

m∏
j=1

P (hj |x̂), (2.12)

where m is the number of hidden units.

P (hj = 1|x̂) = σ

(
bj +

n∑
i=1

wi,j x̂i

)
(2.13)

and

P (x̂i = 1|h) = σ

ci +

m∑
j=1

wi,jhj

 (2.14)

where ci is the i-th hidden unit bias, bj is the j-th visible unit bias, wi,j is the weight connecting the

i-th visible unit and j-th hidden unit, and σ is the logistic sigmoid.

2.2.3 Features for complex texture characterization

Texture is defined as a regular repetition of an element or pattern on a surface. For images,

texture property represents the surface and structure, and may be regarded as a similarity grouping
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[110]. We computed three types of features: Gabor, gray level co-occurrence matrix and fractal

dimension. The features have capability of discriminating between fingerprint and non-fingerprint

patches. We used deep learning to select the best set of features with minimum length for diffusing

the latent fingerprint patch dataset.

Energy and Frequency Features (Features 1-2)

Energy and frequency features are used for latent fingerprint image segmentation. For

five scales and eight orientations, we computed the mean energy and mean frequency for an image

patch.

Gray Level co-occurrence matrix (features 3-14)

Gray-Level Co-occurrence Matrix (GLCM) is one of the earliest methods used for tex-

ture feature analysis and extraction. It was proposed by Haralick et al. in 1973 [67]. We use

co-occurrence matrix to measure the texture of each patch image. A Gray Level Co-occurrence Ma-

trix - (GLCM) is a tabulation of how often different combinations of pixel brightness values (grey

levels) occur in an image. We define a co-occurrence matrix C is defined over an a× b image patch

Ip, parameterized by an offset (∆x,∆y), as:

C(i, j) =

n∑
x=1

m∑
y=1


1, if Ip(x, y) = i, Ip(x+ ∆x, y + ∆y) = j

0, otherwise

where i and j are the image pixel intensity values, x and y are the spatial positions in the image patch

Ip and the offset (∆x,∆y) depends on the direction θ, and the distance δ for which the matrix is

computed.
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Given that spatial distribution of gray values is one of the defining qualities of texture, we used sta-

tistical methods to analyze the spatial distribution of gray values by computing local features at each

point in the image patch. GLCM estimates image properties related to second-order (two pixels)

statistics by considering the relationship among groups of two pixels. We calculated gray-level co-

occurrences matrices for each image patch using four different offsets ,{[0 1], [−1 1], [−1 0], [−1 −

1]} that are defined as one neighboring pixel in the four directions 0o; 45o; 90o and 135o, and com-

puting the average over the four directions. This ensures that we capture all possible texture patterns

in an image patch. Each element (i, j) of the matrix is the number of occurrences of the pair of pixel

with value i and another pixel with value j at a distance d relative to each other. We examined the

spatial relationship between two neighboring pixels with different offsets and angles (0o; 45o; 90o

and 135o) and extracted the GLCM features shown in Table 2.2 from the patch dataset [67]. Fig-

ure 2.6 shows plots of some GLCM features highlighting their potential for discriminating between

fingerprint and non-fingerprint patches.
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Table 2.2: GLCM Features used in our experiment. The features were computed based on 4 direc-
tions of analysis (0o; 45o; 90o and 135o), i and j are the gray level values in the image patch.
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Figure 2.6: Examples of GLCM features for 10 fingerprint and 10 non-fingerprint patches from
NIST SD27 latent fingerprint images. As can be seen from the figures, GLCM features can be used
to discriminate between fingerprint and non-fingerprint image patches.

Fractal Dimension Features (Features 15-20)

• Fractal Dimension (Feature 15) : Fractal dimension is an index used to characterize

texture patterns by quantifying their complexity as a ratio of the change in detail to the change in

the scale used. It was defined by Mandelbrot [98] and was first used in texture analysis by Keller

et al. [80]. Fractal dimension offers a quantitative way to describe and characterize the complexity

of image texture composition [85]. It can be used to discriminate between fingerprint and non-
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fingerprint parts of the image. As can be seen from Figure 2.7, non-fingerprint patches show larger

fractal dimension values than fingerprint patches. The intensity values of the pixels in fingerprint

patches tend to be widely separated due to the ridges and valleys and, therefore, yield lower values

for fractal dimension, while the intensity values for pixels in non-fingerprint patches tend to be close

to each, resulting in a high value fractal dimension.

We computed the fractal dimension of an image patch P using a variant of differential

box-counting (DBC) algorithm [13, 119]. We consider P as a 3-D spatial surface with (x,y) axis

as the spatial coordinates and z axis for the gray level of the pixels. Using the same strategy as

in DBC, we partition the N × N matrix representing P into non-overlapping d × d blocks where

d ∈ [1, N ]. Each block has a column of boxes of size d × d × h, where h is the height defined by

the relationship h = T d
N , where T is the total gray levels in P, and d is an integer. Let Tmin and

Tmax be the minimum and maximum gray levels in grid (i, j), respectively. The number of boxes

covering block (i, j) is given by:

nd(i, j) = floor[
Tmax − Tmin

r
] + 1, (2.15)

where r = 2, . . . , N − 1, is the scaling factor and for each block r = d. The number of boxes

covering all d× d blocks is:

Nd =
∑
i,j

nd(i, j) (2.16)

We compute the values Nd for all d ∈ [1, N ]. The fractal dimension of each pixel in P is by given

by the slope of a plot of the logarithm of the minimum box number as a function of the logarithm

of the box size. We obtain a fractal dimension image patch P ′ represented by an M × N matrix

whose entry (i, j) is the fractal dimension FDij of the pixel at (i, j) in P.
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FDP =

MN∑
i=1,j=1

FDij (2.17)

Figure 2.7: Examples of the fractal dimension feature for 10 fingerprint and 10 non-fingerprint
patches patches from NIST SD27 latent fingerprint images.The chart highlights the discriminative
potential of fractal dimension features for fingerprint and non-fingerprint image patches.

We implemented a variant of the DBC algorithm [13, 119], to compute the following

statistical features from the fractal dimension image P ′.

• Average Fractal Dimension (Feature 16) :

FDavg =
1

MN

MN∑
i=1,j=1

FDij (2.18)

• Standard Deviation of Fractal Dimension (Feature 17): The standard deviation of the

gray levels in an image provides a degree of image dispersion and offers a quantitative description

of variation in the intensity of the image plane. Therefore,

FDstd =
1

MN

MN∑
i=1,j=1

(FDij − FDavg)
2, (2.19)

• Spatial Frequency and FD Spatial Frequency

(Features 18 & 19): This refers to the frequency of change per unit distance across fractal dimension
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(FD) processed image. We compute it using the formula for (spatial domain) spatial frequency [91].

Given an N ×N FD processed image patch P ′, let G(x,y) be the FD value of the pixel at location

(x,y) in P ′. The row frequency Rf and column frequency Cf are given by

Rf =

√√√√ 1

MN

M−1∑
x=0

N−1∑
y=1

[G(x, y)−G(x, y − 1)]2 (2.20)

Cf =

√√√√ 1

MN

M−1∑
y=0

N−1∑
x=1

[G(x, y)−G(x− 1, y)]2 (2.21)

The FD spatial frequency FDsf of P ′ is defined as

FDsf =
√
R2
f + C2

f (2.22)

From signal processing perspective, equations (2.20) and (2.21) favor high frequencies and yield

values indicative of patches with fingerprint.

Lacunarity (Feature 20)

Lacunarity is a second-order statistic that provides a measure of how patterns fill space.

Patterns that have more or larger gaps have higher lacunarity. It also quantifies rotational invariance

and heterogeneity. A spatial pattern that has a high lacunarity has a high variability of gaps in the

pattern, and indicates a more heterogeneous texture [21]. Lacunarity (FDlac) is defined in terms of

the ratio of variance over mean value [13].

FDlac =

1
MN (

M−1∑
i=1

N−1∑
j=1

P (i, j)2)

{ 1
MN

M−1∑
i=1

N−1∑
j=1

P (i, j)}2
− 1 (2.23)

where M and N are the sizes of the fractal dimension image patch P.
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2.3 Experiments and Results

We implemented our algorithms in Matlab R2014a running on Intel Core i7 CPU with

8GB RAM and 750GB hard drive. Our implementation relied on NNBox, a Matlab toolbox for

neural networks. The implementation uses backpropagation, contrastive divergence, Gibbs sam-

pling, and hidden units sparsity based optimization techniques.

2.3.1 Databases

NIST SD27 was used for training , validating and testing the model. For matching evalu-

ation, we used a background database consisting of rolled fingerprint images in NIST SD27, NIST

SD4 and synthetic fingerprint images. Tables 2.3 and 2.4 show the protocols used in the experi-

ments. In the evaluation of matching performance experiment, synthetic images were used to boost

the size of the background database due to the unavailability of NIST SD14 database [6]. Synthetic

fingerprints have been shown to be very useful for training and testing purposes, and have been

used for technology evaluations [2]. As can be seen from the sample images from the background

database shown in Figure 2.8, synthetic fingerprints generated using SFinGe (Synthetic Fingerprint

Generator) [10], look like real fingerprints.
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Experiment Images Used Image Size Patches Sampled Patch Size

Training 50 800x768 132,000 8x8

Validation 50 800x768 48,000 8x8

Testing 50 800x768 70,000 8x8

Architecture & 54 800x768 100,000 8x8

Hyper-Parameter Selection

Model Stability Analysis 54 800x768 150,000 8x8

Total 258 500,000 8x8

Table 2.3: Experimental protocol showing the number of images used for model training, validation,
and testing, architecture and hyper-parameter selection, and model stability analysis. Patches were
sampled from latent fingerprint images in NIST SD27.

Figure 2.8: Sample fingerprints from the background database used for matching performance eval-
uation. The first and third fingerprints are from NIST SD27 (rolled fingerprint) and NIST SD4,
respectively. The second and fourth fingerprints are synthetic fingerprints.

2.3.2 Ground-Truth Dataset

There is no existing patch based latent fingerprint ground-truth dataset. We built the

ground-truth dataset by extracting 8x8 non-overlapping image patches from 50 Good, 50 Bad, and

50 Ugly 800x768 latent fingerprint images from the NIST SD27 database. For each latent fingerprint
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Number of Images Used Image Size

Segmented Fingerprints: 258 (NIST SD27) ≤ 380x448

Background database: 257 (NIST SD27) + 800x768

2,000 (NIST SD4) + 512x512

27,000 (Synthetic fingerprints) 416x560

Total = 29,257

Table 2.4: Experimental protocol showing the number of images used for the evaluation of matching
performance experiment.

image, we manually marked the regions containing fingerprints using bounding polygons, as the

regions-of-interest (ROIs). We split a latent fingerprint into 8x8 non-overlapping patches (blocks).

A patch is labeled a fingerprint patch if it overlaps with the ROI polygon and non-fingerprint other-

wise. We consider a patch to be overlapped with the ROI polygon if it lies within the polygon or at

least 25% of its pixels are inside the polygon.

2.3.3 Choice Architecture and Hyper-Parameters

Experiment for architecture and parameter selection was done with 100,000 8x8 patches

(75,000 for training, and 25,000 for validation). We tried five different networks (with different

number of layers and neurons in each layer) in the pre-training phase. The architecture that gave

the best performance in terms of input reconstruction, training and validation errors, was chosen.

We kept the fine-tuning layers constant since varying them did not make much difference in the

final outcome. The hyper-parameters used in the proposed network were selected based on the

performance of the network on the validation set. The architectures and their performance on the

training and validation datasets are shown in Table 2.5. The chosen architecture is highlighted in
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Figure 2.9: Plot showing different architectures and mean square reconstruction error. Arch3 gave
the best performance.

bold. Figure 2.9 shows a plot of the mean square reconstruction error against training epoch for the

different architectures.

Architecture Pre-training layers Minimum MSRE Maximum MSRE Minimum Error Cost Maximum Error Cost

Arch1 1 0.0280 0.1180 0.5852 1.041

Arch2 2 0.0276 0.0899 0.3468 0.8825

Arch3 3 0.0014 0.0253 0.0007 0.0032

Arch4 4 0.0028 0.0998 0.0088 0.0135

Arch5 5 0.0068 0.1094 0.0093 0.0254

Table 2.5: Five candidate architectures and model performance. The difference between the archi-
tectures is the number of pre-training layers. The architecture with 3 pre-training layers gave the
best performance in terms of reconstruction and validation errors, and it was used for the feature
selection and segmentation tasks in this chapter. As can be seen from the table, both reconstruction
and validation errors improved as we added more pre-training layers. The gains started to fade after
3 layers. This result is consistent with the observation in [52] that unsupervised pre-training actually
helps deep neural networks but after a certain depth, the benefit starts to disappear.
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Figure 2.10: Network Stability: (a) shows that the mean square reconstruction error (MSRE) at
convergence for the 15 runs are close, with a standard deviation of 0.0009. Similarly, (b) shows
that the error during the fine-tuning phase for the 15 runs were close with a standard deviation of
2.56E-05. These results are indicative of the stability of the network. Each data point in the graph
is the error at convergence of the matching run number.

2.3.4 Stability of the Architecture

To investigate the stability of the proposed architecture, we randomly sampled 150,000

8x8 patches from the ground-truth dataset. We performed 15 runs of network training and for each

of the 15 runs, we used 50,000 patches randomly sampled from the 150,000 patches. All the model

parameters (number of epochs, number of iterations, etc.) remained unchanged across the runs.

The mean square reconstruction error (MSRE) and mean error cost at convergence, as well as the

standard deviation for the 15 runs are shown in Table 2.6. Plots of the reconstruction errors and

error cost at convergence against number of runs are shown in Figure 2.10. These results show that
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Run # MSRE Error Cost MDR FDR

1 0.0155 5.569E-04 3.120E-04 0.00

2 0.0141 5.306E-04 4.150E-04 0.00

3 0.0158 5.160E-04 1.810E-04 0.00

4 0.0147 5.638E-04 3.170E-04 0.00

5 0.0158 5.045E-04 2.080E-04 0.00

6 0.0152 6.145E-04 1.090E-04 0.00

7 0.0148 6.245E-04 3.650E-04 0.00

8 0.0152 4.915E-04 2.140E-04 0.00

9 0.0143 6.145E-04 3.510E-04 0.00

10 0.0156 5.105E-04 1.560E-04 0.00

11 0.0135 6.515E-04 2.610E-04 0.00

12 0.0137 5.955E-04 4.260E-04 0.00

13 0.0135 6.445E-04 3.270E-04 0.00

14 0.0141 5.805E-04 2.590E-04 0.00

15 0.0131 6.845E-04 2.150E-04 0.00

Mean 0.0146 5.3436E-04 2.8660E-04 0.00

Standard Deviation 0.0009 2.5581E-05 9.4055E-05 0.00

Table 2.6: Network Stability: The mean square reconstruction error (MSRE) at the pre-training
phase, error at fine-tuning phase, MDR, and FDR for the 15 different runs are close. The mean and
standard deviation indicate stability across the 15 runs.

the proposed model is stable.

2.3.5 Training, Validation and Testing

The training, validation and testing of the model was done with 250,000 patches consist-

ing of 90,000, 80,000 and 80,000 8x8 patches from the Good, Bad and Ugly ground-truth dataset

categories, respectively. We selected more patches (90,000) from the Good category to have more

of the good quality fingerprint patches. For training and validation, 180,000 patches were randomly
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sampled from the 250,000 patches. 132,000 patches (73%) were used for training while 48,000

patches (27%) were used for validation. There was no noticeable performance gain when the model

was trained with more than 132,000 patches despite taking longer to converge. The trained model

was tested with the remaining 70,000 patches. There was no overlap between the training, validation

and test datasets. Table 2.7 shows the confusion matrices for training, validation and testing.

Predicted Patch Class (Training)

Fingerprint Non-Fingerprint

Actual Patch Class
Fingerprint 23,663 13

Non-Fingerprint 0 108,324

Predicted Patch Class (Validation)

Fingerprint Non-Fingerprint

Actual Patch Class
Fingerprint 12,941 159

Non-Fingerprint 1 34,899

Predicted Patch Class (Testing)

Fingerprint Non-Fingerprint

Actual Patch Class
Fingerprint 16,858 272

Non-Fingerprint 4 52,866

Table 2.7: NIST SD27 - Confusion matrix for training, validation and testing.

2.3.6 Pattern Derivation Using Dataset Diffusion

Given a latent fingerprint dataset X = {x1, x2, · · · , xk}, we derive new patterns Xp =

{p1, p2, · · · , pw} by computing statistical features from X. The new patterns include fractal dimen-
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sion features, lacunarity, and spatial frequency. We extend X with Xp to form a new dataset X̂ =

{x1, x2, · · · , xk, p1, p2, · · · , pw} and used X̂ to train and validate the network. We tried to improve

the performance of the model without using dataset diffusion by experimenting with various data

augmentation techniques such as label preserving transformation and oversampling/undersampling

of the minority/majority samples to balance the dataset. We also tried other learning techniques such

as one class learning. None of those techniques yielded the desired segmentation results. In sub-

sequent experiments, we observed that diffusing the dataset yielded a trained model that has better

generalization on unseen examples. A comparison of the results obtained with and without dataset

diffusion is shown in Figure 2.11. As can be seen from Figure 2.11, when the training dataset was

extended with the selected features, there was a huge drop in both the error cost during fine-tuning

and the classification error during training. The reconstruction error almost remained the same in

both cases.

2.3.7 Performance Evaluation and Metrics

We used the following metrics to evaluate the performance of our network.

• Missed Detection Rate (MDR): This is the percentage of fingerprint patches classified as

non-fingerprint patches.

MDR =
FN

TP + FN
(2.24)

where FN is the number of false negatives and TP is the number of true positives.

• False Detection Rate (FDR): This is the percentage of non-fingerprint patches classified as

36



Figure 2.11: Impact of Data Diffusion on the performance of our model during training. During the
pre-training phase, the network achieves lower mean square reconstruction error (MSRE) when the
dataset is diffused compared to when it is not diffused. Also, by diffusing the dataset we get faster
convergence and lower error cost during the fine-tuning phase than when the dataset is not diffused.
Through experiments, we found that applying data diffusion in the data-space (before deep learning)
instead of in the feature-space (after deep learning), improved the performance of our model. This
is consistent with the finding in [143] that data augmentation in the data-space reduces over-fitting
and leads to better performance improvement than performing the augmentation in the feature-
space. The MSRE (pre-training) and Error (fine-tuning) are values at 50 epochs (lower is better).
The classification errors are values at iteration 50 (lower is better). This figure is better when viewed
in color.

fingerprint patches. It is defined as

FDR =
FP

TN + FP
(2.25)

where FP is the number of false positives and TN is the number of true negatives.

• Segmentation Accuracy (SA): It gives a good indication of the segmentation reliability of

the model.

SA =
TP + TN

TP + FN + TN + FP
(2.26)
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2.3.8 Results and Comparison with Current Algorithms

Figure 2.12 shows segmentation performance of our proposed method on sample images

from the NIST SD27 database. The figure shows original latent fingerprint images and the seg-

mented fingerprints constructed using patches that are classified as fingerprints. Table 2.8 shows the

superior performance of our segmentation approach on the NIST SD27 good, bad and ugly quality

latent fingerprints compared to existing algorithms.

Please note that a deep learning model trained with a subset NIST SD27 (containing im-

ages with lots of structured noise and poor quality) and later used on it in “production” mode is

expected to achieve segmentation results that are better than those from another model trained on

a database with cleaner and better quality images, and then deployed on NIST SD27 in produc-

tion mode. Training with “ugly” data and tuning the model parameters until good performance is

achieved produces a more robust model that is able to handle challenging datasets (in the same do-

main). This is the advantage our model has over others. There is no need to apply the “holdout”

rule when the model is in production mode.
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Figure 2.12: Good, Bad and Ugly latent fingerprint images and segmentation results. Each row
contains the original latent fingerprint images on the left side of the columns. The right side of the
columns contain the original images with the ground-truth fingerprint regions marked with green
bounding polygons, and the segmented fingerprint parts marked with red bounding polygons. The
multiple segmented fingerprints in row 1 column 2, and row 2 column 4, show that our segmentation
algorithm is able to segment multiple fingerprint impressions on the same latent fingerprint.

Figure 2.13: Visual comparison of the segmentation results. (A) Proposed method and that of
Ruangsakul et al. [111] for NIST SD27 G052L9 (Good), B137L6 (Bad), and U245L7 (Ugly)
latents. (B) Proposed method and that of Choi et al. [39] for NIST SD27 G006L6 (Good), B116L6
(Bad) and B196L6 (Bad) latents. In the segmentation results from proposed approach, the original
images are shown with the ground-truth fingerprint regions marked with green bounding polygons,
and the segmented fingerprint parts marked with red bounding polygons. In the other approaches,
the ground-truth regions in the fingerprint images are not indicated. It should be noted that the
authors in [39] referred to B196L6 as U196L6 is an error because U196L6 does not exist in NIST
SD27 database. The images shown are as published by the authors. We could not show the visual
comparison of the segmentation results to those of Cao et al. [31] because the images shown on
their Fig. 8. “Illustration of latent fingerprint segmentation” were not named, making it hard to find
the matching images in NIST SD27 for the comparison test.
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Category Author Method MDR (%) FDR (%) Average

S1

Choi et al. [39] Statistical 14.78 47.99 31.38

Zhang et al. [153] Statistical 14.10 26.13 20.12

Arshad et al. [19] Machine Learning 4.77 26.06 20.12

Ezeobiejesi et al. [53] Machine Learning 9.22 18.70 13.96

(patch based)

S2 Zhu et al. [155] Deep Learning 10.94 11.68 11.31

(patch based)

This chapter Deep Learning 1.14 0.07 0.61

(patch based)

S3
Nguyen et al. [104] Deep Learning 2.57 16.36 9.46

(pixel based)

Table 2.8: Comparison with other algorithms. There is no uniform protocol for evaluating latent
fingerprint segmentation algorithms. For a fair comparison of the results from different approaches,
we split the algorithms into two categories. Category S1 is for segmentation methods that use NIST
SD27 for both hypothesis development and testing (of statistical models), and training and testing
(of machine learning models). Category S2 is for deep learning based segmentation methods that
use NIST SD27 for both training and testing. Category S3 is for deep learning based segmentation
methods that use a different database for training and NIST SD27 for testing. The proposed seg-
mentation approach shows superior segmentation performance on the good, bad and ugly quality
latent fingerprints from NIST SD27 database compared to existing algorithms. The results shown
are as published by the authors.

Figure 2.13 shows a visual comparison of the segmentation results of our proposed method

and two other segmentation methods that included the NIST SD27 image numbers corresponding

to the authors’ published segmentation results. Figure 2.13 box A shows the segmentation results of

our proposed method and that of Ruangsakul et al. [111] for NIST SD27 G052L9 (Good), B137L6

(Bad), and U245L7 (Ugly) latents, while box B compares the segmentation results of the proposed
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method to that of Choi et al. [39] for NIST SD27 G006L6 (Good), B116L6 (Bad) and B196L6

(Bad) latents. It should be noted that the authors in [39] referred to B196L6 as U196L6 in error

because U196L6 does not exist in NIST SD27 database. As shown in Figure 2.13 box A row 1,

our segmentation algorithm is able to identify and segment multiple fingerprint impressions on the

same latent fingerprint image, unlike the other algorithms.

2.3.9 Evaluation of Matching Performance

We also evaluated the accuracy of the proposed latent fingerprint segmentation method

by measuring the latent matching performance using a commercial matcher, Verifinger. SDK [11].

First, the latent fingerprints (ROIs) are segmented with the proposed method and minutiae are ex-

tracted using Commercial off-the-shelf (COTS) minutiae extractor. The minutiae are then used as

input to Verifinger. Note that the matching experiments are done to indirectly evaluate the quality

of segmentation results, and are being performed with the segmentation system already in “produc-

tion mode”, so the holdout rule should not necessarily be applied. The matching performance is

measured using rank identification rate.
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Figure 2.14: NIST SD27: (a) CMC plot of the proposed approach in matching 258 fingerprints
against a test database of 2,257 rolled fingerprints. (b) CMC plots for matching the 258 fingerprints
against a test database of 2,257 rolled fingerprints with the fingerprints grouped by subjective quality
by latent examiners into Good (88), Bad (85), and Ugly (85). These results were obtained by running
the matching tests 10 times and averaging the results.

Rank identification rate provides an estimate of the probability that a matching rolled fin-

gerprint is identified correctly at least at rank-k during a search with a latent candidate. There are

258 latent fingerprints and 257 (258 less 1 duplicate) rolled fingerprints (mates of the latent finger-

prints) in NIST SD27 database. We match the 258 latent fingerprints against reference fingerprint

databases that include the 257 rolled fingerprints from NIST SD27. Figure 2.14(a) shows the cu-

mulative match characteristics (CMC) curve of the proposed approach in matching 258 segmented

latent fingerprints in NIST SD27 database against a database of 2,257 rolled fingerprints consist-

ing of 2,000 fingerprint images in NIST SD4 database, and the 257 rolled images in NIST SD27

database. Figure 2.14(b) shows the CMCs of matching the three categories of latent fingerprints in

the NIST SD27 database (88 Good, 85 Bad, and 85 Ugly) [74] against the test database of 2,257

rolled prints. The plot shows the rank-k identification rate against k, k = 1, . . . , 20.

We show two results in Table 2.9 for the proposed method. Using the proposed method-

case 1, rank-1 identification rate of 80.03% and rank-20 identification rate of 88.69% were obtained
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on matching the 258 latent fingerprints in NIST SD27 against a database of 2,257 fingerprints. In

proposed method-case 2, rank-1 and rank-20 identification rates of 77.05% and 84.98%, respec-

tively, were obtained when the 258 latents were matched against a database of 29,257 fingerprints

consisting of the 257 rolled images in NIST SD27, 2000 images in NIST SD4 database, and 27,000

synthetic fingerprints generated with SFinGe [10]. These results are promising when compared to

the state-of-the-art rank-1 and rank-20 identification rates of 74.0% and 82.9%, respectively, re-

ported in [75], which to the best of our knowledge, are the state-of-the-art results. Table 2.9 shows

a comparison of published rank-1 and rank-20 identification rates for NIST SD27 latents. It also

shows the background database and matchers used by the authors. We used 27,000 synthetic fin-

gerprint images in place of the 27,000 fingerprints from NIST SD14 used by other authors because

NIST SD14 is no longer available [6]. It should be noted that synthetic fingerprints have been

shown to be very useful for training and testing purposes [42], and have been used for technology

evaluations [2].
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Category Author Background DB Size Matcher Rank-1 Rank-20

M1

Choi et al. [39] 31,997 (257 from NIST SD27,

4,739 from WVU,

27,000 from NIST SD14) COTS 16.28% 35.19%

Ruangsakul et al. [111] 27,258 (257 from NIST SD27,

27,000 from NIST SD14) Verifinger 15.28% 22.5%

SDK 6.6

Cao et al. [31] 31,997 (257 from NIST SD27,

4,739 from WVU,

27,000 from NIST SD14) COTS 61.24% -

Proposed method-case 1 2,257 (257 from NIST SD27,

2,000 from NIST SD4)∗ Verifinger 80.03% 88.69%

SDK 10.0

Proposed method-case 2 29,257 (257 from NIST SD27,

2,000 from NIST SD4,

27,000 Synthetic Fingerprints) Verifinger 76.92% 84.17%

SDK 10.0

M2

Jain et al. [75] 29,257 (257 from NIST SD27,

2,000 from NIST SD4,

27,000 from NIST SD14) COTS 74.0% 82.9%

Table 2.9: NIST SD27: Rank-1 and rank-20 identification rates for 258 latents. COTS stands
for Commercial off-the-shelf. All the results quoted are as published by the authors. For a fair
comparison of the results from different approaches, we split the algorithms into two categories
M1 , and M2. Category M1 is for segmentation papers that evaluate quality of segmentation by
matching NIST SD27 images, while categoryM2 is for matching only paper on NIST SD27. ∗NIST
SD14 was not used in the proposed method-case 2 because it is no longer available [6]. Results of
the proposed method using synthetic fingerprints in place of NIST SD14 database are also shown
in the table. It should be noted that synthetic fingerprints have been used in fingerprint matching
competitions and research [2], it is therefore not out of place to use them in the absence of SD14
database. It might seem unreasonable to compare the results we obtained using a reference database
augmented with synthetic fingerprints to results from other algorithms that used a reference database
containing only real fingerprint images, but the comparison highlights the likely performance of our
model in a realistic setting, compared to other algorithms.
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2.3.10 Computational Cost

The preprocessing, segmentation and post processing of a single NIST SD27 latent fin-

gerprint using the trained segmentation model takes about 2.45 seconds on Intel Core i7 CPU with

8GB RAM and 750GB hard drive. The reported time is the average of 5 segmentation runs using

5 different latent fingerprints from NIST SD27. The processing time can be drastically reduced by

deploying the model on a more powerful hardware.

2.4 Summary

This chapter proposes a new technique called dataset diffusion that enables a deep neural

network achieve better estimation of the relation between input examples and a target class through

efficient minimization of input reconstruction error. By extending latent fingerprint patch dataset

with patterns derived from the dataset and using the extended dataset to train and validate a deep

neural network, a trained model with better generalization to unseen examples is obtained. As

demonstrated through experiments with and without dataset diffusion, there is marked improvement

in both the error cost and classification accuracy of the model when dataset diffusion technique is

used. Quantitative and visual segmentation results are presented and compared with the state-of-the-

art segmentation results. A comparison of the quality of segmentation with respect to matching as

well as comparison with the state-of-the-art matching results are also presented. The segmentation

and matching evaluation results clearly demonstrate that using data diffusion technique to train a

deep neural network for latent fingerprint image segmentation leads to marked improvement in both

segmentation accuracy and matching performance.
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Chapter 3

Latent Fingerprint Image Quality

Assessment Using Deep Learning

This chapter proposes a deep learning model for latent fingerprint quality assessment that

eliminates the need for manual feature markup. The first stage in our model uses deep learning to

segment a latent fingerprint. Feature vectors computed from the segmented latent fingerprint are

used as input to a multi-class perceptron that predicts the quality of the fingerprint. Experimental

results on NIST SD27 fingerprint database show the promise of the proposed approach. NIST SD27

database is the most suitable database for this work because all the latent fingerprint images in it

have quality labels assigned by latent experts. To the best of our knowledge, no previous work

[29, 117, 149] on latent fingerprint image quality assessment performs latent fingerprint region-of-

interest segmentation and quality assessment in a lights-out mode (minimal involvement of latent

examiners). This work requires no manual ROI and feature markups by latent examiners in the

segmentation and quality assessment steps.
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The rest of this chapter is organized as follows. Section 3.1.1 presents a review of existing

algorithms for latent fingerprint image quality estimation. Section 3.1.2 describes the contributions

of this chapter while Section 3.2 highlights our technical approach and framework. Section 3.2.1

presents an overview of Restricted boltzman machine (RBM) used to build the deep learning model

and as well as a brief description of the segmentation stage of our framework. The quality assess-

ment stage is discussed in Section 3.2.3. Section 3.2.3 discusses the features used to train the quality

estimation neural network layer. Experimental results and performance evaluation are presented in

Section 3.3, while Section 3.4 contains the conclusions and future work.

3.1 Related Work and Contributions

3.1.1 Related Work

Fingerprint quality assessment has received considerable attention in the literature [14].

Some recent studies on latent fingerprint quality assessment used local image features for quality

assessment while others used global image features. The work presented in [149] used average ridge

clarity, number of manually annotated minutiae, ridge connectivity, minutiae reliability, and finger

position to define the quality of latent fingerprint. The authors used a semi-automated quality as-

sessment algorithm and achieved 80% quality prediction accuracy. However, their use of manually

annotated minutiae makes their quality assessment results fraught with subjectivity. The method

presented in [29] used number of minutiae, ridge clarity, core and delta, and ridge flow features

for automatic latent value determination. Although their value determination algorithm required

no manual feature markups, it still relied on manually marked ROI for segmentation . In [117],

the authors used ridge clarity and ridge quality features to assess the quality of latent fingerprints.
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Their approach required manually annotated minutiae and manually marked ROI. Chugh et. al [43]

used a crowdsourcing based framework and multidimensional scaling to identify and understand

how fingerprint experts assigned values to fingerprint images. They trained a prediction model that

automatically assigned quantitative values to query latent fingerprints.

In our work, we use local features consisting of Gabor features, orientation certainty level,

local ridge clarity, ridge frequency, ridge thickness, ridge-to-valley thickness, and spatial coherence

to assess the quality of latent fingerprints. Unlike most of the other approaches that rely on manually

segmented ROIs in the quality estimation process, our approach performs latent fingerprint quality

assessment in a fully automated way. In the first stage of our approach, we segment the latent

fingerprint ROIs using deep learning as described in Section 3.2.1. The segmented ROIs are split

into 32x32 patches and local features are computed from the patches to build feature vectors used

to train a multi-class perceptron classifier as detailed in Section 3.2.3. The classification results are

used to assess the quality of the latent fingerprint. Note that this work does not consider overlapped

latent fingerprints.

3.1.2 Contributions

This chapter makes the following contributions:

1. Poses latent fingerprint image quality assessment as a classification problem and solves it by

using a deep neural network built by stacking RBMs. The depth chosen for our network was

the one that gave the best performance and was found via experimentation. The depth is op-

timal for the problem being solved since going deeper did not yield appreciable performance

gains and took longer to converge.
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2. Unlike previous approaches, this work provides a region-of-interest based latent quality as-

sessment strategy that requires no human intervention in latent fingerprint quality determina-

tion. The segmentation of the latent fingerprint and its quality assessment are done with no

manual intervention or feature markups.

3.2 Technical Approach

Our latent fingerprint quality assessment architecture has two main stages. In the first

stage, we use deep learning to segment the latent fingerprint. This stage involves feature learning,

feature extraction and classification of the fingerprint patches into fingerprint and non-fingerprint

classes. The segmented latent fingerprint referred to as the regions-of-interest (ROIs) consists of

patches classified as fingerprint. In the second stage, we use a multi-class perceptron classifier to

classify the fingerprint patches into three bins labelled 1 (good), 2 (bad) and 3 (ugly). The quality of

the latent fingerprint is indicated by the label of the bin that contains the greatest number of patches.

Ties are broken optimistically as explained in section 3.2.3. The block diagram of our proposed

approach is shown in Figure 3.1.

3.2.1 Segmentation using Deep Learning

Restricted Boltzmann Machines (RBMs) are the building blocks for the proposed deep

learning model. RBM is a stochastic neural network in which the nodes form an undirected bipar-

tite graph. With RBM, a k-dimensional input can be mapped to a j-dimensional or m-dimensional

feature space, where j < k < m. RBM has no intra-layer connections and given the visible unit

activations, the hidden unit activations are mutually independent. Also the visible unit activations
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Figure 3.1: Proposed framework for latent fingerprint quality assessment. The first stage uses a deep
learning architecture similar to that in [55], for feature learning, extraction and classification. In the
second stage, features are extracted from the segmented fingerprint (ROI) and fed to a multi-class
perceptron classifier. The target values from the classifier are 1 (Good), 2 (Bad) and 3 (Ugly).

are mutually independent given the hidden unit activations [35]. These characteristics of RBMs

make them ideal for identity mapping. From experiments, neural networks built with RBMs are

suitable for learning input representations that can be used to reconstruct the inputs with minimal

reconstruction error. This makes such networks attractive for patch based latent fingerprint segmen-

tation.

The segmentation stage of the proposed model is similar to that in [55]. In this stage,

latent fingerprint image is partitioned into 8x8 non overlapping patches. Stochastic features that

model a distribution over image patches are learnt using a generative multi-layer feature extractor.

The features are used to train a single layer perceptron classifier that classifies the patches into

fingerprint and non-fingerprint classes. The fingerprint patches are used to reconstruct the latent

fingerprint image and the non-fingerprint patches which contain the structured noise in the original

latent fingerprint are discarded. The segmented latent fingerprints from this stage are used as inputs

to the quality assessment stage. The choice of patch size of 8x8 for the segmentation stage is based
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on its optimality [53].

3.2.2 Network Hyper-Parameters

The values of the parameters used in the proposed segmentation and quality assessment

networks are shown in Table 3.1 and Table 3.2, respectively. The values were selected through

experiments.

3.2.3 Quality Assessment

In the quality assessment stage, 32x32 patches are extracted from the segmented (only

fingerprint segments) ROIs and features computed from them are used as the quality assessment

training dataset. The choice of 32x32 is based on the fact that for 500 pixels per inch (ppi) images,

the width of a pair of ridge and valley is 8 to 12 pixels wide [97]. This implies that a patch size of

at least 24x24 pixels is required to cover two ridges with a valley in between.

Figure 3.2: Gabor magnitude responses to sample segmented fingerprints : (a) Good (b) Bad, and
(c) Ugly). As can be seen from the figures, good quality patches have more well-defined peaks than
the bad and ugly patches. Also the peaks in (b) are more distinctive than in (c).

Given a segmented latent fingerprint image L, let g, b, u be the number of its 32x32

patches classified into bins B1, B2, B3, respectively. Let val = max{g, b, u}. The quality of L is
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Segmentation Network

Parameter L1 L2 L3 L4 L5 L6 L7

Number of Neurons 64 800 1000 1200 1024 1024 2

Batch Size - 100 100 100 100 100 -

Epochs - 50 50 50 50 - -

Learning Rate - 1e-3 5e-4 5e-4 5e-4 5e-4 -

Momentum - 0.70 0.70 0.70 0.70 0.70 -

Iteration - - - - - 50 -

Table 3.1: Parameters and values for segmentation network. Li refers to layer i. L1 is the input
layer. Layers 2, 3, 4 and 5 are RBM layers. L6 is the perceptron layer and L7 is the output layer

Quality Assessment Network

Parameter Input Layer Hidden Layer Output Layer

Number of Neurons 64 450 3

Batch Size - 32 -

Epochs - 10 -

Transfer function - logsig tansig

Table 3.2: Parameters and values for the quality assessment network.
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defined as:

Q(L) =



1, if val = g;

2, if val = b;

3, if val = u.

(3.1)

Ties are broken in an optimistic manner. For example, if g = b and b > u, then Q(L) = 1.

Features used for Quality Assessment

The local features used for latent fingerprint quality estimation are shown in Table 3.3.

Features Description

Peak Kurtosis Kurtosis of image patch magnitude and phase response

Mean Kurtosis

Peak Skewness Skewness of image patch magnitude and phase response

Mean Skewness

Ridge frequency [92] Values computed from a sinusoidal model of ridges

Ridge thickness and valleys in the image patch

Ridge-to-valley thickness

Orientation certainty level Measure of orientation strength

Spatial coherence Computed from the gradient of image patch

Table 3.3: Local features used for latent quality assessment.

We use kurtosis and skewness of the magnitude and phase of Gabor filter response to

measure the local quality of an image patch. Skewness is defined as a measure of symmetry [1].

A distribution is symmetric if the left and right sides of its central point are similar. Kurtosis is
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a normalized form of the fourth central moment of a distribution and a measure of how heavy-

tailed or light-tailed a given distribution is relative to a normal distribution. Given a vector V =

{v1, v2, · · · , vk}, the skewness S and kurtosis K are defined as:

S =

1
|V |

|V |∑
j=1

(vi − v̂)3

σ3
, (3.2)

K =

1
|V |

|V |∑
j=1

(vi − v̂)4

σ4
, (3.3)

where σ, and v̂ are the standard deviation, and mean, respectively. From experiments, we found

that the areas of a fingerprint image with a regular ridge-valley patterns tend to have a high Gabor

filter magnitude responses while those with unclear ridge-valley patterns have low and sometimes

constant Gabor magnitude filter responses. Figure 3.2 shows the Gabor filter magnitude responses

for sample good, bad and ugly segmented latent fingerprints from our deep learning model and

shows the discriminative potential of the selected Gabor features for classifying patches into good,

bad and ugly bins.

54



Figure 3.3: Gabor features used to train the multi-class perceptron classifier for image patch qual-
ity assessment. The features were computed from the kurtosis and skewness of the Gabor filter
responses of the image patches. F1 and F4 are the peak and mean skewness of the magnitude re-
sponse, respectively. F2 and F5 are the peak and mean kurtosis of the phase response, respectively.
F3 is the mean kurtosis of the magnitude response. F6 and F7 are the peak and mean skewness of
phase response, and F8 is the peak of the magnitude response. F7 was scaled up by 0.2 for visibility.
The charts show that together, the features exhibit discriminative potential for classifying patches
into good, bad and ugly bins.

3.3 Experiments and Results

We implemented our algorithms in Matlab R2014a running on Intel Core i7 CPU with

8GB RAM and 750GB hard drive. Our implementation relied on NNBox (a Matlab toolbox for

neural networks, and multi-class perceptron with Levenberg-Marquardt optimization. We evaluated

our model on NIST SD27 [7] latent fingerprint database. The 258 latent fingerprint images in NIST

SD27 consists of 88 Good, 85 Bad and 85 Ugly quality latent fingerprint images. The quality

assigned to each image was based on the condition of the image in the location in which the minutia

was positioned and on how clearly identifiable the type of the minutia was in the image [7]. The
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results of the segmentation and quality assessment stages of our network were evaluated using the

NIST SD27 ground-truth quality datasets from [53]. We generated the ground-truth dataset used in

evaluating the results of the quality assessment stage. The details are provided in section 3.3.2.

3.3.1 Performance Evaluation Metrics

We used the following metrics to evaluate the performance the segmentation and quality

assessment stages of our network.

• Missed Detection Rate (MDR): This is the percentage of class C1 patches classified as class

C2 patches and is defined as.

MDR =
FN

TP + FN
(3.4)

where FN is the number of false negatives and TP is the number of true positives.

• False Detection Rate (FDR): This is the percentage of class C2 patches classified as class C1

patches. It is defined as:

FDR =
FP

TN + FP
(3.5)

where FP is the number of false positives and TN is the number of true negatives.

• Segmentation Accuracy (SA): It gives a good indication of the segmentation reliability.

SA =
TP + TN

TP + FN + TN + FP
(3.6)

For the segmentation stage, C1 = fingerprint, C2 = non-fingerprint, and for the quality assess-

ment stage, C1 ∈ {Good, Bad, Ugly} and C2 ∈ {Good, Bad, Ugly}. We also used precision

and recall to evaluate the performance of classifier used for quality assessment.
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• Precision: Precision is the percentage of examples that truly belong to class k among all

examples that the classifier predicted as belonging to class k.

• Recall: Recall is the percentage of examples correctly predicted as belonging to class k

among all examples that truly belong to class k.

3.3.2 Latent Fingerprint Database

The ROI segmentation and quality assessment stages of our model were trained, validated

and tested on NIST SD27 latent fingerprint databases. This database contains images of 258 latent

crime scene fingerprints and their matching rolled tenprints. The images are grouped into good,

bad or ugly categories. The grouping is based on the quality of the image determined by latent

examiners. NIST SD27 has 88 Good, 85 Bad and 85 ugly quality latents. The latent prints and

rolled prints are at 500 ppi.

Segmentation: Training, Validation and Testing

The training, validation and testing of the segmentation part of the model was done with

232,000 8x8 patches (132,000 for training, 50,000 for validation and 50,000 for testing) from the

NIST SD27 database with 40% from good 30% from bad, and 30% from ugly NIST image cate-

gories. Table 3.4 shows the confusion matrix reflecting the results of training, validation and testing.

We did not notice any appreciable performance gain when the model was trained with more than

132,000 patches.
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Predicted Patch Class (Training)

Fingerprint Non-Fingerprint

Actual Patch Class
Fingerprint 23,665 11

Non-Fingerprint 0 108,324

Predicted Patch Class (Validation)

Fingerprint Non-Fingerprint

Actual Patch Class
Fingerprint 13,637 163

Non-Fingerprint 2 36,198

Predicted Patch Class (Testing)

Fingerprint Non-Fingerprint

Actual Patch Class
Fingerprint 13,914 188

Non-Fingerprint 5 35,893

Table 3.4: NIST SD27 - Confusion matrix for training, validation and testing for the segmentation
stage.

Figure 3.4 shows the segmentation results of our proposed method on sample good, bad

and ugly quality images from the NIST SD27 database. It shows the original latent fingerprint

images and the segmented fingerprints constructed using patches classified as fingerprints.
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Figure 3.4: NIST SD27: Segmentation results without post classification processing for Good (row
1), Bad (row 2) and Ugly (row 3) latents. Each row shows the original image followed by an outline
of the segmented fingerprint superimposed on the original image, and the segmented fingerprint
only part. The segmented fingerprint part was constructed with patches classified as fingerprint.

Stability of the Segmentation Network

The stability of the segmentation network was investigated by selecting 40 images at

random from each (Good, Bad and Ugly) category of NIST SD27 database and extracting 50,000

8x8 patches from each category for a total of 150,000 8x8 patches. We performed 5 runs of network

training and for each of the 5 runs, we used 20,000 patches randomly sampled from the 150,000
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patches. All the model parameters (number of epochs, number of iterations etc.) shown in Table

3.1 remained unchanged across the runs. The mean square reconstruction error (msre) and mean

error cost at convergence, as well as the standard deviation for the 5 runs are shown in Table 3.6.

Plots of the error during training for each run are shown in Figure 3.5. These results indicate that

the proposed segmentation model is stable.

Figure 3.5: Segmentation Network Stability: (a) shows that the mean square reconstruction error
(MSRE) during the pre-training phase for the 5 runs followed similar trajectories. Similarly, (b)
shows that the error during the fine-tuning phase for the 5 runs were close. These results are indica-
tive of the stability of the network.
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Run # MSRE Cost MDR FDR

1 0.0169 5.769E-04 3.220E-04 1.10E-05

2 0.0159 5.406E-04 3.950E-04 0.00

3 0.0148 5.420E-04 1.720E-04 0.00

4 0.0167 5.562E-04 3.310E-04 1.20E-05

5 0.0175 5.145E-04 2.091E-04 0.00

Mean 0.01636 0.00055 2.8E-04 4.6E-06

Standard Deviation 0.00104 2.289E-05 9.235E-05 6.309E-06

Table 3.5: Segmentation Network Stability:: The mean square reconstruction error (MSRE) at con-
vergence during the pre-training phase, cost at convergence during the fine-tuning phase, MDR, and
FDR for the 5 different runs are close. The mean and standard deviation indicate stability across the
5 runs.

Quality Assessment: Training, Validation and Testing

There are 258 latent fingerprint images in NIST SD27 database with 88, 85 and 85 in the

Good, Bad and Ugly categories [74]. The 258 latent fingerprint images were segmented using our

trained segmentation model. We extracted 7,000 32x32 patches from 50 Good, 50 Bad and 50 Ugly

ROIs for training, 1,500 32x32 patches from 20 Good, 20 Bad and 20 Ugly ROIs for validation,

and 1,500 32x32 patches from 18 Good, 15 Bad and 15 Ugly ROIs for testing. The multi-class

perceptron classifier (MPC) in the quality assessment stage of our model was trained, validated

and tested with the training, validation and testing datasets that were independently drawn from the

fingerprint only segments from the 258 latent fingerprint images in NIST SD27 database.

To label the patches in the 32x32 patch datasets, we computed the average fractal dimen-

sion (FDav) and fractal dimension spatial frequency (FDsf ) for each patch. The label Lp for each
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patch p was determined using equation 3.7. The thresholds used in equation 3.7 were empirically

determined. Figure 3.6 shows sample patches and their FDav and FDsf .

Lp =



1, if τ > 1.75 and κ < 0.65;

2, if 1.65 < τ < 1.75 and 0.65 < κ < 0.70;

3, if τ < 1.70 and κ > 0.70.

(3.7)

where τ and κ are the FDav and FDsf of patch p, respectively. Figure 3.7 shows the confusion

matrix for MPC training, validation and testing, as well as the validation performance and error

histogram on NIST SD27.

Figure 3.6: Image patches from NIST SD27 with their computed average fractal dimension (FDav)
and fractal dimension spatial frequency (FDsf ). Patches with visible fingerprint patterns (columns
2, 3, & 4) have higher average FD and lower FDsf, than those with little visible fingerprint pat-
terns(columns 5, 6 & 7) or no visible fingerprint patterns (columns 8, 9, 10 & 11). The higher the
FDav and the lower the FDsf , the better the quality of the patch, and conversely.

The quality assessment model achieved a quality assessment accuracy of 96.1% for Good,

91.1% for Bad and 96.7% for ugly latent fingerprints on the testing dataset, and 97.9% for Good,

92.7% for Bad and 97.5% for ugly latent fingerprints on the validation dataset.

Stability of the Quality Assessment Network

To investigate the stability of the quality assessment network, we performed 5 runs of

training, validation and testing of the network using the dataset created in 3.3.2. All the model
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Figure 3.7: NIST SD27 - Confusion matrix for training, validation and testing, error histogram,
and validation performance for the quality assessment neural network. Class 1 = Good, Class 2 =
Bad, and Class 3 = Ugly. 7,000 patches were used for training, 1,500 patches for validation and
1,500 patches for testing. The training, validation and testing samples were independently drawn
from the dataset. Output Class is the predicted class while target class is the ground-truth class.
The fourth row contains Recall values while the fourth column contain the Precision. In the testing
confusion matrix, Precision=96.1% and Recall=95.5% for Class 1 means that out of the times Class
1 was predicted, the classifier was correct 96.1% of the time, and out of all the times Class 1 should
have been predicted 95.5% of the predictions were correct. The small numbers on all cells but the
diagonal (that contains the true positives for the respective classes), as well as the error histogram,
and validation performance plots, indicate good classifier performance.

parameters (number of epochs, number of iterations etc.) remained unchanged across the runs. The

overall precision for training, validation and testing, as well as the mean accuracy, and standard

deviation for the five runs are shown in Table 3.6. The precision and recall for the three classes

in the five runs are provided in Table 3.7. These results indicate the stability and reliability of the

network.
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Run # Training Validation Testing

1 93.9% 93.1% 93.6%

2 96.3% 96.1% 94.6%

3 95.5% 94.0% 94.0%

4 97.6% 96.4% 95.8%

5 94.9% 94.1% 93.8%

Mean (%) 95.46 94.74 94.36

Standard Deviation (%) 1.12 1.44 0.89

Table 3.6: Network Stability: The precision values (computed with the true positives along the
diagonal of the confusion matrix) in each column are close. The mean and standard deviation
indicate stability across the five runs.
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Validation: Class Precision Recall

Run #

1 1 91.9% 97.3%

2 93.8% 88.1%

3 95.7% 89.7%

2 1 97.9% 97.4%

2 92.7% 96.8%

3 97.5% 91%

3 1 92.1% 99.2%

2 94.4% 88.7%

3 100% 88.7%

4 1 98.7% 96.7%

2 92% 98.3%

3 97.1% 92.8%

5 1 96.8% 95.7%

2 90.6% 95.3%

3 95.2% 92.8%

Testing: Class Precision Recall

Run #

1 1 93.0% 98.0%

2 93.2% 89.6%

3 96.0% 87.3%

2 1 96.1% 95.5%

2 91.1% 96.5%

3 96.7% 88.8%

3 1 92.1% 99.1%

2 94.2% 88.0%

3 100% 88.9%

4 1 98.4% 97.6%

2 93.7% 98.8%

3 97.0% 92.4%

5 1 96.7% 96.5%

2 88.2% 95.3%

3 95.2% 85.4%

Table 3.7: Network Stability: Precision and Recall for the three classes in the five runs during
validation and testing. For both the validation and testing samples, there is no marked difference
between the Precision for a given class from one run to the next. The same applies to the Recall.
This indicates that the network is reliable.

3.3.3 Evaluation of Latent Quality Prediction

We compare the latent quality predictions of the proposed model with the VID, VEO,

and NV value determination by latent examiners [70] as well as the quality value predictions by

Expert Crowd [43]. Note that NIST SD27 database is the only latent database with available latent
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value determinations by latent examiners. As reported in [70], there are 210 VID, 41 VEO , and 7

NV latents in NIST SD27. A total of 166 latents (155 VID , and 11 VEO) out of the 256 latents

in NIST SD27 are retrieved at Rank-1 using state-of-the-art latent AFIS [43]. To ensure a fair

comparison between the three results being compared, we follow the protocol used in [43]. The

258 latents are sorted in ascending order of the quality [1-3] predicted by our model, and then

partitioned into three, P1, P2, P3. Partition P1 contains the first 210 latents, P2 contains the next 41,

while P3 contains the last 7 latents. Following [70], the latents in P1, P2 and P3 are considered as

VID, VEO and NV, respectively. Table 3.8 shows a comparison of the number of latents retrieved

at rank-1 using value determination by latent examiners [70], the predicted latent value from [43],

and the predicted latent quality from our quality prediction model. A reference dataset containing

2,257 rolled prints created from 2,000 fingerprint images in NIST SD4 database, and the 257 rolled

images in NIST SD27 database was used for this performance comparison. In terms of predicting

latent AFIS performance, the quality prediction by our model is better than the value determination

latent examiners and value prediction by Expert Crowd. 164 latents predicted by our model as VID

latents were identified at Rank-1 compared to 161 identified at Rank-1 based on value determination

by Expert Crowd.
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VID VEO NV

Latent Examiners [70] 155/210 11/41 0/7

Expert Crowd [43] 161/210 5/41 0/7

This Work 164/210 4/41 0/7

Table 3.8: NIST SD27 latent fingerprints retrieved at Rank-1 using a state-of-the-art latent AFIS.
The results show that the proposed quality assessment model performs slightly better than Expert
Crowd [43] in predicting latent AFIS performance for VID latents (164 vs 161). However, both
Latent examiners and Expert Crowd are better than the proposed model in predicting latent AFIS
performance for VEO latents.

3.4 Summary

We proposed automatic region-of-interest based latent fingerprint quality assessment tech-

nique using deep learning. The first stage of our proposed method uses feature learning, extraction

and classification to segment the latent fingerprint image. In the second stage, 32x32 patches are

extracted from the segmented ROI image and features computed from them are fed to a multi-class

perceptron that classifies each fingerprint patch into Good, Bad or Ugly bins. The quality of a latent

fingerprint is indicated by the label of the bin that contains the greatest number of patches, with ties

broken optimistically (if the number of patches in the Good bin is equal to that in the Bad bin and

greater the number in the Ugly bin, the quality of the fingerprint is set to Good). We demonstrated

the performance of our model on the NIST SD27 latent fingerprint database. We presented a com-

parative analysis showing that in terms of predicting latent AFIS performance, the quality prediction

by our model performs better than the state-of-the-art latent fingerprint value determination model.
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Chapter 4

DeepLatent: A Deep Learning Model for

Patch Based Latent Fingerprint

Matching

Fingerprints have been one of the most reliable methods used in forensics for human

recognition. Latent fingerprints are usually partial fingerprints and are characterized by few minu-

tiae points, and missing singular points such as core and delta. The dearth of those structures

coupled with unspecified orientations, distortions, variations in the illumination of a crime scene,

and occlusions, make matching latent fingerprints to full rolled/plain fingerprints very challeng-

ing. Many of the existing approaches for matching latent fingerprints to rolled/plain fingerprints

[76, 59, 75, 106, 99, 49, 18] rely on fingerprint features mentioned above and become unreliable

when the latent fingerprint does not include those structures. In [76, 59, 75], the authors use minu-

tiae or combination of pores, and ridge features and minutiae. A descriptor-based Hough transform
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method was used in [106]. In [99], the authors use local minutiae clustering with multiple align-

ments. Matching based on score level fusion using min, max, sum, and product of minutiae, quality

map, and orientation was used in [49]. An automated feedback mechanism was used in [18] to

refine the set of features that are similar between the probe and reference fingerprints. Unlike the

above methods, our approach computes similarity scores of probe and reference image patches by

taking into account the overlapped areas on the latent and rolled fingerprints, and then matching the

minutiae on them, if available. The overall idea of this chapter is captured in Figure 4.1.

Patch-based image matching has been extensively used in computer vision tasks. It has

been used for finding accurate correlation between images in domains such as object recognition

[95], classification [147], image stitching [28], and image reconstruction [122]. Our approach to

patch similarity learning is similar to the techniques used in [76], [65] and [152]. The main differ-

ence is that before using a neural network to learn the pairwise similarity between image patches,

we first transform the patches into a frequency domain representation. To the best of our knowl-

Figure 4.1: Latent fingerprint patch pair (P1,P2) are first transformed into a frequency domain
representation. We compute minutiae matching score if P1 and P2 are minutiae patches, or patch
similarity score, otherwise. The scores for all patch pairs are fused to obtain the matching score.
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edge, this work represents the first attempt at performing latent fingerprint matching by learning

similarity of image patches and minutiae in correlated patches from frequency domain representa-

tion of image patches using convolutional neural networks. Unlike the previous work, we learn a

similarity function directly from frequency domain representation of annotated pairs of raw image

patches using a deep neural network modeled after a Siamese network (a neural network architec-

ture consisting of two or more identical networks). The use of frequency domain representation is

informed by the fact that periodicity and relative strengths of periodic components in input finger-

print data are readily revealed in frequency domain. Those frequency characteristics are pertinent

to differentiating or correlating fingerprint image patches. The similarity learning is done using the

Euclidean distance as a measure of similarity. A descriptor is learnt using patch pairs with the ob-

jective of minimizing the L2 norm between similar patches and maximizing the same between two

non-similar patches. Multiple experiments are conducted using both spatial and frequency domain

representations of patches. The results obtained show that using frequency domain representations

of patches results in significant improvement in the accuracy of of the proposed model. We also

explored different architectures for DeepLatent by evaluating their performance on a subset of the

training and validation dataset.

The rest of the chapter is organized as follows: Section 4.1.1 presents a review of recent works

in latent fingerprint matching while section 4.1.2 describes the contributions of this chapter. Sec-

tion 4.2 highlights our technical approach and describes the networks that constitute DeepLatent.

It also highlights frequency domain representation. Section 4.2.2 provides an overview of patch

based matching. The experimental results and performance evaluation of our proposed approach

are presented in Section 4.3, while Section 4.4 contains the conclusions and future work.
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4.1 Related Work and Contributions

4.1.1 Related Work

Many of the existing approaches for matching latent fingerprints rely on features extracted

from the latent fingerprints. Jain et al. [75] proposed a latent-to-rolled/plain matching algorithm

that relied on manually marked features (minutiae, core, delta) for the latent fingerprints in NIST

SD27 database and automatically extracted features for rolled prints in NIST SD4 and NIST SD14

databases. They reported a rank-1 identification rate of 74 percent. Feng et al. [59] used ridge

pattern, singular points, and orientation field to match latent fingerprints in NIST SD27 with a

database of 10,258 rolled fingerprints. They reported a rank-1 accuracy of 73.3%. Tsai et. al [76]

used localized secondary features derived from relative minutiae information and trained a neural

network to generate the final similarity score based on minutiae matched in the overlapping areas of

a query latent fingerprint and reference fingerprints. They reported 1.21% and 0.68% improvements

on minimum total error rates of FVC2002 DB1 and DB2 databases, respectively. Deep learning

has successfully been applied to latent fingerprint image segmentation [55], enhancement [90], and

matching [56].

Previous works have used frequency representation to train deep learning models. Zou et

al. [158] used restricted number of frequency coefficients of Discrete Cosine Transform (DCT) of

images of handwritten digits to train a deep belief network for handwritten digit recognition. Er et

al. [51] trained a Radial Basis Function network for face recognition using DCT features computed

from face data. Ulicny et al. [136] used DCT transformation of raw images to train CNN to classify

images encoded in compressed form. In our approach, image patches are transformed to frequency
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Author Approach Databases Database Size Rank-1 (%) Rank-20 (%)

Jain et al. [75] Singularity, ridge quality map, Rank-k matching, NIST SD4, NIST SD14,

NIST SD27 29,257 74.0 82.90

ridge flow map, ridge wavelength map, and skeleton

Paulino et al. [106] Descriptor-based Hough transform, manually marked NIST SD4, NIST SD27 2,258 62.40 -

minutiae, orientation field, similarity

Feng et al. [60]∗ Fusing the same features from different samples of

rolled fingerprints and plain fingerprints - 4,180 pairs 57.80 (plain)

70.40 (rolled)

83.0 (boosted

max. fusion) -

Dvornychenko [49] Fusing results from five different latent fingerprint

matchers - - - -

Arora et al. [18] Ridge orientation and frequency, latent feature NIST SD14, MSP DB 100,000 49 59.5

refinement using information in exemplars (feedback)

Medina-Pérez et al. [99] Local minutiae clustering using multiple alignments NIST SD4, NIST SD14 29,000 68.60 -

This chapter Image patch similarity, and matching minutiae on

correlated patches NIST SD4, NIST SD27,

Synthetic DB 29,257 78.56 87.45

Table 4.1: Recent work in latent fingerprint matching showing the various approaches that have
been used. MSP stands for Michigan State Police. * Matched 230 latents in the ELFT-EFS Public
Challenge Dataset against a database of 4,180 pairs of rolled and plain fingerprints.

domain using Fast Fourier Transform (FFT) and the transformed data are used to train CNNs for

patch similarity learning, minutiae detection and matching.

4.1.2 Contributions

Researchers have used different approaches for latent fingerprint matching. Most of the

strategies are captured in a survey of latent fingerprint matching [118]. Table 4.1 shows recent works

in latent fingerprint matching and the various approaches. As can be seen from Table 4.1, most of

the previous efforts in latent fingerprint matching achieved moderate accuracy, hence the need for
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new a algorithm for improved latent fingerprint matching. The contributions of this chapter are:

• A novel system for patch-based latent fingerprint matching using deep neural networks with

an improvement on the previous latent fingerprint matching results. The proposed system

is a unified framework for patch based similarity learning, minutiae detection and matching,

without relying on hand-crafted features.

• A novel hierarchical matching algorithm that uses single-step matching or two-step matching

based on the quality of the probe latent fingerprint image.

• Rigorous experiments that demonstrate the superiority of using frequency domain represen-

tation of fingerprint image patches for similarity learning and minutiae detection.

This chapter extends our preliminary work [56], but differs significantly from it in the

following aspects: (a) A hierarchical patch based matching algorithm for single-step or two-step

matching based on the quality of the latent fingerprint image. (b) A unified frequency domain based

framework for minutiae detection, matching and patch similarity learning. (c) A Siamese hybrid

network with a neighborhood relationship computation and summarization layer, for determining

how similar two minutiae patches are based on the relationship between the pixels in the neighbor-

hood of the minutiae. (d) In-depth theoretical and empirical discussions on the performance the

proposed model when trained with frequency domain representation versus spatial domain repre-

sentation of fingerprint image patches. (e) Detailed investigation of the best combination of features

(correlation, minutiae, relations and frequency) that yields the best matching performance. (f) Em-

pirical demonstration of the robustness of the proposed model to image rotation. (g) Evaluation

of architectural variations to determine the impact of feature dimensionality on the accuracy and
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Figure 4.2: Proposed architecture for DeepLatent consisting of minutiae detection and matching net-
work (MDMN) and patch similarity learning network (SLN). MDMN is used for detecting minutiae
in patch representations, and determining if two minutiae patches match. SLN is for learning the
similarity between representations of two patches. Section 4.2.1 and section 4.2.1 provide more
details on the architectures of the two networks.

computational burden of the proposed framework. (h) Evaluation of the matching performance of

the proposed method performed on a larger reference database.

4.2 Technical Approach

The block diagram of our proposed approach shown in Figure 4.2 consists of two con-

volutional neural network (CNN) models. The first model is the minutiae detection and matching

network (MDMN) used for detecting minutiae in patch representations, and determining if two

minutiae patches match. The second model is a similarity learning network (SLN) for learning the

similarity between the representations of two patches. SLN learns a distance metric for determining

the correlation between the representations of two patches. During training, a pair of MDMN sim-

ilar to the Siamese network, is applied to the frequency domain representations of pairs of patches
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(P1, P2). The MDMN detects the presence or absence of minutiae in the patches using the represen-

tations and computes the matching score for pairs of minutiae patches. The same representations

of the patches are fed to a Siamese similarity learning network (SLN). Both networks are trained

on the patch-pairs generated from good quality images from the NIST SD4 database. Table 4.2

shows the hyper-parameters and values for the MDMN. The structure of the SLN is depicted in

Table 4.3. The parameters for both MDMN and SLN were selected based on the performance of the

network on their respective validation sets. The choice of 32x32 patch size is based on its empiri-

cally determined optimality. We use different networks for patch similarity learning and minutiae

detection/matching because minutiae detection/matching needs a deeper and slightly more complex

network for efficient minutiae detection and matching as well as learning the relationship between

the structures around the minutiae.

The training and evaluation of the SLN and MDMN networks were done using ≈ 1.64M

image patches (819,200 for SLN and 819,200 for MDMN). A dataset consisting of pairs of matching

and non-matching patches were used for training and evaluating the SLN, while a dataset of pairs

of matching and non-matching minutiae patches were used for the MDMN.

4.2.1 Proposed DeepLatent Networks

Minutiae Detection and Matching Network (MDMN)

Our minutiae matching network consists of two CNNs with shared weights. The architec-

ture is similar to person re-identification CNN architecture in [12], but unlike [12], each branch of

the MDMN has four layers of convolution and max pooling to learn a set of features used for detect-

ing minutiae patches and comparing two minutiae patches. To capture information about the pixels
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around a minutiae (which we refer to as relation attribute) that is very useful during matching, we

compute neighborhood difference of the feature maps of patch pair (P1, P2) as < = g(P1)
⊕
g(P2)

and <̂ = g(P2)
⊕
g(P1), where

⊕
is neighborhood difference operator. The computed neigh-

borhood differences is summarized using a convolutional layer and the spatial relationship across

neighborhood difference feature maps is learnt using 3x3 filters with stride 1 [12]. This is followed

by a fully connected layer and finally a two output softmax layer. We use 3x3 filters to ensure that

we capture local features essential for differentiating or correlating minutiae patches.

Name Type Dim. Filter Stride

Input input 32x32x1 -

Conv1 Convolution 8 3x3x1

batchNorm1 Batch Normalization 8 channels

ReLU1 ReLU

MaxPool Max Pooling 1x1 [1 1]

Conv2 Convolution 32 3x3x8

batchNorm2 Batch Normalization 32 channels

ReLU2 ReLU

Conv3 Convolution 64 3x3x32

batchNorm3 Batch Normalization 64 channels

FC Fully Connected Layer (2)

Softmax Softmax

Output Label output

Table 4.2: Parameters for the MDCNN. Epochs: 20, Batch size: 64, Learning rate: 0.001.
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Name Type Dim. Filter Stride

Input input 32x32x1 -

Conv Convolution 30 5x5 [1 1]

ReLU ReLU

MaxPool Max Pooling 1x1 [1 1]

FC Fully Connected (2)

Softmax Softmax

Output Similarity output

Table 4.3: Parameters for the similarity learning network (SLN). Epochs: 100, Batch size: 64,
Learning rate: 0.01, Momentum: 0.9.

Patch Similarity Learning Network (SLN)

SLN is a 7-layer convolutional neural network consisting of a convolutional layer with 30

5x5x1 filters, max pooling, RELU activation functions units, 2 fully connected layers, and a softmax

output layer. It has a receptive field of 32x32. For the architecture of SLN, we explored shallow

and deep architectures and selected the architecture that had the least computational burden and best

performance among the ones considered. The details of the accuracy/computation time and feature

dimension tradeoff experiments that guided the selection of the SLN architecture are presented in

Section 4.3.4.

Loss Functions

Given two patches P1 and P2, SLN outputs a real number between 0 and 1 that indicates

how similar P1 and P2 are. SLN maps the learned representations of P1 and P2 to a low dimensional

feature space so that the loss between similar pairs is minimized while that between two dissimilar
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pairs is maximized. To achieve this, we trained the weights of the network using a margin based

loss function defined as:

Loss(P1, P2, l) = lD2 + (1− l){max(0,m2 − D2)}, (4.1)

where l = 1 if (P1, P2) is a positive pair and 0, otherwise. m is the margin of separation and

is greater than 0 for negative pairs. D = ||g(P1) − g(P2)||2 is the Euclidean Distance between

feature vectors g(P1) and g(P2) of patches P1 and P2. The minutiae detection/matching network

was trained by minimizing the following loss function:

L(P3, P4, l) = LogLossSoftMax(z(P ), l), (4.2)

where P3 and P4 are two minutiae patches, l = 1 if (P3, P4) is a positive pair and 0, otherwise. P is

the concatenation of the feature vectors of P3 and P4, and z(.) is a function that output the matching

scores.

Frequency domain representation

In many situations, image processing tasks are best performed in a domain other than the

spatial domain. For such tasks, the images are transformed into the target domain and the tasks are

performed in the transformed domain. Discrete Fourier Transform (DFT) can reveal periodicity and

relative strengths of periodic components in input fingerprint data. We use Fast Fourier Transform

which is a faster method for computing DFT. The 2-D frequency domain representation {zk} =

z0,z1, · · · ,zK−1 of K image patches {pk} = p0, p1, · · · , pK−1, where each pk, k = 1, . . . ,K−1

is of size MxN is defined as:

zu,v =
1

MN

M−1∑
m=0

N−1∑
n=0

pm,n · e−2πi(
um
M

+ vn
N

), (4.3)

78



where u and v are spatial frequencies inm and n directions, respectively, Each zk, k = 1, . . . ,K−1

is also of size MxN.

4.2.2 Patch Based Matching

We define patch based match Mp between a patch from probe latent fingerprint and a

patch from gallery fingerprint image as:

Mp = f(Q,C, F,M,ϕ), (4.4)

where f (.) is a function, Q, C, F, M, ϕ are the quality, patch similarity, spatial frequency, minutiae

and relation attribute, respectively. The quality (Q) is an attribute of the probe latent patch deter-

mined using image quality assessment tool. Patch similarity and minutiae scores are obtained using

convolutional neural networks. Spatial frequency is computed as in [91].

F = R2
f + C2

f , (4.5)

where Rf and Cf are the row and column frequency, respectively.

Rf =
1

MN

M−1∑
x=0

N−1∑
y=1

[G(x, y)−G(x, y − 1)]2, (4.6)

Cf =
1

MN

M−1∑
y=0

N−1∑
x=1

[G(x, y)−G(x− 1, y)]2, (4.7)

where M x N is the dimension of the image, and G(x, y) is the gray value at position (x, y) in the

image. Relation ϕ, is a measure of spatial relationship between pixels around the minutiae and is

obtained from the summarization layer of the minutiae detection and matching network (MDMN).

Details regarding ϕ and its computation are provided in Section 4.2.2. In this chapter, we use NIST

Fingerprint Image Quality (NFIQ) [130] to determine Q in form of NFIQ number. NFIQ numbers
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range from 1 to 5 with 1 being the best and 5 as the worst (1 = excellent, 2 = very good, 3 = good,

4 = fair, 5 = poor). The NFIQ number reflects how positively or negatively an individual sample

contributes to the performance of a fingerprint matcher [130]. NFIQ 2.0 is a newer version of NFIQ

tool with a wider range (1 to 100), but is not suitable for latent fingerprints [5].

We propose a hierarchical patch based matching algorithm for single-stepM1
p , or two-step

M2
p matching defined as:

M1
p = f1(C,M), (4.8)

M2
p = f2(C,M,F, ϕ), (4.9)

M1
p is used for matching probe latent fingerprint images with NFIQ numbers 1 or 2 (very good

to excellent quality), while M2
p is used for latent fingerprint images with NFIQ numbers 3, 4 or

5 (good to poor quality). The NFIQ numbers were computed using NIST open source fingerprint

quality assessment tool (NFIQ).

Patch Similarity and Matching

In this work, we consider two patches to be similar if there exist an in-plane rotation by d

degrees that makes them identical. When a given patch p is rotated by d ∈ {0o, 45o, 90o, 135o, 180o, 225o,

270o, 315o}, we obtain a set of patches κ = {p1, p2, · · · , p8}. Each pair of patches (pi, pk) ∈ κ

are considered similar. This definition of similarity allows us to learn patch representations that are

invariant to rotations and enhances the odds of finding a match for a given latent fingerprint patch.

Figure 4.3 shows in-plane rotations of a sample fingerprint with a 32x32 patch highlighted with a

bounding box. The 32x32 patches in all the rotations are similar.
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Figure 4.3: Various rotations (0o, 45o, 90o, 135o, 180o, 225o, 270o, 315o) of a sample fingerprint
with a 32x32 patch highlighted with a bounding box. By our patch similarity definition, all the
patches are similar.

Let L and R be probe and gallery fingerprints, respectively. Let PL = {l1, · · · , lk} and

PR = {r1, · · · , rn} denote the 32x32 patches from L and R. For each li ∈ PL, i = 1, . . . , k, we

create tuples (li, rj), rj ∈ PR, j = 1, . . . , n, feed each tuple to our trained model and record the

similarity score. A reference fingerprint in the NIST SD27 database is 800x768 while one of the

largest segmented fingerprint from a latent fingerprint in the same database is 380x448. The number

of 32x32 non-overlapping patches from the reference and latent fingerprints are 614,400
1,024 = 600 and

170,240
1,024 = 166, respectively. Evaluating a match between them requires 166 × 600 = 99, 600

comparisons in the worst case. To minimize the computation time, a pipeline with 166 parallel

computations can be used. The patch similarity score for each l ∈ PL is defined as:

Sl = max(s(l, r1), . . . , s(l, rn)) (4.10)

where s(l, rk) is the similarity score of tuple (l, rk), l ∈ PL, rk ∈ PR, k = 1, . . . , n. A patch l ∈ PL

is said to have a match if Sl = ρ, where ρ is threshold value (0.75) empirically determined using
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a histogram of scores for matching pairs of patches. The patch similarity score between L and R is

defined as:

SpLR =
Lm
|PL|

(4.11)

where Lm is the number of patches in L with matching patches in R, and |PL| is the total number of

patches in L.

Minutiae Patch Relation (ϕ)

The relationship ϕ between the pixels around the minutiae in the probe and gallery minu-

tiae patches carry relevant information that assists in validating the minutiae match scores from

MDMN. We learn ϕ between the probe and the gallery minutiae patches from their feature maps

obtained from MDMN [12]. Let p, g represent the probe and gallery minutiae patches, respectively.

The relationship between the pixels around the minutiae in p and g is computed with a neighbor-

hood difference CNN layer following a process similar to that in [12], but with filter size of 3x3 and

stride 1. The result is passed through a ReLu layer. From experiments, we found that for matching

minutiae pairs, the neighborhood difference D is less than 0.25. This threshold was determined from

a histogram of D shown in Figure 4.4. We define the relation ϕ between two minutiae patches P1

and P2 as :

ϕ = ηD(P1, P2) (4.12)

where D is the neighborhood difference between patches P1 and P2, and η = 1 if D < 0.25, and

0, otherwise. In the definition of ϕ, we use η to penalize minutiae scores for patch pairs whose

D is greater that the threshold value (0.25). We explored another approach (called pixel based

approach) for computing ϕ such as pixel intensity differences between pixels around the minutiae
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Figure 4.4: Histogram of neighborhood difference (D) of 25 matching minutiae pairs. As can be
seen from the histogram, majority of values of neighborhood differences are between 0.08 and
0.21. Setting the threshold to 0.25 for determining matching minutiae pairs worked well in our
experiments.

Figure 4.5: Scores for 10 positive and 10 negative pairs of minutiae patches computed using neigh-
borhood and pixel based spatial relationship learning approaches. (a) shows the comparison for
positive pairs (higher is better). (b) shows the comparison for negative pairs (lower is better). The
neighborhood approach outperforms the pixel approach in both (a) and (b).

and the result we obtained was inferior to that of neighborhood difference approach. We show the

comparison of the results obtained using the two approaches in Figure 4.5. It is clear from Figure

4.5 that using the neighborhood difference approach in learning of the spatial relationship between

pairs of minutiae patches leads to better results.
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Minutiae Detection and Matching

High quality NIST SD4 fingerprint images with NIST Fingerprint Image Quality (NFIQ)

values of 1, 2 or 3 were selected for creating the ground-truth patch dataset for training, validation,

and testing of the minutiae detection and matching network. The minutiae from the fingerprint

images were extracted using open source minutiae extractor MINDTCT from NIST [142]. Patches

centered at the minutiae points in each image were extracted from NIST SD4 [8] database and

labeled as minutiae patches (mp). Equal number of non-minutiae patches were extracted from

the same database and labeled as non-minutiae patches (nmp). The mp and nmp patches were

augmented with rotated patches (8 rotations each) and the resulting dataset was normalized to zero

mean and unit standard deviation. The dataset was split into three: 80% for training, 10% for

validation and 10% for testing the MDMN. There was no overlap between the training, validation

and testing datasets. Examples of high quality minutia patches used to train the MDMN are shown in

Figure 4.6. Figure 4.7 shows sample fingerprints with minutia quality determined with MINDTCT

minutia quality assessment software. Sample images from NIST SD4 database with annotated

minutiae are shown in Figure 4.8.

For single-step matching, the minutiae matching score ρ = sm, where sm is the output of

the MDMN, in the range [0, 1]. For two-step matching, ρ = sm + ϕ, where ϕ, is the relationship

between the pixels around the minutiae in the probe and gallery minutiae patches. To use the

MDMN for minutiae detection, we remove the second branch of the MDMN (by removing all its

layers). Figure 4.9(a) shows a branch of the trained MDMN used for minutiae detection, while

Figure 4.9(b) are two branches of the MDMN used for minutiae matching. Figure 4.10 is the scatter

plot of the feature representations of the embedding of the MDMN showing the separation of the
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Figure 4.6: Examples of minutia and non-minutiae patches used to train the minutiae detection
neural network. Some patches have multiple minutiae. The score for each patch as determined by
the MDMN is also shown above the patch. Bifurcations and Ridge endings are annotated in red and
green, respectively.

Figure 4.7: Sample fingerprints showing different minutia quality from MINDTCT minutia quality
assessment. The quality of each fingerprint is shown below it. Bifurcations and Ridge endings are
annotated in red and green, respectively.

embeddings of minutiae and non-minutiae patches.

We define the minutiae match score for each m ∈ PL as:

Sm = max(ρk, . . . , s(m, rn)) (4.13)

where ρk is the minutiae match score of tuple (m, rk),m ∈ PL, rk ∈ PR, k = 1, . . . , n. A patch
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Figure 4.8: (a) and (b) are sample images from NIST SD4 database with annotated minutiae. (c)
and (d) are sample 32x32 minutiae patches extracted from NIST SD4 images with centroid at the
annotated minutiae. Only minutiae with quality > 0.60 (assessed with MINDTCT) were extracted
from the images. (e) shows representative 32x32 non-minutiae patches that were also used in train-
ing and validating the MDMN. In (a) and (b), bifurcations are annotated in red and ridge endings
are annotated in green.

m ∈ PL is said to have a match if Sm = ψ, where ψ is an empirically determined threshold value

(0.55). The selection of the threshold was guided by the histogram of scores for matching minutiae

pairs shown in Figure 4.11.
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Figure 4.9: Simplified structure of the MDMN showing minutiae detection and matching work-
flows: (a) is a branch of the MDMN used for minutiae detection, (b) two branches of the MDMN
used for minutiae matching.
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Figure 4.10: Scatter plot for the feature representations of the embedding of the minutiae detection
and matching network (MDMN). The representations are for the embedding for a subset of the
minutiae detection test data evaluated on the trained embedding part of the MDMN shown in Figure
4.9. Blue (1) is for minutiae patches while red (2), is for non-minutiae patches. The separation of
the embeddings is clear.

Figure 4.11: Histogram of matching scores of 25 matching minutiae pairs. As can be seen from the
histogram, majority of values of matching scores are between 0.51 and 0.95. We set the threshold
for determining a match between minutiae pairs to 0.59 and obtained good results.
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The minutiae match score between L and R is defined as:

SpM =
%

γ
(4.14)

where % is the number of minutiae patches in L with matching minutiae patches in R, and γ is the

total number of minutiae patches in L.

Fused Matching Score

The fused score is used to make a match/no-match determination between a probe latent

fingerprint and a gallery fingerprint. For single-step matching M1
p and two-step matching M2

p , the

fused scores are given by:

F 1
mp =

1

2
(SpM + SpLR) (4.15)

F 2
mp =

1

3
(SpM + SpLR + ϑ(F )) (4.16)

where SpM is the minutiae score, SpLR is the similarity score, F is the difference in spatial frequency

between the probe and gallery candidates aggregated over their 32x32 patches, and ϑ is a function

that ensures that F is in the range [0, 1], defined as:

ϑ =


1, if 0 ≤ F < 1

0, otherwise

Empirical thresholds of 0.475, and 0.455 determined from the histogram of scores (using Equations

4.15 and 4.16) of 25 matching minutiae pairs and 25 matching non-minutiae pairs, were used for

F 1
mp and F 2

mp, respectively. Figure 4.12 shows examples of matching patches with minutiae and

matching patches without minutiae, while Figure 4.13 shows patch similarity scores computed for

10 segmented latent fingerprints.
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Figure 4.12: Examples of matching query and reference fingerprint patches. (a) and (b) are matching
patches with minutiae, while (c) and (d) are matching patches without minutiae. (d) is a 180o

rotation of (c).

Figure 4.13: Sample patch similarity scores for 10 segmented latent fingerprints from NIST SD27.

4.3 Experiments and Results

We implemented the algorithms in Matlab R2017a running on Intel Core i7 CPU with

8GB RAM and 750GB hard drive. Our implementation relied on Matlab toolbox for neural net-

works.

4.3.1 Training Validation and Testing

Training Dataset

The training dataset was created from fingerprint images in the NIST SD4 database. The

2,000 images in the database were partitioned into two sets, with 400 in the first set, and 1,600 in
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the second set. We split each fingerprint image into 32x32 non-overlapping patches and created 7

similar patches for each patch say pi by rotating it by 450, 900, 1350, 1800, 2250, 2700, and 3150.

The training dataset was then partitioned into groups of (pi, pj , z) where z = 1 if pi P pj and 0

otherwise. The operator P reflects patch similarity as defined in section 4.2.2. A total of 102,400

patches (512×512×40032×32 ) from the first set were augmented with the rotated patches to obtain a dataset

containing 102, 400 × 8 = 819, 200 patches for training, validating and testing the SLN. Another

dataset of 819,200 consisting of 102,400 minutiae and non-minutiae patches (in equal proportions)

from the second set augmented with the rotated patches (102, 400 × 8) was used to train, validate

and test the MDMN. Each dataset was partitioned as follows: 80% (655,380) patches for training,

10% (81,920) patches for validation, and 10% (81,920) patches for testing.

Evaluation Datasets

We created two evaluation datasets: query dataset and reference dataset. Regions-of-

interest were segmented from the 258 latent fingerprints in NIST SD27 database and saved in a

query dataset. The segmentation was done using a different deep learning model [55], details of

which are omitted for brevity. The reference dataset containing 29,257 rolled prints was created

from the 257 rolled images in NIST SD27 database, and 29,000 synthetic fingerprints. Synthetic

images were used to boost the size of the background database due to the unavailability of NIST

SD14 database [6]. Synthetic fingerprints have been shown to be very useful for training and testing

purposes, and have been used for technology evaluations [2]. The synthetic fingerprint images were

generated using SFinGe (Synthetic Fingerprint Generator) [10]. We matched each fingerprint in the

query dataset against the images in the reference dataset to evaluate the proposed approach.
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Figure 4.14: Plots of training objective function during training and validation for 20 epochs. The
objective is on the y-axis while the training epoch is on x-axis.

MDMN: Training, Validating and Testing

To train the MDMN network, one set of fingerprint patches at a time from the training

dataset was fed to the network after being transformed to the frequency domain and preprocessed

to have 0 mean and unit standard deviation. The validation data was fed through the forward pass

of the network and was used to check the response of the model being trained to data that it was

not currently being trained on. Training the MDMN involved minimizing the objective defined by

Equation 4.2. Figure 4.14 shows plot of minimization of the training objective during training and

validation of the MDMN.

SLN: Training, Validating and Testing

Training of the SLN involved the minimization the cross-entropy error defined as:

C = − 1

m

m∑
k=1

yk log ŷk + (1− yk) log(1− ŷk) (4.17)

over a training set of m patch pairs using stochastic gradient descent with a batch size of 64. In the

above equation, yk, is the similar (1) or dissimilar (0) label for input pair xk, while ŷk and 1 − ŷk
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Figure 4.15: Plot showing mini-batch accuracy during the training of the similarity learning network
(SLN). The training was done for 100 epochs.

are the Softmax activations computed on the values at the two output nodes.

For each network, we sampled equal number of positive and negative pairs for training to

prevent over-fitting. A positive entry in each training dataset is of the form (pi, pk, 1), with pi P pk,

while a negative sample is of the form (pi, pj , 0), with pi 6P pj . We used equal number of positive

pairs and negative pairs to train, validate and test each network. There was no overlap between the

training, validation and test subsets. For SLN, we obtained 97.21%, 95.73%, and 94.15% training,

validation and testing accuracy, respectively. For MDMN, the results were 97.25%, 94.67%, and

92.38% for training, validation and testing, respectively.

4.3.2 Frequency Domain vs. Spatial Domain

To evaluate the benefit of using frequency domain data representation for training both

the MDMN and SLN, we also trained the networks with spatial domain representation of the same
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training dataset. In the first experiment, we used the spatial domain representation of the image

patches to train and validate both networks. In the second experiment, both networks were trained

and validated using the frequency domain representation of the patches obtained by taking mag-

nitude of the DFT coefficients of the patches in the dataset. Figure 4.17 shows the training and

validation results. Clearly, the models trained with frequency domain representations of the training

dataset achieved higher training and validation accuracy as well as lower training and validation loss

compared when they were trained with spatial domain representation of the training datasets. This

indicates that features learned from the frequency domain transformations of the patches are more

discriminative than those learned from raw patches.

4.3.3 Performance Evaluation Metrics

We used the following metrics to evaluate the performance of our network.

Receiver Operating Characteristic (ROC) Curve

ROC curve provides a means of comparing the performance of a set of classification

models or mutations of a classification model. It shows false positive rate (1-specificity) on the

X-axis, against true positive rate (sensitivity) on Y-axis. The false positive rate is the probability

of target being true when its true value is false. True positive rate is the probability of target being

true when its true value is true. For a good performing model, the curve climbs quickly towards the

top-left of the chart. This indicates that predictions from the mode are correct in most cases.
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Figure 4.16: MDMN training and validation performance with frequency domain representation
(FDR) vs. spatial domain representation (SDR) of the training dataset. (a) shows the training and
validation loss when the model was trained and validated with FDR of the training and validation
datasets, while (b) shows the training and validation loss when it was trained and validated with SDR
training and validation datasets. From the plots, it is clear that better performance is achieved when
the model is trained with frequency domain representation of the training and validation datasets.

Area Under ROC Curve (AUC)

AUC is used as a measure of quality of the classification models. An AUC of 0.5 indicated

a random classifier, while AUC of 1 indicates a perfect classifier. Most practical classification

models have AUC between 0.5 and 1.
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Figure 4.17: SLN training and validation performance with frequency domain representation (FDR)
vs. spatial domain representation (SDR) of the training dataset. (a) shows the training and validation
loss when the model was trained and validated with FDR of the training and validation datasets,
while (b) shows the training and validation loss when it was trained and validated with SDR training
and validation datasets. From the plots, it is clear that better performance is achieved when the
model is trained with frequency domain representation of the training and validation datasets.

Cumulative Match Characteristics (CMC)

CMC is a method of summarizing the measured performance of a biometric system in a

closed-set identification setting. Biometric probe and gallery candidates are compared and ranked

based on their similarity/matching scores. CMC shows how often the biometric probe candidate

appears in the ranks (1, 5, 10, 20, etc.), based on the match rate and provides a way for comparing

the rank against the identification rate.

4.3.4 Matching Results and Comparison

Rank identification rate provides an estimate of the probability that a matching rolled

fingerprint is identified correctly at least at rank-k during a search with a latent candidate. Fig-

ure 4.18(a) shows the cumulative match characteristics (CMC) curve of the proposed approach in

matching 258 latent fingerprints in NIST SD27 database against database of 29,257 fingerprints

consisting of the 257 rolled images in NIST SD27, and 29,000 synthetic fingerprints generated with
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Figure 4.18: (a) CMC curve of the proposed approach in matching 258 latent fingerprints in NIST
SD27 database against a test database of 29,257 rolled fingerprints. (b) CMC curves for the 258
latent fingerprints in the NIST SD27 database that were grouped by subjective quality into Good
(88), Bad (85), and Ugly (85). These results were obtained by running the matching tests 10 times
and averaging the results.

SFinGe [10]. Figure 4.18(b) shows CMCs of matching the three categories of latent fingerprints

in the NIST SD27 database (88 Good, 85 Bad, and 85 Ugly) [74] against a database of 29,257

fingerprints. The plot shows the rank-k identification rate against k, k = 1, . . . , 20. We obtained

a rank-1 identification rate of 78.56% and a rank-20 identification rate of 87.45% on matching the

258 latent fingerprints. These results look promising when compared to a state-of-the-art rank-1 and

rank-20 identification rates of 74.0% and 82.9%, respectively, reported in [75], which to the best of

our knowledge, is the state-of-the-art result. Table 4.1 shows the rank-1 and rank-20 identification

rate comparison with recent latent fingerprint matching algorithms. There is no guarantee that the

results we obtained using a reference database augmented with synthetic fingerprints will match the

results we would obtain using a reference database of the same size with real fingerprints, but the

results indicate the likely performance of our model in a realistic setting. It should also be noted that

synthetic fingerprints generated using SFinGe have been used in many fingerprint verification com-

petitions with results obtained comparable to results obtained with real fingerprint databases [33].
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Author Good (%) Bad (%) Ugly (%)

Verifinger 75.0 47.0 30.6

Feng et al. [60] 78.4 55.3 52.9

This work 88.84 77.67 68.82

Table 4.4: Rank-1 accuracies of the proposed matcher, verifinger and Feng et al. [60] on Good, Bad
and Ugly categories in NIST SD27.

Table 4.4 show the comparison of the accuracy of the proposed matcher to the published matching

results on the Good, Bad and Ugly categories of NIST SD27. The proposed matcher achieves better

results in the three categories.

Image Quality versus Single-step and Two-step matching

Equations (4.8) and (4.9) define Single-step and Two-step matching, respectively. We

investigate the best combination of features (Correlation, Minutia, Relation and Spatial frequency)

defined in Section 4.2.2, that yields the best DeepLatent matching performance for a given image

quality. Experiments were performed using the following combination of features: (a) Correlation

only, (b) Minutiae only , (c) Correlation, and Minutiae, (d) Correlation, Minutia, and Relation,

and (e) Correlation, Minutia, Relation and Spatial frequency. We ran five experiments using five

different datasets. Each dataset contained patches with the same NFIQ number i, i = 1, . . . 5.

Each experiment covered (a) to (e) above. For each experiment, we obtain Receiver Operating

Characteristic (ROC) curve with probability of true match Pt vs. probability of false match Pf ,

defined as:

Pt = P{true match | potential match is a true match},
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Experiment Quality NFIQ M only C only C and M C, M and R C, M, R and F

1 Excellent 1 0.5243 0.7783 0.9596 0.9745 0.9875

2 Very Good 2 0.5353 0.7550 0.9648 0.9697 0.9826

3 Good 3 0.5405 0.7529 0.9340 0.9559 0.9605

4 Fair 4 0.4239 0.6067 0.8120 0.8302 0.8423

5 Poor 5 0.3765 0.5257 0.7410 0.7752 0.7888

Table 4.5: Area under ROC curves (AUCs) for Figure 4.19 showing the justification for using single-
step or two-step matching based on image quality. Each row shows the experiment number, the
NFIQ number for the patches in the dataset used for the experiment, and the AUCs for the various
feature combinations. When the image quality is excellent or very good, using a combination of
minutiae (M), correlation (C), relation (R) and frequency (F) features gives slightly better AUC
(0.9875), than using minutiae and correlation (0.9596). However, the computational burden due to
the computations required for R and F (Table 4.6, column 3) may outweigh the performance gain.
For excellent and very good quality images (NFIQ numbers 1, 2), single-step matching that uses
minutiae and correlation features should be used. The AUCs for images with NFIQ numbers 3, 4, 5
(Good, Fair, Poor) show that two-step matching that uses all the four features gives better matching
results than single-step matching when the NFIQ number of the latent fingerprint image is greater
than 2.

Pf = P{true match | potential match is not a true match}

Figure 4.19 shows the matching performance of DeepLatent in various scenarios. The Area Under

Curve (AUC) for the experiments are summarized in Table 4.5 The results confirm that DeepLatent

performs better with better quality image patches. It also shows that using minutiae or correlation

alone does not give good matching results. It should be noted that although using a combination of

minutiae, correlation, relation and spatial frequency features with good quality image gives slightly

better matching results, the additional computational burden shown in Table 4.6 may outweigh the

performance gain. For good quality images, single-step matching that uses minutiae and correlation

features should be used. For moderate to low quality images, two-step matching that uses all the

four features should be used.
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Figure 4.19: ROC curves for image quality vs single-step/two-step matching experiments. Each
ROC is for one NFIQ number (1, 2, 3, 4, 5). The AUCs for the various feature combinations are
shown. The results show that DeepLatent performs better with better quality image patches. Also
using a combination of minutiae, correlation, relation and frequency yields better performance than
using just minutiae and correlation. Table 4.5 provides more information on the AUCs.

FDR and SLN Performance

We investigated the accuracy of matching patches based on the similarity of spatial do-

main representations (SDR) of the patches versus similarity of their frequency domain represen-
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Experiment Single-Step Two-step R and F Computation

1 1,876.45 2,405.18 528.73

2 1,791.28 2,394.26 602.98

3 1,885.19 2,471.88 586.69

4 1,902.65 2,428.27 525.62

5 1,795.73 2,426.13 630.40

Table 4.6: Computational cost (in seconds) for Figure 4.19 showing the justification for using
Single-step matching when the image quality is excellent or very good (NFIQ number 1 or 2).

Figure 4.20: ROC curves for similarity measures with raw image patches and frequency domain
representations of image patches. Dotted line is for raw image patches and solid line is for frequency
domain representations.

tations (FDR). We use ROC curves to compare the performance of SLN (Figure 4.20) using raw

image patches and frequency domain representation for similarity learning. In this experiment, we

are interested in the accuracy of matching similar patches. A comparison of the two curves (dotted

for raw patches and solid for frequency domain representations) shows that for similarity learning,

using frequency domain representation is more effective than using spatial domain representation.
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Dimension Computation (sec.) Mean Accuracy Mean Loss

512 57.66 0.7146 0.6433

1024 101.25 0.7918 0.6213

2048 250.19 0.8156 0.5861

4096 850.74 0.8921 0.5132

8192 1,230.44 0.9145 0.4321

16384 1,962.60 0.9547 0.214

23520 2,786.22 0.9762 0.136

32760 3,524.54 0.9771 0.131

65520 8,145.42 0.9795 0.128

Table 4.7: Tradeoff: Accuracy vs. feature dimension. Training was done for 100 epochs. The model
with 32,732 fully connected layer size performed slightly better than the one with 23,520 nodes.
However, the 0.0009 performance gain is not worth the additional computational cost (738.32 sec-
onds). We set the feature dimension of the SLN to 23,520 because it gave the best combination of
computation cost, accuracy and loss.

Feature Dimension: Accuracy vs. Computation Time Tradeoff

We evaluated five variations of the SLN architecture to study the impact of feature dimen-

sionality on the accuracy and computational burden of the similarity learning network, by adjusting

the sizes of the fully connected layers in the two networks. Table 4.7 shows the size of the fully con-

nected layer (feature dimension), with the associated computational cost, accuracy and loss. When

the size of the fully connected layer was increased to 32,732 nodes, the model achieved 0.9771

accuracy but took 3,524.54 second to converge. We found an optimal fully connected size of 23,520

with model accuracy of 0.9762 and 2,786.22s to achieve convergence. The 738.32 seconds differ-

ence in the computation time (3,524.5 - 2,786.22 = 738.32) is not commensurate with the 0.0009

(0.9771 - 0.9762) performance gain in accuracy.
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DeepLatent Computational Cost

The MDMN network took around 8-10 hours to converge. The SLN network took 4.5 -

5.5 hours to converge. Both networks were trained on a system with Intel Core i7 CPU and 8GB

RAM. The average processing time for a single ROI input image, including minutiae detection,

patch extraction, and computation of the matching score using the trained model is 850ms. On the

average, matching a NIST SD27 latent ROI against top 200 gallery candidates takes about 15.2

seconds. Given that matching accuracy is of utmost importance in latent fingerprint matching,

the accuracy of our matching algorithm is worth the computational cost. The overall matching

computational cost can be improved by running multiple matching pipelines and using distributed

processing for large scale deployment.

Robustness to Rotation

Robustness to rotation is built into DeepLatent by training and validating the model with

rotated and non-rotated patches. To verify this assertion, we tested the trained DeepLatent with

6,128 32x32 patches consisting 1,328 probe patches from segmented [55] ROI latent fingerprint

and 4,800 gallery patches from a matching ten-print (gallery). The probe and gallery images are

from NIST SD27. Table 4.8 shows the details of the probe and gallery images used for this ro-

bustness to rotation experiments. Four tests were done with the four datasets shown in Table 4.8.

In the test with dataset 1, the probe and gallery patches were not rotated. In test 2 the gallery

patches were rotated, and in test 3, the probe patches were rotated. In the last test, we rotated both

gallery and probe patches. Five experiments each involving four tests with the four datasets were

performed using the segmented ROI from the following latent fingerprints (Good, Bad, Ugly) from
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Segmented Probe Image Gallery Image

Size 380x448 800x768

32x32 patches 380∗448
1,024 = 166 800∗768

1,024 = 600

Rotations 8 8

Total 32x32 patches (with rotations) 166 *8 = 1,328 600 * 8 = 4,800

Dataset 1 166 600

Dataset 2 166 4,800

Dataset 3 1,328 600

Dataset 4 1,328 4,800

Table 4.8: Robustness to rotation. Patches were rotated {0o, 45o, 90o, 135o, 180o, 225o,
270o, 315o}.

NIST SD27 and their rolled ten-print mates: (G068L6, G068T6), (G065L6, G065T6), (G055L3,

G055T3), (B129L7, B129T7), (U300L2,U300T2). We performed experiment 1 with probe ROI and

gallery pair (G068L6,G068T6), experiment 2 with (G065L6, G065T6), experiment 3 with (U300L2,

U300T2), experiment 4 with (B129L7, B129T7), and experiment 5 with (G055L3, G055T3). The

matching scores shown in Figure 4.21 clearly support our assertion that DeepLatent matching per-

formance is robust to rotation. It is also worthy to note that the better the quality of the probe image,

the better the matching score from DeepLatent.
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Figure 4.21: Matching performance of DeepLatent using the datasets shown in Table 4.8. The
accuracy of DeepLatent in the four tests and five experiments shows the model’s robustness to
image rotation. The results from these experiments also indicate that the better the quality of the
latent fingerprint ROI image, the better the matching score.

4.4 Summary

This chapter proposed a unified frequency domain based framework for latent fingerprint

matching using image patches. The matching is based on the similarity of the frequency domain

representations of patches encoded in a deep neural network, and the minutiae on the correlated

patches. For minutiae detection and matching, we presented a Siamese hybrid network with a

neighborhood relationship computation and summarization layer for determining how similar two

minutiae patches are based on the relationship between the pixels in the neighborhood of minutiae.

The chapter also presented empirical discussions on the performance of the proposed model when

trained with frequency domain representation versus spatial domain representation of fingerprint

image patches. The proposed system was tested by matching segmented fingerprints from 258

latent fingerprints in NIST SD27 against a database consisting of 29,257 fingerprints fingerprints

and achieved a rank-1 identification rate of 78.56%. This is a significant improvement on the state-

of-the-art rank-1 identification rate, which to the best of our knowledge is 74%.
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Chapter 5

LAFISR: Latent Fingerprint Image

Super-Resolution using Deep

Convolutional Neural Networks

The quality of a latent fingerprint image provides an indication as to whether the latent

fingerprint is a good candidate for further forensic analysis and feature annotations. In both le-

gal system and forensic science literature, the accuracy of latent fingerprint identification by latent

fingerprint forensic examiners has been the subject of increased study, scrutiny, and commentary.

When there are errors in latent fingerprint matching, the impact can be devastating, resulting in

missed opportunities to apprehend criminals or wrongful convictions of innocent people. As shown

in Figure 5.1, Latent fingerprint images contain background structured noise such as stains, lines,

arcs, and sometimes text, making it hard to process and extract enough relevant features for match-

ing. Enhancing the quality of latent fingerprint images is essential for effective and reliable match-
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ing. This chapter addresses the problem of latent fingerprint image enhancement by generating high

resolution latent fingerprint from a low resolution latent fingerprint through a technique referred to

as Single Image super-resolution (SISR). SISR is a method for generating a high-resolution image

from a low-resolution image by reconstructing the high-frequency components containing details

missing from the low-resolution image. It is considered an extension of image restoration [105].

For a given latent fingerprint image, we aim at producing an image of the same size but with signifi-

cantly higher image quality. We learn a set of filters which when applied to a given latent fingerprint

image produces a higher resolution version of it. We embed an image enhancement algorithm in

the proposed super-resolution algorithm to generate enhanced SR output image. Using a graph-

total variation energy of latent fingerprints as a non-local regularizer for a convolutional neural

network, we learn optimal weights for high quality image reconstruction. The latent fingerprint

super-resolution problem can be formulated as:

l = βz + e (5.1)

where l is the low-resolution latent, z is the unknown high resolution latent, β is a linear operator

that blurs and decimates z, and e represents noise. The goal of the proposed LAFISR algorithm is

to find z given l. We write the regularized solution to Equation 5.1 in variational form as:

ẑ = arg min
z∈Rn

1

2
‖l − β(z)‖2 + ϕJ (z) (5.2)

where ẑ is the regularized solution to the SR problem, J is the energy function that tends to zero

when z is close to the smoothness model [107], l is the low resolution image, ϕ is the weight that

needs to be adapted to l, and β is a linear operator that blurs and decimates z. Our goal is to learn a

model (LAFISR) that can reconstruct a ẑ that is close to z. LAFISR is a deep convolutional neural
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network with multiple cascaded layers of convolutional filters. The LAFISR framework aims at

recovering ẑ from a set of noisy measurements l = βz + e using J (z). To accomplish that goal,

we minimize the objective function defined in Equation 5.2 during training.

Figure 5.1: Sample latent fingerprints from NIST SD27 showing three different quality levels (a)
good, (b) bad, and (c) ugly.

We demonstrate empirically that matching performance can be improved by preprocess-

ing latent fingerprints using our proposed super-resolution model. A comparison with a number of

recently published methods for fingerprint enhancement using qualitative and quantitative evalua-

tion metrics show that our model outperforms existing approaches.

The rest of the chapter is organized as follows: In Section 5.1, we present related work and contri-

butions. Technical approach and the proposed network architecture are highlighted in section 5.2.

In Section 5.2.1, we present the strategy used in selecting the depth of the network. Patch based

regularization is presented in section 5.2.2. The training and evaluation datasets, performance eval-

uation metrics, quantitative and qualitative evaluation of the proposed model, comparison with other

methods, as well empirical analysis of the impact of patch based regularization on the performance

of the proposed model are presented in section 5.3. Section 5.4 contains concluding remarks and

future research direction.
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5.1 Related Work and Contributions

Single image super-resolution (SISR) methods have been developed for image process-

ing and analysis tasks such as face recognition [15], medical imaging [141], and video surveillance

[150]. Early SISR methods included bicubic interpolation [61], edge guided interpolation [154], and

Lanczos resampling [48]. These linear methods have not fared well in reconstructing complex im-

age structures resulting in aliasing artifacts and over-smoothed regions in the super-resolved image

[109]. Recent SISR techniques have learnt mappings from low resolution to high resolution im-

ages. Among these are those based on neighbor embedding [37, 36], sparse coding [145, 135, 113],

random forest [121, 94], and convolutional neural networks [109, 81, 47, 114, 134].

Sparse coding based methods learn compact dictionaries from sparse signal representa-

tions and produce compact representations of pairs of low resolution and high resolution image

patches over the learnt dictionaries. Example based methods learn a mapping from low resolution

(LR) patches to their high resolution (HR) mates using external database of images. As demon-

strated in [81], CNN can be used to learn a mapping from LR to HR in an end-to-end manner,

without the requirement of hand-crafted features that are typically necessary in other methods.

Super-resolution methods have also been developed for fingerprints image enhancement

[151, 126, 27]. Yuan et al. [151] proposed a super resolution based fingerprint image enhance-

ment using early stopping machine learning as a regularizer, with boundary constraint added to

ensure regularity of reconstruction. Bian et al. [27] reconstructed the SR image by using sparse

representation with ridge pattern prior based on classification with coupled dictionaries. Singh et

al. [126] used ridge orientation-based clustered coupled sparse dictionaries to reconstruct the SR

image. They used the minimum residue error criterion for choosing a sub-dictionary for a given
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patch, while applying back projection to eliminate the discrepancy in the estimate due to noise or

inaccuracy in the sparse representation.

5.1.1 Contributions

In light of the above related work, the contributions of this chapter are:

• A novel latent fingerprint super-resolution method that uses graph-total variation energy (see

equation (5.3)) of latent fingerprints as a regularizer and prior for optimal weights of the

network . The proposed convolutional neural network directly learns an end-to-end mapping

between low-resolution and high-resolution fingerprint images.

• Enhancement of minutiae and ridge structures are performed using the learned filters. Low

resolution patches are mapped to their enhanced high resolution versions, leading to increased

image resolution and contrast enhancement at the same time.

• Detailed experiments show that super-resolution processing of latent fingerprints achieves

good matching performance even with low quality latent fingerprint images.

Unlike [151, 126] and [27], the proposed method is based on deep CNN and uses graph-total vari-

ation energy of latent fingerprints as a non-local regularizer for learning optimal weights for high

quality image reconstruction. In addition, our model targets latent fingerprints that are more diffi-

cult to process than rolled fingerprints considered in [151, 126] and [27]. Using graph-total variation

energy of latent fingerprints as a regularizer and prior for optimal weights of the deep CNN distin-

guishes our model from other CNN based single image super-resolution algorithms presented in

[109, 81, 47, 114] and [134].
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5.2 Technical Approach

The proposed latent fingerprint super-resolution convolutional network consists of 15

weight layers, 15 ReLu layers, and 1 Regression layer. We use 64 filters each of which is of size 3 x

3 x 64. Each filter operates on 3 x 3 spatial region across 64 channels (feature maps). The configu-

ration of the network is depicted in Figure 5.2. The first layer operates on the input image. The last

layer is used for image reconstruction and consists of a single filter of size 3 x 3 x 64. Staring with

a bicubic interpolated low-resolution image as input, the network models the details of the input

image and predicts a residual image. The super-resolved image is obtained by adding the residual

image to the input image. To keep the sizes of all feature maps from shrinking as we go through

the layers of the network, zero padding is done before convolutions. Kim et al. [81] exploited

contextual information over large image regions by cascading small filters in a deep convolutional

neural network. They used effective training procedure that learnt the difference between HR and

LR images (residuals) at multiple image scales. As reported in [81], using this strategy enables

correct prediction of pixels near image boundaries. The proposed network is inspired by [81] but

uses a patch based prior as a regularizer and has 15 weight layers instead of 20 used in [81]. We per-

formed a multi-scale (2, 3, and 4) training of our model, producing a network with super-resolution

machines of multiple scales capable of performing super-resolution at multiple scale factors without

appreciable performance degradation.

5.2.1 Network Depth

The choice of the network depth of LAFISR was empirically determined by training and

testing networks of depth ranging from 5 to 21 weight layers (counting convolutional ) or 10 to
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Figure 5.2: Proposed Network consisting of convolutional and ReLU layers cascaded to a depth
of 31. A low resolution latent fingerprint Lr is fed to the network. It is transformed into a high-
resolution Lh image after passing through the layers of the network. The network predicts a residual
image Iresidual which is added toLr. The resulting image (Lr+Iresidual) is enhanced by amplifying
the structures/details in the latent fingerprint image for reliable feature extraction.

42 (counting both convolutional and nonlinearity layers), using 20 fingerprint images from NIST

SD4 database. After each experiment, we increase the depth by 1 for the next experiment. Peak

Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), and Naturalness Image Quality

Evaluator (NIQE) defined in section 5.3.1 were used to compare the performance of the various

architectures. The plots of PSNR, SSIM and NIQE results for three scale factors (2, 3, 4) are

shown in Figure 5.3. For each scale factor, the performance increases rapidly as depth increases,

up to a certain depth (15 in our experiment), before flattening out. We also show the PSNR, SSIM,

NIQE and computational cost for scale factor 2 for depths 5 to 21 in Table 5.1. Since the minimal

gain in performance after depth 15 is not commensurate with the computational time needed for

convergence, we chose the network with 15 weight layers.

5.2.2 Patch Based Regularization

Non-linear filtering that is adaptive to image content enables non-local averaging of im-

age features [107]. Such filters are useful in averaging pixels in an image by measuring the distance
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Figure 5.3: LAFISR network depth selection: SF stands for scale factor. The performance in terms
of PSNR and SSIM increases rapidly as depth increases, up to depth 15 weight layers (counting only
convolutional layers) and depth 30 (counting both convolutional layers and nonlinearity (ReLU)
layers), and flattens. The NIQE decreases (less is better) as depth increases and also flattens after
a depth of 15 weight layers. For depths 16 through 21 weight layers, the performance gain was
minimal and the model took longer to converge. A network with 15 weight layers was chosen
because it gave the best performance compared to the other explored networks with lower of higher
weight layers.

between image patches. Given that image super-resolution is an ill-posed problem, prior infor-

mation regarding the image to restore such as typical structures (features) in the image and the

relationship between the structures is essential to the recovery of missing information. Inspired by

this observation, we propose using this prior information as a regularizer for the latent fingerprint

super-resolution problem.

Let G be a weighted graph with edge (a,b) that connects pixels a, b in image I, and let

G(a, b) be the weight of the edge. The graph-total variation energy of image I according to G is

defined as [107]:

JG(f) =
∑
a

||∇Ga f ||, (5.3)

where ||.|| is the euclidian norm over Rn, f is a function,∇Ga f ∈ Rn is a gradient vector defined for

every pixel a in I,

∇Ga f = (
√
G(a, b)((f(b)− f(a)))b (5.4)
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Depth PSNR SSIM NIQE Training (mins.) Testing (secs.)

5 18.153 0.8244 5.654 150.25 0.25

6 19.958 0.8685 4.324 166.15 0.32

7 20.635 0.8956 4.255 178.05 0.35

8 22.256 0.9057 4.295 183.65 0.38

9 24.382 0.9148 4.138 196.08 0.45

10 26.334 0.9228 4.037 210.54 0.49

11 29.734 0.9336 4.027 231.16 0.53

12 30.813 0.9466 4.025 242.55 0.65

13 31.968 0.9594 4.024 250.86 0.71

14 32.959 0.9618 4.019 256.45 0.75

15 34.565 0.9695 4.009 320.08 0.85

16 34.566 0.9696 4.007 375.21 1.52

17 34.567 0.9696 4.007 415.44 1.85

18 34.567 0.9697 4.006 500.05 1.96

19 34.568 0.9701 4.006 610.56 2.34

20 34.568 0.9702 4.005 713.45 3.15

21 34.569 0.9702 4.004 825.53 4.42

Table 5.1: Network depth vs. Computational Cost for scale factor 2. Each experiment involved 50
epochs, each 50 iterations for a total of 2,500 iterations. The same network parameters specified
in section 5.3.2 were used in all the experiments. The row with the optimal depth is highlighted in
bold.
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We compute the weight between two pixels in the graph as the similarity between their

3x3 patch neighborhoods. For each pixels i in image I, its neighborhood patches are defined as

3x3 patches centered on i. We define the regularization functional as the weighted sum of square

differences between all the pixel pairs in I. This definition may pose challenges in certain problem

domains where initial images to use in determining the weights may not be available [146]. In our

case, explicit dependence of the regularization penalty on predetermined weights is not an issue

since latent fingerprints are available for computing the weights.

To obtain optimal pixel neighborhood window and patch sizes for computing the weights, we tried

window size 3x3, 5x5, 7x7, 9x9 and 11x11, and patch size 5x5, 7x7, 9x9, 11x11 and 13x13. For

each experiment, we recorded the computational cost of the regularizer, the peak signal-to-noise

ratio (PSNR), and the structural similarity index (SSIM) of the super-resolved fingerprint. The

results of the experiments are shown in Table 5.2. A plot of the results for the window sizes and

the optimal patch size (7x7) based on the results in Table 5.2 are shown in Figure 5.4. It can be

observed from the figure that using 3x3 as the pixel neighborhood window size and 7x7 as the patch

size for the patch based regularization gave the best performance. The results are in line with the

observation in [140] that the computational cost of the patch based regularization depends heavily

on the patch size and neighborhood window size. Moreover, using large patches can prevent the

algorithm from identifying small but relevant image features that can contribute to the quality of the

output image.

We calculate the weight function wij on the low resolution latent fingerprint using patches:

wij(x̃) = exp

(
− ‖fi(x̃)− fj(x̃)‖h

δ2

)
(5.5)

where fj(x) is a feature vector consisting of intensity values of all pixels in the patch
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Figure 5.4: Neighborhood window size selection. The neighborhood window size is used in com-
puting the weight between two pixels in an image patch (see equation (5.5). All plots are based on
the specified window size and 7x7 image patch size. The plots show that using 3 x 3 as the pixel
neighborhood window size and 7 x 7 as the patch size gave the best computational cost (lower is
better), PSNR (higher is better) and SSI (higher is better). Experiments were performed with 2x
upscaled input images.

centered at pixel j. The patch-based distance between pixel j and k is measured by

‖fj(x)− fk(x)‖h =

√√√√ np∑
p=1

hp(xjp − xkp)2 (5.6)

where jp denotes the pth pixel in the neighborhood patch centered at j and kp denotes the pth pixel

in the neighborhood patch centered at pixel k. np is the total number of pixels in a patch. hp is the

normalized inverse spatial distance between pixel jp and pixel j and is used as a positive weighting

factor [140] with
np∑
l=1

hl = 1. (5.7)

5.3 Experiments

In this section, we provide an evaluation of the performance of the proposed algorithm

on three databases: one latent fingerprint database (NIST SD27) and two fingerprint databases
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Table 5.2: Image patch size and neighborhood window size selection. The computational cost,
SSIM and PSNR values for the various window size / patch size combinations are shown in the
table. The 3 x 3 window size with 5 x 5 patch size has the best computational cost (lower is better),
but using 3 x 3 as the neighborhood window size and 7 x 7 as the patch size, gave the best PSNR
(higher is better) and SSIM (higher is better) performance. Experiments were performed with 2x
upscaled input images. Based on the results of this experiment, 3 x 3 window size and 7 x 7 patch
size were selected for patch based regularization of the proposed model.

(FVC2000 DB3 B and FVC2006 DB1 B). We describe performance evaluation metrics, the datasets

used for training and testing, and the training parameters. Since there is no existing latent fingerprint

SR method to compare with, we first provide benchmark results of the proposed model on NIST

SD27 latent fingerprint database and then compare our method with the state-of-the-art fingerprint

single image SR methods.
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5.3.1 Performance Evaluation Metrics

We used the following image quality metrics to evaluate the performance the LIFSR net-

work.

• Peak Signal-to-Noise Ratio (PSNR): PSNR is used as a quality measurement between an origi-

nal image and reconstructed image. Larger PSNR values indicate better quality of the reconstructed

image. PSNR is defined via the mean squared error (MSE):

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

[K1(i, j)−K2(i, j)]
2, (5.8)

where K1 is the original image and K2 is the reconstructed image. PSNR in decibel (dB) is defined

as:

PSNR = 10 log10

(
V 2

MSE

)
, (5.9)

where V is the maximum possible pixel value of the image.

• Structural Similarity Index (SSIM): SSIM is used to assess the visual impact of luminance,

contrast and structure of an image against a reference image.

SSIM(K1,K2) = [`(K1,K2).ς(K1,K2).µ(K1,K2)], (5.10)

where K1,K2 are the test and reference images, respectively, the comparison functions ` is lumi-

nance, ς is contrast, and µ is structure. The closer to 1 the SSIM value is, the more similar the test

and reference images are.

• Naturalness Image Quality Evaluator (NIQE): NIQE is a measure of perceptual image quality.

Smaller NIQE scores indicate better perceptual quality. NIQE is a no-reference quality metric that

is in agreement with a subjective human quality score [102].
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5.3.2 Training Validation and Testing

Training Dataset

The training dataset was created from fingerprint images in the NIST SD4 database. This

database consists of 2,000 fingerprint images. Each image is 512x512 pixels at 120 dpi. We ran-

domly selected 1000 images from the database to create two datasets for training and validating

the network. The training dataset consists of low-resolution images that have been upscaled us-

ing bicubic interpolation. The desired network responses (response dataset) used for validation are

the residual images obtained by calculating the difference between the original images and their

corresponding upscaled versions. The training data was fed to the network using a random patch

extraction algorithm that extracted random corresponding patches from the training dataset (con-

taining 1000 upscaled images) and response dataset (containing 1000 residual images).

Evaluation Datasets

The following three databases were used in evaluating the proposed model:

• NIST SD27 [7]: This latent fingerprint database was acquired from the National Institute of Stan-

dards and Technology (NIST). It contains images of 258 latent crime scene fingerprints and their

matching rolled tenprints. The 258 latent fingerprint images are at 500 dpi and consist of 88 Good,

85 Bad and 85 Ugly quality latent fingerprint images. The quality assigned to each image was

based on the condition of the image in the location in which the minutia was positioned, and on

how clearly identifiable the type of the minutia was in the image [7]. NIST has discontinued the

distribution of SD27 database but has not announced a replacement.

• FVC2000 DB3 B: This fingerprint database is a publicly available database containing 80 finger-
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print images at 500 dpi.

• FVC2006 DB1 B [34]: This is a low resolution publicly available fingerprint database containing

1800 fingerprint images at 250 dpi.

Training Parameters

We train the proposed model with 0.1 initial learning rate, 0.9 momentum and batch size

of 64 and weight decay of 0.0001. Network initialization is done using a zero-mean Gaussian

distribution with standard deviation
√

2
Ln

[68], where Ln in the number of layers in the network.

We also initialize the bias to 0. Training was done for 50 epochs, with learning rate decreased by

a factor of 10 after every 10 epochs. Our algorithms were implemented in Matlab R2018b running

on Intel Core i7 CPU with 8GB RAM and 750GB hard drive. The implementation relied on Matlab

Deep Learning Toolbox. Training of the final network configuration took 10.5 hours to converge.

Figure 5.5 shows LAFISR SR results for sample images from NIST SD27 database. The

residual image learnt by LAFISR as well as the ROIs before and after SR are shown in columns 3

and 4, respectively. The values obtained for the three performance evaluation metrics are also shown

in the figure. Figure 5.6 shows sample feature maps at different layers of the LAFISR network. It

can be observed that the filters in deeper layer of the network show more details.

5.3.3 Benchmark on NIST SD27

We performed experiments using NIST SD27 database to evaluate the effectiveness of

LAFISR on latent fingerprint image processing.
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Figure 5.5: Results for sample NIST SD27 latent fingerprints. The original images are shown in
column 1, the residual images learnt by the model are in column 2, the segmented ROIs before SR
are in column 3, while the column 4 contains the segmented ROIs after SR. The values of the quality
metrics obtained are shown in column 5.

Figure 5.6: Sample feature maps at different layers (1, 3, 5, 6, 7, 10, 11) of the network. As can be
seen from the figure, filters in deeper layers (10, 11) of the network show more details.
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Latent Fingerprint Image Enhancement

To determine if LAFISR can be an effective pre-processing step for latent fingerprint fea-

ture extraction and matching, we evaluated its impact on improving the quality of latent fingerprint

images. Using NIST MINDTCT [4] open source software, we assessed the quality of sample latent

fingerprint region-of-interest (ROI) before and after SR with LAFISR by counting the number of

minutiae detected in the before and after samples. Figure 5.7 shows the results for a sample latent

fingerprint (NIST SD27 B106L8). For each of the MINDTCT minutiae quality settings shown,

more features (minutiae) are detected after the latent fingerprint is enhanced via SR with LAFISR.

This is due to improvement in the quality of the latent fingerprint after SR. Figure 5.8 is a plot of

minutiae count against MINDTCT [4] minutiae quality settings for 20 randomly selected latent fin-

gerprints from NIST SD27 database. It also shows that more features are detected by MINDTCT

[4] after SR with LAFISR.

LAFISR vs. Bicubic Interpolation

We present quantitative comparison of bicubic interpolation and LAFISR methods in re-

constructing high-resolution versions of latent fingerprints at three scale factors 2, 3 and 4. The

three scale factors are widely used in SR comparisons. Table 5.3 shows the results using PSNR,

SSIM, and NIQE quality metrics, for all 268 images in NIST SD27 database, as well as the three

image categories (Good, Bad, Ugly). LAFISR outperforms Bicubic interpolation in all categories

and all scale factors.
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Figure 5.7: Before and after super-resolution (SR) minutiae quality and count for a sample NIST
SD27 latent fingerprint. We used NIST MINDTCT [4] open source software to assess the quality
and the number of minutiae in the region-of-interest (ROI) before and after SR. Top row shows
the number of minutiae detected in the ROI of the input latent fingerprint for three minutiae quality
settings (> 0, > 0.2 and> 0.3). The bottom row is for the ROI after SR. The results show that more
features are detected after the latent fingerprint is super-resolved. This is due to the improvement in
the quality of the latent fingerprint after SR. The images with minutiae indicated on them have been
slightly enlarged for visual appeal. Bifurcations and Ridge endings are annotated in red and green
color, respectively.

Figure 5.8: Latent fingerprint vs. super-resolved latent fingerprint minutiae counts. Please note that
minutiae count determined using MINDTCT [4] may not be accurate. The point of the experiment is
to show that with super-resolution, more features (minutiae) can be detected in the latent fingerprint.

Matching Performance

LAFISR can serve as an effective pre-processing step for latent fingerprint matching. In

this section, we evaluate the matching performance to demonstrate the effectiveness of LAFISR in
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Dataset Scale Bicubic Interpolation Proposed Method

PSNR / SSIM / NIQE PSNR / SSIM / NIQE

NIST SD27 (Good: Count=88) x2 35.8808 / 0.9683 / 4.9862 42.4743 / 0.9909 / 4.0395

x3 29.1924 / 0.8866 / 5.7654 42.6355 / 0.9913 / 3.9810

x4 27.4678 / 0.8148 / 6.2891 42.9221 / 0.9918 / 4.0098

NIST SD27 (Bad: Count=85) x2 34.6682 / 0.9650 / 4.6033 42.6198 / 0.9762 / 3.2948

x3 28.2405 / 0.8788 / 5.4004 42.7423 / 0.9764 / 3.2814

x4 26.5369 / 0.8100 / 5.5461 42.9108 / 0.9763 / 3.2868

NIST SD27 (Ugly: Count=85) x2 34.5318 / 0.9277 / 5.0184 44.1086 / 0.9946 / 4.1037

x3 28.7839 / 0.8112 / 6.0570 44.2278 / 0.9950 / 4.1150

x4 27.6857 / 0.7365 / 5.9128 44.3969 / 0.9953 / 4.0884

NIST SD27 (Good, Bad, Ugly: Count=258) x2 35.0269 / 0.9537 / 4.8693 43.0676 / 0.9872 / 3.8127

x3 28.7389 / 0.8589 / 5.7409 43.2019 / 0.9876 / 3.7925

x4 27.2302 / 0.7871 / 5.9160 43.4099 / 0.9878 / 3.7950

Table 5.3: Average PSNR/SSIM/NIQE for scale factors 2, 3 and 4 on NIST SD27 database Good,
Bad and Ugly image categories. LAFISR outperforms Bicubic interpolation on all three perfor-
mance measures. For PSNR and SSIM, bigger is better, while smaller is better for NIQE.

improving matching results. We compare the matching results obtained using the dataset containing

original NIST SD27 latent fingerprints and a dataset containing super-resolved versions of NIST

SD27 latent fingerprints. For this experiment, we used a reference dataset of 5,257 images consisting

of 257 rolled fingerprints in NIST SD27 database and 5,000 synthetic fingerprints generated with

SFinGe (Synthetic Fingerprint Generator) [10]. Synthetic fingerprints have been shown to be very

useful for training and testing purposes, and have been used for technology evaluations [2]. Figure

5.9 shows the results of the evaluation. There is slight improvement in matching performance when

the super-resolved latent fingerprints are used. The improvement increases as we move from Good

quality latent to Ugly quality latents. The results highlight the promise of LAFISR in pre-processing

latent fingerprints, especially for low quality ones.
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Figure 5.9: NIST SD27: CMC plots of the proposed approach in matching all, as well as the three
categories of latent fingerprints in NIST SD 27 database against a reference database of 5,257 rolled
fingerprints. (a) All (258), (b) Good (88), (c) Bad (85), and (d) Ugly (85) latent fingerprints. The
plots show that matching performance is improved when the super-resolved latent fingerprints are
used. The amount of improvement increases as we move from Good quality latent to Ugly quality
latents.

Quality Prediction

We also compare the quality predictions of the model in [54] using the super-resolved

latent fingerprints as input with the VID, VEO, and NV value determination by latent examiners

[70], the quality value predictions by Expert Crowd [43] and the quality predictions of the model

in [54] using the original latent fingerprints as input. As stated in [54], NIST SD27 database is the
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VID VEO NV

Latent Examiners [70] 155/210 11/41 0/7

Chugh et al. (Expert Crowd) [43] 161/210 5/41 0/7

Ezeobiejesi et al. [54] 164/210 4/41 0/7

LAFISR 166/210 7/41 0/7

Table 5.4: NIST SD27 latent fingerprints retrieved at Rank-1 using a state-of-the-art latent AFIS.
The results show that using LAFISR super-resolved latent fingerprints leads to improvement in
predicting latent AFIS performance for VID (166/201). Latent examiners obtained better VEO than
LAFISR 11/41 against 7/41.

only latent database with available latent value determinations by latent examiners. According to

[70], there are 210 VID, 41 VEO, and 7 NV latents in NIST SD27. A total of 166 latents (155 VID

, and 11 VEO) out of the 256 latents in NIST SD27 are retrieved at Rank-1 using the state-of-the-art

latent AFIS [43]. We follow the protocol used in [43] and the steps outlined in [54]. Table 5.4

shows a comparison of the number of latents retrieved at rank-1 using value determination by latent

examiners [70], the predicted latent value from [43], the predicted latent quality from [54], and the

predicted latent quality using LAFISR super-resolved latent fingerprint. This performance compar-

ison was done using a reference dataset containing 5,257 fingerprints created from 5,000 synthetic

fingerprints generated with SFinGe, and the 257 rolled images in NIST SD27 database. With re-

spect to predicting latent AFIS performance, the quality prediction using LAFISR super-resolved

latent fingerprints is better than the value determination latent examiners and value prediction by

both Expert Crowd and the model in [54].
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5.3.4 Comparison with Other Methods

Finally, we present the qualitative and quantitative performance comparison our model

with the sate-of-the-art fingerprint image super-resolution models. To the best of our knowledge,

this is the first work that uses super-resolution for latent fingerprint image enhancement. Since there

is no existing SR work on latent fingerprints, we present both quantitative and visual comparison of

the performance of our model with existing fingerprint super-resolution papers [126] and [27]. We

present comparison with [126, 27] since the authors used a publicly available fingerprint databases

(FCV2000, and FCV2006) for performance evaluation. For quantitative comparison we use two

quality measures namely PSNR and SSIM.

Table 5.5 shows the PSNR and SSIM values for sample images from FVC2000 database

for the method used in [126] and the proposed method. The PSNR and SSIM for [126] are from

published results. For all scale values, the proposed method achieves higher PSNR and SSIM

(higher is better). The results show that the quality of the SR is better with our proposed method. The

results also show that the performance of our method is almost stable across the scales factors. This

is because LAFISR is trained with scale augmentation [81] and is, therefore, capable of performing

SR at multiple scale factors without appreciable performance degradation.

Figures 5.10 show visual comparison of the SR images reconstructed by SR methods in

[126, 27] and the proposed method for scale factors 2, 3 and 4. The results show that our proposed

method performs better than existing SR fingerprint enhancement algorithms both in terms of high

resolution details and minimization of artifacts. Also, the SR images from our algorithm are visually

closer to the respective input images.
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Image Scale Singh et al. [126] Proposed Method

PSNR / SSIM PSNR / SSIM

FVC2000 DB3 B 101 1

x2 - / - 42.2553/0.9976

x3 22.6510/0.7831 43.3887 / 0.9981

x4 22.1582/0.7123 44.2847 / 0.9986

FVC2000 DB3 B 105 1

x2 - / - 44.0220 / 0.9974

x3 19.5281/0.7093 44.3530 / 0.9978

x4 19.3793/0.6500 44.7160 / 0.9980

Mean (FVC2000 DB3 B: 50 Images)

x2 - / - 43.1386 / 0.9975

x3 22.1869/0.7698 43.8708 / 0.9982

x4 21.9754/0.7021 44.5003 / 0.9984

Mean (FVC2006 DB1 B: 50 Images)

x2 - / - 42.8115 / 0.9875

x3 - / - 42.9758 / 0.9965

x4 - / - 43.3417 / 0.9893

Table 5.5: PSNR values (in dB) and SSIM for the SR output images by Singh et al. [126], and our
method at scale factors 2, 3 and 4. Our Method outperforms that of Singh et al. (higher is better).
No results for scale factor 2 are provided in [126]. The performance of our model is also stable
across scale factors because it is trained with scale augmentation making it capable of performing
SR at multiple scales without appreciable performance degradation.
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Figure 5.10: A visual comparison of the SR results of different methods at scale factors 2, 3 and 4 in
rows 1, 2 and 3, respectively, for sample real low resolution fingerprint 110 2 from FVC2006 DB1 B
database [34]. The original image at the various scale factors is shown in column (a). Columns (b)
through (f) show the SR results from various methods: (b) Bicubic interpolation, (c) Singh et al.
[126], (d) Bian et al. [27], (e) Our method (LAFISR), and (f) enhanced output from LAFISR. The
results show that LAFISR produces significantly sharper images than the other algorithms. The
images in columns (c) and (d) are from the published results [126, 27].

5.3.5 Patch Regularized vs. Non Patch Regularized LAFISR

We performed experiments to investigate the impact of patch based regularization on the

performance of the proposed model. We trained two models, one with patch based regularization

and the other without it. We tested the two models using five images selected from NIST SD27

database. Table 5.6 shows the PSNR and SSIM values obtained for the sample latent fingerprints

from NIST SD27 database for the two models. The results show that better performance is achieved

when the model is trained with patch based regularization. Figure 5.12 shows a visual comparison

of the SR results obtained from the two models for a sample latent fingerprint from NIST SD27

database. Sharper super-resolved latent is obtained using patch regularized LAFISR.
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Figure 5.11: A visual comparison of the SR results of different methods at scale factors 2, 3 and 4 in
rows 1, 2 and 3, respectively, for sample synthetic low resolution fingerprint 101 1 from FVC2000
DB3 B database. The original image at various scale factors is shown in column (a). Columns (b)
through (e) show the SR results from various methods: (b) Bicubic interpolation, (c) Singh et al.
[126], (d) Bian et al. [27], and (e) Our method (LAFISR). It can be seen that LAFISR produces
significantly sharper images than the other algorithms. The images in columns (c) and (d) are from
the published results [126, 27].

LAFISR Computational Cost

The training of the final configuration of LAFISR (15 convolutional layers, 15 ReLU

layers, 1 regression layer) took 10.5 hours to converge. The average processing time for a single

image SR using the trained model is 1200ms. Given that reconstruction accuracy is of utmost

importance for improving matching results, the reconstruction accuracy of our proposed model is

worth the computational cost. Computing the regularization penalty takes 40% of the training time.

The regularization penalty depends on predetermined weights between pixels in the image patches
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Image LAFISR LAFISR + Patch Reg.

PSNR / SSIM PSNR / SSIM

G056L9 32.2267 / 0.9521 45.8854 / 0.9913

G053L6 32.1543 / 0.9346 44.9587 / 0.9887

G055L3 33.2882 / 0.9526 43.9254 / 0.9783

B106L8 32.6543 / 0.9352 43.4436 / 0.9794

U288L6 29.4521 / 0.9416 42.1124 / 0.9798

Table 5.6: PSNR and SSIM values for sample latent fingerprints from NIST SD27 database obtained
with patch based regularization (LAFISR + Patch Reg.), and without patch based regularization
(LAFISR). Better results were obtained with LAFISR + Patch Reg.

Figure 5.12: Reconstruction results on sample NIST SD27 latent fingerprint. The original image
is shown on the left, the super-resolved version using LAFISR is shown in the middle, while the
super-resolved one with LAFISR + Patch regularization is shown on the right. The figure shows
that sharper super-resolved latent is obtained using patch regularized LAFISR.

used to train the model. This weight between two pixels is a measure of similarity between the 3x3

patch neighborhoods centered on the specified pixels. The training (re-training) time can be reduced

by pre-computing the regularization penalty weights and doing a table lookup during training. This

strategy will be considered in future work.

131



5.4 Summary

This chapter presented a framework (LAFISR) for latent fingerprint image super-resolution

using deep neural networks. The proposed algorithm used graph-total variation energy of latent fin-

gerprints as priors to regularize the ill-posed super-resolution problem. The regularizer penalized

the model towards learning optimal weights, leading to high quality image reconstruction results.

We evaluated the quality of the super-resolved latent fingerprint images by comparing the match-

ing results obtained using a dataset containing original NIST SD27 latent fingerprints and a dataset

containing super-resolved versions of the same images. The results showed improved matching per-

formance using LAFISR pre-processed latent fingerprints, especially for low quality latents. Qual-

itative and quantitative performance comparison of our model with other fingerprint image super-

resolution models highlighted the superior performance of LAFISR. To the best of our knowledge,

this is the first work that used super-resolution for latent fingerprint image enhancement.
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Chapter 6

Conclusions and Future Work

This dissertation presented deep learning models and algorithms developed in the context

of machine learning for automatic latent fingerprint image quality assessment, quality improvement,

segmentation and matching. To the best of our knowledge, this is the first deep learning based

end-to-end automatic framework that addresses the problems inherent in latent fingerprint quality

assessment, quality improvement, segmentation and matching. The framework includes a unified

frequency domain based model for latent fingerprint matching using image patches, a novel latent

fingerprint super-resolution model that uses a graph-total variation energy of latent fingerprints as a

non-local regularizer for learning optimal weights for high quality image reconstruction, as well as

techniques that help speed-up convergence of a deep neural network and achieve a better estimation

of the relation between a latent fingerprint image patch and its target class.

Latent fingerprint comparison is increasingly relied upon by law enforcement to solve

crime, and prosecute offenders. The increasing use of this service places new strains on the limited

resources of the forensic science delivery system. Currently, latent examiners manually mark the
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region of interest (ROI) in latent fingerprints and use features manually identified in the ROI to

search large databases of reference full fingerprints to identify a small number of potential matches

for subsequent manual examination. Given the large size of law enforcement databases containing

rolled and plain fingerprints, it is very desirable to perform latent fingerprint processing in a fully

automated way. The framework and models presented in this dissertation will eliminate the manual

processing of latent fingerprint images and lead to significant improvement in the matching accuracy

of latent fingerprints. The automatic feature extraction performed with our deep learning model

will improve the repeatability and reproducibility of latent fingerprint identification and ultimately

reduce the manual and tedious work done by latent examiners.

6.0.1 Future Work

There are some interesting extensions of the methods presented in this dissertation. For

quality assessment, our future work will involve using NIST Finger Image Quality (NFIQ 2.0) as a

baseline for mapping latent fingerprint quality assessment to recognition performance. We intend

to explore the performance of the patch based latent fingerprint matching presented in chapter 4 on

a fingerprint database with mixed images resolutions. Future extensions of the work presented in

chapter 5 will include learning the regularization priors of the weights of the neural networks and

designing learned filters such that input images can be directly mapped to high resolution versions

without the interpolation stage.
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[96] Zoltán Makó. Approximation with diffusion-neural-network. In 6th International Symposium
of Hungarian Researchers on Computational Intelligence, pages 18–19, 2005.

[97] D. Maltoni, D. Maio, A. K. Jain, , and S. Prabhakar. Lfiq: Latent fingerprint image quality.
In Handbook of Fingerprint Recognition. Springer Publishing Company, Incorporated, 2009.

[98] B.B. Mandelbrot. The Fractal Geometry of Nature. Einaudi paperbacks. Henry Holt and
Company, 1983.
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