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Abstract

Background: Mouse models have allowed for the direct interrogation of genetic
effects on molecular, physiological, and behavioral brain phenotypes. However, it is
unknown to what extent neurological or psychiatric traits may be human- or
primate-specific and therefore which components can be faithfully recapitulated in
mouse models.

Results: We compare conservation of co-expression in 116 independent data sets
derived from human, mouse, and non-human primate representing more than 15,
000 total samples. We observe greater changes occurring on the human lineage
than mouse, and substantial regional variation that highlights cerebral cortex as the
most diverged region. Glia, notably microglia, astrocytes, and oligodendrocytes are
the most divergent cell type, three times more on average than neurons. We show
that cis-regulatory sequence divergence explains a significant fraction of co-
expression divergence. Moreover, protein coding sequence constraint parallels co-
expression conservation, such that genes with loss of function intolerance are
enriched in neuronal, rather than glial modules. We identify dozens of human
neuropsychiatric and neurodegenerative disease risk genes, such as COMT, PSEN-1,
LRRK2, SHANK3, and SNCA, with highly divergent co-expression between mouse and
human and show that 3D human brain organoids recapitulate in vivo co-expression
modules representing several human cell types.

Conclusions: We identify robust co-expression modules reflecting whole-brain and
regional patterns of gene expression. Compared with those that represent basic
metabolic processes, cell-type-specific modules, most prominently glial modules, are
the most divergent between species. These data and analyses serve as a
foundational resource to guide human disease modeling and its interpretation.
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Introduction
The human brain is the culmination of millions of years of evolution [1], showcasing

high-level cognitive processes such as symbolic thought, self-reflection, and the ability

for long-term planning. Much of our understanding of human brain and disease is

derived from studies in mice [2]. However, extrapolation from mouse models may be

limited because humans last shared a common ancestor with mice 90 million years ago

(mya) [3, 4]. Humans exhibit a five-fold relative expansion in cortical volume, changes

in cellular composition, and cell-type differences, such as a substantial increase in size

and complexity of human astrocytes [5–7]. Furthermore, many distinctions, such as the

molecular reorganization of specific cell types and neural circuits have arisen over

recent human evolution [1]. A number of neurological disorders are associated with

the dysfunction of biological processes that occur in brain regions or cell types that

possess features specific to human biology [8–10], posing the question as to which

components underlying human neuropsychiatric diseases can be faithfully recapitulated

in model organisms, or for that matter, cell-based model systems [11].

Human evolution is hypothesized to be driven primarily by changes in gene regula-

tion rather than protein sequence divergence [12–14], highlighting the transcriptome

as an appropriate nexus for investigating evolution, as demonstrated by recent studies

assessing gene expression in brains across multiple primate species [15, 16]. While

many gene expression changes may be a result of neutral drift over the course of evolution

[17], gene co-expression networks provide a functional framework for assessing whether

changes in expression are indeed neutral, or have a functional impact [18]. Gene co-

expression networks built on data from human brain tissues have been utilized to assess

which aspects of human brain function are preserved and diverged across species [8, 12,

18]. These studies were either conducted using small sample sizes from a single, or a few

brain regions, or constructed “brain-wide” co-expression networks, which limits the identi-

fication of more subtle “intra-region” transcriptomic patterns.

Due to natural variation in cell-type proportion across tissue samples, co-expression

analysis using homogenous tissue with large sample sizes allows us to generate cell-

type information without the need to physically isolate cells, so called “in silico dissec-

tion” [19, 20]. Single-cell sequencing of both human and mouse cortex has allowed

identification of species differences at a cell-type resolution [7]. However, this analysis

was limited to a single brain region and focuses on differential gene expression within

each cell class. Because co-expression reflects functional mechanisms such as co-

regulation, changes in network position reflect changes in function [18, 21]. Therefore,

investigating co-expression networks from multiple brain regions across different

phylogenetic groups may allow us to assess the functional divergence of biological pro-

cesses and cell types for many brain regions.

To identify robust evolutionarily divergent brain regions and biological processes, we

constructed co-expression networks utilizing a bootstrapping approach for 12 brain re-

gions in human based on the GTEx resource [22, 23] and 7 brain regions in mouse

from 30 studies (Additional files 2,3: Table S1, S2). We assessed network divergence for

each brain region in human and mouse by performing module preservation in the cor-

responding brain region for human, non-human primate (NHP), and mouse. Our ana-

lysis was in line with previous findings, with glial co-expression modules on average

three times as divergent as neuronal modules [8, 19]. By exploring many major regions
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across the brain, we were able to identify regional variation and compare preservation

across regions. We observed that cerebral cortical brain regions display the greatest

relative divergence in human, an analysis enabled by the extensive regional sampling

within the GTEx dataset [22]. We identify 5473 genes that display significant diver-

gence of co-expression from human to mouse in at least one brain region, including

many that have been related to human neurological and psychiatric disease.

By examining the relationship of co-expression divergence with measures of divergence

at the DNA sequence level, including regulatory sequence changes and protein coding

sequence constraint (pLI; [24]), we identify genetic mechanisms underlying divergence and

show that the extent of transcriptomic divergence reflects other known measures of selec-

tion. Since co-expression modules are often related to cell type [19, 20], these divergent

genes can begin to explain the nature of cell-type divergence between human and mouse.

We show that gene divergence in co-expression is associated with changes in mean expres-

sion between species. Through integration with single-cell sequencing data, we show that

these species differences in gene expression are largely due to cellular differences in gene

expression rather than cell-type proportion differences in bulk tissue. Of these diverged

genes, 91 (2%) show evidence of genetic association to at least one brain disorder, such as

the autism (ASD) risk genes SCN2A and SHANK3. Furthermore, a substantial proportion

(18%) of genes that display up- or downregulation in post-mortem brain of patients with

neurological disorders display significant divergence of co-expression from human to

mouse, potentially limiting their use as disease biomarkers in mouse.

Results
Assessing the evolutionary divergence of human and mouse brain networks

We generated regional co-expression networks in a discovery dataset for both human

and mouse to identify modules of highly co-expressed groups of genes (Fig. 1a;

“Methods and materials”). Networks were created using a robust bootstrap-resampling

approach to ensure modules were not driven by outlier samples [25, 26]. To validate

whether these modules represent generalizable co-expression relationships, we per-

formed module preservation analysis against multiple independent expression datasets

derived from human (3–20 studies, depending on region; 7287 total samples), non-

human primate (NHP) (5–15 studies; 2933 total samples), and mouse (6–28 studies;

6667 total samples; “Methods and materials”) to assess co-expression conservation

(Fig. 1b; Additional files 2,3: Table S1,2). We determined quantitative module-level co-

expression differences between species (“Methods and materials,” Fig. 1b) to assess the

divergence of different brain regions, cell types, and the genes which underlie this

divergence (Fig. 1b, c). We reasoned that modules highly conserved in multiple inde-

pendent data sets from one species (e.g., human), but not in the independent data sets

from another, were divergent between the species (“Methods and materials”). Together,

we utilize these data to create a resource to guide disease modeling (Fig. 1d).

Co-expression analysis in human and mouse reveals asymmetric transcriptome

divergence across brain regions

To capture divergence in co-expression relationships between the species, we derived

divergence scores for human and mouse modules. Module divergence scores were
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Fig. 1 Assessing the evolutionary divergence of human and mouse brain networks. a Generation of human
and mouse brain networks. RNA-seq expression data derived from 12 brain regions from the GTEx dataset
and 7 brain regions from publicly available mouse data were used to create gene networks in each brain
region using rWGCNA. These networks were hierarchically merged to generate a consensus whole-brain
network. Co-expression modules were generated for each network and assessed for evolutionary
divergence. Each module was assessed for transcriptome (also referred as “co-expression” or “module”)
divergence as well as sequence divergence. b For each module in each brain region of the human and
mouse brain reference networks, we assessed module reproducibility (preservation) in multiple
independent test datasets derived from the same region in human, non-human primate (NHP), and mouse.
For each test, a composite Zsummary (Zsum) statistic representing preservation was generated. For both
human, NHP, and mouse, the upper quartile (UQ) of all test Zsum scores was calculated to generate a final
preservation score in their respective species (hZsum, pZsum, mZsum). Modules with a same-species Zsum
UQ > 5 are considered to be robust and reproducible. To assess divergence between human and mouse, a
module divergence score was calculated as follows: (hZsum/mZsum) − 1. This framework was also applied
using list of genes generated through alternate methods to assess how their co-expression structure has
changed across evolution. c We subsequently used this framework generating evolutionary divergence
scores to assess the transcriptomic divergence of brain regions and cell types and determine the genes
which underlie this divergence. d Using these data, we create a resource to guide disease modeling. For
example, we assess which human disease genes’ co-expression is not preserved in mouse and assess to
what extent different model systems capture human co-expression patterns
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calculated by comparing the module preservation (Zsum) scores from test datasets of

the same species (e.g., human) to the Zsum scores of test datasets derived from the op-

posing species (e.g., mouse) (Fig. 2a). Human modules, on average, displayed over twice

the divergence than modules defined in mouse (“Methods and materials”; OR = 2.5, p <

1e− 6), suggesting an “asymmetric” transcriptomic divergence, with more changes oc-

curring on the human lineage (Fig. 2b). The preservation of most mouse modules in

human suggests that core transcriptional programs in mouse are shared with human.

However, since many human modules show divergence from mouse, there may be

biological processes in human with additional levels of transcriptomic complexity that

are not captured in mouse.

We explored this notion of asymmetric divergence further by stratifying module

divergence according to brain region, allowing us to assess regional divergence in co-

expression. We observe that the cerebral cortical regions show the greatest asymmetric

divergence; human-derived, but not mouse-derived, cortical modules were more di-

verged in the opposing species (p < 1e− 3; Fig. 2c, e). On the other hand, the cerebellum

shows similarly minimal divergence for both human and mouse, suggesting this region

has not strongly diverged for either species (Fig. 2c–e). The amygdala and hypothal-

amus both show substantial divergence (> 1.4 average module divergence) in both

human and mouse, meaning that there are several modules that are divergent in each

region in each species. While these regions possess a small degree of asymmetric diver-

gence, this does not reach significance (Fig. 2c–e). We confirmed that this regional level

trend of module divergence was not confounded by sample size, or the number of

studies contributing to that network (Additional file 1: Fig. S1A). Another potential

confounding factor would be the variation in the proportion of different cell-type mod-

ules across the brain regions. We tested this by normalizing regional divergence, so that

the proportion of different cell-type modules were equal across regions, and found that

regional divergence was not driven by the regional proportion of cell-type modules

(Additional file 1: Fig. S1B).

Glial cell types display the greatest transcriptomic divergence in human

To further understand which biological processes were preserved or diverged across

species, we tested modules for their enrichment in cell-type marker gene lists and gene

ontology terms (“Methods and materials”; Additional file 1: Fig. S1C-D, S2A-B). The

cell-type classification of each human module was highly associated with human-mouse

module divergence (p < 1e− 10; Kruskal Wallis), with glial-classified modules significantly

more divergent than neuronal (OR > 3.1; p < 1e− 6; pairwise t-test; Fig. 3a, b). Human

microglial modules show the largest divergence (mean = 4.8), followed by astrocytes

(4.3), oligodendrocytes (2.9), and neurons (1.4). In contrast, modules with no evidence

of cell-type enrichment were generally well preserved in mouse (mean = 1.1). This cat-

egory of highly conserved, non-cell-type-specific modules included those enriched for

GO terms relating to ribosomal-related processes, RNA binding, and energy production

(Additional file 1: Fig. S2C).

To confirm that the difference in divergence between different cell types is not

related to network construction, we performed preservation analysis using collated cell-

type marker gene lists derived from co-expression and single-cell experiments
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Fig. 2 Co-expression analysis in human and mouse reveals asymmetric transcriptome divergence, greatest
in the human cerebral cortex. a Generation of module divergence scores. Plots showing preservation
(Zsum) of co-expression modules (upper—human, lower—mouse) in a number of test expression datasets
derived from human and mouse (red is human, blue is mouse). Black lines represent the upper quartile
(UQ) of the Zsum scores. Module divergence is calculated by comparing the UQ of the human Zsum scores
vs the mouse Zsum scores. The module divergence score is rounded up to zero in those cases where the
module shows greater preservation in the opposing species. For each species, we have an example of a
cortical derived module that shows species-specific divergence and one which does not. Error bars
represent the 95% CI from permuting across study in that species. b Module divergence scores for all
human and mouse-derived modules, each depicted as a single dot. Human modules show significant (*;
p < 0.05) and over twice the average (black box) transcriptomic divergence than mouse suggesting that
differences between human and mouse brain are mostly due to divergence on the human lineage. c
Divergence scores for human- and mouse-derived modules stratified by region and ordered by regional:
absolute divergence (average module divergence; upper) and relative divergence (divergence index score;
the ratio of the average human- and mouse-module divergence scores for each region; lower). Black box
represents mean regional divergence score. Amygdala (AMY) shows greatest absolute transcriptomic
divergence with cortical regions showing greatest relative transcriptomic divergence. * denotes significant
(p < 0.05) difference between the species for regional divergence scores. d Regional divergence (average
module divergence for each region) plotted for both human and mouse. e Human brain regions plotted
against their relative transcriptomic divergence (Divergence Index) with point size reflecting absolute
transcriptome divergence. Human cortical regions show the greatest relative and the most significant
transcriptomic divergence. Error bars represent the 95% CI from permuting across study in that species; *
denotes regions with a CI that does not overlap zero
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Fig. 3 (See legend on next page.)
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(“Methods and materials”; Additional file 1: Fig. S2A) and found a strong correlation

with our cell-type module divergence scores (Additional file 1: Fig. S2D; Pearson’s cor =

0.69 (co-expression) and 0.88 (single-cell)). To assess whether species cell-type differ-

ences may arise from differential aging trajectories [27, 28], we tested module preserva-

tion in young adult (human 13–40 years; mouse 2–14months) and middle age to aging

adult (human > 40 years; mouse > 14months) samples (Additional file 1: Fig. S2E;

“Methods and materials”). Preservation scores in human are similar between young and

aging adult brain indicating that co-expression modules are not driven by age-

dependent processes (Additional file 1: Fig. S2E-F). Preservation was also largely similar

between aging states in mouse (Additional file 1: Fig. S2E-F). Notable exceptions were

human microglial modules WB.M8 and WB.M10, which displayed stronger preserva-

tion in aging mice than young mice (OR > 1.8; pval<1e − 10; Additional file 1: Fig. S2F),

and are described in more detail below.

Human microglial marker genes largely fall into two module subclasses, WB.M8 and

WB.M10. These modules are generated utilizing all 12 brain regions and thus are re-

ferred to as whole-brain (WB) modules (Fig. 3c). To provide more refined annotations

of these modules, we assessed module enrichment using microglial marker gene lists

derived from immunopanned microglia, and brain tissue from both homeostatic and

pathological conditions ([29–32]; “Methods and materials”). Based on this, M10 repre-

sents a more canonical microglial signature defined by strong enrichment in canonical

homeostatic microglial signatures (Additional file 1: Fig. S2G), whereas M8 represents a

more activated microglial state, as defined by enrichment of endothelial genes and

microglial genes upregulated in pathological conditions, such as Nfkbia and Cxcl1 (

[31]; Additional file 1: Fig. S2G). Differences between these two states explain much of

the variation observed for microglial module divergence, with the activated microglial

modules (WB.M8) displaying stronger divergence between species (OR = 4; p < 0.01;

Fig. 3c). We also observe that there is a range of preservation of these microglia

modules in mice, with relatively higher preservation in older versus young adult mice

(Additional file 1: Fig. S2E-F). Nevertheless, the preservation in older mice is still much

(See figure on previous page.)
Fig. 3 Characterizing the relationship of cell-type and promoter sequence to transcriptomic divergence. a, b
Divergence of co-expression modules (left—human-derived, right—mouse-derived, bottom—combined) stratified
by cell type. Black box represents mean divergence score for each cell type and * represents a significant
difference in cell-type divergence between the species. Glial enriched modules display the greatest divergence in
human and mouse, with the exception of microglial modules which show strong divergence in human but not
mouse. The cell-type color scheme applies to all panels of the figure—the microglial subclassification only applies
from panel b onwards. c Module divergence scores of human modules with a microglial module set name.
Microglial modules fall into two main classes—WB.M10 is more representative of homeostatic microglial markers,
whereas WB.M8 is more representative of microglial activation. WB.M8 displays significantly (*; p < 0.05) stronger
divergence than WB.M10. Dot color represents module cell-type annotation. d Module divergence scores of
human modules with enrichment for either excitatory (Exc) or inhibitory (Inh) neuronal markers. There is no
difference in divergence between the two subclasses. e Cell-type transcriptomic divergence is plotted for both
human and mouse lineages. f Divergence Index (ratio of mean human- and mouse-module divergence scores)
plotted for major cell types with point size reflecting absolute transcriptome divergence. Microglia display the
greatest relative divergence. Error bars represent the 95% CI from permuting across study in that species. g
Module divergence plotted against module-level sequence divergence. Promoter conservation was assessed by
measuring sequence conservation of the 250 bp upstream of each gene using the mammalian PhastCons score.
The conservation score for every gene in a module was averaged to produce a module sequence divergence
score. Transcriptomic divergence significantly correlates (p< 0.01; cor = 0.27) with promoter sequence divergence
across cell types but not for modules without cell-type enrichment (cor =− 0.04; pval = 1)
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less than preservation in independent human datasets (human to mouse preservation

OR = 4.0, M8; OR = 2.0, M10), indicating that a large proportion of microglial differ-

ences are consistent across age.

Given that microglial state appears to influence module divergence, we also sought to

determine whether the two major neuronal subclasses, excitatory and inhibitory neu-

rons display differences in their divergence. We identified modules representing inhibi-

tory or excitatory neurons via enrichment of neuronal markers ([33]; “Methods and

materials”) and compared the module divergence between these two sets (Fig. 3d). We

observed no significant differences between these subclasses (p = 0.78). We also

attempted to directly test the difference in divergence between these cell types by per-

forming a supervised module preservation approach (“Methods and materials”) using

inhibitory and excitatory neuronal markers derived from single-cell analysis [33]. Again,

there was no evidence for differences in divergence between these two neuronal sub-

groups (Additional file 1: Fig. S2A), so we performed downstream analysis considering

neurons as a general cell class.

Compared with neurons, glial cell classes displayed strong asymmetric divergence in

addition to showing the greatest absolute divergence from human to mouse. Human-

derived microglial modules, on average, showed the most such divergence: over ten-

fold greater divergence to mouse than mouse-derived microglial modules to human

(Fig. 3b, e, f). Stratification of modules by cell type in each brain region revealed that in

cerebral cortex, all cell types displayed significant asymmetric divergence, i.e. human-

derived modules from all cell types were significantly more diverged to mouse than

their corresponding mouse-derived cell-type modules were to human (Additional file 1:

Fig. S2H). In contrast, most cell types across other brain regions did not show signifi-

cant asymmetric divergence (Additional file 1: Fig. S2H).

Transcriptomic divergence is highly associated with regulatory sequence divergence for

cell-type modules

The divergence of co-expression from human to mouse could be driven by many

factors, genetic or environmental. Matching environmental variables between the two

species is not experimentally feasible; so to understand potential mechanisms under-

lying divergence, we focused on the extent to which genetic variation could explain the

differences in co-expression observed between species. We reasoned that we could

assess the relationship of co-expression divergence to the divergence in relevant DNA

sequences directly by comparing core regulatory sequence divergence to module diver-

gence. We correlated the average PhastCons score for a number of definitions of the

most proximal promoter region (250b, 2 kb upstream of all the genes in a module) with

the module divergence score. Indeed, we observe a significant correlation (p < 0.01,

Pearson’s cor = 0.27) between transcriptome and sequence divergence (Fig. 3g) with

neuronal modules displaying greater evolutionary constraint than glial modules, in line

with recent findings [34]. This transcriptome-sequence divergence correlation is main-

tained across a range of gene boundary parameters as a basis for sequence comparisons

(Additional file 1: Fig. S3A-B), demonstrating that a cell-type-specific selection pressure

is not being driven by our parameter selection. Finally, we find that this correlation of

regulatory sequence-transcriptome divergence is restricted to cell-type-specific
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modules, rather than the more general metabolic, or housekeeping annotated modules,

as the correlation between sequence and expression divergence is lost when assessing

modules without cell-type enrichment (Fig. 3g).

Co-expression preservation is highly associated with coding sequence constraint in cell-

type modules

We next asked, given the positive relationship between module divergence and regulatory se-

quence divergence, whether other measures of selective pressure, such as protein coding con-

straint in humans was related to module divergence. Genes vary in their tolerance to loss of

function (LoF) mutations on one allele [35] and can be classified depending on their fre-

quency of non-inherited, spontaneously arising (de novo) mutations in the human population

[24]. For genes where LoF mutations are well tolerated, the observed number of de novo mu-

tations equals the expected number of mutations under the null model. Conversely, haploin-

sufficient genes, where half the total level of a gene product is insufficient for organismal

survival, the observed de novo mutation frequency is defined to be < 10% than what is ex-

pected under the null model [35]. The pLI (probability of LoF Intolerance) score is the prob-

ability that a given gene is haploinsufficient and therefore intolerant to LoF variation and

under purifying selection. We asked whether haploinsufficiency was evenly distributed across

modules or related to the degree of co-expression divergence, finding a significant negative re-

lationship between the degree of transcriptomic divergence and module enrichment for LoF

intolerant genes (pLI ≥ 0.9; Pearson’s cor = − 0.2; p < 0.01; Additional file 1: Fig. S3C; [24]).

Modules with limited transcriptomic divergence, such as neurons, manifested the greatest en-

richment in genes intolerant to LoF mutations. Since functionality of these genes is necessary

for organismal survival, we would expect these genes to be under tighter transcriptional regu-

lation. Conversely, glial modules are under-represented for LoF-intolerant genes, which is

consistent with the relaxed constraint of these genes at the sequence and transcriptional level.

Another measure of coding sequence constraint that reflects cross-species divergence,

rather than within human constraint, is the dN/dS ratio [36–38]. For a particular gene or

coding sequence, this measures the number of mutations that affect the amino acid

sequence (non-silent/non-synonymous; dN) versus the number mutations that do not

(silent/synonymous; dS). A gene under strong selective constraint will have many silent

mutations, but very few that induce protein changes and will therefore have a dN/dS score

close to zero. Genes under no selective constraint will have a dN/dS score of ~ 1, whereas

genes that undergo positive selection may have a dN/dS > 1. We found a significant posi-

tive correlation between dN/dS and module divergence (Pearson’s cor = 0.35; p < 0.01;

Additional file 1: Fig. S3D), which again indicates relaxed constraint of these genes at both

the sequence and transcriptional level. These two different analyses of coding sequence

constraint, coupled with the regulatory sequence analysis above, further supports the

functional significance of module divergence by demonstrating its relationship to inde-

pendent measures of selection and constraint at the DNA sequence level.

Identification of modules displaying accelerated divergence after the last common

ancestor (LCA) with non-human primates

Understanding transcriptome divergence between human and mouse is essential due to the

ubiquitous nature of mice in biomedical research [2]. However, it is also of interest to know
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if certain diseases are caused by disruption of biological processes changing most during hu-

man evolution, or whether they can be modeled in non-human primates (NHP), or human

stem cell systems [12, 39]. Comparison of the Zsum scores for human, NHP and mouse

allowed the Human-Mouse divergence score to be partitioned into a (1) “human-specific”

component, where transcriptional changes occurred on the human lineage after divergence

with the last common ancestor (LCA) of NHP, and a (2) “primate-specific” component,

where changes occurred before divergence with the LCA of NHP (Fig. 4a–c).

To quantify whether module divergence was greater before or after the LCA with pri-

mates, we compared the human and primate specificity scores to each other, producing

a Human-Primate “Specificity Ratio” (Fig. 4d; “Methods and materials”). If the preserva-

tion scores in NHP are closer to the preservation scores in mouse relative to human, it

suggests more changes have occurred after the LCA of NHP, on the human-specific

lineage. Conversely, if the preservation scores in NHP are closer to the preservation

scores in human relative to mouse, it suggests more changes have occurred before the

LCA of NHP, on the primate lineage. We were able to identify 13 co-expression mod-

ules where the NHP preservation scores were significantly closer to mouse relative to

human and therefore displayed stronger divergence on the human-specific rather than

primate lineage (Fig. 4d). We were unable to identify any modules where the NHP

module preservation scores were significantly closer to human than mouse, which

would have been indicative of increased divergence on the primate lineage before the

NHP-human divergence.

By grouping together modules from the same cell type, and assessing preservation in

NHP relative to human and mouse, we can determine the extent to which certain cell

types have diverged before or after the LCA of NHP. In general, cell-type (neuronal,

glial, endothelial) modules showed slightly greater trends towards transcriptional

changes on the “human-specific” portion of the lineage tree compared with modules

that did not have a clear cell-type identity. However, as the variability was higher

among the non-neuronal cell types, the neuronal cell class was the only that reached

statistical significance for human specificity (p < 0.05; Fig. 4b–e). This human-favored

specificity ratio trend was also observed when preservation analysis was performed

using cell-type marker gene lists derived from three different approaches: co-

expression, cell sorting to obtain purified cell populations, and single-cell-based

methods (Fig. 4f; “Methods and materials”).

Specific genes showing cell-type or regional transcriptomic divergence

To identify gene drivers of module divergence, we calculated the correlation of each

gene to its module eigengene (kME) in the discovery dataset and all test datasets in

human, NHP and mouse. The difference in mean kME values between human and

mouse was used to calculate a kME divergence score, which we utilized to highlight

genes whose expression is highly divergent between human and mouse (“Methods and

materials”). To highlight genes underlying cell-type divergence, we calculated the kME

divergence for each gene in the consensus “whole-brain” modules across all brain re-

gions. “Whole-brain” consensus modules were created from a co-expression network

generated by creating a consensus of all regional co-expression networks (“Methods

and materials”) and therefore represent shared features of co-expression across the
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Fig. 4 Assessing phylogenetic origins of human divergence. a Preservation (Zsum) scores of three human
co-expression modules in test expression datasets derived from human, non-human primate (NHP), and
mouse. While human-mouse-module divergence is calculated by comparing the upper quartile (UQ) of the
human Zsum scores against the mouse Zsum scores, this score can be further partitioned into human and
primate specificity scores by considering the NHP UQ Zsum score. This subdivision allows us to determine
these transcriptomic differences arose. b Human-mouse divergence, human specificity, and primate
specificity scores for cell-type modules in human. Black box represents mean divergence/specificity score
for each cell type. The cell-type color scheme applies to all panels of the figure—the microglial
subclassification only applies from panel c onwards. c Human specificity and primate specificity scores for
all cell-type modules in human, grouped by cell type. Black box represents mean specificity score for each
cell type. d Summary plot showing modules with significantly increased human specificity. Module
placement on the X-axis is based on its human-primate specificity ratio; modules to the left of the dashed
line show greater primate specificity, whereas modules to the right show greater human specificity. Points
are sized by their absolute divergence to mouse. Error bars represent the 95% CI from permuting across
study in that species; * denotes regions with a CI that does not overlap zero. e Summary plot showing
mean human-primate specificity ratio for each cell type calculated by averaging the module ratio scores for
each cell-type class. Most cell types trend towards human specificity. Points are sized by their absolute
divergence to mouse. Error bars represent the 95% CI from permuting across study in that species; *
denotes regions with a CI that does not overlap zero. f Summary plot showing mean human-primate
specificity ratio for each cell type, having derived cell-type markers from independent (“Methods and
materials”; Additional file 12: Table S11) co-expression (square; Kelley at al., 2018), single-cell RNA
sequencing (triangle up; Lake et al., 2018), and cell-sorting-based experiments (triangle down; Zhang et al.,
2016), which are in general highly concordant. Points are sized by their absolute divergence to mouse.
Trends observed for GTEx-derived modules (e) are mirrored in these additional datasets
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brain. Overall, we identified 2217 genes that displayed consensus divergence across all

12 brain regions in human and 528 genes that displayed consensus divergence across

all 7 brain regions in mouse (Additional files 4, 5: Table S3, S4). For human, we identi-

fied hundreds of genes whose co-expression is highly divergent for microglia (295;

WB.M8/WB.M10), astrocytes (281; WB.M6), oligodendrocytes (272; WB.M7), neurons

(469; WB.M4), and endothelia (88; WB.M11) (all listed in Additional file 4: Table S3).

These include 1109 cell-type-associated genes that have not been previously deter-

mined to be divergent between mouse and human [8, 19], such as TMIGD3, C3AR1

(microglia; WB.M10), MID1, PDLIM3 (astrocyte; WB.M6), CD22, FAM124A (oligo-

dendrocyte; WB.M7), JAKMIP1, and NDUFA5 (neuron; WB.M4; Additional file 4:

Table S3). To illustrate human-mouse cell-type divergence, network plots display the

top 40 most divergent genes for each consensus cell-type module (Fig. 5a). As expected,

highly divergent modules possessed a greater proportion of divergent genes (Pearson’s

cor =0.48, p < 1e− 11; Additional file 1: Fig. S4A). Supporting our methodology, we find

that previously identified human- and mouse-specific cell-type markers display

Fig. 5 Assessing divergence and candidate regulatory drivers of cell-type modules. a Network plots of the
significant top 40 most divergent genes for each consensus (WB) cell-type module. The top 750
connections ranked by weighted topological overlap for the consensus network are shown as node edges.
Nodes with larger number of connections appear more central in each network plot. Node size relates to
kME divergence. Node color relates to mean expression fold-change between human and mouse
(red—upregulated in human, blue—downregulated in human). Diverged genes are available in Table S3. b
Bar plot showing the number of TFs with binding site enrichment (OR > 3; p < 0.05) in promoters of
diverged genes for each consensus cell-type module. c Bar plot showing the top five TFs whose binding
sites are enriched in promoters of diverged genes for each consensus cell-type module
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significantly stronger kME divergence than background (Additional file 1: Fig. S4B; Hu-

man; OR = 4.1; p < 1e− 13; Mouse; OR = 14.5; p < 0.01 [19]; Human; OR = 2.2; p < 1e− 4

[8]).

To further assess the gene regulatory mechanisms of co-expression divergence for

these cell-type modules, we sought to assess whether binding sites for particular tran-

scription factors (TF) were enriched in the promoters of diverged genes for each cell-

type module (“Methods and materials”). In total, we identify 123 TFs whose binding

sites were enriched in the promoters of these diverged cell-type genes (Fig. 5b, Add-

itional file 6: Table S5). For each cell-type module, we plot the top five (by enrichment

odds ratio) of these TFs, which can be viewed as candidates for contributing to these

cell type-specific changes in co-expression between human and mouse (Fig. 5c). To fur-

ther assess whether a change in co-expression or expression of the TF itself may be

driving the downstream effects, we sought to assess whether these implicated TFs had

a higher kME divergence or expression difference than background. We found that

these TFs do not show significantly greater “correlation divergence” (FC = 1.37, p =

0.33), but may be trending for showing relatively fewer “expression differences” (FC =

0.76, p = 0.09). This suggests that in general, Human-Mouse cell-type transcriptomic

divergence observed here is not driven by evolutionary changes in expression and co-

expression of TFs (trans effects). Instead, as suggested by the analysis showing a posi-

tive relationship between module divergence and promoter sequence divergence

(Fig. 3g), divergence appears to be more driven by cis-regulatory effects.

To highlight human-specific gene associations for each cell type, we compared gene-gene

correlations in all human and mouse datasets. We selected the top 100 gene pairs from each

“whole-brain” consensus module (“Methods and materials”) that showed the strongest cor-

relation differences between human and mouse (Additional file 7: Table S6) [8, 19]. As ex-

pected these genes show strong kME divergence (mean kME div = 0.17; OR = 2.3; p < 1e− 16)

with the strongest effect seen in glial modules (Additional file 1: Fig. S4C). For example, in

oligodendrocyte module WB.M7, the recently identified Alzheimer’s risk gene HSPA2 [40]

shows 7 times stronger human-specific association with a number of oligodendrocyte

markers in human than in mouse (Additional file 1: Fig. S4D), in line with a previous study

[8]. For microglial module WB.M10, in addition to C3, which has previously been identified

as a human-specific microglial marker [19], we show that the complement cascade genes

C1QA-C and C3AR1 form 44 of the top 100 highly divergent gene pairs. This strongly

implicates a human-specific role for complement-mediated synaptic pruning in microglia.

Glutamate transporters SLC1A3 and SLC1A2 (EAAT1/EAAT2) show strong divergence

with other members of the astrocytic WB.M6 module suggesting human astrocytes have an

increased capability to provide glutamate to adjacent neurons.

We also identify 1135 region-specific divergent genes, where kME divergence is

restricted to particular brain regions (Additional file 8: Table S7). The cerebral cortex

displayed the greatest region-specific divergence with over 300 genes significantly more

diverged than at least one other brain region (Fig. 6a). For example, MID1, a member of

the astrocytic WB.M6 module shows significantly stronger kME divergence in cerebral

cortical regions than cerebellum (Fig. 6b). The cerebellum displayed strong region-specific

conservation (Fig. 6a). This strong regional conservation is likely a combination of the

general conservation of cerebellum from human to mouse (Fig. 2e) and the large tran-

scriptional differences of the cerebellum to the rest of the brain [15, 23, 41]. Furthermore,
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genes comprising the neuronal (WB.M4) and oligodendrocyte (WB.M7) modules show

the greatest region-specific divergence, with 6.1% and 7.3% of genes within each module

respectively, displaying significantly greater divergence in a particular brain region

(Fig. 6c). This suggests that neurons and oligodendrocytes manifest the most divergence

between the species on a region-specific basis.

We sought to test the hypothesis that human divergent genes would have greater ex-

pression in humans, relative to mouse. We assessed whether kME diverged genes were

associated with changes in mean expression between human and mouse, finding that

genes with greater expression in human (> 4 FC) show greater divergence (OR = 1.4;

pval< 1e− 8; Additional file 1: Fig. S4E). For example, highly diverged genes in the oligo-

dendrocyte (WB.M7) and astrocyte (WB.M6) module appear to be strongly upregulated

in human compared with mouse (Fig. 5a, Additional file 1: S4E), suggesting that upreg-

ulation of gene expression is one mechanism driving higher co-expression.

To assess whether this change in expression levels between species is due to a change

in gene regulation, or simply a change in cell proportion, we compared human-mouse

expression differences from our cortical bulk expression data to single-cell expression

data derived from human and mouse cortex [7]. Genes with species differences in bulk

Fig. 6 Assessing genes for regional divergence and disease association. a Region-specific divergent genes
(blue) across all brain regions. Red bars represent genes with conserved co-expression in that region but
divergent in another. The cerebral cortex displayed the greatest region-specific divergence whereas
cerebellum displayed strongest region-specific conservation. b kME divergence of MID1 and ZER1 for each
brain region. Each gene shows divergence in one region which significantly exceeds that from another
region. Error bars represent the 95% CI from permuting across study in that species; * denotes divergent
regions with a CI which does not overlap the CI of another region. c Proportion of each whole-brain
consensus modules with region-specific divergent genes. Bar color indicates cell-type annotation of
module. d The top 500 up- and downregulated genes for alcoholism (AAD), autism (ASD), bipolar disorder
(BD), schizophrenia (SZ), and Alzheimer’s (AD) are plotted for their kME divergence and tested in
enrichment for diverged genes (left). All disorders except for AAD show enrichment for diverged genes.
Removing genes associated to an astrocytic (WB-M6) or microglial (WB-M8/WB-M10) module ablated the
upregulated signature for ASD, SCZ, BD, and AD (right). e kME divergence of FOXO1 and RGS4 from the
discovery GTEx dataset to both human and mouse datasets. FOXO1 and RGS4 are up- and downregulated
respectively in SZ, BD, ASD, and AD and both display significantly increased kME divergence in mouse. Error
bars represent the 95% CI from permuting across study in that species. f kME divergence of PSEN-1 and
SNCA across all brain regions. Error bars represent the 95% CI from permuting across study in that species; *
denotes regions with a CI that does not overlap zero. g Examples of genes diverged in at least one brain
region and associated with major diseases and disorders investigated in this analysis
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data that maintain differences in single-cell expression data are likely to be driven by

species differences in gene regulation, whereas genes with species differences only in

bulk data may be driven by differences in cell-type proportion. For cell types captured

in both human and mouse single-cell datasets, there is a significant (p < 0.01) positive

correlation between bulk- and single-cell data for the species differences in gene ex-

pression, with the line of best fit passing close to the origin (Additional file 1: Fig. S4F).

This indicates that cell-type proportion is not a major driver of these expression differ-

ences, but rather expression differences are largely due to cellular gene expression dif-

ferences. We illustrate the single-cell expression data for four genes with greater

expression in human for both bulk and single-cell expression data, indicating intracel-

lular upregulation in human for a particular cell type (Additional file 1: Fig. S4G).

Divergent neuronal genes (WB.M4) generally displayed downregulation in bulk expres-

sion data, which was mirrored in single-cell data, indicative of an intracellular downreg-

ulation of neuronal genes in human (Additional file 1: Fig. S4F, H). This matches

known age-dependent repression of neuronal genes on the primate lineage [28].

Genes with divergent co-expression from human to mouse were more likely to show

upregulation in both human single-cell and human bulk expression datasets. Neverthe-

less, a large portion (73%) of significantly divergent genes showed similar or lower ex-

pression in human (Additional file 1: Fig. S4E), indicating that changes in baseline

expression level is not the sole mechanism. In addition, many genes that displayed

strong expression differences between human and mouse in both single-cell and bulk

datasets, did not show a strong divergence of co-expression (Additional file 1: Fig. S4E).

This trend was especially true for downregulated genes—15% of human-upregulated

genes (> 2 FC) in both single-cell and bulk data did not display significant divergence

in co-expression, whereas 66% of human-downregulated genes (< 0.5 FC) did not show

significant co-expression divergence. This suggests that species differences in mean ex-

pression can partially predict species differences in co-expression, but there is a notable

proportion of genes where this trend does not apply, further indicating that differential

expression is only one mechanism driving differential co-expression [42, 43].

Gene drivers of transcriptomic divergence in disease

Mouse models are widely used to understand the molecular and cellular mechanisms

underlying human disease [2]. Therefore, we reasoned that understanding which

disease-associated genes were conserved for co-expression between human and mouse

would help inform disease modeling. Genes up- and downregulated in human cortex

from schizophrenia (SZ), bipolar disorder (BD), autism (ASD), and Alzheimer’s (AD),

but not alcoholism (AAD) are significantly enriched for diverged genes (p < 0.01; Fig. 6d)

[44]. For example, FOXO1 and RGS4 are up- and downregulated respectively in the

cerebral cortex of patients with SZ, BD, ASD, or AD [45], but their co-expression is

highly diverged in mouse (Fig. 6e). The divergent co-expression of these genes between

species suggests they contribute to different biological processes in mice and humans

[8, 19], potentially limiting their study or use as disease biomarkers in mouse. We next

assessed whether the divergence of these disease-related expression changes was related

to specific cell types or biological process. Indeed, genes upregulated in ASD, SCZ, BD,

and AD largely represent transcriptomically divergent glial and immunological
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signatures, as enrichment of kME divergent genes in upregulated genes for these disor-

ders is attenuated when omitting genes from astrocyte or microglial annotated modules

(Fig. 6d).

Many transcriptional changes in post-mortem tissue may be a consequence of disease

rather than causal, prompting us to focus on genes with evidence of causality in human

disease (“Methods and materials”). We first examined enrichment of high-confidence

ASD risk genes (n = 136), defined by harboring high-risk, likely protein-disrupting mu-

tations [46–48] of which SHANK3, SCN2A, and 56 other genes displayed significant

kME divergence in at least one brain region (Additional file 9: Table S8). Notably, when

we extend the analysis to include the co-expression module representing synaptic

vesicle trafficking in which SHANK3 is a core member (BRNHIP.M5; kME = 0.91; 28th

percentile), we find that 27 out of the 200 genes in that module, including SRF,

DOC2B, and LRP3 (Additional file 11: Table S10) also display significant kME diver-

gence between human and mouse, providing further evidence that some of the basic

biological pathways in which SHANK3 participates are also divergent. In total, 70 ASD

risk genes were divergent when also including genes with relatively high levels of statis-

tical support (within SFARI categories 1 or 2; n = 170 [49]).

Of the genes with an association to a neurodegenerative disease (n = 84), 40 displayed

significant kME divergence from mouse (Additional file 9: Table S8). For example,

alpha-synuclein (SNCA), a Parkinson’s (PD) risk gene, shows co-expression divergence

between human and mouse primarily in the substantia nigra and basal ganglia, whereas

presenilin-1 (PSEN-1), an AD risk gene, which had been shown to be divergent in cor-

tex [8] displayed significant divergence across 10 brain regions (Fig. 6f; Additional file 9:

Table S8). We supplement these gene lists by assessing the divergence of genes within

relevant KEGG disease pathways or the DisGeNet database and provide these as a

resource to guide disease modeling in mouse (Fig. 6g; “Methods and materials”;

Additional file 10: Table S9).

Leveraging NHP expression data, we were able to identify 1670 genes with human-

specific co-expression changes (strong kME divergence in human with respect to both

NHP and mouse) such as the astrocyte gene, ACBD7, and the neuronal, PD risk gene

SYT4 (Additional files 9,10: Table S8,9). One thousand six hundred and sixty genes dis-

played primate-specific co-expression changes (strong kME divergence from human

and NHP to mouse; Additional file 11: Table S10) of which 23 had high-confidence dis-

ease association. This provides guidance as to genes that would be more aptly modeled

in NHPs than mouse and suggests that modeling these disease genes in mouse should

be approached with caution when attempting to relate mechanisms identified in mouse

to primates or humans. These genes include the ASD risk genes SCN2A and SHANK3,

the PD risk gene COMT and the AD risk gene PSEN-1 (Additional file 9: Table S8),

which has previously been shown to be divergent in its co-expression between human

and mouse cerebral cortex [8].

Identifying modules strongly preserved in human cortical spheroid models

Recent advances in in vitro modeling offer the potential to model human brain devel-

opment and function in a dish [50–53]. To better understand the fidelity of in vitro

modeling for specific cell types, we assessed cerebral cortex module divergence for
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canonical cell-type modules in human cortical organoids derived from 8 separate stud-

ies [51–59]. We then compared module divergence scores between mouse, NHP, and

organoids to assess which species and systems can recapitulate human neurobiology.

Species “divergence scores” largely represent transcriptomic differences shaped by evo-

lution, whereas organoid “divergence scores” reflect differences between in vivo and

in vitro systems. Nevertheless, these scores can still be used to assess the applicability

of using particular species or systems to model human in vivo signatures.

In general, astrocytic, activated glial, and most neuronal modules were well captured

in cortical organoids. Conversely, homeostatic microglial and oligodendrocyte modules

were not (Fig. 7a–c), which is expected given their absence from most organoid cul-

tures [52, 53]. As previously shown, all cell types were generally well preserved in NHP

datasets (Fig. 7a–c). Mouse data recapitulated modules with neuronal or no cell-type

annotation, but displayed strong divergence for glial cell types (Fig. 7a–c).

To summarize whether in vivo mouse or in vitro human approaches more appropri-

ately model in vivo adult human cell types, we calculated the log fold-change between

the mouse and organoid module divergence scores. Modules relating to astrocytes

Fig. 7 Human astrocytes are strongly preserved in human cortical organoid models. a, b Human cortex
module divergence scores are assigned to a cell type and tested for preservation against NHP, mouse, and
cortical organoid models. Black box represents mean divergence score for each cell type. Divergence scores
are faceted by a model system and b cell type. c Summary plot of the log2 fold-change ratio between
mouse divergence and brain organoid divergence for each cell type. Cell types more preserved in
organoids (higher module divergence in mouse) sit to the right of the dashed line, whereas cell types more
preserved in mouse (higher divergence in organoids) sit to the left of the dashed line. The size of the point
represents the divergence of that cell type in the system which recapitulates the cell type most
appropriately. A small dot (e.g., neuron) indicates that cell type is well captured in at least one of the two
systems, whereas a large dot (e.g., oligodendrocyte) indicates that neither system models that cell type
appropriately. Error bars represent the 95% CI from permuting across study in that species; * denotes cell
types with a CI that does not overlap zero. d Preservation of cortical modules WB.M4 and CTX.M1 derived
from CTX, CTXB24, and CTXBA9 tested in mouse and organoid datasets. WB.M4 shows preservation in both
systems, whereas CTX.M1 is only preserved in mouse. CTX.M1 is also preserved in human fetal brain
suggesting that this process is not limited to late neurodevelopmental stages. e Functional annotation of
cortical module CTX.M1 that is preserved in mouse but not organoid. f Dot plot showing module
divergence of astrocyte markers derived from GTEx co-expression (WB-M6), co-expression (Kelley et al., top
200 genes), organoid (top 200 genes with greatest FC difference in astrocytes versus neurons in day > 100
organoids), and sorted astrocytes (500 genes with significantly greater expression than other sorted cell
types). Astrocyte markers derived from immunopanning experiments were devoid of human-specific co-
expression patterns and displayed significantly lower divergence than all other marker sets
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displayed significantly greater preservation in human organoid cultures (Fig. 7b,c),

whereas modules relating to homeostatic microglia and oligodendrocytes displayed sig-

nificantly greater preservation in mouse (Fig. 7b,c), which is not surprising since most of

these published IPSC models do not include these cell types [60]. Neuronal modules,

which were generally well preserved in mouse, displayed different degrees of co-

expression preservation in organoids. A canonical cross neuronal-subtype module,

WB.M4, shows strong preservation in organoids (Fig. 7d). In contrast, the cortical module

CTX.M1, which displays enrichment for excitatory pyramidal cell genes and ontology

terms relating to synaptic transmission and vesicle transport (Fig. 7e), displayed weak

preservation in organoids despite showing preservation in mid-gestational developing hu-

man brain samples (Fig. 7d; [41, 61]). Therefore, although basic neuronal cell types are

present in vitro, mature synaptic transmission pathways are not, most likely due to their

immature state, as previously shown in 2D cultures up to 12 weeks in vitro [62, 63]. It is

clear that model systems need to be improved, as none of the mouse or organoid data an-

alyzed here indicated that they faithfully recapitulate human oligodendrocyte and micro-

glia transcriptional signatures (Fig. 7b), consistent with recent studies focused on

comparing organoid development to in vivo human datasets [53, 57].

To confirm that organoids possess human-specific expression signatures not pre-

served in mouse, we assessed co-expression preservation in human and mouse using

human astrocyte markers derived from organoid [51], and from co-expression (this

study and [19]), single-cell [33], and immunopanned human brain [30]. Human

organoid-derived astrocytes were highly divergent to mouse, similar to that of human

astrocyte markers derived from co-expression or single-cell sequencing (Fig. 7f). Inter-

estingly, astrocyte markers derived from immunopanned human brain were largely

lacking in human-specific co-expression patterns and displayed divergence scores sig-

nificantly lower than the other astrocyte marker gene lists (OR = 0.54, p < 0.05). This

suggests that the human-specific component of astrocytes may be highly dependent on

its physiological environment [64], as taking astrocytes out of their 3D environment re-

duces their divergence to mouse. As human-derived astrocytes appear to lose human-

specific expression signatures after immunopanning and culturing, previously observed

species-specific differences using this methodology may have underestimated true

in vivo divergence [29, 30, 65].

Discussion
Several previous studies have used gene networks to identify genes whose co-

expression has human-specific features [8, 12, 18], usually focusing on a single or small

number of brain regions due to data availability. Here, we perform the first comprehen-

sive multi-region, multi-species comparison of the evolutionary divergence of co-

expression networks generated from human brain derived from over 100 individuals

[23]. Conservation of co-expression was tested in over 15,000 samples from 116 studies

derived from human, NHP, and mouse (Additional file 3: Table S2). Comparison of

transcriptomic conservation on both a brain-wide and a region by region basis, allowed

the identification of biological processes and genes that have diverged in their co-

expression relationships over evolutionary time. The preservation of most mouse mod-

ules in humans, and many human modules in mouse overall, suggests a basal level of

co-expression structure shared between human and mouse, which is consistent with
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expectations and previous studies [8, 38, 66, 67]. However, the strong divergence of

several specific human modules from mouse supports acquisition of transcriptomic

complexity on the human lineage that is not shared in mouse. Further, module diver-

gence is significantly related to independent measures of selection, including divergence

of regulatory and protein coding constraint, indicating that it is capturing evolutionarily

relevant genomic sequence characteristics.

The stronger divergence of human modules to mouse than mouse modules to human

underlies our observation of “asymmetric divergence” in co-expression relationships. At

a cell-type level, this asymmetric divergence is greatest for microglial modules, whereas

at a regional level, this divergence is greatest in cerebral cortex, an observation consist-

ent with known evolutionary hierarchies [12, 18]. We use this robustly defined network

structure to identify a number of disease-associated genes, including PSEN-1, which

was previously shown to be divergent based on an independent analysis of microarray

data [8]. Combined with the current analysis, this strongly suggests that mouse models

of PSEN-1 will not model human processes with high fidelity; notably mice harboring

dominant highly PS-1 mutations do not show frank neurodegeneration or model hu-

man AD [68]. Other disease genes that show lack of conservation of human co-

expression relationships in mouse include dozens of known ASD risk genes, including

SCN2A and SHANK3. Divergent genes tended to be expressed at higher levels in hu-

man relative to mouse. We observe that this is not broadly due to changes in cell-type

composition, but rather generally reflects cellular regulatory effects.

Assessing evolutionary divergence using co-expression networks

In our analysis, we use module divergence (a ratio of two species Zsum scores) as a

proxy for evolutionary divergence. This metric allows us to overcome the effect of

module size on preservation (Additional file 1: Fig. S1D) and provides a more quantita-

tive basis to compare transcriptome divergence between different processes. Assessing

module preservation in non-human primate (NHP) allows prediction of whether tran-

scriptional differences between human and mouse originated before the LCA with

NHP, or reflect differences that occurred after the LCA with NHP and are therefore

more human specific [69, 70]. We identify 13 modules where the NHP preservation

scores were significantly closer to mouse than human, implicating greater divergence

on the human, rather than primate lineage. These modules may therefore contribute to

the differentiation between human and NHP brain. In the future, when additional ex-

pression datasets are generated from different NHPs, one should be able to create NHP

subgroups and further refine when these expression differences were acquired.

Traditional phylogenetic methods utilize mean gene expression derived from all

species of interest and use distance-based methods to construct an evolutionary tree

[71, 72]. These methods assess the similarity of gene expression between species and

construct a phylogeny to minimize the differences in expression according to their dis-

tance in the hierarchy. Assessing preservation of co-expression across different species

allows us to explicitly assess evolutionary divergence of different biological processes

and when on the phylogenetic lineage transcriptomic differences were acquired. Co-

expression approaches assess the relationship of each gene to a module eigengene that

is generated in a particular species. Therefore, it would be problematic to apply a
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distance-based approach between NHP and mouse when using values derived from a

human co-expression network.

By constructing networks in each species and region individually, we can define the

biological processes and cell types for each species independently. Other studies have

combined expression datasets from different species or regions into a comprehensive

expression matrix before constructing a co-expression network [12, 16]. These studies

can highlight species-specific processes as co-expression modules are largely driven by

genes that display differential expression between species. But, these approaches do not

query species differences in co-expression, which may be unrelated to differential ex-

pression and are therefore complementary to the approach taken within our study.

The construction of regional networks yields modules relating to different cell types

across regions, which permitted analysis of preservation in co-expression across difference

species in cell subtypes. Single-cell sequencing has enabled the detection of numerous cell

classes in both human and mouse, permitting identification of species differences at the

cell-type level. Whereas cell-type matching between species allows identification of differ-

entially expressed genes between species [7], expression levels themselves may obey a

largely neutral model [17]. Because co-expression reflects functional mechanisms such as

co-regulation, changes in network position reflect changes in function [18, 21]. In this re-

gard, we observe that human-upregulated genes tend to display stronger kME divergence,

consistent with potential adaptive evolution. Still, a substantial portion (73%) of kME di-

vergent genes show similar or reduced expression levels in humans (Additional file 1: Fig.

S4E), the latter of which might be interpreted as more consistent with a model of neutral

evolution [17]. For example, the astrocytic gene, PARD3B, shows stable interspecies ex-

pression levels (< 0.5 logFC) in both bulk and single-cell expression data, but shows strong

human to mouse divergence at the co-expression level (kME div = 0.51; p < 0.01), which

indicates a functional change. On the other hand, IL17D shows considerably higher ex-

pression (> 2 logFC) in human bulk and single-cell data, yet is not significantly divergent

for co-expression, consistent with a neutral model. Differential expression has been suc-

cessful in identifying gene expression differences between cell types or brain regions; how-

ever, preservation of gene co-expression has been suggested to be more successful in

recapitulating evolutionary hierarchies [18, 70] and may therefore be more suited to asses-

sing functional differences between species.

Single-cell sequencing may not detect genes with low levels of expression, which generally

reside in the periphery of cell-type co-expression modules (Additional file 1: Fig. S5A-B). As

genes on the periphery of cell-type modules show the greatest divergence of co-expression

(Additional file 1: Fig. S5C-D), until a greater depth can be afforded, co-expression analysis

of bulk tissue sequencing will remain important for identifying evolutionary differences, as

co-expression analysis of bulk expression data captures genes across a wider range of

expression and network position, not just the most central [73].

An important recent study used co-expression analysis to identify “high-fidelity”

markers for broad cell classes across a number of brain regions in both human and

mouse [19]. Although our identified diverged human-mouse genes are highly overlap-

ping with species specific “high-fidelity” markers [19], our study approached this issue

of divergence differently, starting with a discovery dataset, and subsequently assessing

co-expression in independent test datasets from different species. Differences in preser-

vation between studies may be due to technical differences, such as RNA-extraction
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method and sequencing platform, or biological differences such as subject age and

housing conditions. Identifying evolutionary differences unrelated to these study differ-

ences will therefore increase the signal associated with true evolutionary differences

between species. We bootstrapped the effect of study to create confidence intervals

around all module and gene divergence scores, allowing us to assess the potential im-

pact of these technical and biological “study” effects.

Modeling brain function and disease in mouse

Given the ubiquitous nature of mouse in biomedical research for modeling neurological

disease [2], it is important to understand species-specific differences. We observe that

human glia are highly diverged from mouse suggesting that it may be difficult to make

extrapolations of these cell types in human, especially when considering the transcrip-

tome. For example, many transcriptomic perturbations in neuropsychiatric diseases

(Fig. 6d; [44, 74]) are associated with immune-glial activation, a response likely to be

symptomatic of neuronal dysregulation. Therefore, the initial neurobiological causes of

these diseases may be recapitulated in mouse models, but their downstream transcrip-

tional outputs may differ.

By calculating gene-level divergence, we highlight genes that may drive the divergence

of cell types and other biological processes in human. For example, ACBD7 and CYBRD1,

both in the astrocytic module WB.M6, have both been highlighted in a recent paper to be

human-specific astrocyte markers [19], which we confirm in our analysis (kMEdiv ≥ 0.4;

p < 0.01). Kelley et al. also showed that PMP2, another previously identified human-

specific astrocyte gene, when upregulated in mouse astrocytes, was able to increase the

number of primary processes and size of mouse astrocytes [19], which is a well-known

distinction between human and mouse [6]. In our dataset, of all genes, PMP2 displayed

the greatest change in expression between human and mouse and showed strong diver-

gence of co-expression in CTX (kMEdiv = 0.54; p < 0.01). As supported by single-cell data,

PMP2 is associated with both astrocytes (WB.M6; mean kME = 0.48) and oligodendro-

cytes (WB.M7, mean kME = 0.29), which may have prevented module assignment in other

regions [7]. In addition to these specified genes, we identify hundreds of significantly di-

verged genes for astrocytes and other cell types, for which functional experiments may

elucidate the genes effect on making their respective cell type in mouse more “human”

(Additional file 4: Table S3). For example, as the functional effect of PMP2 upregulation

was relatively modest [19], we predict upregulating additional genes may allow human

and mouse cell types to become increasingly comparable.

Assessing the top 100 divergent gene pairs from each “whole-brain” consensus mod-

ule can highlight novel human-specific functions for each cell type (Additional file 7:

Table S6). Human-specific associations of glutamate transporters SLC1A3 and SLC1A2

(EAAT1/EAAT2) in the astrocytic WB.M6 module suggest human astrocytes have an

increased capability to provide glutamate to adjacent neurons. Numerous highly diver-

gent genes of the oligodendrocyte WB.M7 module (e.g., PSEN-1, HSPA2) are associ-

ated with Alzheimer’s (AD) [40, 75]. Furthermore, strong divergence of WB.M7 gene

pairs involved in carnosine (CARNS1, CNDP1) and copper (SLC31A2) metabolism sug-

gests a human-specific role for metal homeostasis in oligodendrocytes. Additionally,

the AD risk gene TREM2 [76] resides among the highly divergent microglial WB.M10
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genes. The complement cascade genes C1QA-C, C3, and C3AR1 also form many of the

highly divergent gene pairs within the microglial WB.M10 module, suggesting a

human-specific role for complement-mediated synaptic pruning in microglia, which

may have implications for both AD and ASD disease pathophysiology [77, 78].

We identify dozens of genes currently associated with risk for neurodegenerative and

neurodevelopmental disorders whose co-expression is significantly diverged from

mouse (Additional file 9: Table S8). Remarkably, alpha-synuclein (SNCA), a PD risk

gene, shows divergence primarily in the substantia nigra—the first region to display de-

generation in PD patients [79]. Presenilin-1 (PSEN-1), an AD risk gene, displayed diver-

gence to mouse across numerous brain regions, but was preserved in NHP. PAX6 and

ERLIN2, in the astrocyte module WB.M6, are both implicated in intellectual disability

and display co-expression divergence across all cerebral cortex regions. SHANK3 was

among 57 other ASD risk genes (“Methods and materials”; [46–48]), displaying signifi-

cant kME divergence in at least one brain region and we provide a full list in Table S8.

Notably, our data provide strong evidence that some of the basic biological pathways in

which SHANK3 participates are also divergent, suggesting that modeling in primate or

human in vitro systems is likely to more faithfully recapitulate disease pathophysiology.

Together, these findings demonstrate a number of genes that contribute to human

disease, but whose function is not likely to be faithfully recapitulated in mouse.

In vitro models of human brain and cell types

Recent advances in in vitro modeling of human brain offers the potential to model human

brain function in a dish [50–53]. Cortical organoids faithfully recapitulated astrocytic, acti-

vated glial, and most neuronal in vivo co-expression signatures. Although oligodendrocyte

and homeostatic microglial signatures were not captured, future analyses should attempt

to incorporate these cell types appropriately [60, 80]. Currently, given that aging mouse

brain most successfully recapitulated the microglial co-expression signature, some micro-

glial related processes may be more appropriate to study in aging mice. But, once micro-

glia are faithfully incorporated into 3D organoid models, their preservation should be

carefully tested [80, 81]. The most notable advantage of cortical organoids compared to

mouse is the faithful recapitulation of human astrocytes, which appear to model human

astrocytes similarly to NHP in vivo. For example, ARHGEF6, a member of the astrocytic

WB.M6 module is associated with X-linked mental retardation and is significantly more

preserved in organoids than mouse, making organoids a preferred model to study mecha-

nisms underlying this gene’s role in disease.

Interestingly, astrocyte (and oligodendrocyte) markers derived from sorting experi-

ments [30] did not show strong divergence in co-expression from human to mouse

(Additional file 1: Fig. S2D). These cell types were sorted based upon HepaCam and

GalC markers respectively and therefore may not have captured all glial sub-

populations, some of which perhaps representing more highly diverged, human-specific

aspects of glial biology. Alternatively, immunopanning and culturing of human astro-

cytes may remove them from their physiologically optimal state in a 3D environment

and cause them to lose their human-specific properties, both transcriptionally and

functionally. Interestingly, mice with brain-engrafted human glial progenitors and as-

trocytes displayed enhancement of both activity-dependent plasticity and learning [82].
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So, although physiological environment may be important for astrocytes to manifest

their human-specific components, this environment may be somewhat shared between

human brain, cortical organoids, and mouse brain.

Limitations and further work

This study highlights a number of transcriptomic differences between species, especially

for glial cell types. Most identified differences are likely due to evolutionary differences

between species; however, we cannot exclude the effect of external confounding factors

such as environment, diet, or agonal state. For example, given the sterile housing condi-

tions of mice, we hypothesize that immunological differences in human could be due

to non-sterile conditions. We cannot rule out some contribution of environmental dif-

ferences to the divergence of this activated glial signature. But it is important to note

that regardless of cause, this cell state is not captured in mouse. Mitigating against a

major or pervasive contribution of environmental effects to these differences, we find

that co-expression divergence was strongly correlated with sequence divergence, which

would drive the differential regulation of gene expression [38, 83]. Moreover, we ob-

served that this activated microglial signature was not specific to humans, but also was

observed in NHP housed in laboratory conditions.

We also focused on one-to-one ortholog relationships, which represented over 90%

of the human-mouse gene relationships. This focus on one-to-one orthologs greatly

simplified the interpretation of co-expression preservation between species. Although

relatively small in number, genes with distinct orthologs in one or the other species are

more likely to be divergent indicating that our analysis may understate the extent of

transcriptomic divergence between the species [84]. Future work can assess how dis-

tinct orthologs fit within the co-expression framework defined here [85].

Additionally, to assess module preservation, we utilize the combination of many test

expression datasets that were not assayed uniformly across all brain regions in this

study. Therefore, module preservation of each brain region may utilize a different

combination of test datasets, which may differ by sample preparation, developmental

time point, or environmental state. To assess the effect of study selection upon regional

divergence, we regressed out any “study-specific” effects upon module divergence and

observe that regional divergence after study regression is correlated with the raw re-

gional divergence scores (Additional file 1: Fig. S1E). This suggests the non-uniform

distribution of test expression datasets across brain regions does not bias regional pres-

ervation scores, although there may still be a small confound between brain region and

factors underlying study design. We perform study-level permutations to calculate

region-specific divergence differences to further account for the variability in study

choice to mitigate this issue.

This study provides a multi-region, multi-species comparison of the evolutionary

divergence of transcriptomic networks generated from adult human brain. However,

the brain also exists under a number of different developmental states or environmental

conditions, which would need to be further investigated to achieve a more complete

understanding of species differences. However, these analyses, based on dozens of data

sets, and multiple brain regions, provide a robust framework for understanding major

species differences.
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Methods and materials
Acquisition of expression datasets

To assess the evolutionary conservation of brain networks, we processed 7287 samples

from 12 brain regions in human—cerebellum (CBL), cerebellar hemisphere (CBH),

dorso-lateral pre-frontal cortex (CTX), Brodmann area 9 (CTXBA9), Brodmann area

24 (CTXB24), hippocampus (HIP), amygdala (AMY), hypothalamus (HYP), substantia

nigra (SNA), nucleus accumbens (ACC), caudate nucleus (CDT), and putamen (PUT);

2933 samples from six brain regions—cerebellum (CBL), cortex (CTX), hippocampus

(HIP), amygdala (AMY), hypothalamus (HYP), and basal ganglia (BG), of three non-

human primates (NHP)—macaque, baboon, and chimpanzee; and 6667 samples from

seven brain regions—cerebellum (CBL), cortex (CTX), hippocampus (HIP), amygdala

(AMY), hypothalamus (HYP), nucleus accumbens (NACC), and striatum (STR), in

mouse (Additional file 2: Table S1). We also measured network preservation against

in vitro brain organoid systems from eight independent studies (Additional file 3: Table

S2). Only organoids older than day 50 were used for this analysis as a compromise be-

tween statistical power and accurate matching to mature human brain. Individual stud-

ies are listed in Supplementary Table 2. Given the lack of independent hypothalamic

expression datasets in NHP, this brain region was omitted from NHP-related analysis.

Processing of gene expression data

Unless specified, normalized expression values were obtained from GEO or from the

study authors directly. For mouse RNA-seq data, samples were aligned to the GrCm38

transcriptome using Salmon (v0.7.2) producing TPM values [86]. Genes were retained

if they had > 20% non-zero values for each study of a brain region and were subse-

quently log2 (+ 0.001) transformed. To ensure co-expression was not driven by outlying

samples, a sample was removed if its connectivity (sum of the sample’s correlation to

the other samples) was low (z.k (scaled connectivity) < − 2.5), or if the sample displayed

over 4 SDs from the mean for any of the top 10 expression PCs. Outlier removal was it-

erated up to 5 times or until < 3 samples were removed in an iteration. All available

technical (i.e., batch, alignment statistics) and biological covariates (i.e., age, sex, sub-

region) were removed from the expression data using a regression model providing that

the covariate explained on average over 1% of the expression variance, while ensuring

that at least 8 degrees of freedom remained in the dataset. For the mouse RNA-seq

datasets, both STAR (v.020201) and picard (v.2.5.0) covariates were log2 (+ 0.001)

transformed and combined to make a set of sequencing PCs that were included as pos-

sible technical covariates for regression [87]. If the expression dataset sample size was

< 10, covariates were not regressed. To allow comparison between human, NHP, and

mouse datasets, gene IDs were converted to their corresponding ortholog Ensembl

gene ID using the biomaRt package (v.2.35.1) in R [88].

Network generation

To generate human and mouse brain networks, we utilized a bootstrapped-resampling ver-

sion of WGCNA [26, 89] on 12 brain regions in human using RNA-seq data from the

GTEx consortium [22] and 7 brain regions in mouse using a number of publicly available

RNA-seq datasets (Additional file 3: Table S2). To prevent the effect of study driving mouse

Pembroke et al. Genome Biology           (2021) 22:52 Page 25 of 33



network construction, we removed batch effects between study using ComBat (v3.20.0) [90]

before combining datasets into a single expression matrix. For each regional expression

matrix, 50 signed co-expression networks (Topological Overlap Matrices (TOMs)) were

generated using Pearson’s correlation from 50 independent bootstraps of the samples with

each bootstrapped co-expression network using the same estimated power parameter. The

power parameter selected was the smallest power (between 4 and 20) which achieves a

truncated r2 over 0.8 and a negative slope. If the r2 does not reach 0.8, the power selected

was 20. A regional consensus co-expression network was generated by taking the median of

each edge across all 50 bootstrapped TOMs. Regional networks were then merged edge-

wise in a hierarchical manner until a whole-brain (WB) consensus network was generated

[23]. In mouse, the whole-brain consensus network was created using a consensus of the 7

region-specific networks, having subset for common genes.

Networks were hierarchically clustered using average linkage (using “1 – TOM” as a

dis-similarity measure). Human modules were previously generated using a cut height

which maximizes the correlation between bootstrap and consensus TO scores while keep-

ing the minimum module size to 50 [23]. In mouse, modules were created by selected a

deepsplit cut height (between 0 and 3) that gave the number of modules closest to 20 (as

this was approximately the number of human modules generated) while setting the mini-

mum module size to 50. We removed modules which had limited support from independ-

ent microarray datasets (Zsum UQ < 5). For each region, the nomenclature of each WB

consensus module would be adopted by the regional module that shared the greatest

similarity (Jaccards Index > 0.4). The “M” within each module name denotes “Module.”

The remaining regional modules in mouse were numerically named according to module

size, for instance AMY.1 and AMY.6 being the largest and smallest amygdala modules

respectively that did not show significant similarity to a WB consensus module.

Module annotation

For cell-type enrichment, a logistic regression test was performed for each module against

cell-type marker gene lists derived from sorting experiments [29–32, 65]. The model was

written as glm (is.in.module ~ is.cell.marker, family = binomial) which generated a p value and

odds ratio (OR). This method was used for all enrichment analysis in this manuscript. A

module was assigned to the cell type for which it had the strongest enrichment, providing

the OR was above 3 and did not show stronger enrichment for mitochondrial- or ribosomal-

related genes. Gene ontology was assessed using the R package gProfileR (v.0.7.0) [91].

To identify modules representative of inhibitory or excitatory neuronal cell types, we

assessed the enrichment of modules for inhibitory and excitatory markers derived from

single-cell analysis (Additional file 12: Table S11) [33]. If a module possessed an enrich-

ment score > 2 for a particular neuronal subtype which was also at least 20% greater

than the enrichment for the opposing neuronal subtype, it would be assigned to that

corresponding neuronal subtype. This criterion was selected to provide an adequate

number of modules in both neuronal subclasses.

Calculating module preservation scores

To query the extent to which a module was reproducible (preserved), every module of

each reference network was tested against many independent expression datasets
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derived from the same, or highly similar, brain region for each species (Additional file 2:

Table S1). Preservation analysis was also performed using marker gene lists in addition

to co-expression modules (Additional file 12: Table S11). For analysis comparing young

and aging adult brain, samples were partitioned into two groups (young and aging

adult) for each study (n = 6 human; n = 5 mouse) on a regional basis. Young adult is

defined as 13–40 years old in human and 2–14months old in mouse. Aging adult is

defined as 40+ years in human and 14+ months in mouse. Module preservation was ex-

ecuted using 25 permutations. For each test, a composite Zsummary (Zsum) statistic

was generated. The larger the z-score the more likely it is to be preserved in the test

dataset, traditionally a Zsum score > 10 indicates strong module preservation whereas a

score < 2 suggests weak preservation. Zsum scores were capped at 40 to prevent in-

flated aggregate preservation scores. The Zsummary score is generated from a number

of other statistics such as module density (how densely connected the module genes

are in the test network) or connectivity (how well connected the module genes are in

the test network). For further details, see [25]. The Zsum score shows a strong depend-

ence on module size—with larger modules having greater statistical significance to be

called preserved than smaller modules (Additional file 1: Fig. S1D). However, this de-

pendence on module size does not affect module divergence scores as these are calcu-

lated as a ratio of two preservation scores.

Calculating module divergence scores

The upper quartile (UQ) of all Zsum preservation scores was calculated for human,

non-human primate (NHP), and mouse independently, generating UQ hZsum, UQ

pZsum, and UQ mZsum scores respectively. The UQ was chosen to compare

between evolutionary classes in order to remove emphasis from lowly preserved

datasets, perhaps collected from an unrelated developmental stage or differing ex-

pression profiling platform. Modules with a same-species UQ Zsum score of over 5

were deemed reproducible and retained for further analysis (Fig. 1b). Comparing

the UQ Zsum scores between species allows us to determine module-level co-

expression differences between species. To assess divergence for each human and

mouse module, the fold-change (FC) difference was calculated between the UQ

hZsum and UQ mZsum scores (Fig. 2a). These divergence scores were capped at a

score of 15 to remove the effect of extreme outliers. There were a small portion of

modules which displayed negative divergence scores but were relatively small in

magnitude and were therefore rounded up to 0.01 to indicate no divergence and

allow downstream calculations. These negatively divergent modules were members

of highly preserved cell classes and therefore likely a result of the normal distribu-

tion in divergence observed around 0 (no divergence).

95% confidence intervals were calculated for each divergence score, by permuting

across study. For each permutation, Zsum scores were sampled with replacement and

an UQ score generated which was subsequently used to calculate a module divergence

score. For each module, we generated and ordered 1000 permuted divergence scores.

The 25th and 975th divergence score was selected as the 95% CI.

For all human modules, to gain a greater understanding of when these transcrip-

tomic changes were acquired, we were also able to leverage the UQ pZsum scores
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to create a (1) “human specificity” (HS) score, where transcriptional changes oc-

curred on the human lineage after divergence with the last common ancestor

(LCA) of NHP, and a (2) “primate specificity” (PS) score, where changes occurred

before divergence with the LCA of NHP (Fig. 4a). Human specificity can also be

interpreted as Human-Primate divergence, whereas primate specificity interpreted

as Primate (including human)-Mouse divergence. The HS score is the fold-change

difference between the UQ hZsum score and the UQ mZsum or UQ pZsum score

(whichever was larger). The PS score is the fold-change difference between the UQ

hZsum score or UQ pZsum score (whichever is smaller) and the UQ mZsum

score. These calculations can be summarized as below.

Mouse −Human divergence Mouse modulesð Þ ¼ UQ mZsum=UQ hZsumð Þ − 1

Human −Mouse divergence Human modulesð Þ ¼ UQ hZsum=UQ mZsumð Þ − 1

Human Specificity Human − Primate Divergenceð Þ score
¼ UQ hZsum= max UQ pZsum;UQ mZsumð Þð Þ − 1

Primate Specificity Primate −Mouse Divergenceð Þ score
¼ min UQ hZsum;UQ pZsumð Þ=UQ mZsumð Þ − 1

Calculating gene-level divergence scores

To identify gene drivers of module divergence, we calculated the correlation of each

gene to its module eigengene (kME) in the discovery dataset and all test datasets in hu-

man, NHP, and mouse. Next, we calculated the kME difference between each species

and the discovery dataset. The difference in mean kME values between human and

mouse was used to calculate a kME divergence score, which was used to highlight

highly divergent genes between species. Genes with negative kME divergence scores

were rounded up to 0.01 to indicate no divergence. For each region, kME values and

divergence scores were generated for both regional and whole-brain (WB) module.

Calculating human-mouse expression differences

To assess the difference in mean expression between human and mouse, both bulk and

single-cell data were used. For bulk comparison, mean TPM values were calculated for the

human (GTEx) and mouse (compiled) discovery RNA-seq expression data on a region by

region basis. The fold-change difference between human and mouse expression was calcu-

lated as (Human mean TPM+ 0.1) / (Mouse mean TPM+ 0.1). The addition of constant

0.1 was chosen as a compromise between preventing aggregated FC scores due to extremely

low mean TPM values and to accurately illuminate human and mouse expression differ-

ences for lowly expressed genes. To calculate a consensus expression difference between hu-

man and mouse, TPM values were averaged across regions before calculating fold-change.

To assess the change in expression between human and mouse, while matching for cell

type, we utilized single-cell expression data derived from human and mouse cortex [7].

For human and mouse respectively, we downloaded and utilized the available trimmed-

mean and median expression TPM values for all genes in each of their identified cell-type

clusters. For human, 120 cell-type clusters were identified, for which we assigned 110

clusters (prefixed with “Inh” or “Exc”) into a neuronal group, 3 clusters (prefixed with

“Astro”) into an astrocyte group, 3 clusters (prefixed with “Oligo” or “OPC”) into an
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oligodendrocyte group, 1 cluster (“Micro”) into a microglial group, and 1 cluster

(“Endo”) into an endothelial group. The clusters prefixed with “VLMC” and “Peri”

were excluded from further analysis. For mouse, 290 cell-type clusters were iden-

tified, for which we assigned 271 clusters (variable nomenclature) into a neuronal

group, 2 clusters (“Astro”) into an astrocyte group, 6 clusters (“Oligo” or “OPC”)

into an oligodendrocyte group, and 3 clusters (“Endo”) into an endothelial group.

The clusters prefixed with “SMC,” “VLMC,” or “Macrophage” were excluded from

further analysis. To assess the expression level for each cell type, we calculated

the mean expression level across all the cell-type subclusters. Given the hetero-

geneity of neurons and the 8:2 ratio of excitatory neurons to inhibitory neurons

in the brain [92], we calculated a weighted mean for neurons, weighing the mean

expression of excitatory neurons by 0.8 and the inhibitory neurons by 0.2 with

the subsequent value being more representative of pooled bulk expression. To

allow interspecies comparison, we converted the Mouse TPM data by subsetting

genes to one-to-one human-mouse orthologs and using the human gene name

equivalent.

To compare the human-mouse expression fold-change difference for each cell type,

we calculated the mean expression across all clusters within a cell-type group and

compared the mean expression of this cell-type between the species as such: (Human

cell-type mean TPM + 0.1) / (Mouse cell-type mean TPM+ 0.1). To compare the

human-mouse FC difference between bulk and single-cell data, genes with co-

expression membership to cell-type modules were compared with their respective cell-

type in single-cell expression data.

Disease enrichment

To assess enrichment of disease relevant genes in human-mouse diverged genes, a logistic re-

gression test was performed for diverged genes against the top 500 genes up- and downregu-

lated in autism, schizophrenia, bipolar disorder, depression, anxiety, and Alzheimer’s [44, 74].

To investigate genes with causal association to human disease, we curated (a) genes

harboring high risk likely protein-disrupting mutations in ASD patients [46–48], (b)

genes of SFARI categories 1 or 2 [49], (c) genes within a nervous system disease KEGG

pathway [93], (d) genes of the DisGeNet database score linked to mental or behavioral

dysfunction with an association score above 0.5 [94, 95], and (e) previously curated

genes implicated in neurodegenerative diseases [96].

Calculating sequence divergence

To measure sequence divergence of genes in each module, the 3′ UTR, 5′ UTR, pro-

moter (250 / 2000 bp upstream of transcription start site), introns, exons, and splice

sites of each gene was determined and PhastCons score generated. The PhastCons

score is a measure of DNA sequence conservation across 30 different mammalian

species with constrained sequences obtaining a higher score [97]. The median gene

PhastCons score was calculated for each module—providing a module-level sequence

divergence score for many gene annotations.

The Ensembl API (July 2019 archive) was utilized to retrieve human-mouse dN and

dS scores which were subsequently used to calculate the dN/dS score.
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Transcription factor binding site enrichment

Enrichment analysis was performed using TRANSFAC(R) of the geneXplain platform. TRAN

SFAC(R) establishes the individual motifs enriched in the promoters of the input gene set as

compared with a background set [98]. Significantly diverged genes for each whole-brain con-

sensus cell-type module were tested for enrichment using all expressed genes as background.

For each gene, the 1000 bp upstream and 100 bp downstream of the transcription start site

was tested for enrichment using the “vertebrate_human_p0.001” TF profiles.

To calculate whether TFs were more greatly affected in their co-expression or expres-

sion, we compared Human-Mouse (a) kMEdiv scores and (b) absolute mean expression

differences between these enriched TFs versus background (all brain expressed genes).

Software version

R version 3.3.0 and WGCNA version 1.68 was used for the analysis described in this

manuscript.
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