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EPIGRAPH

Luck is what happens

when preparation meets opportunity.

—Seneca

Clear eyes. Full hearts.

Can’t lose.

—Eric Taylor

You can kill a man but you can’t kill what he stands for.

Not unless you first break his spirit. That’s a beautiful thing to see.

—Cigarette Smoking Man
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ABSTRACT OF THE DISSERTATION

Toward a Sensor-Actuation Software Platform

by

Kaisen Lin

Doctor of Philosophy in Computer Science

University of California, San Diego, 2012

Rajesh K. Gupta, Chair

Control systems are critical in many aspects of human life and are used

in both large infrastructure and every-day appliances. Examples include factory

control for chemical processes, HVAC control in buildings, cruise control in auto-

mobiles, spin cycles in washing machines, and even smart cooking in microwaves.

However, large scale control of physical environments has largely been done with

SCADA systems, which are only practical for large enterprises and often consist of

monolithic systems designed for specific functions HVAC or factory automation.

The past decade has seen the emergence of wireless sensor networks be-

ing deployed to monitor all kinds of environments including buildings, waterpipes,

cities, and wilderness areas. These sensor networks offer cheap monitoring capa-

bilities without the need for a large amount of fixed infrastructure. Recent work in

xiv



some of these areas has augmented the wireless sensor network environment with

control, particularly in homes and buildings.

This dissertation focuses on combining control systems with wireless sensor

networks to enable commodity sensor-actuator networks that can be incrementally

deployed in any environment. These sensor-actuator networks can accommodate

not just a single sensor-actuation application, but a set of them. An important

challenge here is how such a group of sensors and actuators are integrated in a

sensor network with commodity hardware and programmed by the end user to

achieve embedded control objectives. This dissertation specifically addresses the

latter – the programming – problem. We show methods and build tools that enable

an end user to write sensor-actuator network control applications and address

challenges specific to incorporation of actuation in modern sensor networks.
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Chapter 1

Introduction

1.1 Control Origins

Automation has been an ambition of man since the antiquities. The Romans

were able to successfully measure time by carefully regulating the flow of water1,

and were also the first to prototype a steam engine. However, it wasn’t until the

end of the Industrial Revolution that James Maxwell published a paper on “On

Governors” and launched the field of modern control theory, which led to much of

the automation technology we see today.

Although control theory was first widely used to optimize the amount of

steam for regulating a steam engine, it is now used in a variety of applications

including process control in factories, cruise control in automobiles and airplanes,

and even water regulation in washing machines. A practical view of embedded

control is that it seeks to steer the values of controllable input variables to a

system by observing timing evolution of system output variables. For instance,

consider the cruise control in a car where the input variable is the engine throttle

and the output variable is the speed of the vehicle. Control theory falls into two

main categories: closed-loop and open-loop control. Closed-loop control involves

continuously sensing an output variable as input variables are being adjusted.

An example of this is a home thermostat which turns on a heater if the sensed

1Known as a water clock.

1
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temperature is below a certain threshold. Open-loop control, in contrast, does not

have such feedback and makes decisions solely based on a mathematical model of

how input/output variables relate. In practice, a combination of both closed-loop

and open-loop is used.

While control theory focuses on the decision of which input variables to

manipulate in order to have desired effects on output variables, a control system is

required to handle the physical-world devices that represent the variables. In the

cruise control example, a control system manages the fuel injection for an engine

for controlling throttle, and uses the spedometer for measuring speed. Control

systems are typically implemented with computers, embedded systems, and other

electronic devices. An example of a large industrial control system is a Supervi-

sory Control and Data Acquisition (SCADA) system. SCADA systems include a

human-machine interface to give human operators visibility and control into the

system, while programmable logic controllers (PLC) are used to control individ-

ual devices. A PLC is a specialized rugged computer with many input/output

ports designed for control applications. We examine these further for insights into

how embedded control systems can be devised to leverage advances in commodity

sensing, networking devices.

1.2 Prior Work

Sensor-actuation can be divided into three different levels. At the applica-

tion domain level, these focus on sensor-actuation solutions specific to deployment

scenarios such as camera control for tracking and active structural monitoring. At

a slightly more generic level are infrastructure-level systems. These differ from

application domain solutions by creating a system to address a class of control

problems such as building HVAC, pipeline control, or robotics. Finally, the solu-

tions in the most general level address any kind of sensor-actuation system and

encompass both control theory and control systems. These solutions have been the

focus of the sensor networking and cyber-physical systems research community.
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1.2.1 Application-specific Solutions

Specific application domains devise their own methods for dealing with

sensor-actuator systems. As an example, pan-tilt-zoom (PTZ) applications are

designed for people tracking [CDBF04] and/or surveillance [KKP+06]. For people

tracking, a set of PTZ cameras are used to track multiple people. Unlike tracking

a single person, more complex algorithms are necessary to identify and prioritize

the people being tracked because adjusting a PTZ camera has a physical delay

from determination of its setting to its effect on the camera. One example policy

is to prioritize detecting people that have not yet been identified by the camera

before people that have already been detected. Surveillance applications with

multiple PTZ cameras have similar requirements. In PTZ actuation applications,

control of the actual camera is usually done through a device specific interface,

such as through a web browser [Axi]. The logic of the application is written in the

developers preferred language (e.g. MATLAB) and then special code interfaces

with the device. in these applications, there are no actuation externalities. When

a PTZ camera adjusts, the only important changes are the sensed image and the

objects detected in the image.

Another application example is structural health monitoring via active sens-

ing piezoelectric patches. In this application, an ultrasonic wave is sent through a

structure and then sensed to determine if the integrity of the structural element

has been compromised. Based on the sensor data, more ultrasonic waves are used

to localize the damage [WSA01, FT10]. This technique is even done to diagnose

the integrity of the sensor-actuator infrastructure itself [OPFF09]. Wave emis-

sion is done via a transducer on that is controlled from a microcontroller, and

the bulk of the signal processing is done offline in MATLAB after data has been

collected. Similar to the camera tracking applications, there are no significant ex-

ternalities. The piezoelectric devices only affect the structure for a limited amount

of time as the wave is propagating. However, many deployments for other ap-

plications have to control multiple actuation devices that affect multiple sensors.

These situations require more sophisticated modeling and programming methods.

Application-specific solutions are also not suitable for adapting for radically other
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deployments.

1.2.2 Infrastructure-level Solutions

Infrastructure solutions are designed to address many actuators and sensors

simultaneously. An HVAC system is one major example of an infrastructure-level

system. One of the goals of HVAC systems is to provide occupant comfort while

minimizing energy usage [Sal05]. Programming is done using proprietary soft-

ware (e.g. from Johnson Controls), which allows building administrators to create

setpoints on certain variables. Achieving these setpoints is done via a proportional-

integrated-derivative (PID) controller, that is directly related to a variable in that

zone. For example, a temperature setpoint can be set for a specific room in a build-

ing, which will indirectly control dampers and fans that affect that room. HVAC

is usually done in a hierarchical nature with a central plant working in concert

with buildings and individual thermal zones. Because of the hierarchical nature,

an actuator change in the central plant affects all thermal zones in all buildings,

thus complicating actuation schemes and requiring SCADA system sophistication

(e.g. multi-level control with dependencies).

Another example of an infrastructure system is gas pipelines. Gas pipelines

must travel long distances to carry natural gas from the source to household con-

sumers. The goal of gas pipeline control is to satisfy demand to all customers

even during peak times, while minimizing the costs of processing, transporting,

and storing natural gas. Gas pipeline infrastructure is composed of wide inter-

state lines that connect to narrower intrastate lines with compressor stations and

storage sites along the way [Ene07]. Compressor stations propel the natural gas

through the pipelines while storage sites are used to supply gas to consumers dur-

ing times of peak and bursty demand. Valves are installed to redirect flow when

necessary. Various pressure sensors are also installed along the pipeline to moni-

tor pipeline flows. For example, a sudden pressure drop in a pipe can indicate a

rupture meaning the compressor stations should stop propelling gas through the

pipeline network and relevant valves should be closed. However, shutting down one

section of the pipeline necessarily affects all sections downstream from it, which
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may lead to service delivery problems. There are also many other building and in-

frastructure applications such as control of factories [JM86], nuclear power plants

[MRVB00], water pipelines [LCL+12], and sewage pipelines [MLE08]. However,

they all share similar properties in that a single change in part of the system has

effects elsewhere. A SCADA system seeks to capture important dependencies as

described next.

SCADA Systems

A Supervisory-Control and Data Acquisition System or SCADA system,

designed primarily for industrial control systems, is a computer control system

that is typically composed of a human interface component and a low-level actu-

ator control component [US 06]. The human interface component provides alert

visualization, data analysis, and control semantics to a human operator. These

interfaces are particularly important for off-normal conditions. For example, if a

power generator fails, the computer system may automatically spread the load to

multiple backup generators, but a human is ultimately responsible for bringing the

failed generator back online. The control component of a SCADA system is re-

sponsible for low-level control and is often composed of a set of programmable logic

controllers (PLC). They are used because of their low latency and high reliability.

SCADA systems are used for HVAC because they allow simultaneous control of

devices such as dampers, fans, and water boilers.

Robotics

Research in robotics deal with similar problems related to sensing and con-

trol as well. Instead of controlling infrastructure systems, they must control an

autonomous vehicle to perform multiple tasks simultaneously. The actuation and

sensing is mobile instead of fixed. A common approach to control a robot is also

hierarchical [Sar83]. At a high level, a centralized component has summary infor-

mation of the whole robot and can create tasks for specific modules. The modules

can include aspects such as movement (e.g. control of wheels or legs) or motion

(e.g. control of arms). The lowest level directly controls actuation and has knowl-
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edge of the specific interfaces and/or physical models. An example of this is a

self-driving vehicle [TMD+07]. At the highest level is a path planner, which an-

alyzes all the sensory terrain data available to the vehicle, and sends information

to the steering and throttle/brake modules. These modules directly interface with

the vehicle control to steer and throttle the car. SCADA and robotics systems are

both well suited for their specific application domains, but they are both designed

for expert users. For example, home automation tasks can clearly be done with

a full SCADA deployment, but its high cost and technical know-how requirement

make it impractical for individual consumers.

1.2.3 Cyber-Physical Solutions

The most general solution is one that assumes nothing about what kinds of

sensors and actuation devices are available and the relations of what the sensors and

actuators are. The research community has devised numerous methods, abstrac-

tions, and languages for programming sensor networks. Mottola and Picco give an

exhaustive survey of such techniques [MP11]. Techniques range from abstracting

networks, mobility, space, or time, but unfortunately, very few programming tech-

niques deal with actuation in a general way. Deshpande et al. describe a system

for HVAC systems, and in theory can be used for any deployment, but no results

have yet been published [DGM05]. The bulk of the work in cyber-physical systems

has focused on programmability and modeling. Automatic modeling and simple

programmability are important in order to build a solution that is usable by more

than domain experts.

Programming

Programming abstractions for cyber-physical system involves giving ab-

stractions for dealing with the physical environment. This can either be for a

specific operation, or for the application solution as a whole. An example of an ab-

straction for a specific operation is Hotline. Hotline [BLW+11] gives a distributed

shared memory abstraction for addressing physical variables. Applications can

acquire a distributed lock to a shared resource (i.e. camera) and have mutually
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exclusive access to it for a certain duration. Work on computation platforms has

also recently emerged, particularly for smart grids [TGW11]. This area of work is

still actively developing.

The other approach is to use a macroprogramming solution [KGMG07,

HSH+08, HAAIKR11, VHXS10]. Macroprogramming solutions abstract away the

networking, distributed, and hardware access of a deployment to allow developers

to focus on the applications themselves. An example macroprogramming solution

is Macrolab, which provides a MATLAB-like vector abstraction for applications

that is converted into deployment-specific code. Accessing any actuators is done

with special native code. sMAP [DHJT+10], in contrast, gives a web programming

abstraction where all sensor data and actuation is done via a RESTful interface.

TinyOS [t2] and IPv6 enable the abstractions on the embedded nodes themselves.

Although these techniques provide simplifying abstractions for developers, their

abstractions for actuator control are minimal.

Modeling for Embedded Control

Control systems as increasingly modeled using hybrid modeling methods

such as hybrid or timed automata spanning continuous and discrete system vari-

ables. The physics underlying the variables is an important part of such models and

in cases which such physical models are overly complex or even non-existent, sys-

tem architects resort to system identification techniques [Lju08]. Here the designers

seek to construct models of dynamical systems through empirical measurements.

These models can be black box or white box. A white box model constructs a

building model using first principles. A blackbox model, on the other hand, uses

only empirically measured data to construct the model. Domain experts use both

methods for creating the model. They perform actuation experiments using first

principles, but record empirical data, which can be used in a real deployment.

This allows more complex models to be created, such as model predictive con-

trollers [Nik01].
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1.3 Emergence of Wireless Sensor Devices and

Networks

Control systems have predominantly been used with large infrastructure

deployments such as building, bridges, and pipes because proper monitoring and

control is critical for safety and operational efficiency. The importance of these

systems makes the investments well worth the costs of having to instrument data

sensing, collection, and control devices. However, with the emergence of inex-

pensive monitoring, communications and networking devices, it is now possible

to construct at scale sensor networks for deployment by individual users in their

homes and at work.

For example, mobile phones are now capable of sensing location, sound,

light, motion, and orientation. The emergence of wireless sensor networks (WSN)

and the Internet of Things [Ash09] have further increased the amount of sensory in-

formation available. WSN applications have included localization [SLV11], water-

pipe monitoring [LCL+12], search-and-rescue [HAM05], and earthquake detection

[SSKM07]. These WSNs can be deployed cheaply without existing infrastructure

and still collect data in real-time, enabling control systems to make timely deci-

sions based on the data. The embedded computing platforms that have performed

the sensing and communication have now also been used for control. Companies

with products in this area include X10, Cisco Systems, and Crestron. However, in-

novation in control systems is far from over as important control scenarios become

more pervasive and more personalized.

Given the wireless control and sensing are becoming cheaper, and able to

be incrementally deployed with existing infrastructure, the natural question to ask

is: How should all these disparate components interact with each other and take

advantage of existing research and infrastructure?



9

1.4 Dissertation

In order to build such a commoditized control system through use of wireless

sensors and actuators, there are several challenges that must be addressed. First,

we need a way to bridge applications with a deployment. This involves converting

sensor and actuator devices into variables that can be programmed against. Then

we need to provide an application programming interface (API) that can access

those variables in a safe way. The first third of this dissertation, Arrowhead,

focuses on addressing this problem. It sets up the framework and focuses on how

control policies can be written as software applications, how actuation devices are

integrated, and how environmental models that apply ideas from control theory can

be used in a deployment. Application goals are ultimately converted to actuation

configurations that can perturb the environment in a desired way.

Once actuation configurations have been determined, relevant actuation

devices need to receive the configuration information. We assume actuation devices

will be networked in an ad-hoc wireless manner because this is the most convenient

method for incrementally deploying sensor and actuation devices. Furthermore,

these devices may be battery-powered and have noisy network connections. Thus

we need a networking protocol to disseminate actuation commands quickly with

minimal messaging costs. The second part of this dissertation, DIP, describes the

design and evaluation of such a protocol. It broadcasts advertisement messages in

a controlled and efficient way to determine to quickly detect and propagate new

actuation commands across the network.

Lastly, mobile phones today have numerous sensing capabilities, as well as

continuous wireless connectivity. This combined with sophisticated mobile web

browsers creates a rich opportunity for the mobile phone to integrate with our

sensor-actuation system as both a sensor data provider as well as application plat-

form. The final part of this dissertation, Gibraltar, focuses on enabling control

applications to be web applications while simultaneously giving them access to

phone sensors that are typically not accessable to web applications.



Chapter 2

Coordinating Actuation Roles

2.1 Introduction

The purpose of sensing often includes its effect on actuation which can

be user-assisted or automatic. Control automation has existed for centuries and

has been used in applications such as regulating temperatures in furnaces and

controlling water levels for keeping time. Example applications include commercial

HVAC systems, pipelines, automobiles, airplanes, and even washing machines.

Despite these advancements, control automation has always been a monolithic

affair. Take for example, a home “thermostat” where a resident is responsible for

installing and maintaining heating devices, setting the temperature goals of the

environment, and determining how to use the devices to achieve that goal. While

this is acceptable for a single person in a single home, it is much more complex if

a fire code must also be followed, new windows are installed, more residents move

into the home, etc. As a sensor-actuation deployment becomes more complex with

more devices and environmental goals, it becomes more challenging to satisfy all

the various policy requirements.

Despite recent advances in modeling, design and optimization of sensor net-

works in recent years, actuation remains a challenging problem. This is because

unlike sensing, actuation is an intrusive action that seeks to change the underlying

physical processes. As a consequence, while sensing tasks can be shared among

multiple applications, actuation actions present coordination, conflict resolution

10
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challenges among competing actions and/or their goals. When multiple applica-

tions are in play, sensors can be sampled at a rate which satisfies the requirements

of applications with the highest sensing fidelity. Actuators, on the other hand, can-

not always be virtualized nor finely time-shared because of the effect they have on

the environment. While multiple sensing actions are independent, actuator actions

can combine in non-trivial ways. Applications in sensor-actuator deployments not

only sense data, but specify policy goals for the environment based on the data.

For example, consider two straight-forward thermal control applications: one that

wants to ensure temperature levels are sufficiently high for human comfort when

a space is occupied, and one that wishes to minimize the amount of energy. Naive

time sharing of these two applications may be ineffective if they continuously tog-

gle the heater on/off thus cancelling their effects. Because of these complexities,

a building application like this would likely be implemented monolithically to ac-

count for both human presence and time. It is true that monolithic applications are

advantageous because it allows a whole environment to be modeled and optimized,

but it comes at a cost. These applications require redesign when deployment en-

vironments change because they are so finely tuned and optimized for the current

environment. Thus an ideal solution will separate the deployment into different

roles such that performing the duties of one role does not require detailed knowl-

edge of the others. The three roles are operator, developer, and environmental

modeler. To illustrate the roles, consider a home thermostat scenario.

1. Operator: A resident who buys a new fan for their home should not need

to know the precise temperature effects of the fan nor precisely know the

temperature goals of the home. The operator is responsible for ensuring that

the actuation devices are operational.

2. Developer: A guest who enters a home with a particular thermostat pref-

erence should not need to know what devices are in the home and how they

affect the environment. It is the developer’s responsibility to specify envi-

ronmental policies as applications.

3. Modeler: A thermodynamic expert who understands how air flow affects
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ventilation and temperature should not need to know what temperature

range preferences are being used. The modeler’s responsibility is to create

an environmental model that relates how actuators affect sensor values, and

thus help applications decide which actuators to use to in order to achieve a

certain policy.

Each role must then eventually be merged together into a single deploy-

ment without sacrificing reliability or efficiency. For example, applications that

specify temperatures must be done without causing a fire hazard. These issues

also apply to other deployment scenarios. Oil, gas, water, and sewage networks

alike all have multiple requirements that must be met simultaneously. Pressure in

pipes must be high enough to satisfy service agreements, but not exceed certain

safety limits, which might cause ruptures and ensuing explosions, especially in gas

pipes. For water pipes, pressures must also be high enough to prevent backflow

and water contamination in potable water sources. HVAC situations are similar in

that occupants have certain thermostat preferences, regulators have various safety

requirements, and operators have efficiency goals. All of these issues require devel-

opers to write applications carefully in order to not interfere with each other and

deal with any sensor faults.

Existing solutions in sensor-actuation focus on individual roles. Examples

include building a better model relating actuators and sensors [Nik01], providing

a unified sensing API [DHJT+10], or providing coordination primitives among ap-

plications [BLW+11]. However, none of them addresses integrating these three

roles into a complete deployment system. We propose a unified actuation abstrac-

tion and runtime that is implemented in a system called Arrowhead. Arrowhead

has knowledge of the underlying device relations, and is intuitive specifying de-

ployment scenarios. In Arrowhead, sensors and actuators in the environment are

shared variables, and multiple independent applications can use them. Applica-

tions represent policies of how the actuators should be used, and can be executed

in its own execution environment as long as it has network access to Arrowhead’s

API. These applications can operate cooperatively, and collectively emit a set of

actuation configurations that can be sent directly to a control system or to a human
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operator. We make three key contributions in Arrowhead.

• Sensor-actuation Runtime Environment: We design and implement a

sensor-actuation runtime that separates the responsibility of the three actu-

ation roles, yet allows them to work cooperatively in a deployment scenario.

Part of supporting a multitude of actuation applications involves an API

that supports a variety of programming languages and is compatible with

existing infrastructure.

• Formalizing Deployments: We describe how to take two existing deploy-

ments from the literature, formalize them as Arrowhead deployments, and

deconstruct their policy goals into multiple applications written in various

languages and execution environments.

• Model-based Applications: We show that even without domain exper-

tise, we can develop environmental models from device relations in home

automation deployment scenarios with enough fidelity to enable thermostat

applications that simply specify the environmental goals rather than speci-

fying actuator usage.

In the remainder of this chapter, we first describe the terminology and

design of Arrowhead, and how deployments, applications, environmental models

all integrate together. Second, we demonstrate how to apply Arrowhead to real

scenarios from the literature, and write applications against them. Third, we

describe how we use our empirical model in home HVAC scenarios, and simulation

results of a home thermostat application.

2.2 Architecture of Arrowhead

Arrowhead is based on the following assumptions. First, environmental

models are important for the semantic information that is considered to be the

eventual test of ”correctness” and ”intent”. In other words, Arrowhead does not

seek to validate these models, instead these are considered as a golden reference
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model against which individual actions are devised. Environmental models allow

applications to specify what they want at a high-level rather than directly control

actuation devices at a low level. This maximizes the number of actuation options

that can be used. For example, instead of describing individual actuation actions,

a thermostat application only needs to describe temperature objectives. Second,

it is unlikely for all devices to be computer controlled. Actuation deployments may

often have legacy infrastructure which are difficult to retrofit for automation. In

these cases, human action may be necessary. For example, applications that require

heavy signal processing may want to use MATLAB because of the math libraries

available. Third, applications can be written and launched from any execution

environment. There are numerous programming environments that are preferred

by developers, and these programs may have there own execution environments

as well. Thus, Arrowhead and its applications should not be required to run on

the same machine or any specific machine. Lastly, an existing sensor network

infrastructure is in place. Unlike installing actuators that are automated, it is

becoming straightforward to add off-the-shelf sensors to existing environments.

Hnat et al. give one such example for homes [HSL+11].

In the remainder of this section, we first describe the terminology used

in Arrowhead. Then we describe the system architecture of Arrowhead and how

various applications interact with it before finally going into detail about each of

the components.

2.2.1 Formulation and Terminology

Sensors and actuators are two ”types” of variables that the operators must

specify in a deployment. A sensor in Arrowhead is a variable that can represent

a detectable physical-world variable, such as temperature and humidity. Sensor

variables can also be virtual. That is, a sensor variable can represent values that

are ”inferred” from measured sensor data. An example of this situation is when

a classifier is used to convert a set of raw accelerometer data into a human action

[RDML05]. The programing model should provide appropriate type system for the

virtual sensors.
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Actuator variables in Arrowhead represent a device configuration that can

affect the environment. An example of this is a setpoint for a thermostat, in which

the range of values would be the setpoint range and the units would be celsius.

It is possible for a single actuator to have multiple device configurables, such as a

space heater with an attached variable-speed fan. In this case, each configurable

would be its own actuator variable. Because actuators may also have discrete

setpoints (e.g. ON/OFF), actuator units can also be represented as enumerations.

Both sensor and actuator variables are read/write. Writing to a variable means an

application is creating a setpoint on what it wants the value to be.

A relation between an actuator variable and a sensor variable means that

changing the actuator configuration will affect the sensor value. It is a relation

since a configuration can lead to multiple sensor values. These relations come from

physical dependencies. For example, an increase in fan speed results in a lower

temperature in a certain thermal zone. All the relations are used to help build

the model. A model is used to help determine what actuator variables should be

manipulated to achieve target sensor values. Conversely, it can also be used to

predict the sensor variable outcome for a particular set of actuator setting values.

Arrowhead does not require that the model follow any specific type of physical

model. For example, an HVAC model can be a statistical lookup of measurements

from the environment, or it can be a system of thermodynamic equations.

A deployment is composed of all the variables in the environment, the re-

lations among the variables, and a model. The more sophisticated a Arrowhead

model is, the more flexibility an application has in achieving certain setpoints.

2.2.2 System Architecture

Arrowhead has a distributed architecture and is composed of the compo-

nents illustrated in Figure 2.1. The Arrowhead API is designed to support query-

ing variables and creating setpoints. Applications written using the runtime do

not require any deployment-specific programming language or language execution

runtime, so developers can write applications in their preferred environment. The

Arrowhead server runtime provides the API, stores the relevant sensor-actuator
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Figure 2.1: Arrowhead system architecture

data, and tracks which applications are accessing which sensor-actuator variables.

It communicates with an environmental model to determine the best actuators

to use. The mobile runtime is a background phone application which receives

notifications from the server runtime, and forwards to a human operator. The

runtime is designed with a human in the loop and bridge the actuation gap with

non-automated infrastructure. The environmental model is important for allowing

applications to focus on what the environment should be, rather than which spe-

cific devices to use. After it determines what device combinations will satisfy the

environmental goals, an optimizer will pick the best one.

Applications periodically enter setpoints into the system through the API.

The server runtime collects each setpoint and records the application associated

with each setpoint. Then, at a fixed interval specified by the runtime, each setpoint

is checked to make sure there are no conflicts. These setpoints are then passed into

the environmental model to produce a set of actuator device configurations. Any

actuation devices that cannot be automated, are sent to the mobile runtime which

sends a notification to a human. The human performs the action and confirms

with the mobile runtime, which notifies the server runtime that a device setting

has changed. A data application periodically queries the sensor-actuator network

and gives new sensor values to the server runtime.
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2.2.3 Arrowhead API

There are three important application classes in Arrowhead that influence

how the API is designed: standard, safety, and semantic. These application class-

esza are important because they are executed at specific times. Standard ap-

plications are those that can execute on 3rd party servers and have no special

privileges. Thus, they are free to run any arbitrary code without any risk to Ar-

rowhead. Safety applications ensure that regulations are being followed or that

infrastructure settings are not pushed past extreme limits. These applications are

always executed in conjunction with standard applications so the server runtime

must execute these applications. Semantic applications are applications that con-

vert information from a physical variable in the environment to a virtual variable.

Virtual variables represent devices or environmental values that do not exist in a

deployment. An example in HVAC scenarios is a virtual occupancy sensor, which

is backed by an infrared motion sensor. Data applications that move data from the

sensor-actuator network into Arrowhead storage are also in this category. Semantic

applications are executed independently of safety and standard applications.

Arrowhead provides four sets of calls for applications to interact with Ar-

rowhead and is summarized in Table 2.1. QuerySensorValues provides all the

variable names, their current values, and their units, while QueryActuatorValues

provides the equivalent values for actuators. Applications use these two queries to

determine all the variables in the deployment. Sensors are separated from actuators

so that applications know which variables can be directly controlled.

Applications write to variables using setpoints. A setpoint is formally de-

fined as a range of values with a lower bound r1 and upper bound r2. The range

allows applications with overlapping setpoint requirements to share use of a vari-

able. For example, 200-500 lux is recommended for office environments [osh],

humidity levels should be at 35-40% to prevent airborne sicknesses [US 91], and

30-60% for human comfort. If another application has any setpoints that overlap,

then a setpoint can be achieved that satisfies both applications. In addition to the

name of the variable and the range, CreateSetpoint requires a globally unique

identifier. This identifier is used to group setpoints with a particular application as
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Table 2.1: API Table

Call Return Val-
ues

Description

QuerySensorValues() [(time, name,
val, units), ...]

Returns all sensor values
and associated information.

QueryActuatorValues() [(time, name,
val, units), ...]

Returns all actuator values
and associated information.

Begin(app) OK/FAIL Begins a set of setpoint cre-
ation calls.

CreateSetpoint(app, name,
r1, r2)

OK/FAIL Create a setpoint for vari-
able.

Commit(app) OK/FAIL Ends a set of setpoint cre-
ation calls.

QuerySetpoints() [(name, r1,
r2), ...]

Query for all setpoints given
in previous iteration.

QuerySetpointStatus(app) string Returns a string describing
the status of setpoints for an
application.

SetValue(name, val) OK/FAIL Sets a variable value.
QuerySolution() [timestamp,

(name, val),
...]

Query for device configura-
tion solution.



19

well as provide a handle for feedback. Calls to CreateSetpoint must be wrapped

with Begin and Commit. These calls are to ensure that the runtime does not begin

acting on setpoints from an application until all setpoints have been specified.

While applications are always capable of receiving feedback from their set-

points by reading the sensor values, it is indirect and does not give insight dur-

ing failure conditions. Thus Arrowhead also provides two extra calls that give

feedback for applications to adjust their behavior. After applications have spec-

ified and committed their setpoints, they can query the status of them by using

QuerySetpointStatus with their unique identifier. For example, if the environ-

mental model does not have any information on how to control the setpoint of a

particular sensor variable, then an error code can be returned. This allows ap-

plications to fallback to directly using actuators. Applications can also query the

setpoints of other applications with QuerySetpoints. This can be used for lower

priority applications that may want to yield setpoints to other applications. For ex-

ample, an application that wishes to modify the thermostat variable to save energy

may yield to a human comfort application. SetValue is for any application that

needs to have direct access to Arrowhead variables. This is important for semantic

applications. QuerySolution is designed for applications to determine what ac-

tuator configurations were actually used, and for troubleshooting applications to

record actual device settings over time.

2.2.4 Server Runtime

The server runtime is responsible for storing sensor data, storing setpoints,

servicing application calls, and interacting with the environmental model. The

sensor data is collected from an existing sensor network and is important for two

reasons: to train the model itself empirically and to determine what the current

environmental conditions are. The server runtime operates on an execution interval

for processing setpoints and giving feedback to applications.

At the beginning of each execution interval, the server runtime executes all

the semantic applications to fill in variables, which do not exist in the physical

environments. This ensures that virtual variables have the latest data in case the



20

semantic application is triggered at very low rates. Then the safety applications

are executed to make sure certain setpoint requirements are met. Once those

applications have been executed, the server runtime can accept setpoints from

standard applications. After all applications have created setpoints for a particular

interval, all setpoint conflicts are determined. A conflicting setpoint occurs when

two applications attempt to set the same variable with mutually exclusive range

values. If a conflict occurs, a failure notice will be added to both applications and

all setpoints from the conflicting applications will be cancelled. The applications

can later query to see why their setpoints failed. Once all valid setpoints have been

determined. The server runtime sends the setpoints to the environmental model

to determine which actuator device configurations should actually be used. These

results are then automatically sent to an actuation network or a human operator.

2.2.5 Mobile Runtime

Deployments will often have actuation devices that must be controlled by

a human operator via an ON/OFF switch, button setting, or a mechanical ac-

tion. The mobile runtime is a background phone application designed to notify a

trusted human operator who has the capability and privileges to actually perform

actuation, not any arbitrary person. It works by using the QuerySolution call to

determine which actuation devices need action. The mobile runtime, then, sends

a notification to the operator saying which devices should be set to which config-

urations. After the operator performs these actions, he can confirm them in the

application, which triggers a SetValue call back to the runtime server. Actuators

that require human action are specially tagged and the mobile runtime knows what

these are.

2.2.6 kNNR: A Simple Empirical Model

A key component of Arrowhead is the abstract environmental model which

relates actuation devices with sensor values. This enables applications to focus on

the actual policies themselves rather than how to achieve them. Our model, kNNR,
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Table 2.2: Example progression of how raw data is converted into a set of

snapshots. A1, S1, S2 are variables with initial values of VA1 , VS1 , VS2 respectively

at time τ0.

Order Raw Data Snapshot
< τ0, VA1 , VS1 , VS2 >

1 < τ1, A1, V1 > < τ1, V1, VS1 , VS2 >
2 < τ2, S1, V2 > < τ2, V1, V2, VS2 >
3 < τ3, A1, V3 > < τ3, V3, V2, VS2 >
4 < τ4, S2, V4 > < τ4, V3, V2, V4 >

uses the nearest neighbor model where first principles is applied by performing

controlled actuation. That is, a human operator must decide which actuators to

use to collect sample data. It is a model based on empirical data. When using the

model, the input is a vector of setpoints that we wish to achieve, and the output

is a vector of actuator configurations that will get us there. When training the

model, an algorithm converts raw sensor data into data samples in the model.

Training

The details of the algorithm are outlined in 3 steps: convert raw sensor

data R into grouped snapshot data σ, create sample points ρ from snapshot data,

and compute actuation settings. These actuation settings are then given to an

optimizer to decide the actuation settings to use.

R =< τ,A|S, VA|S > (2.1)

The kNNR model is trained offline with historical data from all variables. A

raw data value R is a tuple containing a timestamp τ , actuator A or sensor S, and

the value V as shown in Equation 2.1. A snapshot is a vector of raw datapoints

grouped together with a timestamp. The timestamp here represents an aggregate

timestamp of all associated raw data. If data is collected in a synchronized manner,

then grouping the datapoints is trivial, but this is not always possible because there

may be multiple independent sensors.
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σ =< τ, α, β > (2.2)

Thus, our model groups data sequentially instead. A snapshot σ is described

in Equation 2.2. τ is the timestamp of the snapshot, α =< VA1 , VA2 , . . . > repre-

sents the set of actuators, and β =< VS1 , VS2 , . . . > represents the set of sensors.

Table 2.2 illustrates an example of how raw data is converted into a chronological

list of snapshots in kNNR. Each variable begins with a initial value, and values in

the snapshot are updated as each new raw data value is received. The timestamp

is also updated with each raw data value. The kNNR model does not necessarily

create a vector based on all the variables. The modeler must specify what variables

have relations.

Three kinds of relations exist among the data. A 1-to-1 relation means

that an actuator can directly affect a sensor without any further dependencies.

For example, a space heater in a thermal zone can solely adjust the temperature.

It is certainly possible that many 1-to-1 relations exist for a single sensor. An N-

to-1 relation means multiple actuators need to be used in order to affect a sensor.

An example of this is a fan, which is dependent on a damper or window for new

air. A fan, by itself, will only recirculate ambient air. Finally, a 1-to-N relation

means that a single actuator can affect multiple variables. For example, using an

HVAC air conditioning unit will often also filter the air, causing it to affect both

temperature and particulates in the air. Our kNNR model currently only supports

many independent 1-to-1 relations.

ρ =< βstart, βstop, α > (2.3)

A sample ρ in the kNNR model is summarized in equation 2.3 and is com-

prised of an initial set of sensor values βstart, ending set of sensor values βstop,

and a set of actuator values α. The idea is that using a specific set of actuators

will change the sensor values from βstart to βstop. βstart is determined whenever α

changes because this means an actuator’s setting has changed. βstop is determined

based on a 30 minute timeout. This value is configurable based on how fast or

slow-acting the actuators are.
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The algorithm to create these samples from snapshots is done by first as-

suming all the snapshots are in chronological order and σi represents a snapshot

where α has changed from the previous snapshot. Then for each σi, a sample is

created by using α from σi, βstart as the β from σi and βstop as the β from σi+30min

where σi+30min is the snapshot 30 minutes ahead.

Usage

∆ =
∑

(ω(||β1 − βi||+ ||β2 − βj||)) (2.4)

Once all the samples have been created, the kNNR model takes as input

starting sensor values βi and target sensor values βj, and determines the corre-

sponding α. Intuitively, the best actuator setting is the one whose starting and

ending sensor condition most closely matches the current conditions and setpoints

respectively. We compute this using a distance metric. The kNNR distance metric,

described in Equation 2.4, is a weighted sum of the differences between the set-

point vectors and the sample vectors for both the starting and ending conditions.

A βstart and βstop is extracted from each sample and the weight vector ω is used to

help determine whether or not a change in value is significant. Once all distances

have been computed, the kNNR algorithm selects 5 samples ρ with minimum dis-

tance ∆ to the setpoint vector, and extracts each α to create a solution set. (5 can

be adjusted based on how many candidate solutions are requested.)

After a solution set is determined, the kNNR model uses an optimizer to

determine the final actuator setting to use. The optimizer can determine the

costs of using certain actuators that were not visible in the model. An example

optimizer for an HVAC scenario is one that operates the fastest or uses the least

amount of energy. Of course, more sophisticated models can take into account

these actuation costs before determining the solution set. We note that kNNR

is not claimed to be optimal, indeed there are more predictive controllers [Nik01,

DGM05]. However, our later results show that kNNR is sufficient for enabling

model-based applications.
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2.3 Evaluation - Applications

To demonstrate that Arrowhead can support real deployment scenarios and

write real applications that take advantage of the Arrowhead runtime and API,

we describe example uses from two application domains: pipeline monitoring and

HVAC. In these application domains, we ask:

Can we intuitively describe existing applications in Arrowhead that can ace-

hieve desired control?Note, in this section we are not demonstrating that the ap-

plications will execute with the correct results in a real deployment because we do

not have a real deployment. We only demonstrate its value for programming.

Our implementation of the Arrowhead server runtime is written as a Python

daemon. It includes an XML-RPC server that exposes the Arrowhead API and

writes to a database for handling setpoint information. A separate thread periodi-

cally extracts the setpoints for analysis. Our kNNR model is implemented as part

of that thread. The mobile runtime is implemented in Android and simply acts as

a background application that polls the XML-RPC server.

2.3.1 Pipeline Monitoring

We represent real deployment scenarios in Arrowhead from pipe monitoring

[MLE08, MVO+05]. In the sewage pipe example, sewage enters the sewage network

through a series of input sources: buildings, fields, and storm drains. These flows

eventually merge into a combined sewer line which aggregates the sewage. The

combined sewer line eventually drains into an interceptor line, which redirects

sewage to a waste water treatment plant (WWTP). The WWTP treats the waste

water before finally releasing it into a river or ocean. However, the WWTP and

interceptor line can overflow during storm season, so a diversion structure is used to

directly dump sewage from the combined sewer line into the river. In order to detect

when sewage levels are nearing pipe capacity, a variety of pressure sensor nodes are

placed along the combined sewage pipes and interceptor line. Diversion structures

are placed along the interceptor line to redirect sewage out if an overflow occurs.

Another example scenario is leak detection, which monitors pressure measurements
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WWTP

PA1 PB1

PB2PA2

VA2 VB2

PC1

Figure 2.2: Deployment map for sewage deployment.

for a break event, analyzes a data window with the break event, and then estimates

the break location based on wave timing analysis from pressure sensing along the

pipes. Although designed for regular water pipes, it can also be used for sewage

lines.

Figure 2.2 summarizes our reference sewage flow deployment and is based

on the diagram from Montestruque and Lemmon [MLE08]. A full deployment

would have over 20 diversion structures and over 100 sensor nodes, but the overall

structure is similar. The variables that are relevant to Arrowhead for pipeline

monitoring are the pressure sensor nodes and the actuator nodes for controlling

the diversion structures. Each pressure node (measured in psi) can be represented

as a sensor variable, PAX, where A represents a sewage segment, and X represents

an identifying number. Each diversion structure valve is an actuator variable

labeled VA where A represents the end location of the sewage segment. The units

in this case is a percentage value between 0-100% representing how “open” the

valve is. A fully open valve redirects all flow into the interceptor line. Relay and

gateway nodes are also placed nearby to route sensor data to collection servers
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for visualization, but they are not part of the actuation system, so we do not

account for them in our formalization. However, these nodes are still important

for collecting sensor data and we assume that a sensor network is in place for data

collection. Thus, using only two kinds of variables, we can represent the sewage

overflow problem.

Applications

We implement the sewage overflow application and leak detection appli-

cation based on Figure 2.2 using algorithms from Montestruque and Lemmon

[MLE08]. The goal of the sewage overflow application is to ensure that the none

of the sewage lines overflow while maintaining maximum water treatment by the

WWTP. First, the application must determine the flow capacity of each pipe in-

cluding the interceptor pipe (constants), as well as acquire pressure measurements

for each pipe path and convert them to flow measurements.

Then two cases arise: either a pipe segment is overflowing or the interceptor

line itself is overflowing. If a pipe segment is overflowing, the algorithm uses a spe-

cial feedback controller to control that diversion structure. If only the interceptor

is overflowing, the algorithm sorts the capacity of each flow and the valve associ-

ated with it in descending cost order, where the cost represents the cost penalty

of not diverting into the WWTP.

There are three conditions for controlling the valve when only the intercep-

tor is overflowing. If the flow capacity of a pipe segment is less than the remaining

available interceptor flow, then the valve is completely opened. If the flow capacity

of a pipe segment is greater than the remaining interceptor flow, then the valve is

opened to fill the remaining capacity. Otherwise, no remaining flow exists in the

interceptor line and the valve must be closed. The algorithm can be translated

into a Arrowhead application in the following way using the Python programming

language and using the built-in XML-RPC client library to communicate with a

Arrowhead runtime server:

s = RPC.QuerySensorValues()

RPC.Begin(’CSO’)
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PA2 = SelectVal(’PA2’, s)

PB2 = SelectVal(’PB2’, s)

tuples = [(’VA2’, PresToFlow(PA2, ...), CFA2),

(’VB2’, PresToFlow(PB2, ...), CFB2)]

for name, FX, CFXY in tuples:

if FX > CFXY:

overflow := True

SP = FeedbackControl(name, downstream(name))

RPC.CreateSetpoint(’CSO’, name, SP, SP)

if overflow:

RPC.Commit(’CSO’)

return

tuples = [(CostVA2, CFA2, ’VA2’),

(CostVB2, CFB2, ’VB2’)]

tuples.sort()

tuples.reverse()

IFLOW = 0

for CostX, CFXY, name in tuples:

if CFXY < IFCAP - IFLOW:

IFLOW = IFLOW + CFXY

RPC.CreateSetpoint(’CSO’, name, FlowToValve(CFXY),

FlowToValve(CFXY))

else if CFXY > IFCAP - IFLOW:

IFLOW = IFCAP

RPC.CreateSetpoint(’CSO’, name,

FlowToValve(IFCAP - IFLOW),

FlowToValve(IFCAP - IFLOW))

else:

RPC.CreateSetpoint(’CSO’, name, 0, 0)

RPC.Commit(’CSO’)

This code implements the algorithm given above. CFXY, a constant, repre-

sents the flow capacity at XY. CostVXY is also a constant and represents the cost

associated with using diversion structure XY. IFLOW is the current flow in the

interceptor line, and IFCAP is the flow capacity of the interceptor line. The helper

function SelectVal simply selects the value for a given Arrowhead variable. Feed-

backControl is a separate feedback control algorithm that requires two physically

adjacent nodes in a pipe segment and ensures the valve is configured to prevent an

individual pipe segment from overflowing. To set valve settings, the code uses the
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Arrowhead API to create setpoints directly on the actuators. PresToFlow converts

pressure data into flow data, and FlowToValve converts flow data into a diversion

structure setting. This setting is pre-computed.

In addition to this application, we can also write an additional leak detection

application [MVO+05] on top of this deployment with minimal adjustment effort.

(A full description of the algorithms can be found in that paper.) The only extra

information that is necessary are several constants that can be determined before

running any applications. The pressure measurements themselves already exist in

the deployment as shown in Figure 2.2. For control, we assume there are valves on

each pipe segment that can be closed to restrict flow, similar to diverson structures.

The control aspect allows certain pipe segments to be closed off if a leak is detected.

We give an example of this application written in GNU Octave [oct] that is based

on PA1 in our sewage deployment scenario.

function answer = RPCCreateSetpoint(app, varname, low, high)

shlcmd = sprintf("RPC CreateSetpoint %s %s %d %d",

app, varname, low, high)

[retcode, output] = system(shlcmd)

answer = eval(output)

endfunction

global PressureData = [1, 2, 3]

function Driver()

while(1)

Sense()

leak = DetectBreak()

if(leak)

[t1, t2] = AnalysisWindow(leak)

[xb1, xb2] = LocateBreak(t1, t2)

act = LocateActuator(xb1, xb2)

RPCBegin(’BREAK’)

RPCCreateSetpoint(’BREAK’, act, 0, 0)

RPCCommit(’BREAK’)

endif

sleep(delay)

endwhile

endfunction



29

function Sense()

global PressureData

svals = RPCSense()

val = Select("PA1", svals)

PressureData = [PressureData, val]

endfunction

function answer = DetectBreak()

global PressureData

[H, V] = Sensitivity threshold

S = 0

E = PressureData

answer = 0

for i=1:length(PressureData)

S = max(S - E(i) - V, 0)

if(S > H)

answer = i

break

endif

endfor

endfunction

function answer = LocateBreak(dt1, dt2)

speed = Wave speed of pipe

ethresh = Error threshold

XM1, XM2 = distance between measurement point

and boundary

if(abs(dt1 - (2 * XM1) / speed) < ethresh)

xb2 = dt2 / dt1 * XM1

endif

if(abs(dt1 - (2 * XM2) / speed) < ethresh)

xb1 = dt2 / dt1 * XM2

endif

# Other checks

answer = [xb1, xb2]

endfunction

The algorithm is broken into distinct phases. The first phase continuously

senses pressure readings until a break is detected (BreakDetect). Once the break is

detected, the algorithm determines an analysis window (AnalysisWindow) of when

the break occurred based on the length of the pipe. Then, using that window, the

algorithm locates the break (LocateBreak) based on the length of the pipe, the
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wave speed, and timing of when the wave is seen at the sensor. Finally, we add

actuation control by shutting off the valve if there is a leak.

The Octave leak detection application has several complications over the

previous HVAC and sewage appliations. First, because the Arrowhead API does

not support querying historical data, we use a global state variable to keep track of

it. In order to make API calls in Octave, we use the system function to invoke shell

scripts that handle the XMLRPC. We use a Driver application that periodically

executes the three different subroutines.

Repeated Applications

One benefit of using Arrowhead is that it allows applications to take ad-

vantage of the strengths of other programming languages and their libraries rather

than requiring applications to be written in a proprietary system, such as enable

reuse and maintenance of code.. This can be done either through parameterized

functions, or through polymorphism if the language supports it. The leak detection

application is a prime candidate for this, and each pipe segment with a pressure

sensor can be considered an independent instantiation of the application. We can

rewrite the driver and sense functions in the following way.

function Driver(sensor)

while(1)

Sense(sensor)

leak = DetectBreak()

if(leak)

[t1, t2] = AnalysisWindow(leak)

[xb1, xb2] = LocateBreak(t1, t2)

act = LocateActuator(xb1, xb2)

RPCBegin(’BREAK’)

RPCCreateSetpoint(’BREAK’, act, 0, 0)

RPCCommit(’BREAK’)

endif

sleep(delay)

endwhile

endfunction

function Sense(sensor)

global PressureData
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svals = RPCSense()

val = Select(sensor, svals)

PressureData = [PressureData, val]

endfunction

Driver(’PA1’)

The leak detection application can then be easily parameterized for all pipe

segments through Driver. In fact, this leak detection code can be redeployed for

any deployment as long as the variables and constants are known to the application.

Semantic Applications

As discussed before, semantic applications allow deployments to create more

variables in the deployment than actually exist. It is not always possible to have

every kind of sensor in a deployment due to cost. Having multiple kinds of physi-

cal sensors in the deployment is not cost effective, when one can be derived from

the other. For example, the sewage overflow application really uses flow measure-

ments, while the leak detection application uses pressure measurements. A better

solution is to create semantic applications that perform this conversion, allowing

other applications to be used on multiple deployments without adjusting for new

variables. For a pipeline deployment, a flow rate can be computed from differential

pressure changes using the Venturi effect. A function to compute the volumetric

flow rate from pressure using that method is shown below.

import math

def PresToFlow(p1, p2, A1, A2, D):

x = 2(p1 - p2)

y = D(math.pow(A1/A2, 2) - 1)

return A1 * math.sqrt(x/y)

The code requires two pressure sensors to compute the flow, but this is

acceptable because two adjacent pipe segments will presumably have pressure sen-

sors on both of them. p1 and p2 represent the pressure sensor readings, A1 and

A2 represent the cross-sectional areas of the two pipes (constants), and D repre-

sents the density of the fluid (also constant). By having this semantic application
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convert the data, applications now have the illusion that both sensors exist even

though there may only be pressure sensors. Conversely, a deployment with only

flow sensors can use the inverse semantic application to create pressure sensor data.

Manual Applications

We have largely been describing the sewage network when it enters under-

ground drains. However, the sewage network can be extended into homes where

sinks, toilets, and shower drains serve as the entry points of the sewage network.

Because the occupants are ultimately in control of the water flow within the home,

the occupants, as opposed to the munical sewage company, are responsible for any

device actuation.

Consider the situation where a municipal sewage line becomes clogged. This

can be detected with an application that determines if sewage flow has stopped

for long periods of time. If this occurs, a backflow of sewage into the home could

occur, resulting in flooding and costly repairs. A backflow prevention device can be

installed near the house to redirect the sewage outside the home [Ass04]. This can

conceptually be thought of as a diversion structure from the home side, as opposed

to the WWTP side. Suppose we have a user-installed check valve near the home

that should open if sewage flow has stopped. Then we can use the following code.

def Backflow(p1, p2, A1, A2, D, bpd):

s = RPC.QuerySensorValues()

P1 = SelectVal(p1, s)

P2 = SelectVal(p2, s)

F1 = PresToFlow(P1, P2, A1, A2, D)

RPC.Begin(’BACKFLOW’)

if F1 == 0:

RPC.CreateSetpoint(’BACKFLOW’, bpd, 0, 0)

else:

RPC.CreateSetpoint(’BACKFLOW’, bpd, 1, 1)

RPC.Commit(’BACKFLOW’)

In the code above, the parameters represent information necessary to con-

vert the pressure to flow, as well as a backpressure device identifer. Its unit is

open/close (1/0). If the flow for a particular pipe segment has stopped, then
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the application attempts to open the backpressure device. Otherwise, it remains

closed. Even though the backpressure device does not have any automated con-

trol, Arrowhead applications can use it like any other actuation variable. When

Arrowhead produces a solution, a mobile runtime queries the solution and notifies

the home owner that the backpressure device should be used. The home owner

can then manually perform the actuation and confirm it in Arrowhead.

Model-based Applications

The sewage overflow problem is really about ensuring that the interceptor

line into the WWTP does not overflow, and the algorithm from Montestruque and

Lemmon [MLE08] is exactly about controlling the diversion structures to prevent

this overflow. However, there already exists a natural relation between the diver-

sion structure valve and the maximum amount of flow that can go through it into

the interceptor line. Thus we can add a model relation between each flow sensor on

the interceptor line and each actuation valve. This makes the oveflow application

very simple to write, as shown below.

RPC.Begin(’CSO’)

RPC.CreateSetpoint(’CSO’, ’F-INT’, 0, INT_FLOWCAP)

RPC.Commit(’CSO’)

The code uses a single setpoint on the flow of the interceptor line to ensure

that it never goes past its flow capacity designated as INT FLOWCAP. This ap-

plication will only work with a model that is sophisticated enough to accurately

account for the relation between diversion structures and pressure.

2.3.2 HVAC

To demonstrate that Arrowhead applies to multiple kinds of deployments,

our other tangible example is with HVAC systems for a single building. At a high-

level, modern building HVAC systems are divided into a hierarchy of three levels

[Sal05]: the central plant, the building, and the thermal zone. The top-level is the

central plant which provides heating and cooling elements to multiple buildings.
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Figure 2.3: Deployment map for HVAC deployment.

Modern buildings typically use hydronics to provide thermal regulation due to its

simplicity. This is done by using hot and chilled water as heat exchange mediums

and transporting it among the buildings. Once the conditioned water reaches the

building, building fans, dampers, and various air handlers distribute it throughout

different thermal zones using air coils that transfer the heat between the water and

the air.

Figure 2.3 shows an example of a deployment loosely based on informa-

tion from Salsbury [Sal05] with the variables labeled. Each thermal zone has a

temperature and humidity sensor (TEMPX and HUMX), and a damper that con-

trols air flow (DAMPX). At the building level, a supply fan (SUPFAN) and return

fan (RETFAN), combined with the return damper (RETDAMP), supply damper

(SUPDAMP), and external damper (EXDAMP), regulate how much external and

recycled air circulates in the building. There is also a pressure sensor (PRESA) to

detect if air pressure in the ducts is high enough to cause stress and damage the

air handling infrastructure. Finally, there is also an external temperature sensor

(EXT-TEMP) to help optimize air flow. We only have one set of building level

actuators and sensors in our example, but in reality, there are multiple sets of these

devices depending on the size of the building.
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The relations in a building can be far more complicated than a pipe net-

work. Because of the multiple hierarchies in a building, there are relations between

building actuators and sensors, and their thermal zone counterparts. In addition,

sensors and actuators in adjacent thermal zones have spatial relations as well. As

an example, the SUPFAN and RETFAN fans affect airflow in every thermal zone

so there is a relation between those two building actuators and every sensor in

every zone.

Applications

An example application suggested by Salsbury [Sal05] is the economizer.

The goal of an economizer is to take advantage of both internal and external

ambient conditions to condition a room environment rather than using devices

that mechanically heat or cool the environment. We give Java code below that

performs economization.

List<Object> params = new ArrayList<Object>();

List s = RPC.execute("QuerySensorValues", params);

List sp = RPC.execute("QuerySetpoints", params);

int EXT_T = SelectVal("EXT_TEMP", s);

int T = SelectVal("TEMP3", s);

int TS = SelectVal("TEMP3", sp);

params.add("ECON");

RPC.execute("Begin", params);

if((EXT_T < T && TS < T) ||

(EXT_T > T && TS > T)) {

RPC.execute("CreateSetpoint",

new Object[]{"ECON", "EXDAMP",

new Integer(0),

new Integer(0)});

RPC.execute("CreateSetpoint",

new Object[]{"ECON", "SUPDAMP",

new Integer(100),

new Integer(100)});

RPC.execute("CreateSetpoint",

new Object[]{"ECON", "SUPFAN",

new Integer(100),

new Integer(100)});

}
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/* Same for recycling internal air */

RPC.execute("Commit", params);

In the code above, the economizer uses TEMP3 as the reference temperature

and is designed to cool a thermal zone if the outside temperature is cooler than

the zone temperature and the setpoint is lower than the current temperature.

Similarly, it will heat a thermal zone if the external temperature is higher than

the zone temperature and the setpoint is higher than the current temperature. In

these two cases, more external air is used to condition the thermal zone. There are

also two other cases that condition a room by recirculating internal air. This Java

application uses the Apache XML-RPC [apa] client library to make XML-RPC

calls to Arrowhead.

We can also implement other applications in our HVAC deployment sce-

nario. For example, occupancy-based HVAC control [ABG+11] is a standard ap-

plication, which turns off HVAC components when a thermal zone is unoccupied. A

simpler time-based setback HVAC control [Sal05] is also possible for deployments

with no occupancy sensing. Suppose in our example deployment from Figure

2.3, we extend the scenario with sensing information from the UCSD deployment

[ABG+11]. That is, each thermal zone has an infrared sensor variable, IRX. If a

zone is determined not to be occupied by the infrared sensor, then the damper is

closed, otherwise the damper is opened based on the setpoint to allow the proper

amount of chilled air to flow into the zone. Deciding how wide to open the damper

is done with a PID controller. A PID controller is a feedback control mecha-

nism that determines how to use actuators based on direct sensor feedback. We

give Python and Octave code for the occupancy-based control and PID controller

respectively.

def Occupancy():

s = RPC.QuerySensorValues()

RPC.Begin(’OCCUPANCY’)

IRX = SelectVal(’IR1’, s)

if IRX:

RPC.CreateSetpoint(’OCCUPANCY’, ’DAMP1’, 0, 100)

else:

RPC.CreateSetpoint(’OCCUPANCY’, ’DAMP1’, 0, 0)
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RPC.Commit(’OCCUPANCY’)

function PIDControl()

svals = RPCSense()

pval = Select("TEMP1", svals)

P, I, D = Learned variables

dval = f(P, I, D, pval)

RPCBegin("PID")

RPCCreateSetpoint("PID", "DAMP1", dval, dval)

RPCCommit("PID")

endfunction

The code above illlustrates how a thermostat can be decomposed into

smaller applications that run concurrently even with different languages. The

occupancy application simply detects if zone 1 is occupied. If so, it allows the

damper to be in any position. Otherwise, it closes the damper by setting it to

0%. The reason the range is left open when the zone is occupied is because it

is not the occupancy application’s responsbility to determine the exact setpoint.

That responsibility is with the PID application, which senses the temperature as

feedback and applies the proper damper settings. It is important to note that each

individual application does not need to worry about the details of other applica-

tions.

Repeated Applications

Repeated applications can also be applied in this deployment. Unlike before

where we simply used parameterized functions, if a language supports first-class

functions, then an application generator can be used to create repeated applica-

tions. Below is an example of an application that generates HVAC occupancy

applications.

def OccupancyHVAC(zone):

def OccupancyHVACApp():

s = RPC.QuerySensorValues()

RPC.Begin(’OCC’ + zone)

IRX = SelectVal(’IR’ + zone, s)

if IRX:

RPC.CreateSetpoint(’OCC’ + zone, ’DAMP’ + zone, 0, 100)
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else:

RPC.CreateSetpoint(’OCC’ + zone, ’DAMP’ + zone, 0, 0)

RPC.Commit(’OCC’ + zone)

return OccupancyHVACApp

f = OccupancyHVAC(’1’)

g = OccupancyHVAC(’2’)

This application takes advantage of Python’s inner function scoping rules

to create functions that are parameterized on a thermal zone. A script can also be

used to quickly generate applications for all thermal zones.

Semantic Applications

Semantic applications are also applicable in HVAC. Suppose in the oc-

cupancy HVAC application, instead of having an infrared sensor with a binary

output, a camera is used that provides a stream of images for occupancy detection

[ECPC11]. Below is an example of how to write an HVAC deployment with a

camera (actuator CAMX) instead of infrared sensor.

s = RPC.QuerySensorValues()

image = SelectVal(’CAM1’, s)

if Classify(Image):

RPC.SetValue(’IR1’, 1);

else:

RPC.SetValue(’IR1’, 0);

In this example, Classify is an image processing routine that uses back-

ground subtraction. Thus each image only needs to be compared against a base

reference image. If multiple applications attempt to set the same value, the be-

havior is undefined. This is usually not an issue because only trusted applications

are allowed to use SetValue.

Manual Applications

An HVAC deployment often has many environment-affecting device such

as space heaters, windows, and doors that are not connected in an automated

way. With these devices, a human must manually perform the actuation and
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notify Arrowhead that device settings have changed. As an example, consider a

deployment with an economizer application that uses a window (WINX) instead

of dampers. The window is also a percentage-open actuator variable.

List<Object> params = new ArrayList<Object>();

List s = RPC.execute("QuerySensorValues", params);

List sp = RPC.execute("QuerySetpoints", params);

int EXT_T = SelectVal("EXT_TEMP", s);

int T = SelectVal("TEMP3", s);

int TS = SelectVal("TEMP3", sp);

params.add("ECON")

RPC.execute("Begin", params);

if((EXT_T < T && TS < T) ||

(EXT_T > T && TS > T)) {

RPC.execute("CreateSetpoint",

new Object[]{"ECON", "WIN3", 0, 0});

}

/* Same for recycling internal air */

RPC.execute("Commit", params);

In the Java code above, the application closes the window if the outside

temperature is favorable. Alternatively, it could use a conversion function that

determines the optimal position for the window to maintain a certain temperature.

The WIN3 actuator is not actually automatable, and thus the mobile runtime will

periodically call QuerySolution to determine if the window needs to be adjusted.

If so, a notification is sent to the user. After the user performs actuation and

acknowledges the mobile runtime, SetValue is called with the new window actuator

setting.

Model-based Applications

In certain HVAC situations, applications are only concerned with what the

final sensor environmental variables should be, not how to get there (via actuation).

For example, applications that maintain government regulations such as those that

set minimal lighting and ventilation rules can easily be done with model-based

applications without having to worry about which actuators to use. The OSHA

recommended indoor temperature range is 20◦C to 23.5◦C [osh]. Thus a very

simple application for this application could be the following.
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RPC.Begin(’OSHA’)

RPC.CreateSetpoint(’OSHA’, ’TEMP3’, 20, 23.5)

RPC.Commit(’OSHA’)

Any application that wishes to set a temperature not within that range

will encounter a conflict. The application can take further action if the desired

temperature range is not satisfied for an extended amount of time.

2.4 Evaluation - Deployment

To demonstrate that model-based applications are possible in Arrowhead,

we seek to construct an environmental model that does not require a high level of

domain expertise, yet is still effective in enabling model-based applications. We

use our kNNR model in two different deployments and use a basic thermostat

application. It is important to note that Arrowhead can always use more complex

models that are created by domain experts.

We deploy Arrowhead in a two-story single-family home, and a 2-bedroom

apartment unit. Each room represents a thermal zone and is equipped with TelosB

[PSC05] temperature, light, and humidity sensors, but the two deployments have

different actuation devices and ambient conditions. The TelosBs run TinyOS [t2]

and use CTP [GFJ+09] and DIP [LL08] for collecting sensor data and disseminating

commands respectively. There are 12 Arrowhead variables in each deployment, as

shown in Tables 2.3 and 2.4. TelosBs are also used to perform automated control

for plug load devices through a control relay.

2.4.1 House Deployment

We instrumented nine different zones in a single-family two-story house

with sensing capabilities, but only three of them had actuators deployed in them.

Thermal zone 2 is a small room on the second floor with exposure to sunlight. It

has an air filter, small fan, and a window. Thermal zone 5 is a large room on the

first floor with minimal exposure to sunlight. It has a small fan. Thermal zone 7

is a large room on the first floor with exposure to sunlight. It has a large fan and a
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Table 2.3: House deployment variables

Variable Units Type
Description
TEMP2, TEMP5, TEMP7 C Sensor
Temperature in thermal zone
HUM2, HUM5, HUM7 RH% Sensor
Relative humidity in thermal zone
FAN2, FAN5, FAN7 On/Off Actuator
Fan on/off in thermal zone
AF2 On/Off Actuator
Air filter on/off in thermal zone
WINDOW2, WINDOW7 Open/Closed Actuator
Window in thermal zone

window. Our deployment is described in Arrowhead with the variables described

in Table 2.3.

We continuously collected sensor data for 2 weeks and randomly adjusted

actuation settings to record the impact of using different actuator combinations 1.

The first experiment we ran was to determine how impactful actuators could actu-

ally be in our deployment. We evaluate this with an occupancy-based thermostat

application as shown in Section 2.3.2.

Figure 2.4 shows the results of various starting conditions on TEMP2, and

a setpoint of 34◦C and 30◦C. kNNR is capable of producing valid solutions for ap-

plications even when the starting conditions are outside of the model. For example,

suppose our kNNR model only has data for a temperature range between X1 and

X2. Then if an application creates a setpoint at X2, but with a starting condition

less than X1, it will still yield the correct actuation solution. An example of this

is seen in our deployment when the setpoint is 34◦C. For TEMP2 starting values

below 30◦C, 60% of the solutions opted to use none of the actuators. Although

not surprising, this is, indeed, the correct answer because there are no heating

actuators in this deployment.

The results also show that kNNR will select “incorrect” actuation settings

when no samples exist. This is seen when the setpoint is 30◦C and the starting

1In a live deployment, this can be done over a long period of time over regular use scenarios.
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Figure 2.4: Actuation usage for an occupancy scenario in the house deployment

with different starting values, and setpoints of 30C and 34C on TEMP2.

temperature is 20◦C. There are no heating actuators in our deployment, so using

any device is intuitively incorrect. The reason our model chooses an incorrect

solution is because the data in our model only has temperature changes that reach

30◦C when the starting conditions are higher than 30◦C. Thus, the closest match

is to use a cooling device.

This weakness is seen in Figure 2.5, which shows the range of different val-

ues for the three thermal zones. The min and max values represent the actual

sensing range of the variables. The model min and max values represent the range

that our kNNR model is able to use. Figure 2.5 shows that the kNNR model is

capturing a narrower range of values than actually recorded by the sensor network.

This issue stems from not accounting for natural sunlight that is affecting the en-

vironment. However, it can be inferred through a semantic application, and a new

actuator variable (SUN). It does not matter that this actuator is not controllable

by the system (neither automatically nor manually) because the samples would

still accurately reflect the environment. Because kNNR is an empirical model,

it is straightfoward to add samples and allow the thermostat application to take

advantage of the new model.
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Table 2.4: Apartment deployment variables

Variable Units Type
Description
TEMP1, TEMP2, TEMP3 C Sensor
Temperature in thermal zone
HUM1, HUM2, HUM3 RH% Sensor
Relative humidity in thermal zone
FAN3 On/Off Actuator
Fan in zone 3 (25.1W)
AF3 On/Off Actuator
Air filter in zone 3 (25.2W)
WIN3 Open/Closed Actuator
Window in zone 3
SDD1 Open/Closed Actuator
Sliding door in zone 1
INF1 On/Off Actuator
Infrared heater in zone 1 (482W)
CEN On/Off Actuator
Central thermostat in apartment. 24.5◦C fixed setpoint.

2.4.2 Apartment Deployment

We also deploy Arrowhead in a 2-bedroom apartment. This deployment

is richer than the house deployment in that there are both heating and cooling

elements. It is also in a smaller space, so the devices have more interactions. Ta-

ble 2.4 summarizes the sensors and devices used. We have also included power

measurements for relevant actuators. Similar to the previous deployment, we col-

lected data over a two-week span and randomly used actuation devices to measure

samples through kNNR. One major issue with the data samples is that the central

heater actually cooled the air in several examples and the model picked up on this.

This is because the fans start pushing airflow before the heating elements have

time to actually heat the air. We resolved this issue by removing the samples that

represent these edge conditions.

We also simulate our thermostat application in the apartment deployment,

but with a setpoint of 23◦C and a starting temperature of 19◦C because these values

are within our model for this deployment. We use two independent thermostat
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Figure 2.6: Temperature values of an occupancy scenario in the apartment

deployment.

applications, one each for zones 1 and 3. Our scenario is to have a person begin

in zone 1. After the setpoint is reached, the person moves from zone 1 to zone 3.

This effectively creates a setpoint of 23◦C in zone 3, and a setpoint of [0, 30] in

zone 1, which means it does not matter what the temperature is in zone 1. After

zone 3 has reached 23◦C, another person enters zone 1 so that both zones 1 and 3

have a setpoint of 23◦C. After that occurs, both occupants leave.

Figure 2.6 shows the results of running our apartment scenario with the

kNNR model, as well as occupancy events where occupants enter or leave a zone.

Each time step represents 30 seconds. The model chooses to use the infrared

heater to increase the temperature in zone 1 and takes 14 minutes 33 seconds to

accomplish this. After the user moves from zone 1 to zone 3, the model switches

to using central heating to increase the temperature in zone 3 because there is no
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local heating actuator there. It also decides to open the sliding deck door, which

cools zone 3, but has no impact on application requirements. This takes 17 minutes

20 seconds. After a second person enters zone 1, the model need only close the

sliding deck door to contain heat from the central thermostat. This process was

considerably faster and took only 3 minutes 12 seconds. Finally, both people leave

at the end, which turns off central heating.

To quantitatively evaluate our model-based thermostat, we look at power

usage from this scenario. The total energy cost of using our model-based thermo-

stat is aproximately 421kJ. In contrast, a naive solution would use central heating

to achieve temperature goals for all zones. Central heating requires anywhere from

600W to 8000W+ to operate [mre], which means accounting for the energy cost

just when the first person enters zone 1 would require at least 523kJ.

Our results from both deployments show that a useful programming envi-

ronment that enables model-based applications can be built empirically without

requiring advanced modeling from a domain expert. This allows application devel-

opers to quickly evaluate against real deployment scenarios. Domain experts can

also later add more sophisticated models without requiring changes to applications.

2.5 Related work

Sensor-actuation is a cross-disciplinary topic and has been studied by a

variety of people from both academia and industry. Our work touches primar-

ily on programming, modeling, and how to integrate them for a deployment.

Many deployments involve programming directly against a custom solution. Ex-

amples include camera tracking [CDBF04, KKP+06] or structural health moni-

toring [WSA01, FT10] solutions. However, we are more interested in structured

approaches that can be reused. The primary examples of these include systems

from SCADA or cyber-physical systems.

A SCADA system is a computer control system that is typically composed of

a human interface component and a low-level actuator control component [US 06].

The human interface component provides visualization, data analysis, and control
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semantics to a human operator. The control component of a SCADA system is

responsible for low-level control and is often composed of a set of programmable

logic controllers (PLC). There are also PID-based controllers that are used for

localized control. For example, a zone temperature in an HVAC deployment is

assumed to only be affected by zone-level actuation devices. SCADA systems are

prevalent in gas pipe deployments [Ene07], factory control [JM86], and nuclear

power plants [MRVB00]. In contrast, Arrowhead provides a higher-level actuation

abstration.

From a programming perspective, Mottola and Picco give an exhaustive

survey of such techniques [MP11], as well as Sugihara and Gupta [SG08]. Tech-

niques range from abstracting away networks, mobility, space, or time, but very

few programming techniques deal with actuation in a generic way. Deshpande et

al describe a system for HVAC systems, and in theory can be used for any deploy-

ment, but no results have yet been published [DGM05]. Other systems such as

sMAP [DHJT+10] give a web programming abstraction where all sensor data and

actuation is done via a RESTful interface. Another approach is macroprogram-

ming [KGMG07, HSH+08, HAAIKR11, VHXS10]. Macroprogramming solutions

abstract away the networking, distributed, and hardware access of a deployment

to allow developers to focus on their applications themselves.

Programming abstractions for cyber-physical system involves giving ab-

stractions for dealing with the physical environment. This can either be for a

specific operation, or for the whole application solution. An example of an ab-

straction for a specific operation is Hotline. Hotline [BLW+11] gives a distributed

shared memory abstraction for addressing physical variables. Applications can

acquire a distributed lock to a shared resource (i.e. camera) and have mutually

exclusive access to it for a certain duration. Work on computation platforms has

also recently emerged, particularly for smart grids [TGW11]. This area of work is

still actively developing. Arrowhead is complementary to these abstractions.

Lastly, from the modeling side, work has been done in trying to model

both the environments and the applications themselves. Lee and Seshia describe

hybrid systems that combine continuous and discrete methods [LS11]. This is
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expected because physical processes are often continuous, whereas computational

systems are usually discrete. At the environment model, techniques known as sys-

tem identification [Lju08] aim to construct environmental models with a blend of

white-box first principles of the environment and black-box empirical data. Once

system identification is done, they can be used for advanced process control tech-

niques like model predictive control [Nik01]. These models can readily be used

with Arrowhead.

2.6 Discussion and Future Work

There are several issues that Arrowhead does not account for. The first is

model failure. Arrowhead does not require any accuracy or fidelity requirements

from the model. This means it is possible that the model may give a poor, or

even unsafe, solution. However, an advanced model can give a confidence interval

along with the solution. If that is not possible, an operator can take the solution

and manually perform actuation. If an application decides to create setpoints

on actuator variables directly instead of on sensor variables, our kNNR model will

filter out any solutions whose actuator variable setpoints are not satisfied. Creating

robust and accurate models has been and will continue to be an area of interest in

sensor-actuator networks.

Also related to the model is whether it can be continuously updated online.

Although we have described our kNNR model as being an offline model, it can

be converted to an online model by periodically flushing out old samples and

running the learning algorithm on new data. This technique can be applied to any

empirical-based model.

Another issue is hardware failure. It is important that when actuation is

performed in the runtime, it is actually performed in the physical world. Ar-

rowhead assumes that a separate system is in place for hardware and network

management, such as SNMS [TC05].

Security is also an important issue for sensor-actuator networks. Arrowhead

safety applications prevent other applications from having unsafe setpoints, but it
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does not provide any security relating to privacy or denial of service. It is currently

possible for an application to query for all sensor and device information. However,

it is possible for operators to selectively expose the API and apply standard network

security features such as firewalls.

Arrowhead is also not well suited for deployments that need very fresh

data and thus have very small intervals. This is because all the applications must

also be executed frequently, which cannot be guaranteed with unknown network

latency. Even when all applications are running locally, we have not measured how

performant the runtime server can be.
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Chapter 3

Control Command Dissemination

in WSN

3.1 Introduction

Commodity wireless sensor-actuation deployments require a dissemination

protocol to propagate actuation commands to individual devices because they are

likely to be added to a deployment incrementally. For example, a single fan may

be added in one room of an HVAC deployment before more fans are later added

to different thermal zones. A common dissemination protocol allows them to all

communicate with the main controller and scale as the number of devices grows.

Dissemination protocols such as MNP [Wan04], XNP [Cro], Deluge [HC04],

and Sprinkler [NASZ07] distribute new binaries into a network, enabling complete

system reprogramming. Dissemination protocols such as Maté’s capsule propa-

gation [LGC05] and Tenet’s task propagation [GGJ+06] install small virtual pro-

grams, enabling application-level reprogramming. Finally, dissemination protocols

such as Drip [TC05] allow administrators to adjust configuration parameters and

send RPC commands [WTT+06].

Dissemination protocols reliably deliver data to every node in a network

using key, version tuples on top of some variant of the Trickle algorithm [LPCS04].

We describe these protocols and their algorithms in greater depth in Section 3.2.

50
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The key characteristic they share is a node detects a neighbor needs an update by

observing that the neighbor has a lower version number for a data item (key). The

cost of this mechanism scales linearly with the number of data items: T data items

require T version number announcements. Even though a protocol can typically

put multiple announcements in a single packet, this is only a small constant factor

improvement. Fundamentally, these algorithms scale with O(T ) for T total data

items. This linear factor introduces a basic cost/latency tradeoff. Nodes can either

keep a constant detection latency and send O(T ) packets, or keep a constant cost

and have an O(T ) latency.

The key insight in this chapter is that dissemination protocols can break

this tradeoff by aggregating many data items into a single advertisement. Be-

cause these aggregates compress information, they can determine that an update

is needed, but cannot always determine which data item needs an update. Sec-

tion 3.3 outlines existing dissemination algorithms and describes a new algorithm,

search, that breaks the cost/latency tradeoff, enabling fast and efficient dissemina-

tion. By using a hash tree of data item version numbers, a protocol using search

can discover an update is needed with O(log(T )) transmissions.

In simple collision-free and lossless network models, search works well. How-

ever, two problems can make the hash tree algorithm perform poorly in real net-

works. First, packet losses can make it difficult to quickly traverse the tree. Sec-

ond, the multiple advertisements caused by packet losses are completely redundant:

there is typically only one subtree to explore. Through controlled simulation ex-

periments, we find that in cases of very high loss or when a large fraction of items

require updates, the underlying constant factors can cause randomized scans to be

more efficient than hash tree searches.

Section 3.3 presents an analytical framework to understand these trade-

offs. The analysis shows that whether periodic advertisements or searches is more

efficient depends on three factors: network density, packet loss ratios, and the

percentage of items that need updates. While they have similar efficiency when

reasonably close to their equality point, one can be a factor of two more efficient

than the other at the edges. This analysis indicates that a scalable dissemination
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protocol can get the best of both worlds by using a hybrid approach, dynamically

switching between algorithms based on run-time conditions.

Section 3.4 presents such a protocol, called DIP (DIssemination Protocol).

DIP continuously measures network conditions and estimates whether each data

item requires an updates. Based on this information, it dynamically chooses be-

tween a hash tree-based search approach and scoped randomized scanning. DIP im-

proves searching performance by combining hashes over ranges of the key space

with a bloom filter. Hashes allow it to detect whether there are version num-

ber inconsistencies while Bloom filters let it quickly pinpoint the source of the

inconsistency.

Section 3.5 evaluates DIP in simulation and on a mote testbed. In simulated

clique networks, DIP sends up to 30-50% fewer packets than either scanning or

searching and is correspondingly 30-50% faster. In the Intel Mirage multihop 80

node testbed, DIP sends 60% fewer packets than scanning or searching. In some

cases, DIP sends 85% fewer packets than scanning, the dominant algorithm in use

today. By improving its transmission efficiency, DIP is also able to disseminate

faster: across real, multihop networks, DIP is 60% faster for a few items and over

200% faster for many items. Section 3.6 presents how DIP relates to prior work.

These results show that DIP is significantly more efficient than existing

approaches. This improvement comes at a cost of an additional log(log((T )) bits

of state per data item for T items. Section 3.7 discusses the implications of these

findings. The tradeoffs between scanning and searching touch on a basic tension

in sensornet protocol design. While searching can find inconsistencies quickly by

exchanging higher-level metadata, its deterministic operation means that it cannot

leverage the communication redundancy inherent to wireless protocols. While

scanning can take advantage of this redundancy through randomization, it does so

by explicitly avoiding any complex metadata exchange. DIP ’s results suggest the

complex tradeoffs between randomized versus deterministic algorithms in wireless

networks deserve further study.

This chapter makes three research contributions. First, it proposes DIP ,

an adaptive dissemination protocol that can scale to a large number of items.
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Second, it introduces using a bloom filter as an optimization to update detection

mechanisms in dissemination protocols. Third, it evaluates DIP and shows it

outperforms existing dissemination protocols, reducing transmission costs by 60%

and latency by up to 40%. These results suggest the complex tradeoffs between

randomized versus deterministic algorithms in lossy networks deserve further study.

3.2 Motivation and Background

Efficiently, quickly, and reliably delivering data to every node in a network

is the basic mechanism for almost all administration and reprogramming proto-

cols. Matévirtual machines disseminate code capsules [LGC05]; Tenet disseminates

tasks [GGJ+06]; Deluge [HC04], Typhoon [LMET08] and MNP [Wan04] dissemi-

nate binary images; Drip disseminates parameters [TC05] and Marionette builds

on Drip to disseminate queries [WTT+06].

3.2.1 Trickle

All of these protocols use or extend the Trickle algorithm [LPCS04]. Trickle

periodically broadcasts a summary of the data a node has, unless it has recently

heard an identical summary. As long as all nodes agree on what data they have,

Trickle exponentially increases the broadcast interval, thereby limiting energy costs

when a network is stable. When Trickle detects that other nodes have different

data, it starts reporting more quickly. If a node hears an older summary, it sends

an update to that node.

In practice, protocols assign keys to data items and summaries use version

numbers to determine if data is newer or older. For example, the MatéVM assigns

each code capsule a unique number. Installing new code in the network involves

selecting a capsule, incrementing its version number, and installing the new version

on a single source node. That node starts quickly advertising it has a new version,

shrinking its advertisement interval to a small value (e.g., one second). Neighbors

hear the advertisement and quickly advertise they have an old version, causing the
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source to broadcast the update and spread the new code.1 This process repeats

throughout the network until all nodes have the update. Trickle’s transmission

rate slows down, following the exponential interval increase rule up to a maximum

interval size (e.g., one hour).

Systems use Trickle because they are efficient and scale logarithmically with

node density. As nodes suppress redundant advertisements, Trickle can scale to

very dense networks. This suppression is not perfect: packet losses cause the

number of redundant advertisements to scale logarithmically with network density.

By constantly adjusting its advertisement interval, Trickle advertises new data

quickly yet advertises slowly when a network is consistent.

3.2.2 A Need for Scalability

While using Trickle enables dissemination protocols to scale to dense net-

works, no protocol currently scales well to supporting a large number of data items.

As sensornet applications grow in complexity and nodes have more storage, ad-

ministrators will have more parameters to adjust, more values to monitor, and a

need for a larger number of concurrent capsules, tasks, or queries.

When an administrator injects new data to a single node, that node knows

the data is newer. Therefore, disseminating new data with Trickle is comparatively

fast. The more challenging case is when nodes need to detect that there is new

data. This case occurs when disconnected nodes rejoin a network. Both the old

and new nodes think that the network is up to date, and so advertise at a very

low rate.

Because current protocols advertise (key, version) tuples, their transmission

costs increase linearly with the number of distinct data items. To detect that a

data item is different, a node must either transmit or receive a tuple for that item.

This approach causes the cost/latency product of a trickle to scale with O(T ),

where T is the total number of data items. Some protocols, such as Drip and

Deluge, maintain a constant latency by keeping a fixed maximum interval size and

1MNP [Wan04] extends simple trickles in that it uses density estimates to decide which node
sends the actual update.
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disseminating each item with a separate trickle. As the number of items grows,

the transmission rates of these protocols grow with O(T ). Other protocols, such

as Tenet’s task dissemination, keep a constant communication rate so detection

latency grows with O(T ).

As sensor systems grow in complexity, linear scalability will become a lim-

iting factor in the effectiveness of these protocols: it will force administrators to

choose between speed and efficiency. The next section quantifies these tradeoffs

more precisely, and introduces a new hash-tree based algorithm that resolves this

tension, so dissemination protocols can simultaneously be efficient and fast.

3.3 Protocol Tradeoffs

Dissemination protocols have two main performance metrics: detection la-

tency and maintenance cost. Maintenance cost is the rate at which a dissemination

sends packets when a network is up-to-date. Traditionally, these two metrics have

been tightly coupled. A smaller interval lowers latency but increases the packet

transmission rate. A larger interval reduces the transmission rate but increases

latency. Trickle addresses part of this tension by dynamically scaling the interval

size, so it is smaller when there are updates and larger when the network is stable.

While this enables fast dissemination once an update is detected, it does not help

with detection itself.

Protocols today use two approaches to apply Trickle to many data items.

The first establishes many parallel Trickles; the second uses a single Trickle that

serially scans across the version numbers to advertise. This section proposes a

third approach, which uses a hash tree to obtain constant detection latency and

maintenance cost. To achieve this, searching introduces an O(log(T )) overhead

when it detects an update is needed.

3.3.1 Scanning and Searching

Parallel detection uses a separate Trickle for each data item. Because the

maximum trickle interval is fixed, parallel detection provides a detection latency
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Table 3.1: Scalability of the three basic dissemination algorithms.

Protocol Latency Cost Identify
Parallel Scan O(1) O(T ) O(1)
Serial Scan O(T ) O(1) O(1)
Search O(1) O(1) O(log(T ))

bound independent of the number of items. However, this bound comes at a cost:

parallel detection has a maintenance cost of O(T ).

Serial detection uses a single Trickle for all items. Each transmission con-

tains a selection of the (key,version) tuples. Because serial detection scans across

the tuples, it requires O(T ) trickle intervals to transmit a particular tuple. There-

fore, serial detection has a latency of O(T ).

The parallel and serial approaches represent the O(T ) cost/latency product

that basic trickles impose. One can imagine other, intermediate approaches, say

where both cost and latency increase as O(
√
T ). In all such cases, however, the

cost/latency tradeoff persists.

A third approach is to search for different items using a hash tree, similar

to a binary search. When a node sends an advertisement, it sends hashes of version

numbers across ranges of data items. When a node hears an advertisement with

a hash that does not match its own, it sends hashes of sub-ranges within that

hash. This simple protocol backs up one tree level on each transmission to prevent

locking.

When a network is stable, nodes advertise the top-level hashes that cover

the entire keyspace. As these hashes cover all items, searching can detect new items

in O(1) time and transmissions. Determining which item is new requires O(log(T ))

transmissions. As these transmissions can occur at a small Trickle interval rate,

the latency of identifying the items is insignificant compared to detection.

While searching is much more efficient in detecting a single new item, it

can be inefficient when there are many new items. This can occur, for example, if

an administrator adds nodes that require all of the software updates and programs

running in the network. Since searching pays an O(log(T )) cost for each item,

with N new items its cost will be O(N · log(T )). In the worst case, this can be
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Table 3.2: Network parameters.

Term Meaning
T Total data items
N New data items
D Node density
L Loss ratio

Figure 3.1: As T increases but N is constant, the chances a scan will find a new

item goes down, and searches become more effective.

O(T · log(T )), which is more expensive than the O(T ) of scanning approaches.

Table 3.1 summarizes these tradeoffs, and Figure 3.1 shows which algorithm is

better as T changes.

3.3.2 Analysis

Loss and density affect protocol performance. In the rest of this chapter, we

describe networks with the terms in Table 3.2. Trickle introduces a communication

redundancy R of log 1
L

(D). This comes from the probability that a node with an

area of density D will advertise even if R−1 nodes have already advertised because

it lost those packets.

In the case of a parallel scan protocol, these extra transmissions are com-

pletely redundant: there will be R · T transmissions per interval, and detection

latency remains O(1). In serial scan protocols, these extra transmissions are not

completely redundant: nodes may be at different points in their scan, or might be

advertising a random subset. Because they are not redundant, scanning’s latency

goes down: these extra transmissions further cover the keyspace. Therefore, the
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detection latency of parallel scans are O(T
R

).

Extra messages in search protocols are redundant for the same reason they

are in serial scans. When nodes detect a hash mismatch, they will all respond with

the same set of sub-hashes. Furthermore, if a node does not hear a sub-hash, it

assumes consistency and backs up one level in the hash tree: heavy packet loss can

slow tree traversal.

Searching is typically advantageous when N is small compared to T . If N

is large, then scanning is effective because a random selection of items is likely

of finding an inconsistency. In contrast, searching requires traversing the tree,

introducing control packet overhead. When N is small, this overhead is less than

the number of packets a scan must send to find a new item.

Together, these tradeoffs mean that which of the algorithms performs best

depends on network conditions. High R and N values improve scanning perfor-

mance. But when N is small, searching is more efficient. Furthermore, the two

approaches are not mutually exclusive; a protocol can search until it determines

the new item is in a small subset, at which point R may make scanning that subset

more efficient than continuing the search. Thus an ideal protocol should switch

from a scan to a search when nodes are down to their last few items and adjust to

network conditions. The next section proposes such as protocol.

3.4 DIP

DIP is a hybrid data detection and dissemination protocol. It separates this

into two parts: detecting that a difference occurs, and identifying which data item

is different. DIP dynamically uses a combination of searching and scanning based

on network and version metadata conditions. To aid its decisions, DIP continually

estimates the probability that a data item is different. DIP maintains these esti-

mates through message exchanges. When probabilities reach 100%, DIP exchanges

the actual data items. It is an eventual consistency protocol in that when data

items are not changing, all nodes will eventually see a consistent set of data items.

This section starts with a broad overview of how DIP works. It introduces
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E=0
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E=3

Data (E=4)

Figure 3.2: Example estimate values for a 16-item hash tree.

DIP ’s metadata structures, the messages it exchanges, its use of Trickle, and the

details of its estimate system before finally describing the algorithms DIP applies

when receiving and transmitting packets.

3.4.1 Overview

DIP stores a version number for each data item. In the steady state where

all nodes are up to date and have the same versions, DIP uses Trickle to send

hashes that cover all of the version numbers. Nodes that receive hashes which are

the same as their own know they are consistent with their neighbors. If a node

hears a hash that differs from its own, it knows that a difference exists, but does

not know which specific item or who has the newer version.

In addition to the version number, DIP maintains a soft-state estimate of

whether a given item differs from a neighbor’s. It is soft in that if estimates are

temporarily inaccurate or lost, the protocol will still proceed. In contrast, version

numbers must be correct for consistency and correctness.

When DIP detects a hash of length H that differs, it gives each item covered

by the hash a conservative estimate of 1
H

. This estimate is conservative because

at least one of the H items is different.

DIP sends advertisements that improve its estimate accuracy by using

smaller hashes. For example, a node that receives a differing hash of length H

can respond by sending two hashes of length H
2

. As Figure 3.2 shows, one can

think of these levels of hashes defining a hash tree over the version number set; go-

ing down the tree involves sending smaller hashes, while going up the tree involves

sending longer hashes.
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Identifying which data item is different and which node has the newer ver-

sion requires exchanging actual version numbers. In the hash tree, version numbers

are hashes of length 1. Section 3.3 showed how if the probability of a version num-

ber difference is large enough, then transmitting a random subset of the version

numbers can be more efficient than traversing the hash tree. To take advantage

of this behavior and determine the transition point, DIP monitors network con-

ditions, such as Trickle communication redundancy. Rather than always walk to

the bottom of the hash tree, DIP starts sending precise version information when

estimates reach a high enough value that suggest random scanning would be more

efficient.

3.4.2 Metadata

DIP maintains a version number and unique key for each data item. As

a result of having a unique key, it also assigns each data item an index in the

range of [0, T − 1]. DIP can describe a data item i as a tuple (ki, vi) where ki is

the data item key and vi is its version number. The implementation of DIP we

describe in this chapter uses 32-bit version numbers, to preclude wrap-around in

any reasonable network lifetime; smaller or larger values could also be used.

In addition to version numbers, DIP maintains estimates of whether an item

is different. DIP stores estimates as small integers in the range of [0, log(T )].2 An

estimate value of E means that DIP detected a difference at level E in the hash

tree. With a tree branching factor of b, this means a hash that covers T
bE+1 items.

Together, these two pieces of metadata are log(V ) + log(log(T )) bits per

data item, where V is the maximum version number. In practice, log(V ) is a small

constant (e.g., 4 bytes). Compared to the basic Trickle, which requires O(T ) state,

DIP requires slightly more, O(T + T ·log(log(T ))), as it must maintain estimates.

In practice, the log(log(T )) factor is a single byte for simplicity of implementation,

so DIP uses 5 bytes of state per data item in comparison to standard Trickle’s 4

bytes.

2The implementation we describe in Section 3.5 actually stores values in the range [0, log(T )+
2] to save a few bits in transmit state.
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3.4.3 Messages

The prior section described the per-item state each DIP node maintains

with which to make protocol decisions. This section describes the types of mes-

sages DIP nodes use to detect and identify differences in data sets among their

neighborhood. DIP , like Trickle, is an address-free, single-hop gossip protocol

that sends all messages as link-layer broadcasts. DIP seamlessly operates across

multihop networks by applying its rules iteratively on each hop. DIP uses three

types of messages: data, vector, and summary.

Data Messages: Data messages transmit new data. They have a key ki, a version

number vi, and a data payload. A data message unambiguously states whether

a given item is different. On receiving a data message whose version number is

newer than its own, DIP installs the new item.

Vector Messages: Vector messages hold multiple key, version tuples. The tuples

may have non-consecutive keys. Vector messages, like data messages, unambigu-

ously state whether a given item is different. They do not actually update, however.

Summary Messages: Figure 3.3 illustrates a complete summary message. Sum-

mary messages contain a set of summary elements and a salt value. Each summary

element has two indices describing a set of version numbers, a summary hash over

the set, and a bloom filter of the set. The salt value is a per-message random num-

ber that seeds the summary hash and bloom filter to protect from hash collisions.3

When the size of the set covered by the summary hash is small enough, the filter

can circumvent several hash tree levels to find which item is inconsistent. The

number of summary elements in a summary message determines the branching

factor of the DIP hash tree.

The summary hash function SH is SH(i1, i2, s) where i1 and i2 are two

indices representing left and right bounds of the search, and s is a salt value. Its

output is a 32-bit hash value. For example, SH(0, T − 1, s) would be a hash over

all the current version numbers for all data items. The specific function is a one-

at-a-time hash using a combination of bit shifts and XOR operations, which an

3We borrow the term “salt” from UNIX password generation [MT79].



62

Salt s
Begin1 End1 BloomFilter1 SummaryHash1
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Figure 3.3: DIP Summary Message

embedded microcontroller can compute without much difficulty.

Each summary message has a bloom filter, a probabilistic data structure

that can be used to test an item’s membership. Computing a bloom filter of length

B bits involves taking a hash BH(i, v, s) of each covered item, where i is the item

index, v is the version number, and s is the salt. The result of each BH modulo

B is a single bit position that is set to 1 in the filter4. If two bloom filters share

an (index, version) tuple, they will both compute the same bit to be 1: there are

no false negatives, where both sets agree but the filters differ. Bloom filters can

have false positives, where two sets differ but have the same filter.

Each of the three message types provides DIP with different information.

Data and vector messages can identify which data items are different. However, the

detection cost of finding the item is O(T ). Summary messages can tell DIP that

there is a difference, but not definitively which item or items differ. Summary mes-

sages have a O(1) detection cost and a O(log(T )) identification cost. In practice,

for reasonable T values (below 1,000), the bloom filter significantly reduces the

identification cost.

3.4.4 Updating Estimates

The prior two sections explained the state that DIP maintains and the mes-

sages it exchanges. As version numbers only change on data updates, estimates

constitute most of the complexity of DIP ’s state management. This section ex-

plains how DIP adjusts its estimates in response to receiving packets. The next

section explains how DIP decides what packets to send.

Section 3.4.2 stated that estimate values E are in the range of [0, log(T )],

4Bloom filters generally use k hash functions to set k bits. In DIP, k = 1
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E=0

  E=ED

  E=EO   E=EN

E=1

Figure 3.4: Estimate values. ED = blogb(T )c, where b is the number of

summary elements in a summary message (the branching factor). EO denotes a

neighbor has an older item, while EN denotes a neighbor has a newer item.

where a 0 represents a belief that the data item is consistent with all neighbors,

and value of log(T ) represents certainty that the item is different We denote log(T )

as ED, as it denotes a difference exists. In addition to this range, DIP reserves two

extra values: EO, which denotes a nearby node has an older version, and EN , which

denotes a neighbor has a newer version. These two values are necessary because

ED only denotes that a node has a different version than one of its neighbors, but

not the difference direction. Figure 3.4 summarizes the estimate values.

DIP uses the information in data, vector, and summary packets to update

its estimates. On receiving a packet that indicates a neighbor has the same version

number for an item, DIP decrements that item’s estimate, to a minumum of zero.

In the base case, when all nodes agree, estimates converge to zero. On receiving a

packet that indicates a neighbor has a different version number, DIP improves its

estimates for the relevant items as well as it can from the information it receives.

More precisely, DIP adjusts estimate values with the following rules:

1. Receiving a vector or data message with an older version number sets that

item to E0 unless it is EN .

2. Receiving a vector or data message with the same version number decrements

that item’s E, to a minimum of 0.

3. Receiving a data message with a newer version number, it updates the item

and sets it to EO.

4. Receiving a vector with a newer version number sets that item to EN .
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5. Receiving a summary element with a differing hash of length H sets E for all

items that hash covers to be the maximum of their current E and log(T )−
log(H).

6. Receiving a summary element with a differing hash and differing bloom filter

sets all items with a differing bloom filter bit to ED.

7. Receiving a summary element with a matching hash decrements the E of all

items the hash covers, to a minimum of 0.

The first two rules are identical for vector and data messages. In the case

of receiving an older version number, DIP sets the item to be EO, denoting it

should send an update, unless the item is already EN , denoting it should receive

an update. Sending an update with an out-of-date item is a waste, so a node

prefers to wait until it is up-to-date before forwarding updates.

The third and fourth rules define what occurs when DIP receives a packet

with a newer version number. If the version number is in a vector message,

DIP knows it needs an update, so sets the item to EN . If the version number is

in a data message, then DIP has received the update, which it installs. DIP then

sets the item to EO, as chances are another node nearby needs the update as well.

The last three rules define how DIP responds to summary messages. Like

data and vector messages, receiving a matching summary decrements estimate val-

ues. When DIP receives a differing hash that can provide a more precise estimate,

it increases its estimates to the value the hash will allow. If the bloom filter allows

DIP to pinpoint that an item is different, then it sets that item’s estimate to ED.

It determines this by checking the bloom filter bit for each item index, version

pair. If the bit is not set, then there is certainly a difference. Because summary

messages contain multiple summary entries, a single message can trigger one, two,

or all three of rules 5, 6 and 7.

3.4.5 Transmissions

Section 3.4.4 described what happens on a message reception. This section

describes how DIP decides which message types to transmit and what they contain.
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DIP uses a Trickle timer to control message transmissions. In the main-

tenance state when no data items are different, the DIP Trickle timer is set at

a maximum interval size of τh. As soon as a difference is detected, the Trickle

interval shrinks to the minimum interval of τl. When all estimates return to 0,

DIP doubles its Trickle interval until τh is reached again.

DIP also uses hierarchical suppression to further prevent network flooding.

Messages of the same type may suppress each other, but summary messages cannot

suppress vector messages. This is because vector messages are more precise and

are often used near the end of a search. This hierarchical suppression prevents

nodes from suppressing more precise information.

DIP ’s transmission goal is to identify which nodes and items need updates.

It accomplishes this goal by increasing estimate values. In the steady state, when

all nodes are up to date, DIP typically sends summary messages whose summary

elements together cover the entire set of version numbers. All DIP transmissions

are link-layer broadcasts.

All tuples in vector messages and summary elements in summary messages

have the same estimate value: a packet always represents a single level within the

DIP hash tree. DIP always transmits packets which contain information on items

with the highest estimate values. Together, these two rules mean that DIP trans-

missions are a depth-first, parallelized, search on the hash tree.

We now describe the decisions DIP makes. DIP ’s decisions are made based

on local information to each node. This, coupled with the soft-state properties of

the estimates, allow nodes running DIP to seamlessly leave and join both singlehop

and multihop networks.

If an item has an estimate of E = EO, DIP sends a data message. Because

receiving an update causes DIP to set E to EO, forwarding an update takes highest

priority in DIP . Of course, hearing the same data message, or other packets that

decrement E may prevent this data transmission; however, since DIP is based on

randomized Trickle timers, in practice it soon discovers if a node is out of date and

increases E to EO.

If E 6= EO, DIP compares the vector message and summary message costs of
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identifying a difference. If v key/version pairs can fit in a vector message and d data

items need to be covered (computed from E), then DIP requires d
v

transmissions

to scan through all d items. For summary messages, DIP requires ED − E (the

number of levels until the bottom of the hash tree) transmissions. Assuming lossless

communication, DIP transmits summaries when (ED − E) > d
v

and vectors when

(ED − E) < d
v
. This inequality means that if an item has an estimate of ED or

EN , DIP always transmits a vector message.

Because real networks are not lossless, DIP adjusts its decision based on the

degree of communication redundancy it heard in the last trickle interval. Hear-

ing more messages in a given interval is related to a failure in the suppression

mechanism and most likely caused by a loss rate or dense network. DIP accounts

for this by changing the vector message calculation from d
v

to d
c·v where c is the

redundancy.5 If it takes d
v

vector messages to determine a new data item, but it

is receiving c messages, then weight the required number of vector messages by a

factor of c.

When DIP transmits version messages, it selects a random subset of the

data items which have the highest estimate value. As Section 3.3 showed, random-

ization is critical as communication redundancy increases with density.

When DIP transmits summary messages, it performs a single linear pass

across the data items to find contiguous runs of items that have the highest estimate

value. It generates summary elements for these items that are one level lower on

the hash tree. For example, if DIP finds a run of items with an estimate of E, it

generates summary elements which each cover T
bE+1 items. While the items within

each summary element must be contiguous, the summary elements themselves do

not need to be.

Finally, when DIP transmits, it decrements the estimate values of all data

items the transmission covers. In the case of data and vector messages, it decre-

ments the estimates of the items version numbers that are in the packet. In the

case of summary messages, it decrements the estimates of all items covered by a

summary element.

5We borrow the term c from Trickle’s communication counter.
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Figure 3.5: Two nodes exchanges summaries and vectors to determine that the

left node needs an update for item 5. The arrays show each node’s estimate

values during each step of the packet exchange. In this example, summaries

contain 2 summary elements.

3.4.6 Example

To give a concrete example of what a DIP search looks like and how the

estimate update rules work, Figure 3.5 shows two nodes running DIP detecting

that one node needs an update for item 5. For simplicity, this example assumes

bloom filters never help, and DIP only sends vector messages at the bottom of the

hash tree. Each time a node transmits a summary message or a vector message,

it reduces the estimate of the covered items. First, the left node transmits a full

summary. The right node sees that the right summary hash (covering items 4–7)

is different, so replies with summary hash of 4–5 and 6–7. The left node sees that

4–5 is different, so replies with the version numbers of 4 and 5. The right node

replies with the data for item 5. The left node rebroadcasts the data in case any

neighbors do not have it, which propagates the update acros the next hop. The

nodes exchange a few more summary messages to make sure that the different

summary hashes covered only one update.
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(a) D = 2.

(b) D = 32.

Figure 3.6: Bloom filter effectiveness with L = 0%, T = 256 with two different

densities and varying N.

3.5 Evaluation

We divide our evaluation of DIP into two parts. In the first part, we look at

improvements. We measure the effectiveness of DIP ’s two primary optimizations:

bloom filters and using scans when the chance of hitting a new item is high. These

experiments are all in simulation. In the second part, we look at comparisons.

We compare DIP against a scan and search protocols in simulation and a real

network. In simulation, we measure how parameters affect DIP ’s transmission

costs by measuring the cost for the whole network to complete all updates. On a

mote testbed, we compare the performance of the three algorithms for different N .

3.5.1 Methodology

We implemented DIP in TinyOS 2.0: it compiles to 3K of program code. In

our implementation of DIP , we had 2 summary elements per summary message,
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and 2 key/version tuples per vector messages. The maximum Trickle interval was

set at one minute, and the minimum interval at one second, though these numbers

can be adjusted on a real deployment. We also implemented intelligent versions

of the serial scan and search algorithms that use DIP -style estimates. Using

estimates greatly improves the performance of these algorithms as they maintain

some state on what to advertise. All three protocols use a single underlying Trickle.

Scanning sends two (key,version) tuples per packet and sequentially scans through

items. Searching uses a binary hash tree. When search identifies a different item,

it updates the item and resets to the root of the tree.

To evaluate simple clique networks and multihop simulations, we used

TOSSIM, a discrete event network simulator that compiles directly from TinyOS

code [LLWC03]. In TinyOS 2.0, TOSSIM uses a signal-strength based propagation

and interference model. Nodes have uniformly distributed noise along a range of

10dB and a binary SNR threshold of 4dB. The model distinguishes stronger-first

from stronger-last collisions, such that if a stronger packet arrives in the middle

of a weaker one, the radio does not recover it (this is how the CC2420 radio on

Telos and micaZ nodes behaves). Therefore, lossless communication in TOSSIM

does not mean all packets arrive successfully: there can still be collisions. Fully

connected networks are not collision-free because TOSSIM models radio RX/TX

turnaround times.

To set a uniform loss rate, we configured TOSSIM to have noise values in

the range of -110dBm to -100dBm and tuned the signal strength to obtain the

desired loss rate. For a loss rate of 10%, we set link strengths to be -96.5dBm;

for 20%, -97dBm; for 30%, -97.5dBm; for 40%, -98dBm, and for 50% we set the

signal strength to be -99dBm. These values are not a simple linear progression as

uniform loss distributions would suggest because TOSSIM samples noise several

times during a packet. We ran several iterations for validity and averaged their

results when applicable.

To collect empirical data, we ran our experiments on the Mirage testbed

[CBA+05]. It is composed of 100 MicaZ motes that are distributed throughout an

office environment. Each MicaZ consists of an Atmel Atmega128L microcontroller,
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(a) L = 0.

(b) L = 20.

Figure 3.7: Message types used by DIP with T = 256, D = 32, two different

loss rates, and a varying N.

128K program flash, and an 802.15.4 compatible radio transceiver that transmits at

250kbps. We instrumented the DIP code to write to the UART various statistical

information when events occur. Then using a UART to TCP bridge, we listened on

on the port of each node and collected the information at millisecond granularity.

Although there are 100 nodes in the network, we could only connect to 77 of them

for data gathering purposes.

3.5.2 Improvements

We evaluate how bloom filters improve DIP ’s performance by measuring

how many summary messages successfully used a bloom filter to identify which

item needed an update. Detecting with a bloom filter enables DIP to circum-

vent subsequent summary exchanges to traverse the tree, reducing the number of

summary transmissions.

Figure 3.6(a) shows results from the very simple case of a pair of TOSSIM



71

(a) Total items (T).

(b) Density (D).

(c) New items (N).

(d) Loss rate (L).

Figure 3.8: DIP compared with scan and search protocols. By default, N=8

(new items), T=64 (total items), D=32 (clique size), and L=40% (loss rate).

Each figure shows how varying parameter affects DIP relative to other protocols.
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nodes with lossless communication. For different N , bloom filter optimizations

have a hit rate of 35%-80%.

Figure 3.6(b) shows that bloom filters are also effective in a 32-node net-

work, albeit less so than a single node pair. At higher densities, different nodes will

require different items over time. Thus the issue is not that a single node requires

many items, but rather many nodes require a few items, making N small for each

node.

To better understand the decisions that DIP makes, we measured the dis-

tribution of transmitted summary and vector messages for different loss rates and

new items in a 32 node clique. Figure 3.7(a) shows that as the number of new

items increases, DIP uses more vectors and at a higher proportion. This is a result

of DIP ’s dynamic adjustment to the number of new items. When the network

becomes lossy as shown in Figure 3.7(b), an increase in N causes DIP to use more

vectors and at a larger proportion, but this increase is not as fast as in a lossless

network. High loss slows the increase of estimate values, leading to more sum-

mary messages and delaying when it uses vector messages. Although the X-axis

on Figures 3.7 show N doubling, DIP ’s total transmission count does not double,

as using pure searches might suggest: its message adaptation allows it to take

advantage of high hit rates.

These results show that bloom filters improve DIP ’s detection and DIP dy-

namically improves its transmission policy based on network conditions.

3.5.3 Protocol Comparisons (TOSSIM)

Because there are four possible parameters, we explore each one indepen-

dently using TOSSIM. For simplicity, these experiments are all fully connected

networks with a uniform loss rate.

In our first experiment, we evaluated the scalability of each protocol by

having a constant number of new data items (N = 8) while varying up the total

number of data items (T ). We measured the total number of transmissions required

to update each node. Figure 3.8(a) shows the results. As expected, searching

requires O(log(T )) transmissions and scanning requires O(T ). DIP performs much
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better because it detects items quickly through the bloom filter. Even though

messages are lost, a single successful bloom filter will identify the items and thus

not require a full search. Furthermore, DIP keeps a narrow search by estimate-

based back outs, making bloom filters more effective.

Figure 3.8(b) shows how density affects scanning and searching perfor-

mance. Because both improved protocols handle redundancy, they have similar

lines. Scanning, however, is better than searching because there is no overhead

associated with scanning. At high densities, the improved scan protocol does not

pay extra to cover its entire keyspace. DIP again performs the best because it has

the benefits of both low overhead through bloom filters, but also being able to find

items quickly through searching.

Figure 3.8(c) shows how performance changes as the number of new data

items changes. When there are many new data items, the log(T ) search over-

head becomes noticeable, but not significant due to the fact our search protocol

implementation handles redundancy. The scan protocol scales linearly because

each additional new item requires a constant amount of identification overhead.

When almost all data items are new, it may seem counterintuitive that searching

is better. The reason for this is because after nodes have been updating, the few

remaining items at the end are hard to identify. Thus, the early scan advantage

cancels out at the end. DIP scales linearly, but at a smaller constant factor.

Figure 3.8(d) shows how performance changes as the loss rate increases and

the results are similar to that of figure 3.8(b) due to redundancy.

In a multihop network, we are interested in how many transmissions are

required for the whole network to detect new items. In multihop topologies, nodes

must request new data from neighbors, while at the same time servicing other

neighbors. We used the 15 by 15 sparse grid in the TinyOS 2.0 TOSSIM libraries,

which uses Zuniga et al.’s hardware covariance matrix [ZK04] to model link asym-

metries and other real-world effects. We modified the multihop implementations

of the scan and search protocols to perform better in multihop situations as well.

The scan protocol re-advertises items 3-4 times after receiving an item, while the

search protocol uses estimates to back out rather than resetting.
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(a) N = 8 (b) N = 32

Figure 3.9: Transmission costs to complete reception of all new data items on 15

by 15 grid with 64 total items and two different values of new items (TOSSIM).

(a) N = 8 (b) N = 32

Figure 3.10: Transmission costs to complete reception of all new data items on

Mirage with 64 total items and two different values of new items.
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Our first experiment examines transmission costs when N = 8 and T = 256.

Figure 3.9(a) shows the results. The scanning protocol completes a large majority

of nodes very close together, but the last few nodes take exceedingly long. When

different items are discovered, the scan protocol repeatedly transmits high esti-

mate items until estimate levels have decreased. At the end, when only a few

nodes have old items, scanning cannot find those few items very well. Search-

ing performs far worse because nodes are both senders and receivers in multihop

topologies and searching requires efficient pairwise communication. DIP has simi-

lar performance to scanning until around half the nodes are complete. Afterwards,

it begins searching and completes the remaining nodes. The gap between when

the first and last node completes is marginally smaller in DIP . DIP ’s tail begins

to occur when a majority of the nodes have finished. Finally, DIP uses only 40%

as many transmissions as scanning, a 60% improvement.

In the second experiment, shown in Figure 3.9(b), there were 32 new items

instead of 8. DIP completed disseminating to all nodes within 18,000 transmis-

sions. The overhead of searching caused the search protocol (not shown) to not

finish within 35,000 transmissions. Multihop topologies force nodes to send and

receive in different cells. This is problematic for searching, which requires pairwise

communication to succeed. In contrast, the scan protocol finished with just over

35,000 transmissions and exhibited a very long tail, as scans are inefficient at find-

ing the last few items. DIP has a shorter tail due to its ability to identify items

through the bloom filter.

3.5.4 Protocol Comparisons: Mirage

We ran two testbed experiments with T = 64. We measured how many

transmissions updated the whole network, and timed out each experiment after

400 seconds.

Figure 3.10(a) shows the per-node completion CDF for N = 8. DIP com-

pleted with 436 transmissions, while the search and scan protocols required 868

and 2867 respectively. DIP and the search protocol had steep curves meaning

the nodes completed within a short time of each other. This is because DIP and
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the search protocol (which was modified) back out after receiving or sending new

items, keeping searches narrow enough for nodes in other cells to find items. The

modified scan protocol is also steep, but has a long tail, which is caused from being

unable to find the last few items quickly after most of the network has finished.

Furthermore DIP finished with a much better overall time compared to the other

modified protocols. This is due to DIP ’s ability to identify items faster through

its bloom filters. In terms of time, DIP took 86 seconds to deliver all 8 items while

scanning took and searching took 107 and 143 seconds, respectively, a speedup of

24-60%.

Figure 3.10(b) shows results for N = 32. With more new items, search’s

overhead grows, and its performance relative to scanning degrades. While DIP was

able to disseminate to every node in approximately 860 packets, neither scanning

nor searching completed in over 2500 packets: both timed out. As dissemination

layers today use scanning algorithms, DIP reduces the cost by up to 60%. While

neither scanning nor searching was able to complete in 400 seconds, DIP took 131

seconds, a speedup of over 200%. This means, for example, when introducing new

nodes to a network, DIP will bring them up to date to configuration changes up

to 200% faster than existing approaches.

3.6 Related Work

DIP draws heavily from prior work in reliable data dissemination. Unlike

protocols for wired networks, such as SRM [FJM+95] and Demers’ seminal work

on epidemic database replication [DGH+87], DIP follows Trickle’s approach of

using local wireless broadcasts [LPCS04]. Trickle’s suppression and rate control

protects DIP from many of the common problems that plague wireless protocols,

such as broadcast storms [NTCS99]. Existing systems, such as Deluge [HC04],

Maté [LGC05], and Tenet [GGJ+06] use protocols that assume the number of data

items is small. DIP relaxes this assumption, enabling scalable dissemination for

many items. Unlike flooding and broadcast protocols such as RBP [SHSM06], DIP

provides complete reliability as long as the network is connected.
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DIP’s hashing is similar to Merkle hash trees [Mer79], a common mechanism

in secure systems. As Merkle hash trees need to minimize computation, each level

is a hash of the hashes of the level below it. As the tree stores all of these hashes,

changing a single leaf requires only updating log(n) hashes. In contrast, DIP

dynamically computes hashes of leaf values on demand. This approach stems from

how the resource tradeoffs between sensor nodes and traditional storage systems

differ: on a sensor node, the RAM to store a hash tree is expensive, while CPU

cycles to hash a range of version numbers is cheap.

Bloom filters have a long history in networked systems, including web

caching, Internet measurements, overlay lookups, and keyword searches [BM04].

Keyword searches are the most similar, but with an opposite purpose: while they

find similarities in filters, DIP seeks to find differences. Bloom filters are commonly

used in distributed and replicated IP systems (e.g., PlanetP [CAPMN03]), but to

our knowledge DIP represents their first use in wireless dissemination.

The tradeoffs between deterministic and randomized algorithms appear in

many domains. At one extreme of data reliability, standard ARQ algorithms repeat

lost data verbatim. At the other extreme, fountain codes [Lub02] used random-

ized code blocks to reliably deliver data. At the cost of a small data overhead ε,

a fountain code requires no explicit coordination between the sender and receiver,

trading off a bit of efficiency for simplicity and robustness. There are also many

techniques that lie between these extremes, such as incremental redundancy (or Hy-

brid ARQ) [Sol03], which randomizes code bits sent on each packet retransmission.

Similarly, Demers et al.’s landmark paper on consistency in replicated systems ex-

plored the tradeoffs between deterministic and randomized algorithms [DGH+87].

The Trickle algorithm adds another level of complexity to these tradeoffs due to

its inherent transmission redundancy.

3.7 Conclusion

This chapter presents DIP , an adaptive dissemination algorithm that uses

randomized and directed algorithms to quickly find needed updates. To achieve
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this, DIP maintains estimates of the probability that data items are different and

dynamically adapts between its algorithms based on network conditions. This

adaptation, combined with bloom filters, enables DIP to efficiently support dissem-

inating a large number of data items and achieve significant performance improve-

ments over existing approaches. The tradeoffs between searching and scanning

show a basic tension between deterministic and randomized algorithms. Acting

optimally on received data works best in isolation, but in the case of redundancy,

multiple nodes each taking a sub-optimal part of the problem can together outper-

form a locally optimal decision. DIP leverages this observation to greatly improve

dissemination efficiency; it remains an open question whether other wireless pro-

tocols can do the same.
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Chapter 4

Sensing and Actuation with

Mobile Web Applications

4.1 Introduction

Mobile phones serve as an important piece of commodity sensor-actuation

systems. In Chapter 2, we used mobile phones as a way to notify building operators

when manual actuation should be performed. In this chapter, we extend the use

of mobile phones to serve as sensors, as well as a JavaScript application execution

environment. This has the potential to enable sensor-actuation applications to be

executed directly from a website.

Web browsers provide an increasingly rich execution platform. Unfortu-

nately, browsers have been slow to expose hardware devices to JavaScript [Fla06],

the most popular client-side scripting language. This limitation has become par-

ticularly acute as sensor-rich devices like phones and tablets have exploded in

popularity. A huge marketplace has arisen for mobile applications that leverage

data from accelerometers, microphones, GPS units, and other sensors. Phones

also have increasingly powerful computational and storage devices. For example,

graphics processors (GPUs) are already prevalent on phones, and using removable

storage devices like SD cards, modern phones can access up to 64GB of persistent

data.

79
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Because JavaScript has traditionally lacked access to such hardware, web

developers who wanted to write device-aware applications were faced with two un-

pleasant choices: learn a new plugin technology like Flash which is not supported

by all browsers, or learn a platform’s native application language (e.g, the Win32

API for Windows machines, or Java for Android). Both choices limit the porta-

bility of the resulting applications. Furthermore, moving to native code eliminates

a key benefit of the web delivery model—applications need not be installed, but

merely navigated to.

4.1.1 A Partial Solution

To remedy these problems, the new HTML5 specification [Hica] introduces

several ways for JavaScript to access hardware. At a high-level, the interfaces ex-

pose devices as special objects embedded in the JavaScript runtime. For example,

the <input> tag [OHM] can reflect a web cam object into a page’s JavaScript

namespace; the page reads or writes hardware data by manipulating the prop-

erties of the object. Similarly, HTML5 exposes geolocation data through the

navigator.geolocation object [Pop]. Browsers implement the object by access-

ing GPS devices or network cards that triangulate signals from wireless access

points.

As a result, there are two distinct models for creating device-aware pro-

grams:

• Applications can be written using native code or plugins, and gain the per-

formance that results from running close to the bare metal. However, users

must explicitly install the applications, and the applications can only run on

platforms supporting their native execution environment.

• Alternatively, applications can be written using cross-platform HTML5 and

JavaScript. Such applications do not require explicit installation, since users

just navigate to the application’s URL using their browser. However, as

shown in the example above, HTML5 uses an inconsistent set of APIs to

name and query each device, making it difficult to write generic code. Fur-
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thermore, by exposing devices through extensions of the JavaScript inter-

preter, the entire JavaScript runtime becomes a threat surface for a mali-

cious web page trying to access unauthorized hardware—once a web page

has compromised the browser, nothing stands between it and the user’s de-

vices. Unfortunately, modern browsers are large, complex, and have many

exploitable vulnerabilities [DHM08, RLZ09, Sec08].

Ideally, we want the best of both worlds—device-aware, cross-platform web pages

that require no installation, but whose security does not depend on a huge trusted

computing base like a browser.

4.1.2 Our Solution: Gibraltar

Our new system, called Gibraltar, uses HTTP as a hardware access proto-

col. Web pages access devices by issuing AJAX requests to a device server, a simple

native code application which runs in a separate process on the local machine and

exports a web server interface on the localhost domain. If a hardware request is

authorized, the device server performs the specified operation and returns any data

using a standard HTTP response. Users authorize individual web domains to ac-

cess each hardware device, and the device server authenticates each AJAX request

by ensuring that the referrer field [FGM+99] represents an authorized domain.

Unlike HTML5, Gibraltar does not require the browser to be fully trusted.

Indeed, in Gibraltar, the browser is sandboxed and incapable of accessing most

devices. However, a corrupted or malicious browser can send AJAX requests to the

device server which contain snooped referrer fields from authorized user requests.

To limit these attacks, Gibraltar uses capability tokens and sensor widgets [HS10].

Before a web page can access hardware, it must fetch a token from the device

server. The page must tag subsequent hardware requests with the fresh capability.

To prevent a malicious browser from surreptitiously requesting capabilities

from the device server, Gibraltar employs sensor widgets. Sensor widgets are

ambient GUI elements like system tray icons that indicate which hardware devices

are currently in use, and which web pages are using them. Sensor widgets help a

user to detect discrepancies between the set of devices that she expects to be in
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use, and the set of devices that are actually in use. Thus, sensor widgets allow a

user to detect when a compromised browser is issuing HTTP hardware requests

that the user did not initiate.

Using these mechanisms, a compromised browser in Gibraltar has limited

abilities to independently access hardware (§4.5). However, a malicious browser

is still the conduit for HTTP traffic, so it can snoop on data that the user has

legitimately fetched and send that data to remote hosts. Gibraltar does not stop

these kinds of attacks. However, Gibraltar is complementary to information flow

systems like TightLip [YMC07] that can prevent such leaks.

4.1.3 Advantages of Gibraltar

Gibraltar’s device protocol has four primary advantages:

• Ease of Deployment: Gibraltar allows device-aware programs to ship as

web applications that do not need to be installed. The device server does

need to be installed, but it can ship alongside the browser and be installed

at the same time that the browser itself is installed.

• Security: Compared to HTML5-style approaches which expose hardware

by extending the JavaScript interpreter, Gibraltar has a much smaller attack

surface. Gibraltar’s HTTP protocol is a narrow waist for hardware accesses,

and the device server is much simpler than a full-blown web browser; for

example, our device server for Android phones is only 7613 lines of strongly

typed Java code, instead of the million-plus lines of C++ code found in

popular web browsers. Using capability tokens and sensor widgets, Gibraltar

can also prevent (or at least detect) many attacks from malicious web pages

and browsers. HTML5 cannot stop or detect any of these attacks.

• Usability: An HTTP device protocol provides a uniform naming scheme for

disparate devices and makes it easy for pages to access non-local devices. For

example, a page running on a user’s desktop machine may want to interact

with sensors on the user’s mobile phone. If a Gibraltar device server runs on

the phone, the page can access the remote hardware using the same interface
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that it uses for local hardware—the only difference is that the device server

is no longer in the localhost domain.

• Backwards Compatibility: It is straightforward to map HTML5 device

commands to Gibraltar calls. Thus, to run a preexisting HTML5 application

atop Gibraltar, a developer can simply include a translation library that

converts HTML5 calls to Gibraltar calls and preserves Gibraltar’s security

advantages. The library can use Mugshot-style interpositioning [MHE10] to

intercept the HTML5 calls.

Since Gibraltar uses HTTP to transport hardware data, a key question is whether

this channel has sufficient bandwidth and responsiveness to support real device-

driven applications. To answer this question, we wrote a device server for Android

mobile phones, and modified four non-trivial applications to use the Gibraltar API.

Our evaluation shows that Gibraltar is fast enough to support real-time programs

like games that require efficient access to hardware data.

4.2 Design

Gibraltar uses privilege separation [PFH03] to provide a web page with

hardware access. The web page, and the enclosing browser which executes the

page’s code, are both untrusted. Gibraltar places the browser in a sandbox which

prevents direct access to Gibraltar-mediated devices. The small, native code de-

vice server resides in a separate process from the browser, and executes hardware

requests on behalf of the page, exchanging data with the page via HTTP.

As shown in Figure 4.1, a Gibraltar-enabled page includes a JavaScript file

called hardware.js. This library implements the public Gibraltar API. The com-

ponent hardware.js fetches authentication tokens as described in Section 4.2.1,

and translates page-initiated hardware requests into AJAX fetches as described

in Section 4.3. hardware.js also receives and deserializes the responses. Note

that hardware.js is merely a convenience library that makes it easier to program

against Gibraltar’s raw AJAX protocol; Gibraltar does not trust hardware.js,
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and it does not rely on hardware.js to enforce the security properties described

in Section 4.5.

Note that the device server resides in the localhost domain, whereas the

Gibraltar-enabled page emanates from a different, external origin. By default, the

same-origin policy would prevent the hardware.js in the web page from fetch-

ing cross-origin data from the localhost server. However, by using the HTTP

header Access-Control-Allow-Origin [Wor08], the device server can instruct

the browser to allow the cross-origin Gibraltar fetches. This header is supported

by modern browsers like IE9 and Firefox 4+. In older browsers, hardware.js

communicates with the device server using an invisible frame with a localhost ori-

gin; this frame exchanges Gibraltar data with the regular application frame using

postMessage(). Similarly, Gibraltar can use a remote-origin frame to deal with

off-platform devices.

4.2.1 Authenticating Hardware Requests

In Gibraltar, device management consists of three tasks: manifest autho-

rization, session establishment, and session teardown. Figure 4.2 provides the

relevant pseudocode in the device server. We discuss this code in more detail be-

low.

Manifest authorization: On mobile devices like Android, users authorize in-

dividual applications to access specific hardware devices. Similarly, in Gibraltar,

users authorize individual web domains like cnn.com to access individual hard-

ware devices. When a page contacts the device server for the first time, the page

includes a device manifest in its HTTP request. The manifest is simply a list of

devices that the page wishes to access. The device server presents this manifest to

the user and asks whether she wishes to grant the specified access permissions to

the page’s domain. If so, the device server stores these permissions in a database.

Subsequent page requests for devices in the manifest will not require explicit user

action, but if the page requests access to a new device, the user must approve the

new permission.
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Session management: Since Gibraltar hardware requests are expressed as HTTP

fetches, a natural way for the device server to authenticate a request is to inspect

its referrer field [FGM+99]. This is a standard HTTP field which indicates the URL

(and thus the domain) of the page which generated the request. Unfortunately, a

misbehaving browser can subvert this authentication scheme by examining which

domains successfully receive hardware data, and then generating fake requests

containing these snooped referrer fields. This is essentially a replay attack on a

weak authenticator.

To prevent these replay attacks, the device server grants a capability token

to each authorized web domain. Before a page in domain trusted.com can access

hardware, it must send a session establishment message to the device server. The

device server examines the referrer of the HTTP message and checks whether the

domain has already been granted a token. If not1, the server generates a unique

token, stores the mapping between the domain and that token, and sends the token

to the page. Later, when the page sends an actual hardware request, it includes the

capability token in its AJAX message. If the token does not match the mapping

found in the device server’s table, the device server ignores the hardware request.

A page sends a session teardown message to the device server when it no

longer needs to access hardware, e.g., because the user wants to navigate to a dif-

ferent page. Upon receipt of the teardown message, the server deletes the relevant

domain/token mapping. hardware.js can detect when a page is about to unload

by registering a handler for the JavaScript unload event.

Sensor widgets: Given the capability scheme, a misbehaving browser that can

only spoof referrers cannot fraudulently access hardware—the browser must also

steal another domain’s token or retrieve a new one from the device server. As we

show in Section 4.5, cross-domain token stealing is difficult in modern browsers

1We restrict each domain to a single token for security reasons that we describe in Section 4.5.1.
However, this restriction does not prevent a domain from opening multiple device-aware web
pages on a client—the pages can inform each other of the domain’s token using the JavaScript
postMessage() API.
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which use memory isolation to protect domains. However, nothing prevents a

browser from autonomously downloading a new security token in the background

under the guise of an authorized domain, and then using this token in its AJAX

requests. To prevent this attack, we use sensor widgets [HS10], which are ambient

GUI elements like system tray icons that glow, make a noise, or otherwise indicate

when a particular hardware device is in use. Sensor widgets also indicate the

domains which are currently accessing hardware. Thus, if the browser tries to

autonomously access hardware using a valid token, the activity will trigger the

sensor widgets, alerting the user to a hardware request that she did not initiate.

The sensor widgets are implemented within the device server, not the

browser. However, the browser can try to elude the widgets in several ways. In

Section 4.5, we provide a fuller analysis of Gibraltar’s security properties.

4.2.2 The Gibraltar API

Figure 4.3 lists the client-side Gibraltar API. Before a web page can issue

hardware commands, it must get a new capability token via createSession().

Then, it must send its device manifest to the device server via requestAccess().

The device server presents the manifest to the user and asks her to validate the

requested hardware permissions.

Sensor API

To provide access to sensors like cameras, accelerometers, and GPS units,

Gibraltar provides a one-shot query interface and a continuous query interface.

In keeping with JavaScript’s event-driven programming model, singleQuery()

and continuousQuery() accept an application-defined callback which Gibraltar

invokes when the hardware data has arrived. The functions also accept the name

of the device to query, and a device-specific params value which controls sensor-

specific properties like the audio sampling bitrate. continuousQuery() takes an

additional parameter representing the query frequency.

Different devices will define different formats for the params object, and

different formats for the returned device data. However, much like USB devices,
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Gibraltar devices fall into a small set of well-defined classes such as storage de-

vices, audio devices, and video devices. Thus, web pages can program against

generic Gibraltar interfaces to each class; the device server and hardware.js can

encapsulate any device-specific eccentricities.

Figure 4.3 also describes a sensor management interface. The power con-

trols allow a page to shut off devices that it does not need; the device server ensures

that a device is left on if at least one application still needs it. sensorAdded() and

sensorRemoved() let applications register callbacks which Gibraltar fires when de-

vices arrive or leave. These events are useful for off-platform devices like Bluetooth

headsets and Nike+ shoe sensors [Nik].

Processor API

Multi-core processors and programmable GPUs are already available on

desktops, and they are starting to ship on mobile devices. To let web pages access

these extra cores, Gibraltar exports a simple multi-processor computing model

inspired by OpenCL [Khr], a new specification for programming heterogeneous

processors.

A Gibraltar kernel represents a computational task to run on a core. Ker-

nels are restricted to executing two types of predefined functions. Primitive func-

tions are geometric, trigonometric, or comparator operations. Gibraltar’s primitive

functions are similar to those of OpenCL. Built-in functions are higher-level func-

tions that we have identified as particularly useful for processing hardware data.

Examples of such functions are FFT transforms and matrix operations.

A web page passes a kernel to Gibraltar by calling enqueueKernel(). To

execute a parallel vector computation, the page calls setKernelData() with a

vector of arguments; Gibraltar will instantiate a new copy of the kernel for each

argument and run the kernels in parallel. A web page can also create a computation

pipeline by calling enqueueKernel() multiple times with the same or different

kernel. Gibraltar will chain the kernels’ inputs and outputs in the order that the

kernels were passed to enqueueKernel(). The page sets the input data for the

pipeline by passing a scalar value to setKernelData().
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Once an application has configured its kernels, it calls executeKernels() to

start the computation. Gibraltar distributes the kernels to the various cores in the

system, coordinates cross-kernel communication, and fires an application-provided

callback when the computation finishes.

Storage API

The final set of calls in Figure 4.3 provide a key/value storage interface.

The namespace is partitioned by web domain and by storage device; a web domain

can only access data that resides in its partitions. To support removable storage

devices, Gibraltar fires connection and disconnection events like it does for off-

platform sensors like Bluetooth headsets.

HTML5 DOM storage [Hicb] also provides a key-value store. However,

DOM storage is limited to non-removable media, and it does not explicitly expose

the individual devices which are used for the underlying stable storage.

4.2.3 Remote device access

As we mentioned earlier, some devices may reside off-platform. If those

devices run a Gibraltar server which accepts external connections, a web page can

seamlessly access those devices using the same interface that it uses for local ones.

This capability enables many interesting applications. For example, in Section 4.6,

we evaluate a game that runs on a desktop machine but uses a mobile phone with

an accelerometer as a motion-sensitive controller. In this example, the web page

runs on the desktop machine, but the device server runs on the phone.

A device server accepts connections from localhost clients by default (sub-

ject to the authentication rules described in Section 4.2.1). For security reasons, a

device server should reject connections from arbitrary remote clients. Thus, users

must explicitly whitelist each external IP address or dynamic DNS name [Vix97]

that wishes to communicate with a device server. This is accomplished in a fashion

similar to how the user authorizes device manifests (§4.2.1).
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4.2.4 Sandboxing the Browser

Gibraltar is agnostic about the mechanism that prevents the browser from

accessing Gibraltar devices. For example, mobile platforms like Android, iOS, and

the Windows Phone already provide a device ACL infrastructure that makes it easy

to prohibit applications from accessing forbidden hardware. However, Gibraltar is

compatible with other isolation techniques like hardware virtualization or binary

rewriting.

4.3 Implementation

Client-side Library: hardware.js encodes device requests using a simple XML

string. Each request contains a security token, an action to perform, the target

device, and optional device-specific parameters. For example, a request to record

microphone data includes a parameter which represents the recording duration.

Device responses are also encoded using XML. The response specifies whether the

request succeeded, and any data associated with the operation. The device server

encodes binary data in Base64 format so that hardware.js can represent data as

JavaScript strings.

Android Device Server: On Android 2.2, we implemented the device manager

as a servlet for the i-jetty web server [Bea]. A servlet is a Java software module that

a web server invokes to handle certain URL requests. The Gibraltar servlet handles

all requests for Gibraltar device URLs. The servlet performs the authentication

checks described in Section 4.2.1, accesses hardware using native code, and returns

the serialized results. We refer to our Android implementation of Gibraltar as

GibDroid.

The GibDroid device server has different probing policies for low through-

put sensors and high throughput sensors. For low throughput devices like cameras,

GibDroid accesses the sensor on demand. For devices like accelerometers that have

a high data rate, the GibDroid server continuously pulls data into a circular buffer.

When a page queries the sensor, the device server returns the entire buffer, allow-
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ing multiple data points to be fetched in a single HTTP round trip. Currently,

GibDroid provides access to accelerometers, GPS units, cameras (both single pic-

tures and streaming video), microphones, local storage, and native computation

kernels.

Before a web page can receive hardware data from the device server, it

must engage in a TCP handshake with the server and send an HTTP header.

For devices with high data rates like accelerometers and video cameras, creating

an HTTP session for each data request can hurt performance, even with sample

batching. Thus, GibDroid allows the device server to use Comet-style [CM08] data

pushes. In this approach, hardware.js establishes a persistent HTTP connection

with the device server using a “forever frame.” Unlike a standard frame, whose

HTML size is declared in the HTTP response by the server, a forever frame has

an indefinite size, and the server loads it incrementally, immediately pushing a

new HTML chunk whenever new device data arrives. Each chunk is a dynamically

generated piece of JavaScript code; the code contains a string variable representing

the new hardware data, and a function call which invokes an application-defined

handler. Forever frames are widely supported by desktop browsers, but currently

unsupported by many mobile browsers. Thus, the device server reverts to request-

response for mobile browsers.

GibDroid can stream accelerometer data and video frames using Comet data

pushes. To handle video, our current implementation uses data URIs [Mas98] to

write Base64-encoded data to an <image> tag 2. Many current browsers limit

data URIs to 32 KB data; thus, data URIs are only appropriate for sending pre-

views of larger video images. Our current GibDroid implementation displays video

frames with a pixel resolution of 530 by 380. The device server uses Android’s

setPreviewCallback() call to access preview-quality images from the underlying

video camera.

GibDroid supports the execution of kernel functions. However, our evalua-

tion Android phone does not have secondary processing cores. Therefore, GibDroid

kernels run in separate Java threads that time-slice the single processor with other

2We eventually plan to make hardware.js write video frames to the bitmap of an HTML5
Canvas object [Hica].
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applications.

As shown in Figure 4.4, GibDroid places sensor widgets in the standard

notification bar that exists in all Android phones. The notification bar is a conve-

nient place to put the widgets because users are already accustomed to periodically

scanning this area for program updates. We are still experimenting with the visual

presentation for the widgets, so Figure 4.4 represents a work-in-progress.

Windows PC Device Server: We also wrote a device server for Windows PCs.

This device server, written in C#, currently only provides access to the hard disk,

but it is the target of active development. In Section 4.6.1, we use this device server

to compare Gibraltar’s performance on a multi-core machine to that of HTML5.

4.4 Applications

In this section, we describe four new applications which use the Gibraltar

API to access hardware. We evaluate the performance of these applications in

Section 4.6.

Our first application is a mapping tool similar to MapQuest [Map]. This

web page uses GPS data to determine the user’s current location. It also uses

Gibraltar’s storage APIs to load cached maps tiles. More specifically, we as-

sume that the phone’s operating system prefetches map tiles, similar to how the

Songo framework prefetches mobile ads [KLLB]. The operating system stores the

map tiles in the file system; for each cached tile, the OS adds the key/value pair

(tileId,fileSystemLocation) to the mapping application’s Gibraltar storage

area. When the map application loads, it determines the user’s current location

and calculates the set of tiles to fetch. For each tile, it consults the tile index

in Gibraltar storage to determine if the tile resides locally. If it does, the page

loads the tile using an <img> tag with a file:// origin; otherwise, the page uses

a http:// origin to fetch the image from the remote tile server.

The popular native phone application Shazam! identifies songs that are

playing in the user’s current environment. Shazam! does this by capturing micro-
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phone data and applying audio fingerprint algorithms. Inspired by Shazam!, we

built Gibraltar Sound, a web application that captures a short sound clip and clas-

sifies it as music, conversation, typing, or other ambient sound. To classify sounds,

we used Mel-frequency cepstrums (MFCC) for feature extraction, and Gaussian

Mixture Models (GMM) for inference [LPL+09]. We implemented MFCC and

GMM as native built-in kernels.

Our final applications leverage Gibraltar’s ability to access off-platform de-

vices. These pages load on a desktop machine’s browser, but use Gibraltar to turn

a mobile phone into a game controller. The first application, Gibraltar Paint, is

a simple painting program in which user gestures with the phone are converted

into brush strokes on a virtual canvas. Gestures are detected using the phone’s

accelerometer.

We also modified a JavaScript version of Pacman [Lan] to use a Gibraltar-

enabled phone as a controller for a game loaded on the desktop browser—tilting

the phone in a direction will cause Pacman to move in that direction. HTML5

cannot support the latter two applications because it lacks an API for remote

device access.

4.5 Security

Any mechanism for providing hardware data to web pages must grapple

with two questions. First, can it ensure that each device request was initiated by

the user instead of a misbehaving browser? Second, once the hardware data has

been delivered to browser, can the system prevent the browser from modifying or

leaking that data in unauthorized ways? Gibraltar only addresses the first question,

but it is complementary to systems that address the second. In Section 4.5.1,

we describe the situations in which Gibraltar can and cannot prevent fraudulent

hardware access. In Section 4.5.2, we describe how Gibraltar can be integrated

with a taint tracking system to minimize unintended data leakage.
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4.5.1 Authenticating Hardware Requests

In Gibraltar, there are five kinds of security principals: the user, the Gibral-

tar device server, the underlying operating system, web pages, and the web browser.

Gibraltar does not trust the last two principals. More specifically, Gibraltar’s se-

curity goal is to prevent unauthorized web pages from accessing hardware data,

and faulty web browsers from autonomously fetching such data. Gibraltar as-

sumes that the OS properly sandboxes the browser, preventing the browser from

directly accessing Gibraltar-mediated hardware; Gibraltar is agnostic to the partic-

ular sandboxing mechanism that is used, e.g., binary rewriting, virtual machines,

or OS-enforced device ACLs provided by platforms like Android and iOS. Gibraltar

assumes that the device server is implemented correctly, that the user can inform

the device server of authorized web sites without interference, and that the oper-

ating system prevents the web browser from directly tampering with the device

server. Thus, the only way that a faulty web page or browser can access hardware

is by subverting the AJAX device protocol.

As shown in Figure 4.2, the device server will only respond to a hardware

request if the request has an authorized referrer field and a valid authentication

token; furthermore, the authorized domain cannot have another open session in-

volving a different token. Thus, Gibraltar’s security with respect to device D can

be evaluated in the context of three parameters: whether the attacker can fake

referrer fields, whether the attacker can steal tokens from domains authorized to

access D, and whether the user currently has a legitimate, active frame belonging

to a legitimately authorized domain.

Gibraltar assumes that the operating system correctly routes packets to

the device server. Thus, the device server can reject arbitrary connections from

off-platform entities by verifying that the source in each AJAX request has a

localhost IP address. If a user wants to associate a device server with a web page

that resides off-platform, she must whitelist the external IP address, or notify the

device server and the web page of a shared secret which enables the device server

to detect trusted external clients. For example, the client web page might generate

a random number and include this number in the first AJAX request that it sends
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to the device server. When the server receives this request, it can present the nonce

to the user for verification.

4.5.2 Securing Returned Device Data

The browser acts as the conduit for all AJAX exchanges, and it can arbitrar-

ily inspect the JavaScript runtimes inside each page. Thus, once the browser has

received hardware data (either because a user legitimately fetched it, or because

the browser stole/fetched a token and acquired the data itself), neither Gibraltar

nor HTML5 can prevent the browser from arbitrarily inspecting, modifying, or

disseminating the data.

Suppose that, through clever engineering, the browser cannot be subverted

by malicious web pages. Further suppose that the browser is trusted not to fake

referrer fields, steal tokens from authorized domains, or otherwise subvert the

Gibraltar access controls. Even in these situations, malicious web pages can still

leak hardware data to remote servers. For example, suppose that the user has au-

thorized domain x.com to access hardware, but not y.com. The same-origin policy

ostensibly prevents JavaScript running on http://x.com/index.html from send-

ing data to y.com’s domain. However, this security policy is easily circumvented in

practice. For example, the JavaScript in x.com’s page can read the user’s GPS data

and create an iframe with a URL like http://y.com/page.index?lat=LAT DATA

long=LON DATA. By loading the frame, the browser implicitly sends the GPS data

to y.com’s web server.

If the browser is trusted, it can prevent such leakage by tracking the in-

formation flow between Gibraltar AJAX requests and externalized data objects

like iframe URLs. This is similar to what TaintDroid [EGgC+10] does, although

TaintDroid tracks data flow through a Java VM instead of a browser.

If the browser is untrusted, we can place the taint tracking infrastructure

outside of the browser, e.g., in the underlying operating system. However, regard-

less of where the taint tracker resides, it must allow the user to whitelist certain

pairs of domains and hardware data. For example, suppose that the user has

authorized only x.com to access the GPS unit. Whenever the data flow system de-
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tects that GPS data is about to hit the network, it must ensure that the endpoint

resides in x.com’s domain, e.g., by doing a reverse DNS lookup on the endpoint’s

IP address.

4.6 Evaluation

In this section, we ask two fundamental questions about Gibraltar’s perfor-

mance. First, is an HTTP channel fast enough to support high frequency sensors

and interactive applications? Second, is Gibraltar competitive with HTML5 in

terms of performance?

As described in Section 4.3, we wrote device servers for two platforms. The

first server runs on Android 2.2 phones, and we tested it on two handsets: a Nexus

One with 512 MB of RAM and a 1 GHz Qualcomm Snapdragon processor, and a

Droid X with 512 MB of RAM and a 1 GHz Texas Instruments OMAP processor.

We also wrote a device server for Windows PCs. We tested that server on a

Windows 7 machine with 4 GB of RAM and an Intel Core2 processor with two

2.66 GHz cores.

4.6.1 Access Latency

Multi-core machines: We define a device’s access latency as the amount of time

that a client perceives a synchronous device operation to take. Figure 4.5 shows

access latencies for the hard disk on the dual-core desktop machine. Each bar

represents the average of 250 trials, with each read or write involving 1 KB of

data. HTML5 disk accesses were implemented using the DOM storage API [Hicb],

whereas Gibraltar disk accesses were handled by the device server and accessed a

partitioned region of the local file system owned by the device server. All reads

targeted prior write addresses, meaning that the reads should hit in the block cache

inside the device server or the HTML5 browser.

The absolute latencies for Gibraltar’s disk accesses are small on both Firefox

3.6 and IE8. For example, a Gibraltar-enabled page on IE8 can read 1 KB of data

with a latency of 0.62 ms; on Firefox, the page can perform a similar read with 2.58



96

ms of latency. While Gibraltar’s read performance is worse than that of HTML5,

it is more than sufficient to support common use cases for local storage, such as

caching user data to avoid fetching it over a slow network.

For disk writes on both browsers, Gibraltar is more than five times faster

than HTML5. This is because the Gibraltar device server asynchronously writes

back data, whereas Firefox and IE have a write-through policy. Switching Gibral-

tar to a write-through policy would result in similar performance to HTML5, since

the primary overhead would be mechanical disk latencies, not HTTP overhead.

Single-core machines: Our desktop machine had a dual-core processor, meaning

that the device server and the web browser rarely had to contend for a core. In

particular, once the device server had invoked a send() system call to transfer

device data to the browser, the OS could usually swap the browser immediately

onto one of the two cores. On a single core machine, the browser might have to

wait for a non-trivial amount of time, since multiple processes besides the browser

are competing for a single core.

Figure 4.6 depicts access latencies to the Null device on the Droid X phone

(the Null device immediately returns an empty message). We use setsocketopt()

to disable the TCP Nagle algorithm, we prod TCP into sending small packets

immediately instead of trying to aggregate several small packets into one large one.

This decreases the average access latency from 87 ms to 78 ms, and the standard

deviation from 34 ms to 25 ms. By raising the priority of the device server thread

and the receiving browser thread, we can further decrease the latency to 67 ± 18

ms. However, the raw performance is still worse than in the dual-core case due to

scheduling jitter. For example, looking at the results for individual trials, we saw

access latencies as low as 29 ms, and as high as 144 ms.

Multi-core processors are already pervasive on desktop systems, and new

mobile phones and tablets like the LG Optimus 2X have dual-core processors.

Thus, we expect that scheduling jitter will soon become a non-issue for Gibraltar.

In the rest of this section, we provide additional evaluation results using the single-

core Nexus One phone. We show that even on a single-core machine, Gibraltar is
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already fast enough to support interactive applications.

Accessing Sensors on the Nexus One: Figure 4.7 depicts the access latency

for various devices on the Nexus One phone. The accelerometer and the GPS unit

are the sensors that applications query at the fastest rate. Figure 4.7 shows that

the accelerometer can be queried 9.4 times a second, and the GPS unit can be

queried 6.6 times a second. As we discuss in Section 4.6.4, these sampling rates

are sufficient to support games and interactive mapping applications.

Accessing the camera or the microphone through Gibraltar is much more

expensive than accessing the accelerometer. However, most of the latency arises

from the inherently expensive initialization costs for those devices. GibDroid adds

160 ms to the inherent cost of sampling 10 seconds of audio data, and 560 ms to the

inherent cost of taking a picture. In both cases, the bulk of the Gibraltar overhead

came from the Base64 encoding that the device server must perform before it can

send binary data to the application.

The results in Figure 4.7 used the request-response version of the Gibraltar

protocol. On browsers that support forever frames (§4.3), Gibraltar can use server-

push techniques to decrease client-perceived access latencies to devices. Figure 4.8

quantifies this improvement for desktop browsers accessing phone hardware over

a wireless connection. For example, for video on Firefox, frame access latencies

decreased from 126 ms to 83 ms; this improved the streaming rate for live video

from 8 frames per second to 12. For the accelerometer, access latencies decreased

from 173 ms to 22 ms, allowing the client to fetch accelerometer readings at a rate

of 45 Hz. This was close to the native hardware limit of 50 Hz. Note, however, that

the performance gains in both cases arose not just from the server-push technique,

but from the fact that the device server and the web browser ran on different

machines (and thus different processors). This ameliorated some of the scheduling

jitter that arises when the device server and the browser run on the same core.
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4.6.2 Sampling Throughput

Low access latencies improve the freshness of the data that the client re-

ceives. However, the client may still be unable to receive data at the native sam-

pling frequency. Thus, the device server continuously gathers information from

high data rate devices like the accelerometer and the GPS unit. When the server

gets a read request for such a device, it returns all of the data that has accumulated

since the last query. Thus, an application can analyze the entire data stream even

if it cannot access every sample at the native data rate.

Figure 4.9 depicts GibDroid’s sampling throughput using the built-in An-

droid browser to access phone hardware. Each bar represents the maximum num-

ber of data samples accessible per second to a native application, a Gibraltar page

using an inner iframe, and a Gibraltar page in which the outer iframe directly issues

AJAX requests. Throughput degradation is less than 5% for all devices. Figure 4.9

also shows that cross-frame postMessage() overhead was minimal. Note that the

accelerometer throughput was greater than the Null throughput because GibDroid

batched multiple accelerometer samples per HTTP response.

4.6.3 Power

On mobile devices, minimizing power consumption is extremely important.

To measure Gibraltar’s impact on battery life, we attached a Monsoon Power Mon-

itor [Mon] to the Nexus One. Due to space constraints, we elide a full evaluation

of Gibraltar’s power usage. Instead, we simply note that the energy cost for using

a Gibraltar-enabled page (i.e., the cost for running the browser and the Gibral-

tar device server) is similar to the cost of running any other native application.

For example, the cost of making a phone call is 773 milliwatts, whereas the cost of

running a Gibraltar-enabled page that accesses the accelerometer is 803 milliwatts.

4.6.4 Applications

For the final part of our evaluation, we examine the performance of the four

Gibraltar-enabled applications that we described in Section 4.4. We evaluated all
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four applications on the GibDroid platform.

Our map application took an average of 64 ms to load a cached map tile,

but 372 ms to fetch one from the Internet. This result is not surprising, since

accessing local storage should be faster than pulling data across the wide area.

For our audio classification application, the key performance metric is how

long the classification takes. For a 52 KB WAV file representing 10 seconds of

data, feature extraction took approximately 6 seconds, and classification of the

result took 1.5 seconds. These experiments used a JavaScript implementation

of the classification algorithms. For larger audio files, the application could use

Gibraltar’s native computation kernels to boost performance.

We evaluated Paint and Pacman by running them on a Chrome desktop

browser which communicated with GibDroid through a USB cable. Paint was able

to sense 9.83 motions per second; this number is an application-level latency that

includes the Gibraltar access latency and the overhead of updating the HTML

Canvas object. Pacman had similar performance. In both cases, the phone was

able to control the application with no user-perceived delay. We plan to run further

tests over a wireless network which allows the phone to be untethered from the

desktop.

4.7 Related Work

In Section 4.1, we described the disadvantages of using native code plugins

like Flash to provide hardware access to web pages. We also described why HTML5

is a step in the right direction, but not a complete solution.

Like Gibraltar, Maverick [RG11] provides web pages with hardware access.

Maverick lets web developers write USB drivers using JavaScript or NaCl. Mav-

erick sandboxes each untrusted page and USB driver; the components exchange

messages through the trusted Maverick kernel. Maverick differs from Gibraltar in

three key ways. First, Maverick is limited to the USB interface, whereas Gibraltar’s

client-side JavaScript library can layer arbitrary hardware protocols atop HTTP.

Second, unlike USB, HTTP also provides straightforward support for off-platform
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devices. Third, Maverick does not have a mechanism like sensor widgets that

detects misbehaving applications. Thus, Maverick cannot prevent buggy or ma-

licious pages from using the driver infrastructure in ways that the user did not

intend. Maverick does have better performance than the current implementation

of Gibraltar since Maverick provides IPC via NaCl native code mechanisms in-

stead of via standard HTTP over TCP. However, with kernel support for fastpath

localhost-to-localhost TCP connections, and/or NIC support for offloading TCP-

related computations to hardware, we believe that Gibraltars performance can

approach that of Maverick.

PhoneGap [Pho] is a framework for building cross-platform, hardware-aware

mobile applications. A PhoneGap application consists of JavaScript, HTML, CSS,

and a bundled chrome-less browser whose JavaScript runtime has been extended to

export hardware interfaces. Like Gibraltar, PhoneGap allows developers to write

device-aware applications using the traditional web stack. Compared to Gibraltar,

PhoneGap has three limitations. First, PhoneGap’s hardware interface is philo-

sophically equivalent to the HTML5 interface, and thus has similar drawbacks

with respect to interface and security. Second, a PhoneGap program is a native

application and must be explicitly installed, unlike a Gibraltar web page. Third,

PhoneGap applications run within the file:// protocol, not the http:// proto-

col. Thus, unlike Gibraltar web pages, PhoneGap programs are not restricted by

the same domain policy. This allows a PhoneGap program to load multiple frames

from multiple domains and manipulate their data in ways that would fail in the

http:// context and violate the security assumptions of the remote domains.

In Palm’s webOS [All09], applications are written in JavaScript, HTML,

and CSS. However, these programs are not web applications in the standard sense,

because they rely on webOS’ special runtime, and they will not execute inside

actual web browsers. The webOS runtime is a customized version of the popular

WebKit browser engine. It exposes HTML5-style device interfaces to applications,

and thus suffers from the problems that we discussed in prior sections.

Microkernel browsers like OP [GTK08] and Gazelle [WGM+09] restructure

the browser into multiple untrusted modules that exchange messages through a
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small, trusted kernel. Gibraltar’s device server is somewhat like a trusted micro-

kernel which mediates hardware access. However, previous microkernel browsers

do not change the hardware interface exposed to web pages, since these browsers

use off-the-shelf JavaScript runtimes that use the HTML5 interface.

Several projects from the sensor network community expose hardware data

using web protocols [DRAPZ04, PKGZ08, YD09]. However, these systems do not

address the security challenges involved in authenticating hardware requests that

emanate from potentially untrustworthy browsers. Gibraltar also exports a richer

interface for device querying and management.

4.8 Conclusions

Gibraltar’s key insight is that web pages can access hardware devices by

treating them like web servers. Gibraltar sandboxes the browser, shifts authority

for device accesses to a small, native code device server, and forces the browser

to access hardware via HTTP. Using this privilege separation and sensor widgets,

Gibraltar provides better security than HTML5 hardware interfaces; the resulting

API is also easier to program against. Experiments show that the HTTP device

protocol is fast enough to support real, interactive applications that make frequent

hardware accesses.
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void handle_request(req){

resp = new AJAXResponse();

switch(req.type){

case OPEN_SESSION:

if(!active_tokens.contains(req.referrer)){

resp.result = "TOKEN:" + makeNewToken();

active_tokens[req.referrer] = resp.result;

}

break;

case DEVICE_CMD:

if(!authorized_domains[req.device].contains(

req.referrer) ||

(active_tokens[req.referrer] == null) ||

(active_tokens[req.referrer] != req.token)){

resp.result = "ACCESS DENIED";

}else{

resp.result = access_hardware(req.device,

req.cmd);

sensor_widgets.alert(req.referrer,

req.device);

}

break;

case CLOSE_SESSION:

if(active_tokens[req.referrer] == req.token)

active_tokens.delete(req.referrer);

break;

}

sendResponse(resp);

}

Figure 4.2: Pseudocode for device server.
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Call Description
createSession() Get a capability token from the device server.
destroySession() Relinquish a capability token.
requestAccess(manifest) Ask for permission to access certain devices.
singleQuery(name, params) Get a single sensor sample.
continuousQuery(name,

params, period)

Start periodic fetch of sensor samples.

startSensor(name) Turn on a sensor.
stopSensor(name) Turn off a sensor.
sensorAdded(name) Upcall fired when a sensor is added.
sensorRemoved(name) Upcall fired when a sensor is removed.
getSensorList() Get available sensors.
enqueueKernel(kernel) Queue a computation kernel for execution.
setKernelData(parameters) Set input data for the computation pipeline.
executeKernels() Run the queued kernels on the input data.
put(storename,key,value) Put value by key.
get(storename,key) Get value by key.

Figure 4.3: Summary of hardware.js API. All calls implicitly require a

security token and callback function.

Figure 4.4: GibDroid uses the Android notification bar to hold sensor widgets.
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Chapter 5

Conclusion

Sensor-actuator control systems are no longer just for large enterprises.

Cheap wireless sensor networks combined with mobile phones have made commod-

ity control systems a reality in any environment. For example, home thermostats

can easily be augmented with space heaters, fans, or air filters. This capability to

extend the infrastructure is important because it is often difficult to change fixed

infrastructure once it is in place. Furthermore, the research and industry commu-

nities have proven that significant gains in efficiency and cost savings can be made

even with incremental improvements to the sensing and control infrastructure.

Our overall contribution is that we have created a system that commodi-

tizes sensor-actuation systems, and thus enables ordinary consumers to perform

automation in their environment. Through this work, physical sensors and actua-

tors are represented as variables, thus enabling control applications to be written

like any other piece of software. This work includes three major subcontributions.

We described how to build a sensor-actuation software platform that is

capable of supporting multiple applications on a single deployment through a soft-

ware API. As a result, applications can be written and executed from any environ-

ment, which allows applications to be written in their most natural language. The

software platform also includes an environmental model that captures the rela-

tions between actuator and sensor variables, thus allowing applications to focus on

achieving certain environmental conditions rather than how to do it. We demon-

strated how to implement such applications in HVAC and pipeline scenarios, as

109



110

well as performed a prototype deployment in a home automation scenario.

We also described a new protocol for dissemination of small data in an

ad-hoc wireless sensor-actuator network. This is important for disseminating ac-

tuation commands throughout the network. Each piece of data is identified by

a unique key and versioned to determine the newest information. It then uses

an eventual-consistency epidemic controlled broadcast protocol to propagate hash

summaries and bloom filters of the data set. As sensor-actuation nodes exchange

summaries, they are able to determine exactly which data items are newer. In a

test of over 70 nodes deployed in a building environment, our protocol consumes

20-60% less network, and operates 200% faster compared to naive approaches.

Finally, we detailed how to integrate a mobile phone into a sensor-actuation

environment. Not only is it used to communicate information between the sensor-

actuator deployment and the environment operator, it is also used as a sensing

device and execution platform for JavaScript applications. This allows sensor-

actuator applications to be deployed right off the web. A local device web server

enables JavaScript applications to acquire access to native phone hardware. Care-

ful security considerations are given to the device server to ensure that websites

cannot steal sensitive phone information. We also develop a prototype device server

for Android and show that its performance on a Google Nexus One can support

streaming video with energy usage comparable to active web browsing.

5.1 Future Work

Many issues remain before a sensor-actuation software platform can be fully

adopted. One important issue is being able to reuse applications on multiple

deployments. This has the potential to catalyze adoption by allowing operators

to browse through numerous applications and select the ones that are relevant.

Currently, an application must know what specific variables are available for a

particular deployment.

Security has always been an issue with control systems as witnessed by

Stuxnet, and will become even more important as control systems are more widely
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adopted. Privacy, authenticity, and availability are all important issues when using

control systems so that environment operators have trust in the system. However,

application writers need access to real-time data and they indirectly control ac-

tuation devices. This means that potentially sensitive sensor data must leave the

deployment and any actuation decisions must be safe for the deployment.

Another aspect that we have not considered is usability. Important ques-

tions include: How difficult would it be to maintain the extra actuation devices?

Would operators be open to manually performing actuation? What kind of prob-

lems might a deployment run into when deployed long-term? These are all issues

that might arise when deploying in a live environment, and this dissertation aims

to elicit research and discussion in these areas.
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