
UCLA
UCLA Electronic Theses and Dissertations

Title
Analog In-Memory Multiply-and-Accumulate Engine Fabricated in 22nm FDSOI Technology

Permalink
https://escholarship.org/uc/item/5657k5pj

Author
Moran, Steven

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5657k5pj
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Analog In-Memory Multiply-and-Accumulate Engine

Fabricated in 22nm FDSOI Technology

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Electrical & Computer Engineering

by

Steven Moran

2022

© Copyright by

Steven Moran

2022

ABSTRACT OF THE DISSERTATION

Analog In-Memory Multiply-and-Accumulate Engine

Fabricated in 22nm FDSOI Technology

by

Steven Moran

Doctor of Philosophy in Electrical & Computer Engineering

University of California, Los Angeles, 2022

Professor Subramanian Srikanteswara Iyer, Chair

This dissertation presents the first on-chip demonstration of a Multiply-and-Accumulate

(MAC) function in 22nm CMOS on SOI with the Charge-Trap Transistor (CTT).

Recent developments in machine learning and AI focus on digital-based von Neumann

architectures to accelerate computation using massively parallel processing platforms includ-

ing Graphics Processing Units (GPUs), Tensor Processing Units (TPUs), and Application-

Specific Integrated Circuits (ASICs), to name a few. While these platforms have dramatically

improved system performance, they are inherently limited by the von Neumann memory bot-

tleneck. A resurgence of digital and analog in-memory & near-memory computing (iMC)

techniques have been proposed to perform computation directly where the memory is stored,

eliminating unnecessary memory accesses and minimizing memory access energy.

A hybrid approach to designing high-performance AI computation platforms is composed

of learning on the cloud and energy-e�cient inference at the edge. In this dissertation, we

explore the latter through the use of the Charge-Trap Transistor (CTT)—commercial high-

logic nFET device on SOI—as an ideal candidate nonvolatile memory device for analog-based

ii

in-memory computing. Past results show that the CTT can be accurately programmed with

excellent resolution, device programming variance, and retention characteristics. We propose

a NeuroCTT inference architecture and present experimental results based on two test chips

taped-out utilizing GlobalFoundries 22FDX technology. A first-time demonstration of an

on-chip analog MAC Engine using the CTT in a commercial CMOS technology is provided.

Accurate on-chip weight programming with su�cient retention are also demonstrated in

hardware. In addition, we introduce a CTT-Hardware-based Inference Realistic Circuit

Universal Simulator (CIRCUS) Platform for studying the e↵ects of circuit-induced errors

and device non-idealities on system performance and accuracy.

We conclude by evaluating the resiliency of general-purpose neural network applications

by evaluating the e↵ect of weight programming variance on analog-based in-memory com-

puting and bit errors on digital-based architectures. As a baseline for digital-based & energy-

e�cient ASICs, an IBM TrueNorth Neurosynaptic System is exposed to 4MeV protons cor-

rupting the on-chip model file for a trained 12-layer Convolutional Neural Network (CNN).

The IBM TrueNorth continues to perform classification with negligible degradation to accu-

racy. For larger-scale networks and memory-intensive applications, reliability studies were

also performed on 3D-stacked (3DS) DRAM to study the e↵ect of radiation on more advanced

3D-stacked architectures.

iii

The dissertation of Steven Moran is approved.

Achuta Kadambi

C. K. Ken Yang

Sudhakar Pamarti

Subramanian Srikanteswara Iyer, Committee Chair

University of California, Los Angeles

2022

iv

To my partner Charlene, my parents Diane & Tim, and my siblings Chelsea & Michelle . . .

thank you for your endless love, encouragement, guidance,

and unconditional support during my graduate studies.

This degree is as much yours as it is mine.

v

TABLE OF CONTENTS

1 Introduction . 1

1.1 Motivation . 1

1.2 Limitations to Reaching ‘Brain-scale’ Computing 2

1.3 In-Memory Computing (IMC) . 3

1.4 Dissertation Outline . 5

2 Charge-Trap Transistor (CTT) as an Analog Nonvolatile Memory Device 7

2.1 CTT Device Overview . 8

2.2 Programming Methodology . 11

2.3 Programming Variance . 12

2.4 Retention Characteristics . 14

2.5 Analog NVM Device Comparison . 15

3 NeuroCTT Architecture . 20

3.1 Architecture . 20

3.1.1 Overview . 20

3.1.2 Input Architecture . 22

3.1.3 WL Driver Design . 25

3.1.4 CTT Array Design . 27

3.1.5 CTT Array Mux & Level Shifter Design 30

3.1.6 Neuron Design . 37

3.1.7 Trained Network Layer Mapping to CTT Array 44

vi

3.1.8 Training Networks Considering Analog IMC Implementations 48

3.2 Chip Design E↵orts . 49

3.2.1 NeuroCTT 0.1 (ZION) Design . 49

3.2.2 NeuroCTT 0.2 (GLACIER) Design 51

3.2.3 NeuroCTT 0.3 (DENALI) Design . 54

3.3 Testing Infrastructure . 55

3.3.1 NeuroCTT 0.1 Infrastructure . 55

3.3.2 NeuroCTT 0.2 Infrastructure . 57

3.3.3 NeuroCTT 0.3 Infrastructure . 60

3.4 Testing User Interface (UI) . 66

3.4.1 MATLAB-based Chip Configuration GUI 66

3.4.2 Automated Inference Script . 69

3.4.3 Automated O↵-Chip CTT Device Weight Verification 70

3.4.4 Automated On-Chip CTT Device Programming 71

3.4.5 Automated Program-Verify Weight Fine-Tuning 74

4 Hardware Results . 75

4.1 NeuroCTT 0.1 Hardware Results . 75

4.2 NeuroCTT 0.2 Hardware Results . 78

4.3 NeuroCTT 0.3 (DENALI) Hardware Results 80

4.3.1 System Block-Level Validation . 80

4.3.2 System-Level On-Chip Programming and Verification 86

4.3.3 Demonstrating a MAC Engine with Programmed CTT Weights . . . 91

4.3.4 Demonstrating a MAC Engine with On-Chip Neuron 95

vii

4.3.5 Additional MAC Engine Debug E↵orts 97

4.3.6 Final Insights . 106

4.4 CIRCUS Hardware Simulator . 107

5 Conclusions & Outlook . 112

5.1 Outlook . 114

5.2 Future Work . 115

A E↵ect of Memory-Related Errors in Neuromorphic Hardware 117

A.1 Digital-based Neuromorphic Computation 117

A.1.1 TrueNorth Architecture . 118

A.1.2 TrueNorth EEDN Framework for CNNs 119

A.1.3 Experimental Setup: Vanderbilt Pelletron 124

A.1.4 Experimental Results: Fragile Corelet 127

A.1.5 Experimental Results: Convolutional Neural Networks 129

A.1.6 Simulation Results . 131

A.1.7 Further Design Insights . 133

A.1.8 Conclusions . 133

A.2 Analog-based Computation . 134

A.3 E↵ects of Total Ionizing Dose (TID) on the CTT 137

B Radiation E↵ects on 3D-Stacked Architectures 141

B.1 Experimental Design Challenges . 141

B.2 3D-Stacked (3DS) Test Samples . 143

B.3 Memory Test Platform (MTP) . 146

viii

B.4 Vanderbilt Pulsed-Laser Testing . 154

B.4.1 Titanium-Sapphire Chirped Pulse Amplifier (CPA) Laser 154

B.4.2 Laser-based Testing Results . 154

B.5 NASA Space Radiation Lab (NSRL) . 160

B.5.1 Test Facility Capabilities . 160

B.5.2 NSRL Testing Results . 161

B.6 General Conclusions . 164

C CTT-Hardware-based Inference Realistic Circuit Universal Simulator . 165

C.1 CIRCUS Overview . 165

C.2 Spectre Netlist Parsing . 167

C.3 Input Vector File Generation . 169

C.4 Run File . 172

C.5 Data Analysis using Cadence OCEAN . 172

D NeuroCTT Design & Top-Level Verification 175

D.1 Digital I/O Architecture . 175

D.2 Testbench Vector Generator . 177

D.2.1 Testbench Vector Generator: Header 179

D.2.2 Test Vector Generator: Run Examples 179

D.3 Verilog Testbench . 179

References . 185

ix

LIST OF FIGURES

2.1 Oxygen Vacancies in HfSiOx logic transistors 8

2.2 CTT Device Programming & Erasing Operations in 22FDX 9

2.3 CTT Device PRG/ERS IV Characteristics . 10

2.4 CTT LTP and LTD Characteristics . 10

2.5 Pulsed-gate Voltage Ramp Sweep (PVRS) Programming 11

2.6 CTT Device Testing using Cascade Probe Station 12

2.7 CTT Device Programming to 6 Target States 13

2.8 CTT Device Programming Variance as a Function of Target State 14

2.9 Device Retention over 50hr baking at 85�C . 15

3.1 Proposed NeuroCTT Inference Engine . 21

3.2 Multi-Layer Inference Engine . 21

3.3 NeuroCTT Architecture Overview . 22

3.4 Example Input Architectures . 23

3.5 CTT Array with Drain Inputs . 24

3.6 WL Driver Level Shifters . 25

3.7 WL Driver Output Driver Stage during Programming & Inference 26

3.8 TWIN-Cell Array Design . 28

3.9 TWIN-Cell Array: Programming (PRG) Half-Select 29

3.10 TWIN-Cell Array: Erase (ERS) Half-Select . 29

3.11 Column Array Mux Design . 30

3.12 Column Array Mux: Level-Shifted Logic Control Signals 32

x

3.13 Column Array Mux Design: IDLE Mode . 32

3.14 Column Array Mux Design: INFERENCE Mode 33

3.15 Column Array Mux Design: PRG T Mode . 34

3.16 Column Array Mux Design: PRG T Timing Diagram 35

3.17 Column Array Mux Design: Alternative PRG T Modes 35

3.18 Column Array Mux Design: Verification Modes 36

3.19 Neuron Design Overview . 37

3.20 Neuron Di↵erential Integrator Design . 38

3.21 Neuron Comparator Design . 39

3.22 Neuron Comparator Circuit Evaluating PWM Output 40

3.23 Neuron Comparator Realized (ReLU) Activation Function 41

3.24 Neuron Configuration Logic & Timing Diagram 41

3.25 Neuron Integrator O↵set Cancellation Schemes 42

3.26 Additional O↵set Cancellation Using Extra CTT Devices 42

3.27 Example Weight Mapping for Normally Distributed Weights 46

3.28 Example Bias Term Scaling & Weight Truncation 47

3.29 Hessian-Aware Stochastic Gradient Descent . 48

3.30 NeuroCTT 0.1 (Wirebond) Die Images . 50

3.31 NeuroCTT 0.2 (Flip-Chip) Die Images . 51

3.32 NeuroCTT 0.2 (Si-IF) Die Images . 52

3.33 NeuroCTT 0.3 (Wirebond) Die Images . 53

3.34 NeuroCTT 0.3 Functional Neuron Macro . 54

3.35 NeuroCTT 0.1 Mainboard Design . 56

xi

3.36 NeuroCTT 0.1 Lab Test Setup . 57

3.37 NeuroCTT 0.2 Package Laminate Design . 58

3.38 NeuroCTT 0.2 Si-IF -enabled Package Design 59

3.39 NeuroCTT 0.3 Mainboard & Mezzanine Card Design 61

3.40 Fabricated NeuroCTT 0.3 Mainboard with Mezzanine Card 62

3.41 NeuroCTT 0.3 Die-to-Mezzanine Card Wirebonding 62

3.42 NeuroCTT 0.3 Mainboard (v2) & Fanout board designs 63

3.43 NeuroCTT 0.3 C-QFN Package Wirebonding 64

3.44 NeuroCTT 0.3 Lab Test Setup . 64

3.45 NeuroCTT 0.3 Chip Configuration GUI . 67

3.46 NeuroCTT 0.3 Chip Configuration GUI: Neuron Parameters Window 68

3.47 O↵-Chip Verification Measurement Repeatability 71

3.48 NeuroCTT 0.3 Automated On-Chip Device Programming 73

4.1 NeuroCTT 0.1 Twin-Cell CTT-Array As-Fabricated Device Weights 76

4.2 NeuroCTT 0.1 WL-First & SL-First Programming 77

4.3 NeuroCTT 0.2 Design Target . 78

4.4 Example Neuron PWM Debug Outputs . 81

4.5 Example O↵-chip Verification Output using Analyzer 84

4.6 NeuroCTT 0.3 Twin-Cell CTT-Array As-Fabricated Device Weight Distribution 85

4.7 Repeatable Device Measurements using External Analyzer 85

4.8 NeuroCTT 0.3 Example SL Programming Pulse Measured Externally 86

4.9 Initial Half-Select Results after Target Cell Programming 88

4.10 Checkerboard Array Programming of True & Comp Devices 89

xii

4.11 Pulsed-Voltage Time Sweep (PVTS) Results . 90

4.12 Example Positive Twin-Cell Weight Programming 91

4.13 256-input MAC Engine Results Measured using External Analyzer 92

4.14 64-input MAC Engine Results Measured using External Analyzer 93

4.15 MAC Engine with 6 Target States . 94

4.16 MAC Engine with 7 Di↵erential Target States 94

4.17 On-Chip MAC Engine with Di↵erential Integrator 96

4.18 On-Chip MAC Engine Neuron Output Averaged 97

4.19 Neuron Output for Zero-Input Case . 98

4.20 Neuron Output with As-Fabricated Weights . 99

4.21 Improving Neuron Output Results . 101

4.22 Debugging with Neuron Logic Timing Diagrams 103

4.23 CM Stability Issue Introduced by Array Switch 104

4.24 CIRCUS Functional Overview . 107

4.25 CIRCUS CTT Device Model . 108

4.26 CIRCUS Example CTT Array Di↵erential Current Waveform 108

4.27 CIRCUS Neuron Output Simulation . 109

4.28 CIRCUS Simulation for Evaluating Realistic Neuron Accuracy 110

A.1 IBM TrueNorth Core Implementation . 118

A.2 IBM TrueNorth SRAM Design per core . 120

A.3 IBM TrueNorth Multi-Chip Configuration . 121

A.4 IBM TrueNorth EEDN Trinary Weight Constraint 121

A.5 Commonly-Used Classification Datasets . 122

xiii

A.6 IBM TrueNorth for Spinal MR Image Segmentation Example 123

A.7 IBM TrueNorth Spinal Foramina Segmentation Example 124

A.8 IBM TrueNorth Chip Delidding . 126

A.9 Vanderbilt Pelletron Vacuum Test Chamber . 126

A.10 Vanderbilt Pelletron Accelerator Beamline . 127

A.11 Fragile Corelet Performance under irradiation 128

A.12 E↵ects of SEUs on MNIST-trained CNN on IBM TrueNorth 130

A.13 MNIST Classification Changes for Varying Fluences 131

A.14 IBM TrueNorth NSCS Simulator CNN Results 132

A.15 IBM TrueNorth System crashing after irradiation 134

A.16 E↵ect of Relative Variance on Inference Accuracy 135

A.17 TID E↵ects on 22nm (W = 120nm) FDSOI Devices Programmed Before Irradiation137

A.18 TID E↵ects on 22nm (W = 120nm) FDSOI Devices Programmed After Irradiation138

A.19 TID E↵ects on 14nm (Weff = 150nm,Nf = 2) Devices 139

A.20 TID E↵ects on 14nm (Weff = 3µm,Nf = 40) Devices 140

B.1 Xilinx Virtex Ultrascale+ HBM (VCU-128) FPGA Board 142

B.2 3DS Logical Rank Mapping . 144

B.3 Delidded 3D-Stacked (3DS) DRAM Memory . 145

B.4 Cross Section of Samsung 3DS Memory Devices 146

B.5 Vanderbilt University Thermoelectric Cooling System 147

B.6 Innoventions Ramcheck LX Memory Test Platform 149

B.7 IBM Sputnik Memory Test Platform . 149

B.8 3DS DDR4 DIMM Device Layout . 150

xiv

B.9 Vanderbilt University Ti:Sapphire-based Pulsed Laser 155

B.10 Vanderbilt University Pulsed Laser 3DS Test Setup 155

B.11 3DS Memory Bit Errors vs. Laser Intensity . 156

B.12 Vanderbilt University Pulsed Laser 3DS Automated Testing 157

B.13 Automated Laser Testing Program . 157

B.14 Automated 3DS Laser Testing Results . 158

B.15 Automated 3DS Laser Testing Results: Bit Errors by Bank 159

B.16 NSRL Testing Candidate Ions . 160

B.17 NSRL Beamline . 161

B.18 NSRL Adjustable Tungsten Collimator with 3DS Test Setup 162

B.19 Example NSRL Runs with Degrader . 162

D.1 NeuroCTT 0.3 I/O Program Execute Enable . 175

D.2 NeuroCTT 0.3 I/O Architecture . 176

xv

LIST OF TABLES

2.1 CTT Retention Over 50 hours at 85�C . 16

2.2 Retention Comparison with 40nm SONOS device 16

2.3 CTT and RRAM Comparison for Digital Applications 17

2.4 Analog NVM Device Comparison . 18

2.5 Additional Comparison Including FLASH . 19

3.1 WL Driver Control Logic . 26

3.2 Column Array Mux Level-Shifted Logic Controls 31

3.3 Programming (PRG) Pulse Timing Parameters 34

3.4 Example CTT Weight Mapping with 13 Target Di↵erential Currents 44

3.5 Summary of NeuroCTT 0.3 Mainboard (v2) Components 65

3.6 MATLAB Automated INFERENCE Example Script 69

3.7 MATLAB O↵-chip Verification Example Script 70

3.8 MATLAB On-chip Programming Example Script 72

4.1 NeuroCTT 0.2 Chip Specifications . 79

4.2 NeuroCTT 0.3 Neuron Biasing Verification . 82

A.1 Range of Potential Ions/Particles using the Vanderbilt Pelletron 125

A.2 IBM TrueNorth CNN-based Classification Experimental Results. 129

B.1 Nibble to Device Mapping per physical rank . 151

B.2 IBM Sputnik Error Trap Example . 152

B.3 Setting Expected IBM Sputnik Memory Pattern Example 153

xvi

B.4 NSRL Testing Run Summary . 163

C.1 Example ARRAY CTT TWIN CELL Netlist Implementation 167

C.2 Example Spectre Netlist after Weight Insertion 168

C.3 CIRCUS Column Netlist Generating Python Script 168

C.4 Example CIRCUS WL Vector File Output . 170

C.5 CIRCUS WL Vector File Generation Python Script 171

C.6 CIRCUS Main Runfile Python Script . 173

C.7 Example CIRCUS-generated OCEAN Analysis Script 174

C.8 Example CIRCUS Run Output after Cadence OCEAN Analysis 174

D.1 Example TB Generator (CSV) Output File . 178

D.2 TB Vector Generator Run File: Header . 180

D.3 TB Vector Generator Run File: Setup Parameters 181

D.4 Example TB Vector Generator Run File for INFERENCE Mode 182

D.5 Example Verilog TB with CSV Input Vector . 183

D.6 Example Verilog TB with CSV Input Vector (continued) 184

xvii

ACKNOWLEDGMENTS

I would like to first acknowledge my advisor, Prof. Subramanian (Subu) Iyer, for his support

and guidance. I never considered pursuing a PhD until I took Subu’s ECE 121B (Semicon-

ductor Physics Course) during my undergrad. I met Subu during an o�ce hour the day the

UCLA PhD application was due, and he convinced me to join his lab & pursue a PhD. De-

spite all of the hardships along the way, I’ve learned quite a lot from Subu and I’m incredibly

grateful for all of the opportunities he has provided to me.

Thank you to my committee members Prof. Sudhakar Pamarti, Prof. C. K. Ken Yang,

and Prof. Achuta Kadambi for all of your questions, insights, and contributions to my work.

I’m especially grateful to my co-advisor Prof. Sudhakar Pamarti for all of his chip design &

testing guidance as well as being available for countless design reviews.

I would like to acknowledge many of peers in the CHIPS Lab. Thank you to Kyle Jung

who during his tenure in the CHIPS Lab, was single-handily responsible for keeping the lab

running e�ciently. Thank you not only for all of your prompt help but also your friendship.

Thank to Athena Sung-Miller who took on the CHIPS Lab Manager role, and handled all

of my orders & special requests expeditiously—crucial to completing my PhD.

Thank you to my colleagues Zhe Wan, Xuefeng Gu, Johnathan Cox, Siyun Qiao, and

Faraz Khan for all of the device physics discussions and late-night problem solving on the

NeuroCTT project. Thank you to SivaChandra Jangam, Krutikesh Sahoo, Guangqi Ouyang,

Randall Irwin, and Haoxiang Ren, among many others, for your help in the lab on various

projects. Thank you to undergraduate students William Whitehead and Fred Chu for your

contributions to our IBM TrueNorth and 3DS-Memory reliability studies. Thank you to Dr.

Adeel Bajwa for your mentorship, friendship, and everything you have taught me over the

years; I consider you a life-long friend. Thank you to Dr. Boris Vaisband for your mentorship

and general interest in my well-being, I will never forget the happy-hour venting sessions at

Barney’s Beanery in Westwood. Thank you to Dr. Amir Hanna for all of your help in CNSI

xviii

and mentorship as well.

Thank you to my UCLA collaborators Prof. Vwani Roychowdhury and Tianyi Wang who

were instrumental in developing new methods for training analog-based in-memory comput-

ing networks. Additionally Thank you to Dr. Bilwaj Gaonkar and Dr. Luke Macyszyn for

all of our medical collaborations with the UCLA Neurosurgery Department.

Thank you to my PhD peers including Saptadeep Pal, Irina Alam, Sumeet Singh, Wo-

jciech Romaszkan, and Uneeb Rathore for all of the fruitful whiteboard discussions. And,

thank you to many of the friends who have supported me along my academic journey in-

cluding Arpita Iddya, Letty Treviño, Felicia Hsu, Chen Xie, Brian Zutter, Erin Askounis,

Trevor Black, Jonny Wong, Sharon Wong, Matteo Vesprini-Heidrich, & Jordan Robertson,

among many others.

I would also like to acknowledge my academic and industry collaborators Toshiaki Kir-

ihata (Global Foundries), John Barth (Synopsys), Bill Cowell (On Semiconductor), Robert

Brennan (On Semiconductor), Je↵rey Dods (On Semiconductor), Kevin Mcilvain (IBM),

Gerassimos Giannoulis (IBM), Jung Yoon (IBM), Prof. Janakiraman Viraraghavan (IIT

Madras), Prof. Michael Alles (Vanderbilt University), Prof. Brian Sierawski (Vanderbilt

University), Prof. Robert Reed (Vanderbilt University), Prof. Enxia Zhang (Vanderbilt

University), Prof. Andrew Sternberg (Vanderbilt University), Michael McCurdy (Vanderbilt

University), and Dr. Rachel Brewer (Vanderbilt University).

Thank you to GlobalFoundries for all of their 22FDX MPW and device support. Thank

you to On Semiconductor for their extensive support of the CTT project over the years.

Thank you to IBM Corporation for providing access to the IBM TrueNorth Neurosynaptic

System which allowed us to conduct extensive studies regarding the e↵ect of radiation on

brain-inspired computing. Thank you to the Defense Threat Reduction Agency (DTRA)

for your funding support allowing us to explore radiation e↵ects on both brain-inspired

computing and 3D Architectures. Finally, thank you to the entire CHIPS Consortium for

their funding, mentorship, and overall guidance.

xix

Thank you to Luna and Moon, who forever will be kittens at heart, for your positive

impact on my mental health and wellness and a great addition to the new family I’m starting

with my amazing life partner Charlene.

Thank you to my family including Michelle, Chelsea, Tyler, Tom, & Maria for celebrating

with me every time I came home and for all of your support over the years.

And in the end, thank you most to my parents, Diane and Tim. To my mom, thank you

for being an incredible support force throughout the challenges of my program. I’ll never

forget the time you flew down to LA just to drive me home after one of my circuit tapeouts.

To my dad, thank you for your friendship, mentorship, and free teaching. And most of all,

thank you for appreciating what I do and for recognizing the value of what I’ve accomplished

in my program.

xx

VITA

2014 IC Test Engineering Intern, Finisar Corporation.

2015 Reliability Engineering Intern, Space Systems Loral (SSL).

2016 B.S. (Electrical Engineering, Integrated Circuits), UCLA.

2018 M.S. (Electrical & Computer Engineering, Circuits), UCLA.

2019 Graduate Electrical Engineering Intern, Global Foundries.

2016–2022 Graduate Student Researcher, ECE Department, UCLA.

2021–2022 Teaching Assistant, ECE Department, UCLA..

2020–2022 Board Member, Associated Students UCLA (ASUCLA) Board.

PUBLICATIONS

Siyun Qiao, S. Moran, D. Srinivas, S. Pamarti, and S. S. Iyer, “Demonstration of Analog

Compute-In-Memory Using the Charge-Trap Transistor in 22 FDX Technology,” Interna-

tional Electron Devices Meeting (IEDM), 2022. (submitted)

Steven Moran, S. S. Iyer, Z. Wan, S. Pamarti, “NEURAL NETWORK SYSTEM WITH

NEURONS INCLUDING CHARGE-TRAP TRANSISTORS AND NEURAL INTEGRA-

TORS AND METHODS THEREFORPCT/US2021/053422, 2020. (published)

xxi

Rachel Brewer, J. Cox, D. R. Ball, S. Moran, B. D. Sierawski, P. F. Wang, E. X. Zhang, D.

M. Fleetwood, R. D. Schrimpf, S. S. Iyer, and M. L. Alles, “Total Ionizing Dose Responses

of 22nm FDSOI and 14 nm Bulk FinFET Charge-Trap Transistors,” IEEE TNS, 2021.

Steven Moran, J. Cox, Z. Wan, R. Brewer, E. X. Zhang, B. Sierawski, J. Woo, and S.

S. Iyer, “Impacts of Perturbation on a Charge Trap Transistor Analog Neural Network”,

GOMACTech, 2020.

Rachel Brewer, S. Moran, J. Cox, B. Sierawski, M. McCurdy, E. X. Zhang, S. S. Iyer, R.

D. Schrimpf, M. Alles, and R. Reed, “The impact of proton-induced single events on image

classification in a neuromorphic architecture,” IEEE TNS, 2019.

Steven Moran, J. Cox, R. Brewer, B. Sierawski, and S. S. Iyer, “Radiation E↵ects on

Brain-Inspired Computing,” GOMACTech, 2019.

Zhe Wan, S. Moran, X. Gu, J. Cox, and S. S. Iyer, “Characterization Approaches to Test

the Robustness of Neuromorphic Systems,” GOMACTech, 2019.

Rachel Brewer, S. Moran, J. Cox, M. McCurdy, R. Erbrick, M. Alles, R. Reed, S. S. Iyer,

and B. Sierawski, ”Proton-Induced Classification Changes in a Neuromorphic Computing

System,” Single Event E↵ects (SEE) Symposium, 2018.

Steven Moran, B. Gaonkar, W. Whitehead, A. Wolk, L. Macyszyn, and S. S. Iyer, “Deep

Learning for Medical Image Segmentation – using the IBM TrueNorth Neurosynaptic Sys-

tem,” SPIE Medical Imaging, Feb. 2018.

xxii

CHAPTER 1

Introduction

1.1 Motivation

Deep learning and neuromorphic computing are heavily inspired by the incredible energy-

e�ciency of the human brain. The human brain operates on a massive scale compared to

today’s largest semiconductor chips at a minuscule fraction of the overall power budget:

Human Brain: ⇠100B neurons, ⇠1, 000T synapses, ⇠50W , ⇠1L [Zha19, Her09]

Intel Loihi: ⇠131K neurons, ⇠130M synapses (Intel 14nm, ⇠60mm2) [Dav18]

IBM TrueNorth: ⇠1M neurons, ⇠256M synapses, ⇠70mW (Samsung 28nm,

⇠400mm2) [Ami13, Mer14, Saw16, Ess16]

SpiNNaker 106 System: ⇠1B neurons, 100kW (130nm technology, with an over-

all form factor of 10⇥ 19-inch racks) [Fur14, Yan19]

Neuromorphic computing aims to to leverage a semi-analogous architecture to that of

the human brain to tackle problems spanning multiple domains including object detection,

segmentation, and language recognition, among many others. The success of today’s ‘deep

learning’ e↵orts has led to larger and larger network designs, stressing computational re-

quirements for modern computing architectures. As an example, the Generative Pre-trained

Transformer 3 (GPT-3) model for generating human-like text has over 175 billion network

parameters [BMR20]. Alternative avenues beyond device & system scaling must be explored

to reduce energy costs considering the expected trends in workload growth.

1

1.2 Limitations to Reaching ‘Brain-scale’ Computing

Multiple challenges exist to designing ‘brain-scale’ computing systems, including (1) physical

silicon die size limitations, (2) interconnect density, (3) designing adaptable & reconfigurable

hardware, (4) memory bandwidth, (5) memory size limitations, (6) complex routers for

connecting large multi-chip systems, (7) power & energy budgets, and (8) thermal dissipating

& cooling, among many others.

From a scaling perspective, semiconductor chips are typically confined by the maximum

EUV Lithography-defined reticle size of 104⇥33mm2 (max. die size: 26⇥33mm = 858mm2

for reduction ratio of 4⇥) [Neu13]. As an example, the largest consumer microprocessor

to-date is the Apple M1 Pro CPU with ⇠57 billion transistors and spans 432mm2 utilizing

TSMC’s 5nm technology [Ana21], however, IBM has been designing larger mainframe ICs

such as the z14 (696mm2, 14nm) since 2017. While current EUV technology supports chip

sizes up to ⇠858mm2, most chips stray away from this upper limit due to yield considera-

tions. Recent spiking-neural network (SNN)-based architectures such as Intel Loihi and the

IBM TrueNorth Neurosynaptic System both require scaling up by ⇠104⇥ in order to reach

‘brain-scale’. Additionally, as we scale these systems into large multi-chip–and multi-board–

systems, power budgets go through the roof such as in the case of the SpiNNaker 106 System

with a power budget of ⇠100kW while only able to emulate ⇠1% of the human brain’s neu-

rons. While monolithic wafer-scale processes enable comparatively massive systems such as

the Cerebras’ WSE-2 46, 225mm2 system (⇠2.6T transistors, 850K cores, & 40GB on-chip

memory) [Lie21, Roc20], reducing expensive & repeated memory accesses is left somewhat

unaddressed.

In-Memory Computing (IMC) o↵ers the potential to improve system energy-e�ciency

and throughput especially for ML workloads by performing computation directly within the

memory array itself—eliminating costly memory accesses.

2

1.3 In-Memory Computing (IMC)

In-Memory Computing (IMC) o↵ers a promising solution to the von Neumann Memory

Bottleneck by performing vast Vector Matrix Multiplication (VMM) locally in memory where

trained model weights are stored which (1) eliminates unnecessary memory accesses, (2)

minimizes energy spent due to memory accesses, and (3) naturally allows for simple, parallel

computation.

In-Memory or Near-Memory computing enables computation directly within, or nearby,

the memory itself. Typically, In-memory Computing consists of a cross-bar architecture

with volatile or nonvolatile weights. A non-exhaustive list of proposed memory elements for

weight-storage is provided below:

• SRAM [JXH21, Don20, CLF21, SCL21]

• DRAM [YKC19, XNS21]

• Dynamic-Analog RAM (DARAM)[CCG21]

• Flash [BV20, LL20]

• Phase-Change Memory (PCM) [Jos20, Nar21]

• Resistive RAM (RRAM) [Moc18, Che18, Xue19, Cor20, Liu20, Li21]

• Spin-Transfer Torque Magnetic RAM (STT-MRAM) [Kim11]

• Ferroelectric hafnium oxide-based transistors (FeFET) [BMM21]

• Monolayer MoS2 Transistor (2T-1C) cells [WTX21]

• Charge-Trap Transistor (CTT) [Kha15, Kot15, Vir16, Kha17, Hun19, Kha20,

GI17, Gu18, GWI19, Wan20b, Wan20a]

• Silicon-Oxide-Nitride-Oxide-Silicon (SONOS) [KRP18, APR20, Xia22].

3

The Charge-Trap Transistor (CTT) is identified as an excellent candidate nonvolatile

memory device for IMC applications. The CTT is highly competitive against other proposed

analog nonvolatile memory devices such as RRAM, PCM, MRAM, etc. given that it is

completely CMOS-compatible, a 3-terminal device requiring no select transistor or low-

leakage selector and scalable to smaller CMOS technology nodes. Additionally, the CTT

can be accurately fine-tuned to a specific weight with su�cient retention and manageable

device variance.

Through a variety of techniques, cross-bar architectures can be su�ciently optimized to

improve energy-e�ciency by applying voltage or pulse-width-modulated (PWM) inputs and

computing weighted sums by measuring the column current in the analog domain. A variety

of proposed input and ADC architectures are discussed in more detail in Chapter 3.

4

1.4 Dissertation Outline

A majority of this dissertation focuses on designing e�cient deep learning hardware for edge

applications. Relevant discussion based on experiments on the reliability of compute for

both small-scale and large-scale neuromorphic systems is also included in the appendices.

This dissertation is organized as follows:

Chapter 2 provides a deep dive on the CTT device and benchmarks it against competing

nonvolatile memory devices. Sections 2.2 & 2.3 demonstrates excellent weight programming

results obtained using the Pulsed-Gate Voltage Sweep (PVRS) fine-tune programming algo-

rithm. Section 2.4 demonstrates su�cient cell retention at 85�C and Section 2.5 provides a

thorough comparison of the CTT against other candidate analog nonvolatile memories.

Chapter 3 provides a detailed overview of the entire NeuroCTT Architecture for accel-

erating dot-product computation for fully-connected neural network layers. Sections 3.2-3.4

detail past chip design e↵orts, lessons learned, testing infrastructure design, and the overall

testing user interface.

Chapter 4 details all hardware results obtained from past chip design e↵orts. Sections 4.1-

4.3 detail hardware results demonstrate on-chip weight programming, weight verification,

and the demonstration of a CTT-based MAC Engine with programmed weights. Section 4.4

provides a circuit-level simulation platform for evaluating the e↵ect of both circuit-induced

errors and device non-idealities on the performance and accuracy of the NeuroCTT archi-

tecture.

The accuracy and radiation tolerance of analog and digital-based Neural Network hard-

ware is discussed in this dissertation in Appendix A. Digital-based neural networks are

highly resilient to bit errors in network weights due to their inherent redundancy, demon-

strated in Appendix A.1 with the IBM TrueNorth Neurosynaptic System [Ami13, Mer14,

Saw16, Ess16]. In comparison, Analog-based neural networks are tolerant to bit errors and

single-event upsets (SEUs), but are susceptible to weight programming variance (wtrained 6=

5

wdeployed), retention, temperature-dependent e↵ects, and systematic threshold voltage shift

(�VTH) due to Total-Ionizing dose (TID). Appendix A.2 discusses the e↵ect of these device

variances on the accuracy of analog-based in-memory computing. The CTT Device & Neu-

roCTT Architecture are utilized as a baseline for evaluating the error tolerance of analog

NVM-based IMC systems. Appendix A.3 concludes this section by examining the e↵ects of

Total Ionizing Dose (TID) on programmed CTT weights and provides potential remedies for

lowering the device sensitivity to TID e↵ects.

Appendix B concludes this dissertation by studying the e↵ects of radiation on 3D-stacked

memories and architectures. For large-scale neuromporphic system, system reliability is in-

creasingly becoming more important. Many larger-scale systems today leverage 3D memories

including High-Bandwidth Memory (HBM) and 3D-Stacked (3DS) DRAM in order to store

large multi-layer networks. As an example, the Generative Pre-trained Transformer 3 (GPT-

3) model for generating human-like text has over 175 billion network parameters trained on

⇠45TB of training data across multiple datasets [BMR20].

Appendices C and D are provided as supplementary information for the CTT-Hardware-

based Inference Realistic Circuit Universal Simulator (CIRCUS) and NeuroCTT chip testing.

Original contributions of this dissertation include (1) first demonstration of an on-chip

analog MAC Engine using the CTT fabricated in a commercial CMOS technology, (2) PVTS

methodology for fine-tune programming devices with programmable pulse widths without

requiring ramping voltage supplies, (3) analysis of all the variances present in analog in-

memory compute (IMC), (4) CIRCUS circuit-level simulation framework for evaluating the

accuracy of analog IMC engines, (5) experimental radiation tolerance of analog & digital

neuromorphic hardware, and (6) experimental radiation tolerance of 3D-stacked architectures

using 3DS DRAM memory to detect the propagation of bit errors across multiple dies within

each stack.

6

CHAPTER 2

Charge-Trap Transistor (CTT) as an Analog

Nonvolatile Memory Device

The ‘Charge-Trap’ transistor (CTT)—any high-HfSiOx logic transistor—has been demon-

strated as a re-writable nonvolatile memory device for digital [Kha15, Kot15, Vir16, Kha17,

Hun19, Kha20] and analog [GI17, Gu18, GWI19, Wan20b, Wan20a] applications. The CTT

is a 3-terminal device and completely CMOS-compatible, providing several performance &

cost advantages over other proposed analog nonvolatile memory (aNVM) devices such as

RRAM, PCM, MRAM, and SONOS. While GlobalFoundries 22nm Fully-Depleted Silicon-

on-Insulator (FDSOI) technology is utilized for this project, the CTT has also been demon-

strated using GlobalFoundries 12LP/14LP FinFET technology and all nodes utilizing high-

gates as well. Research has primarily focused upon SOI technologies as the charge-trapping

e↵ect is greatly aided by the enhanced self-heating assisted trap tunneling a↵orded by SOI

technologies.

The NeuroCTT system detailed thoroughly in Section 3.1 is a neuromorphic classifier

featuring twin-cell CTT-based analog synapses. These analog synapses are biased in sub-

threshold regime (VG = ⇠200mV , VD = ⇠50� 200mV) during inference, where the weights

are considered as the device on-state channel conductance or equivalently the threshold volt-

age (Gch⇠VTH). Twin-cell weights are utilized to support positive, negative, and zero-valued

weights by programming each twin-cell weight to achieve the target di↵erential weight (�Gij)

7

Figure 2.1: Oxygen Vacancies in HfSiOx logic transistors. High- gates are inherently

“trappy” due to oxygen vacancies that can trap electrons.

2.1 CTT Device Overview

The “Charge-Trap Transistor” (CTT), or any high- gate-first logic transistor, relies on

electron trapping in the gate oxide to modulate the threshold voltage of the device in a

nonvolatile manner. The high- gate is inherently “trappy” due to oxygen vacancies in the

gate dielectric (Fig. 2.1) that can easily trap electrons. The basic process is believe to be

trap-assisted tunneling that is enhanced by self-heating. Silicon-on-insulator (SOI) technolo-

gies enhance this temperature-assisted trapping as shown with GlobalFoundries 22FDSOI

technology in [Kha15]. Self-heating-assisted trapping may also generate additional traps.

Charge-trapping has been shown to be more pronounced in “gate-first” processes.

Devices are programmed by applying large VGS (1.8�2.7V), VDS (1.6�2.2V) conditions

to the target cell for short (e.g. 50�500µs) pulses, shown in Fig. 2.2a. Detrapping (‘erasing’)

is also possible by reversing the gate voltage polarity as shown in Fig. 2.2b; however, a small

random amount of trapping persists without a temperature-induced reset.

8

(a) Programming (PRG) (b) Erasing (ERS)

Figure 2.2: CTT Device Programming & Erasing Operations in 22FDX. (a) CTT

devices are programmed (" VTH , # �ch) by applying large VGS, VDS voltage (red) pulses

temporarily to the device. (b) CTT devices are erased (# VTH , " �ch) by applying large

reversed gate-voltage (blue) pulses to the device.

Programming and Erasing corresponds to e↵ectively increasing (" VTH) or decreasing

(# VTH) the threshold voltage of the device, respectively. This can be easily observed

in Fig. 2.3 where full IV curves have been taken for an as-fabricated device (Pre-PRG)

after programming (Post-PRG) and after erasing (Post-ERS). The as-fabricated device is

subjected to a series of Programming pulses leading to an increased threshold voltage

(�VTH⇠250mV), shown by the Post-PRG curve. After programming, the device is then

subjected to a series of Erase pulses, shown by the Post-ERS. The device can be erased and

brought back close to the Pre-PRG condition but the device cannot be fully reversible,

unless the device is “annealed”.

Long-Term Depression (LTD) and Long-Term Potentiation (LTP) characteristics, neces-

sary in Spike-Timing Dependent Plasticity (STDP)-based learning [BP01, SRR08], can be

demonstrated by applying a series of programming (LTD) or erase (LTP) pulses to a CTT

device, as shown in Fig. 2.4.

In order to accurately program each of the devices to a specific target-state, an iterative

write-then-verify strategy is utilized and described in more detail in the next section.

9

Figure 2.3: CTT Device PRG/ERS IV Characteristics.

Figure 2.4: CTT Long-term Potentiation (LTP) and Depression (LTD) Charac-

teristics. Reversible and reproducible device conductance changes are demonstrated by

applying a series of “256” programming pulses followed by a series of 256 “erase” pulses,

repeated for a total of 4 cycles. Previously reported in [GI17].

10

(a) PVRS Technique (b) Adjusting (±) CTT Device Weight using PVRS

Figure 2.5: Pulsed-gate Voltage Ramp Sweep (PVRS) Programming. PVRS Tech-

nique can be utilized to make fine-tune adjustments to CTT device weights (�ch, VTH) as

shown in [Wan20a].

2.2 Programming Methodology

A write, verify, and re-write (if necessary) strategy combined with the Pulsed-gate Voltage

Ramp Sweep (PVRS) technique shown in Fig. 2.5 is used to accurately program and erase

the CTT device to a specific target state. PVRS allows devices that have not yet reached

their target state to be e�ciently programmed by ramping up the gate-voltage condition

after each subsequent pulse until the device reaches its target state. This mode of operation

is also known as fine-tune programming.

Accurately programming and erasing CTT devices within an array also requires special

considerations in terms of half-select issues. These array-level issues are explored more in

Sections 3.1.4 & 4.1 which discuss the CTT Array design and past array programming results

obtained on the NeuroCTT 0.1 and NeuroCTT 0.3 chip designs.

11

(a) Cascade Probe Station (b) Analyzer & Switch Matrix (c) Probed Die

Figure 2.6: CTT Device Testing using Cascade Probe Station. Setup includes (a)

Cascade 300mm wafer prober as well as (b) Keysight B1500A Analyzer, Switch Matrix, and

Gateway Computer. Example probed die shown in (c).

2.3 Programming Variance

CTT device results were obtained using 1⇥25-pad (72µm pitch) scribe line monitor (SLM)-

based macros on NeuroCTT 0.1 and 0.3 designs as well as wafer-level device macros. Testing

was performed using an in-house Cascade Probe Station with Keysight B1500A Analyzer

and 1⇥ 25 (72µmpitch) Celadon Probe card, shown in Fig. 2.6.

Past results have shown that the CTT device (RVT: W = 428nm,L = 20nm) measured

at VGS = 200mV, VDS = 200mV can be accurately programmed to a specific target current

within the range of 100�700nA with a device programming variance of �PRG = ⇠48.2nA

or a normalized programming variance of �
0
PRG = 48.2nA/(700�100nA) = ⇠8% [Wan20a].

Figure 2.7 displays more recent results from the CTT array macros on the NeuroCTT

0.3 chip design. Array macros consisting of 10 row/wordlines and 8 columns of twin-cell

CTT devices (160 devices total) contained an array layout identical to that used within the

NeuroCTT system for external testing and device programming validation. A group of 80

devices each was programmed to one of 6 target currents (100, 200, 300, 400, 500, & 600nA)

using the testing setup shown in Fig. 2.6 and array macros across 3 chips. The programming

12

(a) As-Fabricated Device Distribution (b) Devices After Programming

Figure 2.7: CTT Device Programming to 6 Target States. (a) Distribution of 480

as-fabricated CTT (RVT, W=428nm, L=20nm) devices. (b) A distribution of 80 devices

were programmed to each of the target currents, centered respectively around 100, 200, 300,

400, 500, & 600nA, and measured at VGS = 220mV and VDS = 200mV .

variance (�PRG) is plotted as a function of the target current in Fig. 2.8. Figure 2.8 reports

that the programming variance is a function of the target or programmed current, with a

worst-case normalized programming variance of �
0
PRG = �PRG/Range = ⇠6%, with respect

to the 500nA target immediately after programming and ⇠6.5% after 50hr bake at 85�C.

Recent unpublished results have shown that this result can be further improved upon by

utilizing fine-tune erase. While fine-tune erasing has been shown to o↵er promising device

programming accuracy and retention results, these results are omitted from this disserta-

tion as the NeuroCTT 0.1, 0.2, & 0.3 chip designs were primarily architected to support

exclusively fine-tune programming and block erase.

13

Figure 2.8: CTT Device Programming Variance and Mean Drift. (left) Measured

and modeled mean drifts immediately after programming and after 20 & 50 hours at 85�C.

(right) Measured and modeled standard deviation immediately after programming, after 20

& 50 hours at 85�C. Devices were not powered on during baking.

2.4 Retention Characteristics

A group of 480 as-fabricated devices were programmed to one of 6 target states (100, 200, 300,

400, 500, & 600nA), as shown in Fig. 2.7b. The devices were then baked for 50 hours at 85�C.

CTT device programming variance and mean drift before and after baking are provided in

Fig. 2.8. Each of the 6 target weight distributions demonstrated excellent retention after 50

hours of cumulative baking, as demonstrated by the plots shown in Fig. 2.9.

A cell retention comparison is performed between the CTT and recently published work

with SONOS devices [Xia22] in Tables 2.1 & 2.2. It is observed that the SONOS devices

from [Xia22] experience significant degradation at room temperature, where programming

variance (��SONOS) and mean (�µSONOS) significantly drift after sitting for 120 hours at

room temperature. It is assumed that these retention issues at room temperature will be

exacerbated at higher temperature operating conditions and after longer periods of time.

Retention for other Flash devices may vary. Negligible changes in programming variance

(��CTT) and mean (�µCTT) are observed for CTT (428nm) devices after 50 hours at 85�C.

14

(a) 20hr (b) 50hr

Figure 2.9: Device Retention over 50hr baking at 85�C. Devices were first programmed

to one of 6 target currents centered around 100, 200, 300, 400, 500,&600nA for VGS = 220mV

and VDS = 200mV , shown in Fig. 2.7 (t = 0). Devices were then baked for (a) 20 hours and

(b) 50 hours at 85�C. Devices were not powered on during baking.

2.5 Analog NVM Device Comparison

Tables 2.1 & 2.2 provide a comparison between state-of-the-art programming and retention

characteristics for the CTT and Silicon–Oxide–Nitride–Oxide–Silicon (SONOS) devices, re-

spectively. Significant changes in programming variance and mean are observed for the

SONOS device at room temperature after only 120 hours. It is assumed that these retention

issues at room temperature will be exacerbated at higher temperature operating conditions

and after longer periods of time.

Using exclusively a fine-tine programming approach, excellent retention results were

demonstrated for the CTT at 85�C over 50 hours, with negligible changes in programming

variance and mean across all target states. Further improvements are also possible using a

fine-tune erasing approach.

15

Target State �PRG(0hr) �PRG(50hr) �
0
PRG(50hr) +��CTT +�µCTT

100 nA 13.3 13.8 2.8% 0.5 �2nA

200 nA 14.9 16.5 3.3% 1.6 �2nA

300 nA 20.3 22.8 4.6% 2.5 �1nA

400 nA 23.2 25.8 5.2% 2.6 �6nA

500 nA 29.5 33.7 6.7% 4.2 �3nA

600 nA 27.6 30.9 6.2% 3.3 �3nA

Table 2.1: CTT Retention Over 50 hours at 85�C. �
0
PRG reflects programming vari-

ance normalized by the range (�PRG/(IMAX � IMIN)). Change in Programming Variance

(+��CTT) and Mean Drift (+�µCTT) are calculated based on data obtained after 50hr bake

at 85�C. All currents reported in nA.

Target State �PRG(0hr) �PRG(120hr) �
0
PRG(120hr) +��SONOS +�µSONOS

100 nA 7 10 2.0% 3 +10nA

200 nA 12 18 3.6% 6 +12nA

300 nA 17 24 4.8% 7 +14nA

400 nA 21 31 6.2% 10 +12nA

500 nA 26 38 7.6% 12 +12nA

600 nA 27 40 8.0% 13 +0nA

Table 2.2: Retention Comparison with 40nm SONOS device. SONOS device data

adapted from [Xia22]. Change in Programming Variance (+��SONOS) and Mean Drift

(+�µSONOS) are calculated based on data obtained after 120hr bake at 27�C. SONOS data

reflects significant degradation at room temperature (27�C) over 120hr period. All numbers

reported in nA.

16

RRAM [Li21] CTT [Kha20]

Technology TSMC 40nm GF 22nm/14nm/12nm

Reported Retention Data Up to 30 hours 1000 hours

Relative Fluctuation ⇠200% < 5%

Long-Term Retention — 10yr. charge loss < 25% at 125�C

RON/ROFF Ratio ⇠20⇥ at subthreshold: ⇠1000⇥

Table 2.3: CTT and RRAM Comparison for Digital Applications. Weight instability,

or large fluctuations over time, seen for RRAM devices in the High-Resistance State (RHS),

reported in [Li21]. Extensive retention data for CTT for 1000 hours at various baking

temperatures (25, 85, 125, 180,&240�C) reported in [JLV18].

While a majority of this dissertation is focused on analog in-memory computing appli-

cations for embedded nonvolatile memory devices, it’s valuable to benchmark the them for

digital memory applications as well. In this context, it is worthwhile comparing the CTT

with RRAM devices. Table 2.3 compares recently published RRAM work [Li21] with the

CTT device [Kha20, JLV18] for digital applications. Past work has shown that the CTT

device as a digital NVM experiences a projected charge loss over 10 years at 125�C of <25%,

with extensive retention data available over 1000 years at temperatures between 25�240�C.

Additionally, the CTT device is currently available by GlobalFoundries as a One-Time Pro-

grammable Memory (OTPM) product rated for 10 years at or above 85�C, with a multiple-

time programmable version currently in development. In contrast, RRAM devices utilizing

a qualified 40nm technology node su↵er poor long-term retention with limited published

data (<30 hours) above room temperature. Additionally as reported in [Li21], large weight

instabilities or fluctuations (⇠200%) over time exist for devices in the High-Resistance State

(HRS). Generally, most varieties of RRAM devices provide a small RON/ROFF ratio, requir-

ing an additional access transistor or non-linear selector (e.g. 1T1R cells).

17

Properties Size RONMIN

GMAX

GMIN

�
0
PRG

CTT 22FDSOI 22nm⇥ 428nm 0.25M⌦ ⇠7[1] 6%

PCM Ge2Sb2Te5
90nm CMOS

⇠40k⌦ ⇠25
3.8%

(rTOP = 100nm)[2] (� = 0.94µS)

STT MRAM
28⇥ 70nm 14.8k⌦ 2 ⇠6%

80nm⇥ 180nm 2k⌦ 2 ⇠8%

RRAM

Ag : a� Si 100⇥ 100nm 2.5M⌦ ⇠10 —

AlOx/T iN/PCMO 150⇥ 150nm 6.9M⌦ ⇠7 —

AlOx/HfO2 400⇥ 400nm 16.9k⌦ ⇠3 —

Winbond-90nm 2⇥1T1R (⇠62F 2) — — ⇠5%

TSMC-40nm 2T2R ⇠1M⌦ ⇠20 —

SONOS Cypress-40nm 1T1S[3] ⇠2M⌦ ⇠32 ⇠3.5%

Table 2.4: Analog NVM Device Comparison. Information adapted from [GWI19,

BSN14, Jos20, Kim11, JCE10, PSK13, WMS16, He20, Li21, KRP18, APR20, Xia22]. Last

column refers to normalized programming variance, �
0
PRG = �PRG/Range. Limited Program-

ming Accuracy & Retention information is available for RRAM devices. [ZZP18] suggests

that the normalized programming variance can be as unacceptable as ⇠20% for some RRAM

devices, especially severe in the High-Resistance-State (HRS). [1] For current design target.

Experiments have shown that this can be further improved to >100⇥. [2]rTOP refer to the

radius of the top of the electrode. [3]1T1S denotes that cell consists of 1 select transistor and

1 SONOS device.

18

FLASH [BGK16] RRAM [LHY20] PCM [Jos20] CTT

Material Prop. Floating Gate Winbond-90nm Ge2Sb2Te5 22FDSOI

Cell Config. 4T 2T2R 2T2R 2T

Bits/Cell Signed 8 b 1� 3 b 1� 4 b Signed 5 b

Max. RON/ROFF > 105 < 102 < 102 > 105

PRG Energy/bit 10� 100nJ < 1nJ < 10nJ ⇠100nJ

PRG Voltage ⇠10V ⇠2V 2� 4V ⇠1.5� 2V

INF Voltage 1� 4V ⇠1V ⇠0.3V ⇠200mV

Add. Fab Cost yes yes yes no

Table 2.5: Additional Comparison Including FLASH.

In summary, the CTT is (1) completely CMOS-compatible and already exists as a qual-

ified manufacturing process, (2) includes a ‘free’ non-linear, low-leakage selector (e.g. gate)

with Ion
Ioff

⇠105, (3) is scalable to smaller technology nodes such as 12FDX, and (4) o↵ers a

high (e.g. RON⇠250k⌦� 3M⌦), (5) excellent device controllability, (6) manageable device

variance �
0
PRG = �PRG/Range ⇠ 6%, (7) large number of analog states (twin-cell ⇠5 b), &

excellent retention characteristics compared to other candidate analog embedded nonvolatile

memory devices.

The CTT device, along with many other candidate analog nonvolatile memory devices,

su↵ers from low endurance, long write times, large cell area limited by low-resistance routing,

and requires iterative fine-tune programming with weight verification to accurately program

each weight. These limitations likely indicate that the CTT device cannot be used for highly

iterative learning due to limited endurance, however, the CTT is an excellent candidate for

Inference or in-memory computing with nonvolatile weight storage and infrequent weight

tuning.

19

CHAPTER 3

NeuroCTT Architecture

3.1 Architecture

Figure 3.1 describes our proposed inference engine with pulse-width modulated inputs ap-

plied to the CTT gates, a di↵erential integrator which integrates the di↵erential current

on each twin-cell column and converts the accumulated charge to a pulse-width modulated

output signal that can be conveniently applied as an input to subsequent layer(s) without

requiring any digital interface in between layers.

Additionally, the proposed inference engine can be e�ciently expanded into a multi-layer

network without any digital interfaces between layers, as the pulse-width-modulated (PWM)

output of the nth layer can be directly applied as inputs to the (n+ 1)th layer.

3.1.1 Overview

The proposed architecture in Fig. 3.1 consists of 3 majors blocks: (1) WL Drivers, (2)

CTT Array, and (3) Output Neurons—conceptualized by Fig. 3.3. The WL Drivers convert

di↵erential digital (e.g. 0/0.8V) pulse-width modulated inputs to subthreshold range (e.g.

VG = 50� 200mV) PWM inputs. The CTT Array stores the synaptic weights and produces

a di↵erential current output waveform. Each Neuron consists of a (i) di↵erential integrator

which integrates this di↵erential current waveform and (ii) a comparator for computing the

output pulse width. The output pulse width is generated by discharging the accumulated

charge during inference, QINF , using a dc discharge current source and computing the time

20

Figure 3.1: Proposed NeuroCTT Inference Engine. Example demonstrates a single-

layer network with 3 inputs (WLs) and 3 outputs (columns/neurons).

Figure 3.2: Multi-Layer Inference Engine. Example demonstrates a 3-layer network

where the outputs of the 1st and 2nd layers are directly applied as inputs to subsequent

layers. The output of the last layer is optionally converted back to digital using an ADC

or Time-to-Digital converter (TDC). Inputs to the first layer are assumed to be digital and

converted to pulse-width modulated (PWM) inputs using a digital-to-time (DTC) converter.

21

Figure 3.3: NeuroCTT Architecture Overview.

it takes to fully discharge the respective output capacitance using the comparator circuit:

tPWM,OUT / QINF

IDISCHARGE
(3.1)

This function e↵ectively implements the ReLU activation function by producing an output

pulse proportional to the accumulated output, QINF , for only positive-valued outputs by

using a single polarity discharge source. Nonlinear activation functions, such as the ReLU

function, are required by multi-layer neural networks.

3.1.2 Input Architecture

Various input architectures have been proposed for analog-IMC applications, shown in

Fig. 3.4. When biased in subthreshold, the CTT is a strong function of VGS and a weak

function of VDS, described by Equation 3.2. This would render the amplitude-based input

configuration in Fig. 3.4a useless as the current is exponentially dependent on VGS, making

it di�cult to control the device weights. In other words, the ‘weight’ would not be constant

for all inputs; rather it would be a function of the input voltage, VGS.

22

(a) Amplitude-based (b) Pulse-based (c) Pulse-Width Modulated

Figure 3.4: Example Input Architectures. Example designed for 8-bit inputs.

ID = Io ⇥ e(VGS/nvT)(1� e�VDS/vT), vT = kT/q (3.2)

Pulse-based (Fig. 3.4b) and Pulse-Width Modulated (Fig. 3.4c) were considered in this

work. A pulse-based approach has been used in many recent works such as [Liu20]. While

both methods are similar, both maintain the input at some constant voltage level for an

equivalent total period of time, multiple trade-o↵s exist. Pulse-based methods require com-

puting and accumulating the output after every individual pulse limited overall throughput

of the system, while the Pulse-Width modulated scheme is di�cult to implement because

it requires a substantially larger integrating capacitance, CINF , to integrate the di↵erential

current waveform.

Assuming similar ICM and IDM requirements for a Pulse-based and Pulse-Width-Modulated

integrator design, if the total integrating capacitance for a 1-bit pulse-based input is CINFo

and 8-bit inputs are used (Ninput = 8), then:

CINFPWM
= 2Ninput ⇥ CINFo

(3.3)

While PWM designs require a substantially larger integrating capacitance which incurs

a large area penalty, they in general provide higher overall throughput and e�ciency. The

23

Figure 3.5: CTT Array with Drain Inputs. An alternative is to apply the inputs to

the drains instead of the gates, where the gate would be set to some constant bias voltage

to maintain the device in the subthreshold regime. A worse Ion/Ioff ratio is observed when

the gate is connected to some Vbias > 0V , causing substantial leakage for “o↵” devices and

degrading the overall computational accuracy.

PWM design can also be more easily power-gated when not in use.

Other configurations were also considered such as applying PWM inputs to the CTT

drain instead of the gate terminal—shown in Fig. 3.5. This configuration is not ideal as it

provides a poor Ion/Ioff ratio as the current is exponentially dependent on VGS. Figure 3.1

represents the selected design where PWM inputs are applied to the WLs or CTT gates. A

VGS = 200mV is applied to selected WLs or non-zero inputs and all non-active WLs or zero

inputs are set to VGS = �300mV .

The ideal programmed weight range for an RVT device with W=428nm, L=20nm, VGS =

200mV, VDS = 200mV is 100�700nA while the leakage current for unselected devices (e.g.

VGS = �300mV , VDS = 200mV) has been measured to be <10pA assuming no subthreshold

degradation.)

24

(a) VPP (IN H) (b) VWL (IN L) (c) VREAD (IN READ B)

Figure 3.6: WL Driver Level Shifters. Three level-shifter circuits are utilized to level-shift

di↵erential logic-defined (0/0.8V) signals to generate IN H, IN L, and IN READ B signals

for the WL Driver Output Stage without a↵ecting its reliability.

3.1.3 WL Driver Design

The WL Driver is designed to support several modes of chip operation including program-

ming (e.g. 1.5�2.7V), block erase (�1V), and inference (50�200mV) conditions. The

design consists of 24 standard-gate (SG) devices and 6 thick-oxide (EG) devices in order

to support maximal programming voltages of up to 2.7V without subjecting any of the SG

devices to reliability issues (e.g. voltages beyond 1.2V) using techniques similar to those

discussed in [RBK12]. Figure 3.6 describes each of the three 8T level-shifter circuits de-

signed to control the main output driver. The VPP level shifter converts 0V!V PP (e.g.

0V!2.7V) and 0.8V ! V PP BIAS+VTHP
(e.g. 0.8V!2.2V). The VWL level-shifter con-

verts 0V!V DD (e.g. 0.8V) and 0.8V!VWL (e.g.�0.3V), while the VREAD level-shifter

converts 0V!VWL (e.g. �0.3V) and 0.8V!V DD (e.g. 0.8V).

Figure 3.7 describes the 6T Output Stage with example operating conditions for pro-

gramming and inference modes. Table 3.1 provide example logic inputs for each of the three

level-shifters to provide the specified output (last-column).

25

Mode WL status VPP ENh⇤i VWL ENh⇤i VREAD ENh⇤i Output

PRG
selected 1 1 0 VPP (2.7V)

unselected 0 0 0 VWL (0V)

VER

INF

selected 0 1 1 VREAD (0.2V)

unselected 0 0 0 VWL (�0.3V)

ERS
selected 0 0 0 VWL (�1V)

unselected 0 1 1 VREAD (0V)

Table 3.1: WL Driver Control Logic. Example Output Driver voltages for each condition

are provided in the right-most column.

(a) Programming (PRG) (b) Inference (INF)

Figure 3.7: WL Driver Output Driver Stage during Programming (PRG) & In-

ference (INF). Three level-shifter circuits, shown in Fig. 3.6, are utilized to level-shift

di↵erential logic-defined (0/0.8V) signals to IN H, IN L, and IN READ B signals. Output

Driver consists of thick-oxide (EG) devices to support programming voltages up to 2.7V .

26

3.1.4 CTT Array Design

Cell area, programming e�ciency, retention, device variability, half-select issues during pro-

gramming, inference accuracy, and several other factors were taken into consideration when

designing the twin-cell CTT array.

In this particular design, the cell area was not dominated by the twin-cell CTT device

itself. Rather, it was limited by (1) the minimum pitch of peripheral circuitry and (2) the

BL/SL routing which was designed to support ⇠mA programming currents during PRG

modes of operation. The cell size was set to 0.52µm⇥ 3.6µm where 0.52µm is the minimum

pitch of the EG-based WL Driver and 3.6µm is the designed height of each analog neuron

circuit, laid out similarly to that shown in the conceptual diagram in Fig. 3.3. Cell size

can be further reduced by a factor of 2⇥ by driving WLs from both (top and bottom)

sides, reducing the minimum cell width to 260nm. The cell height is mostly limited by

the BL/SL routing. In order to ensure that CTT devices can be programmed e�ciently

(support ⇠mA’s programming current), the BLt, SL, and BLc must have su�ciently low

resistance. Using metal 8, these lines have been designed to have a resistance of 6.5�8.2⌦,

neglecting tungsten device contact resistance. This limits the cell minimum height to 2.7µm

(W = 450nm,P itch = 900nm).

Leveraging empty space in between twin-cell CTT device columns, as-fabricated device

variability was minimized by applying specific considerations during layout phase to include

dummy devices to reduce lithography-related variability e↵ects. The target cell, Regular

VTH (RVT) nfet device with W=428nm & L=20nm, was selected based on extensive device

studies with a various threshold voltage (e.g. RVT, SLVT, etc.) and channel width device

flavors. While the 428nm device was selected for the most recent NeuroCTT 0.3 tapeout, a

10⇥ 8 twin-cell array macros with 170nm devices was also included to evaluate the feasibil-

ity of using smaller channel width devices. Smaller devices reduce the subthreshold current

range and hence improve the energy-e�ciency of peripheral ADC circuitry such as the neu-

27

(a) Shared SL (b) Split SL (c) Split WL

Figure 3.8: TWIN Cell Array Design. Multiple array designs were considered providing

area, half-select, and inference accuracy tradeo↵s.

ron in this specific architecture, but at the potential cost of higher variability, worsened

programming variance, and diminished charge retention.

While a Shared-SL (Fig. 3.8a) approach was utilized when designing the most recent

array, Split-SL (Fig. 3.8b) and Split-WL (Fig. 3.8c) implementations were also considered.

Split-SL o↵ers an additional advantage of improved half-select during the erase mode at the

expense of increased cell area and the design may also degrade inference accuracy as the the

SLp and SLn are no longer set to an identical ground potential.

Programming and Erase mode half-select issues are reviewed by Figures 3.9 & 3.10,

respectively, for the Shared-SL array configuration. Split-SL array design can eliminate half-

select issues shown in Fig. 3.10 by using two separate SLs to apply separate bias conditions

to both twin-cell devices.

28

Figure 3.9: TWIN-Cell Array: Programming (PRG) Half-Select. Regular VTH nfet

devices are nominally rated for maximum VGS, VDS = 0.96V . While programming the target

device (" VTH), however, we apply higher voltage conditions to the device for short intervals

of time (pulses⇠50�500µs). These conditions can a↵ect the threshold voltage of non-target

cells on the same row (red) or column (orange).

Figure 3.10: TWIN-Cell Array: Erase (ERS) Half-Select. Regular VTH nfet devices are

nominally rated for maximum VGS, VDS = 0.96V . Higher voltage conditions are applied to

the device for short intervals of time (pulses⇠50�500µs) while erasing the device (# VTH).

These conditions can a↵ect the threshold voltage of the complement cell (green) as it is

subject to similar voltage conditions and erasing does not require a large IDS current.

29

Figure 3.11: Column Array Mux Design.

3.1.5 CTT Array Mux & Level Shifter Design

The CTT Array is co-designed with an array mux which supports applying a variety of infer-

ence, verification, programming, and erase bias conditions to CTT devices within the array.

During programming and erase modes, these mux devices can be enabled/disabled based on

specified timing constraints loaded onto the chip, which allows for precisely tuned on-chip

BL/SL voltage pulses to be applied to target devices while minimizing overall exposure time

to higher voltage conditions to prevent reliability issues.

The Column Array Mux is shown in Fig. 3.11. The BLt, SL, and BLc are each connected

to two external pads (PAD BLt SELECTED,PAD BLt UNSELECTED, etc.) via two

separate mux’s. These pads allow for two separate 0�1.8V voltages to be applied to the

selected and unselected columns, respectively, depending on the mode of operation. In order

to prevent stress on the array mux devices during PRG and ERS modes, thick-oxide (EG)

devices are utilized. Programming mode (PRG) requires the selected BL/SL path to be fairly

low-resistive as mentioned in the previous section, so the EG devices on the BL/SL selected

paths are sized fairly large (e.g. W⇠100µm) and require level-shifted logic to properly turn

on each of the EG mux devices.

30

Logic Signals (0/0.8V) Level-Shifted Logic (0/1.9V)

BLt SELECTED LS BLt SELECTED

BLt SELECTED N LS BLt SELECTED N

BLt UNSELECTED LS BLt UNSELECTED

BLt UNSELECTED N LS BLt UNSELECTED N

SL SELECTED LS SL SELECTED

SL SELECTED N LS SL SELECTED N

SL UNSELECTED LS SL UNSELECTED

SL UNSELECTED N LS SL UNSELECTED N

BLc SELECTED LS BLc SELECTED

BLc SELECTED N LS BLc SELECTED N

BLc UNSELECTED LS BLc UNSELECTED

BLc UNSELECTED N LS BLc UNSELECTED N

PROTECTION SWITCH EN LS PROTECTION SWITCH EN

Table 3.2: Column Array Mux Level-Shifted Logic Controls.

On-chip logic generates necessary control logic signals to enable/disable each of the mux

paths shown in Fig. 3.11. These control logic signals are level-shifted from 0/0.8V ! 0/1.9V

using the level-shifter circuit shown in Fig. 3.12. The level-shifter shown in Fig. 3.12a

first generates the IN H and IN H N signals by converting the input signal from 0.8V !

V PP BIAS + VTHP
(e.g. 1.2V) and 0V ! 2V . IN H and IN H N signals are then used to

enable/disable the output signal drivers shown in Figures 3.12b & Fig. 3.12c which generate

level-shifted logic for the input signal and its complement, respectively.

While the chip is in the IDLE condition, the BLt and BLc mux’s are deselected and the

SL is set to 0V via the SL UNSELECTED path, shown in Fig. 3.13. Additionally, the device

is disconnected from the neuron circuit by turning o↵ the the PROTECTION SWITCH (7○).

31

(a) VPP Level-Shifter (b) LS LOGIC IN (c) LS LOGIC IN N

Figure 3.12: Column Array Mux: Level-Shifted Logic Control Signals.

Figure 3.13: Column Array Mux Design: IDLE Mode.

32

Figure 3.14: Column Array Mux Design: INFERENCE Mode.

During INFERENCE (Fig. 3.14), the switch mux stays in a configuration identical

to that in IDLE mode, except the PROTECTION SWITCH (7○) is enabled. The neuron

integrator provides a virtual supply (VD = ⇠200mV) to the twin-cell CTT drains (BLt,

BLc) and integrates the column di↵erential current (IBLt(t)� IBLc(t)).

During normal PROGRAMMING mode of operation, pulse order and timing is taken

into special consideration to reduce possible half-select issues. Figure 3.15 demonstrates

programming operation on the True (T) device. First, the SL is raised high on all columns

and the respective BLt/BLc for the target cell on the selected columns is brought to 0V ,

providing a BL-SL pulse to the selected devices. Next, the selected WL(s) are raised to a

large programming voltage (e.g. VWL = 1.5�2.5V) for a specified duration of time.

Table 3.3 provides information on maximum pulse widths for the BL, SL, and WL pulses,

specified at fCLK = 20MHz. Actual logic implementations are chip programming config-

uration parameters are provided in Fig. 3.16, where all pulse timing information is de-

rived from the SL START (4b), BL PULSE WIDTH X (16b), WL PULSE WIDTH (16b),

BL PULSE WIDTH Y (16b), & SL END (4b) programming parameters.

33

Figure 3.15: Column Array Mux Design: PRG T Mode. SL SELECTED enabled for

all columns in order to reduce half-selected devices in other columns that are located on the

SELECTED WL by lowering the VGS (e.g. VSL = 1.2V, VWL = 2V ! VGS,unselected = 0.8V).

Parameter MAX Pulse Width

SL PULSE WIDTH 9.83175ms

BL PULSE WIDTH 9.83025ms

WL PULSE WIDTH 3.27680ms

Table 3.3: Programming (PRG) Pulse Timing Parameters. Maximum pulse widths

defined at fCLK = 20MHz. Longer pulses can be applied by lowering system CLK frequency.

Pulse widths derived from timing parameters shown in Fig. 3.16.

34

Figure 3.16: Column Array Mux Design: PRG T Timing Diagram.

(a) PRG T (No Float) (b) PRG T (Reverse)

Figure 3.17: Column Array Mux Design: Alternative PRG T Modes. (a) The No

Float configuration explicitly applies a voltage to unselected BLs (e.g. 1.2V) rather than

having them float, ideally to the SL voltage. (b) The Reverse configuration flips the BL and

SL voltage polarities during programming, at the anticipated expense of worsened half-select

issues for unselected devices in other columns connected to the SELECTED WL.

35

(a) On-Chip Verification (Twin-Cell) (b) O↵-chip Verification (Single-Cell)

Figure 3.18: Column Array Mux Design: Verification Modes. (a) The On-chip

verification mode utilizes the neuron circuit to measure a single twin-cell CTT di↵erential

current for a fixed duration in time. (b) The O↵-chip verification mode allows the user to

connect an Analyzer (Fig. 2.6b) to measure individual device currents accurately.

On-chip programming configuration parameters are further elaborated upon in Sec-

tion 3.4.4, where the chip testing user interface is discussed. On-Chip and O↵-chip ver-

ification schemes are also included in the design (Fig. 3.18. On-Chip Verification is

similar to INFERENCE which utilizes the neuron circuit except typically only 1 twin-cell

device is enabled or measured at a time for a fixed input duration. O↵-Chip Verification,

on the other hand, enables the BL SELECTED and SL SELECTED paths on selected col-

umn(s), which allow an external Analyzer to bias the device VDS⇠200mV and measure the

subthreshold IDS. A similar mode is included for O↵-chip INFERENCE which allows

multiple WLs to be selected and the column (IBLt(t)� IBLc(t)) to be measured externally.

Additionally, a variety of additional programming, inference, verification, and debug

modes were also included. Figure 3.17 describes two additional programming modes (No

Float and Reverse) that can be used for evaluating cell programming e�ciency. Debug

modes are included which allow all switch settings to be reconfigured after tapeout.

36

Figure 3.19: Neuron Design Overview. Design consists of a (1) di↵erential current

integrator, (2) comparator, and (3) logic or-gate.

3.1.6 Neuron Design

The neuron consists of three main components: an (1) Integrator tasked with computing the

weighted sum, a (2) Comparator circuit which is used to convert the weighted sum (QINF)

result into a pulse-width-modulated (tPWM) output signal, and an (3) Or-gate—shown in

Fig. 3.19. The pulse width-modulated output signal (tPWM) is proportional to the weighted

sum or accumulated charge on the CINF capacitor during inference. A constant discharge

current (IDISCHARGE) is used to linearly discharge the output capacitor. The Comparator

circuit calculates the amount of time it takes to fully discharge the capacitor (Eq. 3.1). An

or-gate is included at the output to allow a logic-defined minimum output pulse for debugging

purposes, specifically for when tPWM = 0.

The Neuron Integrator (Fig. 3.20) integrates the di↵erential current (IBLt(t) � IBLc(t))

only, requiring a 4⇥ smaller capacitor than a traditional di↵erential op-amp-based integrator

configuration with two separate capacitors. It consists of a center gain-boosting stage which

can be disabled. If the gain-boosting stage is disabled, an external bias voltage can be

supplied to the CG amplifier. The circuit also includes a common-mode feedback loop

designed to bias the BLt and BLc to ⇠200mV and act as a virtual supply for the CTT array.

The resultant di↵erential current is integrated and stored on the CINF until the integration

37

Figure 3.20: Neuron Di↵erential Integrator Design. Design includes Gm gain-boosting

stage (center op-amp) and common-mode feedback which provides a 200mV virtual supply

for VBLt & VBLc. Gain-boosting stage can be disabled by providing a CG bias voltage

(NO INT CG VREF EXT) and setting USE BOOSTED INTEGRATOR = 10b0.

38

(a) 1st Stage (b) 2nd Stage

Figure 3.21: Neuron Comparator Design.

period has completed. After the integration (INFERENCE) period has completed, the

DISCHARGE phase begins and the comparator circuit is activated.

The Comparator circuit consists of two stages followed by a chain of inverting bu↵ers.

The first stage consists of a PMOS-Input Folded Cascode Amplifier and the second stage

consists of di↵erential pair with active current source load and single-ended output, shown

in Fig. 3.21. The output is then sent through a chain of inverters. Afterwards, The neuron’s

PWM OUTPUT signal is sent to the Time-to-Digital Converter (TDC) block for digitization

using a simple digital up-counter block. Special precautions were taken to prevent hold or

setup violations since no timing constraints exist for the falling edge of the analog-valued

pulse-width-modulated output signal.

During the DISCHARGE phase, constant current sources are connected to the two ter-

minals (V OUT1, V OUT2) of the integrator’s output capacitor, CINF , and linearly discharge

the capacitor, shown in Fig. 3.22a. V OUT1 and V OUT2 are connected to the comparator’s

input, and the comparator is tasked with accurately calculating the time it takes to fully

discharge the capacitor. Fig. 3.22b and Fig. 3.22c demonstrate the comparator’s output for

positive and negative weighted sum results, respectively.

39

(a) Comparator (b) Positive Sums (c) Negative Sums

Figure 3.22: Neuron Comparator Circuit Evaluating PWM Output.

The Comparator and Discharge current source design realizes the Rectified Linear Unit

(ReLU) Activation function where the neuron’s pulse-width modulated output is zero for all

negative weighted sum results, and proportional to the weighted sum for positive weighted

sum results. The ReLU Activation function has been demonstrated to be an excellent can-

didate for classification or activation functions in deep neural networks [Aga18]. While the

ReLU activation is implemented in this design, it is feasible to consider other activation

functions in future designs. The implemented ReLU activation is summarized in Fig. 3.23.

Neuron Logic Control is divided into six phases: (1) Turn-on, (2) Setup, (3) Infer-

ence, (4) Discharge, (5) Reset, and (6) Turn-o↵, as shown in Fig. 3.24. All neuron logic

control phases are derived from the chip’s INTEGRATOR EN X (9b), INTEGRATOR SETUP (9b),

INFERENCE DURATION (10b), DISCHARGE (10b), RESET Y (8b), and INT EN Y (4b) configura-

tion parameters. Additionally timing parameters are available to tune various other neuron

logic signals externally. The neuron performs integration during the 3rd phase (‘INTEGRA-

TION’) on the di↵erential input current to the integrator, IBLt(t) � IBLc(t), presented by

CTT array. The neuron’s pulse-width modulated output is produced during the 4th phase

(‘DISCHARGE’) where the comparator is utilized to evaluate the time it takes to fully

discharge the integrator’s output capacitance, CINF .

Given the typical sparsity of neural networks, a majority of weights tend to be zero or

close to zero. A zero weight can be implemented using a twin-cell CTT device such that

40

Figure 3.23: Neuron Comparator Realized (ReLU) Activation Function. The Recti-

fied Linear Unit (ReLU) Activation function is implemented using the comparator to evaluate

the time it takes for the neuron to fully discharge the CINF capacitor, where positive sums

result in a non-zero PWM output (Fig. 3.22b) and all negative sums result in a zero output

(Fig. 3.22c). IDISCHARGE = 500nA is assumed.

Figure 3.24: Neuron Configuration Logic & Timing Diagram. Compute consists of 6

stages. The duration of each stage is derived from the neuron configuration parameters.

41

Figure 3.25: Neuron Integrator O↵set Cancellation Schemes. The integrator design

includes several positive and negative o↵set current sources and 8-bit trimming circuits to

negate any mismatch-induced o↵sets. IOFFSETP
& IOFFSETN

are optional dc sources applied

for NP & NN cycles, respectively. Trimming circuits are included for providing a positive or

negative dc o↵set current with 8 b resolution.

Figure 3.26: Additional O↵set Cancellation Using Extra CTT Devices. Extra rows of

CTT devices can be programmed to provide a specific weight and each WL can be enabled for

a certain number of clock cycles. Applied o↵set of �Q = (N1
f)⇥G51⇥VBL+(N2

f)⇥G61⇥VBL

is shown in provided example. It is, however, important to mention that this approach would

not solve any input-dependent o↵sets.

42

the di↵erential on-current or weight is ⇠0; however, the common-mode current might be

reasonably large. This presents an interesting problem to the di↵erential integrator as it

must be able to handle large common-mode currents, ICM . In fact, in some instances the

common-mode to di↵erential mode (ICM/IDM) ratio can be as large as 1000⇥. The integrator

has been designed to handle these scenarios; however, o↵set compensation schemes or post-

fabrication calibration are required due to process-induced mismatches in the di↵erential

integrator mainly driven by the design of the bias current sources. In other words, the

integrator might integrate mismatch-induced o↵sets or currents within the design which may

lead to the neuron output saturating even in the zero-input case. These mismatch-induced

o↵sets can be counteracted using a variety of calibration schemes which are reviewed at a

high-level in Fig. 3.25.

The main o↵set correction scheme consists of 8-bit trimming current sources (ITRIM P

& ITRIM N) which allow a positive or negative dc current to be supplied to counteract any

dc-o↵sets at the output of the integrator. These sources have been designed to apply a dc

o↵set of up to ±1.6µA (nominally) with 8-bit precision. The second option involves a set

current sources (IOFFSET P & IOFFSET N) which can be enabled for a specified number of

cycles (NP & NN , respectively), to apply a fixed o↵set charge at the output.

�Qapplied = IOFFSET P ⇥NP � IOFFSET N ⇥NN (3.4)

Equation 3.4 describes this fixed o↵set charge applied to the output. It is important to

note that this method does not correct for input-dependent o↵sets. Additionally, extra WLs

within the CTT array itself can also be used to applied a ±�Q o↵set, described in Fig. 3.26.

Finally, the design also included a ‘swapping mode’ which allowed the integrator’s bias

sources to be swapped from side-to-side at regular time intervals (specified by the T SWAPPING

parameter) In theory, this allows for any mismatch-induced o↵sets to be averaged out, ne-

glecting channel length modulation. For the sake of brevity, these options have been omitted

from this dissertation.

43

Target �Gij True (GTij
) Comp. (GCij

)

+600nA 700nA 100nA

+500nA 600nA 100nA

+400nA 500nA 100nA

+300nA 400nA 100nA

+200nA 300nA 100nA

+100nA 200nA 100nA

+0nA 100nA 100nA

�100nA 100nA 200nA

�200nA 100nA 300nA

�300nA 100nA 400nA

�400nA 100nA 500nA

�500nA 100nA 600nA

�600nA 100nA 700nA

Table 3.4: Example CTT Weight Mapping with 13 Target Di↵erential Currents.

3.1.7 Trained Network Layer Mapping to CTT Array

E�ciently mapping digitally trained networks weights to CTT devices (�wij ! �Gij) is

important as it has several accuracy, performance, and retention implications. Recent work

as well as past work shown in [Wan20a, GWI19, Gu18] demonstrate that a di↵erential twin-

cell CTT (nfet, RVT, W=428nm) biased at VGS = ⇠200mV and VDS = ⇠200mV can realize

a usable range after programming of [�600nA, 600nA]. As an example, 13 di↵erential weight

states (⇠5b) can be created with 100nA spacing, as shown in Table 3.4. Additionally, rather

than individually programming CTT devices, twin-cell weights can also be programmed such

that it reaches the target di↵erential current. The actual GTij
& GCij

weight values can be

arbitrary (e.g. GTij
= 347nA,GCij

= 148nA ! �Gij = 199nA).

44

Analog Bi-Scale (ABS) Weight Representation:

An Analog Bi-Scale (ABS) weight representation, first reported in [WWZ22], is utilized to

map weights of each layer to maximum CTT device conductance range. Mapping is first

performed on a layer by layer basis, where each a scaling coe�cient, �, is used to map

the trained network weights to the usable range, [�600nA, 600nA]. The absolute maximum

weight (wabsmax = maxi,j |wij|) is used to determine the appropriate � scaling coe�cient,

where � = Gmax

wabsmax

. For any two arbitrary network layers a & b, �a 6= �b.

Since �a 6= �b, a secondary scaling can be performed at the output such that the two

network layers are equivalently scaled. First, let’s consider the pulse-width modulated output

of each layer as proportional to the accumulated charge during integration, QINF .

QINF / tPWM (3.5)

A DC discharge current source is utilized to convert the accumulated charge, QINF !

tPWM , where tPWM is the time it takes to fully discharge the integrator’s output capacitance

using the DC source:

tPWM =
QINF

IDISCHARGE
(3.6)

For two layers a & b with the same weights and pulse-width modulated inputs, the

outputs in terms of charge for each layer would be Qa = VONGatin & Qb = VONGbtin,

respectively. In order two scale these two such that tPWMa
= tPWMb

, the discharge currents

for each layer must be selected appropriately:

�a

IDISCHARGEa

=
�b

IDISCHARGEb

(3.7)

This implies that each network layer may be able to utilize a di↵erent discharge current,

but actual implementations might limit the flexibility of this nob due to design limitations.

A simplified design might restrict each network’s scaling coe�cients such that �a = �b = �

and all networks can utilize the same discharge current reference for compute.

45

(a) Normalized Weights (wij) (b) Mapped Weights (�Gij)

Figure 3.27: Example Weight Mapping for Normally Distributed Weights.

Bias Term (bj) Implementation for PWM Architectures:

The layer bias terms can be combined with the weights, but a scaling typically must first

be applied, because the bias term (bj) is typically much larger than the range of the trained

weights. By mapping the bias terms to extra row(s) of CTT device(s), a scaling factor

(S � 1) can be mapped to a constant input applied to the bias rows for every input frame.

In other words, the bias-term is remapped into a fixed amount of charge after integration,

bj ! Qbiasj . This input-independent o↵set charge can be generated by programming a CTT

cell to a specific di↵erential weight value (�Gbiasj) and by setting the input to this row

to some constant value for all input frames, (e.g. Qbiasj = VON�Gbiasj tS, where ts / S).

Example weight and bias term mapping to a single weight array is shown in Eq. 3.8.

y = xwT + b =
h
x1 x2 . . . xN S

i
·

2

6664

w11 · · · wN1
b1
S

...
. . .

...
...

w1j · · · wNj
bj
S

3

7775

T

(3.8)

Concepts including weight truncation may also be worth exploring as it could expand

the overall weight utilization of the entire range at the loss of truncating weights that likely

have the largest a↵ect on the network’s output—example shown in Fig. 3.28d.

46

(a) Weights (wij) & Biases (bj) (b) Weights (wij) and Scaled Biases (bj/S)

(c) Original Weights (Gij) (d) With Truncation (G
0
ij)

Figure 3.28: Example Bias Term Scaling & Weight Truncation. (a) & (b) show

example Bias Term Scaling with S=6. (c) & (d) show a separate example of weight truncation

as a possible approach for mapping trained weights to devices (e.g. wij ! Gij).

47

Figure 3.29: Hessian-Aware Stochastic Gradient Descent (HA-SGD). Given that

analog networks deploy weights that are similar but not identical to the actual digitally

trained weights, it is important to consider this programming variance (�PRG) or weight

error (�W) during the training itself. HA-SGD training algorithm smoothens the gradi-

ent to prevent small weight errors during deployment from leading to substantial accuracy

degradation. [WWZ22]

3.1.8 Training Networks Considering Analog IMC Implementations

A Hessian-Aware Stochastic Gradient Descent (HA-SGD) algorithm is utilized to train neural

networks at the software-level to consider inherent variabilities introduced when deploying

trained networks to error-prone analog NVM devices. By considering the deployed weight

error or programming variance (�PRG) as previously defined, the analog-resiliency of the

network can be dramatically improved. Details of the HA-SGD approach are provided in

[WWZ22].

48

3.2 Chip Design E↵orts

Three designs—NeuroCTT 0.1 (ZION), NeuroCTT 0.2 (GLACIER), & NeuroCTT 0.3 (DE-

NALI)—were taped out using Global Foundries 22FDX technology (MPWs 2219, 2229, &

2242, respectively), shown in Figures 3.30, 3.31, and 3.33. NeuroCTT 0.1 and NeuroCTT 0.3

were designed with 100µm pitch wirebond pads. NeuroCTT 0.2 was designed as a more com-

plex chip with 100µm pitch (50µm diameter) Cu-pillar flip-chip technology. Two versions

of NeuroCTT 0.2 chip were fabricated: (1) FLIP-CHIP & (2) Si-IF versions. The FLIP-

CHIP version of the die was fully-processed including FBEOL (e.g. Cu-pillar deposition)

for connectivity to the main NeuroCTT system. The Si-IF version of the die was wafer-

pulled after metal 9 (M9, last Cu metal layer) and before Al deposition. This version of

the chip includes 10µm pitch Cu pads for compatibility with the CHIPS Lab Si-IF process

[BJP17, BJP18, JRN20]. Wafer-pulled dies were then bonded to a Si-IF using thermal com-

pression bonding to connect to device, ring oscillator [NI20], and Si-IF test [JRN20] macros.

Si-IF test macro validating Si-IF bonding yield and SuperCHIPS communication protocol

and IO cells reported in [JRN20].

3.2.1 NeuroCTT 0.1 (ZION) Design

The first version design consists of 1024⇥ 10 CTT array with low-frequency (UHVT) logic.

Design also include 5 standalone macros. Two of the macros were 1⇥25 Scribe Line Monitor

(SLM) pad (72µm pitch) discrete device macros while the remaining three macros were

various CTT array macros. Each of the three array macros consist of two sets of 1⇥25 SLM

pads designed in such a way such that half of the 10⇥ 8 twin-cell CTT array was accessible

by probing either set of pads.

49

(a) Rendered Image (b) Actual Image

Figure 3.30: NeuroCTT 0.1 (Wirebond) Die Images. Designed for 1-layer (1024⇥ 10)

fully-connected inference with up to 8b inputs at 200MHz. Chip (2mm ⇥ 2.5mm) was

taped out in GlobalFoundries 22FDX technology with 77 wirebond pads at 100µm pitch.

The chip also consists of 8 sets of 1⇥25 scribe line monitor pad (SLM) sets for device testing

macros [Gu18, GWI19, Wan20b, Wan20a]. Highlighted area (gold) indicates active area of

chip (e.g. logic, CTT array, neurons, etc.).

50

(a) Rendered Image (b) Actual Image

Figure 3.31: NeuroCTT 0.2 (Flip-Chip) Die Images. Designed for 2-layer fully-

connected network inference (L1: 1024 ⇥ 256, L2: 256 ⇥ 256) with 8b inputs at 800MHz.

Chip (3mm⇥3mm) was taped out in GlobalFoundries 22FDX technology with 729 (27⇥27)

50µm Cu-pillar flip-chip pads at 100µm pitch. The chip also includes a set of fine-pitch Si-IF

enabled device, ring-oscillator [NI20], and Si-IF test macros [JRN20].

3.2.2 NeuroCTT 0.2 (GLACIER) Design

The second version design implemented a substantially more sophisticated network with 2

layers (L1: 1024⇥256, L2: 256⇥256). The outputs of the first layer were directly connected

as inputs to the second layer, requiring no digital interface between layers. Additionally, a

set of Si-IF -enabled macros were also included on the die. A subset of the dies were pulled

after metal 9 (last Cu layer) in order to be diced and thermocompression-bonded to a Si-IF

wafer, as shown in Fig. 3.32.

51

(a) Wafer-pulled Die Image (b) Si-IF Wafer Design (c) Si-IF Bonded Sample

Figure 3.32: NeuroCTT 0.2 (Si-IF) Die Images. NeuroCTT 0.2 Chip Design also

included Si-IF -enabled macros, separate from the main flip-chip system. (a) A batch of

dies were pulled wafer-pulled after the last Cu-metal layer (M9). The Si-IF wafer design

in (b) serves as a fanout board for the IO Test, device, and ring oscillator macros with

external wirebond and manual probe pads shown in both (b) & (c). Si-IF bonding results

were previously reported in [JRN20] and shown in (c). Si-IF Test Macro designed to verify

Si-IF bonding and demonstrate SuperCHIPS ([Jan17, NR22]) communication protocol & IO

cells.

52

(a) Rendered Image (b) Actual Image

Figure 3.33: NeuroCTT 0.3 (Wirebond) Die Images. Chip (2mm⇥2.5mm) was taped

out in GlobalFoundries 22FDX technology with 78 wirebond pads at 100µm pitch. The chip

also consists of 8 sets of 1⇥ 25 scribe line monitor pad (SLM) sets for device testing and a

20-pad standalone neuron test macro.

53

Figure 3.34: NeuroCTT 0.3 Functional Neuron Macro.

3.2.3 NeuroCTT 0.3 (DENALI) Design

The most recent design included a 256⇥ 32 system with Time-to-Digital Converted (TDC)

neuron outputs. Six updated device macros were also included on the die:

1. MACRO 1 ARRAY 10x8 RVT 170nm

2. MACRO 2 ARRAY 10x8 RVT 428nm

3. MACRO 3 DISCRETE RVT NFET L20nm

4. MACRO 4 DISCRETE RVT PFET L20nm

5. MACRO 5 DISCRETE EG LVT NFET L150nm

6. MACRO 6 DISCRETE EG SLVT NFET L150nm

The first two macros are 10 ⇥ 8 twin-cell (160 total devices) CTT array macros can

be probed using the in-lab Cascade probe station, Keysight B1500A Analyzer, and switch

matrix. The array macros are accessed using two sets of 25⇥ 1 Scribe Line Monitor (SLM)

pads at 80µm pitch.

Single-device macros were also included. Macros 3 & 4 each include 8 RVT nfet and pfet

devices, respectively, with widths ranging 80nm� 5µm and L = 20nm. Macros 5 & 6 were

included for thick oxide (EG) slvt and lvt device studies with widths ranging 160nm�4.8µm

and L = 150nm.

Additionally, a 20-pad functional neuron macro was included for directly debugging the

neuron (di↵erential integrator & comparator) design, shown in Fig. 3.34. This functional

54

neuron includes a standalone neuron and simplified logic control interface. O↵-chip inputs

can be directly applied to the integrator circuit and several probe points are setup for possible

circuit biasing and debugging.

3.3 Testing Infrastructure

3.3.1 NeuroCTT 0.1 Infrastructure

The first version chip was bonded directly to a 84-pin C-QFN (Kyocera PB-C87729) with 77

wirebonds at 100µm pitch. A 12”⇥12” testing PCB was designed with reusable Loranger C-

QFN socket. Board design consisted of (1) a few manually-tuned LDOs to generate VDDIO

(3.3V), VDDC (0.8V), and VDD NEURON (0.9V) voltage domains, (2) logic bu↵er ICs

between FPGA and packaged die, (3) various test points. Coaxial connections allowed the

board to be hooked up directly to the Keysight B1500A Semiconductor Device Analyzer for

accurate device current measurements before and after device programming. Full test setup

is shown in Fig. 3.36 and consists of packaged die, PCB test board, Xilinx Artix 7 (AC701)

FPGA Board, external power supplies, and PC computer. PC computer utilizes UART

protocol to send/receive requests from FPGA controller. Additional Keysight B1500A and

Analyzer PC were accessible for performing accurate o↵-chip current monitoring and device

measurements pre- & post-programming.

The board as designed, however, su↵ered from several testing limitations. First of all,

most voltages were externally & manually configured, requiring several DC power supply

units to be frequently manually tuned. Secondly, the board was excessively large at 12”⇥12”

causing unnecessary trace parasitics on digital I/O paths. A combination of trace, socket,

and packaging parasitics limited the data communication to/from the chip to 40MHz. Ad-

ditionally, the design lacked proper decap design (e.g. decap ranging ⇠300pF � 100µF). All

of these insights were taken into consideration when designing the Mainboard for NeuroCTT

0.3, further discussed in Section 3.3.3.

55

Figure 3.35: NeuroCTT 0.1 Mainboard Design. 12” ⇥ 12” Mainboard with C-QFN

package Socket designed for use with Kyocera PB-C87729 84-pin C-QFN socket. Supplies

are manually controlled via external supplies and banana connections.

56

Figure 3.36: NeuroCTT 0.1 Lab Test Setup. Die bonded to 84-pin ceramic QFN package

(left) then connected to Mainboard using Loranger C-QFN socket. Test setup includes

external supplies, Xilinx Artix-7 FPGA AC701 Board, Analyzer, and PCs as well as Switch

Matrix and Probe Station for probing discrete device macros.

3.3.2 NeuroCTT 0.2 Infrastructure

NeuroCTT 0.2 IC was designed using a 100µm pitch Cu-pillar process, shown in Fig. 3.31.

A 5-layer laminate was designed to fanout the 27 ⇥ 27 grid of 100µm pitch Cu-pillars to a

26⇥ 26 grid of 1.27mm pitch BGAs, shown in Fig. 3.37.

Due to low-volume vendor & manufacturing limitations, it was not possible to manufac-

ture the required 5-layer laminate in order to package the chip using a traditional flip-chip

packaging process. A Si-IF -enabled flip-chip package was conceived, inspired by previous

in-lab work [BJP17, BJP18, JRN20]. The Si-IF -enabled package design, shown in Fig. 3.38,

involves directly bonding the die to a Si-IF using 100µm pitch copper pads, then soldering

the bonded Si-IF sample to a package laminate. The laminate is then connected to the

testing PCB using 1.27mm pitch BGAs and an LGA socket.

57

(a) Laminate Design

(b) Cross Section of Package Design

Figure 3.37: NeuroCTT 0.2 Package Laminate Design. (a) 5-layer laminate was de-

signed to make connections between 27⇥ 27 grid of 100µm pitch Cu-pillars to 26⇥ 26 grid

of 1.27mm BGAs. Packaged chip to be connected to testing PCB using LGA socket.

58

(a) Si-IF Design (35⇥ 35mm)

(b) Cross Section of Si-IF -enabled Package Design

Figure 3.38: NeuroCTT 0.2 Si-IF -enabled Package Design. Due to vendor limitations

with manufacturing 5-layer package laminates (Fig. 3.37a) to support 100µm pitch Cu-pillar

process, a separate Si-IF -based package structure was also designed. In this design, a die is

bonded directly to a 1-layer Si-IF (Technology Option 1a [CHI20]), which is then soldered

to a laminate.

59

3.3.3 NeuroCTT 0.3 Infrastructure

Two versions of the testing infrastructure were implemented. The first version involved

a package-less solution using a 7”⇥7” Mainboard and 2”⇥2” Mezzanine card, shown in

Figures 3.39 and 3.40. Die was bonded directly to mezzanine card, shown in Fig. 3.41.

Six mezzanine card samples were bonded across 4 di↵erent bonding runs with an internal

vendor (Center for High-Frequency Electronics (CHFE) at UCLA) and an external vendor

located in Anaheim (IDAX Microelectronics Labs). All samples but one had critical ESD

failures on the IO supply domain (VDDIO=3.3V) after wirebonding, rendering samples

useless. The remaining sample had ESD failures on several digital and bias voltage inputs,

but a clock signal was still able to be supplied to the chip and CLK OUT signal observed

using an oscilloscope. ESD protection was placed on-chip, but no external ESD protection

was provided on mezzanine card design.

It was determined that unknown ESD-related issues were caused by bonding directly to

the mezzanine card, so a second version of the testing infrastructure with ceramic pack-

aging was designed. The second version consisted of (1) eliminating the mezzanine card

concept, (2) wirebonding directly to a Kyocera PB-C87729 84-pin ceramic QFN (C-QFN)

package, and (3) redesigning the Mainboard with a Loranger (P/N 03853 841 6217) C-QFN

socket—shown in Fig. 3.42. The redesigned board consists of 281 components—a summary

of major components is made available in Table 3.5.

External vendor QP Technologies performed 78-pad wirebonding to 84-pin C-QFN pack-

age. Example C-QFN wirebonding samples are shown in Fig. 3.43.

ESD-related issues were resolved after reverting back to traditional packaging route using

84-pin C-QFN package. Example data-scan chain output verification at 20MHz is visible on

the oscilloscope in the Lab Test Setup shown in Fig. 3.44.

60

Figure 3.39: NeuroCTT 0.3 Mainboard & Mezzanine Card Design. 7” ⇥ 7” Main-

board (left) consists 3 external supply voltages (5V, 3.3V,&�5V) and 26 LDO-generated

supply & bias voltages ranging �0.3V to 3.3V—7 of which are digitally controlled by FPGA

controller. Die is wirebonded to 2”⇥2” Mezzanine card (right) consisting of 78 wirebond

pads at 10 mil (254µm) pitch (die: 100µm pitch). Mezzanine card is mostly passive with

header connections on bottom-side, 78 decoupling capacitors ranging 300pF�100µF , and 3

digital bu↵er/level-shifter ICs for digital IO paths.

61

Figure 3.40: Fabricated NeuroCTT 0.3 Mainboard with Mezzanine Card.

(a) Sample 1 (b) Sample 2

Figure 3.41: NeuroCTT 0.3 Die-to-Mezzanine Card Wirebonding.

62

(a) Mainboard V2 (7”⇥ 7”) (b) Fanout Board (4”⇥ 4”)

(c) Fabricated Mainboard V2 (d) Fabricated Fanout Board

Figure 3.42: NeuroCTT 0.3 Mainboard (v2) & Fanout board designs. (a) Second

version design replaces mezzanine card header connectors with Loranger (P/N 03853 841

6217) 84-pin C-QFN socket, designed for use with Kyocera PB-C87729 ceramic package. (b)

A simpler Fanout board was also designed with Loranger socket to simplify debugging as

well. (c) & (d) represent actual fabricated boards.

63

(a) 50⇥ Zoom (b) 100⇥ Zoom

Figure 3.43: NeuroCTT 0.3 C-QFN Package Wirebonding. Dies were directly wire-

bonded to Kyocera PB-C87729 ceramic package.

Figure 3.44: NeuroCTT 0.3 Lab Test Setup. Die bonded to 84-pin ceramic QFN pack-

age (left) then connected to Mainboard using Loranger C-QFN socket. Test setup also

includes external supplies, Digilent Nexys A7-100T FPGA board, gateway PC, and oscillo-

scope. UART protocol is used to communicate between FPGA and computer via MATLAB

terminal.

64

Component Manufacturer Quantity Purpose

03853 841 6217 Loranger 1 84-pin C-QFN Socket

LP38500TS-ADJ/NOPB TI 12 0.6� 5V LDO

LT3085EMS8E#PBF Analog Devices 13 0-36V LDO (10µA)

LT3090EDD#TRPBF Analog Devices 1 -36V-0V LDO (50µA)

CLVC540AQPWRG4Q1 TI 3 8ch Logic Inv. Bu↵er

n/a Bourns 22 Misc. Pot.

AD5227BUJZ10-RL7 Analog Devices 5 10k⌦ Dig. Pot.

AD5227BUJZ50-RL7 Analog Devices 2 50k⌦ Dig. Pot.

n/a Misc. 35 Res. (50m� 40.2k⌦)

JMK325AC7107MM-P Taiyo Yuden 4 100µF 0805 X7S cap.

CGA4J1X7R0J106K125AC TDK 49 10µF 0805 X7R cap.

CGA4J1X7R0J685K125AC TDK 1 6.8µF 0805 X7R cap.

CL21B225KAFNFNE Samsung 12 2.2µF 0805 X7R cap.

AC0805KRX7R7BB104 Yageo 13 0.1µF 0805 X7R cap.

5019 Keystone Elec. 45 Testpoints

n/a Misc. 39 2/3/6/12 headers

Table 3.5: Summary of NeuroCTT 0.3 Mainboard (v2) Components.

65

3.4 Testing User Interface (UI)

Special care was taken when developing the FPGA testing interface to the chip in order to

allow simple testing automation as well as to prevent frequent recompilation of FPGA verilog

code. A MATLAB-based UART-interface was developed between the gateway computer and

the Digilent Nexys A7-100T FPGA board. The UART-interface allows all possible chip and

board operations to be entirely controlled by a MATLAB terminal, preventing any FPGA

verilog recompilation except in the special case where the user opts to modify the chip

operating frequency. This allows the MATLAB terminal to not only send data to/from the

chip, but it also allows the user able to modify the board’s digitally controlled LDO-generated

supplies on the fly in order to support automated Pulsed-gate Voltage Ramp Sweep (PVRS)

programming, as discussed previously in Section 2.2. The MATLAB-based UART interface

between the Digilent Nexys A7-100T FPGA and the gateway computer over USB o�cially

supports 9600� 115, 200 baud/s (⇠4� 60 inference samples per second).

3.4.1 MATLAB-based Chip Configuration GUI

The NeuroCTT chip design includes a 1308�bit CONFIG REG for storing various chip

configuration parameters. These parameters for the most part require one-time configuration

(per chip). A GUI was designed to simplify chip configuration and is shown in Figures 3.45

& 3.46. Users can save & load chip configuration files for simplified testing. Additionally,

users can also test modified configuration parameters directly from the GUI by selecting

‘Run INFERENCE (Zero Inputs)’. This allows the user to quickly determine the optimal

set of neuron o↵set correction parameters by directly evaluating the output of the neuron

when zero input is applied (e.g. output should be zero after correction).

66

Figure 3.45: NeuroCTT 0.3 Chip Configuration GUI. Program allows user to update

chip configuration parameters, load them directly to the chip, test the chip output for zero-

input condition, and iteratively modify parameters, if necessary. Parameters can be saved

to—and loaded from—an output file for reuse

67

Figure 3.46: NeuroCTT 0.3 Chip Configuration GUI: Neuron Parameters Win-

dow. Neuron Parameters Window can be used to update parameters per neuron. After

modifying parameters, ‘Update’ button will save push changes to the respective fields on the

main window displayed in Fig. 3.45.

68

1 % Run Automated In f e r en c e Sc r i p t

2 nRuns = 256 ;

3 nNeurons = 32 ;

4 r e s u l t s = ze ro s (nRuns , nNeurons) ;

5

6 f o r j = 1 : 1 : 2 55 ,

7 i nput ve c to r = ones (1 ,256) ∗ j ;

8 % Reformat input (Send MSB f i r s t , e . g . WL<255>)

9 i nput ve c to r = f l i p l r (i npu t ve c to r) ;

10 % Send input to FPGA

11 wr i t e (device , input vec to r , ” u int8 ”) ;

12 % Retr i eve output from FPGA (40 Bytes)

13 i n f e r en c e ou tpu t s = read (device , 40 , ” u int8 ”) ;

14

15 % Convert (40B) i n f e r e n c e output in to 32 x 10−b i t vec tor

16 OUTPUT REG = ”” ;

17 f o r i = 1 : 1 : 4 0 ,

18 OUTPUT REG = OUTPUT REG + dec2bin (i n f e r en c e ou tpu t s (i) ,8) ;

19 end

20 OUTPUT REG = convertStr ingsToChars (OUTPUT REG) ;

21 i n f e r en c e ou tpu t s d e c ima l = ze ro s (1 ,32) ;

22 f o r i = 1 : 1 : 3 2 ,

23 i n f e r en c e ou tpu t s d e c ima l (i) = bin2dec (OUTPUT REG((1+10∗(i −1)) :10∗ i)) ;

24 end

25 end

Table 3.6: MATLAB Automated INFERENCE Example Script.

3.4.2 Automated Inference Script

An Automated Inference Script allows for the user to specify a range of inputs to supply to

the chip and retrieve the chip outputs for each set of inputs. Chip inputs for each inference

sample are supplied as a 256B (256⇥ 8b) input message followed by a 40B (32⇥ 10b) output

message sent back to the gateway computer for processing. FPGA code is designed to

immediately recognize the 256B UART message, load the received 2kb data serially to the

chip, execute the program on the NeuroCTT chip, retrieve the chip data output serially, and

transmit the 320b output message back to the host/gateway computer.

69

1 % I t e r a t e over dev i ce columns<0:31>

2 f o r j = 1 : 1 : 3 2 ,

3 % I t e r a t e over dev i c e s (aka WLs<0:255>)

4 f o r i = 1 : 1 : 2 56 ,

5

6 % (1) Create 2kb binary message to send to chip

7 DATA REG = data r eg fun (j , i) % re tu rns 2048− b i t vec tor

8

9 % (2) Format data to send over UART

10 DATA REG = convertStr ingsToChars (DATA REG) ;

11 DATA REG MESSAGE = zero s (1 ,256) ;

12 f o r bb = 1 : 1 : 2 56 ,

13 DATA REG MESSAGE(bb) = bin2dec (DATA REG((1+8∗(bb−1)) : 8∗bb)) ;

14 end

15

16 % (3) Send UART Data Command (Enable S p e c i f i c CTT Device)

17 wr i t e (device ,DATA REG MESSAGE,” uint8 ”) ;

18 pause (0 . 1) ;

19

20 % (4) Disab le a l l CTT dev i c e s

21 wr i t e (device , z e ro s (1 ,256) ,” u int8 ”) ;

22 pause (0 . 1) ;

23 end

24 end

Table 3.7: MATLAB O↵-chip Verification Example Script.

3.4.3 Automated O↵-Chip CTT Device Weight Verification

Similarly, a MATLAB script can also be written for o↵-chip verification as well. In this case,

the LDOs for the BLt, BLc, and SL selected pads must be first disconnected. The Keysight

B1500A analyzer Source Management Unit (SMU) is then connected to the either the BLt/SL

or BLc/SL depending on whether the user wants to read out the True (T) or Complement

(C) weights. Finally, the user must reload the instruction with the VERIFY T OFFCHIP

(or VERIFY C OFFCHIP) instruction prior to executing the script provided in Table 3.7.

Example o↵-chip verification output measured by the analyzer is detailed in the following

chapter and shown in Fig. 4.5. Measurement parameters were optimized in order to guarantee

single device measurement repeatability with <5nA error.

70

Figure 3.47: O↵-Chip Verification Measurement Repeatability. Example shows 10

devices measured 4 times each using an external Keysight B1500A analyzer. Repeatable

measurements demonstrated with <5nA variability. Each row corresponds to a di↵erent

device. Columns 2, 4, 6, and 8 correspond to runs 1-4, respectively.

3.4.4 Automated On-Chip CTT Device Programming

On-chip programming can be performed by specifying the target cell and loading in cell

programming timing information (e.g. programming pulse width). Before executing the

script, the user must modify the BL/SL as well as WL driver voltages to set the proper

programming conditions. Example script is provided in Table 3.8. User can optionally add

UART-based commands to modify the WL driver voltages (not shown in provided example

script) in order to support Pulsed-gate Voltage Ramp Sweep (PVRS)-based programming.

Figure 3.48 provides example output from the Automated On-Chip Programming Script,

where the user can double-check the timing parameters prior to executing the programming

instruction as the programming pulse width timing information is derived from the clock

frequency of the chip and specified in terms of number of clock cycles. One the user has

double-checked the programming and/or timing conditions, they may choose to continue

with programming the selected devices for the provided timing conditions.

71

1 % On−Chip Programming

2 % In s t r u c t i o n s : make sure to s e t INST = 1 (PRG T) or 2 (PRG C)

3

4 CLK FREQ MHZ = 20 ; % MHz

5

6 % a l l va lues in c l ock c y c l e s @ s p e c i f i e d CLK FREQ MHZ

7 BL PULSE WIDTH X = 200 ; % Valid Range : 0−65535 (16 b i t s)

8 BL PULSE WIDTH Y = 200 ; % Valid Range : 0−65535 (16 b i t s)

9 SL START = 10 ; % Valid Range : 0−15 (4 b i t s)

10 SL END = 10 ; % Valid Range : 0−15 (4 b i t s)

11 WL PULSE WIDTH = 1000; % Valid Range : 0−15 (4 b i t s)

12

13 c r ea t e p rg t im ing d ig ram (BL PULSE WIDTH X,BL PULSE WIDTH Y,SL START,SL END,WL PULSE WIDTH) ;

14

15 % Program 1 dev i ce at a time

16 % −−−

17

18 % I t e r a t e over dev i ce columns

19 f o r j = 1 : 1 : 3 2 , %32 ,

20 % I t e r a t e over dev i c e s (aka WLs)

21 f o r i = 1 : 2 : 2 56 , %256 ,

22

23 % (1) Create 2kb PRG message to send to chip

24 DATA REG PRG = data r eg p rg fun (j , i ,BL PULSE WIDTH X,BL PULSE WIDTH Y,SL START,SL END,

WL PULSE WIDTH) ;

25

26 % (2) Format data to send over UART

27 DATA REG PRG = convertStr ingsToChars (DATA REG PRG) ;

28 DATA REG PRG MESSAGE = zero s (1 ,256) ;

29 f o r bb = 1 : 1 : 2 56 ,

30 DATA REG PRG MESSAGE(bb) = bin2dec (DATA REG PRG((1+8∗(bb−1)) : 8∗bb)) ;

31 end

32

33 % (3) Send UART Data Command (PRG Spe c i f i e d CTT Device)

34 wr i t e (device ,DATA REG PRG MESSAGE,” uint8 ”) ;

35

36 % (4) Disab le a l l CTT Devices

37 wr i t e (device , z e ro s (1 ,256) ,” u int8 ”) ;

38

39 end

40 end

41 end

Table 3.8: MATLAB On-chip Programming Example Script.

72

(a) Automated Device Programming Output (fCLK = 20MHz)

(b) PRG Pulse Timing Diagram

Figure 3.48: NeuroCTT 0.3 Automated On-Chip Device Programming. (a) Exam-

ple Script output for 2 selected devices (WL[0] & WL[1] on COLUMN[0]). (b) Script also

provides Programming Pulse Timing Diagram prior to starting device programming to make

sure user has set correct pulse timing settings.

73

3.4.5 Automated Program-Verify Weight Fine-Tuning

An automated Program-Verify test setup was also created to iteratively program twin-cell

devices until they have reached their respective target currents. Device weights are ini-

tially read out using the o↵-chip verification scheme with Keysight Analyzer detailed in

Section 3.4.3. A JAVA-based ‘ROBOT’ [Ora20, Tak10] is utilized to automate the Keysight

EasyEXPERT GUI in order to initiate, run, & parse the measurement outputs from the

Keysight B1500A Analyzer. A MATLAB script then compares the measured as-fabricated

device currents with the specified target currents, and a programming algorithm determines

an appropriate programming scheme for each twin-cell device including pulse-width, VGS

& VDS voltage conditions, and number of pulses. This information is provided to the Au-

tomated On-Chip Programming function detailed in Section 3.4.4. Device programming

and verification is iteratively programmed on each device in the array until each device has

reached their respective target current within some margin of error (e.g. <20nA).

74

CHAPTER 4

Hardware Results

The following chapter is organized in four sections which detail hardware results obtained

with NeuroCTT 0.1 (ZION), NeuroCTT 0.2 (GLACIER), & NeuroCTT 0.3 (DENALI) cir-

cuit designs described in the previous chapter as well as results obtained using the CTT-

Hardware-based Inference Realistic Circuit Universal Simulator (CIRCUS) Platform. Most

recent silicon (NeuroCTT 0.3) was verified to be 100% functional within the testing con-

fines of the chip and has yielded significant system validation results for all included system

blocks. Additionally, system array-level programming & verification results have been cor-

related with past results obtained from discrete and array-level device macros.

4.1 NeuroCTT 0.1 Hardware Results

NeuroCTT 0.1 results were previously reported in [Wan20a]. The test setup is detailed in

Section 3.3.1 and Fig. 3.36. On-chip data scan chain was verified at 40 MHz using external

Xilinx Artix-7 FPGA AC701 controller.

As-fabricated (“Virgin”) device weights from the on-chip 1024⇥ 10 twin-cell CTT array

were read out using the Keysight B1500A analyzer and Source Measurement Unit (SMU).

On-chip WL Drivers applied a VGS = ⇠0.2V to selected WL(s). The SMU applied a VDS =

⇠0.05� 0.2V to the selected column (BLt/BLc) and measured the current for each device.

As-fabricated device weights for 1024⇥ 10 twin-cell CTT devices is reported in Fig. 4.1.

On-chip programming was performed by activating the target cell’s WL and applying

75

Figure 4.1: NeuroCTT 0.1 Twin-Cell CTT-Array (1024⇥10) As-Fabricated Device

Weights.

a VGS pulse of 1.8 � 2.7V while simultaneously applying an external pulse to the device’s

SL using an o↵-chip Keysight B1500A analyzer. This approach implements the Pulsed-

gate Voltage Ramp Sweep (PVRS) method, previously shown in Fig. 2.5a. Half-selected

devices along the same row and column of the target cell may experience some unintentional

programming. Half-selected issues are studied for the NeuroCTT 0.1 CTT array design and

reported in Fig. 4.2. Programming pulses can be applied as WL-first or SL-first as defined

by Figures 4.2a and 4.2d.

Half-select results are suboptimal in both cases as devices are unfortunately overstressed

by the o↵-chip SL pulse provided by the analyzer, due to timing limitations. Future designs

include on-chip generated WL and SL programming pulses to reduce half-select exposure

and the overall target cell programming time. Despite half-select issues in both cases, half-

select issues were substantially less severe in the SL-first programming case as unselected

devices were e↵ectively exposed to VGS = 1.4V (VWL = 2.8V, VSL = VBLc = 1.4V) instead of

VGS = 2.8V , as is the case momentarily when the WL is high before the SL goes high during

WL-first programming.

76

(a) WL-First PRG Pulses (b) Target A (�VTH) Heatmap (c) WL-First Half-Select

(d) SL-First PRG Pulses (e) Target B (�VTH) Heatmap (f) SL-First Half Select

Figure 4.2: NeuroCTT 0.1 WL-First & SL-First Programming. Half-select issues are

studied for WL-first (a-c) and SL-first (d-f) CTT device programming while programming

two targets cells on the BLt, A & B, respectively. VBLc was set to 1.4V in order to reduce

half-select for unselected devices on the same WL as the target cell. Substantially less severe

half-select issues were observed during SL-first programming.

77

Figure 4.3: NeuroCTT 0.2 Design Target. Comparison provided with [Moc18, Xue19,

Liu20, He20]. Multi-layer Perceptron (MLP) design is best compared to RRAM MLP work

in [Liu20]. CTT Improvements to lower inference currents are possible by using smaller

channel width devices (e.g. W = 428nm ! 80nm) and by lowering the subthreshold gate

voltage (e.g. VGS = 200mV ! 50mV).

4.2 NeuroCTT 0.2 Hardware Results

Unfortunately, the main system was not testable in NeuroCTT 0.2 due to flip-chip packaging

limitations. As of 2020, low-volume limitations prevented us from finding a reliable vendor

to fabricate and bond to the required 4+ layer, 27⇥ 27 pad, & 100µm-pitch packaging lam-

inate. Despite the disappointing lack of results from the 2nd design, a tremendous amount

of work went into designing, validating, and demonstrating the feasibility of constructing a

fully-analog, nonvolatile, and multi-layer in-memory compute engine. Anticipated perfor-

mance numbers are reported in Table 4.1 and extensively evaluated in software using the

CTT-Hardware-based Inference Realistic Circuit Universal Simulator (CIRCUS). A detailed

architectural comparison of the designed system is provided in Fig. 4.3 and Table 4.1.

78

Item Specification

IMC Cell Type Twin-cell CTT Device

Inputs per Frame 1024⇥ 8b inputs (8kb)

Number of Layers 2

Layer1 Size 1024⇥ 256

Layer2 Size 256⇥ 256

Input Resolution 8 bits

Output Resolution 10 bits

Chip Operating Frequency 800MHz (Tmin = 1.25ns)

IO Frequency 20-250MHz

Maximum Throughput 106 FPS

Maximum Required Input Bandwidth 8Gbps

Energy per MAC ⇠360fJ

Peak Energy-E�ciency ⇠8.9TOPS/W

Normalized PRG Variance (�
0
PRG/Range) 6%

Retention (50hr at 85�C)
��

0
CTT = ⇠0.5%

|�µCTT | < 5nA

Table 4.1: NeuroCTT 0.2 Chip Specifications.

Several Si-IF -enabled macros were included on the same die and successfully tested.

These macros leveraged the Si-IF process with 5µm pillars at 10µm pitch [BJP17, BJP18,

JRN20, CHI20]. In order to perform die-to-wafer bonding, a subset of the manufactured dies

were pulled after metal 9 (last Cu layer). Waferpulled dies, Si-IF design, and thermocom-

pression bonding results were previously shown in Fig. 3.32 and reported in [JRN20]. These

macros provided crucial demonstrations of the Si-IF technology and SuperCHIPS communi-

cation protocol [JRN20]. Additionally, post-fabrication circuit tuning was also demonstrated

by tuning the frequency of a ring oscillator using CTT devices, reported in [NI20].

79

4.3 NeuroCTT 0.3 (DENALI) Hardware Results

Promising hardware results were collected on the NeuroCTT 0.3 Chip design using the test

setup shown in Fig. 3.44. The following subsections review (1) system-level block validation

results, (2) system-level CTT device programming & verification results, and (3) multiply-

and-accumulate functionality (‘Inference’) results with programmed weights. While it is

omitted from this dissertation, a follow-on publication is expected in the near future to

detail in-hardware inference results using trained and mapped network weights.

4.3.1 System Block-Level Validation

Initial chip testing focused on validating all designed blocks within the NeuroCTT system

including the (1) Logic System & Chip Interface, (2) GPIOs, (3) WL Drivers, (4) CTT-

Array, (5) Array MUX, (6) Level-Shifted Control Logic, (7) Neuron Block, and (8) Neuron

Time-to-Digital Converters (TDCs).

Logic System & Load Logic Verification:

The Logic System was first validated by confirming that all 4 scan chains were fully functional

by repeatably sending data to the chip from the FPGA at various frequencies and confirm-

ing that the received data was correct. Additionally, known bit sequences are automatically

loaded into all registers upon chip reset. The system included three serial-input scan-chains

tasked with loading data into the DATA REG (2048’b), CONFIG REG (1308’b), and

INST REG (5’b) registers. The data register (DATA REG) is nominally reserved for spec-

ifying the WL pulse-width modulated inputs. The configuration register (CONFIG REG)

specifies a variety of neuron o↵set compensation and timing control parameters. The in-

struction register (INST REG) specifies one of up to 32 instructions that can be performed

on the chip, where the loaded instruction is only executed if the CHIP PROGRAM EXECUTE EN

signal is enabled. All input scan chains were validated to be fully operational at 20MHz with

the possibility of increasing the system & data load frequency further.

80

(a) Example Output: 35 cycles (b) Example Output: 70 cycles

Figure 4.4: Example Neuron PWM Debug Outputs. Two of the 32 neuron outputs

were connected to a digital output pad that can be connected to an external oscilloscope for

verifying the Neuron Time-to-Digital (TDC) converter output.

The final scan chain is an output-only scan chain corresponding to the 320’b TDC output

register (COUNT REG) which allows users to retrieve the digitized neuron output from the

chip upon request. The digitized output corresponds to the output of the Neuron’s Time-to-

Digital Converter (TDC) block. Two of the 32 neuron PWM outputs were directly connected

to external debug pads, allowing the neuron PWM outputs to be measured externally by

an oscilloscope—two example neuron PWM outputs shown in Fig. 4.4. The externally

measured output was compared with the digitized output stored in the COUNT REG across

100 trials and shown to be 100% across all runs. Special e↵orts were taken into consideration

when designing the TDC block to prevent the possibility of a hold or setup-time violation

corrupting the output of the TDC block and leading to undefined behavior.

81

Bias Signal Name Typ. Range Chip 2 Chip 3

1 CM OFFSET BIAS PMOS 200nA 450-625mV 0.545mV 0.528mV

2 CM OFFSET BIAS NMOS 250-400mV 0.314mV 0.323mV

3 CM DISCHARGE BIAS PMOS 500nA 315-450mV 0.411mV 0.384mV

4 CM DISCHARGE BIAS NMOS 375-500mV 0.431mV 0.425mV

5 COMPARATOR BIAS 615-650mV 0.601mV 0.607mV

6 CM VGS INTEGRATOR BIAS PMOS IREF 20uA 425-575mV 0.488mV 0.499mV

7 CM VGS INTEGRATOR BIAS NMOS IREF 20uA 335-450mV 0.417mV 0.412mV

8 CM VGS COMPARATOR BIAS NMOS IREF 20uA 310-430mV 0.365mV 0.379mV

Table 4.2: NeuroCTT 0.3 Neuron Biasing Verification. A debug mux was utilized to

probe multiple bias voltages within the neuron integrator & comparator circuits to confirm

proper biasing prior to performing any time-domain experiments. Table reports actual bias

voltages measured from CHIP2 & CHIP3. All other chip samples have also been verified.

Neuron Verification:

Proper neuron operation was first verified by using the on-chip debug mux to probe several

bias nodes within the integrator and comparator circuits. Power-gating logic was disabled

in order to ensure all circuits were on and to allow for all dc bias voltages to be accurately

measured using a multimeter. Measured bias voltages from three chips and typical volt-

age ranges obtained from simulations are provided in Table 4.2. All probed bias voltages

were found to be within expected range. Additionally, neuron power consumption was ex-

ternally measured by measuring the VDD NEURON (0.9V) supply current—agreeing with

expectations (450µW ⇥ 32neurons = ⇠14mW).

82

WL Drivers:

WL Drivers were designed to support a range of inference (e.g. {�300mV, 200mV }), pro-

gramming (1.5�2.7V), and erase (�0.5V) conditions, as detailed in Section 3.1.3. WL driver

logic and output voltage swings for all modes of operation were verified by externally prob-

ing a dummy WL Driver through the debug mux. The dummy WL Driver was designed to

duplicate logic for WLh0i. WL Driver operation was confirmed to be 100% operational and

programmed output pulses were viewable via an external oscilloscope and matched specified

digital WL driver inputs, further validating the DATA REG scan chain.

CTT Array & Array Column Mux:

CTT Array & Array Column Mux functionality was first confirmed by reading out all of the

as-fabricated (PREF-PRG) device weights using the O↵-Chip Verification instruction and

an external Keysight B1500A analyzer. The purpose of this experiment was to confirm that

(1) the devices could be individually measured, (2) the array columns could be automatically

switched between using the array mux & associated level-shifted logic, and (3) ensure column

leakage currents are within expectations. Additionally, device measurements were validated

against results obtained using discrete device and array macros. During the design phase,

special care was taken to ensure su�ciently low-resistance routing to ensure e�cient de-

vice programming. Array validation included ensuring that devices are programmable with

reasonable retention. Cell programming is explored in more detail in a subsequent section.

Initial O↵-Chip Verification results are critical for accurately characterizing in-array CTT

devices. O↵-chip verification is performed by configuring the array column mux, described

in Section 3.1.5, in such a way that it allows an external tool to measure the IDS of selected

device(s). As-fabricated devices were read using an external Keysight B1500A analyzer

and Source Measurement Unit, previously shown in Fig. 2.6, along with the chip’s o↵-chip

verification testing interface detailed in Section 3.4.3.

83

Figure 4.5: Example O↵-chip Verification Output using Analyzer. CTT devices on-

chip were read out one at a time using a Keysight B1500A Analyzer and Source Measurement

Unit (SMU). A Matlab-based UART script was used to communicate with the chip and

iteratively select & activate each device for ⇠300ms. All WLs were disabled in between each

device reading (e.g. Imeasured ⇠ 0nA) in order to simplify data extraction.

Figure 4.5 provides an example o↵-chip verification output for a partial column of devices

as measured by the Keysight B1500A analyzer. A Matlab-based O↵-chip Verification script,

similar to that provided in Table 3.7, was used to communicate with the chip over UART

and iterate over each of the devices one-at-a-time. Each device is activated for ⇠300ms

with an additional ⇠300ms gap in between each device reading to simplify data parsing and

analysis. The magnitude of each pulse in the figure corresponds to each device’s subthreshold

on-current (WLh0i,WLh1i, ...) at the specified VGS = 0.2, VDS = 0.2V bias condition.

Unselected devices are biased with VGS = �0.3V to minimize any column leakage currents.

Figure 4.6 displays the on-chip CTT array as-fabricated (Pre-PRG) device distribution

for 256 ⇥ 32 BLt (True) devices, obtained by extracting and re-plotting the o↵-chip verifi-

cation results shown in Fig. 4.5. As-fabricated device results correlate with expected results

from simulation. Repeatable device measurements are shown in Fig. 4.7.

84

(a) (b)

Figure 4.6: NeuroCTT 0.3 Twin-Cell CTT-Array As-Fabricated Device Weight

Distribution. (a) Keysight B1500A Analyzer and Source Measurement Unit (SMU) were

connected to the chip’s BLt/SL & BLc/SL pads, respectively, to measure each device. (b)

Measured Weight Distribution for 256⇥ 32 CTT devices.

(a) (b) (c)

Figure 4.7: Repeatable Device Measurements using External Analyzer. (a) Current

monitoring of a single as-fabricated CTT device before and after applying 12 programming

pulses using PVRS. An ⇠1000⇥ di↵erence in channel conductance is observed before and

after programming (⇠800nA ! <1nA). (b) 300 measurements over a 48-period were taken

on a separate programmed device (target=500nA) and were shown to be repeatable (<5nA).

(c) Six devices programmed to di↵erent target states and monitored for 10 hours.

85

Figure 4.8: NeuroCTT 0.3 Example SL Programming Pulse Measured Externally.

Programming with 150µs SL pulses was initiated on Columnh0i. Unselected columns observe

1.8V SL/BLt/BLc pulse to prevent half-select issues on devices connected to the activated

WL. DEBUG PAD BLth31i & DEBUG PAD BLch31i debug pads were connected to an

external oscilloscope and the SL pulse width was measured to be 150µs—set by on-chip

programming parameters. Applied SL Voltage was also verified (e.g. VSL = 1.8V).

4.3.2 System-Level On-Chip Programming and Verification

Recent silicon (NeuroCTT 0.3) allows for programming pulse widths to be tuned down to

<50ns compared to 100µs minimum pulse widths previously used with device macro results

via the Keysight B1500A analyzer. BL, SL, and WL voltage pulses are each individually

tunable given the timing diagram shown previously in Fig. 3.16.

Prior to initiating extensive device programming studies, additional logic validation was

performed by ensuring that appropriate programming pulse timing information was correct.

An oscilloscope was connected to a set of array debug pads. A single programming pulse was

applied to the array with SL pulse width digitally set to 150µs. Figure 4.8 shows that an

150µs programming pulse was correctly applied to the array based on the specified timing

parameters set using the script shown in Section 3.4.4.

86

On-Chip programming functionality was previously reviewed in Sections 3.1.5 & 3.4.5.

Given that the CTT (Regular VTH , nfet) devices are nominally rated for maximum VGS,

VDS conditions of <1V , careful consideration was taken in order to limit device stress and

programming duration—especially for unselected devices.

SL-first programming was utilized to limit half-select issues for unselected devices on the

same column and/or WL—demonstrated via past programming studies on the NeuroCTT

0.1 tapeout (Section 4.1, Fig. 4.2). Intuitively, SL-first programming provides less stress to all

unselected devices as the programming VGS can range from 2�2.7V and SL-first programming

ensures that the maximum positive gate voltage for unselected devices on the target WL is

<(VGS�VDS), e.g. 2.7V�1.8V = 0.9V . Initial programming results for 128 CTT devices

after 10⇥ programming pulses at VGS = 2.2V and VDS = 1.8V are shown in Fig. 4.9. Target

Cells experienced �I up to �1000nA after programming. Half-selected cells observed a

slight increase in current after programming which can be compensated for using an iterative

program-verify technique.

87

(a) (b)

(c)

Figure 4.9: Initial Half-Select Results after Target Cell Programming. True devices

on even WLs for Columnh0i were programmed using 10⇥ pulses with VGS = 2.2V & VDS =

1.8V . (a) Change in current for all array True cells (Columnsh0 : 3i) after programming

(subset of WLsh0: 31 shown). (b) Distribution of �IWEIGHT after programming for Target

& Half-Selected cells on Columnh0i. (c) Distribution of �Iweight for half-selected cells on

other columns.

88

(a) (b)

Figure 4.10: Checkerboard Array Programming of True & Comp Devices. Even

True devices received 10⇥ programming (VGS = 2.2V , VDS = 1.8V) pulses & odd Comp.

devices received 5⇥ programming (VGS = 2.2V , VDS = 1.8V) pulses. (a) �IWEIGHT after

cell programming is shown for WLsh0:15i and Columnsh0:15i. Odd column #’s represent

True devices and even represent Comp devices. (b) Distribution of �IWEIGHT for Target

True & Comp cells is also shown.

Additional array programming results are shown in Fig. 4.10. A checkerboard pattern

was programmed in order to check for possible layout-dependent programming e↵ects—no

substantial e↵ects were found. True devices on even WLs were programmed via 10⇥ (VGS =

2.2V , VDS = 1.8V) pulses while Comp. devices on odd WLs were programmed via 5⇥ pulses

at identical conditions, all across Columnsh0:15i. As shown in Fig. 4.10b, 10⇥ programming

pulses at the specified condition were su�cient to fully separate the target and unselected

cell distributions.

89

(a) (b)

Figure 4.11: Pulsed-Voltage Time Sweep (PVTS) Results. (a) Mean device current

for 128 devices programmed subsequently with increasing pulse-width gate voltage pulses:

100ns, 400ns, ..., 409.6µs, 1.64ms. (b) Distribution of 128 devices where each devices receives

subsequent gate voltage pulses with similarly increasing pulse-widths.

In addition to the traditional Pulsed-Voltage Ramp Sweep (PVRS) programming method-

ologies reviewed in Section 2.2 and Figure 2.5a, the most recent chip allows for programmable

duration pulses to be applied during cell programming. A Pulsed-Voltage Time Sweep

(PVTS) programming scheme is proposed which would simplify future design implementa-

tions by potentially requiring a single programming bias condition to fine-tune program all

devices rather than requiring ramping gate pulse voltages. Figure 4.11 highlights some ini-

tial PVTS-based programming results which provide some information about programming

e�ciency as a function of programming pulse-width. Figure 4.11a reveal that pulse-widths

down to 100ns are rather ine↵ective at programming devices, likely because the CTT requires

self-heating in order to e�ciently trap charge and program the device; however, e�cient pro-

gramming with approximately linear current drops in between subsequently increasing pulses

is shown for pulses >1.6µs.

90

(a) (b)

Figure 4.12: Example Positive Twin-Cell Weight Programming. All 256 twin-cell

devices were programmed to an arbitrary positive di↵erential weight. True devices were

left in their respective as-fabricated (Pre-PRG) state while complement devices were each

individually programmed by applying 20⇥ 100µs pulses at VGS = 2.2V , VDS = 1.8V . (a)

True & Complement Device distributions after Comp. cell programming. (b) Corresponding

di↵erential twin-cell weights after Comp. Cell programming. (Chip 4, Columnh0i)

4.3.3 Demonstrating a MAC Engine with Programmed CTT Weights

A reliable MAC Engine with nonvolatile, CTT-based weights requires accurate cell pro-

gramming, reasonable retention, and minimal measurement error. MAC Engine outputs

with programmed weights are first evaluated using an external analyzer. Previously, de-

vice measurement repeatability using an external analyzer was explored on single devices,

where the normalized 1� error was shown to be <0.4% (e.g. 1.95nA) for a 500nA target

cell, shown in Fig. 4.7b. Measurement accuracy of the summed di↵erential current from

a column of devices simultaneously enabled is evaluated in this section. A column of 256

twin-cell devices are first programmed to all positive di↵erential weights by programming

only the complement cells via 20⇥ 100µs programming pulses, shown in Fig. 4.12.

91

(a) (b) (c)

Figure 4.13: 256-input MAC Engine Results Measured using External Analyzer.

Positive twin-cell weights from Fig. 4.12 were utilized. (a) True & (b) Comp. devices

were measured separately and compared against ideal results. (c) Di↵erential sum results

are shown. Flat-line shown in (a) and resulting impact on (c) is due to 100µA current

compliance limit. (Chip 4, Columnh0i)

After programming, individual weights were measured one-at-a-time using an external

analyzer for calculating ideal sums. Summed column output current was then measured

using external analyzer when multiple inputs or devices were simultaneously enabled, shown

in Fig. 4.13. IBLt and IBLc are separately measured, shown in Figures 4.13a & 4.13b. For

increasing common-mode currents, the measured column currents begin to deviate from the

ideal results due to IR drop in the Array Column Mux. It’s also important to point out

that the flat-line shown in Fig. 4.13a is not fundamental and only due to a 100µA current

compliance limit set on the external Keysight B1500A analyzer. The demonstrated on-chip

MAC Engine utilizes all system-level blocks including WL Drivers, CTT Array, CTT Array

Column Mux, Level-Shifters, and On-Chip Logic, except for the Neuron circuit. Instead of

utilizing the neuron, an external analyzer is utilized to compute the overall weighted-sum.

Measurement error for sums <30µA was demonstrated to be <2%.

Future experiments were limited to a maximum of 64 inputs to manage measurement

error due to IR drop in the Array Column Mux. Figure 4.14 demonstrates a subset of

92

(a) (b)

Figure 4.14: 64-input MAC Engine Results Measured using External Analyzer.

Subset of 64 positive twin-cell weights (WLsh0:63i) from Figures 4.12 & 4.13 were utilized.

(a) Di↵erential Sum results shown as a function of number of inputs enabled. Some mismatch

visible for large inputs due to array column mux IR drop for large common-mode currents.

(b) Ideal sums vs. Measured Sums show excellent linearity in measurements with <2%

measurement error for 64-input MAC. (Chip 4, Columnh0i)

the results from the previous figure. Ideal vs. Measured Di↵erential Output currents are

plotted in Fig. 4.14b, showing a maximum measurement error of ±2% with respect to the

di↵erential output current. Measurement error due to IR drop in the Array Column Mux is

not fundamental. Overall error is still dominated by programming variance.

Additional MAC Engine Results using the Array Macro results from Figures 2.7b & 2.9

are shown in Fig. 4.15. Separately, on-chip fine-tuning to seven di↵erential target states

was attempted and results are shown in Fig. 4.16. On-chip fine-tune programming requires

further improvement. Iterative programming is limited by cumbersome manual switching

after every verification step. A modified PCB board is being designed to fully automate the

program-verify weight fine-tuning algorithm. In the future, program-verify can be further

accelerated using on-chip neuron design for verification.

93

(a) (b)

Figure 4.15: MAC Engine with 6 Target States. MAC Engine Results shown for 480

devices programmed to one of 6 target states (100, 200, ..., 600nA), shown previously in

Figures 2.7b & 2.9 before and after 20hr & 50hr baking at 85�C. A maximum of 60 devices

were measured simultaneously. Full MAC Engine results are shown in (a). Zoomed in

results for Ideal Sums >15µA are shown in (b). MAC Engine Results shown immediately

after programming (0hr) and after 20hr & 50hr baking, respectively, at 85�C.

(a) (b) (c)

Figure 4.16: MAC Engine with 7 Di↵erential Target States. (a) 128 Devices were

programmed using on-chip programming to one of 7 di↵erential target states. (b) MAC

Engine Results for two columns of 64 devices are shown. (c) Relative error compared between

summed current and ideal summed current w.r.t. to ideal target states. (Chip 3)

94

4.3.4 Demonstrating a MAC Engine with On-Chip Neuron

An on-chip neuron circuit with di↵erential integrator and comparator circuit was designed

to compute the PWM-based weighted sum of a column of up to 256 twin-cell devices. The

integrator provides a 200mV virtual supply to the CTT Array (VCTT,D) and integrate the

di↵erential column current. The comparator circuit converts the computed weighted sum

(QINF) into a pulse-width modulated output (tPWM) which can be applied as an input to

subsequent network layers. Neuron circuit architecture & design is discussed in more detail

in Section 3.1.6.

Preliminary neuron results and output linearity are discussed in this section and more

detailed debugging are discussed in the following section (Section 4.3.5). The neuron pulse-

width modulated output is designed to implement the Rectified Linear Unit (ReLU) acti-

vation function, shown previously in Fig. 3.23, where negative sums are set to zero. For

positive sums, the neuron computes a linear output until the output reaches saturation.

Integration of positive-only di↵erential twin-cell weights (from Fig. 4.12) using on-chip

neuron circuit is shown in Fig. 4.17. Figures 4.17a-4.17c show integration results across 3

di↵erent columns and neuron circuits (Columnsh0:2i) when selected inputs are activated for

16 cycles. For comparison, the experiment was repeated with selected inputs activated for

8 cycles, shown in Figures 4.17d-4.17f. Neuron output reaches saturation ⇠2⇥ faster when

selected inputs are activated for 16 cycles compared to 8 cycles. Non-ideal neuron output

variability is observed over multiple iterations with the same inputs. Output variability is

observed to scale proportionally to TINTEGRATION (defined by Eq. 4.4), suggesting that an

error current is being integrated and imposing an error term in the integrated output value.

Sources of the output variability issue are discussed in further in the following section.

Regardless, it was found that approximately linear output from the neuron with up to 7b

resolution could be achieved by averaging the neuron output over multiple iterations, as

shown in Fig. 4.18.

95

(a) (b) (c)

(d) (e) (f)

Figure 4.17: On-Chip MAC Engine with Di↵erential Integrator. All twin-cell CTT

devices on Columnsh0: 2i programmed to arbitrary positive weights, similar to those shown

in Fig. 4.12. Digitized neuron output is plotted vs. ideal output measured using external

analyzer for a random sample of 128 inputs (up to 128 inputs simultaneously enabled). (a-c)

represent plots for Neuronsh0:2i where selected inputs are activated for 16 cycles. (d-f)

Represent similar plots except selected inputs are activated for 8 cycles. All plots shown

over 5 iterations to better understand output variability. (Chip 4, Columnh0:2i)

96

(a) (b) (c)

Figure 4.18: On-Chip MAC Engine Neuron Output Averaged over 1000 Iterations.

Experiments similar to those shown in Figures 4.17a-4.17c were repeated for 1000 iterations,

then averaged across all iterations. Averaged results show reasonable linearity—especially

in (a)—and output saturation, as expected. Potential source(s) of output variability are

discussed in the subsequent section. (Chip 4, Columnh0:2i)

4.3.5 Additional MAC Engine Debug E↵orts

While the original neuron circuit was designed to operate at 800MHz and integrate a column

of up to 256 twin-cell devices, the NeuroCTT 0.3 design specification was simplified with

the intention of first validating the entire CTT-based system prior to designing a more

complex chip. As a validation chip, it did not include a high-speed CLK IO driver or on-chip

PLL—limiting the system testing to lower frequencies (e.g. 20�150MHz). Future iterations

of the chip will require a multi-clock domain logic to decouple the load (e.g. 20MHz) logic

from the inference (⇠800MHz) logic.

The NeuroCTT 0.3 chip was highly successful as all system block functionality was val-

idated including WL driver, CTT Array, CTT Array Column Mux, Array Level-Shifters,

etc. and CTT devices were programmable with comparable retention to previously obtained

array-level device macro results. Despite demonstrating output linearity and weighted-sum

functionality using the on-chip neuron in the previous section, output resolution was lower

than expected (⇠3b)—demonstrated by Figures 4.17 & 4.18.

97

Debug studies were first performed to ensure that device noise from programmed CTT

devices do not contribute additionally to neuron output variability compared to device noise

from as-fabricated CTT devices. Figure 4.19 demonstrates that neuron output variability

for the zero-input case is nearly identical for a neuron connected to a column of as-fabricated

devices compared to a neuron that is connected to a column of programmed devices. In

general, leakage currents for o↵ devices (VG = �300mV) should still be negligible which

should not impact the neuron output for the zero-input case as demonstrated in Fig. 4.19.

(a) As-Fabricated Devices (b) Programmed CTT Devices

Figure 4.19: Neuron Output for Zero-Input Case. Neuron output for zero-input eval-

uated for neurons connected to a column of (a) as-fabricated devices and (b) programmed

CTT devices to confirm that device programming is not the source of the neuron output

variability. Output evaluated for 1, 000 iterations for both cases and histograms are shown

in (a) and (b). No noticeable di↵erence is present (e.g.�(a)⇠�(b)). In general leakage currents

for o↵ devices (VG = �300mV) should still be negligible.

98

In addition, neuron output for a column of as-fabricated weights is shown in Fig. 4.20.

Only as-fabricated twin-cell weights with a positive di↵erential current were utilized to

demonstrate neuron output linearity. Neuron output variability is similar to that shown pre-

viously in Figures 4.17 & 4.18—further demonstrating that device noise from programmed

CTT devices does not contribute additionally to neuron output variability. Thus, the output

variability is likely a circuit problem instead of a device problem. We explore whether or not

testing the chip at low-frequencies is contributing to the output variability.

Figure 4.20: Neuron Output with As-Fabricated Weights. Output shows up to 50

twin-cell weights activated simultaneously with selected inputs set to 16 cycles. Only as-

fabricated twin-cell weights with a positive di↵erential current were utilized to demonstrate

neuron output linearity. Neuron output variability is identical to that shown previously in

Figures 4.17 & 4.18.

99

Testing the chip at low-frequencies (e.g. 20MHz) limits the valid input range. Assuming

that (1) the maximum output capacitance (CINF = 6.6pF) is selected and (2) the maximum

output voltage is ⇠250mV (obtained from simulation), the maximum charge accumulated

during integration is approximately:

QMAX = C ⇥ VMAX = ⇠1.65pC (4.1)

Given that IDISCHARGE = 350nA, the maximum neuron output at 20MHz was:

tPWM,MAX =
QMAX

IDISCHARGE
= ⇠5µs ⇠ 100 cycles (4.2)

This implies that the maximum di↵erential input current when applied for the maximum 8b

input duration (e.g. 255 cycles) is:

IDIFF,MAX =
IBLt � IBLc

2
=

1.65pC

255⇥ 50ns
= ⇠130nA (4.3)

Since such a small input current can saturate the neuron output when operated at

20MHz—40⇥ lower than the designed operating frequency for the neuron circuit—the circuit

may also be susceptible to noise sources as well. Previous neuron results shown in Fig. 4.17

suggest that the neuron output can fluctuate by ±10 cycles when the output is near satura-

tion (e.g. ⇠100 cycles). Such output fluctuations can be caused by small error currents (e.g.

⇠10nA) when operating the neuron at low frequencies.

The total time the neuron is on and integrating (TINTEGRATION) corresponds to the total

length of the inference and the discharge phases. The Inference Duration (TINFERENCE) is

set to a constant value for all input cases and must be � tinput,max. The length of the

discharge phase corresponds to the time it takes to fully discharge the output capacitance,

or tPWM,out:

TINTEGRATION = TINFERENCE + tPWM,out (4.4)

100

(a) TINFERENCE = 255 cycles (b) TINFERENCE = 16 cycles

Figure 4.21: Improving Neuron Output Results. (a) Initial neuron results for 32 simul-

taneously activated devices. Outputs are plotted against the pulse-width modulated input

duration up to 255 cycles. Results are substantially improved in (b) where the inference du-

ration was shortened from 255 cycles down to 16 cycles (results duplicated for convenience

from Fig. 4.17a). Respective logic timing diagrams for both cases are provided in Fig. 4.22.

Initial neuron output results are shown in Fig. 4.21. In the first case (Fig. 4.21a), 32 de-

vices were simultaneously enabled for N = {0, 1, 2, ..., 255} cycles where TINFERENCE = 255

in all test cases. Approximately linear output is only observed for input values beyond ⇠150

cycles. By shortening the inference duration by 16⇥ and reducing TINFERENCE to 16 cycles,

results were substantially improved upon. Figure 4.21b demonstrates clear linear output

from the neuron for increasing input values when TINFERENCE was set to 16 cycles. Output

variability scales for larger PWM outputs—corresponding to tPWM,out in Eq. 4.4. Maximum

output variability (±10 cycles) occurs when the neuron output approaches saturation (e.g.

tPWM,out ⇠ 100 cycles).

The neuron output variability’s dependence on total integration time (Eq. 4.4) suggest

that the neuron performance is limited by low-frequency (20MHz) testing constraints. When

the inference period is increased from 16 ! 255 cycles (800ns ! 12.75µs), any integrated

101

error current can lead to an appreciable error term in the accumulated charge, QINF . Error

currents as small as ⇠10nA may be su�cient to cause a ±10 cycle output fluctuation.

Figure 4.22 provide neuron logic timing diagrams which describe a subset of the related

neuron logic signals for the two cases where TINFERENCE equals 255 & 16 cycles, respectively.

The integrator design was further interrogated via simulation and hardware studies to

determine possible sources that may cause the suggested error currents. The integrator

circuit relies on 3 external reference currents to properly bias the circuit including an (1)

IREF,20µA reference for biasing the di↵erential integrator, (2) an IREF,500nA reference for

biasing the discharge source, & (3) a IREF,200nA reference for biasing the o↵set source. The

discharge current is utilized to linearly discharge the integrator’s output capacitor in order

to convert the accumulated charge to an output pulse width (tPWM) and the o↵set current

is utilized to apply DC o↵set-cancellation settings to counteract process-induced mismatch

e↵ects. The three reference currents are replicated using on-chip current mirrors. During

the design phase, these bias currents were treated as dc nodes and no internal decoupling

capacitors were included. Unfortunately, supply noise coupling to the generated current

mirror bias voltages was not considered. External decoupling capacitance was connected to

the chip at the board-level on all three nodes with negligible output improvement.

The o↵set cancellation reference source (IREF,200nA) was quickly ruled out as the main

culprit as several neurons were testable with o↵set cancellation fully-disabled and the output

fluctuations continued to persist without any reduction in magnitude. The discharge current

source (IREF,200nA) was similarly ruled out as the discharge duration was held constant in

experiments where TINFERENCE was varied, previously shown in Fig. 4.21.

The magnitude of the neuron output fluctuations are strongly correlated to the length of

the integration period, TINTEGRATION . By both reducing the maximum input (TINFERENCE)

to 16 cycles, the neuron was enabled for a shorter duration leading to substantially improved

neuron output results, as shown in Fig. 4.21b. It was determined that likely the di↵erential

integrator bias (IREF,20µA) was susceptible to a small noise current (<10nA).

102

(a) TINFERENCE = 255 cycles

(b) TINFERENCE = 16 cycles

Figure 4.22: Debugging with Neuron Logic Timing Diagrams. Diagrams demon-

strate the previously mentioned inference duration (TINFERENCE) parameter as well as the

hardware logic bug associated with the Array Switch (INT SW EN) where the array is

disconnected from the neuron outside of the inference duration, causing a possible CM in-

stability issue within the integrator, described in more detail in Fig. 4.23.

103

(a) (b)

Figure 4.23: CM Stability Issue Introduced by Array Switch. Logic originally in-

tended to disconnect the CTT array from the neuron to prevent leakage currents when not

intentionally integrating may cause CM instability issues within the integrator design. (a)

The INTEGRATION SWITCH corresponds to a switch that connects/disconnects the CTT

Array from the neuron. The switch is only enabled during the Inference period, TINFERENCE.

(b) Simulation results showing possible CM instability. Fortunately, simulation results sug-

gest that given its a CM instead of DM instability issue, it should not substantially a↵ect

the output results (see VOUT1�VOUT2). VOUT1 & VOUT2 correspond to the two output nodes

associated with the di↵erential integrator’s output capacitor.

Additionally, it is worth pointing out a separate design issue that was identified during

debugging. Originally, a switch (INTEGRATION SWITCH EN) was placed between the

neuron and CTT array with intention of disconnecting the CTT array from the neuron

when not actively integrating in order to prevent possible leakage currents. It was determined

during design verification that this switch may cause CM instability issues for the neuron’s

di↵erential integrator as it substantially varies the capacitance connected to the input of the

circuit. The logic design intended to include both options: (1) leaving the switch always

on & (2) enabling the switch only during ‘inference’. Unfortunately, a discovered hardware

logic bug disabled the former option from properly working. Figure 4.23b demonstrates

104

in simulation that while substantial ringing can be seen on the two nodes of the output

capacitor (VOUT1 & VOUT2), it does not have a substantial e↵ect on the di↵erential output

result, VOUT1 � VOUT2. Therefore, it is not expected to be the main culprit of the circuit’s

output variability. Regardless, it is necessary to resolve the issue in a future design iteration.

105

4.3.6 Final Insights

To reiterate, the NeuroCTT 0.3 chip was highly successful. All system-level blocks were fully

verified including the WL drivers, CTT Array, Array Column Mux, Level-Shifters, etc. and

can be reused as is in subsequent tapeouts. CTT devices array were e�ciently programmed

and results match previously demonstrated programming capabilities (e.g. �VTH) shown

on the discrete device and array macros. For the first time, a Pulsed-Voltage Time Sweep

(PVTS) programming methodology was demonstrated which allows for fine-tune program-

ming by simply tuning the programming pulse width rather than requiring ramping voltage

supplies as is the case for the PVRS methodology. For the first time, an accurate & re-

producible MAC Engine with programmed weights was demonstrated utilizing all on-chip

components and an external Keysight Analyzer for measuring the total summed output cur-

rent. For the first time, a MAC Engine with programmed weights and an on-chip neuron

circuit & ReLU activation function were demonstrated. While neuron output resolution was

limited, neuron functionality and linearity were properly demonstrated.

In the short-term, results from the NeuroCTT 0.3 chip can be further improved by explor-

ing a couple di↵erent avenues. First, the PCB will be re-designed with a few modifications

to fully automate the iterative fine-tune weight programming. Secondly, opportunities exist

to further increase the on-chip clock frequency beyond 20MHz by optimizing FPGA timing

parameters. It is also possible that varying the clock frequency might be possible by slowing

it down to reliably load data onto the chip, then increasing the frequency during inference.

In the long-term, a re-spin will be required to fully demonstrated the concept and overall

energy-e�ciency. A subsequent design would require (1) PLL or high-speed CLK IO driver,

(2) multi-clock domain to decouple the data load and ‘inference’ logic, (3) thorough decap

placement on sensitive nodes, and (4) additional neuron modifications to further reduce

mismatch-related issues. It is also worth demonstrating a multi-layer design where the

neuron output is directly applied as an input to a subsequent layer.

106

Figure 4.24: CIRCUS Functional Overview.

4.4 CIRCUS Hardware Simulator

CIRCUS (CTT-Hardware-based Inference Realistic Circuit Universal Simulator) is a simula-

tion platform developed to study the e↵ects of circuit-induced errors and device non-idealities

on overall system performance. An example CIRCUS implementation flow for a local monte

carlo (localmc) simulation including P/V/T and foundry-provided mismatch data is provided

in Appendix C. A functional overview is provided in Fig. 4.24.

Twin-cell device weights correspond to the di↵erential channel conductance (�GCH) or

on-current (�IWEIGHT) for a given subthreshold bias point such as VGS = 200mV , VDS =

200mV—the weight for a single device as a function of di↵erent programming and erase

steps is shown in Fig. 4.25a. Weights are encoded in simulation by utilizing a parameterized

voltage source to encode the �VTH for the True and Comp. devices, respectively, shown

in Fig. 4.25b. A Lookup-Table (LUT) is utilized to map between device weights and the

corresponding �VTH value. Trained network weights are mapped to CTT devices using

a Weight Conversion Script which generates spectre netlist files, shown in the overview

provided by Fig. 4.24. Device variance can also be included by adding a normally-distributed

error term to each of the CTT device conductances or threshold voltages (GCH or VTH).

107

(a) (b)

Figure 4.25: CIRCUS CTT Device Model. The CTT device utilizes the standard

foundry-provided nfet device model. As shown in (a), a programmed CTT device can be

modeled as an as-fabricated device with some threshold voltage shift, neglecting gate leakage

& subthreshold degradation. In simulation, a parameterized voltage source is attached to

the gate of the CTT device shown in (b), allowing for a programmed device ‘weight’ to be

included.

Figure 4.26: CIRCUS Example CTT Array Di↵erential Current Waveform. Dif-

ferential current waveform from CTT array is then integrated by the Neuron Circuit which

produces a pulse-width-modulated output signal proportional to the total integrated current

tPWM ⇠
R t

0 (IBLt(t)� IBLc(t)) dt.

108

(a) Spectre Model (b) VerilogA Model

Figure 4.27: CIRCUS Neuron Output Simulation. (a) Spectre-based Neuron Design

with CINF = 1.8pF integrating capacitor was evaluated across 1000 di↵erent randomly-

generated input patterns. Input patterns converted to ‘Ideal Weighted Sum’ by mathemati-

cally integrating the IBLt(t)� IBLc(t) signal presented at the neuron integrator’s input. (b)

Equivalent VerilogA model can be used to speed up simulation run-time. In both cases, the

neuron pulse-width-modulated (tPWM) is zero for negative weighted sums and saturates for

weighted sums > 1pC.

An example di↵erential current input with positive weights and random PWM inputs for

a 256⇥1 network is shown in Fig. 4.26. The neuron is tasked with integrating the di↵erential

input current and generating an output pulse that is proportional to the integrated result or

‘weighted sum’, tNEURON,PWM /
R t

0 (IBLt(t)� IBLc(t))dt.

The CIRCUS simulator o↵ers Spectre and Verilog-A models of the neuron circuit design.

The Spectre model provides the actual circuit taped-out in the most recent NeuroCTT 0.3

chip where P/V/T e↵ects are studied, while the Verilog-A model o↵ers an idealistic model

that can substantially accelerate simulation run-time. Example neuron output results for

both models are shown in Fig. 4.27. The Spectre-model is mainly utilized for thorough

design verification over a variety of corners.

109

(a) Without P/V/T (b) Considering P/V/T & Mismatch

Figure 4.28: CIRCUS Simulation for Evaluating Realistic Neuron Accuracy. (a)

Output of 5 Neuron & CTT Column Models with randomly initialized weights and 100

randomly supplied inputs without considering P/V/T e↵ects. (b) Simulation run across

32 Randomly Initialized Neuron Models considering P/V/T e↵ects and foundry-provided

mismatch. 1Each neuron model considering mismatch was manually calibrated using the

o↵set calibration schemes to provide zero output for the zero-input scenario. 2Measured

Integrated Di↵erential Current was calculated by integrating the di↵erential input current

from the CTT Array,
R t

0 (IBLt(t)� IBLc(t)) dt.

110

Figures 4.28a & 4.28b clearly show that the neuron output consists of a (1) Zero region,

(2) Linear region, and (3) Saturated region. The Zero & Linear Regions realize the Recti-

fied Linear Unit previously shown in Fig. 3.23. The post-calibration Neuron Output when

considering P/V/T and mismatch, shown in Fig. 4.28b, appears to be somewhat noisy, but

for any given neuron is fairly consistent and linear. It’s important to point out that o↵sets

exist in both the neuron’s di↵erential integrator as well as di↵erential comparator circuits.

Additional o↵sets beyond those that can be specifically corrected for using previously men-

tioned o↵set cancellation schemes in Section 3.1.6, can be compensated for by programming

the CTT devices to implement ‘e↵ective’ weights that produce a specific desired output from

the neuron circuit. This type of weight verification is considered On-Chip Verification where

the neuron circuit during Inference can be repurposed to read out individual device weights

by enabling a single twin-cell CTT device for a fixed input duration.

111

CHAPTER 5

Conclusions & Outlook

Crossbar architectures with nonvolatile weights and analog computation have the potential

to greatly disrupt traditional hardware design targeting ML workloads. While this disser-

tation, focuses mostly on edge applications it is possible if a series of technical problems

are addressed, crossbar architectures may become technologically & commercially viable for

larger scale applications.

This dissertation provides a first-time demonstration of an on-chip analog MAC engine

using the CTT as a nonvolatile analog synapse—fabricated in a commercial CMOS tech-

nology (GlobalFoundries 22FDX). Excellent device programmability is demonstrated on a

group of 480 programmed CTT devices with ⇠5b twin-cell resolution and worst-case nor-

malized programming variance �
0
PRG<6%. Additionally, su�cient retention characteristics

are reported with minimal change in programming variance and mean drift after baking for

50 hours at 85�C. CTT devices are shown to be highly stable with <1% measurement error

reported for 300 measurements taken on a single device over a 48 hour period.

For the first time, an on-chip CTT-based MAC Engine utilizing an external Keysight

B1500A Analyzer was able to demonstrate highly accurate & linear weighted sums using

programmed di↵erential weights. Additional, an On-Chip CTT-based MAC Engine with

an on-chip neuron comprising of di↵erential integrator and comparator circuits was able

to demonstrate linear output with 3b output resolution—limited by testing constraints and

low-frequency operation. Further improvements are required to improve the resolution to the

desired 6�8b output resolution including improving decap placement on sensitive bias/sup-

112

ply nodes and logic modifications to support testing at higher frequencies—up to 800MHz.

While reliable weighted sum computation was demonstrated, future work must also demon-

strate energy-e�ciency by performing this computation at speed (e.g. 800MHz) and by

properly power-gating digital & analog circuitry when idle.

For the first time, A Pulsed-gate Voltage Time Sweep (PVTS) programming method-

ology is introduced for fine-tune programming without requiring ramping voltage supplies

as is required with the PVRS programming methodology. Further studies are required to

determine whether a PVTS methodology can be exclusively used to accurately program

devices.

An analysis of all the variances present is in a CTT-based analog in-memory com-

pute (IMC) engine is provided, including the device programming variance, measurement

error and device fluctuations due to e↵ects such as RTN and 1
f noise, weight retention,

temperature-dependent e↵ects, circuit-induced non-idealities, and radiation e↵ects such as

Total-Ionizing Dose (described in more detail in Appendix A). The CTT-Hardware-based

Inference Realistic Circuit Universal Simulator (CIRCUS) is introduced to study the net

e↵ect of all of these sources of variability on the overall systems output and validate that

su�cient output resolution can still be obtained.

Finally, the experimental radiation tolerance of neuromorphic hardware is discussed in

Appendix A. The IBM TrueNorth Neurosynaptic System is utilized as a baseline system for

evaluating the resiliency of pseudo-non-von Neumann digital architectures where the IBM

TrueNorth is found to be highly resilient to Single-Event Upsets (SEUs) or soft errors. The

CTT device is evaluated as a candidate device for analog-based neuromorphic hardware.

Given the nonvolatile nature of the CTT-based weights, it is found that the CTT is resilient

to soft errors but is susceptible to large �VTH shifts due to Total-Ionizing Dose (TID) which

is especially more pronounced in fully-depleted SOI technologies. A related discussion on

the e↵ects of radiation on 3D-stacked technologies such as 3DS-DRAM Memories is provided

in Appendix B which will become especially more relevant as larger systems continue to

113

adopt newer packaging and system technologies to meet the computational demand of new

workloads. Future work is required to develop characterization methods for more complex

3D-stacked systems with increasingly more complex failure modes.

In summary, the CTT is highly competitive against other proposed analog NVM devices

such as RRAM, PCM, SONOS, & STT-MRAM, just to name a few. The CTT is completely

CMOS-compatible and exists as a 3-terminal device requiring no additional select transistor

with su�ciently high ION

IOFF

ratio. It has been demonstrated in all gate-first high- technology

nodes and o↵ers a su�ciently high on-resistance (RON⇠M⌦) in the selected 22FDX technol-

ogy node. Excellent device programmability & weight resolution as well as su�cient weight

retention at higher temperatures has been demonstrated. CTT can be reliably fine-tuned to

target weights and utilized in a MAC Engine to perform reliable & reproducible computation

with nonvolatile weights.

5.1 Outlook

In order to demonstrate scalable crossbar architectures for larger applications beyond leaf

applications, In-Memory Computing research must tackle a series of challenging technical

problems including system scaling & network reconfigurability for rapidly evolving network

topologies beyond Fully-Connected or Multi-Layer Perceptron (MLP) networks. Analog

IMC-based compute are currently di�cult to scale with a trade-o↵ between reconfigurability

and energy-e�ciency. Scalable and reconfigurable systems almost certainly require a digital

interface and/or router between network layers potentially, which may eliminate the energy

benefits of performing computation in the analog domain. In addition, today’s crossbar

architectures are not able to as e↵ectively exploit network sparsity as some of today’s digital

systems.

Designers utilizing pulse-width modulated (PWM) schemes, such as the one utilized by

the NeuroCTT, must consider the trade-o↵ between area and output resolution. Addition-

114

ally, while pulse-based architectures might be substantially smaller in size and simpler to

design, they are typically not able to provide comparable throughput at the same input/out-

put resolution. While pulse-based input architectures might su↵er from lower throughput,

they are promising for edge applications with smaller computational requirements. Pulse-

based input architectures are able to leverage a simpler, lower-power, and smaller-area ADC

in lieu of an integrator-based ADC, o↵ering superior energy-e�ciency.

Finally, crossbar architectures with larger number of inputs may su↵er from a large

common-mode to di↵erential-mode (ICM

IDM

) ratio leading to design challenges. As an ex-

ample the NeuroCTT system may be required to handle input cases where the measured

ICM

IDM

⇠1000⇥, requiring a higher-power integrator with larger bias currents to properly man-

age the large common-mode currents.

5.2 Future Work

In the short-term, additional results may be obtainable from the current hardware by explor-

ing a couple possible testing avenues. First of all, a simple PCB board redesign is required

to fully automate the fine-tune program-verify algorithm using external Keysight B1500A

analyzer for weight verification. Secondly, it is possible that the system frequency can be

increased beyond 20MHz by (1) optimizing the load logic & timing between the FPGA

and NeuroCTT 0.3 chip and (2) modulating the clock frequency. By modulating the clock

frequency, it is possible that the clock frequency could be slowed down while loading data

onto the chip and increased when performing inference computation.

A future tapeout will be required to demonstrate the concept at speed (e.g. ⇠800MHz)

with su�cient output resolution and competitive energy-e�ciency. Thorough block and sys-

tem validation has been a significant result from this project. All of the included circuit

blocks on NeuroCTT 0.3 have been fully verified as functional including the WL Drivers,

CTT Array, Array Column Mux, Neuron, Time-to-Digital Converters (TDCs), and system

115

logic. Further, experiments were performed that demonstrate that devices within the Neu-

roCTT System’s CTT Array can be e�ciently programmed with comparable programming

results to those obtained using the discrete & array device macros. These blocks can be

fully reused in a future tapeout with the exception of the neuron block. While the neu-

ron was verified at 20MHz with linear output, modest modifications are required to ensure

proper output resolution may be obtained when testing at higher frequencies. These modifi-

cations include additional decoupling capacitor placement on sensitive bias & supply nodes

as well as some device resizing to better handle possible device mismatch issues. In addi-

tion, a simple re-spin would require multi-clock domain logic (e.g. SY S CLK = 20MHz,

INF CLK = ⇠800MHz) to decouple the load and inference logic as well as a high-speed

CLK IO driver or licensed PLL IP block.

116

APPENDIX A

E↵ect of Memory-Related Errors in Neuromorphic

Hardware

A.1 Digital-based Neuromorphic Computation

In contrast to analog-based neural networks, the nature of errors in digital systems is inher-

ently di↵erent. In the absence of errors, a digital, non-stochastic system is almost always

deterministic. For large digital systems, the dominant error or failure mechanism is often

considered to be errors created within or while accessing the memory. These errors also

include soft errors or Single-Event Upsets (SEUs) where high-energy particle strikes and

corrupt data within the memory. On-chip Dynamic Random Access Memory (DRAM) and

Static Random Access Memory (SRAM) are highly susceptible to bit errors, forcing server-

grade and more complex systems to rely heavily on Error Correction Codes (ECC) and Cyclic

Redundancy Checks (CRC) to detect errors and prevent instruction & data corruption due

to a memory error [Ham50, PB61].

The IBM TrueNorth Synaptic Platform [Ami13, Mer14, Ess16, Saw16, Fur16] is utilized as

a baseline system for evaluating the e↵ects of errors on digital-based neuromorphic platforms,

where memory-related errors are assumed to be the dominant failure mechanism. Non-

ionizing radiation is utilized (1) as a means for injecting random faults or soft errors into

the on-chip network and (2) studying the overall system tolerance to radiation e↵ects for use

in strategic environments.

117

Figure A.1: IBM TrueNorth Core Implementation. TrueNorth chip consists of 4, 096

of these cores requiring 410Mb of on-chip SRAM storage and spans ⇠400mm2 in Samsung

28nm technology.

A.1.1 TrueNorth Architecture

Figures A.1, A.2, & A.3 provides information on the architecture of the IBM TrueNorth

Neurosynaptic System. The TrueNorth consists of 4, 096 cores that emulate ⇠1M neurons

and ⇠256M synapses while consuming ⇠70mW at run-time. Each core includes 256 axonal

inputs, a 256⇥256 synaptic crossbar, and 256 neuron outputs. Each neuron output represents

a weighted-sum of the respective 256 axonal inputs:

Vj =
256X

i=1

wijxi (A.1)

The IBM TrueNorth supports integer synaptic weights ranging [-255, 255]. A trade-o↵ ex-

ists between programmability and the synaptic density. In order to co-optimize programma-

bility and synaptic density, the TrueNorth utilizes 4-element synaptic weight lookup tables

118

per neuron, hence supporting a maximum of 4 unique synaptic weight values per neuron

(synaptic crossbar column), as shown in Fig. A.1. The chip stores a 2-bit axon type param-

eter for each synapse to index the lookup table and obtain its respective synaptic weight.

Synaptic weights correlate the pre-synaptic neurons (axon inputs) to the post-synaptic out-

put neurons, whose values are determined by the training of the network.

TrueNorth models are trained o✏ine and then loaded onto the chip. Model parameters are

stored in SRAM banks per core. Each SRAM bank consists of 102.5Kb of memory, excluding

redundancy bits and spare rows, as shown in Fig. A.2a. Figure A.2 provides detailed SRAM

breakdown by model parameter type. Essential parameters include Synaptic weights, Axon

Types, Neuron addressing, membrane potential, and membrane threshold parameters. Other

additional stochastic parameters—classified under ‘Other Neuron Parameter’—are available

for emulating brain spiking patterns but are not necessary for running traditional neural

network tasks such as Convolutional Neural Networks (CNNs).

A single TrueNorth chip consists of 4,096 cores arranged in a 64 ⇥ 64 array, depicted in

Fig. A.3 (middle). The system includes a 24-bit addressing space which allows any neuron

output to be routed and connected to any axonal input. This 24-bit address variable consists

of 16-bit destination core address and an 8-bit destination core address, which is su�ciently

large enough to support multi-chip configuration up to 16 chips (4⇥4), such as demonstrated

with the TrueNorth NS-16e boar [Fur16].

A.1.2 TrueNorth EEDN Framework for CNNs

Convolutional Neural Networks (CNNs) can be implemented on the IBM TrueNorth using

the Energy-E�cient Deep Neuromorphic (EEDN) networks training algorithm provided in

[Ess16]. EEDN utilizes trinary weights, {-1,0,1}, to train and implement multi-layer CNNs

specifically mapped for the IBM TrueNorth hardware, elaborated upon in Fig. A.4. Trinary

weights help simplify the training di�culty given the synaptic weight programmability con-

straints alluded to earlier (e.g. 4-element LUTs per neuron). Each core on the chip can be

119

(a) SRAM per core (b) SRAM Model Parameters

Figure A.2: IBM TrueNorth SRAM Design per core. (a) Each core consists of 102.5Kb

(256 rows⇥ 410 bits) of SRAM, not including redundancy bits and spare rows. Entire chip

consists of 410Mb of SRAM (4096 cores⇥102.5Kb). (b) TrueNorth Chip SRAM Breakdown

by Model Parameter. SRAM memory is dominated by synaptic weight (292Mb) and neuron

addressing (30Mb) parameters. Some of the other available neuron parameters such as

stochastic parameters (e.g. neuron leakage, �) are not required for solving traditional CNN-

based classifications tasks using the TrueNorth.

120

Figure A.3: IBM TrueNorth Multi-Chip Configuration. The IBM TrueNorth chip

utilizes an address space that supports scaling the system up to a 16-chip (4 ⇥ 4) system.

IBM has demonstrated the 16-chip configuration, known as the IBM TrueNorth NS-16e

board, capable of running model files that emulate up to 16 million neurons and >4 billion

synapses [Fur16].

Figure A.4: IBM TrueNorth EEDN Trinary Weight Constraint.

used to implement one filter (nFeatures = 1) in the network.

Not all TrueNorth cores, however, can be utilized by the CNN. Since each neuron output

can only be configured to transmit output spikes to a single-fixed address (axon input),

splitter cores are required. Splitter cores require a large overhead as an entire core is required

to replicate one neuron output up to 256⇥. By definition, each Convolutional Network Layer

output is reused multiple times by subsequent layers as the filter is convolved across its input

space for the next respective layer, requiring many splitter cores to implement most CNNs.

For the purpose of this work, MNIST, CIFAR-10, and CIFAR-100 datasets were utilized

121

(a) MNIST [LeC98, LCB10] (b) CIFAR-10 [Kri09] (c) CIFAR-100 [Kri09]

Figure A.5: Commonly-Used Classification Datasets. (a) MNIST dataset consists

of 60,000 training images and 10,000 test images representing handwritten digits (0 � 9).

(b) CIFAR-10 dataset consists 50,000 training (5, 000/class) and 10,000 test (1, 000/class)

images representing 10 di↵erent classes of objects. (c) CIFAR-100 dataset consists of 50,000

training (500/class) and 10,000 test (100/class) images representing 100 di↵erent classes of

objects.

122

Figure A.6: IBM TrueNorth for Spinal MR Image Segmentation Example. Origi-

nally presented in [MW18]. (a) Original MR images. (b) Manual Segmentations perform by

human rater. (c) Detection (localization) results where red pixels designate areas identified

as belonging to the spinal canal. (d) Automated vertebrae segmentations. (e) Automated

disk segmentations.

123

Figure A.7: IBM TrueNorth Spinal Foramina Segmentation Example. A similar

network to that shown in [MW18] can also be utilized to segment more complex imaging

features such as neuroforamina in the spinal canal which can be utilized to quantify and

diagnose spinal-related diseases such as neuroforaminal stenosis as is discussed in [Gao19].

to study the e↵ect of soft errors on CNNs running on a neuromorphic architecture such as the

IBM TrueNorth. Additional work presented in [MW18], [WM18], & [Gao19] demonstrate

that low-power neuromorphic platforms such as the IBM TrueNorth can be utilized for

even complex medical segmentation tasks to identify features for automated image-based

diagnosis, shown in Figures A.6 and A.7.

A.1.3 Experimental Setup: Vanderbilt Pelletron

The Vanderbilt Pelletron accelerator [McC15] o↵ers several particles & ions with varying

energy levels and range. Commonly used recipes and achievable ranges are detailed in

Table A.1. As shown, most options provide a range of at most 10 � 100µm. The IBM

TrueNorth die is covered by an organic molding compound with a radiation absorption

thickness of trad = ⇠0.9mm, requiring the chip to be chemically delidded prior to irradiating

using the Vanderbilt Pelletron.

124

Table A.1: Range of Potential Ions/Particles using the Vanderbilt Pelletron.

Ranges provided in µm.

The IBM TrueNorth was chemically delidded using foaming nitric acid followed by an

acetone cleaning process. Protective tape was used to protect the surrounding board com-

ponents. Delidding results are shown in Fig. A.8. Although the nitric acid is an oxidizing

agent, the bond wires are gold (Au) instead of Copper (Cu), so it did not pose any issues to

wirebond quality. Chip Back-End-of-Line (BEOL) thickness was estimated at ⇠8µm which

is supported by the range available of both Proton and Alpha particles. Ultimately, 4 MeV

protons with varying fluxes were selected for all experiments.

The TrueNorth NS1e board was placed and aligned with the Vacuum Test Chamber using

laser alignment (Fig. A.9a) and pumped down to ⇠10�6 torr. Power supply connection and

communication with the board via Ethernet was faciliated by the Vacuum Test Chamber

Feed-through (Fig. A.9b).

Additional images of the Vanderbilt Pelletron beamline from multiple vantage points are

shown in Fig. A.10. More information on the Vanderbilt Pelletron can be found in [McC15].

125

(a) Spare Delidded Chip (b) Delidded Chip on NS1e Board

Figure A.8: IBM TrueNorth Chip Delidding. The initial delidding process was first

demonstrated on a non-functional TrueNorth chip (shown in (a)) using a foaming nitric acid

process followed by an acetone cleaning process without using any water. Protection tape

was used to avoid wet chemicals from damaging surrounding board components.

(a) Inside Test Chamber (b) External Feed-through

Figure A.9: Vanderbilt Pelletron Vacuum Test Chamber. (a) TrueNorth NS1e Board

was aligned inside the test chamber using the green alignment laser shown. (b) External feed-

through provided power supply & local Ethernet connections to the NS1e board. Ethernet

was used to send data between the NS1e board and the gateway computer.

126

(a) From the Test Chamber (b) From the Source

Figure A.10: Vanderbilt Pelletron Accelerator Beamline. Viewed from the (a) Vacuum

Test Chamber and (b) the ion/particle source. More information can be found in [McC15].

A.1.4 Experimental Results: Fragile Corelet

Before running CNN-based experiments on the TrueNorth under irradiation, an initial frag-

ile corelet (program) was loaded onto the chip—‘Randomly-connected Spontaneously Spiking

Neurons (RCSSN). The RCSSN corelet was utilized to detect whether or not errors were de-

tected in the on-chip SRAM after exposing the chip to 4 MeV protons utilizing the Vanderbilt

Pelletron. Traditionally, this corelet was designed to detect post-fabrication die defects but

is easily repurposed to detect SRAM bit errors. The RCSSN corelet executes in a pipelined

fashion at a tick rate of 1 kHz and designed to run for 600,000 input spikes or ⇠10minutes

without any errors. The corelet halts if the output at any point no longer matches the

expected ‘golden truth’ output spike file. Results across 6 runs are shown in Fig. A.11.

127

Figure A.11: Fragile Corelet Performance under irradiation. TrueNorth continuously

exposed to 4 MeV protons with a flux of 2.5⇥10�5 cm�2s�1. Program (‘corelet’) specifically

designed to halt if any errors are detected by running it until program output no longer

matches expected output. Runs 1 & 6 are discarded as there was a substantial latency

between the start of the computation and the start of the beam exposure due to operator

error.

128

Table A.2: IBM TrueNorth CNN-based Classification Experimental Results. Table

consists of 8 experiments across 3 di↵erent datasets (MNIST, CIFAR-10, & CIFAR-100).

Exp. # Run # Dataset

Total

exposure

(s)

Flux

(cm-2s-1)

Total

Fluence

(cm-2)

Initial

Error

Rate

Final

Error

Rate

Error Rate

Increase

Net

Additional

Classification

Errors

Net

Classification

changes

(“mismatches”)

3 16 MNIST 100 2.50E+05 2.50E+07 1.18% 1.18% 0.00% 0 39

3 19 MNIST 100 2.50E+05 2.50E+07 1.18% 1.22% 3.39% 4 22

4 1 MNIST 200 1.73E+05 3.46E+07 1.18% 1.16% -1.69% -2 48

4 4 MNIST 120 2.43E+05 2.92E+07 1.18% 1.23% 4.24% 5 19

4 7 MNIST 120 2.04E+05 2.45E+07 1.18% 1.15% -2.54% -3 34

4 2 CIFAR 150 1.95E+05 2.92E+07 16.69% 16.83% 0.84% 14 626

4 3 CIFAR100 100 1.91E+05 1.91E+07 44.46% 44.97% 1.15% 51 1864

4 6 CIFAR100 120 2.15E+05 2.58E+07 44.46% 45.42% 2.16% 96 2329

A.1.5 Experimental Results: Convolutional Neural Networks

A similar 14-layer CNN structure was trained on each of the 3 datasets of interest: MNIST,

CIFAR-10, & CIFAR-100. Initial test accuracies of 98.82%, 83.31%, and 55.54% were

achieved after training across the 3 datasets, respectively, using the EEDN training algo-

rithm [Ess16]. Each of the 3 trained network models were then separately loaded onto the

chip and irradiated during separate runs. Their classification accuracy was compared before

& after radiation with model files being reloaded after each experimental run. Results for

all runs are summarized in Table A.2 and were previously reported in[MCB19, BM19].

An additional two experimental runs utilizing an MNIST-trained model irradiated for 10

cycles of 10s is shown in Fig. A.12. After each cycle, the CNN test classification accuracy was

evaluating by running the model using the full 10,000 test image dataset. One interesting

observation from Table A.2 and Fig. A.12 quickly points out that while a large number

of classification changes or mismatches might occur due to random changes (e.g. SRAM

bit errors) in the on-chip CNN model, only a small subset of these classification changes

appeared to actually result in additional classification errors. This is because incorrectly

classified test images prior to irradiation were low-confidence answers to begin with and

129

Figure A.12: E↵ects of SEUs on MNIST-trained CNN on IBM TrueNorth. Number

of Classification Errors and Changes (Mismatches) vs. Cummulative Radiation Exposure

time for two separate exposures of a TrueNorth system loaded with an MNIST-trained 14-

Layer CNN model. Each run consisted of 100s cummulative exposure (10 cycles of 10s) to

4 MeV protons with a flux of 2.5 ⇥ 10�5 cm�2s�1. Mismatches defined as changes between

pre- and post-irradiation output classification labels.

130

Figure A.13: MNIST Classification Changes for Varying Fluences [BM19]. MNIST

network exposed to 4 MeV protons with a flux of 2.5 ⇥ 10�5 cm�2s�1 for 0, 10, 15, 30,

& 37 seconds. False positives are defined as outputs wrongly classified as specified output

label and missed classifications are outputs that were not correctly classified as specified

output label. For increasing fluence, 0’s were detected correctly more frequently while 6’s

less frequently.

were most susceptible to classification changes from one incorrect class to another incorrect

class.

Figure A.13 provides more detailed information for MNIST output classification changes

(mismatches) for 5 di↵erent runs with varying exposure time. Some output classes (e.g. 0’s)

observed increased classification performance for increasing fluence while others saw output

performance degradation (e.g. 6’s).

A.1.6 Simulation Results

The IBM TrueNorth Neurosynaptic Core Simulator (NSCS) was separately utilized to em-

ulate the TrueNorth system. The e↵ects of randomly introduced SEUs or soft errors were

studied in software using NSCS by taking a trained model file, injecting random bit errors

or upsets, and running the file on the NSCS tool. Generally, networks trained for a larger

131

(a) (b)

Figure A.14: IBM TrueNorth NSCS Simulator CNN Results. Neurosynaptic Core

Simulator (NSCS) framework was utilized to simulate the e↵ects of randomly introduced bit

errors on the network. (a) Simulated e↵ects of bit errors on classification accuracy for two

separately trained networks with varying training e↵orts (103 and 106 iterations), averaged

across 10 runs. (b) Simulated e↵ects of bit errors on EEDN-essential parameters vs. all

network parameters (including stochastic parameters), averaged across 10 runs.

number of training iterations appeared to be more resilient to random bit errors as shown in

Fig. A.14a. Additionally, some parameters were identified as more sensitive to bit errors de-

pending on its function. Optional parameters such as stochastic parameters are not utilized

by EEDN-trained CNNs on the IBM TrueNorth and are disabled by default, but random

bit errors could enable some of these parameters and dramatically modify the behavior of

the network. As shown in Fig. A.14b, when bit errors were introduced to all parameters

including stochastic parameters, the classification accuracy dropped much faster than when

bit errors were only introduced to EEDN-essential TrueNorth parameters. This hints that

a redesigned digital neuromorphic platform with only CNN-essential parameters is expected

to be more resilient to soft errors or bit errors in the network.

132

A.1.7 Further Design Insights

System crashing was observed on the IBM TrueNorth after exposing the system to irradia-

tion. As long as the system was left in standby mode by pausing input spikes to the chip

during irradiation, the system exclusively crashed during subsequent Test/Evaluation cycles,

shown in Fig. A.15. Further, system crashing can be also induced during irradiation by con-

tinuously evaluating the network (e.g. cycling over 10,000 test input dataset for MNIST).

This indicates that the system crashing was largely input-dependent.

It was determined that the likely contributor of system crashing was due to changes in

neuron parameter addressing. As previously mentioned in Section A.1.1, The neuron (des-

tination core) address supports an o↵-chip addressing space which supports larger systems

of up to 4⇥ 4 TrueNorth chips. For a single-chip system such as the NS1e board, if neuron

address parameters are corrupted by bit errors, it can cause neuron output spikes to be

routed o↵-chip.This is not expected to occur under normal chip operating conditions, but

may cause system crashing as the system was not designed to delete unsendable packets and

eventually enters an undefined error state after some number of output spikes are routed to

be sent o↵-chip. ‘Problematic neurons’ limited the total exposure of all experiments shown

in Table A.2 as all experimental results eventually crashed after a certain number of irra-

diation cycles. All experiments were conducted by pausing or idling the model file during

irradiation in order to reduce probability of system crashing.

A.1.8 Conclusions

Neuromorphic systems are inherently redundant. Simulations show that a neuromorphic

architecture—such as the IBM TrueNorth—is capable of enduring extensive exposure to

low-dose irradiation (⇠105 SEUs) while maintaining negligible reduction in classification

accuracy. Furthermore, experimental results validate expectations by showing a maximum

increase in classification error rate of 4.24% (1.18%!1.22%) for an MNIST-trained CNN

133

Figure A.15: IBM TrueNorth System crashing after irradiation. Example multi-step

irradiation of MNIST CNN network. Network is first evaluated (pre-irradiation) to confirm

expected initial network results, left idling during for a cycle of irradiation by pausing spike

inputs, evaluating, irradiating, evaluating etc. System exclusively crashes during Test/Eval-

uation phase and not during the Standby/Irradiation phase.

after 120s exposure to 4MeV protons, shown in Table A.2. Neuromorphic architectures

are ideal candidates for high-throughput and reliable operation in high-altitude, strategic, &

radiation environments. Additionally, the e↵ects of bit errors on the IBM TrueNorth can be

further mitigated by system redesign with only CNN or EEDN-essential network parameters,

as described by Fig. A.14b.

A.2 Analog-based Computation

Analog-based Neural Networks are susceptible to both circuit-induced errors and device

non-idealities. Circuit-induced errors are architecture and input-dependent. They require

detailed characterization in order to study how a system may perform across all process,

voltage, & temperature (P/V/T) corners, device mismatches, inputs (xi), and weights (wij).

Other forms of characterization such as noise analysis and device-specific studies including

relaxation, retention, & endurance may also be of interest.

The Charge-Trap Transistor, NeuroCTT Architecture, and Chip Testing Results were

introduced in Chapters 2, 3, & 4. This section will focus on the performance & accuracy of

134

(a) Depth Comparison (b) Training Algorithm Comparison

Figure A.16: E↵ect of Relative Variance on Inference Accuracy. A Wide-ResNet

[ZK17] model was trained using the CIFAR-100 dataset [Kri09]. Relative variance defined as

the �PRG

Range and reflects the weight programming accuracy and retention. (a) Trained Network

(Top 5%) Accuracy vs. Weight Relative Variance for two di↵erent networks of depth 16

& 28, respectively. (b) Trained Network (Top 5%) Accuracy vs. Weight Relative Variance

for a Wide-ResNet (Depth=28) network trained using the Traditional Stochastic Gradient

Descent (SGD) [Bot98, BCN18] and Hessian-Aware Stochastic Gradient Descent (HA-SGD)

[WWZ22] algorithms.

analog nonvolatile memory-based neural networks using the NeuroCTT system as a baseline

system for evaluation. Thorough accuracy and performance evaluation of analog in-memory

computing (IMC) architectures based on emerging analog non-volatile memory (NVM) tech-

nologies was recently reported in [WWZ22, WMC19], a subset of which will be shared here.

135

Circuit-induced errors can also be characterized using the CIRCUS Platform introduced

in Section 4.4 (and Appendix C), considering global process variation and mismatch across

all temperature corners. Device non-idealities are characterized by studying the (1) weight

programming error (e.g. wtrained 6= wdeployed), referred to as programming variance (�PRG)

in this dissertation, (2) device shallow relaxation, (3) device retention, and (4) subthresh-

old degradation. Other variables may be of interest depending on the target device used.

For example, some RRAM devices experience weight instability or large fluctuations over

time especially in the high-resistance (HRS) state, shown in [Li21]. While MOSFET tran-

sistors are inherently susceptible to 1
f (‘flicker’) noise, these low-frequency fluctuations are

substantially smaller in magnitude comparison to those shown in [Li21] and assumed to be

negligible.

136

(a) IDS vs. VGS Curves (b) �VTH Shift

Figure A.17: TID E↵ects on 22nm (W = 120nm) FDSOI Devices Programmed

Before Irradiation. Averaged across 3 devices. Previously reported in [BZG21].

A.3 E↵ects of Total Ionizing Dose (TID) on the CTT

Studies were performed to evaluate the e↵ects of Total Ionizing Dose (TID) on 14LP and

22FDX-based CTT devices [BZG21]. While not fully relevant to the device operation in

non-strategic operating environments, TID-e↵ects provide valuable information about how

these devices would fair in high-dose environments and clues about how to remedy new issues

introduced by TID.

It was determined that FDSOI (e.g. 22FDSOI) technologies are highly-sensitive to TID

e↵ects due to hole-trapping in the Buried Oxide (BOX) layer with a net e↵ect of reducing

the device’s threshold voltage (��VTH). Figures A.17 & A.18 suggest that TID e↵ects were

due to hole-trapping in the BOX instead of trapping in gate dielectric, as a programming

cycle with �VTH⇠200mV was achievable on devices that were programmed after irradiation.

�VTH is presumed to be fairly systematic across a chip and could be somewhat compensated

for by applying back-gate biasing, though Zheng et. al [ZCX19] points out that only positive

back-gate biases may be used for Forward-Body-biased (FBB) nFET devices to prevent p-n

conduction, which would only further decrease the threshold voltage instead of negating the

137

(a) IDS vs. VGS Curves (b) �VTH Shift

Figure A.18: TID E↵ects on 22nm (W = 120nm) FDSOI Devices Programmed

After Irradiation. Averaged across 3 devices. Previously reported in [BZG21].

TID-induced threshold shift. TID e↵ects may be alleviated by using a thicker BOX layer

to reduce channel coupling. Additionally, PDSOI technologies have been shown to have

substantially less sensitivity to TID e↵ects.

Charge-trapping has also been demonstrated in bulk devices. TID studies were performed

on GlobalFoundries 14nm low-power (14LP) FinFET devices as a control experiment. Signif-

icantly less �VTH due to TID irradiation was observed, shown in Fig. A.20. Unfortunately,

devices with more fins (e.g. Nf = 40) saw substantial o↵-state current as shown in Fig-

ures A.20a & A.20c, compared 2-fin devices shown in Fig. A.19. Both observations agree

with current information available in the literature [HMA15, ZCX19].

138

(a) Program-First (IDS vs. VGS) (b) Irradiate-First (IDS vs. VGS Shift)

Figure A.19: TID E↵ects on 14nm (Weff = 150nm,Nf = 2) Devices. (a) Typical I-V

Curve for a device that is programmed first, then irradiated. (b) Typical I-V Curve for a

device that is irradiated first, then programmed. Previously reported in [BZG21].

139

(a) Program-First (IDS vs. VGS) (b) Program-First (�VTH Shift)

(c) Irradiate-First (IDS vs. VGS) (d) Irradiate-First (�VTH)

Figure A.20: TID E↵ects on 14nm (Weff = 3µm,Nf = 40) Devices. (a) & (b) show

data averaged across 3 devices that were programmed first, then irradiated. (c) & (d) show

data averaged across 3 devices that were irradiated first, then programmed. Previously

reported in [BZG21].

140

APPENDIX B

Radiation E↵ects on 3D-Stacked Architectures

While a majority of this dissertation focuses on edge-based applications, large-scale deep

learning hardware and its overall system reliability is becoming increasingly important. This

chapter concludes this dissertation by looking at the e↵ects of errors on general-purpose

3D-stacked architectures, utilizing 3D-Stacked (3DS) DRAM as a tool for measuring the

propagation of errors between multiple die layers.

Many larger-scale systems today leverage 3D memories including High-Bandwidth Mem-

ory (HBM) and 3D-Stacked (3DS) DRAM in order to store large multi-layer networks. As an

example, the Generative Pre-trained Transformer 3 (GPT-3) model for generating human-

like text has over 175 billion network parameters trained on ⇠45TB of training data across

multiple datasets [BMR20].

B.1 Experimental Design Challenges

Designing a set of experiments for evaluating the e↵ects of radiation-induced soft errors

on 3D-stacked architectures is nontrivial. First of all, 3D-stacked components are most

commonly available today as packaged memory chips including the Hybrid Memory Cube

(HMC) [Mic18c], High-bandwidth memory (HBM) [Mic18b], and 3D-stacked (3DS) DRAM

[Mic18a]. These memory chips, especially HMC and HBM, are typically co-embedded with

a processor on a silicon interposer and are di�cult to procure in a discrete & standalone-

testable form factor. Because of this, FPGA compatible platforms for accessing and testing

141

Figure B.1: Xilinx Virtex Ultrascale+ HBM (VCU-128) FPGA Board. Board

includes Xilinx VU37P FPGA with 2⇥ 32Gb 4H HBMs.

142

HBM memory were evaluated for reduced testing complexity. In the example of the Xilinx

Ultrascale+ VU37P HBM FPGA (VCU-128 board), shown in Fig. B.1, the FPGA is co-

embedded on a Silicon interposer with 2⇥32Gb 4H HBMs [SA17] [Xil19] requiring the entire

heat sink to be removed and the interposer to be partially delidded to expose the HBMs for

irradiation.

Secondly, removing the heatsink leads to thermal dissipation issues and excludes vacuum-

based testing options such as utilizing the Vanderbilt Pelletron [McC15]. It also complicates

the experiment as errors may not be exclusively introduced into the HBM memory, but may

also a↵ect the FPGA chip responsible for interfacing with and testing the HBM memory.

Xilinx recently demonstrated in [CM19] single-event evaluation of the same Xilinx Ultra-

scale+ HBM board as considered above, with limited insights on Single Event E↵ects (SEEs)

on HBM memories and no spatial error information. Their SEE studies utilized >10MeV

neutron and 64MeV proton sources at the LANSCE Weapons Neutron Research Facility

(WNR) and at Crocker National Laboratory (CNL), respectively.

Separately, HBM and HMC memories not only include memory dies but also include a

logic die at the bottom of the stack. Decoupling the location of memory errors and the error

source is further complicated by the fact that soft errors may be introduced to the memory

dies and/or the the logic die.

B.2 3D-Stacked (3DS) Test Samples

As alluded to above, 3D-stacked (3DS) DRAM [Mic18a] was selected as it is (1) procurable

in a discrete and testable 288-pin DDR4 DIMM form factor, (2) not co-embedded with a

processor or FPGA die on a silicon interposer, (3) simple to chemically delid, and (4) testable

using a memory test platform (MTP) such as the Innoventions Ramcheck LX (Fig. B.6) or

the custom IBM Sputnik MTP (Fig. B.7). Overall, 3DS is also simpler to test and extract

information from as it has no logic die as in the case for HMC & HBM memories.

143

(a) 2-Layer (2H) (b) 4-Layer (4H)

Figure B.2: 3DS Logical Rank Mapping. 3DS DDR4 DIMMs include 2 physical ranks

and 2/4 logical ranks for the 2H and 4H Stacks respectively. The logical ranks correspond

to the stack height where the (a) 2H stack has 2 logical ranks and the (b) 4H stack has 4

logical ranks. Logical rank can be used to locate where soft errors occur in the memory

stack during irradiation.

Radiation-induced soft errors are expected to be dominated by upsets within the bit

cells & memory array itself, though one should still consider the e↵ects of read/write/refresh

circuitry on the overall bit error rate as this circuitry may also be sensitive to radiation.

Given the volatile nature of DRAM, refresh at regular (e.g. 64ms) intervals is required.

While decoupling the e↵ect of radiation on peripheral circuitry and bit cells is ideal, the

overall objective of this work is to evaluate the e↵ects of radiation-induced errors on the the

entire DRAM memory system (bit cells and peripheral circuitry).

Samsung 64GB (M393A8K40B22-CWD) and and 128GB (M393AAK40B42-CWD) 288-

pin DDR4 DIMMs were utilized specifically in this study. The 64GB and 128GB DDR4

DIMM modules consist of 36⇥ 2-layer (2H) and 4-layer (4H) memory devices, respectively.

Four of the devices are reserved for ECC and ignored during all experiments. Each die in

the both stacks consists of 8Gb DRAM. DIMM Memory hierarchy includes 2 physical ranks

(side of DIMM), 2/4 logical ranks (64GB/128GB DIMMs), and 16 banks (4 banks/group⇥

4 bank groups). In both cases, the logical rank indexes each die within its respective stacked-

144

Figure B.3: Delidded 3D-Stacked (3DS) DRAM Memory. 288-pin DDR4 modules

were utilized for testing. A 64GB, 2-layer stacked DIMM (top) and a 128GB, 4-layer stacked

DIMM (bottom) were used for testing. Devices D21-D24 were delidded—device #’s [Sam17a]

& [Sam17b]. Devices D25-D28, directly below the delidded devices, were also utilized for

testing at the NASA Space Radiation Laboratory (NSRL).

DRAM device, shown in Fig. B.2.

64GB and 128GB DIMMs were prepared for testing using facilities at both Vanderbilt

University and NASA Space Radiation Lab (NSRL). A Titanium-Sapphire Chirped Pulse

Amplifier (CPA) Laser was utilized at Vanderbilt, which required sample delidding to expose

the bare silicon prior to irradiation. Delidding was performed across 4 DRAM devices on both

the 64GB and 128GB DIMMs, as shown in Fig. B.3. All delidded devices were confirmed to

be fully functional after delidding using the IBM Sputnik MTP discussed in the next section.

Additionally, cross sections of both the 2H and 4H DRAM devices were taken by molding

the devices in a resin and polishing. Cross sections are shown in Fig. B.4.

145

Figure B.4: Cross Section of 2-Layer (2H) Samsung 3DS Memory Devices. Stacked

memory devices consist of similar 8Gb DRAM dies. Therefore, 2H and 4H stacked-DRAM

devices consist of 16Gb and 13Gb, respectively.

B.3 Memory Test Platform (MTP)

After obtaining Samsung 2H (64GB) and 4H (128GB) 288-pin DDR4 DIMM samples, sev-

eral MTP platforms were evaluated for testing. Multiple factors were taken into consider-

ation including (1) programmability, (2) ability to shield the tester during irradiation, (3)

thermal-dissipation issues, (4) accessing physical addresses, (5) commercial availability, and

(6) software support.

Most importantly, the testing platform must be compatible with the experimental setup

and be able to identify spatial information about where errors are introduced within the

memory. Depending on the source of irradiation, there may be size, power, and thermal

limitations. If testing is conducted in a vacuum, as is the case for SEU studies using the

Vanderbilt Pelletron, thermal considerations are a large concern as heat sinks and fans do

not provide su�cient cooling in a vacuum and must be replaced with a thermoelectric cooler,

or cold finger. It’s important to note that while its possible to perform some SEU studies

at room pressure (1 atm), this is typically only available at higher-energy facilities such as

146

(a) (b)

Figure B.5: Vanderbilt University Thermoelectric Cooling System. (a) 4 Ther-

moelectric (TE) cooling modules mounted in between heat exchanger and 0.25 in thick

aluminum plate. (b) Thermistor (center) was half-embedded into outer side of plate for

measuring temperature input for external temperature controller. [McC17]

NASA Space Radiation Laboratory (NSRL).

Previously, it was shown in Section A.1 where an IBM TrueNorth Neurosynaptic System

NS1e Board was irradiated in the Vanderbilt Pelletron under vacuum conditions; however,

this setup did not require any special heat dissipation techniques as the chip is a low-power

design (⇠70mW) and was powered down in between runs to prevent any possible overheating

or damage. An FPGA system (e.g. Virtex Ultrascale+ HBM VCU-128G, Fig. B.1) or a

DDR4-based memory test platform is typically much higher-powered and requires thermal

considerations.

Collaborators at Vanderbilt University developed a thermoelectric cooling system, de-

tailed in [McC17] and shown in Fig. B.5, which has been demonstrated to cool a 30W

test article in a vacuum chamber using electrical and liquid chamber feed-throughs (see

Fig. A.10a). Utilizing a cold finger instead of a heat sink and fan allows higher power sys-

tems to be tested in vacuum conditions; however, it is di�cult to both irradiate and cool the

same part (e.g. interposer), which is required in the case of testing the Virtex Ultrascale+

HBM VCU-128G board at vacuum.

147

For the purpose of irradiating 3DS memory, three di↵erent DDR4-based memory test

platforms were evaluated:

1. Linux Computer (Example test programs: memtest86, malloc, etc.)

2. Ramcheck LX Memory Test Platform (Fig. B.6)

3. IBM Sputnik Memory Test Platform (Fig. B.7)

First of all, Using a Linux-based computer comes with obvious limitations. Computers

utilize virtual addressing spaces, making it di�cult to evaluate error information for physical

addresses. Programs such as memtest86 [Pas21] state that physical addressing decoding

scheme information is proprietary for Intel-based systems. Other Linux commands such as

memory allocation (malloc) were also evaluated but su↵er from the same address decoding

limitations as above. Additionally, its important for the reliability of the memory test

platform to be decoupled from the DRAM memory under test.

Commercially available memory test platforms are typically quite limited in o↵ering,

large in form factor, and expensive. Additionally, project specifications required the memory

tester to not only support DDR4 memory but also 3DS-DDR4 DIMM memory which consists

of both physical and logical ranks. Due to quoted compatibility for 64GB+ DDR4-based

DIMMs, the Ramcheck LX MTP (Fig. B.6) was procured and tested with the 64GB & 128GB

DIMMmodules. Unfortunately, it was found that the tester (1) was not compatible as stated,

(2) required custom software support, and (3) was extremely limited by available testing

functionality and not designed for detecting exactly where bit errors occurred. Additionally,

the MTP manufacturer, Innoventions, ceased operations and was unable to o↵er any software

support in order to run the DDR4 parts.

Procuring a system for testing 3DS-based DRAM memory proved rather challenging due

to compatibility and experimental limitations mentioned above. The project was assisted

by the support of IBM through the OpenPower Foundation. Collaborators at IBM provided

148

Figure B.6: Innoventions Ramcheck LX Memory Test Platform.

(a) (b) (c)

Figure B.7: IBM Sputnik Memory Test Platform. (a) Sputnik Memory Test Platform

with Raspberry Pi-based control box (left) and Minnow card (right). Minnow card (b)

front and (c) side views. Irradiation source placed such that ions incident on front-side of

DDR4 DIMM in (c). Sputnik box and Minnow card communicate via I2C bus and user

communicates with Sputnik box via gateway computer utilizing Ethernet protocol.

149

Figure B.8: 3DS DDR4 DIMM Device Layout. Devices D5, D10, D15, & D20 (purple)

are reserved for ECC and disabled during all irradiation experiments.

access to an internal, custom-design memory test platform, nicknamed ‘Sputnik’. The IBM

Sputnik MTP (Fig. B.7) consisting a Raspberry Pi-based ‘Sputnik’ control box and Minnow

card. The two components utilize a low-frequency I2C protocol for communication. Gateway

computer interfaces with ‘Sputnik’ via local ethernet connection. The minnow card consists

of a memory controller IC which interfaces with the 3DS DDR4 DIMM module. IBM

OpenPOWER Foundation Cronus environment and MCBIST software tools were used to

write known patterns into the memory array and detect errors after irradiation.

Example error report information for detected bit errors for a single memory address

is found in Table B.2. Error report provides spatial information including physical rank

(DIMM side), logical rank (die in stack, Fig. B.2), bank group (BG), bank array (BA), row

(217), column (210), beat/burst pair, and nibble (or device). Nibbles correspond to specific

devices on the DIMM depending on which physical rank is selected, detailed in Table B.1 &

Fig. B.8.

Memory requests are 64B sent over 4 clock cycles at double-data rate (DDR). This con-

150

Nibble Device (Phys. Rank=0) Device (Phys. Rank=1)

nibble<0> D6 D16

nibble<1> D1 D11

nibble<2> D7 D17

nibble<3> D2 D12

nibble<4> D8 D18

nibble<5> D3 D13

nibble<6> D9 D19

nibble<7> D4 D14

nibble<8> D25 D33

nibble<9> D21 D29

nibble<10> D26 D34

nibble<11> D22 D30

nibble<12> D27 D35

nibble<13> D23 D31

nibble<14> D28 D36

nibble<15> D24 D32

Table B.1: Nibble to Device Mapping per physical rank (side of DIMM). Each mem-

ory request is 64B sent over 4 clock cycles at double-data rate (64b⇥4 cycles⇥2 bursts/cycle).

Each 64b segment is called a burst and clock cycle consists of 1 burst pair (or 2 bursts). Sam-

sung 64GB (M393A8K40B22-CWD) and 128GB (M393AAK40B42-CWD) DIMMs consists

of sixteen, 4-bit width (⇥4) dram devices per physical rank, excluding ECC devices. Each

64bit burst consists of 4 bits/device⇥16 devices. Each 4-bit block of data for each device is

also called a nibble.

151

1 2022 -02 -17...: error trap: 0

2 2022 -02 -17...: dimm: 0

3 2022 -02 -17...: physicalrank: 0

4 2022 -02 -17...: logicalrank: 1

5 2022 -02 -17...: BG: 2

6 2022 -02 -17...: BA: 0

7 2022 -02 -17...: row: 0x05406

8 2022 -02 -17...: col: 0x00

9 2022 -02 -17...: beat pair: 0/1

10 2022 -02 -17...: BYTE : 0011223344556677

11 2022 -02 -17...: NIBBLE : 0101010101010101

12 2022 -02 -17...: ERRORS :M.X

13 2022 -02 -17...: burst 0 actual : 0x1111111111111110

14 2022 -02 -17...: burst 0 expected: 0x1111111111111111

15 2022 -02 -17...: burst 1 actual : 0x2222222222222220

16 2022 -02 -17...: burst 1 expected: 0x2222222222222222

Table B.2: IBM Sputnik Error Trap Example. Minnow card supports up to 2 DIMMs,

2 physical ranks (side of DIMM), 4 logical ranks (3DS stack height), 4 bank groups (BG), 4

bank arrays (BA), 17 row bits, and 10 column bits. Bursts (e.g. 0 & 1) are arranged LSB-

first, nibble<0:15>. In this example, errors were detected on nibble<15> (physicalrank=0,

device=D24) during burst 0 & 1, highlighted in red on lines 13 & 15. Nibble<13> (device

D23) is ignored as device D23 was non-functional on utilized DIMM, denoted by an ‘M’

(masked) on line 12. Nibble-to-device mapping can be found in Table B.1 & Fig. B.8.

152

1 putscom mc regburst0 1111111111111111 -pall #burst 0

2 putscom mc regburst1 2222222222222222 -pall #burst 1

3 putscom mc regburst2 3333333333333333 -pall #burst 2

4 putscom mc regburst3 4444444444444444 -pall #burst 3

5 putscom mc regburst4 5555555555555555 -pall #burst 4

6 putscom mc regburst5 6666666666666666 -pall #burst 5

7 putscom mc regburst6 7777777777777777 -pall #burst 6

8 putscom mc regburst7 8888888888888888 -pall #burst 7

Table B.3: Setting Expected IBM Sputnik Memory Pattern Example. Memory con-

troller (mc) chip is utilized for interfacing with DIMM. Written or expected memory pattern

is specified by setting eight 64b registers (regburst0-regburst7) on the memory controller.

Each 64b register is LSB first, nibble<0:15>. Example utilizes beat pattern resulting in

32’h12345678 to stored on each DRAM device for every valid memory address.

sists of 8 bursts of 64b of data, where two bursts (or a burst-pair) are sent each cycle. DRAM

devices on the Samsung 64GB (M393A8K40B22-CWD) and 128GB (M393AAK40B42-CWD)

DIMMs are 4-bit width (⇥4) devices. Each 4-bit packet of data (per device per burst) is called

a nibble. Error information is provided for each memory address and on each beat/burst

pair (e.g. burst pairs 0/1, 2/3, 4/5, 6/7). Arbitrary memory patterns can be specified such

as the beat pattern (see Table B.3) as well as checkerboard, all zeros, and all ones patterns.

Thermal and other considerations still exist for the IBM Sputnik MTP as the memory

controller IC on the Minnow card may consume ⇠30W at run-time, making it di�cult to

use facilities such as the Vanderbilt Pelletron at vacuum without the use of a ‘cold finger’

as previously mentioned in Fig. B.5. The Vanderbilt Thermoelectric Cooler (designed in

[McC17]) requires reasonable modifications for use with the Sputnik system to cool the

memory controller IC (covered by heat sink in Fig. B.7b).

153

To reduce immediate testing complexity, testing was performed at room pressure (⇠1 atm)

using the Vanderbilt University Pulsed-Laser and high-energy testing at NASA Space Radi-

ation Laboratory (NSRL) facilities, detailed in subsequent sections B.4 and B.5.

B.4 Vanderbilt Pulsed-Laser Testing

Vanderbilt University o↵ers Pulsed-Laser testing, which supports wavelengths varying 300nm

to 3µm and ⇠235 fs pulses with 1 kHz repetition rate [Van21, MBL04].

B.4.1 Titanium-Sapphire Chirped Pulse Amplifier (CPA) Laser

The Vanderbilt Pulsed-laser setup consists of a titanium-sapphire chirped pulse amplifier

laser. A diode-pumped CW laser is coupled into a passively mode-locked Ti:sapphire laser.

The mode-locked amplifier converts the CW laser input into a train of ultrashort pulses

with a repetition rate of ⇠80MHz, which act as seed pulses for a second titanium-sapphire

crystal pumped with a frequency doubled Nd:YAG laser at 532nm. The pulses are stretched

in duration so they can be safely amplified and then compressed again. After making multiple

passes through the gain medium, they are converted to ⇠235 fs pulses at 1 kHz repetition

rate [Van21].

The system utilizes a Topas optical parametric generator (OPG) to convert broad spec-

trum Ti:sapphire pulses to a wide range of wavelengths (e.g. 300nm�3µm) using non-linear

crystals. The laser beam diameter has been measured as ⇠3.2µm for � = 1260nm. The

entire laser system is shown in Fig. B.9 with a mechanical stage for testing shown in Fig. B.10.

B.4.2 Laser-based Testing Results

Initial test results demonstrated that the Vanderbilt CPA-laser was able to induce Single-

Event E↵ects in the 3DS memory using through-silicon two-photon absorption [MBL04].

154

(a) (b)

Figure B.9: Vanderbilt University Ti-Sapphire-based Pulsed Laser.

(a) (b) (c)

Figure B.10: Vanderbilt University Pulsed Laser 3DS Test Setup. (a) Sputnik Test

setup (bird’s eye view). (b) Sputnik test setup (side profile). DIMM is parallel to lens

opening. (c) Mirrors mounted below objective used to focus beam on device under test

(DUT).

155

Figure B.11: 3DS Memory Bit Errors vs. Laser Intensity. The laser was positioned

over one of the memory arrays on a delidded device. The laser irradiated the exposed device

at 5 di↵erent laser intensities, measured in terms of Pulse-Energy. In between runs, the

DIMM memory was re-initialized with correct data.

The laser was aligned above an exposed memory device precisely above a memory array by

visual inspection. The laser irradiated the exposed devices at 5 di↵erent Pulsed-Energy (nJ)

intensities. Number of bit errors was measured after irradiation at each intensity level and

plotted in Fig. B.11. The memory was reinitialized after each run.

An automated setup was developed to control the laser, mechanical stage, and memory

test platform. The laser beam can be moved in ⇠100nm steps—shown in Fig. B.12. The

setup (1) writes a known pattern into the memory, (2) moves the laser beam and exposes

the memory at a fixed X/Y location, and (3) evaluates the DUT to determine where errors

occurred within the memory—and repeated for all specified X/Y locations using a simple

bash script, shown in Fig. B.13.

The automated setup was used to expose 81 data points across a 4 ⇥ 4mm area of the

exposed back-side of the 3DS device, where the stage was moved in 500µm X/Y increments

for each point. Results are shown in Figures B.14 & B.15. Testing at Vanderbilt University

using the Titanium-Sapphire CPA Laser verified that memory errors can be induced in the

156

(a) (b)

Figure B.12: Vanderbilt University Pulsed Laser 3DS Automated Testing. (a)

Setup including laser control computer (left) and memory test platform gateway computer

(right). (b) A fraction of the beam is reflected using a low-incident angle waveplate onto a set

of mirrors and into a photodiode, enabling the measurement of every laser pulse generated

by the system.

Figure B.13: Automated Laser Testing Program. Laser stage is mechanically controlled

down to ⇠100nm resolution. Simple bash script automatically controls mechanical stage and

Sputnik memory test platform and performs automated tests at specified X/Y locations.

157

(a) Heatmap (b) Histogram

Figure B.14: Automated 3DS Laser Testing Results. The Laser stage was automati-

cally moved in 500µm X/Y increments, covering a 4mm⇥ 4mm area (81 total events). For

each location, the DIMM was reloaded with correct data, irradiated with a laser, and then

evaluated to see if errors occurred. (a) Heatmap of the number of error traps detected per

X/Y location. After 64 error traps, the DIMM read operation is halted. (b) Histogram

showing whether each event induced Single-Event Upsets (SEUs), Single-Event Functional

Interrupts (SEFIs), or no detected memory/bit errors.

158

Figure B.15: Automated 3DS Laser Testing Results: Bit Errors by Bank. Laser

was pulsed across 81 data points spanning a 4⇥ 4mm area of the exposed device. Number

of bit errors detected per device bank is shown.

top-die of the exposed 3DS memory device and accurately detected using the IBM Sputnik

Memory Test Platform. Additionally, testing results shown in Fig. B.14 allude to the overall

radiation sensitivity of the tested 3DS Memory devices that were observed during radiation

studies at the NASA Space Radiation Laboratory (NSRL), described in the following section.

159

Figure B.16: NSRL Testing Candidate Ions. Energy, LET in Si, and Range in Si

provided for each ion species.

B.5 NASA Space Radiation Lab (NSRL)

Additional testing was performed at the NASA Space Radiation Lab (NSRL) facility located

at Brookhaven National Lab (BNL) in Long Island, NY. The NSRL facility itself was estab-

lished to assess the risks of space radiation to human space travelers and equipment. It o↵ers

a variety of high-energy, non-ionizing radiation recipes for medical, biological, physical, and

electronics testing.

B.5.1 Test Facility Capabilities

The ion beam supports a large range of energies and ion species. Full ion and energy

capabilities as well LET curves, LET energy in Si (MeV/(mg/cm2)), and range in Si can

be found in [NAS22a, NAS22b]. A subset of candidate ions for 3DS testing are shown in

Fig. B.16. The NSRL Beamline is shown in Fig. B.17.

160

(a) Front (b) Back

Figure B.17: NSRL Beamline.

B.5.2 NSRL Testing Results

NSRL Tungsten Collimator with 3DS Test Setup is shown in Fig. B.18. The ion beam size

is ⇠10⇥ 10 cm. A Tungsten collimator is used to limit exposure to specific areas of interest

while shielding sensitive electronics components on the board. The collimator was adjusted

to limit exposure to Devices D21-D28 on the front-side of the DIMM (Physical Rank=0) as

shown in Fig. B.18b (DIMM Device layout defined in Fig. B.8).

Several experiments were performed over a 4-hour period using Si and C species. All

experimental runs are summarized in Table B.4. In general, either no bit errors (SEUs) were

detected or a Single-Event Functional Interrupt (SEFI) was triggered, during all runs except

for Run 8. This was likely due to the low flux of each experimental run, but it hints at

the substantial sensitivity of the 3DS memory to radiation. SEFI sensitivity correlates with

what was seen during pulsed-laser testing described in Section B.4, where SEFIs were all

but guaranteed if the laser was positioned directly above a sensitive area and/or circuit.

161

(a) Tungsten Collimator (b) Shielding Design (c) Experimental Setup

Figure B.18: NSRL Adjustable Tungsten Collimator with 3DS Test Setup. The

collimator is shown in the fully retractable position with the red laser alignment lines vis-

ible. Collimator is designed to shield all but the 8 selected devices shown in (b). Actual

experimental setup after aligning collimator is shown in (c).

(a) Run 24 (10.7 MeV/amu) (b) Run 25 (0 MeV/amu)

Figure B.19: Example NSRL Runs with Degrader. ‘X’ represents devices where bit

errors were detected. Both Runs 24 & 25 are examples of runs with catastrophic SEFI events

where multiple devices were a↵ected despite the beam being mostly and fully degraded,

respectively. Results hint that the 3DS sample was highly sensitive to secondaries.

162

Run Species
Energy

LET Fluence
Errors SEUs SEFI(s)

SEFI Type
(MeV/amu) Collected Collected Detected

7 Si 370 0.5 1e+5 0 0 no —

8 Si 370 0.5 1e+6 3 3 no —

9 Si 370 0.5 1e+7 4593 0 yes row(s)

11 C 300 0.1 6.5e+6 1651 0 yes row(s)

12 C 300 0.1 1e+6 0 0 no —

13 C 300 0.1 1e+6 0 0 no —

14 C 300 0.1 1e+6 0 0 no —

15 C 300 0.1 1e+6 0 0 no —

16 C 300 0.1 1e+6 692 0 yes column

17 C 300 0.1 1e+6 2085 0 yes row

18 C 104 0.2 1e+6 0 0 no —

19 C 104 0.2 1e+6 2735 0 yes row

20 C 104 0.2 1e+6 0 0 no —

21 C 104 0.2 2e+6 0 0 no —

22 C 104 0.2 1e+6 335 0 yes column

23 C 104 0.2 3e+6 585 0 yes row

24 C 10.7 — 5e+6 1228 0 yes multi-device

25 C 0 — 5e+6 624 1 yes row

26 C 16.15 — 5e+6 171 0 yes column

27 C 18 — 5e+6 512 0 yes row

Table B.4: NSRL Testing Run Summary. All runs were performed on 4-layer (4H)

3DS Memory. Full 3DS DIMM memory readout was not performed every time an error was

detected as system was designed to only report on errors on up to 64 memory addresses at

a time. Runs with detected SEFI(s) were prematurely halted after reading out errors on

64-1280 addresses. ‘Collected’ errors reflect this rather than necessarily the total number of

bit errors read out from the entire DIMM. Run 8 was unique as it was the only run with

Single-Event Upsets (SEUs) detected only.

163

B.6 General Conclusions

It was determined that 3DS memory is highly-sensitive to radiation. As is true in general for

smaller technology nodes, the critical charge to induce a memory upset is substantially lower

than older technology nodes. The 3DS memory, however, was not only sensitive to Single-

Event Upsets (SEUs) but also highly sensitive to Single-Event Functional Interrupts (SEFIs)

as seen during both pulsed-laser testing at Vanderbilt University and heavy ion experiments

at NASA Space Radiation Laboratory. Specifically during the laser testing, it was shown

that if the laser was positioned directly over a sensitive circuit (e.g. redundancy latch), a

SEFI could be repeatably induced at the same location across multiple experimental runs.

In general, studying the e↵ects of radiation on specifically 3D Architectures provides

new challenges beyond traditional testing. It was found that Variable-Depth Bragg Peak

[BKM11] analysis is non-trivial in more complex 3D-stacked systems utilizing state-of-the-

art technology nodes.

Our interpretation is that in principal, each layer in the memory stack can be indepen-

dently examined given that the amount of attenuation per layer is likely negligible. It is,

however, important to point out that NSRL experiments highlighted the the significant e↵ect

of secondaries, especially where in Run 25 the beam was fully degraded to 0 MeV/amu, but

generated secondaries managed to trigger SEFI and SEU event(s) across multiple devices on

the DIMM. Because of the overall system complexity and confounding variables, new tech-

niques must be developed to study system reliability of more complex 3D-stacked memories

and systems.

164

APPENDIX C

CTT-Hardware-based Inference Realistic Circuit

Universal Simulator

Example codebase is available here: https://github.com/smoran1/CIRCUS localmc

C.1 CIRCUS Overview

CIRCUS is a simulation platform (Fig. 4.24) that allows for a schematic-based design to be

automatically parsed & updated with specified input vectors and trained weights. Section C.2

describes how Trained weights are automatically mapped to CTT devices in simulation using

an Iweight(nA) ! �VTH(mV) Lookup Table which sets the value of the parameterized voltage

attached to the device’s gate such that it produces a specific on current when enabled with

VWL = VGS = 200mV , previously shown in Fig. 4.25.

Section C.3 describes how digital inputs are mapped into the circuit simulation to con-

trol the WL driver circuits using vector file generation technique. Section C.4 combines

the generated netlist and wl vector files from the previous two sections, and invokes the

Cadence Spectre simulations followed by Cadence OCEAN Analysis to extract crucial data

from the simulation output waveforms. Automated Data Analysis using Cadence OCEAN

is described in more detail in section (Section C.5). Simulations with post-layout parasitic-

extracted netlists are also possible for more accurate post-design verification. Spectre Accel-

erated Parallel Simulator (++aps) is utilized to reduce overall simulation run-time without

compensating on simulation accuracy.

165

File Directory:

root

cshrc

scripts

runfile.py

[WL INPUT vector generation.py]

[generate column netlists.py]

[postrun analysis.py]

cleanup.sh

templates

mts

ocean

[analysis localmc.ocn]

netlist

weights

runObjFile

[automated run files]

[column netlist templates]

[final run netlists]

[final run ocean scripts]

[wl inputs]

[automated run outputs]

[general outputs]

[ocean outputs]

[spectre outputs]

plots

166

1 // Library name : NEUROCTT 0P3

2 // Ce l l name : n f e t c t t

3 // View name : schematic

4 // Inhe r i t ed view l i s t : s p e c t r e cmos sch cmos . sch schematic v e r i l o g a ahdl

5 // psp i ce dspf

6 subckt n f e t c t t b d g s

7 parameters Vth=0

8 V0 (g net9) vsource dc=Vth type=dc

9 N0 (d net9 s b) n f e t w=428n l=20n . . .

10 ends n f e t c t t

11 // End o f s ub c i r c u i t d e f i n i t i o n .

12

13 // Library name : NEUROCTT 0P3

14 // Ce l l name : ARRAY CTT TWIN CELL

15 // View name : schematic

16 // Inhe r i t ed view l i s t : s p e c t r e cmos sch cmos . sch schematic v e r i l o g a ahdl

17 // psp i c e dspf

18 subckt ARRAY CTT TWIN CELL BLc BLt SL VSS WL

19 parameters Vth p Vth n

20 I0 (VSS BLt WL SL) n f e t c t t Vth=Vth p

21 I1 (VSS SL WL BLc) n f e t c t t Vth=Vth n

22 ends ARRAY CTT TWIN CELL

23 // End o f s ub c i r c u i t d e f i n i t i o n .

Table C.1: Example ARRAY CTT TWIN CELL Netlist Implementation.

C.2 Spectre Netlist Parsing

Di↵erential weights are stored using the ARRAY CTT TWIN CELL model with parameter-

ized Vth p & Vth n gate voltage sources, shown in Table C.1. Example netlist with device

weights for a single column with 8 WLs after mapping to �VTH(mV) parameters is shown

in Table C.2.

Table C.3 provides a excerpt of the included generate column netlists.py script where

netlist lines corresponding to twin-cell CTT devices are retrieved and modified with provided

V TH T and V TH C weight parameters after mapping Iweight(nA) ! �VTH(mV) values

using a weight lookup table (templates\weights\WEIGHT LUT TT.csv).

167

1 I0\<0\> (BLc BLt SL VSS WL\<0\>) ARRAY CTT TWIN CELL Vth p=36.061044m Vth n=15.503379m

2 I0\<1\> (BLc BLt SL VSS WL\<1\>) ARRAY CTT TWIN CELL Vth p=23.271323m Vth n=31.856741m

3 I0\<2\> (BLc BLt SL VSS WL\<2\>) ARRAY CTT TWIN CELL Vth p=28.847506m Vth n=13.605357m

4 I0\<3\> (BLc BLt SL VSS WL\<3\>) ARRAY CTT TWIN CELL Vth p=53.405000m Vth n=28.581547m

5 I0\<4\> (BLc BLt SL VSS WL\<4\>) ARRAY CTT TWIN CELL Vth p=47.045000m Vth n=31.757343m

6 I0\<5\> (BLc BLt SL VSS WL\<5\>) ARRAY CTT TWIN CELL Vth p=28.625991m Vth n=44.195000m

7 I0\<6\> (BLc BLt SL VSS WL\<6\>) ARRAY CTT TWIN CELL Vth p=29.851701m Vth n=48.395000m

8 I0\<7\> (BLc BLt SL VSS WL\<7\>) ARRAY CTT TWIN CELL Vth p=29.274721m Vth n=26.502806m

Table C.2: Example Spectre Netlist after Weight Insertion.

1 # Begin . s c s f i l e p a r s i n g

2 with open (s p i c e n e t l i s t t emp l a t e) as f :

3

4 # cr e a t e [c on t en t s] da ta array o f t emp l a t e f i l e

5 f o r l i n e in f :

6 contents . append (l i n e)

7 # Parse

8 nLinesUpdated = 0

9 f o r i in range (0 , l en (contents) ,1) :

10 # I f l i n e c on t a i n s n f e t c t t (not dummy de v i c e) :

11 i f (a l l (x in contents [i] f o r x in [’ Vth p ’ , ’ Vth n ’]) and (’ parameters ’ not in contents [i])) :

12 WL=contents [i] . s p l i t () [0] . s p l i t (”<”) [1] . s p l i t (”\\”) [0]

13 temp l ine =’ I0\< ’ + s t r (WL)+’\> (BLc BLt SL VSS WL\< ’ + s t r (WL) \

14 + ’\>) ARRAY CTT TWIN CELL Vth p=’ + s t r (VTH T[i n t (WL)]) \

15 + ’ Vth n=’ + s t r (VTH C[i n t (WL)] + ’\n ’)

16 updated contents . append (temp l ine)

17 nLinesUpdated = nLinesUpdated+1 # san i t y check (s hou l d be 256 l i n e s / column)

18 e l i f ’ seed=12345 ’ in contents [i] :

19 temp l ine = ’mc1 montecarlo numruns=1 seed=’ + s t r (SEED NUMBERS[neuron num]) + ’ v a r i a t i o n s=

a l l sampling=standard \\\n ’

20 updated contents . append (temp l ine)

21 e l s e :

22 updated contents . append (contents [i])

23

24 # Output f i l e

25 with open (o u t p u t n e t l i s t d i r e c t o r y + ou t pu t n e t l i s t f i l e n ame + s t r (neuron num) + ” . s c s ” , ”w”) as f :

26 f o r l i n e in updated contents :

27 f . wr i t e (l i n e)

Table C.3: CIRCUS Column Netlist Generating Python Script. Subset of provided

generate column netlists.py.

168

C.3 Input Vector File Generation

Input Vector Files allow users to specify digital inputs (e.g. 8 bit integers between 0� 255),

remap them, and then apply them as inputs within a circuit simulation. Example file setup

and WL inputs for the first two clocks cycles of inference is shown in Table C.4. This file

specifies the values of the 6 digital inputs to each of the WL Drivers for each of the 256 WLs

(WLh0:255i).

Table C.5 provides an excerpt of the included WL INPUTS vector generation.py script

where specified digital inputs (WLh0:255i) are mapped to logic voltages for circuit input

signals WL VWL ENh0:255i, WL VREAD ENh0:255i, WL VPP ENh0:255i, and their re-

spective complements.

169

1 rad ix 44

44

44

44

44

44

2

3 i o i i i i i i

4 vname WL VWL EN<<0:255>> WL VWL EN N<<0:255>> WL VREAD EN<<0:255>> WL VREAD EN N<<0:255>> WL VPP EN

<<0:255>> WL VPP EN N<<0:255>>

5 tun i t ns

6 t r i s e 1

7 t f a l l 1

8 v i l 0

9 vih 0 .8

10 vo l 0

11 voh 0 .8

12

13 ; format time vector

14 ; t=0ns

15 0 00

FF

00

FF

00

FF

16 ; Cycle : 1(t=3400ns)

17 3400 0000000820000000000080800000000000400020000001000004002000100000

FFFFFFF7DFFFFFFFFFFF7F7FFFFFFFFFFFBFFFDFFFFFFEFFFFFBFFDFFFEFFFFF

0000000820000000000080800000000000400020000001000004002000100000

FFFFFFF7DFFFFFFFFFFF7F7FFFFFFFFFFFBFFFDFFFFFFEFFFFFBFFDFFFEFFFFF

00

FF

18 ; Cycle : 2(t=3405ns)

19 3405 0000000820000000000080800000000000400020000001000004002000100000

FFFFFFF7DFFFFFFFFFFF7F7FFFFFFFFFFFBFFFDFFFFFFEFFFFFBFFDFFFEFFFFF

0000000820000000000080800000000000400020000001000004002000100000

FFFFFFF7DFFFFFFFFFFF7F7FFFFFFFFFFFBFFFDFFFFFFEFFFFFBFFDFFFEFFFFF

00

FF

Table C.4: Example CIRCUS WL Vector File Output. Output shown for the first 2

compute cycles (out of 256 input cycles.) Generated logic signals provide di↵erential digital

input signals to each of the 256 WL Drivers.

170

1 de f g e n e r a t e w l i n p u t v e c t o r f i l e s (X INPUTS) :

2

3 # (1) Generate WL Inpu t s per input−sample & per neuron (s imu l a t e 1 neuron @ a time)

4 vec conten t s = []

5 nSamples = len (X INPUTS)

6 f o r run num in range (0 , nSamples , 1) :

7

8 . . .

9

10 # (a) Prepare WL inpu t s f o r s p e c i f i c run #run num

11 # ∗∗

12 nWLs = len (X INPUTS [0]) #

13 WL INPUTS = [0] ∗ nWLs

14 f o r index , va l in enumerate (X INPUTS [run num] , 0) :

15 WL INPUTS[index] = va l

16

17 . . .

18

19 # (d . 1) S t a r t I n f e r e n c e

20 t i n f s t a r t = 3400; #ns

21 Tcycle = 5 ; #ns

22 nMaxCycles = 256 ;

23 f o r i in range (1 , nMaxCycles+1, 1) :

24 t ime s tep = Tcycle ∗(i −1) + t i n f s t a r t

25 l i n e = s t r (t ime s tep) + ’ ’

26 vwl en temp = ’ ’

27 vwl en n temp = ’ ’

28

29 # Convert 4− b i t s (1 hex char .) a t a t ime

30 f o r j in range (0 ,nWLs , 4) :

31 tmp , tmp n = convertWLInputsToHex (WL INPUTS[j : j +3])

32 vwl en temp = vwl en temp + tmp . s p l i t (’ 0x ’) [1] . upper ()

33 vwl en n temp = vwl en n temp + tmp n . s p l i t (’ 0x ’) [1] . upper ()

34

35 vread en temp = vwl en temp

36 vread en n temp = vwl en n temp

37 l i n e = l i n e + vwl en temp + ’ ’ + vwl en n temp + ’ ’ + vread en temp + ’ ’ + vread en n temp

38

39 # VPP

40 l i n e = l i n e + ’ 0 ’

41 f o r in range (1 ,nWLs// radix , 1) :

42 l i n e = l i n e + ’ 0 ’

43 l i n e = l i n e + ’ F ’

44 f o r in range (1 ,nWLs// radix , 1) :

45 l i n e = l i n e + ’F ’

46

47 vec conten t s . append (’ ; Cycle : ’ + s t r (i) + ’ (t=’ + s t r (t ime s tep) + ’) ’)

48 vec conten t s . append (l i n e)

Table C.5: CIRCUS WL Vector File Generation Python Script. Subset of provided

WL INPUT vector generation.py.

171

C.4 Run File

Table C.6 provides an example runfile which (1) generates WL input vector files, (2) generates

column netlist templates with imported weights, (3) creates run netlists with run and input

information, (4) creates an ocean analysis script for each run from a template file, (5) invokes

the Spectre circuit simulation, and (6) invokes Cadence OCEAN using the generated ocean

analysis script to analyze the simulation results.

C.5 Data Analysis using Cadence OCEAN

Cadence OCEAN allows user to generate SKILL-based scripts for automatically parsing

simulation outputs. An analysis script similar to that shown in Table C.8 is used to parse

the *.raw simulation output and automatically extract important information such as the

pulse-width of the neuron’s output signal. Additionally, mathematical integration can be

performed on specified signals such as the di↵erential input current presented to integrator’s

input by the CTT array (e.g. QINF⇠
R T

0 (IBLt(t)� IBLc(t)) dt).

Example CIRCUS analysis results for N=32 neurons and 50 simulation runs per neuron

with random inputs and randomly initialized weights are plotted in Fig. 4.28 in Section 4.4.

172

1 # (1) Generate WL Inpu t (. vec) F i l e s

2 WL INPUTS = np . random . randint (256 , s i z e=(nSamples , nWLs))

3 g e n e r a t e w l i n p u t v e c t o r f i l e s (WL INPUTS)

4 # (2) Generate column n e t l i s t t emp l a t e s

5 np . random . seed (12977511)

6 SEED NUMBERS = np . random . randint (500000 , s i z e=nNeurons)

7 T WEIGHTS, C WEIGHTS, T WEIGHTS VTH, C WEIGHTS VTH = gene ra t e random co lumn net l i s t s l o ca lmc (nNeurons ,

SEED NUMBERS)

8 # (3) Generate run n e t l i s t s

9 OFFSET POS TRIM BITS = np . z e ro s (nNeurons)

10 OFFSET NEG TRIM BITS = np . z e ro s (nNeurons)

11 n eu r on run l i s t = l i s t (range (0 , nNeurons , 1))

12 f o r run num in range (1 , nSamples+1 ,1) :

13 f o r neuron num in n eu r on run l i s t :

14 contents = []

15 with open (common directory + t emp l a t e n eu r on ne t l i s t + s t r (neuron num) + ” . s c s ”) as f :

16 f o r l i n e in f :

17 contents . append (l i n e)

18 f o r i in range (0 , l en (contents) ,1) :

19 # (a) I n s e r t ’ v e c i n c l u d e ’ command wi th i npu t v e c t o r f i l e

20 i f ’ v e c i n c l ude ’ in contents [i] :

21 contents [i] = ’ v e c i n c l ude ” ’ + w l i npu t v e c f i l e name + s t r (run num) + ’ . vec ” autostop

=f a l s e \n ’

22 # (b) Change OFFSET POS TRIM S e t t i n g s

23 . . .

24 # (4) Generate ocean s c r i p t f i l e s

25 f o r run num in range (1 , nSamples+1 ,1) :

26 f o r neuron num in n eu r on run l i s t :

27 with open (common directory + ocean templa te f i l ename) as f :

28 contents = []

29 f o r l i n e in f :

30 contents . append (l i n e)

31 f o r i in range (0 , l en (contents) ,1) :

32 i f ’ openResults ’ in contents [i] :

33 contents [i] = ’ openResults (” ’ + common directory + ’ automated run outputs /

spe c t r e ou tpu t s / neuron ’ + s t r (neuron num) + ’ run ’ + s t r (run num) + ’ . raw”)\n ’

34 . . .

35 # (5) Run Spec t r e S imu la t i on

36 f o r run num in range (1 , nSamples+1 ,1) :

37 f o r neuron num in n eu r on run l i s t :

38 s c s f i l e n ame = common directory + f i n a l r u n n e t l i s t + s t r (neuron num) + ’ run ’ + s t r (run num) + ’

. s c s ’

39 os . system (” spe c t r e ” + s c s f i l e n ame + ” ++aps +mult i thread ”)

40 # (6) Run Ocean a n a l y s i s s c r i p t s

41 f o r run num in range (1 , nSamples+1 ,1) :

42 f o r neuron num in n eu r on run l i s t :

43 ocean f i l ename = common directory + f i n a l r un o c e an + s t r (neuron num) + ’ run ’ + s t r (run num) + ’

. ocn ’

44 os . system (’ ocean −r e s t o r e ’ + ocean f i l ename)

Table C.6: CIRCUS Main Runfile Python Script. Subset of provided runfile.py

script.

173

1 openResults (”/u1/ ee /smoran2/Desktop/CIRCUS NEW/neuron s im tt 85C loca lmc / automated run outputs /

spe c t r e ou tpu t s / neuron 0 run 10 . raw”)

2

3 x1 = 3.40 e−06

4 x2 = 4.68 e−06

5 BLt integrated = in t eg (l ea fVa lue (i (” I2 : 7 ” ? r e s u l t ” tran ”) ” i t e r a t i o n ” 1) x1 x2 ” ”)

6 BLc integrated = in t eg (l ea fVa lue (i (” I2 : 3 ” ? r e s u l t ” tran ”) ” i t e r a t i o n ” 1) x1 x2 ” ”)

7

8 r i s i n g e d g e = c ro s s (l ea fVa lue (v (”NEURONOUTPUT” ? r e s u l t ” tran ”) ” i t e r a t i o n ” 1) 0 .45 0 ’ r i s i n g)

9 f a l l i n g e d g e = c ro s s (l ea fVa lue (v (”NEURONOUTPUT” ? r e s u l t ” tran ”) ” i t e r a t i o n ” 1) 0 .45 0 ’ f a l l i n g)

10

11 PWM 0P9 total time = 0.0

12

13 ; I d e a l l y the NEURONOUTPUT should be a s i n g l e pu l se with one r i s i n g edge and one f a l l i n g edge

14 i f (l ength (r i s i n g e d g e)==1 && length (f a l l i n g e d g e)==1 then

15 PWM 0P9 total time = nthelem (1 f a l l i n g e d g e)−nthelem (1 r i s i n g e d g e)

16 ; p r i n t l n (PWM total time)

17 ; Condit ion for i f the output i s mult ip l e pu l s e s (e . g . 2 pu l s e s with 2 r i s i n g edges & 2 f a l l i n g edges)

18 else

19 i f (l ength (r i s i n g e d g e) == length (f a l l i n g e d g e) then

20 n = length (r i s i n g e d g e)

21 for (i 1 n

22 PWM 0P9 total time = PWM 0P9 total time + nthelem (i f a l l i n g e d g e) − nthelem (i

r i s i n g e d g e)

23)

24)

25)

26

27 p = o u t f i l e (” . . / automated run outputs / ocean outputs / neuron 0 run 10 . txt ” ”w”)

28 f p r i n t f (p ”PWM (0 . 9V) Total Duration : %g (sec)\n” PWM 0P9 total time)

29 f p r i n t f (p ”BLt cur rent (i n t eg ra t ed) i s : %g (C)\n” BLt integrated)

30 f p r i n t f (p ”BLc cur rent (i n t eg ra t ed) i s : %g (C)\n” BLc integrated)

31 c l o s e (p)

Table C.7: Example CIRCUS-generated OCEAN Analysis Script. Analysis is per-

formed on the Spectre simulation output (*.raw). The di↵erential input current presented

to the integrator by the CTT array is mathematically integrated and the output pulse width

is calculated. Example is shown in Table C.8.

1 PWM (0.9V) Total Duration: 9.99515e-09 (sec)

2 BLt current (integrated) is: 3.34673e-12 (C)

3 BLc current (integrated) is: 3.99835e-12 (C)

Table C.8: Example CIRCUS Run Output after Cadence OCEAN Analysis.

174

APPENDIX D

NeuroCTT Design & Top-Level Verification

D.1 Digital I/O Architecture

A simple logic interface has been developed allowing a majority of the testing complexity to

be shifted to the FPGA-to-MATLAB UART-interface discussed in Section 3.4. Chip logic

operation consists of data load operations, instruction execution, & retrieving neuron time-

to-digital (TDC) output from the chip. All data load & unload operations are performed

using Serial-In (SI), Serial-Out (SO) communication protocols. Figures D.1 and D.2 demon-

strate executing a program on the chip (PROGRAM EXECUTE) as well as loading data, in-

struction, and configuration parameters to the chip. While, omitted here, output data can be

similarly retrieved from the chip by sending a a one-cycle (RETRIEVE NEURON COUNT)

pulse which leads to the contents of the 320b output register to be serially outputted from

the chip the COUNT DATA OUT pin.

Figure D.1: NeuroCTT 0.3 I/O Program Execute Enable.

175

(a) Input Datapath (b) Output Datapth

Figure D.2: NeuroCTT 0.3 I/O Architecture. (a) There are 3 serial input data paths

which load data into three input data shift registers: DATA REG, INSTRUCTION REG,

and CONFIG REG, respectively. Data load can happen concurrently or staggered (concur-

rent data load of the three datapaths is shown in the figure above). Input data is flopped

on positive edge of clock. (b) Previous shift register contents are outputted MSB-first on

respective output pins during a data load.

176

D.2 Testbench Vector Generator

Example codebase is available here:

https://github.com/smoran1/Verilog Test Vector Generator

A python-based compiler or test vector generator was designed to generate CSV-based

test vectors that can be used to run pre- and post-synthesis Verilog simulations as well as

chip-level Analog Mixed-Signal (AMS) verification simulations.

Verilog Testbench Vector Generator File Directory:

root

functions.py

example scripts

[run inference.py]

[run programming.py]

[run verification.py]

[run offchip ver.py]

...

[example testbenches]

[LOGIC SYSTEM TB.v]

outputs

[IO FILE INFERENCE.csv]

[IO FILE PRG.csv]

...

The TB Vector Generator produces a CSV output file which can be loaded into a pre-

or post-synthesis Verilog simulation for expediting chip design verification. An example test

vector (CSV) output is provided in Table D.1.

177

1 RESET N,LOAD DATA EN,DATA IN,LOAD INSTRUCTION EN, INSTRUCTION IN,LOAD CONFIG EN,CONFIG DATA IN,

RETRIEVE NEURON COUNT,PROGRAM EXECUTE EN,RESET COUNT EN,ANALOG NEURON IN

2 1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,00000000000000000000000000000000

3 1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,00000000000000000000000000000000

4 1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,00000000000000000000000000000000

5 0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,00000000000000000000000000000000

6 1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,00000000000000000000000000000000

7 1 ,0 ,0 ,1 ,0 ,0 ,0 ,0 ,0 ,0 ,00000000000000000000000000000000

8 1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,00000000000000000000000000000000

9 1 ,0 ,0 ,0 ,1 ,0 ,0 ,0 ,0 ,0 ,00000000000000000000000000000000

10 1 ,0 ,0 ,0 ,1 ,0 ,0 ,0 ,0 ,0 ,00000000000000000000000000000000

11 1 ,0 ,0 ,0 ,1 ,0 ,0 ,0 ,0 ,0 ,00000000000000000000000000000000

12 1 ,0 ,0 ,0 ,1 ,0 ,0 ,0 ,0 ,0 ,00000000000000000000000000000000

13 1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,00000000000000000000000000000000

14 1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,00000000000000000000000000000000

15 1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,00000000000000000000000000000000

16 1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,00000000000000000000000000000000

17 1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,00000000000000000000000000000000

18 1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,00000000000000000000000000000000

19 1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,00000000000000000000000000000000

20 1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,00000000000000000000000000000000

21 1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,00000000000000000000000000000000

22 1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,00000000000000000000000000000000

23 1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,00000000000000000000000000000000

24 1 ,1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,00000000000000000000000000000000

25 1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,00000000000000000000000000000000

26 . . .

Table D.1: Example TB Generator (CSV) Output File. Each row corresponds to

inputs that will be applied to the LOGIC SYSTEM block at di↵erent clock cycles. The final

column (“ANALOG NEURON IN”) corresponds to example neuron pulse-width-modulated

outputs to test functionality of the Time-to-Digital Converter (TDC) block.

178

D.2.1 Testbench Vector Generator: Header

Each python-based run-file begins with a header section defining necessary parameters for

the compiler, shown in Table D.2. Users can customize the Setup or Chip Configuration

Parameters shown in Table D.3. This section loads default values but can be modified later

again in the script.

D.2.2 Test Vector Generator: Run Examples

After the Header and Setup Parameters sections, the user can utilize a predefined set of

functions comprising data, instruction, and configuration loads to the chip as well as applying

chip resets (RESET N) and executing the loaded program (PROGRAM EXECUTE EN).

Predefined functions are provided in the functions.py file. An example run file for running

an INFERENCE simulation is provided in Table D.4.

D.3 Verilog Testbench

Tables D.5 & D.6 provide an example complementary testbench for loading the generated

CSV vector file from Tables D.2- D.4 into the LOGIC SYSTEM block.

179

1 import csv

2 from func t i on s import ∗

3

4 run name = ”outputs /IO FILE INFERENCE”

5

6 i n pu t s i g n a l s = [’RESET N ’ , ’LOAD DATA EN ’ , ’DATA IN ’ ,\

7 ’LOAD INSTRUCTION EN ’ , ’INSTRUCTION IN ’ , ’LOAD CONFIG EN ’ ,\

8 ’CONFIG DATA IN ’ , ’RETRIEVE NEURON COUNT’ , ’PROGRAMEXECUTEEN’ ,\

9 ’RESET COUNT EN ’ , ’ANALOG NEURON IN ’]

10

11 i n s t r u c t i o n d i c t = {

12 # Programming I n s t r u c t i o n s

13 ”PRG T” : 1 ,

14 ”PRG C” : 2 ,

15 ”PRG T NO FLOAT” : 3 ,

16 ”PRG C NO FLOAT” : 4 ,

17 ”PRG T REVERSE” : 5 ,

18 ”PRG C REVERSE” : 6 ,

19 ”PRG T REVERSE NO FLOAT” : 7 ,

20 ”PRG C REVERSE NO FLOAT” : 8 ,

21 ”PRG DEBUG” : 17 ,

22 ”PRG TWIN CELL” : 19 ,

23 ”PRG TWIN CELL NO FLOAT” : 20 , # not implemented

24 ”PRG TWIN CELL REVERSE” : 21 ,

25

26 # Ve r i f i c a t i o n I n s t r u c t i o n s

27 ”VERIFY OCV” : 9 , # uses neuron

28 ”VERIFY OCV T” : 10 , # same as VERIFY OCV

29 ”VERIFY OCV C” : 11 , # same as VERIFY OCV

30 ”VERIFY T OFFCHIP” : 12 ,

31 ”VERIFY C OFFCHIP” : 13 ,

32 ”VERIFY TWIN OFFCHIP” : 14 ,

33 ”VERIFY DEBUG” : 18 ,

34 ”VERIFY OCV CG AMP ONLY” : 25 , # uses neuron

35

36 # In f e r en c e I n s t r u c t i o n s

37 ”INF” : 15 ,

38 ”INF ZERO INPUT” : 16 ,

39 ”INF MEASURE BL VOLTAGE” : 22 ,

40 ”INF CG AMP ONLY” : 23 ,

41 ”INF CG AMP ZERO INPUT” : 24 ,

42 ”INF DEBUG” : 26 ,

43 ”INF ALWAYS ON” : 27 ,

44 ”INF OFF CHIP” : 28 ,

45 ”INF ORIGINAL SWITCH LOGIC” : 29 ,

46 ”INF SWAPPING” : 30

47

48 }

Table D.2: TB Vector Generator Run File: Header.

180

1 # Setup Parameters

2 # ===

3 # Fine−tune o f f s e t c o r r e c t i o n

4 OFFSET POS FINE TUNE = [0] ∗ 32 ;

5 OFFSET NEG FINE TUNE = [0] ∗ 32 ;

6 # Trim o f f s e t c o r r e c t i o n

7 OFFSET POS TRIM = [0] ∗ 32 ;

8 OFFSET NEG TRIM = [0] ∗ 32 ;

9

10 NEURON EN = [1] ∗ 32 ;

11 neuron parameters = {

12 ”T CLK MHz” : 100 , # Val id Range : 0−400 [MHz]

13 ”OFFSET POS FINE TUNE” : OFFSET POS FINE TUNE, # [32− parameters] Va l id Range (10− b i t s) : 0−1023 c y c l e s

14 ”OFFSET NEG FINE TUNE” : OFFSET NEG FINE TUNE, # [32− parameters] Va l id Range (10− b i t s) : 0−1023 c y c l e s

15 ”NEURON EN” : NEURON EN,

16 ”USE BOOSTED INTEGRATOR” : True ,

17 ”CAP SETTING” : ” 6 .6pF” , # Options : {600 fF , 1 .8 pF , 2 .4 pF , 3 .0 pF , 3 .6 pF , 4 .2 pF , 4 .8 pF , 5 .4 pF , 6 .6 pF}

18 ”INTEGRATOR EN X” : 30 , # Val id Range (9− b i t s) : 0−511 c y c l e s

19 ”INTEGRATOR SETUP” : 20 , # Val id Range (9− b i t s) : 0−511 c y c l e s

20 ”INTEGRATOR EN Y” : 1 , # Val id Range (4− b i t s) : 0−15 c y c l e s

21 ”COMPARATORENX” : 30 , # Val id Range (9− b i t s) : 0−511 c y c l e s (De f au l t = INTEGRATOR EN X)

22 ”INFERENCE DURATION” : 255 , # Val id Range (10− b i t s) : 0−1023 c y c l e s (Formal ly known as ’MAX WL INPUT ’)

23 ”T DUMMY X” : 0 , # Val id Range (8− b i t s) : 0−255 c y c l e s (dummy wl i npu t)

24 ”INTEGRATION SWITCH EN X” : 10 , # Val id Range (8− b i t s) : 0−255 c y c l e s

25 ”INTEGRATION SWITCH EN Y” : 1 , # Val id Range (4− b i t s) : 0−15 c y c l e s

26 ”MIN PULSE X” : 1 , # Val id Range (5− b i t s) : 0−31 c y c l e s

27 ”OR EN X” : 1 , # Val id Range (4− b i t s) : 0−15 c y c l e s

28 ”OR EN Y” : 1 , # Val id Range (4− b i t s) : 0−15 c y c l e s

29 ”DISCHARGE EN” : 300 , # Val id Range (10− b i t s) : 0−1023 c y c l e s

30 ”RESET EN X” : 10 , # Val id Range (8− b i t s) : 0−255 c y c l e s

31 ”RESET EN Y” : 10 , # Val id Range (8− b i t s) : 0−255 c y c l e s

32 ”T SWAPPING” : 100 , # Val id Range (8− b i t s) : 0−255 c y c l e s (a p p l i c a b l e to INF SWAPPING i n s t)

33 ”UTILIZE FLIPPED BIAS CONFIG” : 0 , # Val id Range (1− b i t) : 0−1 (0 : norma l con f i g , 1 : f l i p p e d c o n f i g)

34 ”OFFSET POS TRIM” : OFFSET POS TRIM, # [32− parameters] Va l id Range (8− b i t s)

35 ”OFFSET NEG TRIM” : OFFSET NEG TRIM, # [32− parameters] Va l id Range (8− b i t s)

36 ”COLUMN SELECT” : 0 , # Val id Range (5− b i t s) : s e l e c t neuron 0−31

37 ”DEBUG MUX SELECT” : 5 , # Val id Range (5− b i t s) : 0 : none s e l e c t e d , 1−15: s e l e c t s r e s p e c t i v e i npu t

38 }

39

40 # 1ms = 40 ,000 c y c l e s @ 40MHz

41 prg parameters = {

42 ”COLUMNS SELECTED” : ” 11000000000000000000000000000000” , # 32− b i t debug param . (COLUMNS SELECTED<0:31>)

43 ”BL PULSE WIDTH X” : 100 , # Val id Range (16− b i t s) : 0−65535 c y c l e s

44 ”BL PULSE WIDTH Y” : 100 , # Val id Range (16− b i t s) : 0−65535 c y c l e s

45 ”SL START” : 5 , # Val id Range (4− b i t s) : 0−15 c y c l e s

46 ”SL END” : 5 , # Val id Range (4− b i t s) : 0−15 c y c l e s

47 ”WL PULSE WIDTH” : 100 # Val id Range (16− b i t s) : 0−65535 c y c l e s

48 }

Table D.3: TB Vector Generator Run File: Setup Parameters.

181

1 i npu t v e c t o r s = []

2 check neuron parameters (neuron parameters)

3 check prg parameters (prg parameters)

4 check debug parameters (debug parameters)

5

6 # Commands

7 # ===

8 i d l e (i npu t s i gna l s , i nput vec to r s , 2) #i d l e f o r 2 c y c l e s

9 app l y r e s e t (i npu t s i gna l s , i npu t v e c t o r s)

10

11 # (1) I n i t i a t e INF ope r a t i on

12 i n s t r u c t i o n = ”INF”

13 l o a d i n s t r u c t i o n (i npu t s i gna l s , i nput vec to r s , i n s t r u c t i o n d i c t , i n s t r u c t i o n) # max 5− b i t v a l u e

14 i d l e (i npu t s i gna l s , i nput vec to r s , 1 0) #i d l e f o r 10 c y c l e s

15

16 WLDATA = [0] ∗ 256

17 f o r i in range (1 28) :

18 WLDATA[i] = 201 ;

19

20 # Expected neuron ou t pu t s (i n pu t s to TDCs)

21 NEURONOUTPUTS = [0] ∗ 32

22 f o r i in range (3 2) :

23 NEURONOUTPUTS[i] = i ;

24

25 load wl data (i npu t s i gna l s , i nput vec to r s ,WLDATA)

26 i d l e (i npu t s i gna l s , i nput vec to r s , 1 0) #i d l e f o r 10 c y c l e s

27 load wl data (i npu t s i gna l s , i nput vec to r s ,WLDATA)

28 i d l e (i npu t s i gna l s , i nput vec to r s , 1 0) #i d l e f o r 10 c y c l e s

29 l o ad con f i g da t a (i npu t s i gna l s , i nput vec to r s , neuron parameters)

30 i d l e (i npu t s i gna l s , i nput vec to r s , 1 0) #i d l e f o r 10 c y c l e s

31 l o ad con f i g da t a (i npu t s i gna l s , i nput vec to r s , neuron parameters)

32 i d l e (i npu t s i gna l s , i nput vec to r s , 1 0) #i d l e f o r 10 c y c l e s

33 program execute (i npu t s i gna l s , i nput vec to r s , neuron parameters , prg parameters , i n s t ru c t i on ,NEURONOUTPUTS)

34

35 # Re t r i e v e i n f e r e n c e data (neuron ou t pu t s : 320− b i t s)

36 r e t r i e v e i n f e r e n c e d a t a (i npu t s i gna l s , i npu t v e c t o r s)

37 i d l e (i npu t s i gna l s , i nput vec to r s , 1 0) #i d l e f o r 10 c y c l e s

38

39 # Write . c s v f i l e

40 # ===

41 with open (run name + ’ . csv ’ , ’w ’) as c s v f i l e :

42 c svwr i t e r = csv . wr i t e r (c s v f i l e)

43 # wr i t e header

44 c svwr i t e r . writerow (i n pu t s i g n a l s)

45 # wr i t e data

46 c svwr i t e r . wr i terows (i npu t v e c t o r s)

Table D.4: Example TB Vector Generator Run File INFERENCE Mode. User (1)

applies reset, (2) load “INF” instruction, (3) loads input or WL data, (4), loads neuron/chip

configuration data, (5) executes the program, and (6) retrieves the neuron time-to-digital

converted outputs.

182

1 module LOGIC SYSTEM TB() ;

2 // IO Filename

3 reg [63∗8 : 0] i nput f i l ename = ”IO/IO FILE INFERENCE . csv ” ;

4 // −−−

5 // Parameters , S i gna l Dec l a ra t i on s & In s t a n t i a t i o n s

6 // −−−

7 parameter Hal fCycle = 5000; //ps

8 localparam Cycle = 2∗Hal fCycle ;

9 . . .

10

11 LOGIC SYSTEM DUT(

12 // GPIO Inputs

13 .CLK IN(Clock) , .RESET N(r e s e t n) , .LOAD DATA EN(load data en) , .DATA IN(data in) ,

14 .LOAD INSTRUCTION EN(l o ad i n s t r u c t i o n e n) , . INSTRUCTION IN(i n s t r u c t i o n i n) ,

15 .LOAD CONFIG EN(l o ad c on f i g e n) , .CONFIG DATA IN(c on f i g d a t a i n) ,

16 .RETRIEVE COUNT DATA EN(r e t r i e v e c oun t da t a en) , .PROGRAMEXECUTEEN(program execute en) ,

17 .RESET COUNT EN(r e s e t c oun t en) ,

18 // Outputs

19 . . .

20) ;

21

22 i n i t i a l Clock = 1 ’ b0 ;

23 always #(Hal fCycle) Clock = ˜Clock ;

24 // −−−

25 // Load Input Vector F i l e s

26 // −−−

27 reg [200∗8−1 : 0] header ;

28 reg isSimulat ionEnd ;

29 reg startUpCompleted ;

30 i n t e g e r l o gF i l e ;

31 i n t e g e r i npu tF i l e ;

32 i n i t i a l begin

33 inpu tF i l e = $ fopen (input f i l ename , ” rb”) ;

34 i f (i npu tF i l e == 0)

35 begin

36 $d i sp l ay (”Error at opening f i l e : IO/IO FILE . csv ”) ;

37 $stop ;

38 end e l s e begin

39 // pr in t & d i s ca rd f i r s t l i n e (header)

40 i f ($ f s c an f (inputF i l e , ”%s\n” , header) <1) begin

41 isSimulat ionEnd = 1 ;

42 end e l s e begin

43 $d i sp l ay (”%s\n” , header) ;

44 end

45 end

46 end

Table D.5: Example Verilog TB with CSV Input Vector.

183

1 // −−−

2 // Apply Test Stimulus

3 // −−−

4 i n i t i a l begin

5 . . .

6 end

7

8 reg tmp reset n ;

9 reg tmp load data en , tmp data in ;

10 reg tmp load in s t ruc t i on en , tmp in s t ru c t i on i n ;

11 reg tmp load con f ig en , tmp con f i g da ta in ;

12 reg tmp re t r i eve count da ta en ;

13 reg tmp program execute en ;

14 reg tmp rese t count en ;

15 reg [31 : 0] tmp analog neuron in ;

16 i n t e g e r temp ;

17 always @(negedge Clock) begin

18 i f (startUpCompleted) begin

19 i f ($ f e o f (i npu tF i l e) != 0) begin

20 isSimulat ionEnd = 1 ;

21 end e l s e i f ($ f s c an f (inputF i l e , ”%b , %b , %b , %b , %b , %b , %b , %b , %b , %b , %b\n” ,

tmp reset n , tmp load data en , tmp data in , tmp load in s t ruc t i on en ,

tmp in s t ruc t i on in , tmp load con f ig en , tmp con f i g data in , tmp re t r i eve count data en

, tmp program execute en , tmp reset count en , tmp analog neuron in) <1) begin

22 isSimulat ionEnd = 1 ;

23 end e l s e begin

24 // Apply inputs

25 r e s e t n <= tmp reset n ;

26 load data en <= tmp load data en ;

27 data in <= tmp data in ;

28 l o a d i n s t r u c t i o n e n <= tmp load in s t ru c t i on en ;

29 i n s t r u c t i o n i n <= tmp in s t ru c t i on i n ;

30 l o ad c on f i g e n <= tmp load con f i g en ;

31 c on f i g d a t a i n <= tmp con f i g da ta in ;

32 r e t r i e v e c oun t da t a en <= tmp re t r i eve count da ta en ;

33 program execute en <= tmp program execute en ;

34 r e s e t c oun t en <= tmp rese t count en ;

35 ana log neuron in <= tmp analog neuron in ;

36 end

37 end

38 end

39 // End o f Simulat ion

40 always @(isSimulat ionEnd) begin

41 i f (i sS imulat ionEnd) begin

42 $stop ;

43 end

44 end

Table D.6: Example Verilog Testbench with CSV Input Vector (continued). Each

row of inputs in CSV test vector file is applied at the negative edge of the clock allowing for

a half-cycle for setup time.

184

REFERENCES

[Aga18] Abien Fred Agarap. “Deep Learning using Rectified Linear Units (ReLU).”
arXiv, pp. 1–7, 2018.

[Ami13] Arnon Amir et al. “Cognitive computing programming paradigm: A Corelet Lan-
guage for composing networks of neurosynaptic cores.” In The 2013 International
Joint Conference on Neural Networks (IJCNN), pp. 1–10, 2013.

[Ana21] AnandTech. “Apple Announces M1 Pro & M1 Max: Giant New Arm
SoCs with All-Out Performance.” https://www.anandtech.com/show/17019/
apple-announced-m1-pro-m1-max-giant-new-socs-with-allout-performance,
2021. Accessed: 2022-02-13.

[APR20] Vineet Agrawal, V. Prabhakar, K. Ramkumar, Swatilekha Saha Long Hinh, San-
tanu Samanta, and Ravindra Kapre. “In-Memory Computing array using 40nm
multibit SONOS achieving 100 TOPS/W energy e�ciency for Deep Neural Net-
work Edge Inference Accelerators.” In 2020 IEEE International Memory Work-
shop (IMW), pp. 1–4, 2020.

[BCN18] Leon Bottou, Frank E. Curtis, and Jorge Nocedal. “Optimization Methods for
Large-Scale Machine Learning.” arXiv, pp. 1–95, 2018.

[BGK16] F. Merrikh Bayat, X. Guo, M. Klachko, N. Do, K. Likharev, and D. Strukov.
“Model-based high-precision tuning of NOR flash memory cells for analog com-
puting applications.” In 2016 74th Annual Device Research Conference (DRC),
2016.

[BJP17] Adeel A. Bajwa, Siva C. Jangam, Saptadeep Pal, N. Marathe, T. Bai, Tak
Fukushima, Mark Goorsky, and Subramanian S. Iyer. “Heterogeneous Integration
at Fine Pitch (10µm) using Thermal Compression Bonding.” In Proceedings of
67th IEEE Electronic Components and Packaging Technology (ECTC), pp. 1276–
1284, 2017.

[BJP18] Adeel Bajwa, Siva C. Jangam, Saptadeep Pal, Boris Vaisband, Randall Irwin,
Mark Goorsky, and Subramanian S. Iyer. “Demonstration of a Heterogeneously
Integrated System-on-Wafer (SoW) assembly.” In Proceedings of 68th IEEE Elec-
tronic Components and Technology Conference (ECTC), pp. 1926–1930, 2018.

[BKM11] S. Buchner, N. Kanyogoro, D. McMorrow, C. C. Foster, Patrick M. O’Neill, and
Kyson V. Nguyen. “Variable Depth Bragg Peak Method for Single Event E↵ects
Testing.” In IEEE Transactions on Nuclear Science (TNS), volume 58, pp. 2976–
2982, 2011.

185

[BM19] Rachel M Brewer, Steven L Moran, et al. “The Impact of Proton-Induced Sin-
gle Events on Image Classification in a Neuromorphic Computing Architecture.”
IEEE Transactions on Nuclear Science, 67(1):108–115, 2019.

[BMM21] Evelyn T. Breyer, Halid Mulaosmanovic, Thomas Mikolajick, and Stefan Sle-
sazeck. “Perspective on ferroelectric, hafnium oxide based transistors for digital
beyond von-Neumann computing.” Applied Physics Letters, 118(050501):1–7,
2021.

[BMR20] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, et al. “Language
Models are Few-Shot Learners.” In arXiv, pp. 1–75, 2020.

[Bot98] Leon Bottou. “Online Learning and Stochastic Approximations.” Technical re-
port, AT&T Labs–Research, 1998.

[BP01] Guo qiang Bi and Mu ming Poo. “Synaptic Modification by Correlated Activity:
Hebb’s Postulate Revisited.” Annual Review of Neuroscience, 24:139–166, 2001.

[BSN14] G.W. Burr, R.M. Shelby, C. di Nolfo, J.W. Jang, R.S. Shenoy, P. Narayanan,
et al. “Experimental demonstration and tolerancing of a large-scale neural net-
work (165,000 synapses) using phase-change memory as the synaptic weight ele-
ment.” In 2014 IEEE International Electron Devices Meeting (IEDM), pp. 1–4,
2014.

[BV20] S. Ashwin Balagopal and Janakiraman Viraraghavan. “Flash Based In-Memory
Multiply-Accumulate Realisation: A Theoretical Study.” In 2020 IEEE Interna-
tional Symposium on Circuits and Systems (ISCAS), pp. 1–5, 2020.

[BZG21] Rachel M Brewer, En Xia Zhang, Mariia Gorchichko, Peng Fei Wang, Jonathan
Cox, Steven L Moran, Dennis R Ball, Brian D Sierawski, Daniel M Fleetwood,
Ronald D Schrimpf, Subramanian S Iyer, and Michael L Alles. “Total Ionizing
Dose Responses of 22-nm FDSOI and 14-nm Bulk FinFET Charge-Trap Transis-
tors.” IEEE Transactions on Nuclear Science, 68(5):677–686, 2021.

[CCG21] Zhengyu Chen, Xi Chen, and Jie Gu. “A 65nm 3T Dynamic Analog RAM-Based
Computing-in- Memory Macro and CNN Accelerator with Retention Enhance-
ment, Adaptive Analog Sparsity and 44TOPS/W System Energy E�ciency.” In
IEEE International Solid-State Circuits Conference (ISSCC), pp. 9–10, 2021.

[Che18] Wei-Hao Chen et al. “A 65nm 1Mb nonvolatile computing-in-memory ReRAM
macro with sub-16ns multiply-and-accumulate for binary DNN AI edge proces-
sors.” In International Solid-State Circuits Conference (ISSCC), pp. 494–495,
2018.

[CHI20] CHIPS. “DESIGN MANUAL FOR SILICON INTERCONNECT FABRIC
TECHNOLOGY.” Technical report, University of California Los Angeles, 2020.

186

[CLF21] Yu-Der Chih, Po-Hao Lee, Hidehiro Fujiwara, Yi-Chun Shih, et al. “An 89TOP-
S/W and 16.3TOPS/mm2 All-Digital SRAM-Based Full-Precision Compute-In
Memory Macro in 22nm for Machine-Learning Edge Applications.” In IEEE In-
ternational Solid-State Circuits Conference (ISSCC), pp. 252–253, 2021.

[CM19] Yanran P. Chen, Pierre Maillard, et al. “Single Event Evaluation of Xilinx 16nm
Ultrascale+ High-Bandwidth Memory Enabled FPGA.” In 2019 IEEE Radiation
E↵ects Data Workshop, pp. 1–5, 2019.

[Cor20] Justin Correll et al. “A Fully Integrated Reprogrammable CMOS-RRAM
Compute-in-Memory Coprocessor for Neuromorphic Applications.” In IEEE
Journal on Exploratory Solid-State Computational Devices and Circuits, volume 6,
pp. 36–44, 2020.

[Dav18] Mike Davies et al. “Loihi: A Neuromorphic Manycore Processor with On-Chip
Learning.” In IEEE Micro, volume 38, pp. 82–99, 2018.

[Don20] Qing Dong et al. “A 351TOPS/W and 372.4GOPS Compute-in-Memory SRAM
Macro in 7nm FinFET CMOS for Machine-Learning Applications.” In Interna-
tional Solid-State Circuits Conference (ISSCC), pp. 242–243, 2020.

[Ess16] Steven K. Esser et al. “Convolutional networks for fast, energy-e�cient neuromor-
phic computing.” In Proceedings of the National Academy of Sciences (PNAS),
volume 113, p. 11441–11446, 2016.

[Fur14] Steve B. Furber et al. “The SpiNNaker Project.” In Proceedings of IEEE, volume
102, pp. 652–665, 2014.

[Fur16] Steve Furber. “Large-scale neuromorphic computing systems.” Journal of Neural
Engineering, 13(5):1–14, 2016.

[Gao19] Bilwaj Gaonkar et al. “Quantitative Analysis of Neural Foramina in the Lum-
bar Spine: An Imaging Informatics and Machine Learning Study.” Radiology:
Artificial Intelligence, 1:1–6, 2019.

[GI17] Xuefeng Gu and Subramanian S. Iyer. “Unsupervised Learning using Charge-
Trap Transistors.” In IEEE Electron Device Letters, volume 38, pp. 1204–1207,
2017.

[Gu18] Xuefeng Gu. Charge-Trap Transistors for Neuromorphic Computing. PhD thesis,
University of California, Los Angeles, 2018.

[GWI19] Xuefeng Gu, Zhe Wan, and Subramanian S. Iyer. “Charge-Trap Transistors for
CMOS-Only Analog Memory.” In IEEE Electron Device Letters, volume 66, pp.
4183–4187, 2019.

187

[Ham50] Richard Wesley Hamming. “Error Detecting and Error Correcting Codes.” Bell
System Technical Journal, 29(2):147–160, 1950.

[He20] Wangxin He et al. “2-Bit-Per-Cell RRAM-Based In-Memory Computing for Area-
/Energy-E�cient Deep Learning.” In IEEE Solid-State Circuit Letters, volume 3,
pp. 194–197, 2020.

[Her09] Suzana Herculano-Houzel. “The human brain in numbers: a linearly scaled-up
primate brain.” Frontiers in Human Neuroscience, 3(31):1–11, 2009.

[HMA15] Harold Hughes, Patrick McMarr, Michael Alles, Enxia Zhang, Charles Arutt,
et al. “Total Ionizing Dose Radiation E↵ects on 14 nm FinFET and SOI UTBB
Technologies.” In 2015 IEEE Radiation E↵ects Data Workshop (REDW), pp.
1–6, 2015.

[Hun19] E. Hunt-Schroeder et al. “14nm FinFET 1.5Mb Embedded High-K Charge Trap
Transistor One Time Programmable Memory Using Di↵erential Current Sensing.”
In 2015 IEEE International Reliability Physics Symposium, volume 1, pp. 233–
236, 2019.

[Jan17] SivaChandra Jangam et al. “Latency, Bandwidth and Power Benefits of the
SuperCHIPS Integration Scheme.” In Proceedings of 67th IEEE Electronic Com-
ponents and Packaging Technology (ECTC), pp. 86–94, 2017.

[JCE10] Sung Hyun Jo, Ting Chang, Idongesit Ebong, Bhavitavya B. Bhadviya, Pinaki
Mazumder, andWei Lu. “Nanoscale memristor device as synapse in neuromorphic
systems.” In Nano Letters, volume 10, pp. 1297–1301, 2010.

[JLV18] Balaji Jayaraman, Derek Leu, Janakiraman Viraraghavan, Alberto Cestero, Ming
Yin, John Golz, et al. “80-kb Logic Embedded High-K Charge Trap Transistor-
Based Multi-Time-Programmable Memory With No Added Process Complexity.”
IEEE Journal of Solid-State Circuits, 53(3):949–960, 2018.

[Jos20] Vinay Joshi et al. “Accurate deep neural network inference using computational
phase-change memory.” In Nature Communications, volume 11, pp. 1–13, 2020.

[JRN20] SivaChandra Jangam, Uneeb Rathore, Sumeet Nagi, Dejan Markovic, and Sub-
ramanian S. Iyer. “Demonstration of a Low Latency (<20 ps) Fine-pitch (10
µm) Assembly on the Silicon Interconnect Fabric.” In 2020 IEEE 70th Electronic
Components and Technology Conference (ECTC), pp. 1801–1805, 2020.

[JXH21] Chuan-Jia Jhang, Cheng-Xin Xue, Je-Min Hung, Fu-Chun Chang, and Meng-Fan
Chang. “Challenges and Trends of SRAM-Based Computing-In-Memory for AI
Edge Devices.” In IEEE Transactions on Circuits and Systems I: Regular Papers,
volume 68, pp. 1773–1786, 2021.

188

[Kha15] Faraz Khan et al. “The Impact of Self-Heating on Charge Trapping in High-k-
Metal-Gate nFETs.” In IEEE Electron Device Letters, volume 37, pp. 88–91,
2015.

[Kha17] Faraz Khan et al. “Charge Trap Transistor (CTT): An Embedded Fully Logic-
Compatible Multiple-Time Programmable Non-Volatile Memory Element for
High-k-Metal-Gate CMOS Technologies.” In IEEE Electron Device Letters, vol-
ume 38, pp. 44–47, 2017.

[Kha20] Faraz Khan. Charge Trap Transistors (CTT): Turning Logic Transistors into
Embedded Non-Volatile Memory for Advanced High-k/Metal Gate CMOS Tech-
nologies. PhD thesis, University of California, Los Angeles, 2020.

[Kim11] Yoon Kim et al. “Integration of 28nm MJT for 8-16Gb level MRAM with full
investigation of thermal stability.” In 2011 Symposium on VLSI Technology, pp.
210–211, 2011.

[Kot15] Chandrasekara Kothandaraman et al. “Oxygen vacancy traps in Hi-K/Metal gate
technologies and their potential for embedded memory applications.” In 2015
IEEE International Reliability Physics Symposium, pp. MY.2.1–MY.2.4, 2015.

[Kri09] Alex Krizhevsky. “Learning multiple layers of features from tiny images.” Tech-
nical report, University of Toronto, 2009.

[KRP18] I. Kouznetsov, K. Ramkumar, V. Prabhakar, L. Hinh, , et al. “40 nm Ultralow-
Power Charge-Trap Embedded NVM Technology for IoT Applications.” In 2018
IEEE International Memory Workshop (IMW), pp. 1–4, 2018.

[LCB10] Yann LeCun, Corinna Cortes, and CJ Burges. “MNIST handwritten digit
database.” ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist, 2,
2010.

[LeC98] Yan LeCun et al. “Gradient-Based Learning Applied to Document Recognition.”
Proceedings of the IEEE, 86(11):2278–2324, 1998.

[LHY20] Yandong Luo, Xu Han, Zhilu Ye, Hugh Barnaby, Jae-Sun Seo, and Shimeng Yu.
“Array-Level Programming of 3-Bit per Cell Resistive Memory and Its Applica-
tion for Deep Neural Network Inference.” In Electron Device Letters, volume 67,
pp. 4621–4625, 2020.

[Li21] Haitong Li et al. “SAPIENS: A 64-kb RRAM-Based Non-Volatile Associative
Memory for One-Shot Learning and Inference at the Edge.” In IEEE Transactions
on Electron Devices, volume 68, pp. 6637–6643, 2021.

[Lie21] Sean Lie. “The Multi-Million Core, Multi-Wafer AI Cluster.” In Hot Chips 33
(HC33), volume 33, 2021.

189

[Liu20] Qi Liu et al. “A Fully Integrated Analog ReRAM Based 78.4TOPS/W Compute-
In-Memory Chip with Fully Parallel MAC Computing.” In International Solid-
State Circuits Conference (ISSCC), pp. 500–501, 2020.

[LL20] Sung-Tae Lee and Jong-Ho Lee. “Neuromorphic Computing Using NAND Flash
Memory Architecture With Pulse Width Modulation Scheme.” Frontiers in Neu-
roscience, 14(571292):1–10, 2020.

[MBL04] Dale McMorrow, Stephen Buchner, William T. Lotshaw, Joseph S. Melinger, Mike
Maher, and Mark W. Savage. “Demonstration of Single-Event E↵ects Induced by
Through-Wafer Two-Photon Absorption.” IEEE Transactions on Nuclear Sci-
ence, 51(6):3553–3557, 2004.

[MCB19] Steven Moran, Jonathan Cox, Rachel Brewer, Brian Sierawski, and Subrama-
nian S. Iyer. “Radiation E↵ects on Brain-Inspired Computing.” In GOMACTech-
19, Artificial Intelligence & Cyber Security: Challenges and Opportunities for the
Government, pp. 1–6, 2019.

[McC15] Michael W. McCurdy et al. “Vanderbilt Pelletron - Low Energy Protons and
Other Ions for Radiation E↵ects on Electronics.” In 2015 IEEE Radiation E↵ects
Data Workshop (REDW), pp. 1–6, 2015.

[McC17] Michael W. A. McCurdy. “1.8 MeV PROTON RESPONSE OF THERMALLY
STABILIZED GALLIUM NITRIDE RF POWER TRANSISTORS.”. Master’s
thesis, Vanderbilt University, Nashville, TN, 2017.

[Mer14] Paul A. Merolla et al. “A million spiking-neuron integrated circuit with a scalable
communication network and interface.” Science, 345(6197):668–673, 2014.

[Mic18a] Micron. “3-Dimensional Stack (3DS) DDR4 SDRAM.” https://www.micron.
com/-/media/client/global/documents/products/data-sheet/dram/ddr4/
16gb_32gb_x4_x8_3ds_ddr4_sdram.pdf, 2018. Accessed: 2022-02-23.

[Mic18b] Micron. “High Bandwidth Memory with ECC.” https://www.micron.com/-/
media/client/global/documents/products/data-sheet/dram/hbm2e/8gb_
and_16gb_hbm2e_dram.pdf, 2018. Accessed: 2022-02-23.

[Mic18c] Micron. “Hybrid Memory Cube – HMC Gen2.” https://www.micron.com/
-/media/client/global/documents/products/data-sheet/hmc/gen2/hmc_
gen2.pdf, 2018. Accessed: 2022-02-23.

[Moc18] Reiji Mochida et al. “A 4M Synapses integrated Analog ReRAM based 66.5
TOPS/W Neural-Network Processor with Cell Current Controlled Writing and
Flexible Network Architecture.” In 2018 IEEE Symposium on VLSI Technology
(VLSI), pp. 175–176, 2018.

190

[MW18] Steven Moran, William Whitehead, et al. “Deep learning for medical image seg-
mentation – using the IBM TrueNorth Neurosynaptic System.” In SPIE Medical
Imaging, volume 10579, pp. 1–8, 2018.

[Nar21] Pritish Narayanan et al. “Fully On-Chip MAC at 14 nm Enabled by Accurate
Row-Wise Programming of PCM-Based Weights and Parallel Vector-Transport in
Duration-Format.” In IEEE Transactions on Electron Devices (TED), volume 68,
pp. 6629–6636, 2021.

[NAS22a] NASA Space Radiation Laboratory (NSRL). “NSRL User Guide Technical Data:
Beam Ion Species and Energies.” https://www.bnl.gov/nsrl/userguide/
beam-ion-species-and-energies.php, 2022. Accessed: 2022-03-08.

[NAS22b] NASA Space Radiation Laboratory (NSRL). “NSRL User Guide Tech-
nical Data: LET Range Plots.” https://www.bnl.gov/nsrl/userguide/
let-range-plots.php, 2022. Accessed: 2022-03-08.

[Neu13] Jens Timo Neumann et al. “Mask e↵ects for high-NA EUV: impact of NA, chief-
ray-angle, and reduction ratio.” In Proceedings of SPIE Advanced Lithography,
pp. 1–14, 2013.

[NI20] Sepideh Nouri and Subramanian S. Iyer. “Non-Volatile Wideband Frequency
Tuning of a Ring-Oscillator by Charge Trapping in High-k Gate Dielectric in
22nm CMOS.” IEEE Electron Device Letters, 42:110–113, 2020.

[NR22] Sumeet Singh Nagi, Uneeb Rathore, et al. “A 16nm 785GMACs/J 784-Core Digi-
tal Signal Processor Array with a Multilayer Switch Box Interconnect, Assembled
as a 2 ⇥ 2 Dielet with 10µm-Pitch Inter-Dielet I/O for Runtime Multi-Program
Reconfiguration.” In 2022 IEEE International Solid-State Circuits Conference
(ISSCC), pp. 52–53, 2022.

[Ora20] Oracle. “Class Robot.” https://docs.oracle.com/javase/7/docs/api/java/
awt/Robot.html, 2020. Accessed: 2022-07-12.

[Pas21] PassMark®Software. “Memtest86 Technical Information.” https://www.
memtest86.com/troubleshooting.htm, 2021. Accessed: 2022-03-07.

[PB61] William Wesley Peterson and David. T. Brown. “Cyclic Codes for Error Detec-
tion.” In Proceedings of IRE, volume 49, pp. 228–235, 1961.

[PSK13] S. Park, A. Sheri, J. Kim, J. Noh, J. Jang, M. Jeon, B. Lee, B. R. Lee, B. H. Lee,
and H. Hwang. “Neuromorphic speech systems using advanced ReRAM-based
synapse.” In 2013 IEEE International Electron Devices Meeting (IEDM), pp.
25.6.1–25.6.4, 2013.

191

[RBK12] William R. Reohr, John E. Barth, Toshi Kirihata, D. H. Leu, and Donald W.
Plass. “High voltage word line driver.”, U.S. Patent 8,120,968, Feb. 2012.

[Roc20] Kamil Rocki et al. “Fast Stencil-Code Computation on a Wafer-Scale Processor.”
In arXiv, pp. 1–12, 2020.

[SA17] Gaurav Singh, Sagheer Ahmad, et al. “Xilinx 16nm Datacenter Device Fam-
ily with In-Package HBM and CCIX Interconnect.” In Hot Chips 29 (HC29),
volume 29, 2017.

[Sam17a] Samsung. “288pin Registered DIMM based on 8Gb B-die (2H Stack, 64GB).”
https://www.samsung.com/semiconductor/global.semi/file/resource/
2018/04/TSV_DDR4_8Gb_B_die_Registered_DIMM_Rev1.43_May.17.pdf, 2017.
Accessed: 2022-02-22.

[Sam17b] Samsung. “288pin Registered DIMM based on 8Gb B-die (4H Stack, 128GB).”
https://semiconductor.samsung.com/resources/data-sheet/20170731_
TSV_128GB_only_DDR4_8Gb_B_die_Registered_DIMM_Rev1.53_Jun.17.pdf,
2017. Accessed: 2022-02-22.

[Saw16] Jun Sawada et al. “TrueNorth Ecosystem for Brain-Inspired Computing: Scalable
Systems, Software, and Applications.” In SC ’16: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis,
pp. 130–141, 2016.

[SCL21] Jian-Wei Su, Yen-Chi Chou, Ruhui Liu, Ta-Wei Liu, Pei-Jung Lu, Ping-Chun
Wu, Yen-Lin Chung, et al. “A 28nm 384kb 6T-SRAM Computation-in-Memory
Macro with 8b Precision for AI Edge Chips.” In IEEE International Solid-State
Circuits Conference (ISSCC), pp. 250–251, 2021.

[SRR08] P Jesper Sjöström, Ede A Rancz, Arnd Roth, and Michael Häusser. “Dendritic
excitability and synaptic plasticity.” Physiol Rev., 88(2):769–840, 2008.

[Tak10] Takeshi (Kesh) Ikuma. “GUI automation using a Robot.” https://
undocumentedmatlab.com/articles/gui-automation-robot, 2010. Accessed:
2022-07-12.

[Van21] Vanderbilt University. “VU Laser Facilities Guide.”, 2021.

[Vir16] Janakiraman Viraraghavan et al. “80Kb 10ns read cycle logic Embedded High-
K charge trap Multi-Time-Programmable Memory scalable to 14nm FIN with
no added process complexity.” In IEEE Symposium on VLSI Circuits (VLSI-
Circuits), pp. 1–2, 2016.

[Wan20a] Zhe Wan. Scalable and Analog Neuromorphic Computing Systems. PhD thesis,
University of California, Los Angeles, 2020.

192

[Wan20b] Zhe Wan et al. “Accuracy and Resiliency of Analog Compute-in-Memory Infer-
ence Engines.” In arXiv, pp. 1–21, 2020.

[WM18] William Whitehead, Steven Moran, et al. “A Deep Learning Approach to Spine
Segmentation Using a Feed-Forward Chain of Pixel-Wise Convolutional Net-
works.” In IEEE International Symposium on Biomedical Imaging (ISBI), pp.
868–871, 2018.

[WMC19] Zhe Wan, Steven Moran, Jonathan Cox, Xuefeng Gu, Vwani Rowchowdhury,
and Subramanian S. Iyer. “Characterization Approaches to Test the Robustness
of Neuromorphic Systems.” In GOMACTech-19, Artificial Intelligence & Cyber
Security: Challenges and Opportunities for the Government, pp. 1–6, 2019.

[WMS16] Jiyong Woo, Kibong Moon, Jeonghwan Song, Sangheon Lee, Myounghun Kwak,
Jaesung Park, and Hyunsang Hwang. “Improved Synaptic Behavior Under Iden-
tical Pulses Using AlOx/HfO2 Bilayer RRAM Array for Neuromorphic Systems.”
In IEEE Electron Device Letters, volume 37, pp. 994–997, 2016.

[WTX21] Yin Wang, Hongwei Tang, Yufeng Xie, Xinyu Chen, Shunli Ma, Zhengzong Sun,
Qingqing Sun, Lin Chen, Hao Zhu, Jing Wan, Zihan Xu, David Wei Zhang,
Peng Zhou, and Wenzhong Bao. “An in-memory computing architecture based
on two-dimensional semiconductors for multiply-accumulate operations.” Nature
Communications, 12(3347):1–8, 2021.

[WWZ22] Zhe Wan, Tianyi Wang, Yiming Zhou, Subramanian S. Iyer, and Vwani P.
Roychowdhury. “Accuracy and Resiliency of Analog Compute-in-Memory Infer-
ence Engines.” ACM Journal on Emerging Technologies in Computing Systems
(JETC), 18(2):1–23, 2022.

[Xia22] T. P. Xiao et al. “An Accurate, Error-Tolerant, and Energy-E�cient Neural Net-
work Inference Engine Based on SONOS Analog Memory.” In IEEE Transactions
on Circuits and Systems, volume 69, pp. 1480–1493, 2022.

[Xil19] Xilinx. “White paper: Supercharge Your AI and Database Applications with Xil-
inx’s HBM-Enabled UltraScale+ Devices Featuring Samsung HBM2.” Technical
Report WP508, Xilinx, July 2019.

[XNS21] Shanshan Xie, Can Ni, Aseem Sayal, Pulkit Jain, Fatih Hamzaoglu, and Jay-
deep P. Kulkarni. “eDRAM-CIM: Compute-In-Memory Design with Reconfig-
urable Embedded-Dynamic-Memory Array Realizing Adaptive Data Converters
and Charge-Domain Computing.” In IEEE International Solid-State Circuits
Conference (ISSCC), pp. 248–249, 2021.

[Xue19] Cheng-Xin Xue et al. “A 1Mb Multibit ReRAM Computing-In-Memory Macro
with 14.6ns Parallel MAC Computing Time for CNN Based AI Edge Processors.”
In International Solid-State Circuits Conference (ISSCC), pp. 388–389, 2019.

193

[Yan19] Yexin Yan et al. “E�cient Reward-Based Structural Plasticity on a SpiNNaker
2 Prototype.” In IEEE Transactions on Biomedical Circuits and Systems, vol-
ume 13, pp. 579–591, 2019.

[YKC19] Taegeun Yoo, Hyunjoon Kim, Qian Chen, Tony Tae-Hyoung Kim, and Bongjin
Kim. “A Logic Compatible 4T Dual Embedded DRAM Array for In-Memory
Computation of Deep Neural Networks.” In 2019 IEEE/ACM International Sym-
posium on Low Power Electronics and Design (ISLPED), pp. 1–6, 2019.

[ZCX19] Qiwen Zheng, Jiangwei Cui, Liewei Xu, Bingxu Ning, Kai Zhao, Mingjie Shen,
Xuefeng Yu, et al. “Total Ionizing Dose Responses of Forward Body Bias Ultra-
Thin Body and Buried Oxide FD-SOI Transistors.” IEEE Transactions on Nu-
clear Science, 66(4):702–709, 2019.

[Zha19] Jiawei Zhang. “Basic Neural Units of the Brain: Neurons, Synapses and Action
Potential.” In arXiv, pp. 1–38, 2019.

[ZK17] Sergey Zagoruyko and Nikos Komodakis. “Wide Residual Networks.” arXiv, pp.
1–15, 2017.

[ZZP18] Xin Zheng, Ryan Zarcone, Dylan Paiton, Joon Sohn, Weier Wan, Bruno Ol-
shausen, and H. S. Philip Wong. “Error-Resilient Analog Image Storage and
Compression with Analog-Valued RRAM Arrays: An Adaptive Joint Source-
Channel Coding Approach.” In 2018 IEEE International Electron Devices Meet-
ing (IEDM), pp. 3.5.1–3.5.4, 2018.

194

