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Abstract
In a first-ever nation-wide census tract evaluation, we assess the accuracy of the 
Hamilton–Perry population projection method for 65,221 census tracts. We started 
with 73,607 census tracts but eliminated those for which zeros appeared in age/sex 
groups. The test uses 1990 and 2000 census tract data by age and gender to construct 
cohort change ratios, which are then applied to 2000 census tract data to generate 
2010 Hamilton–Perry projections that are evaluated in an ex post facto test against 
the reported 2010 census tract data by age and gender. The projections include: (1) 
uncontrolled age and gender projections; and (2) age and gender projections con-
trolled to a projection of the population total by census tract. Mean Absolute Per-
cent Error (MAPE) is used to evaluate precision and Mean Algebraic Percent Error 
(MALPE) is used to evaluate bias. We find that controlling the Hamilton–Perry pro-
jections by age for each tract to the linearly projected total population of each tract 
reduces both MAPE and MALPE within age groups by gender and for total females 
and total males. As this result suggests, simple linear extrapolation provides more 
accurate projections of the total population than does the Hamilton–Perry Method. 
However, even with controlling we find the Hamilton–Perry projections by age to 
be biased upward. Finally, we use MAPE-R (MAPE- Revised) to evaluate the effect 
of extreme outliers and find that high MAPEs in the uncontrolled projections are 
largely driven by extreme errors (outliers) found in less than 1 percent of the 65,221 
census tracts used in the study.

Keywords Small area · Projection · Extrapolation · Cohort change ratios · National 
test

 * David Swanson 
 dswanson@ucr.edu

1 Transamerica Life, Cedar Rapids, IA 52404, USA
2 University of California Riverside, Riverside, CA 92521, USA
3 Center for Studies in Demography and Ecology, University of Washington, Seattle, WA 98195, 

USA
4 University of California San Diego, La Jolla, CA 92093, USA

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s11113-020-09601-y&domain=pdf


 J. Baker et al.

1 3

Introduction

Among many other uses, sub-county population projections are important for 
public safety assessments (Tayman et  al. 1997), land use, environmental, and 
transportation planning (Waddell 2002), siting business establishments (Ambrose 
and Pol 1997; Siegel 2002, pp. 220–287), church membership analysis (Cline 
2008), determining K-12 staffing and facility needs (Swanson et al. 1998), politi-
cal re-districting (Morrison and Bryan 2019), and healthcare planning (Clark 
and Rees 2017; Pol and Thomas 2013). However, sub-county population pro-
jections present problems not found in projections for larger areas (Baker et  al. 
2017; Smith and Shahidullah 1995; Swanson et al. 2010). This is especially the 
case if age and gender data are desired because some or all of the “components” 
(fertility, mortality, and migration) required by the standard approach to popu-
lation projection, the cohort-component method (CCM) (Smith et al. 2001), are 
often not available and components that are available at higher levels of geogra-
phy often do not fit well at lower levels (Baker et al. 2017; Swanson et al. 2010). 
Without these components, it is not possible to move “cohorts” through time 
using the CCM.

Three alternatives are usually considered when fertility, mortality, and migra-
tion data are not available to fully implement the CCM: (1) structural modeling 
(2) Time Series modeling; and (3) simple and ratio extrapolative methods (Smith 
and Shahidullah 1995; Smith et al. 2001). Unlike the CCM, none of these meth-
ods requires age-specific data on births, deaths, and migration. However, struc-
tural modeling requires a wide range of social, economic, and demographic 
data while time series modeling requires data for many points in time (Tayman 
1996). As Smith and Shahidullah (1995) observe, such data are seldom available 
for small sub-county areas. Thus, sub-county population projections are usually 
implemented with the third alternative, simple and ratio extrapolation methods, 
which have minimal data requirements. However, using them typically limits the 
range of demographic characteristics that can be projected (Smith et al. 2001, pp. 
161–183).

However, all is not lost if one desires a range of demographic characteristics 
in a set of sub-county projections. While direct measures of the components of 
population change are difficult to implement at the sub-county level, these same 
components are indirectly measured in cohort change ratios (CCRs), a less-data 
intensive variation of the cohort-component method. One strong advantage of the 
CCR method is, that as is the case for the CCM, it also is algebraically equivalent 
to the fundamental population equation (Baker et al. 2017, pp. 100–101).

The construction of CCRs requires only data by age (and by race, ethnicity, 
gender, and other ascribed characteristics, as desired) from two successive pop-
ulation counts to implement (Baker et  al. 2017), which fortuitously are usually 
available for sub-county areas in the form of census counts. Once constructed, 
CCRs provide the input for what is known as the “Hamilton–Perry Method” (HP) 
for projecting population (Hamilton and Perry 1962; Smith et al. 2001). It con-
sists of two steps. In the first, CCRs are constructed and in the second, they are 
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applied to age groups, which generate population projections by age. The HP 
method not only can be easily extended to age-based projections that include 
gender, race, ethnicity and other ascribed characteristics, such as nativity, but 
it is highly useful for doing small-area projections because of its minimal data 
requirements. With some adjustments, it also can be extended to include achieved 
characteristics such as marital status, educational attainment, and tobacco use 
(Baker et al. 2017, pp. 119–141).

A major strength of the HP method is it requires only census (or survey or 
population registry) data collected by age at two points in time. In the United 
States, for example, which conducts a census every 10  years, the first step in 
using the HP method would typically be used to capture population change over a 
10-year period using CCRs constructed from the two most recent census counts. 
As the term CCR implies, one finds the ratio for a given cohort by dividing it 
into the number of people in this same cohort 10 years later. For example, the 
cohort of those aged 0–4 in 2000 ((5P0)2000) becomes those aged 10–14 in 2010 
((5P10)2010), the 10-year CCR between 2000 and 2010 for this cohort is: 10CCR 
0–4 = (5P10)2010/(5P0)2000.

Because CCRs for those aged less than the number of years between the time 
of the most recent census (e.g., 2010) and the preceding census (e.g., 2000) cannot 
be computed (due to the fact that these individuals are not in the preceding census, 
their dynamics are modeled using child/adult ratios (Swanson and Tayman 2012; 
Smith et al. 2013; Baker et al. 2017). For a census that takes place every 10 years, 
the child/adult ratio for those aged 0–4 in 2010, for example, would be formed by 
using those aged 0–4 in the denominator and the adults likely to be their parents 
in the denominator, e.g., those aged 20–34: (5P0)2010/(15P20)2010. The ratio for those 
aged 5–9 in 2010 would then be (5P5)2010/(15P25)2010. A commonly used child/adult 
ratio is the child-woman ratio, which divides the population ages 0–4 and 5–9 by 
females ages 15–44 and 20–49, respectively. If a census takes place every 5 years, 
then one only needs the child adult ratio for those children age 0–4 years.

Also, there is typically a terminal, open-ended age group in the data used to con-
struct CCRs. This is dealt with in the same manner as finding a survivorship ratio 
for a terminal, open-ended age group in a life table. For example, the CCR for those 
75 years and over in the 2000 census is formed by taking ratio in which those aged 
75 years and over become the denominator and those 85 years and over in the 2010 
census become the numerator, 10CCR 75+  = (∞P85)2010/(∞P75)2000. For details see 
Baker et al. (2017, p. 3) and Swanson et al. (2010).

In order to proceed to the second step and fully implement the HP method, the 
age data need to be organized in age groups such that the length of the input data 
cycle (e. g., 10  years) is exactly divisible by the width of the age groups (e. g., 
5 years). For example, with decennial census data (e.g., the U.S., Mexico, Argen-
tina), the age groups can be 10 years, 5 years, or 1 year in width. With a quinquen-
nial census cycle (e.g., Australia, Canada, and the United Kingdom), 1-year and 
5-year age groups meet this requirement. Because CCRs are applied against a base 
population, the projection cycle will be equal to the number of years between the 
points in time that the CCRs were constructed. For decennial data, the projection 
cycle is 10 years, for quinquennial data the projection cycle is 5 years.
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In a country with a population registry system (e.g., Estonia, Finland, and Swe-
den), it is possible to implement the HP method using single-year of age data taken 
from the register in two successive years, which would be used to produce projec-
tions running in a single-year cycle. This can also be done where annual population 
estimates by age are available, as is the case in the United States where these esti-
mates are done by the Census Bureau for the nation as a whole, states, and counties. 
If 5 year age groups were desired in the projections from data collected on an annual 
basis, then one would use register or estimated data that were 5 years apart (e.g., 
2014 and 2019) to construct the cohort change ratios, which would maintain the 
rule of exact divisibility and produce projections running in a 5-year cycle. Further 
details of the method, as well as a wide variety of potential applications across many 
relevant areas of interest in the demographic sciences, are covered in Swanson and 
Tayman (2012), Smith et al. (2013), and Baker et al. (2017).

In this paper, we use the HP method to develop 10-year population projections 
(2000–2010) at the level of U.S. census tracts and then evaluate them in terms of 
ex post facto accuracy against the 2010 decennial census counts. While previous 
research has comprehensively-characterized the accuracy of the HP method and 
its variants for states and counties in Florida (Smith and Tayman 2003) and U.S. 
counties (Sprague 2012; Hauer 2019), this paper is the first to report a comprehen-
sive, nation-wide evaluation of projection error for census tracts within the United 
States. As such, it fills an important gap in the literature around the method and a 
benchmark against which improvements in the method for small-area demographic 
analysis may be compared. We evaluate these HP projections from the standpoint 
of accuracy using two dimensions, precision and bias, measured, respectively, by 
Mean Absolute Percent Error (MAPE) and Mean Algebraic Percent Error (MALPE) 
(Smith et al. 2013; Rayer and Smith 2014), which we define later. Before turning 
to the evaluation, we provide some background in the form of a review of relevant 
literature.

Background

Even where the CCM can be properly implemented, there is no evidence that it is 
more accurate than the HP method (Smith 2017, Smith and Tayman 2003, Smith 
et al. 2001, pp. 307–316).1 Thus, its simplicity, minimal data requirements, flexibil-
ity, and algebraic equivalency with the fundamental demographic equation suggest 
that the HP method should be given more attention, (Baker et al. 2017, pp. 101, 102, 
247–250). Adding to this point, the HP method has been shown to provide a com-
prehensive and tractable approach to the stable population dynamics, which lends it 
some theoretical utility (Swanson et al. 2016).

At the level of states, the HP method appears to perform as well as the CCM 
(Smith and Tayman 2003; Smith et al. 2013; Swanson and Tayman 2017). At this 

1 Even more broadly, Green and Armstrong (2015) argue that for all types of forecasting, there is no evi-
dence that complex methods increase accuracy.

Author's personal copy



1 3

The Accuracy of Hamilton–Perry Population Projections for…

level, HP errors ranging between less than 4% and ~ 12% for ages 10–85 + and 
between 20 and 25% for the 0–4 and 5–9 age intervals are observed (Smith and Tay-
man 2003; Swanson and Tayman 2017). At the level of U.S. counties or equiva-
lents, the HP method has generally performed well, with errors ranging from 6% to 
16% reported in previous comprehensive, nation-wide evaluations in both the U.S. 
(Sprague 2013; Hauer 2019) and Australia (Wilson 2016).

At the sub-county level, the HP method has been argued to be particularly attrac-
tive because it has significant potential to avoid pitfalls associated with the use of 
incompletely-geocoded administrative data sources (Baker et al. 2013, 2014, 2017). 
As such, it really has little competition from the CCM. Thus, the question is how 
well does the HP method perform at the sub-county level?

At the level of U.S. census tracts, the HP method has been evaluated in a number 
of studies; however, in each case these evaluations were limited in geographic scope, 
usually to specific states including Florida (Smith 1987; Smith and Shahidullah 
1995) and New Mexico (Baker et al. 2013, 2014, 2017, pp. 59–82). In each of these 
cases, where age/gender breakouts have been considered specifically, the method 
has displayed average errors ranging between as low as 10% and as high as 70% or 
more, falling consistently in the 20–60% range (Smith and Shahidullah 1995; Baker 
et al. 2013, 2014, 2017, pp. 59–82). Moreover, authors have consistently pointed to 
the presence of an uncomfortable number of significant, large-scale outliers that in 
practice would require some form of case-by-case resolution to produce acceptable 
projections for use in policy analysis or other forms of decision-making that they are 
typically designed to support (Smith et al. 2013; Swanson et al. 2010; Baker et al. 
2014).

As inferred by the increasing reported errors as previous studies move from state 
to county to census tract population projections, it is well-known that projection 
errors increase as population size decreases (Smith et al. 2013; Swanson and Tay-
man 2012). Population projections are also known to be associated with rates of 
intercensal population change, but not always in straightforward ways (Tayman et al. 
2011). Projection error might be expected to be u-shaped with respect to the rate of 
change: those tracts which grow or shrink most during the intercensal period should 
be expected to tend to show the greater errors (Smith et al. 2013; Swanson and Tay-
man 2012; Baker et al. 2017, pp. 58–82; Smith and Shahidullah 1995). This pattern 
makes sense for a method based on historical trends that may shift in complex ways 
between intercensal periods (Smith et al. 2013; Smith and Shahidullah 1995; Wilson 
2016; Baker et al. 2014). As with other projection methods, we also anticipate that 
projections made using the HP method will become less accurate as the length of 
the horizon is increased (Smith et al. 2013).

Though we are unaware of any study that examines the relationship between base 
population size and projection errors within age/gender intervals at the tract level, 
one study exists that examines the relationship between rate of intercensal popula-
tion change and errors within age/gender breakouts at the tract level (Baker et  al. 
2013). Although limited to tracts within four counties in New Mexico (n = 182), 
the results of this analysis do not suggest a relationship between rate of intercensal 
population change and errors within age/gender groups. A more recent look at 2010 
New Mexico census tracts (n = 499) overall (Baker et al. 2017, pp. 66, 67) showed 
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that Hamilton–Perry methods that modified CCRs and child/adult ratios provided 
lower average errors within age/gender groupings. This suggests that the same pat-
terns may be observed in a fuller-sample of census tracts and, indirectly, raises the 
point that shifts in intercensal dynamics can increase anticipated projection errors.

Taken together, both the paucity of studies aimed at quantifying projection errors 
for small geographies such as census tracts as well as the limited geographic scope 
of existing evaluations challenge the generalizability of previous evaluations. Given 
the importance of small-area projections to applied demographic practice, a further 
and more comprehensive evaluation of expected errors is a high-priority for further 
research.

Data and Methods

This study was made possible by the use of the National Historic GIS Database 
(NHGIS), housed at the University of Minnesota and made freely available to 
researchers at https ://www.nhgis .org (Ruggles et  al. 2010). This source provides 
population counts in 5-year age/gender-specific groupings for all 2010 census tracts 
with data for 1990 and 2000 normalized to these geographies using a simple method 
of block-level re-aggregations and interpolations. The method is described in detail 
at: https ://www.nhgis .org/docum entat ion/time-serie s.

Starting with these normalized tracts, we excluded census tracts in Puerto Rico 
and “island areas” (American Samoa, Guam, Commonwealth of the Northern Mari-
ana Islands and U.S. Virgin Islands), which yielded 73,607 tracts with age/gender 
data in 1990, 2000, and 2010. Using these data, we then eliminated any tract for 
which zero was reported in one or more age sex groups. This means that if any zeros 
were found in age/sex groups for a given tract in any of the three decennial years, 
1990, 2000, and 2010, it was eliminated from this study, a point we consider in the 
discussion section of this paper. This reduced the number of tracts from 73,607 to 
65,221.

We then created CCRs for each of these 65,221 tracts based on 1990 to 2000 
populations by age and gender cohort and then used them to project their respective 
2000 census tract populations forward to 2010 for ages 10–85 + . To project popula-
tions for intervals including 0 to 4 and 5 to 9 years, we utilized the 2000 child/adult 
ratios for each census tract. This is to say that we used the standard algorithm for 
the HP method (Baker et al. 2017; Smith et al. 2013), which was constructed with-
out population controlling methods (Judson and Popoff 2004) or special adjustments 
(Swanson and Tayman 2012; Smith et  al. 2013) of any kind. It is acknowledged 
that this reflects the simplifying assumption that rates of change for the 1990–2000 
period, as well as the 2000 child/adult ratios, reflect the dynamics of the 2000–2010 
period (Baker et al. 2017, pp. 59–82; Tayman and Swanson 2017).

Projected values for 2010 were compared to observed 2010 census counts using 
mean absolute (MAPE) and algebraic (MALPE) percentage errors that are compa-
rable to previous studies of ex post facto error in the applied demography literature 
(Tayman et al. 2007; Swanson and Tayman 2012; Tayman and Swanson 2016). Per-
centage errors allow us to summarize errors while negating the known effects of 
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population size on ex post facto error calculations (Tayman et al. 1997; Smith 1987; 
Swanson and Tayman 2012).

MAPE and MALPE respectively capture two dimensions of projection error—
precision and bias (Swanson 2015; Swanson et al. 2011). Error is defined as the dif-
ference between the projection and a census count: Projection–Census. MAPE, con-
sequently, is defined as the mean of the summed absolute relative errors expressed 
in percentage terms, [|Projection–Census|/Census] × 100. The mean absolute percent 
error (MAPE) measures projection precision in which positive and negative errors 
do not offset each other. It shows the average percentage difference between the pro-
jected and observed population, ignoring the sign of the error.

The mean algebraic percent error (MALPE) is a measure of bias in which posi-
tive and negative values offset each other. It is defined as the mean of the summed 
relative errors expressed in percentage terms, [(Projection–Census)/Census] × 100. 
A positive MALPE reflects the tendency for the projections to be too high on aver-
age and a negative MALPE reflect the tendency for the projections to be too low on 
average.

Because we anticipated in advance that outliers may be a factor, we also report 
MAPE-R, a measure designed explicitly to minimize the effect of outliers on MAPE 
(Coleman and Swanson 2007; Swanson et  al. 2018, 2011; Tayman and Swanson 
1999). MAPE-R is a rescaled mean that uses a Box-Cox power transformation 
to adjust the original absolute percent error distribution. Rescaling is designed to 
address the impact of outlying observations, while still preserving the valuable 
statistical properties of the mean. Comparing the difference between MAPE and 
MAPE-R allows us to evaluate the impact of outliers on MAPE. As found in Cole-
man and Swanson (2007), the definition of MAPE-R is

where M[p]
n (�) =

�

1

n

∑n

i=1
a
p

i

�1∕p

 is the pth power mean of the vector a = (a1,…
an)′ and APE is the vector of the APE, where APE = [|Projection–Census|/
Census] × 100.

Finally, we use the HP method to generate projections under both “uncontrolled” 
and “controlled” conditions. In the former, the HP projections by age are summed 
to obtain the total population; in the latter, we control the age/gender projections 
to projections of the total population in each census tract generated using linear 
extrapolation. We used this approach because the literature suggests that “controls” 
have the potential to improve accuracy (Smith et al. 2013, pp. 259–272) and simple 
extrapolative methods have been found to yield reasonably accurate results at the 
county (Swanson and Hough 2012) and sub-county levels (Smith and Shahidullah 
1995).

In terms of the controls, we apply the numeric change in the total population 
between 1990 and 2000 of each census tract to the total population in 2000 to gen-
erate a 2010 projection of the total population. That is, P2010 = P2000 + ∆, where 
∆ = P2000 − P1990. We then multiply the total population generated by the extrapola-
tion by the proportion in each age/gender group generated by the HP method, which 

MAPE−R =
(

1

n

∑n

i=1
APE

�

i

)1∕�

= M[�]
n
(���)
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“controls” the HP age/gender projections to the total population generated by the 
extrapolation method. In 42 census tracts, the extrapolation method was taking the 
total population below zero so we fixed these at zero.

Results

Age/gender-specific MALPE’s and MAPEs are presented in Tables  1 and 2. In 
Table 1, the HP projections are not “controlled” while in Table 2, they are controlled 
to projected population totals generated by linear extrapolation.

As seen in Table 1, the overall MALPE across all age groups for both males and 
females by age is positive, which indicates that the HP method is biased upward. It is 
13.7% for males and 12.0% for females. In terms of precision, MAPE shows an aver-
age absolute percent error across all age groups of 20.8% for males and 19.1% for 
females. The highest MAPE for males and for females is found for those age 85+, 
50.7% and 44.1%, respectively. A key characteristic is that the differences between 
MAPE and MAPE-R are large. This indicates the presence and influence of outly-
ing errors in these data. For example, the overall MAPE for males is 20.8 while the 
corresponding overall MAPE-R is 60% lower at 8.4%. This and the other differences 
between MAPEs and their respective MAPE-Rs, both overall and by age groups for 

Table 1  Mean percentage errors by age and gender 10-year Hamilton–Perry forecasts (uncontrolled)

2010 Census Tracts (n = 65,221)

Age Males Females

MALPE MAPE MAPE-R MALPE MAPE MAPE-R

0 to 4 23.7 37.9 19.8 23.4 37.9 19.8
5 to 9 22.6 35.8 20.2 21.9 35.5 20.0
10 to 14 18.0 30.9 17.0 17.4 30.5 17.1
15 to 19 19.9 29.8 15.4 17.4 30.2 15.9
20 to 24 18.1 35.4 18.8 18.1 34.6 19.5
25 to 29 26.0 42.4 21.7 21.2 38.4 21.0
30 to 34 24.5 43.4 20.8 17.1 36.2 19.0
35 to 39 19.7 35.9 17.5 13.4 28.9 16.3
40 to 44 13.9 29.1 14.8 9.9 23.9 13.5
45 to 49 10.4 24.2 12.7 8.7 21.1 12.1
50 to 54 8.6 21.9 11.9 7.8 20.1 11.5
55 to 59 6.6 21.3 12.3 6.8 20.2 11.7
60 to 64 7.4 22.0 12.7 8.2 21.4 12.1
65 to 69 7.7 24.6 13.5 9.6 23.9 12.6
70 to 74 7.2 26.2 14.2 7.4 22.7 13.0
75 to 79 2.0 25.6 16.2 9.2 27.2 14.1
80 to 84 9.8 38.6 19.8 13.4 34.6 17.4
85 Plus 12.5 50.7 26.9 15.1 44.1 23.0
Total 13.7 20.8 8.4 12.0 19.1 8.0
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both males and females, clearly indicate that arithmetic averages as summary meas-
ures of HP projection error are driven by outliers. Specifically, we find that these 
errors are driven by extreme errors representing less than 1% of the observations.

In spite of the presence of extreme outlying errors, from the point of view pro-
vided by past studies, the uncontrolled HP projections are surprisingly accurate at 
the census tract level with few discernible differences between projections of males 
and females by age. These errors are, in fact, in the range of projections errors 
reported at state and county levels in previous evaluations (Swanson and Tayman 
2012; Hogan and Mulry 2015; Smith 1987, 2013).

Still considering the uncontrolled HP projections, in general, MAPEs are higher 
in the age groups between 20 and 40. This indicates, not surprisingly, that (domes-
tic) migration is a factor in the errors found for those in these age groups because 
they represent the ages of adults who are most likely to migrate within a given coun-
try (Bernard et  al. 2014, pp. 214–217). Looking at the MALPEs, we see that for 
both sexes there is a distinct tendency for the highest average over-projection errors 
to be found in the younger age groups, 0 to 49, with lower over-projection errors 
found in the age groups over 50.

Turning to Table 2, we see that controlling the HP projections creates noticeable 
reductions in the MAPEs in every age group for both males and females. Gener-
ally, in both the uncontrolled and controlled projections, the errors for females are 

Table 2  Mean percentage errors by age and gender, 10-year Hamilton–Perry forecasts (controlled)

2010 Census Tracts (n = 65,221)

Age Males Females

MALPE MAPE MAPE-R MALPE MAPE MAPE-R

0 to 4 14.6 30.5 20.6 14.3 30.4 20.5
5 to 9 14.9 29.6 20.1 14.3 29.5 19.9
10 to 14 11.3 26.7 17.9 10.9 26.6 18.0
15 to 19 11.7 23.2 15.7 10.5 25.4 16.3
20 to 24 10.1 29.0 18.8 10.5 28.4 19.4
25 to 29 15.1 32.4 21.8 12.2 30.9 21.1
30 to 34 13.4 34.1 21.2 8.2 29.1 19.8
35 to 39 11.0 29.9 18.8 7.1 25.3 17.4
40 to 44 6.4 24.0 15.6 3.8 20.3 14.1
45 to 49 3.9 20.1 13.3 3.0 17.8 12.4
50 to 54 2.6 18.1 12.4 2.1 16.4 11.5
55 to 59 1.0 17.8 12.4 1.1 16.9 11.8
60 to 64 1.7 18.7 13.0 2.3 18.0 12.5
65 to 69 0.5 20.0 14.0 2.0 19.0 13.1
70 to 74  − 0.4 21.5 15.0 1.9 20.1 13.9
75 to 79  − 2.5 24.2 16.9 0.8 21.9 15.1
80 to 84  − 1.3 30.5 21.0 3.4 27.6 18.6
85 Plus 1.9 42.7 27.8 15.1 44.1 23.0
Total  − 6.1 15.9 10.3  − 5.0 29.7 18.8
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higher than those for males. This is likely due to the higher propensity of females 
to migrate (Hernández-Murillo et  al. 2011, pp. 174, 175). However, the influence 
on the MAPEs of extreme errors still persists. For example, the MAPE for males 
aged 25–29 is reduced from 42.4% in the uncontrolled projections to 32.4% in the 
controlled projections while the corresponding MAPE-Rs are virtually unchanged 
at 21.7% and 21.8%, respectively. The overall MAPE for males declines from 20.8 
to 15.9% in going from the uncontrolled to the controlled projections. Note, how-
ever, that for females the overall MAPE across all age groups increases from the 
uncontrolled to controlled projections, 19.1% versus 27.9%. Having reductions in 
each age group and an increase in the overall MAPE for females is an example of 
the Simpson-Yule paradox (Simpson 1951; Yule 1903) and is due to the differences 
in the size of the age groups. The same paradox occurs in looking at the overall 
MALPEs for both males and females in the controlled projections. For males, only 
three of the eighteen age-specific MALPEs are negative while the overall MALPE 
is negative (− 6.1%); for females the MALPEs in all of the eighteen age groups are 
positive, but the overall MALPE is negative (− 5.0%). We suspect this is drive by 
outliers, but along with other issues noted in the subsequent section, we believe that 
this is a future research project.

Discussion

The first point we discuss is the decision to eliminate any tract with one or more 
zeros reported in its age/sex groups in any of the three study years, 1990, 2000, and 
2010. We did this largely because unlike Cohort Change Differences (CCDs) CCRs 
are not well-suited to deal with zeros because they are a ratio, a measure that is 
undefined when the denominator is zero. Even with the restriction imposed by hav-
ing a zero-valued denominator, we prefer to use CCRs over CCDs the reasons pro-
vided by Baker et al. (2017, p. 6): Unlike a CCR, a CCD can become negative, not 
bounded on the lower end by zero. In terms of comparisons, when a CCR is greater 
than 1.00, its corresponding CCD will be positive and when a given CCR is less 
than 1.00, its corresponding CCD will be negative (less than zero). Given this and 
other properties (e.g., neither division nor subtraction is associative and commuta-
tive in terms of their mathematical properties), there is no major advantage in using 
a CCD compared to its corresponding CCR. In addition, dating back to its introduc-
tion by Hamilton and Perry (1962), ratios have been used by analysts rather than dif-
ferences (Baker et al. 2017, p. 6). Finally, we note that the CCR method is not alone 
in regard to dealing with zeros in that neither does the Cohort-Component Method, 
especially in terms of age-specific rates representing the components of change, fer-
tility, mortality, and migration.

Table 3 shows CCRs and Child/Adult ratios for both genders combined for the 
US at two points in time. It shows two related points: (1) that the 1990–2000 
CCRs for age groups 10–14 to 50–54 are larger than the 2000–2010 CCRs for 
these same age groups; and (2) that the 1990–2000 CCRs for age groups 55–59 
to 85 + are smaller than the 2000–2010 CCRs for these same age groups. These 
comparisons are consistent with the population aging experienced by the U. S. 
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from 1990 to 2010. They also are consistent with the MALPEs found in Tables 1 
and 2 in that for both males and females, they are larger (and all positive in the 
younger age groups and smaller (with some being negative) in the older age 
groups. That is, the 1990-CCRs tend to over-project the younger age groups in 
2010, but do less so with the older age groups.

In terms of the projections by age, the upshot of a nation-wide evaluation of 
the simplest possible 10-year HP projections against the 2010 census is that: 
(1) the uncontrolled HP projections are surprisingly accurate at the census tract 
level; (2) outliers drive summary measures of error; (3) errors are reduced when 
the projections by age are controlled to the total populations generated by linear 
extrapolation; and (4) extreme values play a major role in summary measures of 
error even when the projections are controlled. Given the significant presence of 
outliers in our nation-wide evaluation, we believe that MAPE-R provides a more 
accurate picture of precision than does MAPE.

The fact that summary measures of error are driven by outliers is not surpris-
ing. Smith et  al. (2001, p. 159) note that the HP method can lead to unreason-
ably high projections in places where the CCRs were generated during a period 

Table 3  CCRs and child/adult ratios, both genders combined, United States, 1990–2000 and 2000–2010

a 4P0,t−10/34P20,t−10 ages 0–4 (child/adult ratio), 9P5,t−10/39P25,t−10 ages 5–9 (child/adult ratio), Px,t/Px−10,t−10 
ages 10–84, P85+,t/P75+,t−10 ages 85+

Age Population Cohort Change and Child/
Adult  Ratiosa

1990–2000 
ratio larger

1990 2000 2010 1990–2000 2000–2010

0 to 4 18,354,443 19,175,798 20,201,362 0.29511 0.32581 0
5 to 9 18,099,179 20,549,505 20,348,657 0.28666 0.32828 0
10 to 14 17,114,249 20,528,072 20,677,194 1.11843 1.07830 1
15 to 19 17,754,015 20,219,890 22,040,343 1.11717 1.07255 1
20 to 24 19,020,312 18,964,001 21,585,999 1.10808 1.05154 1
25 to 29 21,313,045 19,381,336 21,101,849 1.09166 1.04362 1
30 to 34 21,862,887 20,510,388 19,962,099 1.07834 1.05263 1
35 to 39 19,963,117 22,706,664 20,179,642 1.06539 1.04119 1
40 to 44 17,615,786 22,441,863 20,890,964 1.02648 1.01856 1
45 to 49 13,872,573 20,092,404 22,708,591 1.00648 1.00008 1
50 to 54 11,350,513 17,585,548 22,298,125 0.99828 0.99360 1
55 to 59 10,531,756 13,469,237 19,664,805 0.97093 0.97872 0
60 to 64 10,616,167 10,805,447 16,817,924 0.95198 0.95635 0
65 to 69 10,111,735 9,533,545 12,435,263 0.90522 0.92323 0
70 to 74 7,994,823 8,857,441 9,278,166 0.83434 0.85866 0
75 to 79 6,121,369 7,415,813 7,317,795 0.73339 0.76758 0
80 to 84 3,933,739 4,945,367 5,743,327 0.61857 0.64842 0
85 Plus 3,080,165 4,239,587 5,493,433 0.32276 0.33091 0
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of rapid growth and unreasonably low projections in places where the CCRs 
were generated during a period of rapid decline The cause of this is due to rapid 
growth that resulted in a tract being “filled in” with housing and population 
whereby it was no longer capable of rapid growth. Similarly, rapid loss can lead 
to a tract that is “emptied out” and no longer capable of rapid decline. Swanson 
et al. (2010) found that developing “ceilings” and “floors” mitigated these prob-
lems by placing limits on the projections. Our finding that controls reduce errors 
also is consistent with findings by Swanson et al. (2010). In part this is due to the 
fact that controls themselves place ceilings and floors on tracts that experienced 
rapid growth or rapid decline during the period when CCRs were constructed.

Applied demographers using this method should anticipate greater than previ-
ously-believed levels of accuracy and the ongoing challenge of upward bias and out-
liers for both producing publishable datasets and understanding the potential and 
pitfalls of the method. As noted earlier, we are encouraged by the fact that the levels 
of error of the uncontrolled tract projections are in the range of projections errors 
reported at state and county levels in previous evaluations (Swanson and Tayman 
2012; Hogan and Mulry 2015; Smith et al. 1987, 2013). It is, indeed, a bonus that 
the controlled projections are even more accurate.

One caveat to our results is the issue of zero-valued observations. If tract level 
projections are being done for a limited area (e.g., a city or a county) where an ana-
lyst is very familiar with the demographic landscape, then it is likely the case that 
manual interventions can be used such as suggested by Swanson et al. (2010). With 
more resources, such interventions can be applied tracts representing a larger area 
(e.g., a state, region, or the US as a whole).

In regard to future research, this study indicates that initial population size and 
rate of intercensal population change should be considered. Future research may 
benefit from focusing on understanding the population characteristics of tracts and 
block-groups within the outlier sets defined here (e.g., size, growth rate, and spe-
cial populations). Here, a comparison with other simple projection methods such as 
“shift-share” and geometric extrapolation would likely be useful. The former would 
be interesting because the tract level projections are, in effect, controlled to county 
level projections. Finally, the results shown here for census tracts also suggest that 
an evaluation of accuracy for block group HP projections is feasible. Hopefully, the 
“Differential Privacy” initiative for the 2020 census will not preclude the availabil-
ity of sufficiently accurate data needed to implement these suggestions (IPUMS, no 
date).
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