UCLA

UCLA Electronic Theses and Dissertations

Title
Analog In-Memory Multiply-and-Accumulate Engine Fabricated in 22nm FDSOI Technology

Permalink
https://escholarship.org/uc/item/5657k5p]

Author
Moran, Steven

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/5657k5pj
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
Los Angeles

Analog In-Memory Multiply-and-Accumulate Engine
Fabricated in 22nm FDSOI Technology

A dissertation submitted in partial satisfaction
of the requirements for the degree

Doctor of Philosophy in Electrical & Computer Engineering

by

Steven Moran

2022

© Copyright by
Steven Moran

2022

ABSTRACT OF THE DISSERTATION

Analog In-Memory Multiply-and-Accumulate Engine
Fabricated in 22nm FDSOI Technology

by

Steven Moran
Doctor of Philosophy in Electrical & Computer Engineering
University of California, Los Angeles, 2022

Professor Subramanian Srikanteswara Iyer, Chair

This dissertation presents the first on-chip demonstration of a Multiply-and-Accumulate

(MAC) function in 22nm CMOS on SOI with the Charge-Trap Transistor (CTT).

Recent developments in machine learning and Al focus on digital-based von Neumann
architectures to accelerate computation using massively parallel processing platforms includ-
ing Graphics Processing Units (GPUs), Tensor Processing Units (TPUs), and Application-
Specific Integrated Circuits (ASICs), to name a few. While these platforms have dramatically
improved system performance, they are inherently limited by the von Neumann memory bot-
tleneck. A resurgence of digital and analog in-memory & near-memory computing (iMC)
techniques have been proposed to perform computation directly where the memory is stored,

eliminating unnecessary memory accesses and minimizing memory access energy.

A hybrid approach to designing high-performance Al computation platforms is composed
of learning on the cloud and energy-efficient inference at the edge. In this dissertation, we
explore the latter through the use of the Charge-Trap Transistor (CTT)—commercial high-x

logic nFET device on SOI—as an ideal candidate nonvolatile memory device for analog-based

1

in-memory computing. Past results show that the CTT can be accurately programmed with
excellent resolution, device programming variance, and retention characteristics. We propose
a NeuroCT'T inference architecture and present experimental results based on two test chips
taped-out utilizing GlobalFoundries 22FDX technology. A first-time demonstration of an
on-chip analog MAC Engine using the CTT in a commercial CMOS technology is provided.
Accurate on-chip weight programming with sufficient retention are also demonstrated in
hardware. In addition, we introduce a CTT-Hardware-based Inference Realistic Circuit
Universal Simulator (CIRCUS) Platform for studying the effects of circuit-induced errors

and device non-idealities on system performance and accuracy.

We conclude by evaluating the resiliency of general-purpose neural network applications
by evaluating the effect of weight programming variance on analog-based in-memory com-
puting and bit errors on digital-based architectures. As a baseline for digital-based & energy-
efficient ASICs, an IBM TrueNorth Neurosynaptic System is exposed to 4MeV protons cor-
rupting the on-chip model file for a trained 12-layer Convolutional Neural Network (CNN).
The IBM TrueNorth continues to perform classification with negligible degradation to accu-
racy. For larger-scale networks and memory-intensive applications, reliability studies were
also performed on 3D-stacked (3DS) DRAM to study the effect of radiation on more advanced

3D-stacked architectures.

1l

The dissertation of Steven Moran is approved.
Achuta Kadambi
C. K. Ken Yang
Sudhakar Pamarti

Subramanian Srikanteswara [yer, Committee Chair

University of California, Los Angeles

2022

v

To my partner Charlene, my parents Diane & Tim, and my siblings Chelsea & Michelle . ..
thank you for your endless love, encouragement, guidance,
and unconditional support during my graduate studies.

This degree is as much yours as it is mine.

TABLE OF CONTENTS

1 Introduction 1
1.1 Motivation L 1
1.2 Limitations to Reaching ‘Brain-scale’ Computing 2
1.3 In-Memory Computing (IMC) L. 3
1.4 Dissertation Outline L 5

2 Charge-Trap Transistor (CTT) as an Analog Nonvolatile Memory Device 7

2.1 CTT Device Overview it 8
2.2 Programming Methodology L . 11
2.3 Programming Variance L0 12
2.4 Retention Characteristics L 14
2.5 Analog NVM Device Comparison 15
3 NeuroCTT Architecture 20
3.1 Architecture L 20
3.1.1 Overview 20
3.1.2 Input Architecture 22
3.1.3 WL Driver Design 25
3.1.4 CTT Array Design 27
3.1.5 CTT Array Mux & Level Shifter Design 30
3.1.6 Neuron Designo 37
3.1.7 Trained Network Layer Mapping to CTT Array 44

vi

3.1.8

Training Networks Considering Analog IMC Implementations

3.2 Chip Design Efforts

3.2.1

3.2.2

3.2.3

NeuroCTT 0.1 (ZION) Design
NeuroCTT 0.2 (GLACIER) Design

NeuroCTT 0.3 (DENALI) Design

3.3 Testing Infrastructure

3.3.1

3.3.2

3.3.3

NeuroCTT 0.1 Infrastructure

NeuroCTT 0.2 Infrastructure

NeuroCTT 0.3 Infrastructure

3.4 Testing User Interface (UI)

3.4.1

3.4.2

3.4.3

3.4.4

3.4.5

MATLAB-based Chip Configuration GUL
Automated Inference Script
Automated Off-Chip CTT Device Weight Verification
Automated On-Chip CTT Device Programming

Automated Program-Verify Weight Fine-Tuning

4 Hardware Results

4.1 NeuroCTT 0.1 Hardware Results

4.2 NeuroCTT 0.2 Hardware Results

4.3 NeuroCTT 0.3 (DENALI) Hardware Results

4.3.1

4.3.2

4.3.3

4.3.4

System Block-Level Validation
System-Level On-Chip Programming and Verification
Demonstrating a MAC Engine with Programmed CTT Weights

Demonstrating a MAC Engine with On-Chip Neuron

vii

4.3.5 Additional MAC Engine Debug Efforts 97

4.3.6 Final Insights oo 106
4.4 CIRCUS Hardware Simulator 107
Conclusions & Outlook oo 112
5.1 Outlook 114
5.2 Future Work oL 115
Effect of Memory-Related Errors in Neuromorphic Hardware 117
A.1 Digital-based Neuromorphic Computation 117
A.1.1 TrueNorth Architecture 118
A.1.2 TrueNorth EEDN Framework for CNNs 119
A.1.3 Experimental Setup: Vanderbilt Pelletron 124
A.1.4 Experimental Results: Fragile Corelet 127
A.1.5 Experimental Results: Convolutional Neural Networks 129
A.1.6 Simulation Results 131
A.1.7 Further Design Insights 133
A.1.8 Conclusions 133
A.2 Analog-based Computation 134
A.3 Effects of Total Ionizing Dose (TID) on the CTT 137
Radiation Effects on 3D-Stacked Architectures 141
B.1 Experimental Design Challenges 141
B.2 3D-Stacked (3DS) Test Samples 143
B.3 Memory Test Platform (MTP) 146

viil

B.4 Vanderbilt Pulsed-Laser Testing 154

B.4.1 Titanium-Sapphire Chirped Pulse Amplifier (CPA) Laser 154
B.4.2 Laser-based Testing Results 154
B.5 NASA Space Radiation Lab (NSRL) 160
B.5.1 Test Facility Capabilities 160
B.5.2 NSRL Testing Results 161
B.6 General Conclusions o 164

C CTT-Hardware-based Inference Realistic Circuit Universal Simulator . 165

C.1 CIRCUS Overview ittt e e 165
C.2 Spectre Netlist Parsing 167
C.3 Input Vector File Generation. 169
C4 Run Fileo o 172
C.5 Data Analysis using Cadence OCEAN 172

D NeuroCTT Design & Top-Level Verification 175
D.1 Digital I/O Architectureo 175
D.2 Testbench Vector Generator 177
D.2.1 Testbench Vector Generator: Header 179

D.2.2 Test Vector Generator: Run Examples 179

D.3 Verilog Testbench oo 179
References 185

1X

LIST OF FIGURES

2.1 Oxygen Vacancies in H fSi0, logic transistors 8
2.2 CTT Device Programming & Erasing Operations in 22FDX 9
2.3 CTT Device PRG/ERS IV Characteristics 10
2.4 CTT LTP and LTD Characteristics 10
2.5 Pulsed-gate Voltage Ramp Sweep (PVRS) Programming 11
2.6 CTT Device Testing using Cascade Probe Station 12
2.7 CTT Device Programming to 6 Target States 13
2.8 CTT Device Programming Variance as a Function of Target State 14
2.9 Device Retention over 50hr baking at 85°C'. 15
3.1 Proposed NeuroCTT Inference Engine 21
3.2 Multi-Layer Inference Engineo 21
3.3 NeuroCTT Architecture Overview 22
3.4 Example Input Architectures 23
3.5 CTT Array with Drain Inputs 24
3.6 WL Driver Level Shifters 25
3.7 WL Driver Output Driver Stage during Programming & Inference 26
3.8 TWIN-Cell Array Design 28
3.9 TWIN-Cell Array: Programming (PRG) Half-Select 29
3.10 TWIN-Cell Array: Erase (ERS) Half-Select 29
3.11 Column Array Mux Design 30
3.12 Column Array Mux: Level-Shifted Logic Control Signals 32

3.13

3.14

3.15

3.16

3.17

3.18

3.19

3.20

3.21

3.22

3.23

3.24

3.25

3.26

3.27

3.28

3.29

3.30

3.31

3.32

3.33

3.34

3.3

Column Array Mux Design: IDLE Mode 32

Column Array Mux Design: INFERENCE Mode 33
Column Array Mux Design: PRG_.T Mode 34
Column Array Mux Design: PRG_T Timing Diagram 35
Column Array Mux Design: Alternative PRG_T Modes 35
Column Array Mux Design: Verification Modes 36
Neuron Design Overview 37
Neuron Differential Integrator Design 38
Neuron Comparator Design 39
Neuron Comparator Circuit Evaluating PWM Output 40
Neuron Comparator Realized (ReLU) Activation Function 41
Neuron Configuration Logic & Timing Diagram 41
Neuron Integrator Offset Cancellation Schemes 42
Additional Offset Cancellation Using Extra CTT Devices 42
Example Weight Mapping for Normally Distributed Weights 46
Example Bias Term Scaling & Weight Truncation 47
Hessian-Aware Stochastic Gradient Descent 48
NeuroCTT 0.1 (Wirebond) Die Images 50
NeuroCTT 0.2 (Flip-Chip) Die Images 51
NeuroCTT 0.2 (Si-IF) Die Images 52
NeuroCTT 0.3 (Wirebond) Die Images 53
NeuroCTT 0.3 Functional Neuron Macro 54
NeuroCTT 0.1 Mainboard Design 56

x1

3.36

3.37

3.38

3.39

3.40

3.41

3.42

3.43

3.44

3.45

3.46

3.47

3.48

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

NeuroCTT 0.1 Lab Test Setup. 57

NeuroCTT 0.2 Package Laminate Design 58
NeuroCTT 0.2 Si-IF-enabled Package Design, 59
NeuroCTT 0.3 Mainboard & Mezzanine Card Design 61
Fabricated NeuroCTT 0.3 Mainboard with Mezzanine Card 62
NeuroCTT 0.3 Die-to-Mezzanine Card Wirebonding 62
NeuroCTT 0.3 Mainboard (v2) & Fanout board designs 63
NeuroCTT 0.3 C-QFN Package Wirebonding 64
NeuroCTT 0.3 Lab Test Setup, 64
NeuroCTT 0.3 Chip Configuration GUI 67
NeuroCTT 0.3 Chip Configuration GUI: Neuron Parameters Window 68
Off-Chip Verification Measurement Repeatability 71
NeuroCTT 0.3 Automated On-Chip Device Programming 73
NeuroCTT 0.1 Twin-Cell CTT-Array As-Fabricated Device Weights 76
NeuroCTT 0.1 WL-First & SL-First Programming 7
NeuroCTT 0.2 Design Target 78
Example Neuron PWM Debug Outputs. 81
Example Off-chip Verification Output using Analyzer 84
NeuroCTT 0.3 Twin-Cell CTT-Array As-Fabricated Device Weight Distribution 85

Repeatable Device Measurements using External Analyzer 85
NeuroCTT 0.3 Example SL Programming Pulse Measured Externally 86
Initial Half-Select Results after Target Cell Programming 88
Checkerboard Array Programming of True & Comp Devices 89

xii

4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26
4.27

4.28

Al
A2
A3
A4

A5

Pulsed-Voltage Time Sweep (PVTS) Results 90

Example Positive Twin-Cell Weight Programming 91
256-input MAC Engine Results Measured using External Analyzer. 92
64-input MAC Engine Results Measured using External Analyzer 93
MAC Engine with 6 Target States 94
MAC Engine with 7 Differential Target States 94
On-Chip MAC Engine with Differential Integrator 96
On-Chip MAC Engine Neuron Output Averaged 97
Neuron Output for Zero-Input Case 98
Neuron Output with As-Fabricated Weights 99
Improving Neuron Output Results, 101
Debugging with Neuron Logic Timing Diagrams 103
CM Stability Issue Introduced by Array Switch 104
CIRCUS Functional Overview 107
CIRCUS CTT Device Model 108
CIRCUS Example CTT Array Differential Current Waveform 108
CIRCUS Neuron Output Simulation 109
CIRCUS Simulation for Evaluating Realistic Neuron Accuracy 110
IBM TrueNorth Core Implementation 118
IBM TrueNorth SRAM Design percore 120
IBM TrueNorth Multi-Chip Configuration 121
IBM TrueNorth EEDN Trinary Weight Constraint 121
Commonly-Used Classification Datasets 122

xiil

A.6 IBM TrueNorth for Spinal MR Image Segmentation Example 123

A.7 IBM TrueNorth Spinal Foramina Segmentation Example 124
A.8 IBM TrueNorth Chip Delidding 126
A.9 Vanderbilt Pelletron Vacuum Test Chamber 126
A.10 Vanderbilt Pelletron Accelerator Beamline 127
A.11 Fragile Corelet Performance under irradiation 128
A.12 Effects of SEUs on MNIST-trained CNN on IBM TrueNorth 130
A.13 MNIST Classification Changes for Varying Fluences 131
A.14 IBM TrueNorth NSCS Simulator CNN Results 132
A.15 IBM TrueNorth System crashing after irradiation 134
A.16 Effect of Relative Variance on Inference Accuracy 135

A.17 TID Effects on 22nm (W = 120nm) FDSOI Devices Programmed Before Irradiation137

A.18 TID Effects on 22nm (W = 120nm) FDSOI Devices Programmed After Irradiation138

A.19 TID Effects on 14nm (Werp = 150nm, Ny = 2) Devices 139
A.20 TID Effects on 14nm (Wess = 3um, Ny = 40) Devices 140
B.1 Xilinx Virtex Ultrascale+ HBM (VCU-128) FPGA Board 142
B.2 3DS Logical Rank Mapping 144
B.3 Delidded 3D-Stacked (3DS) DRAM Memory 145
B.4 Cross Section of Samsung 3DS Memory Devices 146
B.5 Vanderbilt University Thermoelectric Cooling System 147
B.6 Innoventions Ramcheck LX Memory Test Platform 149
B.7 IBM Sputnik Memory Test Platform 149
B.8 3DS DDR4 DIMM Device Layout 150

Xiv

B.9 Vanderbilt University Ti:Sapphire-based Pulsed Laser 155

B.10 Vanderbilt University Pulsed Laser 3DS Test Setup 155
B.11 3DS Memory Bit Errors vs. Laser Intensity 156
B.12 Vanderbilt University Pulsed Laser 3DS Automated Testing 157
B.13 Automated Laser Testing Program 157
B.14 Automated 3DS Laser Testing Results 158
B.15 Automated 3DS Laser Testing Results: Bit Errors by Bank 159
B.16 NSRL Testing Candidate Tons 160
B.17 NSRL Beamline 161
B.18 NSRL Adjustable Tungsten Collimator with 3DS Test Setup 162
B.19 Example NSRL Runs with Degrader 162
D.1 NeuroCTT 0.3 I/O Program Execute Enable 175
D.2 NeuroCTT 0.3 I/O Architecture 176

XV

2.1

2.2

2.3

24

2.5

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

4.1

4.2

Al

A2

B.1

B.2

B.3

LIST OF TABLES

CTT Retention Over 50 hours at 85°C" 16
Retention Comparison with 40nm SONOS device 16
CTT and RRAM Comparison for Digital Applications 17
Analog NVM Device Comparison 18
Additional Comparison Including FLASH 19
WL Driver Control Logic 26
Column Array Mux Level-Shifted Logic Controls 31
Programming (PRG) Pulse Timing Parameters 34
Example CTT Weight Mapping with 13 Target Differential Currents 44
Summary of NeuroCTT 0.3 Mainboard (v2) Components 65
MATLAB Automated INFERENCE Example Script 69
MATLAB Off-chip Verification Example Script 70
MATLAB On-chip Programming Example Script 72
NeuroCTT 0.2 Chip Specifications 79
NeuroCTT 0.3 Neuron Biasing Verification 82
Range of Potential Tons/Particles using the Vanderbilt Pelletron 125
IBM TrueNorth CNN-based Classification Experimental Results. 129
Nibble to Device Mapping per physical rank 151
IBM Sputnik Error Trap Example 0L 152
Setting Expected IBM Sputnik Memory Pattern Example 153

xXvi

B4

C.1
C.2
C.3
C4
C.5
C.6
C.7

C.8

D.1
D.2
D.3
D4
D.5

D.6

NSRL Testing Run Summary, 163

Example ARRAY_CTT_TWIN_CELL Netlist Implementation 167
Example Spectre Netlist after Weight Insertion 168
CIRCUS Column Netlist Generating Python Script 168
Example CIRCUS WL Vector File Output 170
CIRCUS WL Vector File Generation Python Script 171
CIRCUS Main Runfile Python Script 173
Example CIRCUS-generated OCEAN Analysis Script 174
Example CIRCUS Run Output after Cadence OCEAN Analysis 174
Example TB Generator (CSV) Output File 178
TB Vector Generator Run File: Header 180
TB Vector Generator Run File: Setup Parameters 181
Example TB Vector Generator Run File for INFERENCE Mode 182
Example Verilog TB with CSV Input Vector 183
Example Verilog TB with CSV Input Vector (continued) 184

XVvil

ACKNOWLEDGMENTS

[would like to first acknowledge my advisor, Prof. Subramanian (Subu) Iyer, for his support
and guidance. I never considered pursuing a PhD until I took Subu’s ECE 121B (Semicon-
ductor Physics Course) during my undergrad. I met Subu during an office hour the day the
UCLA PhD application was due, and he convinced me to join his lab & pursue a PhD. De-
spite all of the hardships along the way, I've learned quite a lot from Subu and I'm incredibly

grateful for all of the opportunities he has provided to me.

Thank you to my committee members Prof. Sudhakar Pamarti, Prof. C. K. Ken Yang,
and Prof. Achuta Kadambi for all of your questions, insights, and contributions to my work.
I'm especially grateful to my co-advisor Prof. Sudhakar Pamarti for all of his chip design &

testing guidance as well as being available for countless design reviews.

I would like to acknowledge many of peers in the CHIPS Lab. Thank you to Kyle Jung
who during his tenure in the CHIPS Lab, was single-handily responsible for keeping the lab
running efficiently. Thank you not only for all of your prompt help but also your friendship.
Thank to Athena Sung-Miller who took on the CHIPS Lab Manager role, and handled all

of my orders & special requests expeditiously—crucial to completing my PhD.

Thank you to my colleagues Zhe Wan, Xuefeng Gu, Johnathan Cox, Siyun Qiao, and
Faraz Khan for all of the device physics discussions and late-night problem solving on the
NeuroCTT project. Thank you to SivaChandra Jangam, Krutikesh Sahoo, Guangqi Ouyang,
Randall Irwin, and Haoxiang Ren, among many others, for your help in the lab on various
projects. Thank you to undergraduate students William Whitehead and Fred Chu for your
contributions to our IBM TrueNorth and 3DS-Memory reliability studies. Thank you to Dr.
Adeel Bajwa for your mentorship, friendship, and everything you have taught me over the
years; | consider you a life-long friend. Thank you to Dr. Boris Vaisband for your mentorship
and general interest in my well-being, I will never forget the happy-hour venting sessions at

Barney’s Beanery in Westwood. Thank you to Dr. Amir Hanna for all of your help in CNSI

xXviil

and mentorship as well.

Thank you to my UCLA collaborators Prof. Vwani Roychowdhury and Tianyi Wang who
were instrumental in developing new methods for training analog-based in-memory comput-
ing networks. Additionally Thank you to Dr. Bilwaj Gaonkar and Dr. Luke Macyszyn for

all of our medical collaborations with the UCLA Neurosurgery Department.

Thank you to my PhD peers including Saptadeep Pal, Irina Alam, Sumeet Singh, Wo-
jciech Romaszkan, and Uneeb Rathore for all of the fruitful whiteboard discussions. And,
thank you to many of the friends who have supported me along my academic journey in-
cluding Arpita Iddya, Letty Trevinio, Felicia Hsu, Chen Xie, Brian Zutter, Erin Askounis,
Trevor Black, Jonny Wong, Sharon Wong, Matteo Vesprini-Heidrich, & Jordan Robertson,

among many others.

I would also like to acknowledge my academic and industry collaborators Toshiaki Kir-
ihata (Global Foundries), John Barth (Synopsys), Bill Cowell (On Semiconductor), Robert
Brennan (On Semiconductor), Jeffrey Dods (On Semiconductor), Kevin Mcilvain (IBM),
Gerassimos Giannoulis (IBM), Jung Yoon (IBM), Prof. Janakiraman Viraraghavan (IIT
Madras), Prof. Michael Alles (Vanderbilt University), Prof. Brian Sierawski (Vanderbilt
University), Prof. Robert Reed (Vanderbilt University), Prof. Enxia Zhang (Vanderbilt
University), Prof. Andrew Sternberg (Vanderbilt University), Michael McCurdy (Vanderbilt

University), and Dr. Rachel Brewer (Vanderbilt University).

Thank you to GlobalFoundries for all of their 22FDX MPW and device support. Thank
you to On Semiconductor for their extensive support of the CTT project over the years.
Thank you to IBM Corporation for providing access to the IBM TrueNorth Neurosynaptic
System which allowed us to conduct extensive studies regarding the effect of radiation on
brain-inspired computing. Thank you to the Defense Threat Reduction Agency (DTRA)
for your funding support allowing us to explore radiation effects on both brain-inspired
computing and 3D Architectures. Finally, thank you to the entire CHIPS Consortium for

their funding, mentorship, and overall guidance.

Xix

Thank you to Luna and Moon, who forever will be kittens at heart, for your positive
impact on my mental health and wellness and a great addition to the new family I'm starting

with my amazing life partner Charlene.

Thank you to my family including Michelle, Chelsea, Tyler, Tom, & Maria for celebrating

with me every time I came home and for all of your support over the years.

And in the end, thank you most to my parents, Diane and Tim. To my mom, thank you
for being an incredible support force throughout the challenges of my program. I'll never
forget the time you flew down to LA just to drive me home after one of my circuit tapeouts.
To my dad, thank you for your friendship, mentorship, and free teaching. And most of all,
thank you for appreciating what I do and for recognizing the value of what I've accomplished

in my program.

VITA

2014 IC Test Engineering Intern, Finisar Corporation.

2015 Reliability Engineering Intern, Space Systems Loral (SSL).
2016 B.S. (Electrical Engineering, Integrated Circuits), UCLA.
2018 M.S. (Electrical & Computer Engineering, Circuits), UCLA.
2019 Graduate Electrical Engineering Intern, Global Foundries.

2016-2022 Graduate Student Researcher, ECE Department, UCLA.

20212022 Teaching Assistant, ECE Department, UCLA..

2020-2022 Board Member, Associated Students UCLA (ASUCLA) Board.

PUBLICATIONS

Siyun Qiao, S. Moran, D. Srinivas, S. Pamarti, and S. S. Iyer, “Demonstration of Analog
Compute-In-Memory Using the Charge-Trap Transistor in 22 FDX Technology,” Interna-
tional Electron Devices Meeting (IEDM), 2022. (submitted)

Steven Moran, S. S. Iyer, Z. Wan, S. Pamarti, “NEURAL NETWORK SYSTEM WITH
NEURONS INCLUDING CHARGE-TRAP TRANSISTORS AND NEURAL INTEGRA-
TORS AND METHODS THEREFORPCT /US2021/053422, 2020. (published)

xxi

Rachel Brewer, J. Cox, D. R. Ball, S. Moran, B. D. Sierawski, P. F. Wang, E. X. Zhang, D.
M. Fleetwood, R. D. Schrimpf, S. S. Iyer, and M. L. Alles, “Total Ionizing Dose Responses
of 22nm FDSOI and 14 nm Bulk FinFET Charge-Trap Transistors,” IEEE TNS, 2021.

Steven Moran, J. Cox, Z. Wan, R. Brewer, E. X. Zhang, B. Sierawski, J. Woo, and S.
S. Iyer, “Impacts of Perturbation on a Charge Trap Transistor Analog Neural Network”,
GOMACTech, 2020.

Rachel Brewer, S. Moran, J. Cox, B. Sierawski, M. McCurdy, E. X. Zhang, S. S. Iyer, R.
D. Schrimpf, M. Alles, and R. Reed, “The impact of proton-induced single events on image

classification in a neuromorphic architecture,” IEEE TNS, 2019.

Steven Moran, J. Cox, R. Brewer, B. Sierawski, and S. S. Iyer, “Radiation Effects on
Brain-Inspired Computing,” GOMACTech, 2019.

Zhe Wan, S. Moran, X. Gu, J. Cox, and S. S. Iyer, “Characterization Approaches to Test
the Robustness of Neuromorphic Systems,” GOMACTech, 2019.

Rachel Brewer, S. Moran, J. Cox, M. McCurdy, R. Erbrick, M. Alles, R. Reed, S. S. Iyer,
and B. Sierawski, ”"Proton-Induced Classification Changes in a Neuromorphic Computing

System,” Single Event Effects (SEE) Symposium, 2018.
Steven Moran, B. Gaonkar, W. Whitehead, A. Wolk, L. Macyszyn, and S. S. Iyer, “Deep

Learning for Medical Image Segmentation — using the IBM TrueNorth Neurosynaptic Sys-
tem,” SPIE Medical Imaging, Feb. 2018.

xxi1

CHAPTER 1

Introduction

1.1 Motivation

Deep learning and neuromorphic computing are heavily inspired by the incredible energy-
efficiency of the human brain. The human brain operates on a massive scale compared to

today’s largest semiconductor chips at a minuscule fraction of the overall power budget:

Human Brain: ~100B neurons, ~1,0007 synapses, ~50W, ~1L [Zhal9, Her(9]
Intel Loihi: ~131K neurons, ~130M synapses (Intel 14nm, ~60mm?) [Dav18]
IBM TrueNorth: ~1M neurons, ~256M synapses, ~70mW (Samsung 28nm,
~400mm?) [Amil3, Mer14, Saw16, Ess16]

SpiNNaker 106 System: ~1B neurons, 100kW (130nm technology, with an over-
all form factor of 10x 19-inch racks) [Furl4, Yan19]

Neuromorphic computing aims to to leverage a semi-analogous architecture to that of
the human brain to tackle problems spanning multiple domains including object detection,
segmentation, and language recognition, among many others. The success of today’s ‘deep
learning’ efforts has led to larger and larger network designs, stressing computational re-
quirements for modern computing architectures. As an example, the Generative Pre-trained
Transformer 3 (GPT-3) model for generating human-like text has over 175 billion network
parameters [BMR20]. Alternative avenues beyond device & system scaling must be explored

to reduce energy costs considering the expected trends in workload growth.

1

1.2 Limitations to Reaching ‘Brain-scale’ Computing

Multiple challenges exist to designing ‘brain-scale’ computing systems, including (1) physical
silicon die size limitations, (2) interconnect density, (3) designing adaptable & reconfigurable
hardware, (4) memory bandwidth, (5) memory size limitations, (6) complex routers for
connecting large multi-chip systems, (7) power & energy budgets, and (8) thermal dissipating

& cooling, among many others.

From a scaling perspective, semiconductor chips are typically confined by the maximum
EUV Lithography-defined reticle size of 104 x 33mm? (max. die size: 26 x 33mm = 858mm?
for reduction ratio of 4x) [Neul3]. As an example, the largest consumer microprocessor
to-date is the Apple M1 Pro CPU with ~57 billion transistors and spans 432mm? utilizing
TSMC’s 5nm technology [Ana21], however, IBM has been designing larger mainframe 1Cs
such as the z14 (696mm?, 14nm) since 2017. While current EUV technology supports chip
sizes up to ~858mm?, most chips stray away from this upper limit due to yield considera-
tions. Recent spiking-neural network (SNN)-based architectures such as Intel Loihi and the
IBM TrueNorth Neurosynaptic System both require scaling up by ~10*x in order to reach
‘brain-scale’. Additionally, as we scale these systems into large multi-chip—and multi-board—
systems, power budgets go through the roof such as in the case of the SpiNNaker 106 System
with a power budget of ~100kW while only able to emulate ~1% of the human brain’s neu-
rons. While monolithic wafer-scale processes enable comparatively massive systems such as
the Cerebras” WSE-2 46, 225mm? system (~2.6T transistors, 850K cores, & 40G'B on-chip
memory) [Lie21, Roc20], reducing expensive & repeated memory accesses is left somewhat

unaddressed.

In-Memory Computing (IMC) offers the potential to improve system energy-efficiency
and throughput especially for ML workloads by performing computation directly within the

memory array itself—eliminating costly memory accesses.

1.3 In-Memory Computing (IMC)

In-Memory Computing (IMC) offers a promising solution to the von Neumann Memory
Bottleneck by performing vast Vector Matrix Multiplication (VMM) locally in memory where
trained model weights are stored which (1) eliminates unnecessary memory accesses, (2)
minimizes energy spent due to memory accesses, and (3) naturally allows for simple, parallel

computation.

In-Memory or Near-Memory computing enables computation directly within, or nearby;,
the memory itself. Typically, In-memory Computing consists of a cross-bar architecture
with volatile or nonvolatile weights. A non-exhaustive list of proposed memory elements for

weight-storage is provided below:

o SRAM [JXH21, Don20, CLF21, SCL21]

o DRAM [YKC19, XNS21]

e Dynamic-Analog RAM (DARAM)[CCG21]

e Flash [BV20, LL20]

e Phase-Change Memory (PCM) [Jos20, Nar21]

e Resistive RAM (RRAM) [Moc18, Chel8, Xuel9, Cor20, Liu20, Li21]
e Spin-Transfer Torque Magnetic RAM (STT-MRAM) [Kim11]

e Ferroelectric hafnium oxide-based transistors (FeFET) [BMM21]

e Monolayer MoSy Transistor (2T-1C) cells [WTX21]

e Charge-Trap Transistor (CTT) [Khal5, Kot15, Virl6, Khal7, Hun19, Kha20,
GI17, Gul8, GWI19, Wan20b, Wan20a]

e Silicon-Oxide-Nitride-Oxide-Silicon (SONOS) [KRP18, APR20, Xia22].

3

The Charge-Trap Transistor (CTT) is identified as an excellent candidate nonvolatile
memory device for IMC applications. The CTT is highly competitive against other proposed
analog nonvolatile memory devices such as RRAM, PCM, MRAM, etc. given that it is
completely CMOS-compatible, a 3-terminal device requiring no select transistor or low-
leakage selector and scalable to smaller CMOS technology nodes. Additionally, the CTT
can be accurately fine-tuned to a specific weight with sufficient retention and manageable

device variance.

Through a variety of techniques, cross-bar architectures can be sufficiently optimized to
improve energy-efficiency by applying voltage or pulse-width-modulated (PWM) inputs and
computing weighted sums by measuring the column current in the analog domain. A variety

of proposed input and ADC architectures are discussed in more detail in Chapter 3.

1.4 Dissertation Outline

A majority of this dissertation focuses on designing efficient deep learning hardware for edge
applications. Relevant discussion based on experiments on the reliability of compute for
both small-scale and large-scale neuromorphic systems is also included in the appendices.

This dissertation is organized as follows:

Chapter 2 provides a deep dive on the CTT device and benchmarks it against competing
nonvolatile memory devices. Sections 2.2 & 2.3 demonstrates excellent weight programming
results obtained using the Pulsed-Gate Voltage Sweep (PVRS) fine-tune programming algo-
rithm. Section 2.4 demonstrates sufficient cell retention at 85°C' and Section 2.5 provides a

thorough comparison of the CTT against other candidate analog nonvolatile memories.

Chapter 3 provides a detailed overview of the entire NeuroCTT Architecture for accel-
erating dot-product computation for fully-connected neural network layers. Sections 3.2-3.4
detail past chip design efforts, lessons learned, testing infrastructure design, and the overall

testing user interface.

Chapter 4 details all hardware results obtained from past chip design efforts. Sections 4.1-
4.3 detail hardware results demonstrate on-chip weight programming, weight verification,
and the demonstration of a CTT-based MAC Engine with programmed weights. Section 4.4
provides a circuit-level simulation platform for evaluating the effect of both circuit-induced
errors and device non-idealities on the performance and accuracy of the NeuroCTT archi-

tecture.

The accuracy and radiation tolerance of analog and digital-based Neural Network hard-
ware is discussed in this dissertation in Appendix A. Digital-based neural networks are
highly resilient to bit errors in network weights due to their inherent redundancy, demon-
strated in Appendix A.1 with the IBM TrueNorth Neurosynaptic System [Amil3, Merl4,
Saw16, Ess16]. In comparison, Analog-based neural networks are tolerant to bit errors and

single-event upsets (SEUs), but are susceptible to weight programming variance (Wiygined 7

Wdeployed), Tetention, temperature-dependent effects, and systematic threshold voltage shift
(AVrg) due to Total-Tonizing dose (TID). Appendix A.2 discusses the effect of these device
variances on the accuracy of analog-based in-memory computing. The CTT Device & Neu-
roCTT Architecture are utilized as a baseline for evaluating the error tolerance of analog
NVM-based IMC systems. Appendix A.3 concludes this section by examining the effects of
Total Ionizing Dose (TID) on programmed CTT weights and provides potential remedies for

lowering the device sensitivity to TID effects.

Appendix B concludes this dissertation by studying the effects of radiation on 3D-stacked
memories and architectures. For large-scale neuromporphic system, system reliability is in-
creasingly becoming more important. Many larger-scale systems today leverage 3D memories
including High-Bandwidth Memory (HBM) and 3D-Stacked (3DS) DRAM in order to store
large multi-layer networks. As an example, the Generative Pre-trained Transformer 3 (GPT-
3) model for generating human-like text has over 175 billion network parameters trained on

~45T B of training data across multiple datasets [BMR20].

Appendices C and D are provided as supplementary information for the CTT-Hardware-
based Inference Realistic Circuit Universal Simulator (CIRCUS) and NeuroCTT chip testing.

Original contributions of this dissertation include (1) first demonstration of an on-chip
analog MAC Engine using the CTT fabricated in a commercial CMOS technology, (2) PVTS
methodology for fine-tune programming devices with programmable pulse widths without
requiring ramping voltage supplies, (3) analysis of all the variances present in analog in-
memory compute (IMC), (4) CIRCUS circuit-level simulation framework for evaluating the
accuracy of analog IMC engines, (5) experimental radiation tolerance of analog & digital
neuromorphic hardware, and (6) experimental radiation tolerance of 3D-stacked architectures
using 3DS DRAM memory to detect the propagation of bit errors across multiple dies within

each stack.

CHAPTER 2

Charge-Trap Transistor (CTT) as an Analog

Nonvolatile Memory Device

The ‘Charge-Trap’ transistor (CTT)—any high-x H fSi0, logic transistor—has been demon-
strated as a re-writable nonvolatile memory device for digital [Khal5, Kot15, Virl6, Khal7,
Hun19, Kha20] and analog [GI17, Gul8, GWI19, Wan20b, Wan20a| applications. The CTT
is a 3-terminal device and completely CMOS-compatible, providing several performance &
cost advantages over other proposed analog nonvolatile memory (aNVM) devices such as
RRAM, PCM, MRAM, and SONOS. While GlobalFoundries 22nm Fully-Depleted Silicon-
on-Insulator (FDSOI) technology is utilized for this project, the CTT has also been demon-
strated using GlobalFoundries 12LP /14LP FinFET technology and all nodes utilizing high-~
gates as well. Research has primarily focused upon SOI technologies as the charge-trapping
effect is greatly aided by the enhanced self-heating assisted trap tunneling afforded by SOI

technologies.

The NeuroCTT system detailed thoroughly in Section 3.1 is a neuromorphic classifier
featuring twin-cell CTT-based analog synapses. These analog synapses are biased in sub-
threshold regime (Vg = ~200mV, Vp = ~50 — 200mV’) during inference, where the weights
are considered as the device on-state channel conductance or equivalently the threshold volt-
age (Gop~Vry). Twin-cell weights are utilized to support positive, negative, and zero-valued

weights by programming each twin-cell weight to achieve the target differential weight (AG;;)

IFL + HfO,

Source / -\ Drain

Oxygen vacancy
a
)

Figure 2.1: Oxygen Vacancies in H fSi0, logic transistors. High-x gates are inherently

“trappy” due to oxygen vacancies that can trap electrons.

2.1 CTT Device Overview

The “Charge-Trap Transistor” (CTT), or any high-x gate-first logic transistor, relies on
electron trapping in the gate oxide to modulate the threshold voltage of the device in a
nonvolatile manner. The high-x gate is inherently “trappy” due to oxygen vacancies in the
gate dielectric (Fig. 2.1) that can easily trap electrons. The basic process is believe to be
trap-assisted tunneling that is enhanced by self-heating. Silicon-on-insulator (SOI) technolo-
gies enhance this temperature-assisted trapping as shown with GlobalFoundries 22FDSOI
technology in [Khalb]. Self-heating-assisted trapping may also generate additional traps.

Charge-trapping has been shown to be more pronounced in “gate-first” processes.

Devices are programmed by applying large Vs (1.8—2.7V), Vpg (1.6—2.2V) conditions
to the target cell for short (e.g. 50—500us) pulses, shown in Fig. 2.2a. Detrapping (‘erasing’)
is also possible by reversing the gate voltage polarity as shown in Fig. 2.2b; however, a small

random amount of trapping persists without a temperature-induced reset.

(a) Programming (PRG) (b) Erasing (ERS)

Figure 2.2: CTT Device Programming & Erasing Operations in 22FDX. (a) CTT
devices are programmed (1 Vrg,| oq) by applying large Vigs, Vps voltage (red) pulses
temporarily to the device. (b) CTT devices are erased ({ Vry,1T o) by applying large

reversed gate-voltage (blue) pulses to the device.

Programming and Erasing corresponds to effectively increasing (T Vrg) or decreasing
(4 Vry) the threshold voltage of the device, respectively. This can be easily observed
in Fig. 2.3 where full IV curves have been taken for an as-fabricated device (Pre-PRG)
after programming (Post-PRG) and after erasing (). The as-fabricated device is
subjected to a series of Programming pulses leading to an increased threshold voltage
(AVrg~250mV), shown by the Post-PRG curve. After programming, the device is then
subjected to a series of Erase pulses, shown by the . The device can be erased and
brought back close to the Pre-PRG condition but the device cannot be fully reversible,

unless the device is “annealed”.

Long-Term Depression (LTD) and Long-Term Potentiation (LTP) characteristics, neces-
sary in Spike-Timing Dependent Plasticity (STDP)-based learning [BP01, SRR0S8], can be
demonstrated by applying a series of programming (LTD) or erase (LTP) pulses to a CTT
device, as shown in Fig. 2.4.

In order to accurately program each of the devices to a specific target-state, an iterative

write-then-verify strategy is utilized and described in more detail in the next section.

"ON" Bias Condition

E uA Post-PRG
Q 250mV
" | Als~1000x
[a] =
> nA '/
@ 4
@ V4 [l
- ..’:. "

p/\ = i

|

0 02 04 06 08 1
Vs (V)

Figure 2.3: CTT Device PRG/ERS IV Characteristics.

200

-
O
o

100

————— o — -

——————— —— -
B

Conductance G (nS)

50

0 200 400 600 800 1000
Event #

Figure 2.4: CTT Long-term Potentiation (LTP) and Depression (LTD) Charac-
teristics. Reversible and reproducible device conductance changes are demonstrated by
applying a series of “256” programming pulses followed by a series of 256 “erase” pulses,

repeated for a total of 4 cycles. Previously reported in [GI17].

10

PVRS Waveform Example Ly =1Ip @ Vpg=0.05V, Vs = 0.2V

0
—V o ERS D‘ * After PRG
=—=Voe Vo= -1.4V —-2.7V, s0f% * After ERS |
. 50mV/100mV-- E H ; 1
> v,.,__:ov‘ s a0l v f :
) £
g? -)] ! 4 I /
L o [} Y [4
o f 8 50 L 4 P 3
> | PRG g /] \
V=14V — 2.7V, = \ \ 3 /
' 200f e . \\,
50mV/100mV ++ .
Vps = 1.2V
. -250
0 5 10 15 0 100 200 300 400
Time (ms) PVRS iteration
(a) PVRS Technique (b) Adjusting (£) CTT Device Weight using PVRS

Figure 2.5: Pulsed-gate Voltage Ramp Sweep (PVRS) Programming. PVRS Tech-
nique can be utilized to make fine-tune adjustments to CTT device weights (o, Viry) as

shown in [Wan20a].

2.2 Programming Methodology

A write, verify, and re-write (if necessary) strategy combined with the Pulsed-gate Voltage
Ramp Sweep (PVRS) technique shown in Fig. 2.5 is used to accurately program and erase
the CTT device to a specific target state. PVRS allows devices that have not yet reached
their target state to be efficiently programmed by ramping up the gate-voltage condition
after each subsequent pulse until the device reaches its target state. This mode of operation

is also known as fine-tune programming.

Accurately programming and erasing CTT devices within an array also requires special
considerations in terms of half-select issues. These array-level issues are explored more in
Sections 3.1.4 & 4.1 which discuss the CTT Array design and past array programming results
obtained on the NeuroCTT 0.1 and NeuroCTT 0.3 chip designs.

11

(a) Cascade Probe Station (b) Analyzer & Switch Matrix (c) Probed Die

Figure 2.6: CTT Device Testing using Cascade Probe Station. Setup includes (a)
Cascade 300mm wafer prober as well as (b) Keysight B1500A Analyzer, Switch Matrix, and

Gateway Computer. Example probed die shown in (c).

2.3 Programming Variance

CTT device results were obtained using 1 x 25-pad (72um pitch) scribe line monitor (SLM)-
based macros on NeuroCTT 0.1 and 0.3 designs as well as wafer-level device macros. Testing
was performed using an in-house Cascade Probe Station with Keysight B1500A Analyzer
and 1 x 25 (72um pitch) Celadon Probe card, shown in Fig. 2.6.

Past results have shown that the CTT device (RVT: W = 428nm, L = 20nm) measured
at Vgs = 200mV, Vpgs = 200mV can be accurately programmed to a specific target current
within the range of 100—700 nA with a device programming variance of oprg = ~48.2nA

or a normalized programming variance of o'y = 48.2nA/(700—100nA) = ~8% [Wan20a.

Figure 2.7 displays more recent results from the CTT array macros on the NeuroCTT
0.3 chip design. Array macros consisting of 10 row/wordlines and 8 columns of twin-cell
CTT devices (160 devices total) contained an array layout identical to that used within the
NeuroCTT system for external testing and device programming validation. A group of 80
devices each was programmed to one of 6 target currents (100, 200, 300,400, 500, & 600n.A)

using the testing setup shown in Fig. 2.6 and array macros across 3 chips. The programming

12

Array Macro: 480 Devices Fresh Distribution

ID'wﬂgm Distribution Before 85°C Baking

30

Average = 1042.7nA
a0t o =244.5nA

Device Count

0 500 1000 1500 2000 2500] .
Current (nA) 0 100 200 300 400 500 600 700 800
@ Vg =220mV, V= 200mV Drain Current (nA)
(a) As-Fabricated Device Distribution (b) Devices After Programming

Figure 2.7: CTT Device Programming to 6 Target States. (a) Distribution of 480
as-fabricated CTT (RVT, W=428nm, L=20nm) devices. (b) A distribution of 80 devices
were programmed to each of the target currents, centered respectively around 100, 200, 300,

400, 500, & 600nA, and measured at Vgg = 220mV and Vpg = 200mV.

variance (opgrg) is plotted as a function of the target current in Fig. 2.8. Figure 2.8 reports
that the programming variance is a function of the target or programmed current, with a
worst-case normalized programming variance of o'p re = 0prac/Range = ~6%, with respect

to the 500nA target immediately after programming and ~6.5% after 50hr bake at 85°C.

Recent unpublished results have shown that this result can be further improved upon by
utilizing fine-tune erase. While fine-tune erasing has been shown to offer promising device
programming accuracy and retention results, these results are omitted from this disserta-
tion as the NeuroCTT 0.1, 0.2, & 0.3 chip designs were primarily architected to support

exclusively fine-tune programming and block erase.

13

60
® Ohours ® Ohours
= 0 hours-fimed w—) hours-Stled
. v 20 howrs w0k vy 20hous
-l — w20 boustmed | — 20 hours fited
; :" :: : -~ x * S0hous ¢ 50 hours
-~ ~ — - 50 hours-Saed — 50 hours-Stted
' ~ t 40
~ -
~ N -
NS -
~ i ~ 30 - ” - -
N (R S —
~ \ :F - R
ARNE - ¥
W
3 ~
N\ ¢~
1 ~
0 >, -
v
. . 0 . . a
200 300 400 500 600 700 80C 0 100 200 300 400 500
Initial Mean (nA) Initial Mean (nA)

Figure 2.8: CTT Device Programming Variance and Mean Drift. (left) Measured
and modeled mean drifts immediately after programming and after 20 & 50 hours at 85°C.
(right) Measured and modeled standard deviation immediately after programming, after 20

& 50 hours at 85°C. Devices were not powered on during baking.

2.4 Retention Characteristics

A group of 480 as-fabricated devices were programmed to one of 6 target states (100, 200, 300,
400, 500, & 600n.A), as shown in Fig. 2.7b. The devices were then baked for 50 hours at 85°C'.
CTT device programming variance and mean drift before and after baking are provided in
Fig. 2.8. Each of the 6 target weight distributions demonstrated excellent retention after 50

hours of cumulative baking, as demonstrated by the plots shown in Fig. 2.9.

A cell retention comparison is performed between the CTT and recently published work
with SONOS devices [Xia22] in Tables 2.1 & 2.2. It is observed that the SONOS devices
from [Xia22] experience significant degradation at room temperature, where programming
variance (Aogsonos) and mean (Ausonos) significantly drift after sitting for 120 hours at
room temperature. It is assumed that these retention issues at room temperature will be
exacerbated at higher temperature operating conditions and after longer periods of time.
Retention for other Flash devices may vary. Negligible changes in programming variance

(Aocrr) and mean (Apcrr) are observed for CTT (428nm) devices after 50 hours at 85°C.

14

1o wei ght Distribution 20 Hours After 85°C Baking % 1o wei ght Distribution 50 Hours After 85°C Baking

30

25

n
o
T

Device Count
Device Count
&

|

0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Drain Current (nA) Drain Current (nA)
(a) 20hr (b) 50hr

Figure 2.9: Device Retention over 50hr baking at 85°C. Devices were first programmed
to one of 6 target currents centered around 100, 200, 300, 400, 500, &600n A for Vgs = 220mV
and Vpg = 200mV, shown in Fig. 2.7 (t = 0). Devices were then baked for (a) 20 hours and

(b) 50 hours at 85°C. Devices were not powered on during baking.

2.5 Analog NVM Device Comparison

Tables 2.1 & 2.2 provide a comparison between state-of-the-art programming and retention
characteristics for the CTT and Silicon—Oxide—-Nitride-Oxide-Silicon (SONOS) devices, re-
spectively. Significant changes in programming variance and mean are observed for the
SONOS device at room temperature after only 120 hours. It is assumed that these retention
issues at room temperature will be exacerbated at higher temperature operating conditions

and after longer periods of time.

Using exclusively a fine-tine programming approach, excellent retention results were
demonstrated for the CTT at 85°C' over 50 hours, with negligible changes in programming
variance and mean across all target states. Further improvements are also possible using a

fine-tune erasing approach.

15

Target State | opra(0hr) | 0pra(50h7) | 0ppa(50hr) | +Accrr | +Apcrr
100 nA 13.3 13.8 2.8% 0.5 —2nA
200 nA 14.9 16.5 3.3% 1.6 —2nA
300 nA 20.3 22.8 4.6% 2.5 —1nA
400 nA 23.2 25.8 5.2% 2.6 —6nA
500 nA 29.5 33.7 6.7% 4.2 —3nA
600 nA 27.6 30.9 6.2% 3.3 —3nA

Table 2.1: CTT Retention Over 50 hours at 85°C'. a};RG reflects programming vari-
ance normalized by the range (0pra/(Inax — Inin)). Change in Programming Variance
(+Aocrr) and Mean Drift (+Apucrr) are calculated based on data obtained after 50hr bake

at 85°C'. All currents reported in nA.

Target State | opra(0hr) | opra(120h7) | 0pra(120h7) | +Acsonos | +A1sonos
100 nA 7 10 2.0% 3 +10nA
200 nA 12 18 3.6% 6 +12nA
300 nA 17 24 4.8% 7 +14nA
400 nA 21 31 6.2% 10 +12nA
500 nA 26 38 7.6% 12 +12nA
600 nA 27 40 8.0% 13 +0nA

Table 2.2: Retention Comparison with 40nm SONOS device. SONOS device data
adapted from [Xia22]. Change in Programming Variance (+Aosonos) and Mean Drift
(+Apsonos) are calculated based on data obtained after 120hr bake at 27°C. SONOS data
reflects significant degradation at room temperature (27°C') over 120hr period. All numbers

reported in nA.

16

RRAM |[Li21] CTT [Kha20]

Technology TSMC 40nm GF 22nm/14nm/12nm
Reported Retention Data Up to 30 hours 1000 hours

Relative Fluctuation ~200% < 5%

Long-Term Retention — 10yr. charge loss < 25% at 125°C
Ron/Rorr Ratio ~20x at subthreshold: ~1000x

Table 2.3: CTT and RRAM Comparison for Digital Applications. Weight instability,
or large fluctuations over time, seen for RRAM devices in the High-Resistance State (Rgg),
reported in [Li21]. Extensive retention data for CTT for 1000 hours at various baking
temperatures (25, 85,125, 180, &240°C') reported in [JLV18].

While a majority of this dissertation is focused on analog in-memory computing appli-
cations for embedded nonvolatile memory devices, it’s valuable to benchmark the them for
digital memory applications as well. In this context, it is worthwhile comparing the CTT
with RRAM devices. Table 2.3 compares recently published RRAM work [Li21] with the
CTT device [Kha20, JLV18]| for digital applications. Past work has shown that the CTT
device as a digital NVM experiences a projected charge loss over 10 years at 125°C' of <25%,
with extensive retention data available over 1000 years at temperatures between 25 — 240°C'.
Additionally, the CTT device is currently available by GlobalFoundries as a One-Time Pro-
grammable Memory (OTPM) product rated for 10 years at or above 85°C', with a multiple-
time programmable version currently in development. In contrast, RRAM devices utilizing
a qualified 40nm technology node suffer poor long-term retention with limited published
data (<30 hours) above room temperature. Additionally as reported in [Li21], large weight
instabilities or fluctuations (~200%) over time exist for devices in the High-Resistance State
(HRS). Generally, most varieties of RRAM devices provide a small Roy/Rorr ratio, requir-

ing an additional access transistor or non-linear selector (e.g. 1T1R cells).

17

Guax

Properties Size Ronyin | G Opra
CTT 22FDSOI 22nm x 428nm | 0.25MQ | ~7l 6%
90nm CMOS 3.8%
PCM G€25b2T65 ~40kS2 ~25
(rrop = 100nm)2 (0 =0.94uS)
28 x 7T0nm 14.8k€) 2 ~6%
STT MRAM
80nm x 180nm 2kQ 2 ~8%
Ag:a—Si 100 x 100nm 25MQ | ~10 —
AlO,/TiN/PCMO 150 x 150nm 6.9MQ ~T7 —
RRAM AlO,/H fOs 400 x 400nm 16.9£€ ~3 —
Winbond-90nm 2x1T1R (~62F?) — — ~5%
TSMC-40nm 2T2R ~1MSQ | ~20 —
SONOS Cypress-40nm 17186 ~2MQ | ~32 ~3.5%

Table 2.4: Analog NVM Device Comparison.

Information adapted from [GWI19,
BSN14, Jos20, Kim11, JCE10, PSK13, WMS16, He20, Li21, KRP18, APR20, Xia22]. Last

. . . ’ . .
column refers to normalized programming variance, o ppo = 0pra/Range. Limited Program-

ming Accuracy & Retention information is available for RRAM devices. [ZZP18] suggests

that the normalized programming variance can be as unacceptable as ~20% for some RRAM

devices, especially severe in the High-Resistance-State (HRS). 1 For current design target.

Experiments have shown that this can be further improved to >100x. 2lyrop refer to the

radius of the top of the electrode. B11T1S denotes that cell consists of 1 select transistor and

1 SONOS device.

18

FLASH [BGK16] | RRAM [LHY20] | PCM [Jos20] CTT
Material Prop. Floating Gate Winbond-90nm GeyShyTes 22FDSOI
Cell Config. 4T 2T2R 2T2R 2T
Bits/Cell Signed 8b 1—-3b 1—4b Signed 5b
Max. Ron/Rorr > 10° < 10? < 10? > 10°
PRG Energy/bit 10 — 100n.J <1nJ < 10nJ ~100n.J
PRG Voltage ~10V ~2V 2 -4V ~1.5 -2V
INF Voltage 1—-4V ~1V ~0.3V ~200mV
Add. Fab Cost yes yes yes no

Table 2.5: Additional Comparison Including FLASH.

In summary, the CTT is (1) completely CMOS-compatible and already exists as a qual-
ified manufacturing process, (2) includes a ‘free’ non-linear, low-leakage selector (e.g. gate)
with [I()Of”f~105, (3) is scalable to smaller technology nodes such as 12FDX, and (4) offers a
high (e.g. Ron~250k§2 —3MQ), (5) excellent device controllability, (6) manageable device

variance 0ppo = 0pra/Range ~ 6%, (7) large number of analog states (twin-cell ~5b), &
excellent retention characteristics compared to other candidate analog embedded nonvolatile

memory devices.

The CTT device, along with many other candidate analog nonvolatile memory devices,
suffers from low endurance, long write times, large cell area limited by low-resistance routing,
and requires iterative fine-tune programming with weight verification to accurately program
each weight. These limitations likely indicate that the CTT device cannot be used for highly
iterative learning due to limited endurance, however, the CTT is an excellent candidate for
Inference or in-memory computing with nonvolatile weight storage and infrequent weight

tuning.

19

CHAPTER 3

NeuroCTT Architecture

3.1 Architecture

Figure 3.1 describes our proposed inference engine with pulse-width modulated inputs ap-
plied to the CTT gates, a differential integrator which integrates the differential current
on each twin-cell column and converts the accumulated charge to a pulse-width modulated
output signal that can be conveniently applied as an input to subsequent layer(s) without

requiring any digital interface in between layers.

Additionally, the proposed inference engine can be efficiently expanded into a multi-layer
network without any digital interfaces between layers, as the pulse-width-modulated (PWM)

output of the n'® layer can be directly applied as inputs to the (n + 1) layer.

3.1.1 Overview

The proposed architecture in Fig. 3.1 consists of 3 majors blocks: (1) WL Drivers, (2)
CTT Array, and (3) Output Neurons—conceptualized by Fig. 3.3. The WL Drivers convert
differential digital (e.g. 0/0.8V) pulse-width modulated inputs to subthreshold range (e.g.
Ve = 50 —200mV) PWM inputs. The CTT Array stores the synaptic weights and produces
a differential current output waveform. Each Neuron consists of a (i) differential integrator
which integrates this differential current waveform and (ii) a comparator for computing the
output pulse width. The output pulse width is generated by discharging the accumulated

charge during inference, Q;nyr, using a dc discharge current source and computing the time

20

Figure 3.1: Proposed NeuroCTT Inference Engine. Example demonstrates a single-

N
T “Z""
=1

#hm‘omﬂlﬂw

pr—
Integrator
J

BLt1

Blct

Neuron

Neuron

BL

BLe2

{\
=

LA

3

Twin-Cel” CTT Synapse

BL3

layer network with 3 inputs (WLs) and 3 outputs (columns/neurons).

BLcd

First Layer Hidden Last Layer
rﬁzl‘l‘ T«ZI.I. Tx I,
- i=1 i=3 ‘,
Input data
encoded a5 Neuron Neuron Neuron
binary pulses of
. A
\ BLt1 Blel| gL Blcl] BL1 BlLct
oTC ! > >
E 9 ’ 3 4
DTC
— {

Figure 3.2: Multi-Layer Inference Engine. Example demonstrates a 3-layer network
where the outputs of the 1% and 2"? layers are directly applied as inputs to subsequent
layers. The output of the last layer is optionally converted back to digital using an ADC
or Time-to-Digital converter (TDC). Inputs to the first layer are assumed to be digital and

converted to pulse-width modulated (PWM) inputs using a digital-to-time (DTC) converter.

21

Digital Signals

WL DRIVER
: ‘. IB‘.I(‘)
- A K OR
. e e |COMP OUTPUT
_i _1 _{ 'l\\c(t)
CTT Array ReLU
sum (activation function)

Figure 3.3: NeuroCTT Architecture Overview.

it takes to fully discharge the respective output capacitance using the comparator circuit:

QINF

tpwm,ouT X (3.1)

Iprscuarce
This function effectively implements the ReLLU activation function by producing an output
pulse proportional to the accumulated output, Q;nyp, for only positive-valued outputs by
using a single polarity discharge source. Nonlinear activation functions, such as the ReLU

function, are required by multi-layer neural networks.

3.1.2 Input Architecture

Various input architectures have been proposed for analog-IMC applications, shown in
Fig. 3.4. When biased in subthreshold, the CTT is a strong function of Vgg and a weak
function of Vpg, described by Equation 3.2. This would render the amplitude-based input
configuration in Fig. 3.4a useless as the current is exponentially dependent on Vg, making
it difficult to control the device weights. In other words, the ‘weight” would not be constant

for all inputs; rather it would be a function of the input voltage, Vig.

22

Viax = z==========mmmma o 1
2 2
(VAREEE .o .
R 255 R 255 e
1 2 3 255 t t
(a) Amplitude-based (b) Pulse-based (c) Pulse-Width Modulated

Figure 3.4: Example Input Architectures. Example designed for 8-bit inputs.

Ip =1, x eVes/mor)(1 — = Vos/vry g = kT /q (3.2)

Pulse-based (Fig. 3.4b) and Pulse-Width Modulated (Fig. 3.4c) were considered in this
work. A pulse-based approach has been used in many recent works such as [Liu20]. While
both methods are similar, both maintain the input at some constant voltage level for an
equivalent total period of time, multiple trade-offs exist. Pulse-based methods require com-
puting and accumulating the output after every individual pulse limited overall throughput
of the system, while the Pulse-Width modulated scheme is difficult to implement because
it requires a substantially larger integrating capacitance, Ciyp, to integrate the differential

current waveform.

Assuming similar Iy, and Ipys requirements for a Pulse-based and Pulse-Width-Modulated
integrator design, if the total integrating capacitance for a 1-bit pulse-based input is Cinp,

and 8-bit inputs are used (Njppr = 8), then:

CrinFpyy = 2Vt X Crn, (3.3)

While PWM designs require a substantially larger integrating capacitance which incurs

a large area penalty, they in general provide higher overall throughput and efficiency. The

23

pulse-width
modulated signals 1 synapse

; L %! : :
— V2 s ittt .
TL w

LS 71

I
/ H vITC]—. next layer

Figure 3.5: CTT Array with Drain Inputs. An alternative is to apply the inputs to
the drains instead of the gates, where the gate would be set to some constant bias voltage
to maintain the device in the subthreshold regime. A worse I,,/l,ss ratio is observed when
the gate is connected to some Vj;,s > 0V, causing substantial leakage for “oft” devices and

degrading the overall computational accuracy.

PWM design can also be more easily power-gated when not in use.

Other configurations were also considered such as applying PWM inputs to the CTT
drain instead of the gate terminal-—shown in Fig. 3.5. This configuration is not ideal as it
provides a poor I,,/I,ss ratio as the current is exponentially dependent on Vig. Figure 3.1
represents the selected design where PWM inputs are applied to the WLs or CTT gates. A
Vas = 200mV is applied to selected WLs or non-zero inputs and all non-active WLs or zero

inputs are set to Vg = —300mV.

The ideal programmed weight range for an RVT device with W=428nm, L=20nm, Vgg =
200mV, Vps = 200mV is 100—700nA while the leakage current for unselected devices (e.g.
Vas = —300mV, Vps = 200mV’) has been measured to be <10pA assuming no subthreshold

degradation.)

24

VPP (2.7V) VPP (2.7V) VDD (0.8V) VDD (0.8V) VDD (0.8V) VDD (0.8V)

WL_VWL_EN WL_VWL_EN WL_VREAD_EN WL_VREAD_EN
IN_H
VPP_BIAS BIAS BIAS
IN_L IN_READ
VPP_BIAS WL_VWL_EN WL_VWL,_EN WL_VREAD_EN WL_VREAD/EN
WL_VPP_EN WL_VPP_EN
VSsS VSS VWL (-0.3V) VWL (-0.3V) VWL (-0.3V) VWL (-0.3V)
(a) VPP (IN_H) (b) VWL (IN_L) (c) VREAD (IN.READ_B)

Figure 3.6: WL Driver Level Shifters. Three level-shifter circuits are utilized to level-shift
differential logic-defined (0/0.8V") signals to generate IN_H, IN_L, and IN.READ_B signals
for the WL Driver Output Stage without affecting its reliability.

3.1.3 WL Driver Design

The WL Driver is designed to support several modes of chip operation including program-
ming (e.g. 1.5—2.7V), block erase (—1V'), and inference (50—200mV’) conditions. The
design consists of 24 standard-gate (SG) devices and 6 thick-oxide (EG) devices in order
to support maximal programming voltages of up to 2.7V without subjecting any of the SG
devices to reliability issues (e.g. voltages beyond 1.2V') using techniques similar to those
discussed in [RBK12]. Figure 3.6 describes each of the three 8T level-shifter circuits de-
signed to control the main output driver. The VPP level shifter converts 0V —V PP (e.g.
0V—2.7V) and 0.8V — VPP_BIAS+Vry, (e.g. 0.8V —2.2V). The VWL level-shifter con-
verts 0V—=V DD (e.g. 0.8V) and 0.8V —=VWL (e.g.—0.3V), while the VREAD level-shifter
converts OV—VWL (e.g. —0.3V) and 0.8V—=V DD (e.g. 0.8V).

Figure 3.7 describes the 6T Output Stage with example operating conditions for pro-
gramming and inference modes. Table 3.1 provide example logic inputs for each of the three

level-shifters to provide the specified output (last-column).

25

Mode WL status VPP_EN(x) VWL_EN(x) VREAD_EN(x) Output

selected 1 1 0 VPP (2.7V)
PRG
unselected 0 0 0 VWL (0V)
VER selected 0 1 1 VREAD (0.2V)
INF unselected 0 0 0 VWL (-0.3V)
selected 0 0 0 VWL (—-1V)
ERS
unselected 0 1 1 VREAD (0V)

Table 3.1: WL Driver Control Logic. Example Output Driver voltages for each condition

are provided in the right-most column.

Programming Mode ence N
VPP_DRIVER (2.5V) VPP_DRIVER (0.8V)

VPP@TV) WL Output:
Biasry, IN_H— |ee ...VPP_DRIVER IN_H—| e
vss 2
EG VWL EG
BIAS BIAS
(1.5V) J L BIAS (1.5V) BIAS
. EG EG
VPP (1.5V) Cw (1.5V) Cwi
Voo IN_L e es| |- IN_READ_B IN_L — e es| - IN_READ_B
_________ VWL VSS N\ VSS
VWL VREAD \ VWL VREAD \‘\
PRG:O0V PRG: OV VPP - \
\ \
VWL
(a) Programming (PRG) (b) Inference (INF)

Figure 3.7 WL Driver Output Driver Stage during Programming (PRG) & In-
ference (INF). Three level-shifter circuits, shown in Fig. 3.6, are utilized to level-shift
differential logic-defined (0/0.8V) signals to IN_H, IN_L, and IN.READ_B signals. Output

Driver consists of thick-oxide (EG) devices to support programming voltages up to 2.7V.

26

3.1.4 CTT Array Design

Cell area, programming efficiency, retention, device variability, half-select issues during pro-
gramming, inference accuracy, and several other factors were taken into consideration when

designing the twin-cell CTT array.

In this particular design, the cell area was not dominated by the twin-cell CTT device
itself. Rather, it was limited by (1) the minimum pitch of peripheral circuitry and (2) the
BL/SL routing which was designed to support ~mA programming currents during PRG
modes of operation. The cell size was set to 0.52um x 3.6pum where 0.52um is the minimum
pitch of the EG-based WL Driver and 3.6um is the designed height of each analog neuron
circuit, laid out similarly to that shown in the conceptual diagram in Fig. 3.3. Cell size
can be further reduced by a factor of 2x by driving WLs from both (top and bottom)
sides, reducing the minimum cell width to 260nm. The cell height is mostly limited by
the BL/SL routing. In order to ensure that CTT devices can be programmed efficiently
(support ~mA’s programming current), the BLt, SL, and BLc must have sufficiently low
resistance. Using metal 8, these lines have been designed to have a resistance of 6.5—8.2€2,
neglecting tungsten device contact resistance. This limits the cell minimum height to 2.7um

(W = 450nm, Pitch = 900nm).

Leveraging empty space in between twin-cell CTT device columns, as-fabricated device
variability was minimized by applying specific considerations during layout phase to include
dummy devices to reduce lithography-related variability effects. The target cell, Regular
Vry (RVT) nfet device with W=428nm & L=20nm, was selected based on extensive device
studies with a various threshold voltage (e.g. RVT, SLVT, etc.) and channel width device
flavors. While the 428nm device was selected for the most recent NeuroCTT 0.3 tapeout, a
10 x 8 twin-cell array macros with 170nm devices was also included to evaluate the feasibil-
ity of using smaller channel width devices. Smaller devices reduce the subthreshold current

range and hence improve the energy-efficiency of peripheral ADC circuitry such as the neu-

27

WL, WL,

T
o Lo T Lo I Lo o T Lo

WLp,
WLn,

€L €
) Lo T Ly
WL, WL, WLp,
T X RS T Win, o+
€
o Lo T [4 o L[¢ T Lo
) WLpy
WLy WLy Win]
+——r + m g T N
T_-I_I__Y_—l_r_T T_—,_I__T —I_‘__T) o P O e D
BLt, sL, BLc, BLt, Slp, SLn, BLc, BLt, sL, BLc,
(a) Shared SL (b) Split SL (c) Split WL

Figure 3.8: TWIN Cell Array Design. Multiple array designs were considered providing

area, half-select, and inference accuracy tradeoffs.

ron in this specific architecture, but at the potential cost of higher variability, worsened

programming variance, and diminished charge retention.

While a Shared-SL (Fig. 3.8a) approach was utilized when designing the most recent
array, Split-SL (Fig. 3.8b) and Split-WL (Fig. 3.8c) implementations were also considered.
Split-SL offers an additional advantage of improved half-select during the erase mode at the
expense of increased cell area and the design may also degrade inference accuracy as the the

SLp and SLn are no longer set to an identical ground potential.

Programming and Erase mode half-select issues are reviewed by Figures 3.9 & 3.10,
respectively, for the Shared-SL array configuration. Split-SL array design can eliminate half-
select issues shown in Fig. 3.10 by using two separate SLs to apply separate bias conditions

to both twin-cell devices.

28

1.2V 1.2v 1.2v 0V 1.2V 1.2V 1.2V 1.2V 1.2V
WL, . . i Y Py o Py
ov 1 S B S B P S [= S
— Lo 1 L4 Lo—' b I L4 .»J_L»J_L
25v Wl o " o N o ~ o 1)
' 1 Al L JC el aC aC
.Pe a
0y o G W 9 1 sy 0 W 0
H
ov WLy o ° [Py 'Y Py Y
1 1 ‘ - 1L 1 1
o— L4 T [¢ g»—l L | Y o) Lo T L4
BU, sL, Ble, BL, SL Blc, BLY, Sty BLey,

Figure 3.9: TWIN-Cell Array: Programming (PRG) Half-Select. Regular Vg nfet

devices are nominally rated for maximum Vgg, Vps = 0.96V. While programming the target

device (1 Vry), however, we apply higher voltage conditions to the device for short intervals

of time (pulses~50—500us). These conditions can affect the threshold voltage of non-target

cells on the same row (red) or column (orange).

ov ov ov 1V 1V 1V ov ov ov
WL, _ _ N _ (floqting) _ _
v I S . B S - i S R
.._-I—L*m; "J_L(J_L‘j oy .;_-I_LoJ_L"
_1v w"? o . o \ (Y P Y
i L T a0 Healf- i 1
o Lo T Lol Glecle] Lo T T4
H H H H
1 1 . . 1 1
.,J_LoJ_Lo ojj-—oJ_r—o ojj-—o—-’_r—o
BLt, SL, Blc, BLY, SL, BlLc, BLt, SLy, Blcy

Figure 3.10: TWIN-Cell Array: Erase (ERS) Half-Select. Regular Vg nfet devices are

nominally rated for maximum Vgg, Vps = 0.96V. Higher voltage conditions are applied to

the device for short intervals of time (pulses~50—500us) while erasing the device ({ Vrg).

These conditions can affect the threshold voltage of the complement cell (green) as it is

subject to similar voltage conditions and erasing does not require a large Ipg current.

29

BLt_TO_NEURON BlLc_TO_NEURON

o .

« OV/2V Level-Shifted Logic Signals (7 30
1: LS BLt SELECTED (& N
2: LS BLt UNS CTED (& N e he— — —
SEl N) GI ‘ U cl) 1
LS SL_UN CTED (& N)
S Blc SELECTED(& N —l —_—
6:LS BLc UNSELECTED (& N _ 'G“ C ' | o
S PROTECTION SWITCH EN 2 a @ - a

+ 0V/1V Level-Shifted Loqic signals L —
- 8: INTEGRATION_SWITCH_EN &l & b &l 0 b & lp 6 b
| l B | l £J 6

alt\l.lllb:‘ BL‘IWII:HD SLH\K'IO SLMIJUI: 8\(“‘.("5 BL(\.‘:(U('IU
(8-1.8v) (@-1.8V) (@-1.8V) (@-1.8v) (@-1.8V) (@-1.8V)

Figure 3.11: Column Array Mux Design.

3.1.5 CTT Array Mux & Level Shifter Design

The CTT Array is co-designed with an array mux which supports applying a variety of infer-
ence, verification, programming, and erase bias conditions to CTT devices within the array.
During programming and erase modes, these mux devices can be enabled/disabled based on
specified timing constraints loaded onto the chip, which allows for precisely tuned on-chip
BL/SL voltage pulses to be applied to target devices while minimizing overall exposure time

to higher voltage conditions to prevent reliability issues.

The Column Array Mux is shown in Fig. 3.11. The BLt, SL, and BLc are each connected
to two external pads (PAD_BLt SELECTED, PAD_BLt UNSELECTED, etc.) via two
separate mux’s. These pads allow for two separate 0—1.8V voltages to be applied to the
selected and unselected columns, respectively, depending on the mode of operation. In order
to prevent stress on the array mux devices during PRG and ERS modes, thick-oxide (EG)
devices are utilized. Programming mode (PRG) requires the selected BL /SL path to be fairly
low-resistive as mentioned in the previous section, so the EG devices on the BL/SL selected
paths are sized fairly large (e.g. W~100um) and require level-shifted logic to properly turn

on each of the EG mux devices.

30

Logic Signals (0/0.8V)

Level-Shifted Logic (0/1.9V)

BLt SELECTED
BLt SELECTED_N
BLt_UNSELECTED
BLt_UNSELECTED_N
SL_SELECTED
SL_SELECTED_N
SL_UNSELECTED
SL_UNSELECTED_N
BLc_SELECTED
BLc.SELECTED_N
BLc_.UNSELECTED
BLc_.UNSELECTED_N
PROTECTION_SWITCH_EN

LS_BLt_SELECTED
LS_BLt_ SELECTED_N
LS_BLt UNSELECTED
LS_BLt UNSELECTED_N
LS_SL_SELECTED
LS SL_SELECTED_N
LS_SL_.UNSELECTED
LS_SL_.UNSELECTED_N
LS_BLc_SELECTED
LS_BLc_SELECTED_N
LS_BLc_.UNSELECTED
LS_BLc_UNSELECTED_N
LS_PROTECTION_SWITCH_EN

Table 3.2: Column Array Mux Level-Shifted Logic Controls.

On-chip logic generates necessary control logic signals to enable/disable each of the mux
paths shown in Fig. 3.11. These control logic signals are level-shifted from 0/0.8V — 0/1.9V
using the level-shifter circuit shown in Fig. 3.12. The level-shifter shown in Fig. 3.12a
first generates the IN_H and IN_H_N signals by converting the input signal from 0.8V —
VPP_BIAS + Vg, (e.g. 1.2V) and 0V — 2V. IN_H and IN_H_N signals are then used to
enable/disable the output signal drivers shown in Figures 3.12b & Fig. 3.12¢ which generate

level-shifted logic for the input signal and its complement, respectively.

While the chip is in the IDLE condition, the BLt and BLc mux’s are deselected and the
SL is set to 0V via the SL_UNSELECTED path, shown in Fig. 3.13. Additionally, the device
is disconnected from the neuron circuit by turning off the the PROTECTION _SWITCH ((7)).

31

VPP_2V (2V) VPP_2V (2V)

VDD _2V (1.9V) VDD_2V (1.9V)
N_H IN_H
VPP_BIAS IN_H EG m EG
- LS_LOGIC_IN LS_LOGIC_IN
1.9V 1.9V
LOGIC_IN EG LOGIC_IN EG
LosicIN LOGICIN 0.8V 0.8V
—_W ov_/_ __OV v o/ ov
VSS VSS VSS VSS

(a) VPP Level-Shifter (b) LS_LOGIC_IN (¢c) LS_.LOGIC_IN_N

Figure 3.12: Column Array Mux: Level-Shifted Logic Control Signals.

BLt_TO_NEURON BLc_TO_NEURON

& F

BLt
L

0V (floating)
(18 b b

BLtseiecreo Bltuwnseiecres Slspiecren Slumserecren BLCserecren BLCiwseiecten
(0.2v) (oV) (ov) (oV) (8.2V) (oV)

Figure 3.13: Column Array Mux Design: IDLE Mode.

32

BLt_TO_NEURON BLc_TO_NEURON

(0.2V from neuron)

- s
& F
78 =
Selected WL
(50-200mV) . i —
I . .
G“v GH
Selected WL
(50-200mV) — —L
N I B I
5 Gato Ca S
o o
0.2V OV 0.2V

KK o K

BLtSELE(TED BLthSELE(KD SLSELEUED SLUNSELE(YED BLCSELECYED BLCLNSELE(TED
(8.2V) (0.2V) (ev) (ev) (0.2V) (0.2V)

Figure 3.14: Column Array Mux Design: INFERENCE Mode.

During INFERENCE (Fig. 3.14), the switch mux stays in a configuration identical
to that in IDLE mode, except the PROTECTION_SWITCH ((7)) is enabled. The neuron
integrator provides a virtual supply (Vp = ~200mV’) to the twin-cell CTT drains (BLt,

BLc) and integrates the column differential current (Ipr:(t) — Iprc(t)).

During normal PROGRAMMING mode of operation, pulse order and timing is taken
into special consideration to reduce possible half-select issues. Figure 3.15 demonstrates
programming operation on the True (T) device. First, the SL is raised high on all columns
and the respective BLt/BLc for the target cell on the selected columns is brought to 0V,
providing a BL-SL pulse to the selected devices. Next, the selected WL(s) are raised to a

large programming voltage (e.g. Viyr = 1.5—2.5V) for a specified duration of time.

Table 3.3 provides information on maximum pulse widths for the BL, SL, and WL pulses,
specified at forx = 20M Hz. Actual logic implementations are chip programming config-
uration parameters are provided in Fig. 3.16, where all pulse timing information is de-
rived from the SL_START (4b), BL_.PULSE_WIDTH X (16b), WL_PULSE_WIDTH (16b),
BL_PULSE_WIDTH.Y (16b), & SL_END (4b) programming parameters.

33

BLt_TO_NEURON BLc_TO_NEURON

& F
Selected WL
(1.5-2.5V) | — 1 \\ —_
< I targetl] L
G::- / Gy,
R——/
S _
S I I D
j G.‘x- g
m
ov 1.2V (floating)

BLtseiecreo Bltuwseiecreo Slserecreo Slumseiecreo BLCseiecren BLCimserecreo
(ev) (1.2V) (1.2V) (ev) (ev) (1.2V)

Figure 3.15: Column Array Mux Design: PRG_T Mode. SL_SELECTED enabled for
all columns in order to reduce half-selected devices in other columns that are located on the

SELECTED_WL by lowering the Vg (e.g. Vs = 1.2V, Viyr, = 2V = Vigsunsetected = 0.8V).

Parameter MAX Pulse Width
SL_PULSE_WIDTH 9.83175ms
BL_PULSE_WIDTH 9.83025ms

WL_PULSE_WIDTH 3.27680ms

Table 3.3: Programming (PRG) Pulse Timing Parameters. Maximum pulse widths

defined at forpx = 20M Hz. Longer pulses can be applied by lowering system CLK frequency.

Pulse widths derived from timing parameters shown in Fig. 3.16.

34

P1: | p2: 5 P3: 5 P4: : P5: | Pe:
Setup ! ApplyBL : ApplyWL : Disable WL | Disable BL ; Disable SL

BLt_UNSELECTED_EN
BLc_SELECTED_EN
BLc_UNSELECTED_EN

SL_SELECTED_EN S S————————— I
SL_UNSELECTED_EN : ; :

WL_EN<"> ({selected) ' T

18V (eq),

BLt_SELECTED_EN] BL_PLLSE_ WIOTH_X _PULSE_WIOTH_Y 168 :

cdeehe
- wh-

SL Voltage (ALL columns)ov

BL Voltage (T)

2

BL Voltage (C)
1.5.2.5v

22

WL Voltage (selected)

“1.6ms gaomuzt: 1.6ms gaaomnzt 1.6ms @40MHz'
1 3

—n--———r-‘——v-—-—-——
& -q--‘.._._-r~—--<.-

[
|
.

P T R R R

Figure 3.16: Column Array Mux Design: PRG_T Timing Diagram.

BLt_TO_NEURON BLc_TO_NEURON BLt_TO_NEURON BLc_TO_NEURON
l—
JL "i i JL 0&)
Selected WL Selected WL
(1.5-2.5V) [— ~ —T (1.5-2.5V) [~ — ~ —T
—T targetl— _;_T_ Ttargetl) I
b -\m—’/ " I 110
—1 1 —1 PR
N I _I_I_ J T T T
- G 9 - [Gy %)
@ @ @
oV “11.2v 1.2V|” 1.2V OV 0V (floating)
Bltseecreo Bltumseecreo Slsewecreo Slumseiecreo B'-‘smcvso BLCms(L((vm BLtgeecren BLtu&smcv:n SLsmum Sluwseiecreo BLCseiecreo BLCunserecreo
(av) (1.2V) (1.2v) (ov) (1.2v) (1.2v) (1.2v) (ev)
(a) PRG_T (No Float) (b) PRG_T (Reverse)

Figure 3.17: Column Array Mux Design: Alternative PRG_T Modes. (a) The No
Float configuration explicitly applies a voltage to unselected BLs (e.g. 1.2V') rather than
having them float, ideally to the SL voltage. (b) The Reverse configuration flips the BL and
SL voltage polarities during programming, at the anticipated expense of worsened half-select

issues for unselected devices in other columns connected to the SELECTED_WL.

35

BLt_TO_NEURON BLc_TO_NEURON BLt_TO_NEURON BLc_TO_NEURON

(0.2V from neuron) N
}— Sele dw ‘

elected WL _| e
) T] = = e S T
< J [tajget J [> target [
| 6 [Gy
~— % A
— _ PR N —_
ﬁ_l_ I = _l_l_ B [
= I “ 3 =T -
0. 2V “lov 0.2V 0. 2V
BLtseecrep BLtywseiecren SLseiecren SLU,‘“LEUED BLCseiecren BLCywserecten BLtseiecren Bltunserecren Slseiecren SLunsszcrEo BLCseiecren BLCiaserecten
(0.2v) (e.2v) (ev) (0.2v) (0.2v) (0.2v) (8.2v) (ev) (8.2v) (0.2v)
(a) On-Chip Verification (Twin-Cell) (b) Off-chip Verification (Single-Cell)

Figure 3.18: Column Array Mux Design: Verification Modes. (a) The On-chip
verification mode utilizes the neuron circuit to measure a single twin-cell CTT differential
current for a fixed duration in time. (b) The Off-chip verification mode allows the user to

connect an Analyzer (Fig. 2.6b) to measure individual device currents accurately.

On-chip programming configuration parameters are further elaborated upon in Sec-
tion 3.4.4, where the chip testing user interface is discussed. On-Chip and Off-chip ver-
ification schemes are also included in the design (Fig. 3.18. On-Chip Verification is
similar to INFERENCE which utilizes the neuron circuit except typically only 1 twin-cell
device is enabled or measured at a time for a fixed input duration. Off-Chip Verification,
on the other hand, enables the BL_SELECTED and SL_SELECTED paths on selected col-
umn(s), which allow an external Analyzer to bias the device Vpg~200mV and measure the
subthreshold Ipg. A similar mode is included for Off-chip INFERENCE which allows

multiple WLs to be selected and the column (Ip1:(t) — Iprc(t)) to be measured externally.

Additionally, a variety of additional programming, inference, verification, and debug
modes were also included. Figure 3.17 describes two additional programming modes (No
Float and Reverse) that can be used for evaluating cell programming efficiency. Debug

modes are included which allow all switch settings to be reconfigured after tapeout.

36

Igp.

BLt VOoUT,
' | tpwa]
Ble e VOU'T OU I(‘PI.V'I
IIH.r @ — e |) .

4 MIN_OUTPUT_PULSE

Figure 3.19: Neuron Design Overview. Design consists of a (1) differential current

integrator, (2) comparator, and (3) logic or-gate.
3.1.6 Neuron Design

The neuron consists of three main components: an (1) Integrator tasked with computing the
weighted sum, a (2) Comparator circuit which is used to convert the weighted sum (Q;nyr)
result into a pulse-width-modulated (tpw) output signal, and an (3) Or-gate—shown in
Fig. 3.19. The pulse width-modulated output signal (¢py as) is proportional to the weighted
sum or accumulated charge on the Cryp capacitor during inference. A constant discharge
current (Iprscuarce) is used to linearly discharge the output capacitor. The Comparator
circuit calculates the amount of time it takes to fully discharge the capacitor (Eq. 3.1). An
or-gate is included at the output to allow a logic-defined minimum output pulse for debugging

purposes, specifically for when ¢pyp = 0.

The Neuron Integrator (Fig. 3.20) integrates the differential current (Ipr:(t) — Ipr.(t))
only, requiring a 4x smaller capacitor than a traditional differential op-amp-based integrator
configuration with two separate capacitors. It consists of a center gain-boosting stage which
can be disabled. If the gain-boosting stage is disabled, an external bias voltage can be
supplied to the CG amplifier. The circuit also includes a common-mode feedback loop
designed to bias the BLt and BLc to ~200mV and act as a virtual supply for the CTT array.

The resultant differential current is integrated and stored on the C7yp until the integration

37

VDD _NEURON VDD NEURON

T TOP.CS TOP.CS T

e ey

VREF_200mV VREF_200mV
e -
TOP_CS
AYAVAY . NN
Cing
VOUT; I I VOoUT,;
[
>
BLt BLe
131.45@ Ipras
100A 100uA

Figure 3.20: Neuron Differential Integrator Design. Design includes G, gain-boosting
stage (center op-amp) and common-mode feedback which provides a 200mV" virtual supply
for Vgrs & Vpre. Gain-boosting stage can be disabled by providing a CG bias voltage
(NO_INT_CG_VREF_EXT) and setting USE_BOOSTED_INTEGRATOR = 1'00.

38

VDD.NEURON VDD.NEURON

N N
VDD NEURON

P1 <l+ e +| P2 A
_ . CM_VGS_PMOS_20pA .
VDD x/\r\:(:no.\: | T/_L | _:I_ g -‘l P5
E \ N ol ‘ .)|
NEG : POS VIN, yppNEURON | VLI
. P3 P4 . s NN P
+ 3 l_I|’ \l..\ *lﬁ"-'* l’l*” \l‘l
¥ l COMP BIAS | N
our D? D D{:“.M OUT
L ¢ .
>
) N || ([
v “ CM_VGS 204A || Ib
(a) 15¢ Stage (b) 274 Stage

Figure 3.21: Neuron Comparator Design.

period has completed. After the integration (INFERENCE) period has completed, the
DISCHARGE phase begins and the comparator circuit is activated.

The Comparator circuit consists of two stages followed by a chain of inverting buffers.
The first stage consists of a PMOS-Input Folded Cascode Amplifier and the second stage
consists of differential pair with active current source load and single-ended output, shown
in Fig. 3.21. The output is then sent through a chain of inverters. Afterwards, The neuron’s
PWM_OUTPUT signal is sent to the Time-to-Digital Converter (TDC) block for digitization
using a simple digital up-counter block. Special precautions were taken to prevent hold or
setup violations since no timing constraints exist for the falling edge of the analog-valued

pulse-width-modulated output signal.

During the DISCHARGE phase, constant current sources are connected to the two ter-
minals (VOUT;, VOUT;) of the integrator’s output capacitor, Cjyr, and linearly discharge
the capacitor, shown in Fig. 3.22a. VOUT; and VOU'T; are connected to the comparator’s
input, and the comparator is tasked with accurately calculating the time it takes to fully
discharge the capacitor. Fig. 3.22b and Fig. 3.22c¢ demonstrate the comparator’s output for

positive and negative weighted sum results, respectively.

39

Qie>0: Q\e<0:

-
Inference Discharge ENABLED Inference | Discharge ENABLED,, *
« e N . e -

.
-

N I + N . - e ‘ - e e
J:"”T" 3 NS JPie Vour2_ =~
—_—
|Vour,z _ l/;u: ~.” -7 vOUr_,
~2
Q\e<0:) on ut
(a) Comparator (b) Positive Sums (c) Negative Sums

Figure 3.22: Neuron Comparator Circuit Evaluating PWM Output.

The Comparator and Discharge current source design realizes the Rectified Linear Unit
(ReLU) Activation function where the neuron’s pulse-width modulated output is zero for all
negative weighted sum results, and proportional to the weighted sum for positive weighted
sum results. The ReLLU Activation function has been demonstrated to be an excellent can-
didate for classification or activation functions in deep neural networks [Agal8]. While the
ReLU activation is implemented in this design, it is feasible to consider other activation

functions in future designs. The implemented ReLLU activation is summarized in Fig. 3.23.

Neuron Logic Control is divided into six phases: (1) Turn-on, (2) Setup, (3) Infer-
ence, (4) Discharge, (5) Reset, and (6) Turn-off, as shown in Fig. 3.24. All neuron logic
control phases are derived from the chip’s INTEGRATOR EN X (9b), INTEGRATOR_SETUP (90),
INFERENCE_DURATION (10b), DISCHARGE (10b), RESET_Y (8b), and INT_EN_Y (4b) configura-
tion parameters. Additionally timing parameters are available to tune various other neuron
logic signals externally. The neuron performs integration during the 3"¢ phase (‘INTEGRA-
TION’) on the differential input current to the integrator, Igp:(t) — Ipr.(t), presented by
CTT array. The neuron’s pulse-width modulated output is produced during the 4** phase
(‘DISCHARGE’) where the comparator is utilized to evaluate the time it takes to fully

discharge the integrator’s output capacitance, Cyyp.

Given the typical sparsity of neural networks, a majority of weights tend to be zero or

close to zero. A zero weight can be implemented using a twin-cell CTT device such that

40

Neuron Output, ey (NS)
A

100 ns

256 256

Ny = Z WXy = Quup = Z Iixty

(=1 =1

» Weighted Sum (Q,xs)
50fC

Figure 3.23: Neuron Comparator Realized (ReLU) Activation Function. The Recti-
fied Linear Unit (ReLU) Activation function is implemented using the comparator to evaluate
the time it takes for the neuron to fully discharge the Ciyp capacitor, where positive sums
result in a non-zero PWM output (Fig. 3.22b) and all negative sums result in a zero output

(Fig. 3.22¢). Iprscuarce = 500nA is assumed.
Neuron Config Logic | S1: Tum-on | S2: Setup ! S3: Inference S4: Discharge ‘ RS;!;; : ' S6: Off !

INTEGRATOR _EN
COMPARATOR EN W cesen

tdc_count_reset?

tdc_count_enable?

INFERENCE_DURATION! ' BTN H : :
WL_DUMMY_INPUT : | T owan x| ‘ : : |
INTEGRATION_SWITCH_EN: | [e | ; 5 ¢
(T : : I'_‘—_" ' ' ‘
MIN_PULSE (TMAX_TMIN) ! ' ' EXTETs 1 ‘ '
DISCHARGE_EN H H 1 m H :
OR_EN H H EDTTT 00
OFFSET_P_EN : ' i SR B i ' ‘ '
OFFSET_N_EN ' H (— | H H ‘
RESET_INTEGRATOR : ETETE ' e

“:) tserue (90) B T ouranon (100) | ouscrnage (10D) :
t, (9b) t; 4 t t, t

Figure 3.24: Neuron Configuration Logic & Timing Diagram. Compute consists of 6

stages. The duration of each stage is derived from the neuron configuration parameters.

41

B I
[T Qe o [TTT]

Figure 3.25: Neuron Integrator Offset Cancellation Schemes. The integrator design

includes several positive and negative offset current sources and 8-bit trimming circuits to
negate any mismatch-induced offsets. lorrser, & lorrser, are optional dc sources applied
for Np & Ny cycles, respectively. Trimming circuits are included for providing a positive or

negative dc offset current with 8 b resolution.

o™ o™ ol o™ g0 I Inference Discharge
—, W—
VDO
Nas tegraton Perog o I I o
vod
. - - - P e N INT_EN COMP_EN "
. — N LCOMPEN_ 0V | sooms lee
/ - L
Y =) 0A OA
- |] - 1 F \
s 4 4 DEOANGE_EN [-‘EH
() =) %) e / [el N VoD —
n) M M] \ Newron Outpet [$or Zero Inpet | | - Postive Offsel
\ - - .
1SL N’

Y T T L

Corveiod New on Outgt o o™

N / BLt for 2ero rpat .
>

Neuron Qutput now is 0 for zero input

. P -, e N v ,—1-3. Negative Offset
| ° | ° | R | By < Correction applied
A
\

Figure 3.26: Additional Offset Cancellation Using Extra CTT Devices. Extra rows of
CTT devices can be programmed to provide a specific weight and each WL can be enabled for
a certain number of clock cycles. Applied offset of AQ = (%) x G51 X Vpr + (%) X Ge1 X VBr
is shown in provided example. It is, however, important to mention that this approach would

not solve any input-dependent offsets.

42

the differential on-current or weight is ~0; however, the common-mode current might be
reasonably large. This presents an interesting problem to the differential integrator as it
must be able to handle large common-mode currents, I-y;. In fact, in some instances the
common-mode to differential mode (¢ /Ipyr) ratio can be as large as 1000 x. The integrator
has been designed to handle these scenarios; however, offset compensation schemes or post-
fabrication calibration are required due to process-induced mismatches in the differential
integrator mainly driven by the design of the bias current sources. In other words, the
integrator might integrate mismatch-induced offsets or currents within the design which may
lead to the neuron output saturating even in the zero-input case. These mismatch-induced
offsets can be counteracted using a variety of calibration schemes which are reviewed at a

high-level in Fig. 3.25.

The main offset correction scheme consists of 8-bit trimming current sources (Irgrra_p
& Irgrv_n) which allow a positive or negative de current to be supplied to counteract any
dc-offsets at the output of the integrator. These sources have been designed to apply a dc
offset of up to +1.6pA (nominally) with 8-bit precision. The second option involves a set
current sources (/orrspr p & loprspr n) which can be enabled for a specified number of

cycles (Np & Ny, respectively), to apply a fixed offset charge at the output.
AQapplz‘ed = lorrser.p X Np — lorrser. v X Nn (3-4)

Equation 3.4 describes this fixed offset charge applied to the output. It is important to
note that this method does not correct for input-dependent offsets. Additionally, extra Wls
within the CTT array itself can also be used to applied a £AQ offset, described in Fig. 3.26.

Finally, the design also included a ‘swapping mode’ which allowed the integrator’s bias
sources to be swapped from side-to-side at regular time intervals (specified by the T_SWAPPING
parameter) In theory, this allows for any mismatch-induced offsets to be averaged out, ne-
glecting channel length modulation. For the sake of brevity, these options have been omitted

from this dissertation.

43

Target AG;; | True (Gr,;) | Comp. (G¢,,)
+600n A 700nA 100nA
+500n A 600nA 100nA
+400n A 500n A 100nA
+300n A 400nA 100nA
+200n A 300nA 100nA
+100n A 200nA 100nA

+0nA 100nA 100nA
—100n A 100nA 200nA
—200n A 100nA 300nA
—300n A 100nA 400nA
—400n A 100nA 500nA
—500n A 100nA 600nA
—600n A 100nA 700nA

Table 3.4: Example CTT Weight Mapping with 13 Target Differential Currents.

3.1.7 Trained Network Layer Mapping to CTT Array

Efficiently mapping digitally trained networks weights to CTT devices (Aw;; — AG;;) is
important as it has several accuracy, performance, and retention implications. Recent work
as well as past work shown in [Wan20a, GWI19, Gul8| demonstrate that a differential twin-
cell CTT (nfet, RVT, W=428nm) biased at Vs = ~200mV and Vpg = ~200mV can realize
a usable range after programming of [—600nA, 600nA]. As an example, 13 differential weight
states (~5b) can be created with 100nA spacing, as shown in Table 3.4. Additionally, rather
than individually programming CTT devices, twin-cell weights can also be programmed such
that it reaches the target differential current. The actual Gr,; & G¢,; weight values can be

arbitrary (e.g. Gr,; = 347TnA, G¢,; = 148nA — AG;; = 199nA).

44

Analog Bi-Scale (ABS) Weight Representation:

An Analog Bi-Scale (ABS) weight representation, first reported in [WWZ22], is utilized to
map weights of each layer to maximum CTT device conductance range. Mapping is first
performed on a layer by layer basis, where each a scaling coefficient, 3, is used to map
the trained network weights to the usable range, [-600nA, 600nA]. The absolute maximum

weight (Wapsmaz = max; j |w;;|) is used to determine the appropriate § scaling coefficient,

Gmaz

Wabsmazx

where § = . For any two arbitrary network layers a & b, B, # Pp.

Since B, # [, a secondary scaling can be performed at the output such that the two
network layers are equivalently scaled. First, let’s consider the pulse-width modulated output

of each layer as proportional to the accumulated charge during integration, Q;yr.
QINk X tpwm (3.5)

A DC discharge current source is utilized to convert the accumulated charge, Q;nrp —
tpwar, where tpy s is the time it takes to fully discharge the integrator’s output capacitance

using the DC source:

tpwa = M (3.6)
IprscHARGE

For two layers a & b with the same weights and pulse-width modulated inputs, the
outputs in terms of charge for each layer would be @, = VonGutin & Qp = VonGytin,
respectively. In order two scale these two such that tpw s, = tpwa,, the discharge currents

for each layer must be selected appropriately:

/Ba _ /Bb (3 . 7)
Iprscuarce, IprscHARGE,

This implies that each network layer may be able to utilize a different discharge current,
but actual implementations might limit the flexibility of this nob due to design limitations.
A simplified design might restrict each network’s scaling coefficients such that 5, = 5, =

and all networks can utilize the same discharge current reference for compute.

45

=) =) <)
- - -
o ~ -
=] <)
° -
@ o

=)

°

@
o
=
o

frequency
frequency

0.04

0.00 a

-100 -0.75 -0.350 -02%5 Q00 0235 030 0.7% 100 -800 -600 -400 -200 0 200 400 600 800
Normalized Trained Weights Mapped Trained Weights (nA)
(a) Normalized Weights (w;;) (b) Mapped Weights (AG;;)

Figure 3.27: Example Weight Mapping for Normally Distributed Weights.

Bias Term (b;) Implementation for PWM Architectures:

The layer bias terms can be combined with the weights, but a scaling typically must first
be applied, because the bias term (b;) is typically much larger than the range of the trained
weights. By mapping the bias terms to extra row(s) of CTT device(s), a scaling factor
(S > 1) can be mapped to a constant input applied to the bias rows for every input frame.
In other words, the bias-term is remapped into a fixed amount of charge after integration,
bj — Quias,;- This input-independent offset charge can be generated by programming a CTT
cell to a specific differential weight value (AGbiasj) and by setting the input to this row
to some constant value for all input frames, (e.g. Qbias; = VonAGhias;ts, where 1, S).

Example weight and bias term mapping to a single weight array is shown in Eq. 3.8.

n|s

w1 -+ WN1

y:wa—i-b:[xl xe ... xn S| o : (3.8)

n|s

wl] DR wNJ

Concepts including weight truncation may also be worth exploring as it could expand
the overall weight utilization of the entire range at the loss of truncating weights that likely

have the largest affect on the network’s output—example shown in Fig. 3.28d.

46

2001 wum weights (W) 1 - weights (w)
B Bias Terms (8) B Bias Terms (8)
175 175
150 4 150 4
125 4 125
§ 100 4 § 100
v v
754 75 4
50 1 0 4
2% 2%
0 — I EIY i 1 1 r 0

-4 -2 0 2 4
Normalzed Values Normalu:td Values
(a) Weights (w;;) & Biases (b;) (b) Weights (w;;) and Scaled Biases (bj/S)
010
0.08 4
g 50.06‘
g H
0.04
0.02
OA-BOO V 00 200 0 200 40 60 BO ’ -600 -400 -200 200 400 600 800
Mapped Trained Weights (nA) Mapped Trained Wequs with Truncation (nA)
(c) Original Weights (G;;) (d) With Truncation (G”)

Figure 3.28: Example Bias Term Scaling & Weight Truncation. (a) & (b) show
example Bias Term Scaling with S=6. (c) & (d) show a separate example of weight truncation

as a possible approach for mapping trained weights to devices (e.g. w;; — Gj;).

47

0.1 4

0.0

0.1 1

[}
]
[}
]
1
[
'
'
]
'
o
i
\
[}
-

Cost Function

.
L u
T T T T T v
1 5 6 7 8
T T T T T T T T
25 7.5

126 17.5 20,0
W AW <AW>narrow-valley

Figure 3.29: Hessian-Aware Stochastic Gradient Descent (HA-SGD). Given that
analog networks deploy weights that are similar but not identical to the actual digitally
trained weights, it is important to consider this programming variance (opgrg) or weight
error (AW) during the training itself. HA-SGD training algorithm smoothens the gradi-

ent to prevent small weight errors during deployment from leading to substantial accuracy

degradation. [WWZ22]

3.1.8 Training Networks Considering Analog IMC Implementations

A Hessian-Aware Stochastic Gradient Descent (HA-SGD) algorithm is utilized to train neural
networks at the software-level to consider inherent variabilities introduced when deploying
trained networks to error-prone analog NVM devices. By considering the deployed weight
error or programming variance (oprg) as previously defined, the analog-resiliency of the
network can be dramatically improved. Details of the HA-SGD approach are provided in
[(WWZ22].

48

3.2 Chip Design Efforts

Three designs—NeuroCTT_0.1 (ZION), NeuroCTT 0.2 (GLACIER), & NeuroCTT_0.3 (DE-
NALI)—were taped out using Global Foundries 22FDX technology (MPWs 2219, 2229, &
2242, respectively), shown in Figures 3.30, 3.31, and 3.33. NeuroCTT_0.1 and NeuroCTT_0.3
were designed with 100um pitch wirebond pads. NeuroCTT_0.2 was designed as a more com-
plex chip with 100um pitch (50pum diameter) Cu-pillar flip-chip technology. Two versions
of NeuroCTT_0.2 chip were fabricated: (1) FLIP-CHIP & (2) Si-IF versions. The FLIP-
CHIP version of the die was fully-processed including FBEOL (e.g. Cu-pillar deposition)
for connectivity to the main NeuroCTT system. The Si-IF version of the die was wafer-
pulled after metal 9 (M9, last Cu metal layer) and before Al deposition. This version of
the chip includes 10um pitch Cu pads for compatibility with the CHIPS Lab Si-IF process
[BJP17, BJP18, JRN20]. Wafer-pulled dies were then bonded to a Si-IF using thermal com-
pression bonding to connect to device, ring oscillator [NI20], and Si-IF test [JRN20] macros.
Si-IF test macro validating Si-IF bonding yield and SuperCHIPS communication protocol
and 10O cells reported in [JRN20].

3.2.1 NeuroCTT 0.1 (ZION) Design

The first version design consists of 1024 x 10 CTT array with low-frequency (UHVT) logic.
Design also include 5 standalone macros. Two of the macros were 1 x 25 Scribe Line Monitor
(SLM) pad (72um pitch) discrete device macros while the remaining three macros were
various CTT array macros. Each of the three array macros consist of two sets of 1 x 25 SLM
pads designed in such a way such that half of the 10 x 8 twin-cell CTT array was accessible

by probing either set of pads.

49

N\

b1
i)
i
r—m

m
—m
i1 |
-
—m
L
- |

H BEE E

(a) Rendered Image (b) Actual Image

Figure 3.30: NeuroCTT 0.1 (Wirebond) Die Images. Designed for 1-layer (1024 x 10)
fully-connected inference with up to 8b inputs at 200 M Hz. Chip (2mm x 2.5mm) was
taped out in GlobalFoundries 22FDX technology with 77 wirebond pads at 100um pitch.
The chip also consists of 8 sets of 1 x 25 scribe line monitor pad (SLM) sets for device testing
macros [Gul8, GWI19, Wan20b, Wan20a]. Highlighted area () indicates active area of

chip (e.g. logic, CTT array, neurons, etc.).

20

LA RL B B B B B I
LR R B B B R R R RN
LR R AR B R R R RN
LA AR B B B R R R R R D]
LB B B B B B B

R R

LR R
LR R R R R R
LR R
SRR EREREEE
LA A R E E R
A A R R R
LR B B R B N
L B B B B B R
LA R R B R R E B J L R B B B B B
L E R R R R B EEEEREEEERENRERERERE
LA R R B R R R R R R EEEEEYE RN
LR R R R
LR R
A A AR R R R R R R R R R R RN R NN
LR B B R R R EEE RN

BARARRERAREES
BRERERREAEREES L O
LR R R R R R R EE RN LA R E L EE RN R

L L B R O
LR R R R R R R R

LR R B N B B

-
-»
L
-s
-h
-h
-»
-
-»
-
-
-
s
-h
L
LR
L
*H»
»H
LR
*»

LR R LR B I N RO I O
LR R R N T e

LR R

(a) Rendered Image (b) Actual Image

Figure 3.31: NeuroCTT 0.2 (Flip-Chip) Die Images. Designed for 2-layer fully-
connected network inference (L1: 1024 x 256, L2: 256 x 256) with 8b inputs at 800 M H z.
Chip (3mm x 3 mm) was taped out in GlobalFoundries 22FDX technology with 729 (27 x 27)
50pum Cu-pillar flip-chip pads at 100um pitch. The chip also includes a set of fine-pitch Si-IF
enabled device, ring-oscillator [NI20], and Si-IF test macros [JRN20].

3.2.2 NeuroCTT 0.2 (GLACIER) Design

The second version design implemented a substantially more sophisticated network with 2
layers (L1: 1024 x 256, L2: 256 x 256). The outputs of the first layer were directly connected
as inputs to the second layer, requiring no digital interface between layers. Additionally, a
set of Si-IF-enabled macros were also included on the die. A subset of the dies were pulled
after metal 9 (last Cu layer) in order to be diced and thermocompression-bonded to a Si-IF

wafer, as shown in Fig. 3.32.

o1

GF 22FDX

Die

(a) Wafer-pulled Die Image (b) Si-IF Wafer Design (c) Si-IF Bonded Sample

Figure 3.32: NeuroCTT 0.2 (Si-IF) Die Images. NeuroCTT 0.2 Chip Design also
included Si-IF-enabled macros, separate from the main flip-chip system. (a) A batch of
dies were pulled wafer-pulled after the last Cu-metal layer (M9). The Si-IF wafer design
in (b) serves as a fanout board for the IO Test, device, and ring oscillator macros with
external wirebond and manual probe pads shown in both (b) & (c¢). Si-IF bonding results
were previously reported in [JRN20] and shown in (c). Si-IF Test Macro designed to verify
Si-IF bonding and demonstrate SuperCHIPS ([Jan17, NR22]) communication protocol & 10

cells.

o2

(a) Rendered Image (b) Actual Image

Figure 3.33: NeuroCTT 0.3 (Wirebond) Die Images. Chip (2mm x 2.5 mm) was taped
out in GlobalFoundries 22FDX technology with 78 wirebond pads at 100um pitch. The chip
also consists of 8 sets of 1 x 25 scribe line monitor pad (SLM) sets for device testing and a

20-pad standalone neuron test macro.

93

Figure 3.34: NeuroCTT 0.3 Functional Neuron Macro.

3.2.3 NeuroCTT 0.3 (DENALI) Design

The most recent design included a 256 x 32 system with Time-to-Digital Converted (TDC)

neuron outputs. Six updated device macros were also included on the die:

1. MACRO_-1_ARRAY _10x8_RVT_170nm

2. MACRO_2_ARRAY _10x8 RVT _428nm

3. MACRO_3_DISCRETE_RVT _NFET_L20nm

4. MACRO_4_DISCRETE_RVT_PFET _L20nm

5. MACRO_5_DISCRETE_EG_LVT_NFET _L150nm

6. MACRO_6_DISCRETE_EG_SLVT _NFET_L150nm

The first two macros are 10 x 8 twin-cell (160 total devices) CTT array macros can
be probed using the in-lab Cascade probe station, Keysight BI500A Analyzer, and switch
matrix. The array macros are accessed using two sets of 25 x 1 Scribe Line Monitor (SLM)

pads at 80um pitch.

Single-device macros were also included. Macros 3 & 4 each include 8 RVT nfet and pfet
devices, respectively, with widths ranging 80nm — bum and L = 20nm. Macros 5 & 6 were
included for thick oxide (EG) slvt and lvt device studies with widths ranging 160nm —4.8um
and L = 150nm.

Additionally, a 20-pad functional neuron macro was included for directly debugging the

neuron (differential integrator & comparator) design, shown in Fig. 3.34. This functional

o4

neuron includes a standalone neuron and simplified logic control interface. Off-chip inputs
can be directly applied to the integrator circuit and several probe points are setup for possible

circuit biasing and debugging.

3.3 Testing Infrastructure

3.3.1 NeuroCTT 0.1 Infrastructure

The first version chip was bonded directly to a 84-pin C-QFN (Kyocera PB-C87729) with 77
wirebonds at 100um pitch. A 12”7 x 127 testing PCB was designed with reusable Loranger C-
QFN socket. Board design consisted of (1) a few manually-tuned LDOs to generate VDDIO
(3.3V), VDDC (0.8V), and VDD_NEURON (0.9V) voltage domains, (2) logic buffer ICs
between FPGA and packaged die, (3) various test points. Coaxial connections allowed the
board to be hooked up directly to the Keysight B1500A Semiconductor Device Analyzer for
accurate device current measurements before and after device programming. Full test setup
is shown in Fig. 3.36 and consists of packaged die, PCB test board, Xilinx Artix 7 (AC701)
FPGA Board, external power supplies, and PC computer. PC computer utilizes UART
protocol to send/receive requests from FPGA controller. Additional Keysight B1500A and
Analyzer PC were accessible for performing accurate off-chip current monitoring and device

measurements pre- & post-programming.

The board as designed, however, suffered from several testing limitations. First of all,
most voltages were externally & manually configured, requiring several DC power supply
units to be frequently manually tuned. Secondly, the board was excessively large at 127 x 127
causing unnecessary trace parasitics on digital 1/O paths. A combination of trace, socket,
and packaging parasitics limited the data communication to/from the chip to 40 M Hz. Ad-
ditionally, the design lacked proper decap design (e.g. decap ranging ~300pF — 100pF"). All
of these insights were taken into consideration when designing the Mainboard for NeuroCTT

0.3, further discussed in Section 3.3.3.

95

BOARD1

%o
0 o1
O
OO;
0 57
0% |
00
O.

o0
0

Figure 3.35: NeuroCTT 0.1 Mainboard Design. 12”7 x 12”7 Mainboard with C-QFN
package Socket designed for use with Kyocera PB-C87729 84-pin C-QFN socket. Supplies

are manually controlled via external supplies and banana connections.

o6

]) o

Probe station

-
| —— .

Analyzer PC

Switch |
Matrix

b Power supplies PPGA board?2
» FRBGA boardl (gptio

NS \ =

I Mainboard with chip

Figure 3.36: NeuroCTT 0.1 Lab Test Setup. Die bonded to 84-pin ceramic QFN package

(left) then connected to Mainboard using Loranger C-QFN socket. Test setup includes
external supplies, Xilinx Artix-7 FPGA AC701 Board, Analyzer, and PCs as well as Switch

Matrix and Probe Station for probing discrete device macros.

3.3.2 NeuroCTT 0.2 Infrastructure

NeuroCTT 0.2 IC was designed using a 100um pitch Cu-pillar process, shown in Fig. 3.31.
A 5-layer laminate was designed to fanout the 27 x 27 grid of 100um pitch Cu-pillars to a
26 x 26 grid of 1.27mm pitch BGAs, shown in Fig. 3.37.

Due to low-volume vendor & manufacturing limitations, it was not possible to manufac-
ture the required 5-layer laminate in order to package the chip using a traditional flip-chip
packaging process. A Si-IF-enabled flip-chip package was conceived, inspired by previous
in-lab work [BJP17, BJP18, JRN20]. The Si-IF-enabled package design, shown in Fig. 3.38,
involves directly bonding the die to a Si-IF using 100um pitch copper pads, then soldering
the bonded Si-IF sample to a package laminate. The laminate is then connected to the

testing PCB using 1.27mm pitch BGAs and an LGA socket.

57

(a) Laminate Design

3mm

Die (th bumps) 26 * 26 grid of
Laminate 1.27mm pitch.
LA Sockel (wilh blimps, dapoed) 1

27 * 27 grid of
100um pitch.

Test PCB

(b) Cross Section of Package Design

Figure 3.37: NeuroCTT 0.2 Package Laminate Design. (a) 5-layer laminate was de-
signed to make connections between 27 x 27 grid of 100um pitch Cu-pillars to 26 x 26 grid
of 1.27mm BGAs. Packaged chip to be connected to testing PCB using LGA socket.

o8

" Laglligsl
"

e
mnﬁﬁﬁﬁz
o

i

imgﬂﬁ
1T

L —siimiiiiiiiiﬁﬁlmiinﬁ,

27 * 27 grid of

26 * 26 grid of
1mm pitch (or use
a daughter board)

Test PCB

(b) Cross Section of Si-IF-enabled Package Design

Figure 3.38: NeuroCTT 0.2 Si-IF-enabled Package Design. Due to vendor limitations
with manufacturing 5-layer package laminates (Fig. 3.37a) to support 100um pitch Cu-pillar
process, a separate Si-IF-based package structure was also designed. In this design, a die is
bonded directly to a 1-layer Si-IF (Technology Option la [CHI20]), which is then soldered

to a laminate.

29

3.3.3 NeuroCTT 0.3 Infrastructure

Two versions of the testing infrastructure were implemented. The first version involved
a package-less solution using a 77 x7” Mainboard and 2” x2” Mezzanine card, shown in

Figures 3.39 and 3.40. Die was bonded directly to mezzanine card, shown in Fig. 3.41.

Six mezzanine card samples were bonded across 4 different bonding runs with an internal
vendor (Center for High-Frequency Electronics (CHFE) at UCLA) and an external vendor
located in Anaheim (IDAX Microelectronics Labs). All samples but one had critical ESD
failures on the 10 supply domain (VDDIO=3.3V) after wirebonding, rendering samples
useless. The remaining sample had ESD failures on several digital and bias voltage inputs,
but a clock signal was still able to be supplied to the chip and CLK_OUT signal observed
using an oscilloscope. ESD protection was placed on-chip, but no external ESD protection

was provided on mezzanine card design.

It was determined that unknown ESD-related issues were caused by bonding directly to
the mezzanine card, so a second version of the testing infrastructure with ceramic pack-
aging was designed. The second version consisted of (1) eliminating the mezzanine card
concept, (2) wirebonding directly to a Kyocera PB-C87729 84-pin ceramic QFN (C-QFN)
package, and (3) redesigning the Mainboard with a Loranger (P/N 03853 841 6217) C-QFN
socket—shown in Fig. 3.42. The redesigned board consists of 281 components—a summary

of major components is made available in Table 3.5.

External vendor QP Technologies performed 78-pad wirebonding to 84-pin C-QFN pack-
age. Example C-QFN wirebonding samples are shown in Fig. 3.43.

ESD-related issues were resolved after reverting back to traditional packaging route using
84-pin C-QFN package. Example data-scan chain output verification at 20MHz is visible on
the oscilloscope in the Lab Test Setup shown in Fig. 3.44.

60

Mezzanine Card (top)

Figure 3.39: NeuroCTT 0.3 Mainboard & Mezzanine Card Design. 77 x 7”7 Main-
board (left) consists 3 external supply voltages (5V, 3.3V, &—5V) and 26 LDO-generated
supply & bias voltages ranging —0.3V to 3.3V —7 of which are digitally controlled by FPGA
controller. Die is wirebonded to 2" x2” Mezzanine card (right) consisting of 78 wirebond
pads at 10 mil (254um) pitch (die: 100pm pitch). Mezzanine card is mostly passive with
header connections on bottom-side, 78 decoupling capacitors ranging 300pF —100uF, and 3
digital buffer /level-shifter ICs for digital IO paths.

61

= 2o
=y .“.""';‘{ ¥~ 8 ..'

Figure 3.40: Fabricated NeuroCTT 0.3 Mainboard with Mezzanine Card.

SLUULLLL AR R LAY

1//////

o =

O\

111
SRRRENNL

.“'l[”‘li

\

(a) Sample 1 (b) Sample 2

Figure 3.41: NeuroCTT 0.3 Die-to-Mezzanine Card Wirebonding

62

NeuroCTT 0.3 Fanout Board
(C-QFN 84-pad, 1.27mm pitch)

’
NODONSDTON=O o
S8R 8QASRIRNRRa=L ROy

Lor anger
o P/N 03853 841 6217

Designed for use

vithe
Kyocera PB-C87729

"NeuroCTT 0.3 Fanout Board
LLLLLE b A w4l (C-QFN 84-pad, 1.27mm pitch)

ALLLE

T 4 L A S AT R O D A

anger,
53 841 621

d for use

1the
PB-C8772

3 \r\as.a.n.eta $ad240BURN2Y

‘BHEAOBRBIIBEBYUEERARNRT
steven, mor an@g, ucla, edu (March 2022

(c) Fabricated Mainboard V2 (d) Fabricated Fanout Board

Figure 3.42: NeuroCTT 0.3 Mainboard (v2) & Fanout board designs. (a) Second
version design replaces mezzanine card header connectors with Loranger (P/N 03853 841
6217) 84-pin C-QFN socket, designed for use with Kyocera PB-C87729 ceramic package. (b)

A simpler Fanout board was also designed with Loranger socket to simplify debugging as

well. (c) & (d) represent actual fabricated boards.

63

(a) 50x Zoom (b) 100x Zoom

Figure 3.43: NeuroCTT 0.3 C-QFN Package Wirebonding. Dies were directly wire-
bonded to Kyocera PB-C87729 ceramic package.

Figure 3.44: NeuroCTT 0.3 Lab Test Setup. Die bonded to 84-pin ceramic QFN pack-
age (left) then connected to Mainboard using Loranger C-QFN socket. Test setup also
includes external supplies, Digilent Nexys A7-100T FPGA board, gateway PC, and oscillo-
scope. UART protocol is used to communicate between FPGA and computer via MATLAB

terminal.

64

Component Manufacturer | Quantity Purpose
03853 841 6217 Loranger 1 84-pin C-QFN Socket
LP38500TS-ADJ/NOPB TI 12 0.6 — 5V LDO
LT3085EMSS8E#PBF Analog Devices 13 0-36V LDO (10uA)
LT3090EDD#TRPBF Analog Devices 1 -36V-0V LDO (50u.A)
CLVC540AQPWRG4Q1 TI 3 8ch Logic Inv. Buffer
n/a Bourns 22 Misc. Pot.
AD5227BUJZ10-RL7 Analog Devices 5 10kS2 Dig. Pot.
AD5227BUJZ50-RL7 Analog Devices 2 50k(2 Dig. Pot.
n/a Misc. 35 Res. (50m — 40.2k0Q)
JMK325ACT107MM-P Taiyo Yuden 4 100pF" 0805 XT7S cap.
CGA4J1X7R0OJ1I06K125AC TDK 49 10pF 0805 X7R cap.
CGA4J1X7R0J685K125AC TDK 1 6.8uF 0805 X7R cap.
CL21B225KAFNFNE Samsung 12 2.2uF 0805 X7R cap.
ACO0805KRX7R7BB104 Yageo 13 0.1uF 0805 X7R cap.
5019 Keystone Elec. 45 Testpoints
n/a Misc. 39 2/3/6/12 headers

Table 3.5: Summary of NeuroCTT 0.3 Mainboard (v2) Components.

65

3.4 Testing User Interface (UI)

Special care was taken when developing the FPGA testing interface to the chip in order to
allow simple testing automation as well as to prevent frequent recompilation of FPGA verilog
code. A MATLAB-based UART-interface was developed between the gateway computer and
the Digilent Nexys A7-100T FPGA board. The UART-interface allows all possible chip and
board operations to be entirely controlled by a MATLAB terminal, preventing any FPGA
verilog recompilation except in the special case where the user opts to modify the chip
operating frequency. This allows the MATLAB terminal to not only send data to/from the
chip, but it also allows the user able to modify the board’s digitally controlled LDO-generated
supplies on the fly in order to support automated Pulsed-gate Voltage Ramp Sweep (PVRS)
programming, as discussed previously in Section 2.2. The MATLAB-based UART interface
between the Digilent Nexys A7-100T FPGA and the gateway computer over USB officially

supports 9600 — 115,200 baud/s (~4 — 60 inference samples per second).

3.4.1 MATLAB-based Chip Configuration GUI

The NeuroCTT chip design includes a 1308—bit CONFIG_REG for storing various chip
configuration parameters. These parameters for the most part require one-time configuration
(per chip). A GUI was designed to simplify chip configuration and is shown in Figures 3.45
& 3.46. Users can save & load chip configuration files for simplified testing. Additionally,
users can also test modified configuration parameters directly from the GUI by selecting
‘Run INFERENCE (Zero Inputs)’. This allows the user to quickly determine the optimal
set of neuron offset correction parameters by directly evaluating the output of the neuron

when zero input is applied (e.g. output should be zero after correction).

66

& Ui Figere All Newssn Pacameters - =) X

SAVEConfg | [LOAD Contg | Aun INFERENCE (Zer Ingut)
nBis Formats Values
OFFSET_FINE_TUNE_NEG<)1&(> 20 e
OFFSET_FINE_TUNE_POS<)9:l> 32 e
NEURON_EN<D1:0> » e
USE_BOOSTED_INTEGRATOR 1 1's 1
CAP_SETTING<):(> & e 15
INTEGRATOR_EN_X s e 100
INTEGRATOR_SETUP $ §'a 5
INTEGRATOR_EN_Y ¢ e 1
COMPARATOR_EN_X ’ 5 100
INFERENCE_DURATION 1 10's 5
T_DUMMY_X 13 §'e 0
INTEGRATOR_SWITCH EN X & se 10
INTEGRATOR_SWITCH_EN_Y ¢ 4's 1
MIN_PULSE_X S 5'e 1
OR_EN_X ¢ e 1
OR_ENY < 4'e 1
DESCHARGE _EN L] w's »e
RESET_X L] e 9
RESETY & L “
T_SWAPPING 13 §'e)
UTILZE_FUPPED_DIAS CONFIG 1 ' °
OFFSET_TRIM_POS<255%0> 54 1560
e ——————————)
COLUNN_SELECT_INF_OFFCHP 5 §'e °
DEBUG_MUX_SELECT 5 5'a 0
« I ’
Deaut Update Laad Contg (To Chp)

Figure 3.45: NeuroCTT 0.3 Chip Configuration GUI. Program allows user to update
chip configuration parameters, load them directly to the chip, test the chip output for zero-
input condition, and iteratively modify parameters, if necessary. Parameters can be saved

to—and loaded from—an output file for reuse

67

s

OFFSET_POS_FINE_TUNE OFFSET_NEG_FINE_TUNE OFFSET _POS_Tiow OFFSET_NEG_TRiM NEURON_EN
NeUon<3t> ° e ° b 1
Neuron<3o» ° L ° P i
NeUron<I9» ° @ w0 e 1
neuron<is» ° L) ° P 1
neuron<zr» ° ? ° 1 b
NeUron< 6> ° ? ° b 1
NeUTon<is>» ° e ° 13 1
NEUTon<24> ° 2 ° ™ 1
NeUron<3>» ° ? 118 e 1
neuron<iz> ° ? 40 @ 1
neuron<zi> ° ? ° 1% 1
neuron<x> ° ? ° b 1
neuron<i®> ° Q & e 1
neuron<is> ° Q 0 1% 1
neuron<i’> 0 e 10 e 1
neuron<i6> L ¢ 0 b 1
neuron<is> 0 ¢ 15 L} 1
neuron<i&> L] ? L n 1
neuron<il> 0 ¢ s¢ L] 1
neuron<i2> 0 ¢ ¢ 85 e
neuron<ii> L] ¢ @ N 1
neuron<i> L ¢ 0 85 ¢
neuron<s> L) ¢ 152 L 1
neuron<g> 0 L 20 L} 1
neurone> L] ¢ L s i
neuronet> L) ? 3 L) i
neurones> 15 ¢ ¢ im 1
neuroned> 149 L B5 2 L
neurone> L] ¢ U 2 i
neurone> L) L 1S 2 i
neurondt> L 6) ¢ L) i
neuronel> ° 1M 75 R i
Uzdste

Figure 3.46: NeuroCTT 0.3 Chip Configuration GUI: Neuron Parameters Win-
dow. Neuron Parameters Window can be used to update parameters per neuron. After
modifying parameters, ‘Update’ button will save push changes to the respective fields on the

main window displayed in Fig. 3.45.

68

© W DU W N

L T T N N
GR W N R O © NG A W N = O

% Run Automated Inference Script

nRuns = 256;

nNeurons = 32;
results = zeros (nRuns,nNeurons) ;
for j = 1:1:255,
input_-vector = ones(1,256)*j;
% Reformat input (Send MSB first , e.g. WI<255>)
input_-vector = fliplr (input_vector);
% Send input to FPGA
write (device ,input_vector ,” uint8”);

% Retrieve output from FPGA (40 Bytes)

inference_outputs = read(device ,40,” uint8”);

% Convert (40B) inference output into 32 x 10—bit vector
OUTPUTREG = "7

for i = 1:1:40,

OUTPUTREG = OUTPUTREG + dec2bin(inference_outputs (i) ,8);
end
OUTPUTREG = convertStringsToChars (OUTPUTREG) ;
inference_outputs_decimal = zeros(1,32);
for i = 1:1:32,
inference_outputs_decimal (i) = bin2dec (OUTPUTREG((1+10%(i—1)):10%1i));

end

Table 3.6: MATLAB Automated INFERENCE Example Script.

3.4.2 Automated Inference Script

An Automated Inference Script allows for the user to specify a range of inputs to supply to
the chip and retrieve the chip outputs for each set of inputs. Chip inputs for each inference
sample are supplied as a 256B (256 x 8b) input message followed by a 40B (32 x 10b) output
message sent back to the gateway computer for processing. FPGA code is designed to
immediately recognize the 256B UART message, load the received 2kb data serially to the
chip, execute the program on the NeuroCT'T chip, retrieve the chip data output serially, and
transmit the 3200 output message back to the host/gateway computer.

69

1 % Iterate over device columns<0:31>

2 for j = 1:1:32,

3 % Iterate over devices (aka WLs<0:255>)

4 for i = 1:1:256,

5

6 % (1) Create 2kb binary message to send to chip

7 DATAREG = data_reg_fun(j,i) % returns 2048 bit vector
8

9 % (2) Format data to send over UART

10 DATAREG = convertStringsToChars (DATAREG) ;

11 DATA REGMESSAGE = zeros (1,256);

12 for bb = 1:1:256,

13 DATA REGMESSAGE(bb) = bin2dec (DATAREG((1+8x(bb—1)):8x%bb));
14 end

15

16 % (3) Send UART Data Command (Enable Specific CTT Device)
17 write (device ,DATA_REG.MESSAGE,” uint8”) ;

18 pause (0.1) ;

19

20 % (4) Disable all CTT devices

21 write (device ,zeros (1,256) ,” uint8”);

22 pause (0.1) ;

23 end

24 end

Table 3.7 MATLAB Off-chip Verification Example Script.

3.4.3 Automated Off-Chip CTT Device Weight Verification

Similarly, a MATLAB script can also be written for off-chip verification as well. In this case,
the LDOs for the BLt, BLc, and SL selected pads must be first disconnected. The Keysight
B1500A analyzer Source Management Unit (SMU) is then connected to the either the BLt/SL
or BLc/SL depending on whether the user wants to read out the True (T) or Complement
(C) weights. Finally, the user must reload the instruction with the VERIFY_T_OFFCHIP
(or VERIFY_C_OFFCHIP) instruction prior to executing the script provided in Table 3.7.
Example off-chip verification output measured by the analyzer is detailed in the following
chapter and shown in Fig. 4.5. Measurement parameters were optimized in order to guarantee

single device measurement repeatability with <5nA error.

70

Figure 3.47: Off-Chip Verification Measurement Repeatability. Example shows 10
devices measured 4 times each using an external Keysight B1500A analyzer. Repeatable
measurements demonstrated with <5nA variability. Each row corresponds to a different

device. Columns 2, 4, 6, and 8 correspond to runs 1-4, respectively.

3.4.4 Automated On-Chip CTT Device Programming

On-chip programming can be performed by specifying the target cell and loading in cell
programming timing information (e.g. programming pulse width). Before executing the
script, the user must modify the BL/SL as well as WL driver voltages to set the proper
programming conditions. Example script is provided in Table 3.8. User can optionally add
UART-based commands to modify the WL driver voltages (not shown in provided example

script) in order to support Pulsed-gate Voltage Ramp Sweep (PVRS)-based programming.

Figure 3.48 provides example output from the Automated On-Chip Programming Script,
where the user can double-check the timing parameters prior to executing the programming
instruction as the programming pulse width timing information is derived from the clock
frequency of the chip and specified in terms of number of clock cycles. One the user has
double-checked the programming and/or timing conditions, they may choose to continue

with programming the selected devices for the provided timing conditions.

71

© 0 N O U R W N =

[N I R R e e e e e e e =
B W N R O O Nt R W N RO

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

% On—Chip Pr

% Instructio

ogramming

ns: make sure to set INST = 1 (PRG.T) or 2 (PRG.C)

CLK_FREQMHZ = 20; % Mz

% all values

in clock cycles @ specified CLK_FREQMHZ

BL_PULSE_-WIDTH.X = 200; % Valid Range: 0-65535 (16 bits)
BL_PULSE_-WIDTH.Y = 200; % Valid Range: 0—-65535 (16 bits)
SL.START = 10; % Valid Range: 0-15 (4 bits)

SL.END = 10;

% Valid Range: 0—15 (4 bits)

WL_PULSE_-WIDTH = 1000; % Valid Range: 0-15 (4 bits)

create_prg_timing_digram (BL_LPULSE_WIDTH_X, BL_PULSE_WIDTH._Y , SL_START, SL_END , WL_PULSE_WIDTH) ;

% Program 1

%

% Iterat
for j =
% 1t

for

end

device at a time

e over device columns
1:1:32, %32,
erate over devices (aka WLs)

i = 1:2:256, %256,

% (1) Create 2kb PRG message to send to chip
DATAREGPRG = data_reg_prg_-fun(j,i,BL.PULSE_.WIDTH_X,BL_PULSE_-WIDTH.Y ,SL_.START ,SL_END,
WL_PULSE_WIDTH) ;

% (2) Format data to send over UART
DATAREGPRG = convertStringsToChars (DATA REGPRG) ;
DATA REGPRG.MESSAGE = zeros (1,256);
for bb = 1:1:256,
DATA_REG_PRG.MESSAGE(bb) = bin2dec (DATA_REGPRG((1+8x%(bb—1)):8x%bb));

end

% (3) Send UART Data Command (PRG Specified CTT Device)
write (device ,DATA_ REG_.PRGMESSAGE,” uint8”) ;

% (4) Disable all CTT Devices

write (device ,zeros (1,256) ,” uint8”);

Table 3.8: MATLAB On-chip Programming Example Script.

72

values units cycles units cycles

BL_PULSE WIDTH X 10 us 200 clk cycles
BL_PULSE WIDTH Y 10 us 200 clk cycles
SL_START 0.5 us 10 clk cycles
SL_END 0.5 us 10 clk cycles
WL _FULSE WIDTH 50 us 1000 clk cycles

If values are correot, would you like to proceed with prograsming? [Y/N):1 ¥
Frogramming will commence,
DATA_REG ssring is correcs lengsh,

Device #1 Frogrammed (Column: 0, WL: 0)
Device #2 Frogrammed (Column: 0, WL: 2)

Tozal Devices Frogrammed: 2

(a) Automated Device Programming Output (forx = 20M Hz)

Programming Pulse - Timing Diagram

£ |
?05' L T us)‘]
@ o ‘ l

20 0 2) 0 - 10
™ £ 4E00QG
=
w 70 us
3”' -« > 1
-
@ 0

20 0 2 « @ ~ 100
5 1
=
go‘ 50 us]
; 920 0 2 LY W »n 100

Time (us)

(b) PRG Pulse Timing Diagram

Figure 3.48: NeuroCTT 0.3 Automated On-Chip Device Programming. (a) Exam-
ple Script output for 2 selected devices (WL[0] & WL[1] on COLUMN]I0]). (b) Script also

provides Programming Pulse Timing Diagram prior to starting device programming to make

sure user has set correct pulse timing settings.

73

3.4.5 Automated Program-Verify Weight Fine-Tuning

An automated Program-Verify test setup was also created to iteratively program twin-cell
devices until they have reached their respective target currents. Device weights are ini-
tially read out using the off-chip verification scheme with Keysight Analyzer detailed in
Section 3.4.3. A JAVA-based ‘ROBOT’ [Ora20, Tak10] is utilized to automate the Keysight
EasyEXPERT GUI in order to initiate, run, & parse the measurement outputs from the
Keysight B1500A Analyzer. A MATLAB script then compares the measured as-fabricated
device currents with the specified target currents, and a programming algorithm determines
an appropriate programming scheme for each twin-cell device including pulse-width, Vg
& Vpg voltage conditions, and number of pulses. This information is provided to the Au-
tomated On-Chip Programming function detailed in Section 3.4.4. Device programming
and verification is iteratively programmed on each device in the array until each device has

reached their respective target current within some margin of error (e.g. <20nA).

74

CHAPTER 4

Hardware Results

The following chapter is organized in four sections which detail hardware results obtained
with NeuroCTT_0.1 (ZION), NeuroCTT.0.2 (GLACIER), & NeuroCTT_0.3 (DENALI) cir-
cuit designs described in the previous chapter as well as results obtained using the CTT-
Hardware-based Inference Realistic Circuit Universal Simulator (CIRCUS) Platform. Most
recent silicon (NeuroCTT 0.3) was verified to be 100% functional within the testing con-
fines of the chip and has yielded significant system validation results for all included system
blocks. Additionally, system array-level programming & verification results have been cor-

related with past results obtained from discrete and array-level device macros.

4.1 NeuroCTT 0.1 Hardware Results

NeuroCTT 0.1 results were previously reported in [Wan20a]. The test setup is detailed in
Section 3.3.1 and Fig. 3.36. On-chip data scan chain was verified at 40 MHz using external
Xilinx Artix-7 FPGA AC701 controller.

As-fabricated (“Virgin”) device weights from the on-chip 1024 x 10 twin-cell CTT array
were read out using the Keysight B1500A analyzer and Source Measurement Unit (SMU).
On-chip WL Drivers applied a Vgg = ~0.2V to selected WL(s). The SMU applied a Vpg =
~0.05 — 0.2V to the selected column (BLt/BLc) and measured the current for each device.
As-fabricated device weights for 1024 x 10 twin-cell CTT devices is reported in Fig. 4.1.

On-chip programming was performed by activating the target cell’s WL and applying

5

Statistics of Iggap Of the 1,024 x 20 array

o BomxcmR R a W WMa WsC W =] W WY

Ppidisyfaggil
> lih-ll* B L

Ireap (A)

Figure 4.1: NeuroCTT 0.1 Twin-Cell CTT-Array (1024 x 10) As-Fabricated Device
Weights.

a Vgg pulse of 1.8 — 2.7V while simultaneously applying an external pulse to the device’s
SL using an off-chip Keysight B1500A analyzer. This approach implements the Pulsed-
gate Voltage Ramp Sweep (PVRS) method, previously shown in Fig. 2.5a. Half-selected
devices along the same row and column of the target cell may experience some unintentional
programming. Half-selected issues are studied for the NeuroCTT 0.1 CTT array design and
reported in Fig. 4.2. Programming pulses can be applied as WL-first or SL-first as defined
by Figures 4.2a and 4.2d.

Half-select results are suboptimal in both cases as devices are unfortunately overstressed
by the off-chip SL pulse provided by the analyzer, due to timing limitations. Future designs
include on-chip generated WL and SL programming pulses to reduce half-select exposure
and the overall target cell programming time. Despite half-select issues in both cases, half-
select issues were substantially less severe in the SL-first programming case as unselected
devices were effectively exposed to Vg = 1.4V (Viy, = 2.8V, Vg, = V. = 1.4V) instead of
Vs = 2.8V, as is the case momentarily when the WL is high before the SL goes high during
WL-first programming.

76

10 x 20 subarray AV,, from PRG events

-50 -40 -30 =20 -10 0 10

s
10 ri E
W LR BN R
A -
| oo NEETUESE SISEET = ¥ R . .
£ . = 65 WL first (same WL)
BLt o g g a’
Al NS 5 10 15 20
CJ 5 | | TargetA (WL first) S W
SL ov4’—|_ €) £
= 11 £ 20
3 =
1 = 40)
= 28 g7, WLfirst (same BL/SL)
1 = d Q -
WL ov 10 15 20 =]
x(0T,0C,1T..)-coordinate 12 3 4 5 6 7 8 9 10

(a) WL-First PRG Pulses (b) Target A (AVry) Heatmap (c) WL-First Half-Select

10 x 20 subarray AV,, from PRG events

-50 -40 -30 -20 -10 0 10 ;
E
PegaaiE— s 5 B TaE \ § -
|§__lJ ——————— . N'40 SL fi
irst (same WL
T 32 (same W)
& 11 ~ [=]
BLt ov = : : Target B (SL first) 5 10 15 20
56 <
3 11 =
s E
1.4V 3 11
SL g 4 11 g =
Ll -
o L 3 i =% SLfirst (same BL/SL)
28V 2 11 S 60
WL ‘ [—— . e o 1234?678910
o ! X(0T,0C,1T..)-coordinate Device Index

(d) SL-First PRG Pulses (e) Target B (AVry) Heatmap (f) SL-First Half Select

Figure 4.2: NeuroCTT 0.1 WL-First & SL-First Programming. Half-select issues are
studied for WL-first (a-c) and SL-first (d-f) CTT device programming while programming
two targets cells on the BLt, A & B, respectively. Vg, was set to 1.4V in order to reduce
half-select for unselected devices on the same WL as the target cell. Substantially less severe

half-select issues were observed during SL-first programming.

7

MLP
B unknown (3x3) 1 2 2 -
104x64, B4xB4, 024296, 256x256
GAxtd, 64x10 - Saxtl 784100, 100x10 1
Mb M 1284 158 8K 655.4%b —
180rm 550m S0nm 130em 22nm < 22nm
RRAM RRAM RRAM RRAM cTT CIT
2T TR 2T2R TR Fid Fid
— 2 2 38um? 2496pm* 0.90¢um*
0.20254m 240 25ym = (0.52%4.8um) (0263 Gum)
20-50pA - - 0.44.00A 100-700nA 1-150A
— 12 D) b) -
= 4 signed . 3 sigred R signed -
) =) 180 10b -
53197 TOPSW T84 TOPSW 1242 TOPS/W*
(fggim"'x’ (1n4W-30) 25.1 TOPS/W (1in-T-W-1.0) (14n5-W-1.0) _
i 21.9 TOPS/W ($4n2W-1.0) 0.61 TOPS/W 8.9 TOPS/W
(24n4-W-30) (140-T-W-3-0) {8405 W-20)
90.8% 944% 8%
(Wi MSMA) _ _ (HAT-WS01-802) | (B4n5-WE014-02) _
87.3% 2% 4%
(rormal) (14n-T-W-201.802) | (B4n5W-2018-02)
42ms 0.96us
(N1=8, N2=8) (B4n-5W8018-02)
- - - s 0.645us -
(H40-T-W-201-802) | (B4n5W-2018-02)
- — — [s gyches ~2V+2% eycles -

Figure 4.3: NeuroCTT 0.2 Design Target. Comparison provided with [Moc18, Xuel9,
Liu20, He20]. Multi-layer Perceptron (MLP) design is best compared to RRAM MLP work
in [Liu20]. CTT Improvements to lower inference currents are possible by using smaller
channel width devices (e.g. W = 428nm — 80nm) and by lowering the subthreshold gate
voltage (e.g. Vgs = 200mV — 50mV).

4.2 NeuroCTT 0.2 Hardware Results

Unfortunately, the main system was not testable in NeuroCTT 0.2 due to flip-chip packaging
limitations. As of 2020, low-volume limitations prevented us from finding a reliable vendor
to fabricate and bond to the required 4+ layer, 27 x 27 pad, & 100um-pitch packaging lam-
inate. Despite the disappointing lack of results from the 27¢ design, a tremendous amount
of work went into designing, validating, and demonstrating the feasibility of constructing a
fully-analog, nonvolatile, and multi-layer in-memory compute engine. Anticipated perfor-
mance numbers are reported in Table 4.1 and extensively evaluated in software using the
CTT-Hardware-based Inference Realistic Circuit Universal Simulator (CIRCUS). A detailed

architectural comparison of the designed system is provided in Fig. 4.3 and Table 4.1.

78

Item Specification
IMC Cell Type Twin-cell CTT Device
Inputs per Frame 1024 x 8b inputs (8kb)
Number of Layers 2
Layer; Size 1024 x 256
Layers Size 256 x 256
Input Resolution 8 bits
Output Resolution 10 bits
Chip Operating Frequency 800MHz (T},;n, = 1.25ns)
IO Frequency 20-250MHz
Maximum Throughput 108 FPS
Maximum Required Input Bandwidth 8 Gbps
Energy per MAC ~360fJ
Peak Energy-Efficiency ~8.9TOPS/W
Normalized PRG Variance (0'ppq/Range) 6%
Retention (50hr at 85°C') Aocrr = ~0.5%
|Apcrr| < bnA

Table 4.1: NeuroCTT 0.2 Chip Specifications.

Several Si-IF-enabled macros were included on the same die and successfully tested.
These macros leveraged the Si-IF process with 5um pillars at 10pum pitch [BJP17, BJP18,
JRN20, CHI20]. In order to perform die-to-wafer bonding, a subset of the manufactured dies
were pulled after metal 9 (last Cu layer). Waferpulled dies, Si-IF design, and thermocom-
pression bonding results were previously shown in Fig. 3.32 and reported in [JRN20]. These
macros provided crucial demonstrations of the Si-IF technology and SuperCHIPS communi-
cation protocol [JRN20]. Additionally, post-fabrication circuit tuning was also demonstrated

by tuning the frequency of a ring oscillator using CTT devices, reported in [NI20].

79

4.3 NeuroCTT 0.3 (DENALI) Hardware Results

Promising hardware results were collected on the NeuroCTT 0.3 Chip design using the test
setup shown in Fig. 3.44. The following subsections review (1) system-level block validation
results, (2) system-level CTT device programming & verification results, and (3) multiply-
and-accumulate functionality (‘Inference’) results with programmed weights. While it is
omitted from this dissertation, a follow-on publication is expected in the near future to

detail in-hardware inference results using trained and mapped network weights.

4.3.1 System Block-Level Validation

Initial chip testing focused on validating all designed blocks within the NeuroCTT system
including the (1) Logic System & Chip Interface, (2) GPIOs, (3) WL Drivers, (4) CTT-
Array, (5) Array MUX, (6) Level-Shifted Control Logic, (7) Neuron Block, and (8) Neuron
Time-to-Digital Converters (TDCs).

Logic System & Load Logic Verification:

The Logic System was first validated by confirming that all 4 scan chains were fully functional
by repeatably sending data to the chip from the FPGA at various frequencies and confirm-
ing that the received data was correct. Additionally, known bit sequences are automatically
loaded into all registers upon chip reset. The system included three serial-input scan-chains
tasked with loading data into the DATA_REG (2048’b), CONFIG_REG (1308°b), and
INST _REG (5°b) registers. The data register (DATA_REG) is nominally reserved for spec-
ifying the WL pulse-width modulated inputs. The configuration register (CONFIG_REG)
specifies a variety of neuron offset compensation and timing control parameters. The in-
struction register (INST_REG) specifies one of up to 32 instructions that can be performed
on the chip, where the loaded instruction is only executed if the CHIP_PROGRAM _EXECUTE _EN
signal is enabled. All input scan chains were validated to be fully operational at 20MHz with

the possibility of increasing the system & data load frequency further.

80

(a) Example Output: 35 cycles (b) Example Output: 70 cycles

Figure 4.4: Example Neuron PWM Debug Outputs. Two of the 32 neuron outputs
were connected to a digital output pad that can be connected to an external oscilloscope for

verifying the Neuron Time-to-Digital (TDC) converter output.

The final scan chain is an output-only scan chain corresponding to the 320°b TDC output
register (COUNT_REG) which allows users to retrieve the digitized neuron output from the
chip upon request. The digitized output corresponds to the output of the Neuron’s Time-to-
Digital Converter (TDC) block. Two of the 32 neuron PWM outputs were directly connected
to external debug pads, allowing the neuron PWM outputs to be measured externally by
an oscilloscope—two example neuron PWM outputs shown in Fig. 4.4. The externally
measured output was compared with the digitized output stored in the COUNT_REG across
100 trials and shown to be 100% across all runs. Special efforts were taken into consideration
when designing the TDC block to prevent the possibility of a hold or setup-time violation
corrupting the output of the TDC block and leading to undefined behavior.

81

Bias Signal Name Typ. Range | Chip 2 | Chip 3
1 CM_OFFSET_BIAS_PMOS_200nA 450-625mV | 0.545mV | 0.528mV
2 CM_OFFSET _BIAS_ NMOS 250-400mV | 0.314mV | 0.323mV
3 CM_DISCHARGE_BIAS_PMOS_500nA 315-450mV | 0.411mV | 0.384mV
4 CM_DISCHARGE_BIAS_NMOS 375-500mV | 0.431mV | 0.425mV
5 COMPARATOR _BIAS 615-650mV | 0.601mV | 0.607mV
6 | CM_VGS_INTEGRATOR_BIAS_PMOS_IREF_20uA | 425-575mV | 0.488mV | 0.499mV
7 | CM_VGS_INTEGRATOR_BIAS NMOS_IREF 20uA | 335-450mV | 0.417mV | 0.412mV
8 | CM_VGS_.COMPARATOR_BIAS_NMOS_IREF 20uA | 310-430mV | 0.365mV | 0.379mV

Table 4.2: NeuroCTT 0.3 Neuron Biasing Verification. A debug mux was utilized to
probe multiple bias voltages within the neuron integrator & comparator circuits to confirm
proper biasing prior to performing any time-domain experiments. Table reports actual bias

voltages measured from CHIP2 & CHIP3. All other chip samples have also been verified.

Neuron Verification:

Proper neuron operation was first verified by using the on-chip debug mux to probe several
bias nodes within the integrator and comparator circuits. Power-gating logic was disabled
in order to ensure all circuits were on and to allow for all dc bias voltages to be accurately
measured using a multimeter. Measured bias voltages from three chips and typical volt-
age ranges obtained from simulations are provided in Table 4.2. All probed bias voltages
were found to be within expected range. Additionally, neuron power consumption was ex-
ternally measured by measuring the VDD_NEURON (0.9V') supply current—agreeing with
expectations (450uW x 32neurons = ~14mW).

82

WL Drivers:

WL Drivers were designed to support a range of inference (e.g. {—300mV,200mV}), pro-
gramming (1.5—2.7V'), and erase (—0.5V') conditions, as detailed in Section 3.1.3. WL driver
logic and output voltage swings for all modes of operation were verified by externally prob-
ing a dummy WL Driver through the debug mux. The dummy WL Driver was designed to
duplicate logic for W L(0). WL Driver operation was confirmed to be 100% operational and
programmed output pulses were viewable via an external oscilloscope and matched specified

digital WL driver inputs, further validating the DATA_REG scan chain.

CTT Array & Array Column Mux:

CTT Array & Array Column Mux functionality was first confirmed by reading out all of the
as-fabricated (PREF-PRG) device weights using the Off-Chip Verification instruction and
an external Keysight B1500A analyzer. The purpose of this experiment was to confirm that
(1) the devices could be individually measured, (2) the array columns could be automatically
switched between using the array mux & associated level-shifted logic, and (3) ensure column
leakage currents are within expectations. Additionally, device measurements were validated
against results obtained using discrete device and array macros. During the design phase,
special care was taken to ensure sufficiently low-resistance routing to ensure efficient de-
vice programming. Array validation included ensuring that devices are programmable with

reasonable retention. Cell programming is explored in more detail in a subsequent section.

Initial Off-Chip Verification results are critical for accurately characterizing in-array CTT
devices. Off-chip verification is performed by configuring the array column mux, described
in Section 3.1.5, in such a way that it allows an external tool to measure the Ipg of selected
device(s). As-fabricated devices were read using an external Keysight B1500A analyzer
and Source Measurement Unit, previously shown in Fig. 2.6, along with the chip’s off-chip

verification testing interface detailed in Section 3.4.3.

83

28y
26u
24u
22u

200n /

18y
16u

14u
12u
v
800n
600n
400n
200n

0

m 10 20 30 40 50 &0 70 80 N 100 110 120

b3

D (A)

Time (s) 10.0 /div

Figure 4.5: Example Off-chip Verification Output using Analyzer. CTT devices on-
chip were read out one at a time using a Keysight BI500A Analyzer and Source Measurement
Unit (SMU). A Matlab-based UART script was used to communicate with the chip and
iteratively select & activate each device for ~300ms. All WLs were disabled in between each

device reading (e.g. Ineasurea ~ OnA) in order to simplify data extraction.

Figure 4.5 provides an example off-chip verification output for a partial column of devices
as measured by the Keysight B1500A analyzer. A Matlab-based Off-chip Verification script,
similar to that provided in Table 3.7, was used to communicate with the chip over UART
and iterate over each of the devices one-at-a-time. Each device is activated for ~300ms
with an additional ~300ms gap in between each device reading to simplify data parsing and
analysis. The magnitude of each pulse in the figure corresponds to each device’s subthreshold
on-current (WL(0),WL(1), ...) at the specified Vgg = 0.2,Vps = 0.2V bias condition.

Unselected devices are biased with Vg = —0.3V to minimize any column leakage currents.

Figure 4.6 displays the on-chip CTT array as-fabricated (Pre-PRG) device distribution
for 256 x 32 BLt (True) devices, obtained by extracting and re-plotting the off-chip verifi-
cation results shown in Fig. 4.5. As-fabricated device results correlate with expected results

from simulation. Repeatable device measurements are shown in Fig. 4.7.

84

BLt_TO_NEURON

BLc_TO_NEURON

Selected WL 4
(50-200mv) }— —T] P
target J
P G] Gy
R
e —
Gy 3]
@
ov ov

SLunserecren

(ev) (e.

2V)

BLCseiecren BLCunserecten

(0.2V)

Count

TestChip 1: 256x32 BLt Virgin Distribution

Average = 667.9nA ||
o =183.8nA]

500

1000
Current (nA)

2000

@V, =200mV, V= 200mV

(b)

Figure 4.6: NeuroCTT 0.3 Twin-Cell CTT-Array As-Fabricated Device Weight

Distribution. (a) Keysight B1500A Analyzer and Source Measurement Unit (SMU) were

connected to the chip’s BLt/SL & BLc/SL pads, respectively, to measure each device. (b)

Measured Weight Distribution for 256 x 32 CTT devices.

10 T 100
experiment © As-fabricated o | E¥PEMIMENt I Read Distribution | experiment :
© After programming 0 o oCT———— - - - - - - -~ - |
10°g © 0 © O 000CCCIIININ 80
-0 ~OCHII - - - - - - - - - - -
o o =1.95nA 57
7 — ~OCRA - - - -~ ~ -~ — = = = =i~
7 Measured @ Vp=Ve=200mV I] =9 id < 0.05% = H
I @ Vo=Ve= MAX 3 c M 097 I '
5 Programming: tp,,=200us —>10 3 50 ean = H
= el Vom18V. Vem1.6:2.7V, aVe=0.1V Imin © L, = 10t '
30 O- ~OORMINE - - - - - - - -
'y © o0 ooo00 » 10°F 0~ Coammu—
10 Measured at 25°C
10 10 N 0
10° 10' 10% 400 500 600 700 800 10° 10% 104 10® 10°
Time (s) Current (nA) Time (s)
(a) (b) (c)

Figure 4.7: Repeatable Device Measurements using External Analyzer. (a) Current

monitoring of a single as-fabricated CTT device before and after applying 12 programming

pulses using PVRS. An ~1000x difference in channel conductance is observed before and

after programming (~800nA — <1nA). (b) 300 measurements over a 48-period were taken

on a separate programmed device (target=500nA) and were shown to be repeatable (<5nA).

(c) Six devices programmed to different target states and monitored for 10 hours.

85

Figure 4.8: NeuroCTT 0.3 Example SL Programming Pulse Measured Externally.
Programming with 150us SL pulses was initiated on Column(0). Unselected columns observe
1.8V SL/BLt/BLc pulse to prevent half-select issues on devices connected to the activated
WL. DEBUG_PAD_BLt(31) & DEBUG_PAD_BLc(31) debug pads were connected to an
external oscilloscope and the SL pulse width was measured to be 150us—set by on-chip

programming parameters. Applied SL Voltage was also verified (e.g. Vs, = 1.8V).

4.3.2 System-Level On-Chip Programming and Verification

Recent silicon (NeuroCTT 0.3) allows for programming pulse widths to be tuned down to
<50ns compared to 100pxs minimum pulse widths previously used with device macro results
via the Keysight B1500A analyzer. BL, SL, and WL voltage pulses are each individually

tunable given the timing diagram shown previously in Fig. 3.16.

Prior to initiating extensive device programming studies, additional logic validation was
performed by ensuring that appropriate programming pulse timing information was correct.
An oscilloscope was connected to a set of array debug pads. A single programming pulse was
applied to the array with SL pulse width digitally set to 150us. Figure 4.8 shows that an
150us programming pulse was correctly applied to the array based on the specified timing

parameters set using the script shown in Section 3.4.4.

86

On-Chip programming functionality was previously reviewed in Sections 3.1.5 & 3.4.5.
Given that the CTT (Regular Viy, nfet) devices are nominally rated for maximum Vg,
Vps conditions of <1V, careful consideration was taken in order to limit device stress and

programming duration—especially for unselected devices.

SL-first programming was utilized to limit half-select issues for unselected devices on the
same column and/or WL—demonstrated via past programming studies on the NeuroCTT
0.1 tapeout (Section 4.1, Fig. 4.2). Intuitively, SL-first programming provides less stress to all
unselected devices as the programming Vg can range from 2—2.7V and SL-first programming
ensures that the maximum positive gate voltage for unselected devices on the target WL is
<(Vgs—Vps), e.g. 2.7V—1.8V = 0.9V. Initial programming results for 128 CTT devices
after 10x programming pulses at Vgg = 2.2V and Vpg = 1.8V are shown in Fig. 4.9. Target
Cells experienced Al up to —1000nA after programming. Half-selected cells observed a
slight increase in current after programming which can be compensated for using an iterative

program-verify technique.

87

° € 15 13 100
35 -10 1 7
~ ¢ 54 53 44 Target Cells, C[0]
a 19 7 o
- EEIE. 2 14 18 16 —
52 5 26 13 “
© “ 62 7 4
) > 26 - -100 i
® 14 4 5 ©
41 18 36 7 %
2 q_ 7 -8 6 3
9 6 36 15 ~200 .
o 12 15 22
0 26 10 48 s
= W 6 12 25 4
-~ 9 20 12 2 -300 £ :
L e 2 19 T e
= Reduction in Current (nA)
2 # 12 12 3 -400
3 -3 18 Half-Selected Cells, C[0]
- 0 9 13
40 26 105 16 2
N “ 27 6 52 -500
16 -4 8
& 21 1 12 B
17 -3 4 44
g 3 7 6 —600 ¥
47 -19 2 41 3
& '-F- -11 2 =30 10
32 1 14 ~700
b “ 2 9 -1
50 19 -3 s
0 1 2 3 . |
Column # 0 e e
(a) (b)

Half-Selected Cells (Other Columns)

= Column[1]
100 4 s Column(2]
mmm Column([3]

Count

-50 0 50 100
Half-Select: Increase in Current (nA)

()

Figure 4.9: Initial Half-Select Results after Target Cell Programming. True devices
on even WLs for Column(0) were programmed using 10x pulses with Vs = 2.2V & Vpg =
1.8V. (a) Change in current for all array True cells (Columns(0 : 3)) after programming
(subset of W Ls(0: 31 shown). (b) Distribution of Al greur after programming for Target
& Half-Selected cells on Column(0). (c) Distribution of Alyeign for half-selected cells on

other columns.

88

True: 10x 100ps pulses

- AEEEEEES"EEEEEEERE —m - O ,
- 0 " Half-Selected: :
~ N Cells! :
m ¥ \
N -200
wn
o —_
P

~ -400 =
© £
- 3 Comp: 5x 100ps pulses
S -600 “
— 35
Ll 30
o~
— .25
™M -800 ézo
-
<t 15
-
) 10
- ' 1 ' | 1 1 1 1)] 1 1 I |) _1000 s

0 2 4 6 8 1012 14 16 18 20 22 24 26 28 30 o

-800 -600 -400 -200 o
&ps for COMPLEMENT (C) Devices (nA)

(a) (b)

Figure 4.10: Checkerboard Array Programming of True & Comp Devices. FEven
True devices received 10x programming (Vs = 2.2V, Vpg = 1.8V) pulses & odd Comp.
devices received 5x programming (Vgs = 2.2V, Vpg = 1.8V) pulses. (a) Alwgienr after
cell programming is shown for W Ls(0:15) and Columns(0:15). Odd column #’s represent
True devices and even represent Comp devices. (b) Distribution of Al grgur for Target

True & Comp cells is also shown.

Additional array programming results are shown in Fig. 4.10. A checkerboard pattern
was programmed in order to check for possible layout-dependent programming effects—no
substantial effects were found. True devices on even WLs were programmed via 10x (Vg =
2.2V, Vps = 1.8V) pulses while Comp. devices on odd WLs were programmed via 5x pulses
at identical conditions, all across C'olumns(0:15). As shown in Fig. 4.10b, 10x programming
pulses at the specified condition were sufficient to fully separate the target and unselected

cell distributions.

89

g

9
600 | 2
&
< o .
§ 500 t o
c 3
4
o 400 g
L -
3 300t 2
3 200 3
< g
N
| T
100 g -
(=]
=z
ol — — i :
10 107 108 10 10 107 1072 107 10 107 10 10 102
Programming Pulse Width (s) Programming Pulse Width (s)
(a) (b)

Figure 4.11: Pulsed-Voltage Time Sweep (PVTS) Results. (a) Mean device current
for 128 devices programmed subsequently with increasing pulse-width gate voltage pulses:
100ns, 400ns, ..., 409.6us, 1.64ms. (b) Distribution of 128 devices where each devices receives

subsequent gate voltage pulses with similarly increasing pulse-widths.

In addition to the traditional Pulsed-Voltage Ramp Sweep (PVRS) programming method-
ologies reviewed in Section 2.2 and Figure 2.5a, the most recent chip allows for programmable
duration pulses to be applied during cell programming. A Pulsed-Voltage Time Sweep
(PVTS) programming scheme is proposed which would simplify future design implementa-
tions by potentially requiring a single programming bias condition to fine-tune program all
devices rather than requiring ramping gate pulse voltages. Figure 4.11 highlights some ini-
tial PVTS-based programming results which provide some information about programming
efficiency as a function of programming pulse-width. Figure 4.11a reveal that pulse-widths
down to 100ns are rather ineffective at programming devices, likely because the CTT requires
self-heating in order to efficiently trap charge and program the device; however, efficient pro-
gramming with approximately linear current drops in between subsequently increasing pulses

is shown for pulses >1.6us.

90

Column<0>: True & Comp (Post-PRG) Weight Histogram Column<0>: Differential (Post-PRG) Weight Histogram

True Weights

Comp Weights
25 1

20 A

Count
Count

10 1

200 400 600 800 1000 200 400 600
Differential Weights (uA) Differential Weights (uA)

(a) (b)

Figure 4.12: Example Positive Twin-Cell Weight Programming. All 256 twin-cell
devices were programmed to an arbitrary positive differential weight. True devices were
left in their respective as-fabricated (Pre-PRG) state while complement devices were each
individually programmed by applying 20x 100us pulses at Vgs = 2.2V, Vpg = 1.8V. (a)
True & Complement Device distributions after Comp. cell programming. (b) Corresponding

differential twin-cell weights after Comp. Cell programming. (Chip 4, Column(0))

4.3.3 Demonstrating a MAC Engine with Programmed CTT Weights

A reliable MAC Engine with nonvolatile, CTT-based weights requires accurate cell pro-
gramming, reasonable retention, and minimal measurement error. MAC Engine outputs
with programmed weights are first evaluated using an external analyzer. Previously, de-
vice measurement repeatability using an external analyzer was explored on single devices,
where the normalized 1o error was shown to be <0.4% (e.g. 1.95nA) for a 500nA target
cell, shown in Fig. 4.7b. Measurement accuracy of the summed differential current from
a column of devices simultaneously enabled is evaluated in this section. A column of 256
twin-cell devices are first programmed to all positive differential weights by programming

only the complement cells via 20x 100us programming pulses, shown in Fig. 4.12.

91

Column<0>: Off-chip Inference (TRUE) Sum Comparison Column<0>: Off-chip Inference (COMP) Sum Comparison Column<0>: Off-chip Inference Differential Sum Comparison

® Ideal Results ® Ideal Results
® Measured Results 2 70 ® Measured Results

ent (uA)

it (LA)
5
3
nt (UA)
m
8

20

Total Summed (TRUE) Current
Total Summed (COMP) Curre:
Total Summed Differential Curre

10 ' i

y d

0 50 100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250
Number of Devices being Activated at Same Time Number of Devices being Activated at Same Time Number of Devices being Activated at Same Time

(a) (b) ()

Figure 4.13: 256-input MAC Engine Results Measured using External Analyzer.
Positive twin-cell weights from Fig. 4.12 were utilized. (a) True & (b) Comp. devices
were measured separately and compared against ideal results. (c¢) Differential sum results
are shown. Flat-line shown in (a) and resulting impact on (c) is due to 100uA current

compliance limit. (Chip 4, Column(0))

After programming, individual weights were measured one-at-a-time using an external
analyzer for calculating ideal sums. Summed column output current was then measured
using external analyzer when multiple inputs or devices were simultaneously enabled, shown
in Fig. 4.13. Ig; and Igp. are separately measured, shown in Figures 4.13a & 4.13b. For
increasing common-mode currents, the measured column currents begin to deviate from the
ideal results due to IR drop in the Array Column Mux. It’s also important to point out
that the flat-line shown in Fig. 4.13a is not fundamental and only due to a 100uA current
compliance limit set on the external Keysight B1500A analyzer. The demonstrated on-chip
MAC Engine utilizes all system-level blocks including WL Drivers, CTT Array, CTT Array
Column Mux, Level-Shifters, and On-Chip Logic, except for the Neuron circuit. Instead of
utilizing the neuron, an external analyzer is utilized to compute the overall weighted-sum.

Measurement error for sums <30uA was demonstrated to be <2%.

Future experiments were limited to a maximum of 64 inputs to manage measurement

error due to IR drop in the Array Column Mux. Figure 4.14 demonstrates a subset of

92

- - =
N w ~
0 o [

._.
o
S)

Total Summed Differential Current (uA)

Column<0>: MAC Engine with Differential Weights

1 @ Ideal Results

N
0

® Measured Results

Measurrent Differential Current (uA)

N
]

-

o
Measurement Error (%)

. L4

5.0 oy 5.0 * ‘ . -1
?PO(';JJ

2.5 OCDC: 2.5 - ** °,

o}

00] o 0.01 -2
10 20 30 40 50 60 0.0 2.5 5.0 7.5 10.0 125 15.0 175
Number of Devices being Activated at Same Time

Ideal Summed Differential Current Output (uA)

(a) (b)

Figure 4.14: 64-input MAC Engine Results Measured using External Analyzer.
Subset of 64 positive twin-cell weights (W Ls(0:63)) from Figures 4.12 & 4.13 were utilized.
(a) Differential Sum results shown as a function of number of inputs enabled. Some mismatch
visible for large inputs due to array column mux IR drop for large common-mode currents.
(b) Ideal sums vs. Measured Sums show excellent linearity in measurements with <2%

measurement error for 64-input MAC. (Chip 4, Column(0))

the results from the previous figure. Ideal vs. Measured Differential Output currents are
plotted in Fig. 4.14b, showing a maximum measurement error of +2% with respect to the
differential output current. Measurement error due to IR drop in the Array Column Mux is

not fundamental. Overall error is still dominated by programming variance.

Additional MAC Engine Results using the Array Macro results from Figures 2.7b & 2.9
are shown in Fig. 4.15. Separately, on-chip fine-tuning to seven differential target states
was attempted and results are shown in Fig. 4.16. On-chip fine-tune programming requires
further improvement. Iterative programming is limited by cumbersome manual switching
after every verification step. A modified PCB board is being designed to fully automate the
program-verify weight fine-tuning algorithm. In the future, program-verify can be further

accelerated using on-chip neuron design for verification.

93

20

200 Ohr Ohr o

20hr 20hr o

17.5 SOhr Sohr .'.:.'-
_ 1501 ¥ ' L
g™ Z R L
: 3 ','.,

125 £ U
A @ 18 .!i-
° ° _.l'-
£ 100 £ 88
=J o ope
s : jh*
? 7.5 =17 o'i
3 2 9 .!=°
£ 504 < (111 !

of 38
164 §e
2.5 t lli
2 il
0.0 o'.“"
. . . . r r r - - 15 +——
00 25 50 7.5 100 125 150 175 20.0 15 16 17 18 19 20
Ideal Weighted Sum (uA) Ideal Weighted Sum (uA)
(a) (b)

Figure 4.15: MAC Engine with 6 Target States. MAC Engine Results shown for 480
devices programmed to one of 6 target states (100, 200, ..., 600nA), shown previously in
Figures 2.7b & 2.9 before and after 20hr & 50hr baking at 85°C'. A maximum of 60 devices
were measured simultaneously. Full MAC Engine results are shown in (a). Zoomed in
results for Ideal Sums >15pA are shown in (b). MAC Engine Results shown immediately

after programming (Ohr) and after 20hr & 50hr baking, respectively, at 85°C.

6 300nA 01 e Column<0> o8 10 Column<0>
-200nA Column<1> o Column<1>
-100nA -500 ..'
OnA o® 8
100nA < -1000 4
4 200nA ‘é: R @
300nA 3 -1500 ..' .
" 2 a’ o
5 g 5
33 £ -2000 o8¢ 3
3
2]
= -2500 o 4
2 g Ld
L]
< _3000 FL
2
b 3500
0 4000 o
-300 -200 100 [100 200 3500 -3000 -2500 -2000 -1500 -1000 -500 O 0 1 2 3 4
Differential Weights (nA) Ideal Weighted Sum (nA) Error Relative to Range (%)

Figure 4.16: MAC Engine with 7 Differential Target States. (a) 128 Devices were
programmed using on-chip programming to one of 7 differential target states. (b) MAC
Engine Results for two columns of 64 devices are shown. (c¢) Relative error compared between

summed current and ideal summed current w.r.t. to ideal target states. (Chip 3)

94

4.3.4 Demonstrating a MAC Engine with On-Chip Neuron

An on-chip neuron circuit with differential integrator and comparator circuit was designed
to compute the PWM-based weighted sum of a column of up to 256 twin-cell devices. The
integrator provides a 200mV virtual supply to the CTT Array (Vorrp) and integrate the
differential column current. The comparator circuit converts the computed weighted sum
(QrnF) into a pulse-width modulated output (¢py ps) which can be applied as an input to
subsequent network layers. Neuron circuit architecture & design is discussed in more detail

in Section 3.1.6.

Preliminary neuron results and output linearity are discussed in this section and more
detailed debugging are discussed in the following section (Section 4.3.5). The neuron pulse-
width modulated output is designed to implement the Rectified Linear Unit (ReLU) acti-
vation function, shown previously in Fig. 3.23, where negative sums are set to zero. For

positive sums, the neuron computes a linear output until the output reaches saturation.

Integration of positive-only differential twin-cell weights (from Fig. 4.12) using on-chip
neuron circuit is shown in Fig. 4.17. Figures 4.17a-4.17c show integration results across 3
different columns and neuron circuits (Columns(0:2)) when selected inputs are activated for
16 cycles. For comparison, the experiment was repeated with selected inputs activated for
8 cycles, shown in Figures 4.17d-4.17f. Neuron output reaches saturation ~2x faster when
selected inputs are activated for 16 cycles compared to 8 cycles. Non-ideal neuron output
variability is observed over multiple iterations with the same inputs. Output variability is
observed to scale proportionally to Tryrecrarion (defined by Eq. 4.4), suggesting that an
error current is being integrated and imposing an error term in the integrated output value.
Sources of the output variability issue are discussed in further in the following section.
Regardless, it was found that approximately linear output from the neuron with up to 7b
resolution could be achieved by averaging the neuron output over multiple iterations, as

shown in Fig. 4.18.

95

CHIP4, Neuron<0> Output (Selected_inputs = 16 cycles) CHIP4, Neuron<1> Output (Selected_inputs = 16 cycles) CHIP4, Neuron<2> Output (Selected_inputs = 16 cycles)

1201 o Iteration 1 ° LY 120 e Iteration 1 . 140 -
2 . @ lteration 1 .
o lteration 2 *. :‘ % 58 be 2 o lteration 2 L [+ leration 2 o °.y .
o] © tteration3 % ' o 3 H # ® lteration 3 .a % a° 1204 e iteration 3 L]]
! © lteration 4 H . _ 1001 o iterationd @ ooy ol L 4 o lteration 4 ° ." o
2 ® lteration 5 . B o lerations og88 S 2 o lterations 4o .‘ o o e %
< ° o S 8 _g°° g 100] o
2 80] 2 80 .3 2 o 83
z . = bt
2 o 2 TN 2 80 37%%
] 3 3 g L] ge
© 60 O 60 oo 3 .
= . = 0 Z 6 . oo
H oge z ol H
§ 40 3 } § 40 .’ ' § ﬁ e
Hi H 5 40
2 . 2 < 2 8!
20 el
201 ¢ '. 20 13
o 8 of o o ¢
0.0 25 50 75 100 125 150 175 0 5 10 15 20 0.0 25 5.0 75 100 125 150 175
Measured (Analyzer) Weighted Sum (uA) Measured (Analyzer) Weighted Sum (UA) Measured (Analyzer) Weighted Sum (uA)
CHIP4, Neuron<0> Output (Selected_inputs = 8 cycles) CHIP4, Neuron<1> Output (Selected_inputs = 8 cycles) CHIP4, Neuron<2> Output (Selected_inputs = 8 cycles)
® lteration 1 . 13 ® lteration 1 o o0 Tterath °
i 0 © 3 N Q ° ol @ lteration 1 °
100] @ tteration2 % 100 © tteration2 $s0 2 120{ o iteration2 o % @ %3888
® lteration 3 o ’ ' ® lteration 3 o @ lteration 3 e ‘)
_ © Iteration 4 o ai EX .-i o _ © lteration 4 M M o lteration 4 . ;’!' [
7 . 7) X =
8 oo @ ltterations .! % H 8 gp] ® lerations o ol > T1071 o iterations 29, 0 80)
g 8ol g o, 20057 g 23:3
b D b 3 $% 380 o g e
5 of 5 . Z 80 o° S0
2 0 to 20 LTt g 3,05
° ® of o $] I} oo o
= = F11] 60 ° H]
H 3 2 s 0q8 14
H %o S ok 8, z §8°88. o
< 40 g 40 ° s oo ¢
§ # 8 H § 40 .
g . : s .o
H H 3
2 ? £ |'°! 2
20 ..f #. 20 ‘
[}
'o .. ° '
[0] ® 0
0.0 25 50 75 100 125 150 175 0 5 10 15 20 0.0 25 5.0 75 100 125 150 175
Measured (Analyzer) Weighted Sum (uA) Measured (Analyzer) Weighted Sum (UA) Measured (Analyzer) Weighted Sum (uA)

(d) (e) (f)

Figure 4.17: On-Chip MAC Engine with Differential Integrator. All twin-cell CTT
devices on Columns(0: 2) programmed to arbitrary positive weights, similar to those shown
in Fig. 4.12. Digitized neuron output is plotted vs. ideal output measured using external
analyzer for a random sample of 128 inputs (up to 128 inputs simultaneously enabled). (a-c)
represent plots for Neurons(0:2) where selected inputs are activated for 16 cycles. (d-f)
Represent similar plots except selected inputs are activated for 8 cycles. All plots shown

over 5 iterations to better understand output variability. (Chip 4, Column(0:2))

96

CHIP4, Neuron<0> AVERAGED Output (Selected_inputs = 16 cycles) CHIP4, Neuron<1> AVERAGED Output (Selected_inputs = 16 cycles) CHIP4, Neuron<2> AVERAGED Output (Selected_inputs = 16 cycles)
120

100 100
100

@
g

80

a
3

60

PWM Output (cycles)
Py
g

PWM Output (cycles)

N
8
leuron PWM Output (cycles)

<
§ 40 s
g g g 40

Ny
Neuron
N
S
N

20 20

o

0.0 25 5.0 7.5 100 125 150 175 0 10 15 20 0.0 25 5.0 7.5 100 125 150 175
Measured (Analyzer) Weighted Sum (uA) Measured (Analyzer) Weighted Sum (uA) Measured (Analyzer) Weighted Sum (uA)

(a) (b) (c)

Figure 4.18: On-Chip MAC Engine Neuron Output Averaged over 1000 Iterations.
Experiments similar to those shown in Figures 4.17a-4.17c were repeated for 1000 iterations,
then averaged across all iterations. Averaged results show reasonable linearity—especially
in (a)—and output saturation, as expected. Potential source(s) of output variability are

discussed in the subsequent section. (Chip 4, Column(0:2))

4.3.5 Additional MAC Engine Debug Efforts

While the original neuron circuit was designed to operate at 800M H z and integrate a column
of up to 256 twin-cell devices, the NeuroCTT 0.3 design specification was simplified with
the intention of first validating the entire CTT-based system prior to designing a more
complex chip. As a validation chip, it did not include a high-speed CLK IO driver or on-chip
PLL—limiting the system testing to lower frequencies (e.g. 20—150M H z). Future iterations
of the chip will require a multi-clock domain logic to decouple the load (e.g. 20M H z) logic
from the inference (~800M H z) logic.

The NeuroCTT 0.3 chip was highly successful as all system block functionality was val-
idated including WL driver, CTT Array, CTT Array Column Mux, Array Level-Shifters,
etc. and CTT devices were programmable with comparable retention to previously obtained
array-level device macro results. Despite demonstrating output linearity and weighted-sum
functionality using the on-chip neuron in the previous section, output resolution was lower

than expected (~3b)—demonstrated by Figures 4.17 & 4.18.

97

Debug studies were first performed to ensure that device noise from programmed CTT
devices do not contribute additionally to neuron output variability compared to device noise
from as-fabricated CTT devices. Figure 4.19 demonstrates that neuron output variability
for the zero-input case is nearly identical for a neuron connected to a column of as-fabricated
devices compared to a neuron that is connected to a column of programmed devices. In
general, leakage currents for off devices (Vi; = —300mV’) should still be negligible which

should not impact the neuron output for the zero-input case as demonstrated in Fig. 4.19.

CHIP5, Neuron<2> Output (Zero Input) CHIP4, Neuron<0> Output (Zero Input)

L d - N N

o w (=] w

o o o o
Count

Neuron PWM Output (cycles)

w
(=]

2.5 5.0 7.5 10.0 12.5 15.0 17.5 ’ 2 4 6 8 10 12 14 16
Measured (Analyzer) Weighted Sum (uA) Neuron PWM Output (cycles)
(a) As-Fabricated Devices (b) Programmed CTT Devices

Figure 4.19: Neuron Output for Zero-Input Case. Neuron output for zero-input eval-
uated for neurons connected to a column of (a) as-fabricated devices and (b) programmed
CTT devices to confirm that device programming is not the source of the neuron output
variability. Output evaluated for 1,000 iterations for both cases and histograms are shown
in (a) and (b). No noticeable difference is present (e.g.o(,)~0()). In general leakage currents

for off devices (Vg = —300mV’) should still be negligible.

98

In addition, neuron output for a column of as-fabricated weights is shown in Fig. 4.20.
Only as-fabricated twin-cell weights with a positive differential current were utilized to
demonstrate neuron output linearity. Neuron output variability is similar to that shown pre-
viously in Figures 4.17 & 4.18—further demonstrating that device noise from programmed
CTT devices does not contribute additionally to neuron output variability. Thus, the output
variability is likely a circuit problem instead of a device problem. We explore whether or not

testing the chip at low-frequencies is contributing to the output variability.

CHIP5, Neuron<2> Output (Selected_inputs = 16 cycles)

301 @ Iteration1 ° L]
® lteration 2 °
® Iteration 3
_ 21 e iteration4 °© S, .. - ‘
K ® lteration5 ‘ 0 o'
S o ®
< 20 1 ° o °
= ®
2 l Y J.‘ o
> oo ©
O 154 0 .' o .” 4 :
=
s o !' o ¢
< 10 °e
g 2
: L
=
1.3
o] &
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Measured (Analyzer) Weighted Sum (uA)

Figure 4.20: Neuron Output with As-Fabricated Weights. Output shows up to 50
twin-cell weights activated simultaneously with selected inputs set to 16 cycles. Only as-
fabricated twin-cell weights with a positive differential current were utilized to demonstrate

neuron output linearity. Neuron output variability is identical to that shown previously in

Figures 4.17 & 4.18.

99

Testing the chip at low-frequencies (e.g. 20M H z) limits the valid input range. Assuming
that (1) the maximum output capacitance (Cryp = 6.6pF) is selected and (2) the maximum
output voltage is ~250mV (obtained from simulation), the maximum charge accumulated

during integration is approximately:

Quax = C X Varax = ~1.65pC (4.1)

Given that Iprscmarae = 350nA, the maximum neuron output at 20MHz was:

QMAX

tpwm MAX = = ~bus ~ 100 cycles (4.2)

Iprscuarce
This implies that the maximum differential input current when applied for the maximum 8b
input duration (e.g. 255 cycles) is:

Iprt — IBLc . 1.65pC
2 255 x 50ns

Iprrrvax = = ~130nA (4.3)

Since such a small input current can saturate the neuron output when operated at
20MHz—40x lower than the designed operating frequency for the neuron circuit—the circuit
may also be susceptible to noise sources as well. Previous neuron results shown in Fig. 4.17
suggest that the neuron output can fluctuate by +10 cycles when the output is near satura-
tion (e.g. ~100 cycles). Such output fluctuations can be caused by small error currents (e.g.

~10nA) when operating the neuron at low frequencies.

The total time the neuron is on and integrating (T;nyrecrarion) corresponds to the total
length of the inference and the discharge phases. The Inference Duration (T;nrrrencE) 1S
set to a constant value for all input cases and must be > t;,put,mez- The length of the
discharge phase corresponds to the time it takes to fully discharge the output capacitance,
or tpw M,out:

TinTEGRATION = TINFERENCE + tPW M 0Ut (4.4)

100

CHIP4, Neuron<0> Output (Selected_inputs = 16 cycles)

1201 ¢ Iteration 1 > LY
® Iteration 2 ® ° 5’; < ::;) o
7 . o lteration 3 32 o A H m
% " _ 1001 ¢ iteration 4 ' ° e
t .o o 8 ® lteration 5 1 : .
E) 2 80 o0 02
S . 5 c,—T'g‘o
g . g ‘-
a o 3 60 l:i
- . . . = L4
a .- . R g
- . a & 1]
§ e T t o Bt
. i 3 8
. =z
20 ..
) ' 0.0 25 5.0 75 100 125 150 175
Input Duration for Selected Inputs (cycles) Measured (Analyzer) Weighted Sum (uA)
(a) TINFERENCE = 255 cycles (b) TinrERENCE = 16 cycles

Figure 4.21: Improving Neuron Output Results. (a) Initial neuron results for 32 simul-
taneously activated devices. Outputs are plotted against the pulse-width modulated input
duration up to 255 cycles. Results are substantially improved in (b) where the inference du-
ration was shortened from 255 cycles down to 16 cycles (results duplicated for convenience

from Fig. 4.17a). Respective logic timing diagrams for both cases are provided in Fig. 4.22.

Initial neuron output results are shown in Fig. 4.21. In the first case (Fig. 4.21a), 32 de-
vices were simultaneously enabled for N = {0, 1,2, ..., 255} cycles where TiyprrENcE = 255
in all test cases. Approximately linear output is only observed for input values beyond ~150
cycles. By shortening the inference duration by 16x and reducing TinrrrencE to 16 cycles,
results were substantially improved upon. Figure 4.21b demonstrates clear linear output
from the neuron for increasing input values when TiyrrrENcE Was set to 16 cycles. Output
variability scales for larger PWM outputs—corresponding to ¢ py as,0ut in Eq. 4.4. Maximum
output variability (410 cycles) occurs when the neuron output approaches saturation (e.g.

tpw,out ~ 100 cycles).

The neuron output variability’s dependence on total integration time (Eq. 4.4) suggest
that the neuron performance is limited by low-frequency (20MHz) testing constraints. When

the inference period is increased from 16 — 255 cycles (800ns — 12.75us), any integrated

101

error current can lead to an appreciable error term in the accumulated charge, Q;yp. Error
currents as small as ~10nA may be sufficient to cause a £10 cycle output fluctuation.
Figure 4.22 provide neuron logic timing diagrams which describe a subset of the related

neuron logic signals for the two cases where TrnrrrEncE equals 255 & 16 cycles, respectively.

The integrator design was further interrogated via simulation and hardware studies to
determine possible sources that may cause the suggested error currents. The integrator
circuit relies on 3 external reference currents to properly bias the circuit including an (1)
Irpraoua reference for biasing the differential integrator, (2) an Igrgrsoona reference for
biasing the discharge source, & (3) a Irgpa200na reference for biasing the offset source. The
discharge current is utilized to linearly discharge the integrator’s output capacitor in order
to convert the accumulated charge to an output pulse width (¢py) and the offset current
is utilized to apply DC offset-cancellation settings to counteract process-induced mismatch
effects. The three reference currents are replicated using on-chip current mirrors. During
the design phase, these bias currents were treated as dc nodes and no internal decoupling
capacitors were included. Unfortunately, supply noise coupling to the generated current
mirror bias voltages was not considered. External decoupling capacitance was connected to

the chip at the board-level on all three nodes with negligible output improvement.

The offset cancellation reference source (Irgr200na) Was quickly ruled out as the main
culprit as several neurons were testable with offset cancellation fully-disabled and the output
fluctuations continued to persist without any reduction in magnitude. The discharge current
source (Irpra200na) was similarly ruled out as the discharge duration was held constant in

experiments where TnyrrrencE Was varied, previously shown in Fig. 4.21.

The magnitude of the neuron output fluctuations are strongly correlated to the length of
the integration period, Tinyrrcrarion. By both reducing the maximum input (T7nrrreENCE)
to 16 cycles, the neuron was enabled for a shorter duration leading to substantially improved
neuron output results, as shown in Fig. 4.21b. It was determined that likely the differential

integrator bias (Irgpo0u4) Was susceptible to a small noise current (<10nA).

102

255 cycles

s JULUUU U ULy
INFERENCE_DUR _l l

NT_EN _l I
COMP_EN _] I
INT_SW_EN _[1

an_purse n

ot I L
DISCHARGE_EN I i
ReseT_en | n

300 cycles

b il & tids

(a) TINFERENCE = 255 cycles

M%WUWWMWMWM

SomeRCE o 1

M —

comp_tN J

5w ew 1

s i

on e | L
- [i
neser en M M

300 cycles

o L &4 tatts

(b) TiNrFERENCE = 16 cycles

Figure 4.22: Debugging with Neuron Logic Timing Diagrams. Diagrams demon-
strate the previously mentioned inference duration (T;yrrrencE) parameter as well as the
hardware logic bug associated with the Array Switch (INT_.SW_EN) where the array is
disconnected from the neuron outside of the inference duration, causing a possible CM in-

stability issue within the integrator, described in more detail in Fig. 4.23.

103

BLt_TO_NEURON BLc_TO_NEURON

(0.2V from neuron)
(73 E Ak

T T / VOUT2
[[~ 35004 N
i — T > = S
T—T ﬁ_f_ 200
C 0.0 3 /
302V oV 0.2V .
M§D g GHE]b Ox Qg% 00 Vour1-Vour2
Bltseiecreo Bltuwseiecreo Slseecren o BlCseecren BLCunseecren 2 ¥
(@.2v) (0.2 (ev) (GV) (0.2 (0-2V) N ———
(a) (b)

Figure 4.23: CM Stability Issue Introduced by Array Switch. Logic originally in-
tended to disconnect the CTT array from the neuron to prevent leakage currents when not
intentionally integrating may cause CM instability issues within the integrator design. (a)
The INTEGRATION_SWITCH corresponds to a switch that connects/disconnects the CTT
Array from the neuron. The switch is only enabled during the Inference period, TinrrrENCE-
(b) Simulation results showing possible CM instability. Fortunately, simulation results sug-
gest that given its a CM instead of DM instability issue, it should not substantially affect
the output results (see Vour: — Vours). Vour: & Vours correspond to the two output nodes

associated with the differential integrator’s output capacitor.

Additionally, it is worth pointing out a separate design issue that was identified during
debugging. Originally, a switch (INTEGRATION_SWITCH_EN) was placed between the
neuron and CTT array with intention of disconnecting the CTT array from the neuron
when not actively integrating in order to prevent possible leakage currents. It was determined
during design verification that this switch may cause CM instability issues for the neuron’s
differential integrator as it substantially varies the capacitance connected to the input of the
circuit. The logic design intended to include both options: (1) leaving the switch always
on & (2) enabling the switch only during ‘inference’. Unfortunately, a discovered hardware

logic bug disabled the former option from properly working. Figure 4.23b demonstrates

104

in simulation that while substantial ringing can be seen on the two nodes of the output
capacitor (Vour & Vours), it does not have a substantial effect on the differential output
result, Vouyr1 — Voure. Therefore, it is not expected to be the main culprit of the circuit’s

output variability. Regardless, it is necessary to resolve the issue in a future design iteration.

105

4.3.6 Final Insights

To reiterate, the NeuroCTT 0.3 chip was highly successful. All system-level blocks were fully
verified including the WL drivers, CTT Array, Array Column Mux, Level-Shifters, etc. and
can be reused as is in subsequent tapeouts. CTT devices array were efficiently programmed
and results match previously demonstrated programming capabilities (e.g. AVry) shown
on the discrete device and array macros. For the first time, a Pulsed-Voltage Time Sweep
(PVTS) programming methodology was demonstrated which allows for fine-tune program-
ming by simply tuning the programming pulse width rather than requiring ramping voltage
supplies as is the case for the PVRS methodology. For the first time, an accurate & re-
producible MAC Engine with programmed weights was demonstrated utilizing all on-chip
components and an external Keysight Analyzer for measuring the total summed output cur-
rent. For the first time, a MAC Engine with programmed weights and an on-chip neuron
circuit & ReLU activation function were demonstrated. While neuron output resolution was

limited, neuron functionality and linearity were properly demonstrated.

In the short-term, results from the NeuroCTT 0.3 chip can be further improved by explor-
ing a couple different avenues. First, the PCB will be re-designed with a few modifications
to fully automate the iterative fine-tune weight programming. Secondly, opportunities exist
to further increase the on-chip clock frequency beyond 20MHz by optimizing FPGA timing
parameters. It is also possible that varying the clock frequency might be possible by slowing

it down to reliably load data onto the chip, then increasing the frequency during inference.

In the long-term, a re-spin will be required to fully demonstrated the concept and overall
energy-efficiency. A subsequent design would require (1) PLL or high-speed CLK IO driver,
(2) multi-clock domain to decouple the data load and ‘inference’ logic, (3) thorough decap
placement on sensitive nodes, and (4) additional neuron modifications to further reduce
mismatch-related issues. It is also worth demonstrating a multi-layer design where the

neuron output is directly applied as an input to a subsequent layer.

106

(1) Atpne

ﬂ (2) Qogrr = J(lgry = Tpue)dt

Validate: &y ~ Qoirr

SIM Outputs Analysis Output
N\ o (o9
1Spectre J0CEAN Analysis
é / Simuation (SKILL)
Data Inputs® veckr fie PWM Inputs |

Figure 4.24: CIRCUS Functional Overview.

Netlists
Wieight Conversion (scs) |

4.4 CIRCUS Hardware Simulator

CIRCUS (CTT-Hardware-based Inference Realistic Circuit Universal Simulator) is a simula-
tion platform developed to study the effects of circuit-induced errors and device non-idealities
on overall system performance. An example CIRCUS implementation flow for a local monte
carlo (localmc) simulation including P/V /T and foundry-provided mismatch data is provided

in Appendix C. A functional overview is provided in Fig. 4.24.

Twin-cell device weights correspond to the differential channel conductance (AGeg) or
on-current (Alwgreur) for a given subthreshold bias point such as Vg = 200mV, Vpg =
200mV—the weight for a single device as a function of different programming and erase
steps is shown in Fig. 4.25a. Weights are encoded in simulation by utilizing a parameterized
voltage source to encode the AVypy for the True and Comp. devices, respectively, shown
in Fig. 4.25b. A Lookup-Table (LUT) is utilized to map between device weights and the
corresponding AVry value. Trained network weights are mapped to CTT devices using
a Weight Conversion Script which generates spectre netlist files, shown in the overview
provided by Fig. 4.24. Device variance can also be included by adding a normally-distributed

error term to each of the CTT device conductances or threshold voltages (Goy or Vigy).

107

100 Im! — .
< —Virgin 230nA »
3 —After PRG1 0.169nA
‘D After ERS1 85.9nA s 1 e
-) 0169nA After PRG2 0.095nA ! |
270.095nA —After ERS2 40.6nA "
5 » Al LelFle a
10 1 .
) » aa R s R o
0 0.2 0.4 0.6 0.8 1 TERQ
(a) (b)

Figure 4.25: CIRCUS CTT Device Model. The CTT device utilizes the standard
foundry-provided nfet device model. As shown in (a), a programmed CTT device can be
modeled as an as-fabricated device with some threshold voltage shift, neglecting gate leakage
& subthreshold degradation. In simulation, a parameterized voltage source is attached to

the gate of the CTT device shown in (b), allowing for a programmed device ‘weight’ to be

included.

Figure 4.26: CIRCUS Example CTT Array Differential Current Waveform. Dif-
ferential current waveform from CTT array is then integrated by the Neuron Circuit which

produces a pulse-width-modulated output signal proportional to the total integrated current

tpwir ~ fOt(IBLt(t) — Iprc(t))dt.

108

Pulse Width Modulated (PWM) Output Pulse Width Modulated (PWM) Output

8001 : o 800 - /

o
(=]
o

600 -

400 - /
200 4 200 /
17 04

PWM Output (ns)
8
o

PWM Output (ns)

0 500 1000 1500 2000 0 500 1000 1500 2000
Ideal Weighted Sum (fC) Ideal Weighted Sum (fC)
(a) Spectre Model (b) VerilogA Model

Figure 4.27: CIRCUS Neuron Output Simulation. (a) Spectre-based Neuron Design
with Cjyp = 1.8pF integrating capacitor was evaluated across 1000 different randomly-
generated input patterns. Input patterns converted to ‘Ideal Weighted Sum’ by mathemati-
cally integrating the Ipr,(t) — Iprc(t) signal presented at the neuron integrator’s input. (b)
Equivalent VerilogA model can be used to speed up simulation run-time. In both cases, the
neuron pulse-width-modulated (¢py /) is zero for negative weighted sums and saturates for

weighted sums > 1pC.

An example differential current input with positive weights and random PWM inputs for
a 256 x 1 network is shown in Fig. 4.26. The neuron is tasked with integrating the differential
input current and generating an output pulse that is proportional to the integrated result or
‘weighted sum’, txpuron,pwyr o [3 (Ipre(t) — Ippe(t))dt.

The CIRCUS simulator offers Spectre and Verilog-A models of the neuron circuit design.
The Spectre model provides the actual circuit taped-out in the most recent NeuroCTT 0.3
chip where P/V/T effects are studied, while the Verilog-A model offers an idealistic model
that can substantially accelerate simulation run-time. Example neuron output results for
both models are shown in Fig. 4.27. The Spectre-model is mainly utilized for thorough

design verification over a variety of corners.

109

oo Neuron Output (no variation) Neuron Output (with P/V/T & mismatch)
1400

. Neuron 0 1 e Jommmmee o o ; | I .
Neuron 1 | ’1 I
12001 . peuron 2 1 2l 1200 N
- Neuron 3 1 i1 i
__1000{ - Neuron4 I = 1000 o
0 1 SR | > S
z 800 , il T 800 .
2 A 3 T
5 I I 5 |
O 6004 1 1 O 600 1 I
5 [1 g A
S Y P g I
3 400 = 3 400
2 17 . 2 |
| I I
200 A) 1 ”)] 200 4 . 1
Zero Region /" Linear | Saturated Zero Region - | Saturated
3 2 o 1 2 3 a 3 2 a1 o0 1 2 3 2
Measured Integrated Differential Current? (pC) Measured Integrated Differential Current? (pC)
(a) Without P/V/T (b) Considering P/V/T & Mismatch

Figure 4.28: CIRCUS Simulation for Evaluating Realistic Neuron Accuracy. (a)
Output of 5 Neuron & CTT Column Models with randomly initialized weights and 100
randomly supplied inputs without considering P/V/T effects. (b) Simulation run across
32 Randomly Initialized Neuron Models considering P/V/T effects and foundry-provided
mismatch. 'Each neuron model considering mismatch was manually calibrated using the
offset calibration schemes to provide zero output for the zero-input scenario. ?Measured

Integrated Differential Current was calculated by integrating the differential input current

from the CTT Array, [i(Ipri(t) — Ipr(t))dt.

110

Figures 4.28a & 4.28b clearly show that the neuron output consists of a (1) Zero region,
(2) Linear region, and (3) Saturated region. The Zero & Linear Regions realize the Recti-
fied Linear Unit previously shown in Fig. 3.23. The post-calibration Neuron Output when
considering P/V/T and mismatch, shown in Fig. 4.28b, appears to be somewhat noisy, but
for any given neuron is fairly consistent and linear. It’s important to point out that offsets
exist in both the neuron’s differential integrator as well as differential comparator circuits.
Additional offsets beyond those that can be specifically corrected for using previously men-
tioned offset cancellation schemes in Section 3.1.6, can be compensated for by programming
the CTT devices to implement ‘effective’” weights that produce a specific desired output from
the neuron circuit. This type of weight verification is considered On-Chip Verification where
the neuron circuit during Inference can be repurposed to read out individual device weights

by enabling a single twin-cell CTT device for a fixed input duration.

111

CHAPTER 5

Conclusions & Outlook

Crossbar architectures with nonvolatile weights and analog computation have the potential
to greatly disrupt traditional hardware design targeting ML workloads. While this disser-
tation, focuses mostly on edge applications it is possible if a series of technical problems
are addressed, crossbar architectures may become technologically & commercially viable for

larger scale applications.

This dissertation provides a first-time demonstration of an on-chip analog MAC engine
using the CTT as a nonvolatile analog synapse—fabricated in a commercial CMOS tech-
nology (GlobalFoundries 22FDX). Excellent device programmability is demonstrated on a
group of 480 programmed CTT devices with ~5b twin-cell resolution and worst-case nor-
malized programming variance op re<6%. Additionally, sufficient retention characteristics
are reported with minimal change in programming variance and mean drift after baking for
50 hours at 85°C. CTT devices are shown to be highly stable with <1% measurement error

reported for 300 measurements taken on a single device over a 48 hour period.

For the first time, an on-chip CTT-based MAC Engine utilizing an external Keysight
B1500A Analyzer was able to demonstrate highly accurate & linear weighted sums using
programmed differential weights. Additional, an On-Chip CTT-based MAC Engine with
an on-chip neuron comprising of differential integrator and comparator circuits was able
to demonstrate linear output with 3b output resolution—Ilimited by testing constraints and
low-frequency operation. Further improvements are required to improve the resolution to the

desired 6—8b output resolution including improving decap placement on sensitive bias/sup-

112

ply nodes and logic modifications to support testing at higher frequencies—up to 800M H z.
While reliable weighted sum computation was demonstrated, future work must also demon-
strate energy-efficiency by performing this computation at speed (e.g. 800M Hz) and by

properly power-gating digital & analog circuitry when idle.

For the first time, A Pulsed-gate Voltage Time Sweep (PVTS) programming method-
ology is introduced for fine-tune programming without requiring ramping voltage supplies
as is required with the PVRS programming methodology. Further studies are required to
determine whether a PVTS methodology can be exclusively used to accurately program

devices.

An analysis of all the variances present is in a CTT-based analog in-memory com-
pute (IMC) engine is provided, including the device programming variance, measurement
error and device fluctuations due to effects such as RTN and % noise, weight retention,
temperature-dependent effects, circuit-induced non-idealities, and radiation effects such as
Total-Ionizing Dose (described in more detail in Appendix A). The CTT-Hardware-based
Inference Realistic Circuit Universal Simulator (CIRCUS) is introduced to study the net
effect of all of these sources of variability on the overall systems output and validate that

sufficient output resolution can still be obtained.

Finally, the experimental radiation tolerance of neuromorphic hardware is discussed in
Appendix A. The IBM TrueNorth Neurosynaptic System is utilized as a baseline system for
evaluating the resiliency of pseudo-non-von Neumann digital architectures where the IBM
TrueNorth is found to be highly resilient to Single-Event Upsets (SEUs) or soft errors. The
CTT device is evaluated as a candidate device for analog-based neuromorphic hardware.
Given the nonvolatile nature of the CTT-based weights, it is found that the CTT is resilient
to soft errors but is susceptible to large AVry shifts due to Total-lIonizing Dose (TID) which
is especially more pronounced in fully-depleted SOI technologies. A related discussion on
the effects of radiation on 3D-stacked technologies such as 3DS-DRAM Memories is provided

in Appendix B which will become especially more relevant as larger systems continue to

113

adopt newer packaging and system technologies to meet the computational demand of new
workloads. Future work is required to develop characterization methods for more complex

3D-stacked systems with increasingly more complex failure modes.

In summary, the CTT is highly competitive against other proposed analog NVM devices
such as RRAM, PCM, SONOS, & STT-MRAM, just to name a few. The CTT is completely
CMOS-compatible and exists as a 3-terminal device requiring no additional select transistor
with sufficiently high 22X ratio. It has been demonstrated in all gate-first high- technology

Iorr

nodes and offers a sufficiently high on-resistance (Ron~MQ) in the selected 22FDX technol-

ogy node. Excellent device programmability & weight resolution as well as sufficient weight
retention at higher temperatures has been demonstrated. CTT can be reliably fine-tuned to
target weights and utilized in a MAC Engine to perform reliable & reproducible computation

with nonvolatile weights.

5.1 Outlook

In order to demonstrate scalable crossbar architectures for larger applications beyond leaf
applications, In-Memory Computing research must tackle a series of challenging technical
problems including system scaling & network reconfigurability for rapidly evolving network
topologies beyond Fully-Connected or Multi-Layer Perceptron (MLP) networks. Analog
IMC-based compute are currently difficult to scale with a trade-off between reconfigurability
and energy-efficiency. Scalable and reconfigurable systems almost certainly require a digital
interface and/or router between network layers potentially, which may eliminate the energy
benefits of performing computation in the analog domain. In addition, today’s crossbar
architectures are not able to as effectively exploit network sparsity as some of today’s digital

systems.

Designers utilizing pulse-width modulated (PWM) schemes, such as the one utilized by

the NeuroCTT, must consider the trade-off between area and output resolution. Addition-

114

ally, while pulse-based architectures might be substantially smaller in size and simpler to
design, they are typically not able to provide comparable throughput at the same input/out-
put resolution. While pulse-based input architectures might suffer from lower throughput,
they are promising for edge applications with smaller computational requirements. Pulse-
based input architectures are able to leverage a simpler, lower-power, and smaller-area ADC

in lieu of an integrator-based ADC, offering superior energy-efficiency.

Finally, crossbar architectures with larger number of inputs may suffer from a large
common-mode to differential-mode (fg—ﬁ) ratio leading to design challenges. As an ex-
ample the NeuroCTT system may be required to handle input cases where the measured
Iem 1000 %, requiring a higher-power integrator with larger bias currents to properly man-

Ipnp

age the large common-mode currents.

5.2 Future Work

In the short-term, additional results may be obtainable from the current hardware by explor-
ing a couple possible testing avenues. First of all, a simple PCB board redesign is required
to fully automate the fine-tune program-verify algorithm using external Keysight B1500A
analyzer for weight verification. Secondly, it is possible that the system frequency can be
increased beyond 20M Hz by (1) optimizing the load logic & timing between the FPGA
and NeuroCTT 0.3 chip and (2) modulating the clock frequency. By modulating the clock
frequency, it is possible that the clock frequency could be slowed down while loading data

onto the chip and increased when performing inference computation.

A future tapeout will be required to demonstrate the concept at speed (e.g. ~800M H z)
with sufficient output resolution and competitive energy-efficiency. Thorough block and sys-
tem validation has been a significant result from this project. All of the included circuit
blocks on NeuroCTT 0.3 have been fully verified as functional including the WL Drivers,
CTT Array, Array Column Mux, Neuron, Time-to-Digital Converters (TDCs), and system

115

logic. Further, experiments were performed that demonstrate that devices within the Neu-
roCTT System’s CTT Array can be efficiently programmed with comparable programming
results to those obtained using the discrete & array device macros. These blocks can be
fully reused in a future tapeout with the exception of the neuron block. While the neu-
ron was verified at 20MHz with linear output, modest modifications are required to ensure
proper output resolution may be obtained when testing at higher frequencies. These modifi-
cations include additional decoupling capacitor placement on sensitive bias & supply nodes
as well as some device resizing to better handle possible device mismatch issues. In addi-
tion, a simple re-spin would require multi-clock domain logic (e.g. SY S CLK = 20MH z,
INF CLK = ~800M Hz) to decouple the load and inference logic as well as a high-speed
CLK IO driver or licensed PLL IP block.

116

APPENDIX A

Effect of Memory-Related Errors in Neuromorphic

Hardware

A.1 Digital-based Neuromorphic Computation

In contrast to analog-based neural networks, the nature of errors in digital systems is inher-
ently different. In the absence of errors, a digital, non-stochastic system is almost always
deterministic. For large digital systems, the dominant error or failure mechanism is often
considered to be errors created within or while accessing the memory. These errors also
include soft errors or Single-Event Upsets (SEUs) where high-energy particle strikes and
corrupt data within the memory. On-chip Dynamic Random Access Memory (DRAM) and
Static Random Access Memory (SRAM) are highly susceptible to bit errors, forcing server-
grade and more complex systems to rely heavily on Error Correction Codes (ECC) and Cyclic
Redundancy Checks (CRC) to detect errors and prevent instruction & data corruption due

to a memory error [Ham50, PB61].

The IBM TrueNorth Synaptic Platform [Amil3, Mer14, Ess16, Saw16, Furl6] is utilized as
a baseline system for evaluating the effects of errors on digital-based neuromorphic platforms,
where memory-related errors are assumed to be the dominant failure mechanism. Non-
ionizing radiation is utilized (1) as a means for injecting random faults or soft errors into
the on-chip network and (2) studying the overall system tolerance to radiation effects for use

in strategic environments.

117

Dendrites
AL

Y

A I N °
Synaptic Weight: W, =0
o=2%1 A, ® [] L J
s: [0, 255)
e . . N
synapse, = w, x0oxs wW,=1

Rase ' '

=z
=

N? . L] . 4 N)SG.
Neuron Look-up

Table (LUT) 0
. Axon ;
3
A Neuron S A
N Iy Y L]

 —E

Figure A.1: IBM TrueNorth Core Implementation. TrueNorth chip consists of 4,096
of these cores requiring 410Mb of on-chip SRAM storage and spans ~400mm? in Samsung

28nm technology.

A.1.1 TrueNorth Architecture

Figures A.1, A.2, & A.3 provides information on the architecture of the IBM TrueNorth
Neurosynaptic System. The TrueNorth consists of 4,096 cores that emulate ~1 M neurons
and ~256 M synapses while consuming ~70 mW at run-time. Each core includes 256 axonal
inputs, a 256 x 256 synaptic crossbar, and 256 neuron outputs. Each neuron output represents

a weighted-sum of the respective 256 axonal inputs:

256

i=1

The IBM TrueNorth supports integer synaptic weights ranging [-255, 255]. A trade-off ex-
ists between programmability and the synaptic density. In order to co-optimize programma-

bility and synaptic density, the TrueNorth utilizes 4-element synaptic weight lookup tables

118

per neuron, hence supporting a maximum of 4 unique synaptic weight values per neuron
(synaptic crossbar column), as shown in Fig. A.1. The chip stores a 2-bit axon type param-
eter for each synapse to index the lookup table and obtain its respective synaptic weight.
Synaptic weights correlate the pre-synaptic neurons (axon inputs) to the post-synaptic out-

put neurons, whose values are determined by the training of the network.

TrueNorth models are trained offline and then loaded onto the chip. Model parameters are
stored in SRAM banks per core. Each SRAM bank consists of 102.5 Kb of memory, excluding
redundancy bits and spare rows, as shown in Fig. A.2a. Figure A.2 provides detailed SRAM
breakdown by model parameter type. Essential parameters include Synaptic weights, Axon
Types, Neuron addressing, membrane potential, and membrane threshold parameters. Other
additional stochastic parameters—classified under ‘Other Neuron Parameter’—are available
for emulating brain spiking patterns but are not necessary for running traditional neural

network tasks such as Convolutional Neural Networks (CNNs).

A single TrueNorth chip consists of 4,096 cores arranged in a 64 x 64 array, depicted in
Fig. A.3 (middle). The system includes a 24-bit addressing space which allows any neuron
output to be routed and connected to any axonal input. This 24-bit address variable consists
of 16-bit destination core address and an 8-bit destination core address, which is sufficiently
large enough to support multi-chip configuration up to 16 chips (4 x4), such as demonstrated

with the TrueNorth NS-16e boar [Furl6].

A.1.2 TrueNorth EEDN Framework for CNNs

Convolutional Neural Networks (CNNs) can be implemented on the IBM TrueNorth using
the Energy-Efficient Deep Neuromorphic (EEDN) networks training algorithm provided in
[Ess16]. EEDN utilizes trinary weights, {-1,0,1}, to train and implement multi-layer CNNs
specifically mapped for the IBM TrueNorth hardware, elaborated upon in Fig. A.4. Trinary
weights help simplify the training difficulty given the synaptic weight programmability con-

straints alluded to earlier (e.g. 4-element LUTSs per neuron). Each core on the chip can be

119

Neuron Parameters Neuron State, V,,
(390 bits) (20 bits)

(L - [T -1
([T ~ [[[[-TT1]
([T II[~ T[I[-TT1]

256 rows (neurons)
A

16 rows
(spare)
N\

(a) SRAM per core

Redundancy ¢ s

(10 bits)

Total SRAM Memory
Synapses
Synaptic Crossbar (w,)
Synaptic Weights (o, s)
Axon
Axon Type
Neuron Addressing
Destination Core Address
Destination Axon Address
Axonal Delay
Other Neuron Parameters

410 Mb

292 Mb
256 Mb
36 Mb

2 Mb
2Mb

30 Mb
18 Mb
8Mb
4 Mb

86 Mb

(b) SRAM Model Parameters

Figure A.2: IBM TrueNorth SRAM Design per core. (a) Each core consists of 102.5Kb

(256 rows x 410 bits) of SRAM, not including redundancy bits and spare rows. Entire chip

consists of 410Mb of SRAM (4096 cores x 102.5 Kb). (b) TrueNorth Chip SRAM Breakdown

by Model Parameter. SRAM memory is dominated by synaptic weight (292 Mb) and neuron

addressing (30 Mb) parameters. Some of the other available neuron parameters such as

stochastic parameters (e.g. neuron leakage, \) are not required for solving traditional CNN-

based classifications tasks using the TrueNorth.

120

TrueNorth Core TrueNorth Chip TrueNorth NS16e Board
* 256 % 256 array of symapses - * 64 %64 array of TrueNoreth cores ‘ * axdarmy of TrueNorth Ohips
* 256 neurons * =1 millicn neurons * =16 million neurces
* 65,536 synapses * ~268 milicn synapses * 74.29 billion synapses

Figure A.3: IBM TrueNorth Multi-Chip Configuration. The IBM TrueNorth chip
utilizes an address space that supports scaling the system up to a 16-chip (4 x 4) system.
IBM has demonstrated the 16-chip configuration, known as the IBM TrueNorth NS-16e
board, capable of running model files that emulate up to 16 million neurons and >4 billion

synapses [Furl6].

WX +WoXo+tWaXs
Regular Neural Network:

X1 w,
k— : Wi, W, W3 E R
/\ i) 10 WyXq+woXo+wsx3 2 0

% » —>Output = ; Neuromorphic Constraints:
= Vg 0: otherwise
/\/ Wy, W2, W3 € {-1,0, 1}
(x
i

Figure A.4: IBM TrueNorth EEDN Trinary Weight Constraint.

used to implement one filter (nFeatures = 1) in the network.

Not all TrueNorth cores, however, can be utilized by the CNN. Since each neuron output
can only be configured to transmit output spikes to a single-fixed address (axon input),
splitter cores are required. Splitter cores require a large overhead as an entire core is required
to replicate one neuron output up to 256 x. By definition, each Convolutional Network Layer
output is reused multiple times by subsequent layers as the filter is convolved across its input

space for the next respective layer, requiring many splitter cores to implement most CNNs.

For the purpose of this work, MNIST, CIFAR-10, and CIFAR-~100 datasets were utilized

121

s EEED PR Y
CHAT RS "
CESSRRbEcr o B e
i : Al B 3 M A
S E Y RS Q’Eﬁ:ﬁi!
SRR Y e (ol =
CEEREUsaaE B LA D0 <
dNEEOEEETE TEREEP
=EE P P I E
JELEEESEED NN KRG

(a) MNIST [LeC98, LCB10] (b) CIFAR-10 [Kri09] (¢) CIFAR-100 [Kri09]

Sl T AN

v (_‘11

YV RANwWBhwonugaL
NP =-D0JdO0ONN

CORNONLY~%Ne
AoNQWwsE oo

-

R0 M NN N
W LGN btxm

3
&
b
's
/
9
g
3

1
R
©

Figure A.5: Commonly-Used Classification Datasets. (a) MNIST dataset consists
of 60,000 training images and 10,000 test images representing handwritten digits (0 — 9).
(b) CIFAR-10 dataset consists 50,000 training (5,000/class) and 10,000 test (1,000/class)
images representing 10 different classes of objects. (¢) CIFAR-100 dataset consists of 50,000
training (500/class) and 10,000 test (100/class) images representing 100 different classes of

objects.

122

(a) (b) (c) (d) (e)

Figure A.6: IBM TrueNorth for Spinal MR Image Segmentation Example. Origi-
nally presented in [MW18]. (a) Original MR images. (b) Manual Segmentations perform by
human rater. (c) Detection (localization) results where red pixels designate areas identified
as belonging to the spinal canal. (d) Automated vertebrae segmentations. (e) Automated

disk segmentations.

123

Figure A.7: IBM TrueNorth Spinal Foramina Segmentation Example. A similar
network to that shown in [MW18] can also be utilized to segment more complex imaging
features such as neuroforamina in the spinal canal which can be utilized to quantify and

diagnose spinal-related diseases such as neuroforaminal stenosis as is discussed in [Gaol9].

to study the effect of soft errors on CNNs running on a neuromorphic architecture such as the
IBM TrueNorth. Additional work presented in [MW18], [WM18], & [Gaol9] demonstrate
that low-power neuromorphic platforms such as the IBM TrueNorth can be utilized for
even complex medical segmentation tasks to identify features for automated image-based

diagnosis, shown in Figures A.6 and A.7.

A.1.3 Experimental Setup: Vanderbilt Pelletron

The Vanderbilt Pelletron accelerator [McC15] offers several particles & ions with varying
energy levels and range. Commonly used recipes and achievable ranges are detailed in
Table A.1. As shown, most options provide a range of at most 10 — 100um. The IBM
TrueNorth die is covered by an organic molding compound with a radiation absorption
thickness of t,,q4 = ~0.9mm, requiring the chip to be chemically delidded prior to irradiating

using the Vanderbilt Pelletron.

124

Al Cu Si Sio2 W
Proton (4MeV) 130 54 148 182 40
Alpha (6MeV) 279 129 319 384 102
Oxygen ion (14.3MeV) 8.75 9.86 12. 2

Chlorine ion (16.4MeV) --- 8.06 -

Table A.1: Range of Potential Ions/Particles using the Vanderbilt Pelletron.

Incident lon and
Max. Energy

Ranges provided in um.

The IBM TrueNorth was chemically delidded using foaming nitric acid followed by an
acetone cleaning process. Protective tape was used to protect the surrounding board com-
ponents. Delidding results are shown in Fig. A.8. Although the nitric acid is an oxidizing
agent, the bond wires are gold (Au) instead of Copper (Cu), so it did not pose any issues to
wirebond quality. Chip Back-End-of-Line (BEOL) thickness was estimated at ~8um which
is supported by the range available of both Proton and Alpha particles. Ultimately, 4 MeV

protons with varying fluxes were selected for all experiments.

The TrueNorth NSle board was placed and aligned with the Vacuum Test Chamber using
laser alignment (Fig. A.9a) and pumped down to ~107%torr. Power supply connection and
communication with the board via Ethernet was faciliated by the Vacuum Test Chamber

Feed-through (Fig. A.9b).

Additional images of the Vanderbilt Pelletron beamline from multiple vantage points are

shown in Fig. A.10. More information on the Vanderbilt Pelletron can be found in [McC15].

125

UCLA
JCHIPS

mmmmwﬂmﬂm
AND PE

2017 UCLA CHIPS Workshop

(a) Spare Delidded Chip (b) Delidded Chip on NSle Board

Figure A.8: IBM TrueNorth Chip Delidding. The initial delidding process was first
demonstrated on a non-functional TrueNorth chip (shown in (a)) using a foaming nitric acid
process followed by an acetone cleaning process without using any water. Protection tape

was used to avoid wet chemicals from damaging surrounding board components.

(a) Inside Test Chamber (b) External Feed-through

Figure A.9: Vanderbilt Pelletron Vacuum Test Chamber. (a) TrueNorth NSle Board
was aligned inside the test chamber using the green alignment laser shown. (b) External feed-
through provided power supply & local Ethernet connections to the NSle board. Ethernet

was used to send data between the NSle board and the gateway computer.

126

(a) From the Test Chamber (b) From the Source

Figure A.10: Vanderbilt Pelletron Accelerator Beamline. Viewed from the (a) Vacuum

Test Chamber and (b) the ion/particle source. More information can be found in [McC15].

A.1.4 Experimental Results: Fragile Corelet

Before running CNN-based experiments on the TrueNorth under irradiation, an initial frag-
ile corelet (program) was loaded onto the chip— ‘Randomly-connected Spontaneously Spiking
Neurons (RCSSN). The RCSSN corelet was utilized to detect whether or not errors were de-
tected in the on-chip SRAM after exposing the chip to 4 MeV protons utilizing the Vanderbilt
Pelletron. Traditionally, this corelet was designed to detect post-fabrication die defects but
is easily repurposed to detect SRAM bit errors. The RCSSN corelet executes in a pipelined
fashion at a tick rate of 1 kHz and designed to run for 600,000 input spikes or ~10 minutes
without any errors. The corelet halts if the output at any point no longer matches the

expected ‘golden truth’ output spike file. Results across 6 runs are shown in Fig. A.11.

127

25000

20000

15000 A

10000

5000 4

of Ticks (1000 ticks/second)

1% 2 3 4 5 6 *
Run #

Figure A.11: Fragile Corelet Performance under irradiation. TrueNorth continuously

2571, Program (‘corelet’) specifically

exposed to 4 MeV protons with a flux of 2.5 x 107> em ™
designed to halt if any errors are detected by running it until program output no longer
matches expected output. Runs 1 & 6 are discarded as there was a substantial latency
between the start of the computation and the start of the beam exposure due to operator

error.

128

Table A.2: IBM TrueNorth CNN-based Classification Experimental Results. Table
consists of 8 experiments across 3 different datasets (MNIST, CIFAR-10, & CIFAR-100).

Net Net
Total Total Initial Final
Flux Error Rate Additional Classification
Exp. # Run # | Dataset exposure Fluence Error Error
(cm2st) Increase Classification changes
(s) (em™2) Rate Rate
Errors (“mismatches”)
3 16 MNIST 100 2.50E4+05 2.50E4+07 1.18% 1.18% 0.00% 0 39
3 19 MNIST 100 2.50E4+05 2.50E4+07 1.18% 1.22% 3.39% 4 22
4 1 MNIST 200 1.73E405 3.46E+07 1.18% 1.16% -1.69% -2 48
4 4 MNIST 120 2.43E4+05 2.92E4+07 1.18% 1.23% 4.24% 5 19
4 7 MNIST 120 2.04E+05 245E+07 1.18% 1.15% -2.54% -3 34
4 2 CIFAR 150 1.95E405 2.92E+07 16.69% 16.83% 0.84% 14 626
4 3 CIFAR100 100 1.91E4+05 1.91E+07 44.46% 44.97% 1.15% 51 1864
4 6 CIFAR100 120 2.15E4+05 2.58E+07 44.46% 45.42% 2.16% 96 2329

A.1.5 Experimental Results: Convolutional Neural Networks

A similar 14-layer CNN structure was trained on each of the 3 datasets of interest: MNIST,
CIFAR-10, & CIFAR-100. Initial test accuracies of 98.82%, 83.31%, and 55.54% were
achieved after training across the 3 datasets, respectively, using the EEDN training algo-
rithm [Ess16]. Each of the 3 trained network models were then separately loaded onto the
chip and irradiated during separate runs. Their classification accuracy was compared before
& after radiation with model files being reloaded after each experimental run. Results for

all runs are summarized in Table A.2 and were previously reported in[MCB19, BM19].

An additional two experimental runs utilizing an MNIST-trained model irradiated for 10
cycles of 10s is shown in Fig. A.12. After each cycle, the CNN test classification accuracy was
evaluating by running the model using the full 10,000 test image dataset. One interesting
observation from Table A.2 and Fig. A.12 quickly points out that while a large number
of classification changes or mismatches might occur due to random changes (e.g. SRAM
bit errors) in the on-chip CNN model, only a small subset of these classification changes
appeared to actually result in additional classification errors. This is because incorrectly

classified test images prior to irradiation were low-confidence answers to begin with and

129

135 ,

130
125

4 m]
120 + /
115 +
110
105
100

95
mi

Number of Classification Errors

90

85
) O—m

\

~

o

\ M
o——0— /\:\—H><l—.

"

o—-0
T—~o—=

o—o—0—0p—]

b

e

—m—nErrors (Run #1)
—0O— nErrors (Run #2)
—m— nMismatches (Run #1)
—0O— nMismatches (Run #2)

L 70
L 60
L 50
L 40
L 30
[20

10

80 ,
0

T
20

T
40

T T T

7 T
60 80 100

Cummulative Radiation Exposure Time (s)

Figure A.12: Effects of SEUs on MNIST-trained CNN on IBM TrueNorth. Number
of Classification Errors and Changes (Mismatches) vs.
time for two separate exposures of a TrueNorth system loaded with an MNIST-trained 14-

Layer CNN model. Each run consisted of 100s cummulative exposure (10 cycles of 10s) to

4 MeV protons with a flux of 2.5 x 1075

pre- and post-irradiation output classification labels.

130

Number of Mismatches between
Pre- and Post-Irradiation Classifications

Cummulative Radiation Exposure

~2571. Mismatches defined as changes between

. 012345672829

30 [[] (Pre-rad) [(Post-rad)

False Positives

—>
30 Increasing fluence

Missed classifications

Figure A.13: MNIST Classification Changes for Varying Fluences [BM19]. MNIST
network exposed to 4 MeV protons with a flux of 2.5 x 1075 em 257! for 0, 10, 15, 30,
& 37 seconds. Fulse positives are defined as outputs wrongly classified as specified output
label and mussed classifications are outputs that were not correctly classified as specified
output label. For increasing fluence, 0’s were detected correctly more frequently while 6’s

less frequently.

were most susceptible to classification changes from one incorrect class to another incorrect

class.

Figure A.13 provides more detailed information for MNIST output classification changes
(mismatches) for 5 different runs with varying exposure time. Some output classes (e.g. 0’s)
observed increased classification performance for increasing fluence while others saw output

performance degradation (e.g. 6s).

A.1.6 Simulation Results

The IBM TrueNorth Neurosynaptic Core Simulator (NSCS) was separately utilized to em-
ulate the TrueNorth system. The effects of randomly introduced SEUs or soft errors were
studied in software using NSCS by taking a trained model file, injecting random bit errors

or upsets, and running the file on the NSCS tool. Generally, networks trained for a larger

131

100 100

Only essential parameters

1K lterations
1M Iterations

90 | 90}
- 80} > 80} .
8 = All stochastic parameters
5 5
8 8
< <
c 107 c 70}
S S
w ®
o (3]
2 60} 3 60
3 3
[&] (&
50 | 50 Essential Parameters Only
All TrueNorth Parameters
40 40
0 100,000 200,000 300,000 400,000 0 100,000 200,000 300,000 400,000
Number of Single-Event Upsets (SEUs) Number of Single-Event Upsets (SEUs)
(a) (b)

Figure A.14: IBM TrueNorth NSCS Simulator CNN Results. Neurosynaptic Core
Simulator (NSCS) framework was utilized to simulate the effects of randomly introduced bit
errors on the network. (a) Simulated effects of bit errors on classification accuracy for two
separately trained networks with varying training efforts (10® and 10° iterations), averaged
across 10 runs. (b) Simulated effects of bit errors on EEDN-essential parameters vs. all

network parameters (including stochastic parameters), averaged across 10 runs.

number of training iterations appeared to be more resilient to random bit errors as shown in
Fig. A.14a. Additionally, some parameters were identified as more sensitive to bit errors de-
pending on its function. Optional parameters such as stochastic parameters are not utilized
by EEDN-trained CNNs on the IBM TrueNorth and are disabled by default, but random
bit errors could enable some of these parameters and dramatically modify the behavior of
the network. As shown in Fig. A.14b, when bit errors were introduced to all parameters
including stochastic parameters, the classification accuracy dropped much faster than when
bit errors were only introduced to EEDN-essential TrueNorth parameters. This hints that
a redesigned digital neuromorphic platform with only CNN-essential parameters is expected

to be more resilient to soft errors or bit errors in the network.

132

A.1.7 Further Design Insights

System crashing was observed on the IBM TrueNorth after exposing the system to irradia-
tion. As long as the system was left in standby mode by pausing input spikes to the chip
during irradiation, the system exclusively crashed during subsequent Test/Evaluation cycles,
shown in Fig. A.15. Further, system crashing can be also induced during irradiation by con-
tinuously evaluating the network (e.g. cycling over 10,000 test input dataset for MNIST).

This indicates that the system crashing was largely input-dependent.

It was determined that the likely contributor of system crashing was due to changes in
neuron parameter addressing. As previously mentioned in Section A.1.1, The neuron (des-
tination core) address supports an off-chip addressing space which supports larger systems
of up to 4 x 4 TrueNorth chips. For a single-chip system such as the NSle board, if neuron
address parameters are corrupted by bit errors, it can cause neuron output spikes to be
routed off-chip.This is not expected to occur under normal chip operating conditions, but
may cause system crashing as the system was not designed to delete unsendable packets and
eventually enters an undefined error state after some number of output spikes are routed to
be sent off-chip. ‘Problematic neurons’ limited the total exposure of all experiments shown
in Table A.2 as all experimental results eventually crashed after a certain number of irra-
diation cycles. All experiments were conducted by pausing or idling the model file during

irradiation in order to reduce probability of system crashing.

A.1.8 Conclusions

Neuromorphic systems are inherently redundant. Simulations show that a neuromorphic
architecture—such as the IBM TrueNorth—is capable of enduring extensive exposure to
low-dose irradiation (~10% SEUs) while maintaining negligible reduction in classification
accuracy. Furthermore, experimental results validate expectations by showing a maximum

increase in classification error rate of 4.24% (1.18%—1.22%) for an MNIST-trained CNN

133

Test/Eval. Standby Test/Eval. Standby Te:St/Eval.

WRls] o [l = [fRls] o el = g = [

|
Os Irradiate (50s) Wait 10s Irradiate (50s) Wait H
(10s) (10s) i

]

]

I

System Crashes

Figure A.15: IBM TrueNorth System crashing after irradiation. Example multi-step
irradiation of MNIST CNN network. Network is first evaluated (pre-irradiation) to confirm
expected initial network results, left idling during for a cycle of irradiation by pausing spike
inputs, evaluating, irradiating, evaluating etc. System exclusively crashes during Test/Eval-

uation phase and not during the Standby /Irradiation phase.

after 120s exposure to 4 MeV protons, shown in Table A.2. Neuromorphic architectures
are ideal candidates for high-throughput and reliable operation in high-altitude, strategic, &
radiation environments. Additionally, the effects of bit errors on the IBM TrueNorth can be
further mitigated by system redesign with only CNN or EEDN-essential network parameters,
as described by Fig. A.14b.

A.2 Analog-based Computation

Analog-based Neural Networks are susceptible to both circuit-induced errors and device
non-idealities. Circuit-induced errors are architecture and input-dependent. They require
detailed characterization in order to study how a system may perform across all process,
voltage, & temperature (P/V/T) corners, device mismatches, inputs (x;), and weights (w;;).
Other forms of characterization such as noise analysis and device-specific studies including

relaxation, retention, & endurance may also be of interest.

The Charge-Trap Transistor, NeuroCTT Architecture, and Chip Testing Results were

introduced in Chapters 2, 3, & 4. This section will focus on the performance & accuracy of

134

=100 : ~100 : , .
X ... Depth=16 I czzITIIn ~Conventional SGD
- SR = - ‘ ~HA-SGD
T EREE B so) :
g RRAMIS] | 5 \CTT/Flash/PCM
Q i Q I
<c(> 60} L;(tz 60
o)
Q 2 40!l
40} o 40
» »
_g 20+ g 201
= 5
Q . pd . . .
Z 0 e S S S ——— 0
0o 10 20 30 40 c 10 20 30 40
Relative Variance (%) Relative Variance (%)
(a) Depth Comparison (b) Training Algorithm Comparison

Figure A.16: Effect of Relative Variance on Inference Accuracy. A Wide-ResNet
[ZK17] model was trained using the CIFAR-100 dataset [Kri09]. Relative variance defined as
the ;fl’—;fgce and reflects the weight programming accuracy and retention. (a) Trained Network
(Top 5%) Accuracy vs. Weight Relative Variance for two different networks of depth 16
& 28, respectively. (b) Trained Network (Top 5%) Accuracy vs. Weight Relative Variance
for a Wide-ResNet (Depth=28) network trained using the Traditional Stochastic Gradient
Descent (SGD) [Bot98, BCN18] and Hessian-Aware Stochastic Gradient Descent (HA-SGD)

[WWZ22] algorithms.

analog nonvolatile memory-based neural networks using the NeuroCTT system as a baseline
system for evaluation. Thorough accuracy and performance evaluation of analog in-memory
computing (IMC) architectures based on emerging analog non-volatile memory (NVM) tech-

nologies was recently reported in [WWZ22, WMC19], a subset of which will be shared here.

135

Circuit-induced errors can also be characterized using the CIRCUS Platform introduced
in Section 4.4 (and Appendix C), considering global process variation and mismatch across
all temperature corners. Device non-idealities are characterized by studying the (1) weight
programming error (e.g. Wirained 7 Wdeployed), Teferred to as programming variance (oppe)
in this dissertation, (2) device shallow relaxation, (3) device retention, and (4) subthresh-
old degradation. Other variables may be of interest depending on the target device used.
For example, some RRAM devices experience weight instability or large fluctuations over
time especially in the high-resistance (HRS) state, shown in [Li21]. While MOSFET tran-
sistors are inherently susceptible to % (‘flicker”) noise, these low-frequency fluctuations are

substantially smaller in magnitude comparison to those shown in [Li21] and assumed to be

negligible.

136

122nm CTT 250
1074 W=120 nm Program |
10° L=20nm 200 4
—_ S 1504 4 J
s 107 .'f E 100 Irradiated@GND] 2nd : grar
-— ; i o
S 10° ;f Irradiated@GND 2 ol s
c Tested@V,=50mV 5 ®
O 10" s 01w E {1 * LR .
- - Fresh I LR ‘ ’
O 10™ —o— Program g B ERE i
seae H £ .1004
e 10" . 500 kréd(S|oz) = !) ‘ In-Situ Annealing
x Annealing 1504 25 nm CTT 4 gg:;a‘\"nea"n& @GND
10" / +— Program 200 W=120 nm 1
i R Annealing L=20 nm
10 e 250 +—r——r——T——T—T—T1r T T T T T .
T T v v v v v 0 100 200 300 400 500 O 10 20 301 10 100 1000
02 0o 02 0.4 0.6 08 10 12 Annealing Time (min) Annealing Time (min)
Gate Voltage (V) Total Dose (krad(SiO,)) g
(a) Ips vs. Vgs Curves (b) AV Shift

Figure A.17: TID Effects on 22nm (W = 120nm) FDSOI Devices Programmed

Before Irradiation. Averaged across 3 devices. Previously reported in [BZG21].
A.3 Effects of Total Ionizing Dose (TID) on the CTT

Studies were performed to evaluate the effects of Total lonizing Dose (TID) on 14LP and
22FDX-based CTT devices [BZG21]. While not fully relevant to the device operation in
non-strategic operating environments, TID-effects provide valuable information about how
these devices would fair in high-dose environments and clues about how to remedy new issues

introduced by TID.

It was determined that FDSOI (e.g. 22FDSOI) technologies are highly-sensitive to TID
effects due to hole-trapping in the Buried Oxide (BOX) layer with a net effect of reducing
the device’s threshold voltage (—AVry). Figures A.17 & A.18 suggest that TID effects were
due to hole-trapping in the BOX instead of trapping in gate dielectric, as a programming
cycle with AVyg~200mV was achievable on devices that were programmed after irradiation.
AVry is presumed to be fairly systematic across a chip and could be somewhat compensated
for by applying back-gate biasing, though Zheng et. al [ZCX19] points out that only positive
back-gate biases may be used for Forward-Body-biased (FBB) nFET devices to prevent p-n

conduction, which would only further decrease the threshold voltage instead of negating the

137

322nm CTT 200
10’5! W=120 nm 22nm CTT
jL=20nm 150 4 W=120 nm -

. L=20nm rrogram|

E 100 4 4]
< € T .
~ @ 501 B = *
€ Iradiated @GND § [Fresn]
g g ofs - -
3 Tested@V,=50 mV 2] °
c g ® .
S —=— Fresh) g 100 Pl i < < <
a === 500 krad(SiO,) =) _

cesenns A lin " 150 4 In-situ Annealing
nnealing X In-situ Annealing after programming
~— Program 2004 Iradiated@GND 1 @GND 4 @GND
Annealing 30 min
100 T G R a0 S0 o o 1 qo 0 oo
Bt : Gate Voltaqé (V) : . : Total Dose (krad(SiO})) Annealing (min) Annealing (min)
(a) Ips vs. Vgs Curves (b) AV Shift

Figure A.18: TID Effects on 22nm (W = 120nm) FDSOI Devices Programmed
After Irradiation. Averaged across 3 devices. Previously reported in [BZG21].

TID-induced threshold shift. TID effects may be alleviated by using a thicker BOX layer
to reduce channel coupling. Additionally, PDSOI technologies have been shown to have

substantially less sensitivity to TID effects.

Charge-trapping has also been demonstrated in bulk devices. TID studies were performed
on GlobalFoundries 14nm low-power (14LP) FinFET devices as a control experiment. Signif-
icantly less AVpy due to TID irradiation was observed, shown in Fig. A.20. Unfortunately,
devices with more fins (e.g. Ny = 40) saw substantial off-state current as shown in Fig-
ures A.20a & A.20c, compared 2-fin devices shown in Fig. A.19. Both observations agree
with current information available in the literature [HMA15, ZCX19].

138

10* 4 14 nm CTT with 2 fins
14 nm CTT with 2 Fins 10*1 Gate Length = 16 nm
10*{ Gate Length =16 nm
408 10 -!
< 107 @ 10”‘] Irradiation + Annealing
= IrraGiation +Annealing Z 1009 @all terminais grounded
5 10* @ A terminal grounded g Tested@V,=50 mV
S . . Tested@V,= 50 mV © 107y
O 10 o £
c —e— Fresh g 10 ".l —e— Fresh
F10™ - Program === 500 krad(SiO,)
(=] 0" === 500 krgd(soz) w'y gy Annealing
....... Annealing - Program
1072 +— Program 1 Annealing
. Annealing 10— v v v y y
10" = o 0 o Gt o 1o 02 0.0 02 04 06 08 1.0
Gate Voltage (V) Gate Voltage (V)
(a) Program-First (Ips vs. Vgs) (b) Irradiate-First (Ipg vs. Vgg Shift)

Figure A.19: TID Effects on 14nm (W.s; = 150nm, Ny = 2) Devices. (a) Typical I-V
Curve for a device that is programmed first, then irradiated. (b) Typical I-V Curve for a

device that is irradiated first, then programmed. Previously reported in [BZG21].

139

14 nm CTT with 40 Fins
10" { Gate Length =16nm
10® 1
—. 10°4 :
<
= 107 TID@AII terminals grounded
g 10° 4 Tested@V,=50 mV
O
c 1074 —e— Fresh
‘g -10 £ ¢ —— Program
1074 - = = 500 krad(SiO,)
107" 4 Annealing
R +— Program
12
1071 Annealing
10" +— T T T T T
-0.2 0.0 0.2 0.4 0.6 0.8 1.0
Gate Voltage (V)

(a) Program-First (Ips vs. Vas)
10°

14 nm CTT with 40 Fins
10" Gate Length = 16 nm

s
<
&
.

< 10"]
T s
g 107 4 Irradiated @ GND
8 10°4 Tested@V,= 50 mV
~§ 10° 4 —=— Fresh
) === 500 krad(SiO,)
-1
0% A Annealing
a1 Program
107 Annealing
10-12 T T T T T T
-0.2 0.0 0.2 0.4 0.6 0.8 1.0

Gate Voltaae (V)

(¢) Irradiate-First (Ipg vs. Vggs)

100
Program
- Progam after TID
80+ ¢ 3
—_ . 3 . . ¥ -
£ 604 Y 4 " M
S Irradiated @GND =
% 40 4 Annealing 2nd Annealing
>
2
2
% 20
4
=
=
< 0] u ;
14 nm CTT with 40 fins
Fresh Gate Length =16nm
d—— L

T T oy oy oy oy —
400 500 0 10 20 30 1 10

0 100 200 300 100 1000 10000
Total Dose (krad(SiO,)) Annealing Time (min)

2nd Annealing (min)

(b) Program-First (AVry Shift)

100
14 nm CTT with 40 fins Program
0 Gate Length =16 nm I :
x . * 3
60 - _ p
40 4 .
I Post-TID-Program
201 TID@GND 1 Annealing@GND 4 Annealing@GND
R E :
s
e s efad a 3 -
-20 4 -4
— T T T T T T r ” . r
0 100 200 300 400 500 0O 10 20 301 10 100 1000

Total Dose (krad(SiO,)) Annealing (min) Annealing (min)

(d) Irradiate-First (AVrg)

Figure A.20: TID Effects on 14nm (W.s; = 3um, Ny = 40) Devices. (a) & (b) show

data averaged across 3 devices that were programmed first, then irradiated. (c) & (d) show

data averaged across 3 devices that were irradiated first, then programmed. Previously

reported in [BZG21].

140

APPENDIX B

Radiation Effects on 3D-Stacked Architectures

While a majority of this dissertation focuses on edge-based applications, large-scale deep
learning hardware and its overall system reliability is becoming increasingly important. This
chapter concludes this dissertation by looking at the effects of errors on general-purpose
3D-stacked architectures, utilizing 3D-Stacked (3DS) DRAM as a tool for measuring the

propagation of errors between multiple die layers.

Many larger-scale systems today leverage 3D memories including High-Bandwidth Mem-
ory (HBM) and 3D-Stacked (3DS) DRAM in order to store large multi-layer networks. As an
example, the Generative Pre-trained Transformer 3 (GPT-3) model for generating human-
like text has over 175 billion network parameters trained on ~457'B of training data across

multiple datasets [BMR20].

B.1 Experimental Design Challenges

Designing a set of experiments for evaluating the effects of radiation-induced soft errors
on 3D-stacked architectures is nontrivial. First of all, 3D-stacked components are most
commonly available today as packaged memory chips including the Hybrid Memory Cube
(HMC) [Mic18c|, High-bandwidth memory (HBM) [Mic18b], and 3D-stacked (3DS) DRAM
[Mic18al]. These memory chips, especially HMC and HBM, are typically co-embedded with
a processor on a silicon interposer and are difficult to procure in a discrete & standalone-

testable form factor. Because of this, FPGA compatible platforms for accessing and testing

141

Figure B.1: Xilinx Virtex Ultrascale+ HBM (VCU-128) FPGA Board. Board
includes Xilinx VU37P FPGA with 2 x 32Gb 4H HBMs.

142

HBM memory were evaluated for reduced testing complexity. In the example of the Xilinx
Ultrascale+ VU37P HBM FPGA (VCU-128 board), shown in Fig. B.1, the FPGA is co-
embedded on a Silicon interposer with 2 x 32Gb 4H HBMs [SA17] [Xil19] requiring the entire
heat sink to be removed and the interposer to be partially delidded to expose the HBMs for

irradiation.

Secondly, removing the heatsink leads to thermal dissipation issues and excludes vacuum-
based testing options such as utilizing the Vanderbilt Pelletron [McC15]. It also complicates
the experiment as errors may not be exclusively introduced into the HBM memory, but may

also affect the FPGA chip responsible for interfacing with and testing the HBM memory.

Xilinx recently demonstrated in [CM19] single-event evaluation of the same Xilinx Ultra-
scale+ HBM board as considered above, with limited insights on Single Event Effects (SEESs)
on HBM memories and no spatial error information. Their SEE studies utilized >10 MeV
neutron and 64 MeV proton sources at the LANSCE Weapons Neutron Research Facility
(WNR) and at Crocker National Laboratory (CNL), respectively.

Separately, HBM and HMC memories not only include memory dies but also include a
logic die at the bottom of the stack. Decoupling the location of memory errors and the error
source is further complicated by the fact that soft errors may be introduced to the memory

dies and/or the the logic die.

B.2 3D-Stacked (3DS) Test Samples

As alluded to above, 3D-stacked (3DS) DRAM [Mic18a] was selected as it is (1) procurable
in a discrete and testable 288-pin DDR4 DIMM form factor, (2) not co-embedded with a
processor or FPGA die on a silicon interposer, (3) simple to chemically delid, and (4) testable
using a memory test platform (MTP) such as the Innoventions Ramcheck LX (Fig. B.6) or
the custom IBM Sputnik MTP (Fig. B.7). Overall, 3DS is also simpler to test and extract

information from as it has no logic die as in the case for HMC & HBM memories.

143

OO0 VOOOOOO

(a) 2-Layer (2H) (b) 4-Layer (4H)

Figure B.2: 3DS Logical Rank Mapping. 3DS DDR4 DIMMs include 2 physical ranks
and 2/4 logical ranks for the 2H and 4H Stacks respectively. The logical ranks correspond
to the stack height where the (a) 2H stack has 2 logical ranks and the (b) 4H stack has 4
logical ranks. Logical rank can be used to locate where soft errors occur in the memory

stack during irradiation.

Radiation-induced soft errors are expected to be dominated by upsets within the bit
cells & memory array itself, though one should still consider the effects of read /write/refresh

circuitry on the overall bit error rate as this circuitry may also be sensitive to radiation.

Given the volatile nature of DRAM, refresh at regular (e.g. 64ms) intervals is required.
While decoupling the effect of radiation on peripheral circuitry and bit cells is ideal, the
overall objective of this work is to evaluate the effects of radiation-induced errors on the the

entire DRAM memory system (bit cells and peripheral circuitry).

Samsung 64GB (M393A8K40B22-CWD) and and 128GB (M393AAK40B42-CWD) 288-
pin DDR4 DIMMs were utilized specifically in this study. The 64GB and 128GB DDRA4
DIMM modules consist of 36x 2-layer (2H) and 4-layer (4H) memory devices, respectively.
Four of the devices are reserved for ECC and ignored during all experiments. Each die in
the both stacks consists of 8Gb DRAM. DIMM Memory hierarchy includes 2 physical ranks
(side of DIMM), 2/4 logical ranks (64GB/128GB DIMMs), and 16 banks (4 banks/group x

4 bank groups). In both cases, the logical rank indexes each die within its respective stacked-

144

- -
[B 8

et Dbt B ottt Sy e Gy P i g | Pt | St P e | _“

e] | it

4
:-:]
Y,
4
8
' =
1,
‘3

- eEaene e b el

T 130 T 13 12481

L s T T T T

Figure B.3: Delidded 3D-Stacked (3DS) DRAM Memory. 288-pin DDR4 modules
were utilized for testing. A 64GB, 2-layer stacked DIMM (top) and a 128GB, 4-layer stacked
DIMM (bottom) were used for testing. Devices D21-D24 were delidded—device #’s [Sam17a]
& [Sam17b]. Devices D25-D28; directly below the delidded devices, were also utilized for
testing at the NASA Space Radiation Laboratory (NSRL).

DRAM device, shown in Fig. B.2.

64GB and 128GB DIMMs were prepared for testing using facilities at both Vanderbilt
University and NASA Space Radiation Lab (NSRL). A Titanium-Sapphire Chirped Pulse
Amplifier (CPA) Laser was utilized at Vanderbilt, which required sample delidding to expose
the bare silicon prior to irradiation. Delidding was performed across 4 DRAM devices on both
the 64GB and 128GB DIMMSs, as shown in Fig. B.3. All delidded devices were confirmed to
be fully functional after delidding using the IBM Sputnik M'TP discussed in the next section.

Additionally, cross sections of both the 2H and 4H DRAM devices were taken by molding

the devices in a resin and polishing. Cross sections are shown in Fig. B.4.

145

Figure B.4: Cross Section of 2-Layer (2H) Samsung 3DS Memory Devices. Stacked
memory devices consist of similar 8Gb DRAM dies. Therefore, 2H and 4H stacked-DRAM

devices consist of 16Gb and 13Gb, respectively.

B.3 Memory Test Platform (MTP)

After obtaining Samsung 2H (64GB) and 4H (128GB) 288-pin DDR4 DIMM samples, sev-
eral MTP platforms were evaluated for testing. Multiple factors were taken into consider-
ation including (1) programmability, (2) ability to shield the tester during irradiation, (3)
thermal-dissipation issues, (4) accessing physical addresses, (5) commercial availability, and

(6) software support.

Most importantly, the testing platform must be compatible with the experimental setup
and be able to identify spatial information about where errors are introduced within the
memory. Depending on the source of irradiation, there may be size, power, and thermal
limitations. If testing is conducted in a vacuum, as is the case for SEU studies using the
Vanderbilt Pelletron, thermal considerations are a large concern as heat sinks and fans do
not provide sufficient cooling in a vacuum and must be replaced with a thermoelectric cooler,
or cold finger. It’s important to note that while its possible to perform some SEU studies

at room pressure (1atm), this is typically only available at higher-energy facilities such as

146

Figure B.5: Vanderbilt University Thermoelectric Cooling System. (a) 4 Ther-
moelectric (TE) cooling modules mounted in between heat exchanger and 0.25in thick
aluminum plate. (b) Thermistor (center) was half-embedded into outer side of plate for

measuring temperature input for external temperature controller. [McC17]

NASA Space Radiation Laboratory (NSRL).

Previously, it was shown in Section A.1 where an IBM TrueNorth Neurosynaptic System
NSle Board was irradiated in the Vanderbilt Pelletron under vacuum conditions; however,
this setup did not require any special heat dissipation techniques as the chip is a low-power
design (~70 mWW) and was powered down in between runs to prevent any possible overheating
or damage. An FPGA system (e.g. Virtex Ultrascale+ HBM VCU-128G, Fig. B.1) or a
DDR4-based memory test platform is typically much higher-powered and requires thermal

considerations.

Collaborators at Vanderbilt University developed a thermoelectric cooling system, de-
tailed in [McC17] and shown in Fig. B.5, which has been demonstrated to cool a 30W
test article in a vacuum chamber using electrical and liquid chamber feed-throughs (see
Fig. A.10a). Utilizing a cold finger instead of a heat sink and fan allows higher power sys-
tems to be tested in vacuum conditions; however, it is difficult to both irradiate and cool the
same part (e.g. interposer), which is required in the case of testing the Virtex Ultrascale+

HBM VCU-128G board at vacuum.

147

For the purpose of irradiating 3DS memory, three different DDR4-based memory test

platforms were evaluated:

1. Linux Computer (Example test programs: memtest86, malloc, etc.)
2. Ramcheck LX Memory Test Platform (Fig. B.6)

3. IBM Sputnik Memory Test Platform (Fig. B.7)

First of all, Using a Linux-based computer comes with obvious limitations. Computers
utilize virtual addressing spaces, making it difficult to evaluate error information for physical
addresses. Programs such as memtest86 [Pas21] state that physical addressing decoding
scheme information is proprietary for Intel-based systems. Other Linux commands such as
memory allocation (malloc) were also evaluated but suffer from the same address decoding
limitations as above. Additionally, its important for the reliability of the memory test

platform to be decoupled from the DRAM memory under test.

Commercially available memory test platforms are typically quite limited in offering,
large in form factor, and expensive. Additionally, project specifications required the memory
tester to not only support DDR4 memory but also 3DS-DDR4 DIMM memory which consists
of both physical and logical ranks. Due to quoted compatibility for 64GB+ DDR4-based
DIMMs, the Ramcheck LX MTP (Fig. B.6) was procured and tested with the 64GB & 128GB
DIMM modules. Unfortunately, it was found that the tester (1) was not compatible as stated,
(2) required custom software support, and (3) was extremely limited by available testing
functionality and not designed for detecting exactly where bit errors occurred. Additionally,
the MTP manufacturer, Innoventions, ceased operations and was unable to offer any software

support in order to run the DDR4 parts.

Procuring a system for testing 3DS-based DRAM memory proved rather challenging due
to compatibility and experimental limitations mentioned above. The project was assisted

by the support of IBM through the OpenPower Foundation. Collaborators at IBM provided

148

BYTESEE IITIETITL OHL
D1362. 2 1600UMz FEERS |
16G¥72 DORA BAOB |

PATTIESSSESSS
MFR.RATING=2666WHZ

Figure B.7: IBM Sputnik Memory Test Platform. (a) Sputnik Memory Test Platform
with Raspberry Pi-based control box (left) and Minnow card (right). Minnow card (b)
front and (c) side views. Irradiation source placed such that ions incident on front-side of
DDR4 DIMM in (c). Sputnik box and Minnow card communicate via 12C bus and user

communicates with Sputnik box via gateway computer utilizing Ethernet protocol.

149

Nl 1l
o

b o o ol o o o e e e e e e e e e e e e e el e e e e

il

e o o o ol e o e e e o o o o e e e e e

Front

(Physical Rank=0)

Back
(Physical Rank=1)

Figure B.8: 3DS DDR4 DIMM Device Layout. Devices D5, D10, D15, & D20 (purple)

are reserved for ECC and disabled during all irradiation experiments.

access to an internal, custom-design memory test platform, nicknamed ‘Sputnik’. The IBM
Sputnik MTP (Fig. B.7) consisting a Raspberry Pi-based ‘Sputnik’ control box and Minnow
card. The two components utilize a low-frequency I2C protocol for communication. Gateway
computer interfaces with ‘Sputnik’ via local ethernet connection. The minnow card consists
of a memory controller IC which interfaces with the 3DS DDR4 DIMM module. IBM
OpenPOWER Foundation Cronus environment and MCBIST software tools were used to

write known patterns into the memory array and detect errors after irradiation.

Example error report information for detected bit errors for a single memory address
is found in Table B.2. Error report provides spatial information including physical rank
(DIMM side), logical rank (die in stack, Fig. B.2), bank group (BG), bank array (BA), row
(217), column (2'°), beat/burst pair, and nibble (or device). Nibbles correspond to specific
devices on the DIMM depending on which physical rank is selected, detailed in Table B.1 &
Fig. B.8.

Memory requests are 64B sent over 4 clock cycles at double-data rate (DDR). This con-

150

Nibble Device (Phys. Rank=0) | Device (Phys. Rank=1)
nibble<0> D6 D16
nibble<1> D1 D11
nibble<2> D7 D17
nibble<3> D2 D12
nibble<4> D8 D18
nibble<5> D3 D13
nibble<6> D9 D19
nibble<7> D4 D14
nibble<8> D25 D33
nibble<9> D21 D29

nibble<10> D26 D34
nibble<11> D22 D30
nibble<12> D27 D35
nibble<13> D23 D31
nibble<14> D28 D36
nibble<15> D24 D32

Table B.1: Nibble to Device Mapping per physical rank (side of DIMM). Each mem-
ory request is 64B sent over 4 clock cycles at double-data rate (64bx 4 cycles x 2 bursts/cycle).
Each 64b segment is called a burst and clock cycle consists of 1 burst pair (or 2 bursts). Sam-
sung 64GB (M393A8K40B22-CWD) and 128GB (M393AAK40B42-CWD) DIMMs consists
of sixteen, 4-bit width (x4) dram devices per physical rank, excluding ECC devices. Each

64bit burst consists of 4 bits/device x 16 devices. Each 4-bit block of data for each device is

also called a nibble.

151

© oo N O Ot = W N

e e e ey
S Ot R WD = O

2022-02-17...: error trap: 0

2022-02-17...: dimm: 0

2022-02-17...: physicalrank: O

2022-02-17...: logicalrank: 1

2022-02-17...: BG: 2

2022-02-17...: BA: 0

2022-02-17...: row: 0x05406

2022-02-17...: col: 0x00

2022-02-17.. beat pair: 0/1

2022-02-17...: BYTE 0011223344556677
2022-02-17...: NIBBLE 0101010101010101
2022-02-17...: ERRORS ..o M.X
2022-02-17...: burst 0 actual 0x1111111111111110
2022-02-17...: burst O expected: Ox1111111111111111
2022-02-17...: burst 1 actual 0x2222222222222220
2022-02-17...: burst 1 expected: 0x2222222222222222

Table B.2: IBM Sputnik Error Trap Example. Minnow card supports up to 2 DIMMs,
2 physical ranks (side of DIMM), 4 logical ranks (3DS stack height), 4 bank groups (BG), 4
bank arrays (BA), 17 row bits, and 10 column bits. Bursts (e.g. 0 & 1) are arranged LSB-
first, nibble<0:15>. In this example, errors were detected on nibble<15> (physicalrank=0,
device=D24) during burst 0 & 1, highlighted in red on lines 13 & 15. Nibble<13> (device
D23) is ignored as device D23 was non-functional on utilized DIMM, denoted by an ‘M’
(masked) on line 12. Nibble-to-device mapping can be found in Table B.1 & Fig. B.8.

152

coO N O Ot =W N

putscom mc regburstO 1111111111111111 -pall #bdburst O

putscom mc regburstl 2222222222222222 -pall #burst 1
putscom mc regburst2 3333333333333333 -pall #burst 2
putscom mc regburst3 4444444444444444 -pall #burst 3
putscom mc regburst4 55555555555556555 -pall #burst 4
putscom mc regburstb 6666666666666666 -pall #burst 5
putscom mc regburst6 777777777 7777777 -pall #burst 6
putscom mc regburst7 8888888888888888 -pall #burst 7

Table B.3: Setting Expected IBM Sputnik Memory Pattern Example. Memory con-
troller (mc) chip is utilized for interfacing with DIMM. Written or expected memory pattern
is specified by setting eight 64b registers (regburstO-regburst7) on the memory controller.
Each 64b register is LSB first, nibble<0:15>. Example utilizes beat pattern resulting in

32°h12345678 to stored on each DRAM device for every valid memory address.

sists of 8 bursts of 64b of data, where two bursts (or a burst-pair) are sent each cycle. DRAM
devices on the Samsung 64GB (M393A8K40B22-CWD) and 128GB (M393AAK40B42-CWD)
DIMMs are 4-bit width (x4) devices. Each 4-bit packet of data (per device per burst) is called
a nibble. Error information is provided for each memory address and on each beat/burst
pair (e.g. burst pairs 0/1, 2/3, 4/5, 6/7). Arbitrary memory patterns can be specified such

as the beat pattern (see Table B.3) as well as checkerboard, all zeros, and all ones patterns.

Thermal and other considerations still exist for the IBM Sputnik MTP as the memory
controller IC on the Minnow card may consume ~30W at run-time, making it difficult to
use facilities such as the Vanderbilt Pelletron at vacuum without the use of a ‘cold finger’
as previously mentioned in Fig. B.5. The Vanderbilt Thermoelectric Cooler (designed in
[McC17]) requires reasonable modifications for use with the Sputnik system to cool the

memory controller IC (covered by heat sink in Fig. B.7b).

153

To reduce immediate testing complexity, testing was performed at room pressure (~1 atm)
using the Vanderbilt University Pulsed-Laser and high-energy testing at NASA Space Radi-

ation Laboratory (NSRL) facilities, detailed in subsequent sections B.4 and B.5.

B.4 Vanderbilt Pulsed-Laser Testing

Vanderbilt University offers Pulsed-Laser testing, which supports wavelengths varying 300 nm

to 3 um and ~235 fs pulses with 1kH z repetition rate [Van21, MBLO04].

B.4.1 Titanium-Sapphire Chirped Pulse Amplifier (CPA) Laser

The Vanderbilt Pulsed-laser setup consists of a titanium-sapphire chirped pulse amplifier
laser. A diode-pumped CW laser is coupled into a passively mode-locked Ti:sapphire laser.
The mode-locked amplifier converts the CW laser input into a train of ultrashort pulses
with a repetition rate of ~80 M H z, which act as seed pulses for a second titanium-sapphire
crystal pumped with a frequency doubled Nd:YAG laser at 532nm. The pulses are stretched
in duration so they can be safely amplified and then compressed again. After making multiple
passes through the gain medium, they are converted to ~235 fs pulses at 1 kHz repetition

rate [Van2l].

The system utilizes a Topas optical parametric generator (OPG) to convert broad spec-
trum Ti:sapphire pulses to a wide range of wavelengths (e.g. 300 nm —3um) using non-linear
crystals. The laser beam diameter has been measured as ~3.2um for A\ = 1260nm. The

entire laser system is shown in Fig. B.9 with a mechanical stage for testing shown in Fig. B.10.

B.4.2 Laser-based Testing Results

Initial test results demonstrated that the Vanderbilt CPA-laser was able to induce Single-

Event Effects in the 3DS memory using through-silicon two-photon absorption [MBLO04].

154

Figure B.9: Vanderbilt University Ti-Sapphire-based Pulsed Laser.

Figure B.10: Vanderbilt University Pulsed Laser 3DS Test Setup. (a) Sputnik Test
setup (bird’s eye view). (b) Sputnik test setup (side profile). DIMM is parallel to lens
opening. (c) Mirrors mounted below objective used to focus beam on device under test

(DUT).

155

Bit Errors Observed vs. Pulsed-Energy

Number of Bit Errors

N w & w [
=3 S S © S
L L L L

=
o
o

(=]
L

1 2 3 4 5
Pulsed-Energy (n))

Figure B.11: 3DS Memory Bit Errors vs. Laser Intensity. The laser was positioned
over one of the memory arrays on a delidded device. The laser irradiated the exposed device
at 5 different laser intensities, measured in terms of Pulse-Energy. In between runs, the

DIMM memory was re-initialized with correct data.

The laser was aligned above an exposed memory device precisely above a memory array by
visual inspection. The laser irradiated the exposed devices at 5 different Pulsed-Energy (nJ)
intensities. Number of bit errors was measured after irradiation at each intensity level and

plotted in Fig. B.11. The memory was reinitialized after each run.

An automated setup was developed to control the laser, mechanical stage, and memory
test platform. The laser beam can be moved in ~100nm steps—shown in Fig. B.12. The
setup (1) writes a known pattern into the memory, (2) moves the laser beam and exposes
the memory at a fixed X/Y location, and (3) evaluates the DUT to determine where errors
occurred within the memory—and repeated for all specified X/Y locations using a simple

bash script, shown in Fig. B.13.

The automated setup was used to expose 81 data points across a 4 x 4mm area of the
exposed back-side of the 3DS device, where the stage was moved in 500um X /Y increments
for each point. Results are shown in Figures B.14 & B.15. Testing at Vanderbilt University

using the Titanium-Sapphire CPA Laser verified that memory errors can be induced in the

156

Figure B.12: Vanderbilt University Pulsed Laser 3DS Automated Testing. (a)
Setup including laser control computer (left) and memory test platform gateway computer
(right). (b) A fraction of the beam is reflected using a low-incident angle waveplate onto a set
of mirrors and into a photodiode, enabling the measurement of every laser pulse generated

by the system.

Figure B.13: Automated Laser Testing Program. Laser stage is mechanically controlled
down to ~100 nm resolution. Simple bash script automatically controls mechanical stage and

Sputnik memory test platform and performs automated tests at specified X/Y locations.

157

Errors Traps Generated per Laser XY Stage Location
20p, 150, 10p, S S0, 20p, %55, <0
%,,, 3%,, %0 00 0, S0y %y *So, <O,
qo o % Yo o %o %o

. . ; " 501
8 21 o o o 60

11 64

18 n 21 2 5 14 24
’ H B ! “

0 o 0 0 0 0 0

20
15 63 3 14 26 8
104

Laser Testing SEFI Comparison Chart

-1000.0 - B

50 40 4

o
o

@ o

=3

o =3

o o

@

.n“

- e
°°°°.v-mn-
n

=

~

©

@

30 4

1000.0- 0

204

Number of Events

1500.0 -

Laser Y Location {(um)
8
uonedoy Jad sdeyy sou3

2000.0 -

2500.0 - 32
3000.0- 0 8 11 4 1 0 0
—0 w/ SEFI w/ Bit Errors (SEUs) w/o Bit Errors
Laser X Location (um) Event Type
(a) Heatmap (b) Histogram

Figure B.14: Automated 3DS Laser Testing Results. The Laser stage was automati-
cally moved in 500um X/Y increments, covering a 4mm x 4mm area (81 total events). For
each location, the DIMM was reloaded with correct data, irradiated with a laser, and then
evaluated to see if errors occurred. (a) Heatmap of the number of error traps detected per
X/Y location. After 64 error traps, the DIMM read operation is halted. (b) Histogram
showing whether each event induced Single-Event Upsets (SEUs), Single-Event Functional

Interrupts (SEFIs), or no detected memory/bit errors.

158

Bit Errors Gene@ted per Baqk across alllruns

93 96

Bank Group (BG)
N
o
<]

jueq Jad siou3 I8

-
w
o

T
-
(=]
o

o
o
o
(=]
g

Bank Address (BA)

Figure B.15: Automated 3DS Laser Testing Results: Bit Errors by Bank. Laser
was pulsed across 81 data points spanning a 4 x 4mm area of the exposed device. Number

of bit errors detected per device bank is shown.

top-die of the exposed 3DS memory device and accurately detected using the IBM Sputnik
Memory Test Platform. Additionally, testing results shown in Fig. B.14 allude to the overall
radiation sensitivity of the tested 3DS Memory devices that were observed during radiation

studies at the NASA Space Radiation Laboratory (NSRL), described in the following section.

159

lon candidates for NSRL testing

X g >3 Max LET
Target range: 0.1 ~ 50 MeV- cm?/mg £ o
o 304
-
Energy MaxUETinS MinLET Rangein §1
ton Mevfy) AMY ToRIE(GeV) L e IS s g 0 3 ."J
H %00 o 025 oss 0003 20208 g 103 Min LET
H 100.00 0.10 : 0006 4162 [SE————— —
g, [3 1000 120 006 59110 0 5 10 15 o =
] c 30000 12 3.60 514 010 9392 Si depth (mem)
- C 104.00 125 020 1523 o1 "
=) 1000.00 16.0 011 43551
§ o 20000 15995 320 747 023 3502
o 134.00 220 030 1756 Ag ||s====%
K 38300 83912 320 41.00 330 2690 NS tttd
Nb 360.00 330 429 2116 ———
v Nb 300.00 279 an 15.79 el
€ w2000 P 23 4730 o35 109 0| =
- Nb 160.00 149 6.88 563 c |llm——=
= Ag 330 35.28 595 1602 H e
2l e m o omm o am s e e e W e

LET in Si (MeV-cm?/mg)

Figure B.16: NSRL Testing Candidate Ions. Energy, LET in Si, and Range in Si

provided for each ion species.
B.5 NASA Space Radiation Lab (NSRL)

Additional testing was performed at the NASA Space Radiation Lab (NSRL) facility located
at Brookhaven National Lab (BNL) in Long Island, NY. The NSRL facility itself was estab-
lished to assess the risks of space radiation to human space travelers and equipment. It offers
a variety of high-energy, non-ionizing radiation recipes for medical, biological, physical, and

electronics testing.

B.5.1 Test Facility Capabilities

The ion beam supports a large range of energies and ion species. Full ion and energy
capabilities as well LET curves, LET energy in Si (MeV/(mg/cm?)), and range in Si can
be found in [NAS22a, NAS22b]. A subset of candidate ions for 3DS testing are shown in
Fig. B.16. The NSRL Beamline is shown in Fig. B.17.

160

Figure B.17: NSRL Beamline.

B.5.2 NSRL Testing Results

NSRL Tungsten Collimator with 3DS Test Setup is shown in Fig. B.18. The ion beam size
is ~10 x 10 cm. A Tungsten collimator is used to limit exposure to specific areas of interest
while shielding sensitive electronics components on the board. The collimator was adjusted
to limit exposure to Devices D21-D28 on the front-side of the DIMM (Physical Rank=0) as
shown in Fig. B.18b (DIMM Device layout defined in Fig. B.8).

Several experiments were performed over a 4-hour period using Si and C species. All
experimental runs are summarized in Table B.4. In general, either no bit errors (SEUs) were
detected or a Single-Event Functional Interrupt (SEFI) was triggered, during all runs except
for Run 8. This was likely due to the low flux of each experimental run, but it hints at
the substantial sensitivity of the 3DS memory to radiation. SEFI sensitivity correlates with
what was seen during pulsed-laser testing described in Section B.4, where SEFIs were all

but guaranteed if the laser was positioned directly above a sensitive area and/or circuit.

161

N —
shielded: Ml

shielded

(a) Tungsten Collimator (b) Shielding Design (c) Experimental Setup

Figure B.18: NSRL Adjustable Tungsten Collimator with 3DS Test Setup. The
collimator is shown in the fully retractable position with the red laser alignment lines vis-
ible. Collimator is designed to shield all but the 8 selected devices shown in (b). Actual

experimental setup after aligning collimator is shown in (c).

g g
11 52
Ltg & §
f f 1 1
%E %E D32 D31 D30 D29
@ 3 3%
T Y TS RS RYRYSYRYSPRRPRYRYATH] - -vovore rovve Cvmvevs e e
(a) Run 24 (10.7 MeV /amu) (b) Run 25 (0 MeV /amu)

Figure B.19: Example NSRL Runs with Degrader. ‘X’ represents devices where bit
errors were detected. Both Runs 24 & 25 are examples of runs with catastrophic SEFI events
where multiple devices were affected despite the beam being mostly and fully degraded,

respectively. Results hint that the 3DS sample was highly sensitive to secondaries.

162

Energy Errors SEUs SEFI(s)
Run | Species LET | Fluence SEFI Type
(MeV /amu) Collected | Collected | Detected

7 Si 370 0.5 le+b 0 0 no —

8 Si 370 0.5 le+6 3 3 no —

9 Si 370 0.5 le+7 4593 0 yes row(s)
11 C 300 0.1 6.5e+6 1651 0 yes row(s)
12 C 300 0.1 le+6 0 0 no —
13 C 300 0.1 le+6 0 0 no —
14 C 300 0.1 le+6 0 0 no —
15 C 300 0.1 le+6 0 0 no —
16 C 300 0.1 le+6 692 0 yes column
17 C 300 0.1 le+6 2085 0 yes row
18 C 104 0.2 le+6 0 0 no —
19 C 104 0.2 le+6 2735 0 yes row
20 C 104 0.2 le+6 0 0 no —
21 C 104 0.2 2e+6 0 0 no —
22 C 104 0.2 le+6 335 0 yes column
23 C 104 0.2 3e+6 585 0 yes row
24 C 10.7 — oe+6 1228 0 yes multi-device
25 C 0 de+6 624 1 yes oW
26 C 16.15 — de+6 171 0 yes column
27 C 18 — 5e+6 512 0 yes row

Table B.4: NSRL Testing Run Summary. All runs were performed on 4-layer (4H)

3DS Memory. Full 3DS DIMM memory readout was not performed every time an error was

detected as system was designed to only report on errors on up to 64 memory addresses at

a time. Runs with detected SEFI(s) were prematurely halted after reading out errors on

64-1280 addresses. ‘Collected’ errors reflect this rather than necessarily the total number of

bit errors read out from the entire DIMM. Run 8 was unique as it was the only run with

Single-Event Upsets (SEUs) detected only.

163

B.6 General Conclusions

It was determined that 3DS memory is highly-sensitive to radiation. As is true in general for
smaller technology nodes, the critical charge to induce a memory upset is substantially lower
than older technology nodes. The 3DS memory, however, was not only sensitive to Single-
Event Upsets (SEUs) but also highly sensitive to Single-Event Functional Interrupts (SEFIs)
as seen during both pulsed-laser testing at Vanderbilt University and heavy ion experiments
at NASA Space Radiation Laboratory. Specifically during the laser testing, it was shown
that if the laser was positioned directly over a sensitive circuit (e.g. redundancy latch), a

SEFT could be repeatably induced at the same location across multiple experimental runs.

In general, studying the effects of radiation on specifically 3D Architectures provides
new challenges beyond traditional testing. It was found that Variable-Depth Bragg Peak
[BKM11] analysis is non-trivial in more complex 3D-stacked systems utilizing state-of-the-

art technology nodes.

Our interpretation is that in principal, each layer in the memory stack can be indepen-
dently examined given that the amount of attenuation per layer is likely negligible. It is,
however, important to point out that NSRL experiments highlighted the the significant effect
of secondaries, especially where in Run 25 the beam was fully degraded to 0 MeV /amu, but
generated secondaries managed to trigger SEFT and SEU event(s) across multiple devices on
the DIMM. Because of the overall system complexity and confounding variables, new tech-
niques must be developed to study system reliability of more complex 3D-stacked memories

and systems.

164

APPENDIX C

CTT-Hardware-based Inference Realistic Circuit

Universal Simulator

Example codebase is available here: https://github.com/smoran1/CIRCUS localmc

C.1 CIRCUS Overview

CIRCUS is a simulation platform (Fig. 4.24) that allows for a schematic-based design to be
automatically parsed & updated with specified input vectors and trained weights. Section C.2
describes how Trained weights are automatically mapped to CTT devices in simulation using
an Lyeight(NA) — AVrpy(mV') Lookup Table which sets the value of the parameterized voltage
attached to the device’s gate such that it produces a specific on current when enabled with

Vwr = Vgs = 200mV, previously shown in Fig. 4.25.

Section C.3 describes how digital inputs are mapped into the circuit simulation to con-
trol the WL driver circuits using vector file generation technique. Section C.4 combines
the generated netlist and wl vector files from the previous two sections, and invokes the
Cadence Spectre simulations followed by Cadence OCEAN Analysis to extract crucial data
from the simulation output waveforms. Automated Data Analysis using Cadence OCEAN
is described in more detail in section (Section C.5). Simulations with post-layout parasitic-
extracted netlists are also possible for more accurate post-design verification. Spectre Accel-
erated Parallel Simulator (++aps) is utilized to reduce overall simulation run-time without

compensating on simulation accuracy.

165

File Directory:
root
| _cshrc

| scripts

runfile.py
[WL_INPUT vector_generation.py]
[generate_column netlists.py]
[postrun_analysis.py]

cleanup.sh

| templates

mts

ocean
LA,[analysis,localmc.ocn]
netlist

weights

runObjFile

| [automated run files]
[column netlist_templates]
[final run netlists]
[final run ocean scripts]

[wl_inputs]

| [automated run outputs]

[general outputs]
[ocean outputs]
[spectre_outputs]

plots

166

© 0 N O U R W N =

I = e e e e
W N =R O © XN oA W N RO

// Library name: NEUROCTT-OP3
// Cell name: nfet_ctt
// View name: schematic
// Inherited view list: spectre cmos_sch cmos.sch schematic veriloga ahdl
// pspice dspf
subckt nfet_ctt b d g s
parameters Vth=0
VO (g net9) vsource dc=Vth type=dc
NO (d net9 s b) nfet w=428n 1=20n ...
ends nfet_ctt

// End of subcircuit definition.
// Library name: NEUROCTT_OP3

// Cell name: ARRAY_CTT_TWIN_CELL
// View name: schematic

// Inherited view list: spectre cmos_sch cmos.sch schematic veriloga ahdl

// pspice dspf
subckt ARRAY_CTT_.TWIN_CELL BLc BLt SL VSS WL
parameters Vth_p Vth_.n

10 (VSS BLt WL SL) nfet_-ctt Vth=Vth_p

I1 (VSS SL WL BLc) nfet_ctt Vth=Vth_n
ends ARRAY_CTT.TWIN_CELL
// End of subcircuit definition.

Table C.1: Example ARRAY _CTT_TWIN_CELL Netlist Implementation.

C.2 Spectre Netlist Parsing

Differential weights are stored using the ARRAY_CTT_TWIN_CELL model with parameter-
ized Vth_p & Vth_n gate voltage sources, shown in Table C.1. Example netlist with device
weights for a single column with 8 WLs after mapping to AVyy(mV') parameters is shown

in Table C.2.

Table C.3 provides a excerpt of the included generate_column netlists.py script where
netlist lines corresponding to twin-cell CTT devices are retrieved and modified with provided
VITH.T and VI'H_C weight parameters after mapping lyeigni(nA) — AVpg(mV') values
using a weight lookup table (templates\weights\W EIGHT _LUT -TT'.csv).

167

W N O W N =

0 N O U s W N =

©

11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27

10\<0\> (BLc BLt SL VSS WL\<0\>) ARRAY_CTT_-TWIN.CELL Vth_p=36.
10\<1\> (BLc BLt SL VSS WIL\<1\>) ARRAY.CTT_TWIN.CELL Vth_p=23.
10\<2\> (BLc BLt SL VSS WL\<2\>) ARRAY.CTT_TWIN.CELL Vth_p=28.
10\<3\> (BLc BLt SL VSS WL\<3\>) ARRAY.CTT_TWIN.CELL Vth_p=53.
10\<4\> (BLc BLt SL VSS WL\<4\>) ARRAY_.CTT_TWIN.CELL Vth_p=47.
10\<5\> (BLc BLt SL VSS WL\<5\>) ARRAY_.CTT_TWIN.CELL Vth_p=28.
10\<6\> (BLc BLt SL VSS WL\<6\>) ARRAY_.CTT_-TWIN.CELL Vth_p=29.
10\<7\> (BLc BLt SL VSS WL\<7\>) ARRAY_CTT_-TWIN.CELL Vth_p=29.

Table C.2: Example Spectre Netlist after Weight Insertion.

Begin .scs file parsing

with open(spice_netlist_template) as f:

create [contents] data array of template file
for line in f:
contents.append(line)
Parse
nLinesUpdated = 0
for i in range(0,len(contents) ,1):

If line contains nfet_ctt (mot dummy device):

061044m
271323m
847506m
405000m
045000m
625991m
851701m
274721m

Vth_n=15.
Vth_n=31.
Vth_n=13.
Vth_n=28.
Vth_n=31.
Vth_n=44.
Vth_n=48.
Vth_n=26.

if (all(x in contents[i] for x in [’Vth_p’,’Vth_.n’]) and (’parameters’ not in

WL=contents [i].split () [0].split ("<”)[1].split(”"\\”)[0]

temp_line =’ 10\<’ + str(WL)+’\> (BLc BLt SL VSS WI\<’ + str (WL) \
4+ "\>) ARRAY.CTT_-TWIN.CELL Vth_p=' + str(VTH.T[int (WL)]) \

4+ 7 Vthon=" 4+ str(VIHC[int (WL)] + ’\n’)

updated_contents.append(temp-_line)

503379m
856741m
605357m
581547m
757343m
195000m
395000m
502806m

contents[i])):

nLinesUpdated = nLinesUpdated+1 # sanity check (should be 256 lines / column)
elif ’seed=12345" in contents[i]:
temp-line = 'mcl montecarlo numruns=1 seed=’ 4+ str (SEED.NUMBERS[neuron_num]) +

all sampling=standard \\\n’
updated_contents.append(temp_line)
else:

updated_contents.append(contents[i])

Output file

with open(output_netlist_directory + output_netlist_filename + str(neuron_num) + ”

for line in updated_contents:

f.write(line)

Table C.3: CIRCUS Column Netlist Generating Python Script. Subset of provided

generate_column netlists.py.

168

variations=

C.3 Input Vector File Generation

Input Vector Files allow users to specify digital inputs (e.g. 8 bit integers between 0 — 255),
remap them, and then apply them as inputs within a circuit simulation. Example file setup
and WL inputs for the first two clocks cycles of inference is shown in Table C.4. This file
specifies the values of the 6 digital inputs to each of the WL Drivers for each of the 256 Wls
(W L(0:255)).

Table C.5 provides an excerpt of the included WL_INPUTS_vector_generation.py script
where specified digital inputs (W L(0:255)) are mapped to logic voltages for circuit input
signals WL_VWL_EN(0:255), WL_VREAD_EN(0:255), WL_VPP_EN(0:255), and their re-

spective complements.

169

I

0o N o O«

©

11
12
13
14
15

16
17

18
19

radix 44

io i

vname WL_VWL_EN<<0:255>> WL_.VWL_EN_N<<0:255>> WL_VREAD_EN<<0:255>> WL_.VREAD_EN_N<<0:255>> WL_VPP_EN

44
44
44
44
44

iiiii

<<0:255>> WL_VPP_EN_N<<0:255>>

tunit ns

trise 1

tfall 1

vil
vih
vol

voh

0
0.8
0
0.8

; format time vector

pot=

Ons

0 00

FFFR
00
FFFE
00
FFEFE

;Cycle: 1(t=3400ns)
3400 0000000820000000000080800000000000400020000001000004002000100000

FFFFFFF7DFFFFFFFFFFF7F7FFFFFFFFFFFBFFFDFFFFFFEFFFFFBFFDFFFEFFFFF
0000000820000000000080800000000000400020000001000004002000100000
FFFFFFF7DFFFFFFFFFFFTF7FFFFFFFFFFFBFFFDFFFFFFEFFFFFBFFDFFFEFFFEF
00
FFEFE

; Cycle: 2(t=3405ns)
3405 0000000820000000000080800000000000400020000001000004002000100000

Table C.4: Example CIRCUS WL Vector File Output. Output shown for the first 2

compute cycles (out of 256 input cycles.) Generated logic signals provide differential digital

FFFFFFF7DFFFFFFFFFFF7F7FFFFFFFFFFFBFFFDFFFFFFEFFFFFBFFDFFFEFFFFF
0000000820000000000080800000000000400020000001000004002000100000
FFFFFFF7DFFFFFFFFFFF7FTFFFFFFFFFFFBFFFDFFFFFFEFFFFFBFFDFFFEFFFFF
00
FFEFE

input signals to each of the 256 WL Drivers.

170

def generate_wl_input_vector_files (X INPUTS):

(1) Generate WL Inputs per input—sample & per neuron (simulate 1 neuron @ a time)
vec_contents = []
nSamples = len (X_.INPUTS)
for run-num in range(0,nSamples,1):
(a) Prepare WL inputs for specific run #run_num
K K ok ok kK K ok K ok K ok K ok Kk ok ok K ok K ok K ok K ok K ok ok ok K ok ok ok K ok K ok ok K Ok ok ok K
nWLs = len (X_.INPUTS[0]) #
WLINPUTS = [0] * nWLs
for index, val in enumerate(XINPUTS[run-num],0):
WLINPUTS[index] = val
(d.1) Start Inference
t_inf_start = 3400; #ns
Tcycle = 5; #ns
nMaxCycles = 256;
for i in range(l, nMaxCycles+1, 1):
time_step = Tcyclex(i—1) + t_inf_start
line = str(time_step) +
vwl_en_temp =
vwl_en_n_temp = '
Convert 4—bits (1 hex char.) at a time
for j in range(0,nWLs,4):
tmp, tmp.n = convertWLInputsToHex (WLINPUTS[j:j+3])
vwl_en_temp = vwl_en_temp + tmp.split(’0x’)[1].upper()
vwl_en_n_temp = vwl_en_n_temp + tmp.n.split(’0x’)[1].upper()
vread_en_temp = vwl_en_temp
vread_-en_n_temp = vwl_en_n_temp
line = line + vwl_en_temp + + vwl_en_n_temp + ° ’ + vread_-en_-temp +
VPP

line = line + ’ 0’

for _ in range(1l,nWLs//radix ,1):
line = line + 0’

line = line + ’ F’

for - in range(1l,nWLs//radix ,1):

line = line + ’'F’

vec_contents.append(’;Cycle: ’ 4+ str(i) 4+ ’(t=" + str(time_step) +

vec_contents.append(line)

)

+ vread_en_n_temp

Table C.5: CIRCUS WL Vector File Generation Python Script. Subset of provided

WL_INPUT _vector_generation.py.

171

C.4 Run File

Table C.6 provides an example runfile which (1) generates WL input vector files, (2) generates
column netlist templates with imported weights, (3) creates run netlists with run and input
information, (4) creates an ocean analysis script for each run from a template file, (5) invokes
the Spectre circuit simulation, and (6) invokes Cadence OCEAN using the generated ocean

analysis script to analyze the simulation results.

C.5 Data Analysis using Cadence OCEAN

Cadence OCEAN allows user to generate SKILL-based scripts for automatically parsing
simulation outputs. An analysis script similar to that shown in Table C.8 is used to parse
the *.raw simulation output and automatically extract important information such as the
pulse-width of the neuron’s output signal. Additionally, mathematical integration can be

performed on specified signals such as the differential input current presented to integrator’s
. T
input by the CTT array (e.g. Qivp~ [, (Ipre(t) — IpLe(t)) dt).

Example CIRCUS analysis results for N=32 neurons and 50 simulation runs per neuron

with random inputs and randomly initialized weights are plotted in Fig. 4.28 in Section 4.4.

172

10
11
12
13
14
15
16
17
18
19
20
21

22
23
24
25
26
27
28
29
30
31
32
33

34
35
36
37
38

39
40
41
42
43

44

(1) Generate WL Input (.vec) Files

WLINPUTS = np.random.randint (256, size=(nSamples, nWLs))

generate_wl_input_-vector_files (WLINPUTS)

(2) Generate column netlist templates

np.random.seed (12977511)

SEED_NUMBERS = np.random.randint (500000, size=nNeurons)

T_-WEIGHTS, C_.WEIGHTS, T_-WEIGHTS_.VTH, C.WEIGHTS.VTH = generate_random_column_netlists_localmc (nNeurons,
SEED_NUMBERS)

(3) Generate run netlists

OFFSET_POS_TRIM_BITS

OFFSET_NEG_TRIM_BITS

np.zeros (nNeurons)

= np.zeros (nNeurons)
neuron_run_list = list (range(0,nNeurons,1))
for run_num in range(l,nSamples+1,1):
for neuron_num in neuron_run_list:
contents = []

with open(common_directory + template_neuron_netlist + str(neuron.num) + ”.scs”) as f:
for line in f:

contents.append(line)
for i in range (0,len(contents) ,1):

(a) Insert ’wvec_include’

command with input wvector file
if ’"vec_include’ in contents[i]:

»

contents[i] = ’'vec_include + wl_input_vec_filename + str(run.num) 4+ ’.vec” autostop

=false\n’

(b) Change OFFSET_-POS_TRIM Settings

(4) Generate ocean script files
for run_num in range(l,nSamples+1,1):
for neuron_num in neuron_run_list:
with open(common_directory + ocean_template_filename) as f:
contents = []
for line in f:
contents.append(line)
for i in range(0,len(contents) ,1):

>

if ‘openResults’ in contents[i]:

contents [i] = 'openResults(”’ + common_directory + ’automated_run_outputs/
spectre_outputs/neuron_.’ 4+ str(neuron.num) + ’_run_-’ 4 str(run_num) + ’.raw”)\n’
(5) Run Spectre Simulation
for run_num in range(l,nSamples+1,1):
for neuron_num in neuron_run-list:
scs_filename = common_directory + final_run_netlist + str(mneuron.num) + ’_run-’ 4+ str(run_num) +
.scs’
s.system (”spectre ” 4+ scs_filename + 7 +4+aps +multithread”)
(6) Run Ocean analysis scripts
for run_num in range(l,nSamples+1,1):
for neuron_num in neuron_runc_list:
ocean_filename = common_directory 4+ final_-run_ocean + str (neuron-num) + ’_run-’ + str(run_-num) + °’
.ocn’
s.system (’ocean —restore ' + ocean_filename)

Table C.6: CIRCUS Main Runfile Python Script. Subset of provided runfile.py

script.

173

© 00 N O Uk W N

[e N e
N R O © ® N O A W N = O

23
24
25
26
27
28
29
30
31

openResults (” /ul/ee/smoran2/Desktop/CIRCUSNEW/neuron_sim_tt_85C_localmc/automated_run_outputs/

spectre_outputs/neuron_O_run_10.raw”)

x1 = 3.40e—06
x2 = 4.68e—06
BLt_integrated = integ(leafValue(i(”I2:7” ?result ”"tran”) ”iteration” 1) x1 x2 ”_.”)
BLc_integrated = integ(leafValue(i(”I2:3” ?result ”tran”) ”iteration” 1) x1 x2 ".7)

rising_edge = cross(leafValue(v(’NEURON.OUTPUT” ?result ”tran”) ”iteration” 1) 0.45 0 ’rising)
falling_edge._=_cross (leafValue (-v(?”NEURON.OUTPUT” _?result.”tran”)_.” iteration”_1.)_-0.45.0-"falling)

PWM_0P9_total_time = 0.0

; Ideally the NEURON.OUTPUT should be a single pulse with one rising edge and one falling edge
if(length(rising_edge)==1 && length (falling_edge)==1 then
PWM_0P9_total_time = nthelem (1 falling_edge)—nthelem (1 rising_edge)
;println (PWM_total_time)
; Condition for if the output is multiple pulses (e.g. 2 pulses with 2 rising edges & 2 falling edges)

else
if (length(rising_edge) == length(falling_edge) then
n = length(rising_-edge)
for(i 1 n
PWM_0P9_total_time = PWM_OP9_total_time + nthelem (i falling_edge) — nthelem (i
rising_edge)
)
)
)
p = outfile(”../automated_-run_outputs/ocean_outputs/neuron_-O_run_-10.txt” "w”)

fprintf(p "PWM_(0.9V)_Total_Duration: %g_(sec)\n” PWM_0P9_total_time)
fprintf(p "BLt_current_(integrated)._is: _%g_(C)\n” BLt_integrated)
fprintf(p "BLc_current._(integrated)._is: _%g_(C)\n” BLc_integrated)

close (p)

Table C.7: Example CIRCUS-generated OCEAN Analysis Script. Analysis is per-
formed on the Spectre simulation output (*.raw). The differential input current presented
to the integrator by the CTT array is mathematically integrated and the output pulse width

is calculated. Example is shown in Table C.8.

PWM (0.9V) Total Duration: 9.99515e-09 (sec)
BLt current (integrated) is: 3.34673e-12 (C)

BLc current (integrated) is: 3.99835e-12 (C)

Table C.8: Example CIRCUS Run Output after Cadence OCEAN Analysis.

174

APPENDIX D

NeuroCTT Design & Top-Level Verification

D.1 Digital I/O Architecture

A simple logic interface has been developed allowing a majority of the testing complexity to
be shifted to the FPGA-to-MATLAB UART-interface discussed in Section 3.4. Chip logic
operation consists of data load operations, instruction execution, & retrieving neuron time-
to-digital (TDC) output from the chip. All data load & unload operations are performed
using Serial-In (SI), Serial-Out (SO) communication protocols. Figures D.1 and D.2 demon-
strate executing a program on the chip (PROGRAM_EXECUTE) as well as loading data, in-
struction, and configuration parameters to the chip. While, omitted here, output data can be
similarly retrieved from the chip by sending a a one-cycle (RETRIEVE_NEURON_COUNT)
pulse which leads to the contents of the 320b output register to be serially outputted from
the chip the COUNT_DATA_OUT pin.

(2]
AL

. b P
CHIP_CLK_IN I | I | I | l | I | l | E I | I |
¥y A /)

CHIP_RESET_N (asynchronous) l; I
: : 6 : :

Figure D.1: NeuroCTT 0.3 I/O Program Execute Enable.

175

. o . , . , s CHIP_CLK_IN

CHIP_CLK_IN | | | | l | I | l | | | | | l | EnableSignal(") |

I T T T e e e s Ve e e
00
(a) Input Datapath (b) Output Datapth

Figure D.2: NeuroCTT 0.3 I/O Architecture. (a) There are 3 serial input data paths
which load data into three input data shift registers: DATA_REG, INSTRUCTION_REG,
and CONFIG_REG, respectively. Data load can happen concurrently or staggered (concur-
rent data load of the three datapaths is shown in the figure above). Input data is flopped
on positive edge of clock. (b) Previous shift register contents are outputted MSB-first on

respective output pins during a data load.

176

D.2 Testbench Vector Generator

Example codebase is available here:

https://github.com/smoranl/Verilog Test_Vector_Generator

A python-based compiler or test vector generator was designed to generate CSV-based
test vectors that can be used to run pre- and post-synthesis Verilog simulations as well as

chip-level Analog Mixed-Signal (AMS) verification simulations.

Verilog Testbench Vector Generator File Directory:
root

| functions.py

| example_scripts

[run_inference.py]

[run_programming.py]

[run verification.py]

[run_offchip_ver.py]

| [example_testbenches]

L [LOGIC_SYSTEM_TB.v]

,__outputs
[I0O_FILE_INFERENCE. csv]

[I0_FILE PRG.csv]

The TB Vector Generator produces a CSV output file which can be loaded into a pre-
or post-synthesis Verilog simulation for expediting chip design verification. An example test

vector (CSV) output is provided in Table D.1.

177

© 0 N O U W N

NN N NN NN R e e
S G R W N R O ©® N T A W N~ O

RESET_N,LOAD_DATA_EN, DATA_IN, LOAD_INSTRUCTION_EN, INSTRUCTION_IN , LOAD_CONFIG_EN, CONFIG_DATA_IN ,
RETRIEVE_NEURON_COUNT, PROGRAM_EXECUTE_EN, RESET_COUNT_EN, ANALOG_NEURON_IN
,0,0,0,0,0,0,0,0,0,00000000000000000000000000000000
,0,0,0,0,0,0,0,0,0,00000000000000000000000000000000
,0,0,0,0,0,0,0,0,0,00000000000000000000000000000000
,0,0,0,0,0,0,0,0,0,00000000000000000000000000000000
,0,0,0,0,0,0,0,0,0,00000000000000000000000000000000
,0,0,1,0,0,0,0,0,0,00000000000000000000000000000000
,0,0,0,0,0,0,0,0,0,00000000000000000000000000000000
,0,0,0,1,0,0,0,0,0,00000000000000000000000000000000
,0,0,0,1,0,0,0,0,0,00000000000000000000000000000000
,0,0,0,1,0,0,0,0,0,00000000000000000000000000000000
,0,0,0,1,0,0,0,0,0,00000000000000000000000000000000
,0,0,0,0,0,0,0,0,0,00000000000000000000000000000000
,0,0,0,0,0,0,0,0,0,00000000000000000000000000000000
,0,0,0,0,0,0,0,0,0,00000000000000000000000000000000
,0,0,0,0,0,0,0,0,0,00000000000000000000000000000000
,0,0,0,0,0,0,0,0,0,00000000000000000000000000000000
,0,0,0,0,0,0,0,0,0,00000000000000000000000000000000
,0,0,0,0,0,0,0,0,0,00000000000000000000000000000000
,0,0,0,0,0,0,0,0,0,00000000000000000000000000000000
,0,0,0,0,0,0,0,0,0,00000000000000000000000000000000
,0,0,0,0,0,0,0,0,0,00000000000000000000000000000000
,0,0,0,0,0,0,0,0,0,00000000000000000000000000000000
,1,0,0,0,0,0,0,0,0,00000000000000000000000000000000
,0,0,0,0,0,0,0,0,0,00000000000000000000000000000000

e T T R R R e e e e = T T e B O S

Table D.1: Example TB Generator (CSV) Output File. Each row corresponds to
inputs that will be applied to the LOGIC_SYSTEM block at different clock cycles. The final
column (“ANALOG_NEURON_IN") corresponds to example neuron pulse-width-modulated
outputs to test functionality of the Time-to-Digital Converter (TDC) block.

178

D.2.1 Testbench Vector Generator: Header

Each python-based run-file begins with a header section defining necessary parameters for
the compiler, shown in Table D.2. Users can customize the Setup or Chip Configuration
Parameters shown in Table D.3. This section loads default values but can be modified later

again in the script.

D.2.2 Test Vector Generator: Run Examples

After the Header and Setup Parameters sections, the user can utilize a predefined set of
functions comprising data, instruction, and configuration loads to the chip as well as applying
chip resets (RESET_N) and executing the loaded program (PROGRAM_EXECUTE_EN).
Predefined functions are provided in the functions.py file. An example run file for running

an INFERENCE simulation is provided in Table D .4.

D.3 Verilog Testbench

Tables D.5 & D.6 provide an example complementary testbench for loading the generated
CSV vector file from Tables D.2- D.4 into the LOGIC_SYSTEM block.

179

© 0 g9 3 U W N

import csv

from functions import =

run_name = ”outputs/IO_FILE_INFERENCE”

input_signals = ['RESET.N’, 'LOADDATAEN’, 'DATAIN’ \
"LOADINSTRUCTION_EN’ , ’INSTRUCTION.IN’, ’LOAD_CONFIG_EN’ ,\
’CONFIG_.DATA_IN’ , "RETRIEVE NEURON_COUNT’ , "PROGRAM_EXECUTEEN" ,\
"RESET_COUNT_EN’, *ANALOG_NEURON.IN']

instruction_dict = {

Programming Instructions

"PRG.T” : 1,

?"PRG.C” : 2,

?"PRG_.T_NO_FLOAT” : 3,
"PRG_.C.NO_FLOAT” : 4,
"PRG-T-REVERSE” : 5,
"PRG_-C_REVERSE” : 6,
?PRG-T_REVERSE_NO_FLOAT” : 7,
?PRG_-C_REVERSE_NO_FLOAT” : 8,
"PRG.DEBUG” : 17,
"PRG.TWIN_CELL” : 19,
?"PRG_TWIN_CELL.NO_FLOAT” : 20, # not implemented
?"PRG-TWIN_CELL_.REVERSE” : 21,

Verification Instructions

"VERIFY_OCV” : 9, # wuses neuron
PVERIFY_OCV_T” : 10, # same as VERIFY_.OCV
?VERIFY_OCV_.C” : 11, # same as VERIFY.OCV
?”VERIFY_T_OFFCHIP” : 12,

?”VERIFY_C_.OFFCHIP” : 13,
?VERIFY_.TWIN_.OFFCHIP” : 14,

”VERIFY_DEBUG” : 18,
"VERIFY_-OCV_.CG_AMP_ONLY” : 25, # wuses neuron

Inference Instructions

7INEF” @ 15,

?INF_ZERO_INPUT” : 16,
?INF_.MEASURE_BL.VOLTAGE” : 22,
?INF_.CG_.AMP_ONLY” : 23,
?INF_CG_AMP_ZERO_INPUT” : 24,
”INF_DEBUG” : 26,
7INF_ALWAYS_.ON” : 27,
”INF_OFF_CHIP” : 28,
7INF_ORIGINAL_SWITCH_LOGIC” : 29,
?INF_.SWAPPING” : 30

Table D.2: TB Vector Generator Run File: Header.

180

Setup Parameters

Fine—tune offset correction
OFFSET_POS_FINE_.TUNE = [0] * 32;
OFFSET_NEG_FINE_TUNE = [0] * 32;
Trim offset correction
OFFSET_POS_TRIM = [0] = 32;
OFFSET.NEG_TRIM = [0] = 32;

NEURONEN = [1] * 32;

neuron_parameters = {
?»T_CLK_MHz” : 100, # Valid Range: 0—400 [MHz]
?OFFSET_POS_FINE_.TUNE” : OFFSET._.POS_FINE_.TUNE, # [32—parameters] Valid Range (10—bits): 0—1023 cycles
?OFFSET_NEG_FINE_TUNE” : OFFSET_NEG_FINETUNE, # [32—parameters] Valid Range (10—bits): 0—1023 cycles
"NEURON_EN” : NEURON_EN,
?USE_.BOOSTED_INTEGRATOR” : True,
» CAP_SETTING” : ”6.6pF”, # Options: {600fF, 1.8pF, 2./pF, 8.0pF, 3.6pF, 4.2pF, 4.8pF, 5.4pF,
?INTEGRATOR-EN.X” : 30, # Valid Range (9—bits): 0—511 cycles
7INTEGRATOR-SETUP” : 20, # Valid Range (9—bits): 0—511 cycles
7INTEGRATOR-EN.Y” : 1, # Valid Range (4—bits): 0—15 cycles
”COMPARATOR.EN.X” : 30, # Valid Range (9—bits): 0—511 cycles (Default = INTEGRATOR_EN_X)
7INFERENCE_DURATION” : 255, # Valid Range (10— bits): 01023 cycles (Formally known as 'MAX_WL_INPUT’)
?TDUMMYX” : 0, # Valid Range (8—bits): 0—255 cycles (dummy wl input)
?INTEGRATION_SWITCH_EN_X” : 10, # Valid Range (8—bits): 0—255 cycles
?INTEGRATION_SWITCH_EN_.Y” : 1, # Valid Range (4—bits): 0—15 cycles
”MIN_PULSE_X” : 1, # Valid Range (5—bits): 0—31 cycles
7OR-EN_X” : 1, # Valid Range (4—bits): 0—15 cycles
7OR-EN.Y” : 1, # Valid Range (4—bits): 0—15 cycles
?”DISCHARGE_EN” : 300, # Valid Range (10— bits): 0—1028 cycles
"RESET_EN.X” : 10, # Valid Range (8—bits): 0—255 cycles
"RESET_EN_Y” : 10, # Valid Range (8—bits): 0—255 cycles
?"T_SWAPPING” : 100, # Valid Range (8—bits): 0—255 cycles (applicable to INF.SWAPPING inst)
?UTILIZE_FLIPPED_BIAS_CONFIG” : 0, # Valid Range (1—bit): 0—1 (0: normal_-config, 1: flipped_config)
7OFFSET_POS_TRIM” : OFFSET_-POS_TRIM, # [32—parameters] Valid Range (8—bits)
?OFFSET_NEG_TRIM” : OFFSET_NEG_TRIM, # [32—parameters] Valid Range (8—bits)
”COLUMN_SELECT” : 0, # Valid Range (5—bits): select mneuron 0—31
?"DEBUG.MUX_SELECT” : 5, # Valid Range (5—bits): 0: none selected, 1—15: selects respective

1Ims = 40,000 cycles @ 40OMHz

prg-parameters = {
”COLUMNS_SELECTED” : ”711000000000000000000000000000000” , # 32—bit debug param. (COLUMNS.SELECTED<0:31>)
?"BL.PULSE_WIDTH_X” : 100, # Valid Range (16— bits): 0—65535 cycles
?BL_PULSE_WIDTH_.Y” : 100, # Valid Range (16— bits): 0—65535 cycles
?SL.START” : 5, # Valid Range (4—bits): 0—15 cycles
”SL_END” : 5, # Valid Range (4—bits): 0—15 cycles
?»WL_PULSE_WIDTH” : 100 # Valid Range (16— bits): 0—65535 cycles

Table D.3: TB Vector Generator Run File: Setup Parameters.

181

© 0 N O U s W N =

B R s R R R R W W W W W W W W W W NN NNN NN N R e e e e
DA W N RO © 00N C kR WY H O © OO0 R WN RO O N R W N RO

input_vectors = []
check_neuron_parameters(neuron_parameters)
check_prg_parameters(prg-parameters)

check_debug_parameters(debug_parameters)

Commands

#
idle (input_signals ,input_vectors ,2) #idle for 2 cycles

apply_-reset (input-signals ,input_-vectors)

(1) Initiate INF operation
instruction = 7INF”
load-instruction (input-signals ,input_-vectors ,instruction_dict ,instruction) # maz 5—bit value

idle (input_signals ,input_-vectors ,10) #idle for 10 cycles

WLDATA = [0] * 256
for i in range(128):
WLDATA[i] = 201;

Ezpected mneuron outputs (inputs to TDCs)
NEURON_.OUTPUTS = [0] * 32
for i in range(32):

NEURON_OUTPUTS[i] = i;

load_-wl_data(input_signals ,input_vectors ,WLDATA)

idle (input_signals ,input_vectors ,10) #idle for 10 cycles
load_wl_data(input_signals ,input_vectors ,WLDATA)

idle (input-signals ,input_-vectors ,10) #idle for 10 cycles
load_config_data(input_signals ,input_vectors ,neuron_parameters)
idle (input_signals ,input_-vectors ,10) #idle for 10 cycles
load_config_data (input_signals ,input_vectors ,neuron_parameters)
idle (input_signals ,input_-vectors ,10) #idle for 10 cycles

program_execute (input_signals ,input_vectors ,neuron_parameters , prg_parameters ,instruction ,NEURON.OUTPUTS)

Retrieve inference data (nmeuron outputs: 320—bits)
retrieve_inference_data (input_signals ,input_vectors)

idle (input_signals ,input_-vectors ,10) #idle for 10 cycles

Write .csv file
#

with open(run_name + ’'.csv’,’w’) as csvfile:

csvwriter = csv.writer(csvfile)
write header
csvwriter . writerow (input_signals)
write data

csvwriter . writerows (input_vectors)

Table D.4: Example TB Vector Generator Run File INFERENCE Mode. User (1)
applies reset, (2) load “INF” instruction, (3) loads input or WL data, (4), loads neuron/chip
configuration data, (5) executes the program, and (6) retrieves the neuron time-to-digital

converted outputs.

182

® N O U s W N

©

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

module LOGIC_SYSTEM.-TB() ;

I0 1

reg [

Para

parameter

"ilename

] input_filename = ”"IO/IO_FILE.INFERENCE.csv”;
meters, Signal Declarations & Instantiations
HalfCycle = 5000; ps

localparam Cycle

= 2xHalfCycle;

LOGICSYSTEM DUT(

GPIO Inputs
.CLK_IN(Clock), .RESET.N(reset_-n), .LOADDATAZEN(load_-data_en), .DATA_IN(data_in),
.LOAD_INSTRUCTION_EN(load_instruction_en), .INSTRUCTION.IN(instruction_in),
.LOAD_CONFIG_EN(load_config_en), .CONFIG.DATA_IN(config_data_in),
.RETRIEVE_COUNT DATA EN(retrieve_count_-data_-en), .PROGRAMEXECUTEEN(program_execute_en),
.RESET_COUNT_EN(reset_count_en),

Outputs

)

initial Clock = 1’b0;

always #(HalfCycle) Clock = ~Clock;
.oad Input Vector Files

reg [] header;

reg isSimulationEnd;

reg startUpCompleted;

integer
integer

initial

logFile;
inputFil
begin

inputFil

e

e = $fopen(input_filename ,”rb”);

if (inputFile == 0)

begin

end else

end

$display (? Error_at_opening._file : .-IO/IO_FILE.csv”);

$stop;

begin

print & discard first line (header)

if ($fscanf(inputFile, "%s\n” ,header) <1) begin
isSimulationEnd = 1;

end else begin
$display ("%s\n” ,header) ;

end

Table D.5: Example Verilog TB with CSV Input Vector.

183

© 0 N O U e W N =

T N o S S S~ S O S Ry
=~ SO © ® N o G A W N = O

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

Apply Test Stimulus

initial begin

end

reg tmp-reset_n;
reg tmp-load_data_en, tmp_data_in;
reg tmp_-load_instruction_en, tmp_instruction_in;
reg tmp_load_config_en, tmp_config_data_in;
reg tmp_retrieve_count_data_en;
reg tmp-program-execute-en;
reg tmp-reset_-count_en;
reg [31:0] tmp-analog_neuron_in;
integer temp;
always @Q(negedge Clock) begin

if (startUpCompleted) begin

if ($feof(inputFile) != 0) begin

isSimulationEnd = 1;

end else if ($fscanf(inputFile, "%b, %b, %b, %b, %b, %b, %b, %b, Y%b, %b, %b\n” ,

tmp-reset_-n, tmp-load_data_en ,

tmp-instruction_in, tmp_load_-config_en ,

tmp-data_in ,

tmp_config_data_-in, tmp-retrieve_count_data_-en

tmp-load_instruction_en ,

, tmp_program_execute_en, tmp-reset_count_en, tmp_analog_neuron.in) <1)

isSimulationEnd = 1;
end else begin
Apply inputs

reset-n <= tmp-reset_n;

load_data-en <= tmp-load_-data_en;

data_-in <= tmp_data_in;

load_-instruction_en <= tmp-load_instruction_en;

instruction_in <= tmp_instruction_in;
load_config_en <= tmp_load_config_en;

config_data_in <= tmp_config_data_in;

retrieve_count_-data_en <= tmp-retrieve_count_data_en;

program-execute_en <= tmp-program-execute_-en;

reset_count_en <= tmp._reset_count_en;

analog_-neuron_.in <= tmp-analog_neuron_in;

end
end
end
End of Simulation
always @(isSimulationEnd) begin
if (isSimulationEnd) begin
$stop;
end

end

Table D.6: Example Verilog Testbench with CSV Input Vector (continued). Each

row of inputs in CSV test vector file is applied at the negative edge of the clock allowing for

a half-cycle for setup time.

184

begin

REFERENCES

[Agal8] Abien Fred Agarap. “Deep Learning using Rectified Linear Units (ReLU).”
arXiv, pp. 1-7, 2018.

[Amil3] Arnon Amir et al. “Cognitive computing programming paradigm: A Corelet Lan-
guage for composing networks of neurosynaptic cores.” In The 2013 International
Joint Conference on Neural Networks (IJCNN), pp. 1-10, 2013.

[Ana21] AnandTech. “Apple Announces M1 Pro & M1 Max: Giant New Arm
SoCs with All-Out Performance.” https://www.anandtech.com/show/17019/

apple-announced-ml-pro-ml-max-giant-new-socs-with-allout-performance,
2021. Accessed: 2022-02-13.

[APR20] Vineet Agrawal, V. Prabhakar, K. Ramkumar, Swatilekha Saha Long Hinh, San-
tanu Samanta, and Ravindra Kapre. “In-Memory Computing array using 40nm
multibit SONOS achieving 100 TOPS/W energy efficiency for Deep Neural Net-
work Edge Inference Accelerators.” In 2020 IEEE International Memory Work-
shop (IMW), pp. 1-4, 2020.

[BCN18] Leon Bottou, Frank E. Curtis, and Jorge Nocedal. “Optimization Methods for
Large-Scale Machine Learning.” arXiv, pp. 1-95, 2018.

[BGK16] F. Merrikh Bayat, X. Guo, M. Klachko, N. Do, K. Likharev, and D. Strukov.
“Model-based high-precision tuning of NOR flash memory cells for analog com-
puting applications.” In 2016 74th Annual Device Research Conference (DRC),
2016.

[BJP17] Adeel A. Bajwa, Siva C. Jangam, Saptadeep Pal, N. Marathe, T. Bai, Tak
Fukushima, Mark Goorsky, and Subramanian S. Iyer. “Heterogeneous Integration
at Fine Pitch (<10um) using Thermal Compression Bonding.” In Proceedings of
67th IEEE FElectronic Components and Packaging Technology (ECTC), pp. 1276
1284, 2017.

[BJP18] Adeel Bajwa, Siva C. Jangam, Saptadeep Pal, Boris Vaisband, Randall Irwin,
Mark Goorsky, and Subramanian S. Iyer. “Demonstration of a Heterogeneously
Integrated System-on-Wafer (SoW) assembly.” In Proceedings of 68th IEEE Elec-
tronic Components and Technology Conference (ECTC), pp. 1926-1930, 2018.

[BKM11] S. Buchner, N. Kanyogoro, D. McMorrow, C. C. Foster, Patrick M. O’Neill, and
Kyson V. Nguyen. “Variable Depth Bragg Peak Method for Single Event Effects
Testing.” In IEEE Transactions on Nuclear Science (TNS), volume 58, pp. 2976—
2982, 2011.

185

[BM19]

[BMM21]

[BMR20]

[Bot9g]

[BPO1]

[BSN14]

[BV20]

(BZG21]

[CCG21]

[Chel§|

[CHI20]

Rachel M Brewer, Steven L Moran, et al. “The Impact of Proton-Induced Sin-
gle Events on Image Classification in a Neuromorphic Computing Architecture.”
IEEE Transactions on Nuclear Science, 67(1):108-115, 2019.

Evelyn T. Breyer, Halid Mulaosmanovic, Thomas Mikolajick, and Stefan Sle-
sazeck. “Perspective on ferroelectric, hafnium oxide based transistors for digital
beyond von-Neumann computing.” Applied Physics Letters, 118(050501):1-7,
2021.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, et al. “Language
Models are Few-Shot Learners.” In arXiv, pp. 1-75, 2020.

7

Leon Bottou. “Online Learning and Stochastic Approximations.” Technical re-

port, AT&T Labs—Research, 1998.

Guo qgiang Bi and Mu ming Poo. “Synaptic Modification by Correlated Activity:
Hebb’s Postulate Revisited.” Annual Review of Neuroscience, 24:139-166, 2001.

G.W. Burr, R.M. Shelby, C. di Nolfo, J.W. Jang, R.S. Shenoy, P. Narayanan,
et al. “Experimental demonstration and tolerancing of a large-scale neural net-
work (165,000 synapses) using phase-change memory as the synaptic weight ele-
ment.” In 2014 IEEE International Electron Devices Meeting (IEDM), pp. 1-4,
2014.

S. Ashwin Balagopal and Janakiraman Viraraghavan. “Flash Based In-Memory
Multiply-Accumulate Realisation: A Theoretical Study.” In 2020 IEEFE Interna-
tional Symposium on Circuits and Systems (ISCAS), pp. 1-5, 2020.

Rachel M Brewer, En Xia Zhang, Mariia Gorchichko, Peng Fei Wang, Jonathan
Cox, Steven L. Moran, Dennis R Ball, Brian D Sierawski, Daniel M Fleetwood,
Ronald D Schrimpf, Subramanian S Iyer, and Michael L. Alles. “Total Ionizing
Dose Responses of 22-nm FDSOI and 14-nm Bulk FinFET Charge-Trap Transis-
tors.” IEEFE Transactions on Nuclear Science, 68(5):677-686, 2021.

Zhengyu Chen, Xi Chen, and Jie Gu. “A 65nm 3T Dynamic Analog RAM-Based
Computing-in- Memory Macro and CNN Accelerator with Retention Enhance-
ment, Adaptive Analog Sparsity and 44TOPS/W System Energy Efficiency.” In
IEEE International Solid-State Circuits Conference (ISSCC), pp. 9-10, 2021.

Wei-Hao Chen et al. “A 65nm 1Mb nonvolatile computing-in-memory ReRAM
macro with sub-16ns multiply-and-accumulate for binary DNN Al edge proces-
sors.” In International Solid-State Clircuits Conference (ISSCC), pp. 494-495,
2018.

CHIPS. “DESIGN MANUAL FOR SILICON INTERCONNECT FABRIC
TECHNOLOGY.” Technical report, University of California Los Angeles, 2020.

186

[CLF21]

[CM19]

[Cor20]

[Dav1g)]

[Don20)|

[Ess16]

[Fur14]

[Furl6]

[Gao19]

(GI17]

[Guls]

[GWI19]

Yu-Der Chih, Po-Hao Lee, Hidehiro Fujiwara, Yi-Chun Shih, et al. “An 89TOP-
S/W and 16.3TOPS/mm? All-Digital SRAM-Based Full-Precision Compute-In
Memory Macro in 22nm for Machine-Learning Edge Applications.” In IEEE In-
ternational Solid-State Circuits Conference (ISSCC), pp. 252-253, 2021.

Yanran P. Chen, Pierre Maillard, et al. “Single Event Evaluation of Xilinx 16nm
Ultrascale+ High-Bandwidth Memory Enabled FPGA.” In 2019 IEEE Radiation
Effects Data Workshop, pp. 1-5, 2019.

Justin Correll et al. “A Fully Integrated Reprogrammable CMOS-RRAM
Compute-in-Memory Coprocessor for Neuromorphic Applications.” In IEEE
Journal on Exploratory Solid-State Computational Devices and Circuits, volume 6,
pp. 36—44, 2020.

Mike Davies et al. “Loihi: A Neuromorphic Manycore Processor with On-Chip
Learning.” In IEEE Micro, volume 38, pp. 82-99, 2018.

Qing Dong et al. “A 351TOPS/W and 372.4GOPS Compute-in-Memory SRAM
Macro in 7nm FinFET CMOS for Machine-Learning Applications.” In Interna-
tional Solid-State Circuits Conference (ISSCC), pp. 242-243, 2020.

Steven K. Esser et al. “Convolutional networks for fast, energy-efficient neuromor-
phic computing.” In Proceedings of the National Academy of Sciences (PNAS),
volume 113, p. 11441-11446, 2016.

Steve B. Furber et al. “The SpiNNaker Project.” In Proceedings of IEEE, volume
102, pp. 652-665, 2014.

Steve Furber. “Large-scale neuromorphic computing systems.” Journal of Neural
Engineering, 13(5):1-14, 2016.

Bilwaj Gaonkar et al. “Quantitative Analysis of Neural Foramina in the Lum-
bar Spine: An Imaging Informatics and Machine Learning Study.” Radiology:
Artificial Intelligence, 1:1-6, 2019.

Xuefeng Gu and Subramanian S. Iyer. “Unsupervised Learning using Charge-
Trap Transistors.” In IEEFE FElectron Device Letters, volume 38, pp. 1204-1207,
2017.

Xuefeng Gu. Charge-Trap Transistors for Neuromorphic Computing. PhD thesis,
University of California, Los Angeles, 2018.

Xuefeng Gu, Zhe Wan, and Subramanian S. Iyer. “Charge-Trap Transistors for
CMOS-Only Analog Memory.” In IEEFE FElectron Device Letters, volume 66, pp.
4183-4187, 2019.

187

[Ham50]

[He20]

[Her09]

[HMA15]

[Hun19]

[Jan17]

[JCE10]

[JLV18]

[Jos20]

[JRN20]

[JXH21]

Richard Wesley Hamming. “Error Detecting and Error Correcting Codes.” Bell
System Technical Journal, 29(2):147-160, 1950.

Wangxin He et al. “2-Bit-Per-Cell RRAM-Based In-Memory Computing for Area-
/Energy-Efficient Deep Learning.” In IEEFE Solid-State Circuit Letters, volume 3,
pp. 194-197, 2020.

Suzana Herculano-Houzel. “The human brain in numbers: a linearly scaled-up
primate brain.” Frontiers in Human Neuroscience, 3(31):1-11, 2009.

Harold Hughes, Patrick McMarr, Michael Alles, Enxia Zhang, Charles Arutt,
et al. “Total Ionizing Dose Radiation Effects on 14 nm FinFET and SOI UTBB
Technologies.” In 2015 IEEE Radiation Effects Data Workshop (REDW), pp.
1-6, 2015.

E. Hunt-Schroeder et al. “14nm FinFET 1.5Mb Embedded High-K Charge Trap
Transistor One Time Programmable Memory Using Differential Current Sensing.”
In 2015 IEEE International Reliability Physics Symposium, volume 1, pp. 233—
236, 2019.

SivaChandra Jangam et al. “Latency, Bandwidth and Power Benefits of the
SuperCHIPS Integration Scheme.” In Proceedings of 67th IEEE FElectronic Com-
ponents and Packaging Technology (ECTC), pp. 86-94, 2017.

Sung Hyun Jo, Ting Chang, Idongesit Ebong, Bhavitavya B. Bhadviya, Pinaki
Mazumder, and Wei Lu. “Nanoscale memristor device as synapse in neuromorphic
systems.” In Nano Letters, volume 10, pp. 1297-1301, 2010.

Balaji Jayaraman, Derek Leu, Janakiraman Viraraghavan, Alberto Cestero, Ming
Yin, John Golz, et al. “80-kb Logic Embedded High-K Charge Trap Transistor-
Based Multi-Time-Programmable Memory With No Added Process Complexity.”
IEEE Journal of Solid-State Clircuits, 53(3):949-960, 2018.

Vinay Joshi et al. “Accurate deep neural network inference using computational
phase-change memory.” In Nature Communications, volume 11, pp. 1-13, 2020.

SivaChandra Jangam, Uneeb Rathore, Sumeet Nagi, Dejan Markovic, and Sub-
ramanian S. Iyer. “Demonstration of a Low Latency (<20 ps) Fine-pitch (<10
pm) Assembly on the Silicon Interconnect Fabric.” In 2020 IEEE 70th Electronic
Components and Technology Conference (ECTC), pp. 1801-1805, 2020.

Chuan-Jia Jhang, Cheng-Xin Xue, Je-Min Hung, Fu-Chun Chang, and Meng-Fan
Chang. “Challenges and Trends of SRAM-Based Computing-In-Memory for Al
Edge Devices.” In IEEE Transactions on Circuits and Systems I: Regular Papers,
volume 68, pp. 17731786, 2021.

188

[Khalb]

[Khal7]

[Kha20]

[Kim11]

[Kot15]

[Kri09]

[KRP18]

[LCB10]

[LeCO8]

[LHY20]

[Li21]

[Lie21]

Faraz Khan et al. “The Impact of Self-Heating on Charge Trapping in High-k-
Metal-Gate nFETs.” In IEEE Electron Device Letters, volume 37, pp. 8891,
2015.

Faraz Khan et al. “Charge Trap Transistor (CTT): An Embedded Fully Logic-
Compatible Multiple-Time Programmable Non-Volatile Memory FElement for
High-k-Metal-Gate CMOS Technologies.” In IEEE FElectron Device Letters, vol-
ume 38, pp. 44-47, 2017.

Faraz Khan. Charge Trap Transistors (CTT): Turning Logic Transistors into
Embedded Non-Volatile Memory for Advanced High-k/Metal Gate CMOS Tech-
nologies. PhD thesis, University of California, Los Angeles, 2020.

Yoon Kim et al. “Integration of 28nm MJT for 8-16Gb level MRAM with full
investigation of thermal stability.” In 2011 Symposium on VLSI Technology, pp.
210-211, 2011.

Chandrasekara Kothandaraman et al. “Oxygen vacancy traps in Hi-K/Metal gate
technologies and their potential for embedded memory applications.” In 2015
IEEFE International Reliability Physics Symposium, pp. MY.2.1-MY.2.4, 2015.

Alex Krizhevsky. “Learning multiple layers of features from tiny images.” Tech-
nical report, University of Toronto, 2009.

[. Kouznetsov, K. Ramkumar, V. Prabhakar, L. Hinh, , et al. “40 nm Ultralow-
Power Charge-Trap Embedded NVM Technology for IoT Applications.” In 2018
IEEE International Memory Workshop (IMW), pp. 1-4, 2018.

Yann LeCun, Corinna Cortes, and CJ Burges. “MNIST handwritten digit
database.” ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist, 2,
2010.

Yan LeCun et al. “Gradient-Based Learning Applied to Document Recognition.”
Proceedings of the IEEFE, 86(11):2278-2324, 1998.

Yandong Luo, Xu Han, Zhilu Ye, Hugh Barnaby, Jae-Sun Seo, and Shimeng Yu.
“Array-Level Programming of 3-Bit per Cell Resistive Memory and Its Applica-
tion for Deep Neural Network Inference.” In FElectron Device Letters, volume 67,
pp. 4621-4625, 2020.

Haitong Li et al. “SAPIENS: A 64-kb RRAM-Based Non-Volatile Associative
Memory for One-Shot Learning and Inference at the Edge.” In IEEE Transactions
on Electron Devices, volume 68, pp. 6637-6643, 2021.

Sean Lie. “The Multi-Million Core, Multi-Wafer AI Cluster.” In Hot Chips 33
(HC33), volume 33, 2021.

189

[Liu20]

[LL20]

[MBLO4]

[IMCB19]

[McC15]

[McC17]

[Mer14]

[Mic18a]

[Mic18b]

[Mic18¢]

[Moc18]

Qi Liu et al. “A Fully Integrated Analog ReRAM Based 78.4TOPS/W Compute-
In-Memory Chip with Fully Parallel MAC Computing.” In International Solid-
State Circuits Conference (ISSCC), pp. 500-501, 2020.

Sung-Tae Lee and Jong-Ho Lee. “Neuromorphic Computing Using NAND Flash
Memory Architecture With Pulse Width Modulation Scheme.” Frontiers in Neu-
roscience, 14(571292):1-10, 2020.

Dale McMorrow, Stephen Buchner, William T. Lotshaw, Joseph S. Melinger, Mike
Mabher, and Mark W. Savage. “Demonstration of Single-Event Effects Induced by
Through-Wafer Two-Photon Absorption.” [EEE Transactions on Nuclear Sci-
ence, 51(6):3553-3557, 2004.

Steven Moran, Jonathan Cox, Rachel Brewer, Brian Sierawski, and Subrama-
nian S. Iyer. “Radiation Effects on Brain-Inspired Computing.” In GOMA CTech-
19, Artificial Intelligence € Cyber Security: Challenges and Opportunities for the
Government, pp. 1-6, 2019.

Michael W. McCurdy et al. “Vanderbilt Pelletron - Low Energy Protons and
Other Tons for Radiation Effects on Electronics.” In 2015 IEEE Radiation Effects
Data Workshop (REDW), pp. 1-6, 2015.

Michael W. A. McCurdy. “1.8 MeV PROTON RESPONSE OF THERMALLY
STABILIZED GALLIUM NITRIDE RF POWER TRANSISTORS.”. Master’s
thesis, Vanderbilt University, Nashville, TN, 2017.

Paul A. Merolla et al. “A million spiking-neuron integrated circuit with a scalable
communication network and interface.” Science, 345(6197):668-673, 2014.

Micron. “3-Dimensional Stack (3DS) DDR4 SDRAM.” https://www.micron.
com/-/media/client/global/documents/products/data-sheet/dram/ddr4/
16gb_32gb_x4_x8_3ds_ddr4_sdram.pdf, 2018. Accessed: 2022-02-23.

Micron. “High Bandwidth Memory with ECC.” https://www.micron.com/-/
media/client/global/documents/products/data-sheet/dram/hbm2e/8gb_
and_16gb_hbm2e_dram.pdf, 2018. Accessed: 2022-02-23.

Micron. “Hybrid Memory Cube — HMC Gen2.” https://www.micron.com/
-/media/client/global/documents/products/data-sheet/hmc/gen2/hmc_
gen2.pdf, 2018. Accessed: 2022-02-23.

Reiji Mochida et al. “A 4M Synapses integrated Analog ReRAM based 66.5
TOPS/W Neural-Network Processor with Cell Current Controlled Writing and
Flexible Network Architecture.” In 2018 IEEE Symposium on VLSI Technology
(VLSI), pp. 175-176, 2018.

190

IMW18]

[Nar21]

[INAS22a]

INAS22b)

[Neul3|

[NI20]

INR22]

[Ora20]

[Pas21]

[PB61]

[PSK13]

Steven Moran, William Whitehead, et al. “Deep learning for medical image seg-
mentation — using the IBM TrueNorth Neurosynaptic System.” In SPIE Medical
Imaging, volume 10579, pp. 1-8, 2018.

Pritish Narayanan et al. “Fully On-Chip MAC at 14 nm Enabled by Accurate
Row-Wise Programming of PCM-Based Weights and Parallel Vector-Transport in
Duration-Format.” In IEEFE Transactions on Electron Devices (TED), volume 68,
pp. 6629-6636, 2021.

NASA Space Radiation Laboratory (NSRL). “NSRL User Guide Technical Data:
Beam Ion Species and Energies.” https://www.bnl.gov/nsrl/userguide/
beam-ion-species-and-energies.php, 2022. Accessed: 2022-03-08.

NASA Space Radiation Laboratory (NSRL). “NSRL User Guide Tech-
nical Data: LET Range Plots.” https://www.bnl.gov/nsrl/userguide/
let-range-plots.php, 2022. Accessed: 2022-03-08.

Jens Timo Neumann et al. “Mask effects for high-NA EUV: impact of NA, chief-
ray-angle, and reduction ratio.” In Proceedings of SPIE Advanced Lithography,
pp. 1-14, 2013.

Sepideh Nouri and Subramanian S. Iyer. “Non-Volatile Wideband Frequency
Tuning of a Ring-Oscillator by Charge Trapping in High-k Gate Dielectric in
22nm CMOS.” IEEFE Electron Device Letters, 42:110-113, 2020.

Sumeet Singh Nagi, Uneeb Rathore, et al. “A 16nm 785GMACs/J 784-Core Digi-
tal Signal Processor Array with a Multilayer Switch Box Interconnect, Assembled
as a 2 x 2 Dielet with 10pm-Pitch Inter-Dielet I/O for Runtime Multi-Program
Reconfiguration.” In 2022 IEEE International Solid-State Circuits Conference
(ISSCC), pp. 52-53, 2022.

Oracle. “Class Robot.” https://docs.oracle.com/javase/7/docs/api/java/
awt/Robot.html, 2020. Accessed: 2022-07-12.

PassMark®Software. “Memtest86 Technical Information.” https://www.
memtest86.com/troubleshooting.htm, 2021. Accessed: 2022-03-07.

William Wesley Peterson and David. T. Brown. “Cyclic Codes for Error Detec-
tion.” In Proceedings of IRE, volume 49, pp. 228-235, 1961.

S. Park, A. Sheri, J. Kim, J. Noh, J. Jang, M. Jeon, B. Lee, B. R. Lee, B. H. Lee,
and H. Hwang. “Neuromorphic speech systems using advanced ReRAM-based
synapse.” In 2013 IEEE International Electron Devices Meeting (IEDM), pp.
25.6.1-25.6.4, 2013.

191

[RBK12]

[Roc20)]

[SA17]

[Sam17a]

[Sam17b]

[Saw16]

[SCL21]

[SRROS]

[Tak10]

[Van21]
[Virl6]

[Wan20a]

William R. Reohr, John E. Barth, Toshi Kirihata, D. H. Leu, and Donald W.
Plass. “High voltage word line driver.”, U.S. Patent 8,120,968, Feb. 2012.

Kamil Rocki et al. “Fast Stencil-Code Computation on a Wafer-Scale Processor.”
In arXiv, pp. 1-12, 2020.

Gaurav Singh, Sagheer Ahmad, et al. “Xilinx 16nm Datacenter Device Fam-
ily with In-Package HBM and CCIX Interconnect.” In Hot Chips 29 (HC29),
volume 29, 2017.

Samsung. “288pin Registered DIMM based on 8Gb B-die (2H Stack, 64GB).”
https://www.samsung.com/semiconductor/global.semi/file/resource/
2018/04/TSV_DDR4_8Gb_B_die_Registered _DIMM_Rev1.43_May.17.pdf, 2017.
Accessed: 2022-02-22.

Samsung. “288pin Registered DIMM based on 8Gb B-die (4H Stack, 128GB).”
https://semiconductor.samsung.com/resources/data-sheet/20170731_
TSV_128GB_only_DDR4_8Gb_B_die_Registered _DIMM_Rev1.53_Jun.17.pdf,
2017. Accessed: 2022-02-22.

Jun Sawada et al. “TrueNorth Ecosystem for Brain-Inspired Computing: Scalable
Systems, Software, and Applications.” In SC ’16: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis,
pp. 130-141, 2016.

Jian-Wei Su, Yen-Chi Chou, Ruhui Liu, Ta-Wei Liu, Pei-Jung Lu, Ping-Chun
Wu, Yen-Lin Chung, et al. “A 28nm 384kb 6T-SRAM Computation-in-Memory
Macro with 8b Precision for AI Edge Chips.” In IEEE International Solid-State
Circuits Conference (ISSCC), pp. 250-251, 2021.

P Jesper Sjostrom, Ede A Rancz, Arnd Roth, and Michael Hausser. “Dendritic
excitability and synaptic plasticity.” Physiol Rev., 88(2):769-840, 2008.

Takeshi (Kesh) Ikuma. “GUI automation using a Robot.” https://
undocumentedmatlab.com/articles/gui-automation-robot, 2010. Accessed:
2022-07-12.

Vanderbilt University. “VU Laser Facilities Guide.”, 2021.

Janakiraman Viraraghavan et al. “S80Kb 10ns read cycle logic Embedded High-
K charge trap Multi-Time-Programmable Memory scalable to 14nm FIN with
no added process complexity.” In IEEE Symposium on VLSI Circuits (VLSI-
Circuits), pp. 1-2, 2016.

Zhe Wan. Scalable and Analog Neuromorphic Computing Systems. PhD thesis,
University of California, Los Angeles, 2020.

192

[Wan20b]

[WM18]

[WMC19]

[WMS16]

[WTX21]

(WWZ22]

[Xia22]

Xil19]

[XNS21]

[Xuel9]

Zhe Wan et al. “Accuracy and Resiliency of Analog Compute-in-Memory Infer-
ence Engines.” In arXiv, pp. 1-21, 2020.

William Whitehead, Steven Moran, et al. “A Deep Learning Approach to Spine
Segmentation Using a Feed-Forward Chain of Pixel-Wise Convolutional Net-
works.” In IEEE International Symposium on Biomedical Imaging (ISBI), pp.
868-871, 2018.

Zhe Wan, Steven Moran, Jonathan Cox, Xuefeng Gu, Vwani Rowchowdhury,
and Subramanian S. Iyer. “Characterization Approaches to Test the Robustness
of Neuromorphic Systems.” In GOMACTech-19, Artificial Intelligence € Cyber
Security: Challenges and Opportunities for the Government, pp. 1-6, 2019.

Jiyong Woo, Kibong Moon, Jeonghwan Song, Sangheon Lee, Myounghun Kwak,
Jaesung Park, and Hyunsang Hwang. “Improved Synaptic Behavior Under Iden-
tical Pulses Using AlO,/H fO, Bilayer RRAM Array for Neuromorphic Systems.”
In IEEFE Electron Device Letters, volume 37, pp. 994-997, 2016.

Yin Wang, Hongwei Tang, Yufeng Xie, Xinyu Chen, Shunli Ma, Zhengzong Sun,
Qingqing Sun, Lin Chen, Hao Zhu, Jing Wan, Zihan Xu, David Wei Zhang,
Peng Zhou, and Wenzhong Bao. “An in-memory computing architecture based
on two-dimensional semiconductors for multiply-accumulate operations.” Nature
Communications, 12(3347):1-8, 2021.

Zhe Wan, Tianyi Wang, Yiming Zhou, Subramanian S. Iyer, and Vwani P.
Roychowdhury. “Accuracy and Resiliency of Analog Compute-in-Memory Infer-
ence Engines.” ACM Journal on Emerging Technologies in Computing Systems
(JETC), 18(2):1-23, 2022.

T. P. Xiao et al. “An Accurate, Error-Tolerant, and Energy-Efficient Neural Net-
work Inference Engine Based on SONOS Analog Memory.” In IEEE Transactions
on Chircuits and Systems, volume 69, pp. 1480-1493, 2022.

Xilinx. “White paper: Supercharge Your Al and Database Applications with Xil-
inx’s HBM-Enabled UltraScale+ Devices Featuring Samsung HBM2.” Technical
Report WP508, Xilinx, July 2019.

Shanshan Xie, Can Ni, Aseem Sayal, Pulkit Jain, Fatih Hamzaoglu, and Jay-
deep P. Kulkarni. “eDRAM-CIM: Compute-In-Memory Design with Reconfig-
urable Embedded-Dynamic-Memory Array Realizing Adaptive Data Converters
and Charge-Domain Computing.” In IEEE International Solid-State Circuits
Conference (ISSCC), pp. 248-249, 2021.

Cheng-Xin Xue et al. “A 1Mb Multibit ReRAM Computing-In-Memory Macro
with 14.6ns Parallel MAC Computing Time for CNN Based AI Edge Processors.”
In International Solid-State Clircuits Conference (ISSCC), pp. 388-389, 2019.

193

[Yan19]

[YKC19]

[ZCX19)]

[Zhal9)]

[ZK17)

[ZZP18]

Yexin Yan et al. “Efficient Reward-Based Structural Plasticity on a SpiNNaker
2 Prototype.” In IEEE Transactions on Biomedical Circuits and Systems, vol-
ume 13, pp. 579-591, 2019.

Taegeun Yoo, Hyunjoon Kim, Qian Chen, Tony Tae-Hyoung Kim, and Bongjin
Kim. “A Logic Compatible 4T Dual Embedded DRAM Array for In-Memory
Computation of Deep Neural Networks.” In 2019 IEEE/ACM International Sym-
posium on Low Power Electronics and Design (ISLPED), pp. 1-6, 2019.

Qiwen Zheng, Jiangwei Cui, Liewei Xu, Bingxu Ning, Kai Zhao, Mingjie Shen,
Xuefeng Yu, et al. “Total Ionizing Dose Responses of Forward Body Bias Ultra-
Thin Body and Buried Oxide FD-SOI Transistors.” IEEE Transactions on Nu-
clear Science, 66(4):702-709, 2019.

Jiawei Zhang. “Basic Neural Units of the Brain: Neurons, Synapses and Action
Potential.” In arXiv, pp. 1-38, 2019.

Sergey Zagoruyko and Nikos Komodakis. “Wide Residual Networks.” arXiv, pp.
1-15, 2017.

Xin Zheng, Ryan Zarcone, Dylan Paiton, Joon Sohn, Weier Wan, Bruno Ol-
shausen, and H. S. Philip Wong. “Error-Resilient Analog Image Storage and
Compression with Analog-Valued RRAM Arrays: An Adaptive Joint Source-
Channel Coding Approach.” In 2018 IEEE International Electron Devices Meet-
ing (IEDM), pp. 3.5.1-3.5.4, 2018.

194

