
UC Berkeley
Working Papers

Title
Ultrasonic Ranging Control Board Documentation

Permalink
https://escholarship.org/uc/item/5659448j

Authors
Chen, Jennie
Foreman, Bret
Mostov, Kirill

Publication Date
1994-06-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5659448j
https://escholarship.org
http://www.cdlib.org/

This paper has been mechanically scanned. Some
errors may have been inadvertently introduced.

CALIFORNIA PATH PROGRAM

UNIVERSITY OF CALIFORNIA, BERKELEY
INSTITUTE OF TRANSPORTATION STUDIES

Ultrasonic Ranging Control Board
Documentation

Jennie Chen
Bret Foreman
Kirill Mostov

California PATH Working Paper

UCB-ITS-PWP-94-09

This work was performed as part of the California PATH Program of
the University of California, in cooperation with the State of California
Business, Transportation, and Housing Agency, Department of Trans-
portation; and the United States Department Transportation, Federal
Highway Administration.

The contents of this report reflect the views of the authors who are
responsible for the facts and the accuracy of the data presented herein.
The contents do not necessarily reflect the official views or policies of
the State of California. This report does not constitute a standard,
specification, or regulation.

June 1994
Revised July 1994
ISSN 1055-1417

TABLE OF CONTENTS

Abstract
1 .O Introduction
2.0 System Overview

2.1 Modes of Operation
2.2 Window Mode

3.0 Hardware Documentation
3.1 Summary of Signal Names

3.1.1 PC Interface Signals
3.1.2 Address Decode Signals
3.1.3 Sonar Related Signals

3.2.1 PC Interface
3.2.2 Address Decode for Control Registers and Counters
3.2.3 Return Echo Processing and Xducer Control
3.2.4 Xducer Counters
3.2.5 Master Timer and Window Control Counters
3.2.6 Control Signal Latches and Readback 3-state Buffers
3.2.7 Crystal and Div. 10
3.2.8 IRQ7 Generator

3.3 Paddle Board
4.0 Software Documentation

4.1 Theory of Operation

3.2 Functional Block Diagram

4.1.1 Ping
4.1.2 Phased Array Ping
4.1.3 Calibrate
4.1.4 Diagnostic
4.1.5 Interrupts

4.2 Operation with a Real Time Operating System
5.0 Ultrasonic Transducer Modifications
Appendix A
Appendix B
Appendix C
Appendix D
Appendix E

1
1
1
3
3
4
4
4
4
5
5
7
7
8

14
14
14
15
15
15
16
17
18
18
20
20
20
20
21
A1
B1
c 1
Dl
E l

Ultrasonic Ranging Control Board Documentation

Jennie Chen,
Bret Foreman

Abstract

This document specifies the theory of operation of version B of the PATH
ultrasonic range control board for the IBM PC. Two modes are discussed in detail.
The first is the ping mode, which uses a single transducer both to send an
ultrasonic pulse and receive its echo. The second, called the phased-array mode,
uses a single transducer to send the pulse and two other transducers to receive
echoes and perform path-length matching in order to reduce the effects of multi-
path echoes. Both the hardware and the software used to perform these functions
are examined.

1. Introduction

Current work on PATH uses radar to perform distance measurements between
cars in a platoon. However, using many radars in a limited area can result in
interference and radar also has problems measuring distance accurately when targets
have a small relative velocity.

Ultrasonic sonar avoids these two problems and is highly accurate in short to
medium range (up to 10m) applications. An experimental board has been designed and
built to run various tests to determine the performance of ultrasonics in a platoon
situation. Test results are reported in Appendix A.

2. System Overview

The ultrasonic control board is an IBM-PC add-in board, part number PATH-001.
It is designed to manipulate up to four Polaroid ultrasonic ranging boards from the
Polaroid OEM kit, part number 606783 (1). Each Polaroid board can be used as an
independent ranging system or, with the addition of special receiver-transducers, one
Polaroid board can be a transmitter and the rest can be receivers in a phased array
system. A small paddle board is attached to the Polaroid ranging board to buffer
signals over the long cable lengths necessary between the computer and the bumper
of a car. Figure 1 shows a system level block diagram.

1

Figure 1 - System Level Block Diagram

Polaroid ultrssonic
Tnnrducn Part w604142

L

I -1

Polaroid Ultrasonic
Transducer Pmt #6O4142

Board -
Paddle __ Polaroid

%2%27?

Polaroid Ultrasonic
TranSdwrPmt#62604142

I

Transducer Part NO4142
Polaroid Ul-c

2

2.1. Modes of OPeration

There are two modes of ranging: ping and phased-array. Ping mode is the simpler
of the two. It uses one transducer to send out an ultrasonic pulse of sound, or chirp.
Then it uses the same transducer to detect the frrst echo that comes back. The time
elay between the chirp and the echo (time-of-flight) is used to compute the distance to
the object that returned the echo. The distance is simply the time-of-flight divided by 2
and multipied by the speed of sound. (The speed of sound in air is 3 3 0 d s .)

The system is designed to report only the first echo returned. Subsequent echoes
are ignored. A single transducer system may receive an early echo from an off-axis
target. To eliminate this incorrect early echo, a multiple or phased array transducer
system may be used. If all echoes received at all receivers are required to be
simultaneous, then off-axis echoes will be ignored. This occufs because the path
length from the target to each receiver must be the same. We assume the receivers are
positioned equidistant from the transmitter.

2.2. Window Mode

Both the ping and phased-array modes may take advantage of the window
mode. In the window mode, the master timer is started by a ping and stopped by the
detection of an echo. If an echo is detected within a given time frame, the master timer
records the echo's time-of-flight and from that time a distance is computed (based on
the speed of sound). If an echo is not detected, the master timer is reset to zero.

3

3. Hardware Documentation

3.1. Summary of Signal Names
(Note: a I/' after a name indicates a signal is active low)

3.1.1 PC Interface Signals

Name

ADDR[O..19]
Databus lines 0 through 7 DATA[0..7]
Function

I/O card read enable. row
Address lines 0 through 19

BIOW Buffered version of IOW

IOW/

PC ~CLK
power-up reset signal from the PC PWRUP-RST
DMA status AEN
Buffered version of IOW/ BIOW/
YO card write enable.

clock from the PC
IRQ7

+5V power vcc
interrupt line 7

r GND ground

3.1.2 Address Decode Signals

Name
active high when ADDR[6.. 191 match board's IODECODE
Function

IODECODE delayed by 10011s The DLYJO DLY-IO
active low version of IODECODE IODECODEI
address

signal is necessary to match the PC-bus's timing
to the 8254 counter's timing.

READ[O.. 111 read enable of xducer module counters 0 and 1
WRITETO.. 11/ write enable of xducer module counters 0 and 1
RD-MSTR/

write enable of master counter WR-MSTW
read enable of master counter

RD_REG[0..2]/
write enable of control registers 0 through 2 WR_REG[0..2]/
read enable of control registers 0 through 2

4

3.1.3 Sonar Related Signals

3.2. Functional Block Diagram

Figure 2 illustrates the major functional blocks and their related signals. The
modules are described on the following page.

5

Figure 2 - Functional Block Diagram

I w

T
6

3.2.1. pC Interface

The IBM-PC bus has a 20-bit address space for I/O devices. It is commonly
divided into 32 byte sections for each I/O device. For that reason, the top 15 bits are
compared against a set of jumpers on the ultrasonic board and this address comparison
determines which 32 byte segment is used to address the board.

3.2.2. Address Decode for Control Registers &L Counters

When the top 15 address bits match then the IODECODE signal is asserted. The
bottom 5 address bits determine which of the 32 bytes in the segment will be
addressed. This enables the demultiplexers that demux the bottom 5 bits. Part of the
demux happens inside the 8254 counter chips - they take two (LSB) bits of addressing
each.

The following table shows the binary and hex addresses corresponding to the
various components:

Binary
XDUCER COUNTER 1

Component Hex
~ ~~

0 0000

START[0..2] counters' control word 03 0 001 1
START2 delay counter 02 0 0010
START1 delay counter 01 0 0001
START0 delay counter 00

XDUCER COUNTER 2
0 0100 I 04
0 0101 I 05 1 0 0 01 0111 10

I

CONTROL REGISTERS I
1 0000

11 1 0001
10

1 0010 I 12
MASTER TIMER I

START3 delav counter I
PULSE-MATCH window counter
unused counter
control word for START3 and
PULSE-MATCH counters

~~ - -

I 1 0100 I 14 I master counter ~---l
1 0101

16 open window counter 1 0110
close window counter 15

,
1 1 0111 I 17 I master timer control byte I

7

3.2.3. Return Echo Processing & Xducer Control

Bits and registers set by software:
Note that these steps can be done in any order.

Step 1 : EN-CHRP[O-3] is asserted to enable transmission.
Step 2: EN_ECHO[0..3] is asserted to enable reception.
Step 3: Window times are programmed into the open window and close window
counters. Each count is lOuS or about 1.6 mm of distance at the speed of sound. If no
specific window is desired then the WNDW-MODE bit may be asserted and then de-
asserted. This will open the window and prevent it from ever closing.
Step 4: Load initial count into master timer. The master timer counts down in 10 US
steps. The initial count determines the timeout because the timeout is defined as a zero
count. Multiply the initial count by 10 US to find the actual timeout time.
Step 5 : Load the delay counter values. These values are used to delay a chirp in 1 US
steps. This feature is not currently used - all the counters are loaded with a count of 1 .
In the future this feature may be used to create a stearable beam.
Step 6: Load pulse match counter. This value determines how close two echos must
be to be considered simultaneous. One count of this counter is 10 US. A typical value
for this counter might be 500 to match echoes to 0.5 mS. That corresponds to about
16 cm distance. If only one transducer is being used (ping mode), then this counter
can be set to any non-zero value.

8

Signal
Name

Timing Diagram For Transducer 0 Ping

I GO
s1 .

WINDOW

ECHOO H p 5 \ S16

BLNKO W p \ s1 I

PRC ECHOO Wp7 \ s10

RETURN H , s * S

I

9

Signal
Name

Timing Diagram for Phased Array

GO s1

START0 h+ S13

START1 j”rb(/SZ S13

START2 W S 2

INITO

~ NIT1

S13

hid /s3 S15

/ s 3 S15

INIT2 h-4 / S 3 s1

EN - ECHOO /-----------------

ECHOO H / s 5 \ S l h
I I

ECHO2 bp5 \S16

WINDOW s1

BLNKO Mp6 \ s11

BLNK2 tcT3*(/Sb\s11

I
10

Signal
Name

Timing Diagram for Phased Array

PRC - ECHO0 H , s 7 \ s10

PRC - ECHO2 w / h 7 \ s10

MATCH0 M I S 1 7 \Sl8

MATCH2 M I S 1 7 \Sl8

RETURN w/ St3 s9

11

GO SI

START0 W S 2 s13\

L

EN ECHO1 -

PRC ECHO1 -
I I

RETURN s9

12

I Transition (Sn) I Explanation I
or Time(Tn)

TO
s 2

Gate delay of U21A

INITO asserted at end of delay count s3
GO signal asserted by CPU s1
Delay timer count * luS T1
STARTO asserted if EN-CHRPO bit is set

T2
Window oDens s4
Window open count * 10 US

~

T3
Echo signal from transducer s5
(window close count - window open count) * 10 US

T4
BLNK signal asserted on next (1 US) clock tick to S6
Time of flight of signal = distance / speed of sound

T5 1 US clock tick
s7 PRC-ECHO0 asserted if EN-ECHO0 bit is set
T6

RETURN asserted if PULSE-MATCH and GO S8
Gate delay of U23C

reset latch on analog board

1 I are true I
T7 Gate delays

.+ s9 RETURN de-asserted by S14 (GO) clearing U26A -
I s10 I PRC ECHO0 de-asserted I

s11
WINDOWde-asserted s12
BLNKOde-asserted

ECHOOde-asserted S15
INITO de-asserted S14
STARTO de-asserted S13

Each transducer is configured to be either a transmitter, a receiver or both, by
activating the EN_CHRP[0..3] and/or EN_ECHO[0..3] signals respectively. When an
echo is detected, ECHO[0..3] becomes active. In both ping and phased-array mode,
ECHO[0..3] is valid only if WINDOW and RETURN are active. In ping mode, only
one echo is received while in phased-array mode, two or more echoes are received
(depending on the number of receivers). In phased-array mode, if WINDOW is active,
the first echo received activates the count-down counter. RETURN is activated only if
a second echo is received before the counter counts down to zero. In phased-array
mode, after an echo is detected, the echo latch on the Polaroid board is not reset until
another echo is detected within the given time frame or until the count-down counter
reaches zero. This results in PULSE-MATCW resetting the echo latch on the
Polaroid board, enabling the receiver to detect more echoes.

13

,

3.2.4. Xducer Counters

These counters take START[0..3] and delay them to produce INIT[0..3] which
are used to activate the chirps on the Polaroid ranging boards. The Intel 8254 timer
chips (2) used to implement the counter functions can be programmed with any
delay time.

3.2.5. Master Timer & Window Control Counters

This module also uses the Intel 8254 timer (2) to implement three
programmable counters. One measures the delay time between a chirp and a valid
echo. It is configured in an event-counting mode and counts down from a user
specified number until it reaches zero. If the counter reaches zero, the signal
ZERO-CNT goes active to indicate a timeout. A timeout means that no valid echo
has been detected during the measurement cycle.

The other two counters control the window. One controls the delay from when
GO is active to when the window is opened (WINDOW active). The other controls the
delay from when GO is active to when the window is closed.

3.2.6. Control Signal Latches g& Readback 3-state Buffers

There are 3 pairs of control registers and buffers. The user writes into the
registers to control EN_ECHO[0..3], EN_CHRP[0..3], CHRP_INH[0..3 3 , GO,
WNDW-MODE, and ENABLE-INT. The registers' outputs are always enabled so
the board functions the way the user specifies, making it necessary to put tri-state
buffers between the registers and the data bus.

Not all of the signals written to the registers can be read back. Instead, some of
the read back bits have been changed so it is possible to check the status of
ZERO-CNT, RETURN, and CHRP_INH-RB[0..3]. CHRPJNH-RB is a way to
check for the existence of a Polaroid ranging board. These signals are the same as
CHRP-INH, except they are routed through the paddle board before being read back.
Thus, one can check for the existence of a Polaroid board by writing a value to
CHRP-INH and making sure that CW-INH-RB matches.

Control register 1 contains EN_CHRP[0..3] and EN_ECH0[0..3].
Control register 2 contains the WNDW-MODE, GO, ZERO-CNT, RETURN,
CHRPJNH_RB[0..3], and CHRP_INH[0..3] signals. Control register 3 is used only
for the ENABLE-INT signal.

14

3.2.7. Crvstal & Div. 10

This module provides the clocks for the entire ultrasonic board. The
FASTCLK is 1 MHz clock signal provided by a crystal oscillator. This is passed
through a decade counter to divide it by 10 to produce a 100 kHz clock called
SLOWCLK.

3.2.8. IR07 Generator

In order to work with a real-time operating system, the PATH ultrasonic board
supports IBM-PC hardware interrupts. The IBM-PC hardware interrupt line is
edge-triggered and is active low. To generate an interrupt, the line must be pulsed
low. Both the rising and falling edges are required to produce a valid interrupt.
When the IBM-PC detects the hardware interrupt, it calls an interrupt service routine
pointed to by the appropriate interrupt vector.

This module generates an interrupt on hardware interrupt line 7 whenever
ZERO-CNT or RETURN become active to avoid having to poll the board
continuously. Additional logic disables the interrupt generation during a power-up or
a reboot of the PC. A jumper allows the user to disable the board's interrupt
function.

3.3. Paddle Board

The paddle board buffers signals between the Polaroid ranging board and the
PATH ultrasonic board. The long cable lengths between the boards make the buffering
necessary. All of the active high signals are inverted before being sent over the
cable. This will prevent false signals from appearing if no cable is connected.

The paddle board also taps the raw analog echo signal directly from the
Polaroid ranging board, buffers it with an op-amp, and returns it to a test point on the
PATH ultrasonic board. Further work can use DSP techniques to make use of the
additional information contained in this signal to perform Doppler shift
measurements to calculate speed. A full schematic of the paddle board is in Appendix
B.

4. Software Documentation

The ultrasonic board software takes advantage of C++ object oriented
programming and creates objects corresponding to various functional blocks on the
actual board.

The objects and a short description are as follows:
1. Board: board level object that defines the base address and the

2. Xducer: a transducer object defines its address and its various control

3. Counter: a counter object defines its address, the actual 8254 chip it

various counters and registers on the board

registers.

belongs to, and its control word.

The software is split up into modules corresponding to the different objects.
Each module has its own source code and header files. In addition to these modules,
there are also modules for global variables, functions, and type definitions.
Appendix C provides the source code for all of the ultrasonic board software and
includes the following files:

Filename:
boardxpp
b0ard.h
counter.cpp
c0unter.h
xducer.cpp
xducer.h
global.cpp
globa1.h
types .h
usb.lib
us.h
main.cpp
main.h

Description:
board level functions
board header file
counter functions
counter header file
xducer functions
xducer header file
global variables and functions
global header file
global type definitions
the previous files compiled to form a library
header file used with us-b.lib
ultrasonic board main function
theory of operation

Each object is heirarchical. For example, the board object calls its ping
function which is supposed to measure a distance. The Ping function accesses a
Xducer object function that produces a chirp. The chirp function accesses a
Counter object to delay the chirp and so on. Each object gets closer to the low level
commands that directly manipulate the ultrasonic board hardware. Each object also
includes various methods to control the operation of the hardware or to perform
certain functions.

16
I- ->

In the latest version of the software, one Board object is declared and named
theBoard. This board object contains 4 counter objects and 4 Xducer objects. Each
Xducer object contains one Counter object -- making a total of 8 Counters on the
board. But because of the object oriented nature of the program, the Xducer's
counter is isolated from the rest of theBoard's functions.

The heirarchy appears as follows:

Board theBoard
Counter masterClock
Counter openwindow
Counter closeWindow
Counter pulseMatch
Xducer[0..3]
Counter chirp

4.1. Theory of Operation

The program is designed to operate from the DOS command line. The user must
provide a parameter to tell the program which function to perform. If a parameter is
not received, the program displays a list of valid parameters.

Available options
P [o-31
1 [0-31
..
L

m
f [0-31 [0-31
aP
ac

d
g

am

i
Z

Ping -- measures raw distance with specified transducer
Loop -- continuous Ping until key pressed
Calibrate -- calibrate one transducer
Measure -- measures calibrated distance
Full Duplex Ping -- measures distance with two transducers
Phased Array Ping -- does path matched ping
Phased Array Calibrate -- calibrate array
Phased Array Measure -- measures calibrated distance
Diagnostic -- perform an extensive hardware test
Log Data -- logs data to disk. Hit any key to toggle
pause and hit 'x' to exit
Do VO loop
Testing -- ensure window count working correctly

The first action taken by the program is the declaration of a Board object called
theBoard. During this procedure, all of the lower level objects are declared and all of
the objects are soft initialized by their respective SoftInit function. The soft
initialization sets up all the addresses for the hardware corresponding to the
software object. The address of the actual board must be the same in hardware as

17

well as in the software. All of the offsets of the various components of the board are
already stored in lookup tables in the file called GLOBAL.CPP (3). This procedure
is automatically performed any time a Board is declared.

Next, all of the hardware must be initialized. The counters need modes and
starting counts, the control registers need to be reset, and so on. This is accomplished
with the HardInit function (3). This needs to be run once before the fust time a
distance measurement is taken.

Currently, the master counter is initialized to 18200. This number counting
down at 100 kHz will timeout after 0.182 seconds which corresponds to about 100
feet of maximum distance. Since the maximum reliable distance measurement is
approximately 35 feet, this timeout is acceptable. The counter to open the
window is set to 250, or 2.5ms, and the window closes after the maximum count of
18200.

The other xducer counters are initialized to the minimum delay time of 1
count at 1 MHz, or lus. After initializing the board and using the lookup tables
to set up the addresses for the objects, the different options are ready to be carried
out.

4.1.1. Ping

Ping sets a single transducer to chirp and to receive echoes by writing the
correct values to the EN-CHRP, EN-ECHO, and CHRP-INH signals. Then, it sets
the Go signal active to begin the chirp. It also opens the window after a short delay
to keep from considering the c h q as an echo. Once the chirp is finished, the
program polls one of the control registers. Two bits of this register are important.
One goes active when an echo is returned. The other goes active when the device
times out. If the time-out occurs, then the program displays a time-out message and
ends. If the echo return is detected then the Go signal, the transducer, and the
window are disabled and the function calculates the distance using the speed of sound
and the delay time between the chirp and the echo. Then, it resets the board by
calling the initialization function.

4.1.2. Phased Array Ping

This operates basically the same as the normal Ping function because the
actual path matching is implemented on the board itself. However, instead of using
just one transducer, this function uses three -- one to chup and two to receive
echoes. Since the path length matching is implemented in hardware, the rest of the
function operates similar to the Ping function. The main difference is that this
function has more control bits to set because of the greater number of transducers
used.

18

The path length matching is simple. As soon as one echo is received, a short
window is opened. The other transducer's echo signal must occur while this
window is open for an echo to be considered valid. If it does not, then the window
and echo latch on the Polaroid board are reset and the board waits for the next echo
(See Figure 3).

Figure 3: Phased-Array Path Length Matching

n
Receiverl

*
Transmitter , Target

-

Receiver2

Receiverl

Transmitter

Receiver2

-
4 Target

b

Target On-Axis
X=Y

Target Off-Axis
X ! = Y

U

19

4.1.3. Calibrate

This option calibrates a transducer assuming a linear error. It takes two
distance measurements using the Ping function. (NOTE: The user must input the
actual distance measured.) Then the program calculates the gain and the offset of the
transducer and stores the values in a file. Filenames for the transducers are of the
form "bat#.cal", where the # is the transducer number. Each transducer has its own
file. The XDUCER.H source code contains the definition for the filename. The
file for the phased array is called "phased.ca1" and is defined in B0ARD.H (3).

The Measure option uses this data along with the Ping function to calculate the
actual distance.

4.1.4. Diagnostic

This function tests all of the hardware on the board. It writes Ox0 to all of the
control registers and then reads from them. If the values in the control registers are
not 0x0, then the component is not operating correctly and an error is reported.

Because of the hardware, it is impossible to test each counter to see if it
counts just using software. However, the program does reaawrite tests of all the
counters and reports any errors.

Finally, a test Ping using the center transducer and a full Phased Array Ping are
performed.

4.1.5 Interrupts

When the system powers up, interrupts are disabled. Interrupts are generated by
the software after each ping. Because the interrupt line is shared by other hardware, if
another piece of hardware is using the interrupt line, the sonar generated interrupt is
delayed until the interrupt line is available.

4.2. Operation with a Real Time Operating Svstem

Currently, the software still polls the board to see when an echo is received.
This will be changed to work with an interrupt when a final real-time operating
system is selected.

20

5. Ultrasonic Transducer Modifications

Objective:

In order to increase system’s range and minimize reflections of the ultrasonic waves from dust particles in the air,
suggested technique is to reduce the chirp frequency. It is known that the propagation in air is better at lower
frequencies (going from 50 to 25 kHz cuts the attenuation by approx. 15dB). However, since the peak of “Polaroid”
transducer performance is at 50 kHz, it is necessary to increase its effective aperture to reach the same performance at
lower frequencies. Using four transducers, positioned next to each other, allows to shift the peak performance down
to 25 kHz. Also four transmitting transducers produce a more powerful chirp. This modification theoretically results
in increasing the distance of reliable ranging.

Ranging Circuit Board with four transducers (revised schematics)

7’ I Gain,BW I C Control +
Processed
Echo Analog

Circuit SYSTEM
CONTROL b Receive
VEHICLE

3 GENERAL

Interface
Circuit

0 Target

J
Transmitted I
Pulse 1
Reflected :
Echo

21

Ultrasonic Transducer Experiments

Experiment I:

Objective:
To characterize transducer performance as a function of transmitting frequency.

Apparatus:
1 Polaroid Piezo Transducer (Part No. 618906-618907) for receiver
1 Polaroid Electrostatic Transducer (Part NO. 604142) for transmitter

Procedure:
Two sets of measurements were taken with transmitter and receiver separated by two meters and
ten meters.

Attenuation of signal received was measured at transmitting frequencies ranging between 25 and
60 kHz, at 5 kHz increments. (See attached graphs for transfer characteristic)

Explanation:
In order to detect and monitor transmitted and received signals, it was necessary to send signals
at a duty cycle higher than the Polaroid circuits allow (originally, less than one percent). Thus,
two new circuits were designed and built to support the transmitter and receiver at this higher
duty cycle. (See Figure 1 and Figure 2 for schematics) Since the electrostatic transducers designed
by Polaroid can transmit as well as receive, it is suggested that a DC bias voltage of 150 volts
is used. However, since we only used the transducer to receive, this condition was ignored. The
suggested AC driving voltage of 400 volts peak-to-peak was not attained for the full range of
the frequencies due to limitations of the power supply and transistor. Therefore, one set of
measurements was taken at 225 volts peak-to-peak (over entire range of frequencies) and another
set at 400 volts peak-to-peak (up to 40 kHz).

Conclusions:
Although we were unable to attain a 400 volts peak-to-peak for the entire range of transmitting
frequencies, the data collected indicates that the performance peak is at 5OkHz. This agrees with
the characterisitcs of the transducers provided by Polaroid.

22

Experiment 11:

Objective:
To shift the peak performance of the transmitting and receiving transducers from a higher fre-
quency (5OkHz) to a lower frequency (20-25kHz) by doubling the effective aperature.

Apparatus:
4 Polaroid Piezo Transducer (Part No. 618906-618907) for receiver
4 Polaroid Electrostatic Transducer (Part NO. 604142) for transmitter

Procedure:
Use four transducers mounted side by side as one transmitter or receiver.

Characterize this new configuration’s attenuation of signal received versus transmitting frequency
and identify the new peak of performance.

Explanation:
With four transducers on the transmitting side, the total impedance is reduced by a factor of four
because the transducers are in parallel. To account for this lower impedance, the transmitting
circuit used in Experiment I was modidifed. The main transistor was replaced by two power
transistors and the inductive kick protection diode was replaced by a set of parallel power diodes.
In addition, a larger power supply was used. Even with these modifications, we were unable to
achieve reasonable voltages on the transmitters (only 135 volts peak-to-peak at 25kHz before
components burned up). The problem is that increasing the power supply voltage does not
increase the output voltage, but we are unclear why this occurs. Initially, we suspected that a
phase shift was introduced by the reactive elements in the circuit, but after more experiments,
we disproved this theory. Another theory which has not been explored is that the transformer is
limiting the current attainable at each transmitting frequency.

Conclusions:
Changes to the existing circuit must be made in order to attain reasonable peak-to-peak voltages.

23

Appendix A:

The following graphs contain data collected in August 1993 on the California
Highway Patrol’s test track in Sacramento, California. One set of graphs consist of
the raw data while the other set of graphs consist of the filtered data. Software was
written to filter and to format the data into an appropriate form for XGraph. The raw
data is filtered to eliminate noise and to determine how to improve the performance of
the ultrasonic sensor.

The data is filtered using the following steps:
(1) Take the average distance of the first ten data points and use the average to

represent the starting point. This is done to account for the initial time needed to
accelerate up to the designated velocity.

(2) For all other data points, compare it to the last valid data point and determine the
acceleration or deceleration. If the acceleration or deceleration is less than
16ft/secA2 then the current data point is valid. Otherwise, it is invalid and
ignored. (It is reasonable to assume the maximum acceleration or deceleration of
a car is 16ft/secA2.)

(3) Repeat step 2 until there is no more data.

From the data collected, it appears that there is not enough gain in the circuitry of the
receiving transducer to detect the reflection. Currently, the system is being
redesigned to improve the power and sensitivity of the receiving circuit.

A1

Distance (feet)
Raw Data: Run#l30mph

-
array 1

I I
102.85 102.90 102.95 103.00

A2

Raw Data: Run= 40mph
Distance (feet)

90.00

85.00

I array2

I

103.35 103.40
I

103.45
I

103.50
Time x lo3

A3

Distance (feet)
Raw Data: Run#3 4mph

104.35 104.36 104.37 104.38 104.39 104.40

A4

Distance (feet)
Raw Data: Run#4 60mph

104.84 104.84
I

104.85
I Timex 103

104.85

A5

Distance (feet)
Raw Data: RunM 70mph

105.50 105.5 1 105.52
I

105.52

A6

Distance (feet)
Raw Data: Run#6 80mph

70.00 J l I

I i A
65.00

60.00 I

1
55.00 --L-----,

I I

I

I

I

I

50.00

105.84

A7

Raw Data: Runm 35-40mph Target Bumper
Distance (feet)

I I I Timex 103
110.02 110.04 110.06 110.08 110.10 110.12 110.14

A8

Filtered Data: Run#l30mph
Distance (feet)

80.00

75.00

70.00

65.00

60.00

55.00

50.00

45.00

40.00

35.00

30.00

25.00

20.00 I A 1
15.00

10.00

1

0.00 20.00 40.00 60.00 80.00 100.00

array 1. ftr

Time

A9

Filtered Data: Run#2 40mph
Distance (feet)

0.00 L I
0.00 20.00 40.00 60.00 80.00 100.00

array2.f~

Time

A1 0

Distance (feet)

90.00

85.00

80.00

75.00

70.00

65.00

60.00 -1

Filtered Data: Run#3 54mph

I array3.f~

5.00 10.00 15.00 20.00
Time

A1 1

Filtered Data: Run#4
Distance (feet)

40.00

38.00

36.00

34.00

32.00

30.00

28.00

26.00

24.00

22.00

20.00

18.00

16.00

14.00

12.00

10.00

8 .oo
6.00

4.00

2.00

0.00

60mph

I array4.f~

Time
5.00 10.00 15.00

A1 2

Filtered Data: Run#5 70mph
Distance (feet)

42.00 -

40.00 -

38.00 -

36.00 -

34.00 -

32.00 -

30.00 -

28.00 -

26.00 -

24.00

22.00

20.00

18.00

16.00

14.00
0.00 5.00 10.00 15.00

array5.ftr

Time

A1 3

Filtered Data: Run#6 80mph
Distance (feet)

40.00

39.00

array6.f~

38.00

36.00

37.00

33.00

34.00

35.00

32.00

29.00

30.00

3 1 .OO

28.00

27.00
26.00

24.00

25.00

23.00

22.00

21 .oo

\

\
I
I

\ I 20.00

19.00

18.00
V

Time
5.00 10.00 15.00

A1 4

Appendix B:

The following are schematics of the ultrasonic board.

%!+- 74lS74

M CHRPO

GO
START3

RI.IMI
u m

e @
14U74

WUE MATCH -1

J 741514

m m
M
AI

1

L

I

Appendix C:

The following is the source code for the ultrasonic software.

c1

/ / t t t * t t t t t t t t t t * t t ~ t * t * t t t t t t t t t t t t t t * t ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ * ~ ~ ~ ~ ~ ~ ~ ~ * ~ ~ ~ ~ ~ ~ ~ * , ~ ~ ~ ~ * ~ ~

/ / Abstract: Ultrasonic Board Software Version B
/ /
/ / Author:
/ /
/ / Revision History:
I / When Revision Who What
/ /
/ / 5/26/92 1
/ / a / 1 o / 9 3
/ / t t t t t t t t * t t t t t t t t t * t t t t t t t t t t t * t t + + * t * ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ . ~ ~ ~ ~ , ' , ~ ~ ~ ~ ~ * ~ ~ ~ ~ ~ * ~ ~ ~ ~ ~ ~ ~

M. King Creation
2 J. Chen Add functions for logging data

#include 'typede€s.h"

#include "xducer.h"
#include "c0unter.h'

Winclude 'global .h"
Xinclude 'b0ard.h'
#include <conio.h>
#include <ctype.h>

Xinclude <stdlib.h>
Xinclude <stdio.h>

#include <time.h>
#include <dos.h>

Winclude <sys\timeb.h>

//Define delay times
#define SHORT-DELAY 25
#define LONG-DELAY 500
#define OPEN-DELAY 10

n //Define number of measurements to take for the average during calibration
#define AVERAGE 10

/ * Structure provided by Borland C * /
/ *
struct t imeb (

short millitm;
long time;

short timezone;
short dstflag;

)

struct tm (
int tm-sec ;
int tm-min;
int tm-hour;
int tminday;

int tm-year:
int tm-mon;

int tm_yday;
int tm-wday;

int tm-isdst ;

* /
1

Board: :Board(Int16 aBaseAddress)
(

int i;
FILE 'fp;

//baseAddress is the base address of the board
//masterRegAddr is the address of the master control register
//controlRegZAddr is the address of control register 2
//(used to enable interrupt function)

/!initialize counters and transducers

masterRegAddr = aBaseAddress + 0x11:
/ * baseAddress = aBaseAddress;

masterClock.Soft1nit (baseAddress , MCLOCK-CNTR-NUM);
controlEeg2Addr = aBaseAddress t 0x12;

openWindow.SoftInit (baseAddress , OPJIN-CNTE-NUM) ;
closeWindow.SoftInit(baseAddress , CWIN-CNTR-NUM J ;
pulseMatch.SoftInit(baseAddress , PULSE-CNTR-NUM) ;
for(i = 0 ; (i < BAT-CNT); itt)

bat[i l.SoftInit(baseAddress, i):

//Get phased array calibration parameters

if(@)
fp = fopen (CALFILE, ' r ") ;

(
fscanf(fp, '%g', &myGain) ;
Escanf (fp, 'tg', &myoffset J ;
€close (fp) :

I
else
(

myGain = 1 ;
myoffset = 0;

1 * /
return i

roid Board: :Checkversion (void)

char version;
Byte check = 0x0;

//Write Ox0 to control register 2, which only exists on
//version B of the ultrasonic board. I f Ox€€ is returned,
//then the board in the machine is version A . If Ox0 is
//returned then the version is B. If the version of the
//board does not match the version of the software, the

outportb(controlRegZAddr, OXO);
//program will terminate with an error message.

check = inportb(controlReg2Addr);
if (check ! = 0x0)

else
version = 'A';

version = 'B':

if (version ! = Thisversion)
(

printf('This software is for use with only version');
printf(' %c of the ultrasonic board.\n', Thisversion);
exit (0) ;

1
return;

roid Board::HardInit(void)

int i:
Intl6 address;
Byte check = 0x0;

address = baseAddress t 0x10;
outportb(address, 0x0) ;
check = inportb(address) ;
if(check ! = 0)

I
printf('Board not responding at address Ox%x\n",baseAddress);
exit (0) ;

1
/ * Checkversion(): * /

//Need to set Go signal inactive
SetGo(0FF) ;

//Need to write control words to all counters
//Counters in board are : masterclock, openwindow, closeWindow

//Set master clock to MaxCount and all other counters to the
//Need to set all initial counts

{/minimum delay of 1
//For indefinite window, use mode 0 for openwindow, and mode 4

//Because of faulty internal blanking, always use window mode to
I / for closeWindow

//avoid confusing a chirp with an echo. Open the window after
/ / 3 m s (300 10us). Close the window after the maximum count
/ / (MaxCount)
WindowStart(0PEN-DELAY, MaxCount);
masterClock.HardInit(EventCount , MaxCount);
pulseMatch.HardInit (SoftwareStrobe,PulseLength) ;
WindowEnd () ;
for(i = 0 ; (i < BAT-CNT); it+)

bat[il.HardInitO;
return;

)

//Used to reinitialize counters and transducers after performing
//full duplex ping.

n //Similar to Board::HardInit but HardInit is initialization when starting
UJ //from scratch while FullDuplexHardInit is re-initialization after

//a full duplex ping has already occurred and before the occurrence of the
//next full duplex ping.
//See that it also uses a different initialization for the transducers than
//in Board::HardInit.
void Board::FullDuplexHardInit(void)
(

masterClock.HardInit(EventCount, MaxCount);
pulseMatch.HardInit(SoftwareStrobe, PulseLength):
for(int i = 0; i < BAT-CNT; it+)

return;
bat [il .FullDuplexHardInit () ;

)

void Board::PhasedArrayHardInit(void)
(

/ / tempPulseLength indicates maximum time frame for detecting

/ / pulse length of 150 corresponds to maximum t/- 0.8 ft error
/ / matching echoes

Intl6 tempPulseLength = 150;

WindowStart(0PEN-DELAY, MaxCount);
masterClock.HardInit(EventCount, MaxCount);

WindowEnd(1 ;
pulseMatch.HardInit(SoftwareStrobe, temphlselength);

for(int i = 0; i < BAT-CNT; it+)

return;
bat [il .FullDuplexHardInit() ;

1

void Board: :Diagnostic (void)

Byte tester;
int index;
float distance;

//Check all registers
//Test master control register
outport (masterRegAddr, 0x0) ;
tester = inport(masterRegAddr);
if(tester ! = 0)

else
printf("Master Register not responding. Possible problem with paddle boar

printf ("Master Register okay\n') ;

//Test transducer control register
bat[0] .DiagnoseRegister();
//Test control register 2
outport(controlReg2Addr, OXO);
tester = inport(controlReg2Addr);
if(tester ! = 0)

else

//Check all counters
printf('Checking master clock. .. .):
masterclock. Diagnose () ;
printf('Checking open window clock ... ") ;
openWindow.Diagnose() ;
printf('Checking close window clock ... -) ;
closeWindow.Diagnose():
printf("Checking pulse match clock . . . *) ;
pulseMatch.Diagnose():
for(index.0; index<4: index++) (

printf('Contro1 Register 2 not responding\n');

printf('Contro1 Register 2 okay\n');

printf('Checking bat X%d ... ',index):
bat[indexl .DiagnoseCounter();

I
//Re-initialize and test ping
HardInit () :
printf ('Test ping: ' 1 ;
distance = Ping(CENTER) ;
printf('Distance is %.4g\n', distance);
//Re-initialize and test full duplex ping
//For full duplex ping, assumes receiver is 0 and sender is 1.

printf('Test full duplex ping\n");
FullDuplexInit (CENTER, LEFT) ;

printf('Distance is %.4g\n', distance);

//Re-initialize and test phased array ping
HardInit () ;
printf('Test phased array ping\n');

distance = PhasedArrayPing (LEFT, RIGHT, CENTER, PING-OPEN) ;
PhasedArrayInit(LEFT,RIGHT,CENTER);

printf('Distance is %.4g\n', distance);
return;

distance = FullDuplexPing(P1NG-OPEN, CENTER, LEFT):

Bolean Board::Go(void)

union masterReg master;

//Read in go bit from the register
master.data = inportb(masterRegAddr);

printf("The master register is Ox%x\n', master.data);
return (Boolean] master.bits.go;

)

void Board::SetGo(Boolean go]
(

union masterReg master;

master.data = inportb(masterRegAddr) ;
//Read the register, change the go bit, write the register

master.bits.go = go;
outportb(masterRegAddr, master.data1:
return;

)

void Board::SetWindowMode(Boolean theMode)
(

union masterReg master:

master.data = inportb(masterRegAddr);
master.bits.wndw_mode = theMode;
outportb(masterRegAddr, master .dat a) ;
return:

)

Boolean Board::WindowMode(void)
(

union masterReg master;

master.data = inportb(masterRegAddr);
return (Boolean) master.bits.wndw-mode;

2)
Boolean Board::EchoReturn(void)

union masterReg master;
int mastercount, openWindowCount, closeWindowCount, pulseMatchCount;
Boolean type;

master.data = inportb(masterRegAddr) :
return (Boolean) master.bits.echoReturn;

(

)

void Board::Calibrate(Int16 batNum)
(

float measuredl, measured2;
float actuall, actual2;

float sum = 0;
float gain, offset;

float temporary;
int index;

clrscr () ;

printf ("Place target at a close distance (approx 3ft.) \n") ;
//Ping many times so the user can set up the target

printf("Hit any key when ready for measurement\n');
while(!kbhit ()]
(

printf("Approx. distance: %.4g\n',Ping(batNum)];
gotoxy(1,3):

delay(LONG-DELAY);
1
getch() ;
//Take AVERAGE number of measurements for an average figure

for(index = 0; (index < AVEP,AGE); indextt)

I

I

(
temporary = Ping(batNum1 :
delay(SHORT-DELAY);
sum t= temporary:

1
measuredl = sum/AVERAGE:
printf('Enter actual distance of target : ") ;

printf('\nPlace target at a far distance (approx 3ft.)\n"];
scanf('%g',&actualll;

while(!kbhit ())
printf('Hit enter when ready for measurernent\n');

(
gotoxy(l,l2);
printf("Approx. distance: %.4g\n", Ping(batNum1);
delay (LONG-DELAY] ;

\
getch (1 ;
sum = 0;
for(index = 0; index < AVERAGE; index++)
(

delay (SHORT-DELAY] ;
temporary I Ping(batNum1 ;

sum + = temporary;
)
measured2 = sum/AVERAGE;
printf('Enter actual distance of target : ' 1 ;
scanf('%g',&actual2);
//Calculate gain and offset according to the formula:

gain = (actual2 - actuall) / (measured2 - measuredl);
//actual distance = gain*raw-distance t offset

offset = ((actuall-(gain*measuredl)) t (actual2-(gain*measured2)))/2;
bat[batNuml.gain = gain;
bat[batNuml.offset = offset;

printf('Gain is %.4g and the offset is %.4g\n', gain, offset];
//Write information to file
bat[batNum] .WriteCalibration();
return;

lOat B0ard::PingMeasure (Intl6 batNum)

float calibrated, raw;

raw = Ping (batNum) :
calibrated = (raw'bat[batNuml .gain) t bat [batNuml .offset:
printf('Raw distance : %.4g Calibrated distance : %.4g\n',raw,calibrated);
return calibrated;

loat Board::Ping(Intl6 batNum)

Intl6 timeOfFlight = 0;
float distance;

bat[batNuml.SetPing(BOTH, ON);

Windowstart (PING-OPEN, MaxCount) ;
SetGo(0N) :

while(!EchoReturn()) //Wait until echo is detected
(

/ / 300 * 1Ous = 3ms

if (Timeout (1)
I

printf('Timeout! ! ! !\n');
break ;

)
1
SetGo(0FF) ;
WindowEnd (1 ;
bat (batNuml .SetPing(BOTH, OFF) ;

distance = (((float) timeofFlight * ClockRate) * SpeedOfSound) / 2:
timeOfFlight = MaxCount - masterClock.Count0;

HardInit (1 :
return distance;

)

void Board::FullDuplexInit(Intl6 sender, Intl6 receiver)
1

bat (receiver] .Se tEcho-Inhibi t (ECHOPNLY, ON) ;
bat[sender].SetEcho-Inhibit(CH1RP-ONLY, ON);
return;

1

float Board::FullDuplexPing(Intl6 windowDelay, Intl6 sender, Intl6 receiver)
(

Intl6 timeOfFlight = 0;
float distance;

c

bat[receiver].SetChirp-Inhibit(ECH0-ONLY, ON);
bat[senderl.SetChirp-Inhibit(CH1RP-ONLY, ON);
SetGo(0N) ;
WindowStart(windowDelay, MaxCount); / / 3 0 0 * lOus = 3ms
while(!EchoReturn()) //Wait until echo is detected
(

if (TirneOut ())
(

printf("Timeout! ! ! !\n*);
break;

1
SetGo(0FF) :
WindowEnd() ;
bat[receiver].SetChirp-Inhibit(B0TH. OFF);
bat[sender].SetChirp-Inhibit(BOTH, OFF);
timeOfFlight = MaxCount - masterClock.Count0;
distance = (((float) timeOfFlight * ClockRate) * SpeedOfSound) / 2 ;
FullDuplexHardInit () ;
return distance;

1

1

void Board::PhasedArrayInit(Intld receiverl, Intl6 receiver2,

(

Intl6 sender)

bat[receiverl].SetEcho-Inhibit(ECH0-ONLY, ON);
bat[receiver2] .SetEcho-Inhibit (ECHO-ONLY, ON) ;
bat[sender].SetEcho-Inhibit(CH1RP-ONLY, ON);
return;

1

float Board::PhasedArrayPing(Intl6 receiverl, Intl6 receiver2,

r
Intl6 sender, Intl6 windowDelay

Intl6 timeOfFlight = 0 ;
float distance;

bat[receiverll .Setchirp-Inhibit(ECH0-ONLY, ON) ;
bat[receiver2l.SetChirp-Inhibit(ECHO-ONLY, ON):

bat(sender1.SetChirp-Inhibit(CH1RP-ONLY, ON);
SetGo(0N) ;

WindowStart(windowDelay, MaxCount);
/ /SetInterrupt (ON) ;

while(!EchoReturnO) //Wait until echo is detected
/: 300 lous = 3 m s

if (TimeOut (1)
(

printf("Timeout! !!!\nu):
break ;

1
SetGo(0FF) ;
WindowEnd() ;
bat[receiverll.SetChirp-Inhibit(BOTH, OFF):
bat [receiver21 .Setchirp-Inhibit (BOTH, OFF) ;
bat[senderl .Setchirp-InhibitfBOTH, OFF);
tirneOfFlight = MaxCount - masterClock.Count();
distance = (((float) timeOfFlight * ClockRate) * SpeedOfSound) / 2;
PhasedArrayHardInitO;
return distance;

)

.loat Board::PhasedArrayPing(Int16 receiverl, Intl6 receiver2,
'The following is the original PhasedArrayPing.

Intl6 sender, Intl6 windowDelay)

Intl6 timeOfFlight = 0;
float distance;

bat[receiverll.SetPing(ECHO-ONLY, ON);
bat[receiver2l.SetPing(ECHO-ONLY, ON);
bat(sender1 .SetPing(CHIRP-ONLY, ON);
SetGo(0N) ;
WindowStart(windowDelay, MaxCount);
while(!EchoReturn()) //Wait until echo is detected

' / / 300 * lOus = 3ms

(
if (TimeOut (1)
(

printf('Timeout! ! ! !\n');
break;

1
)

WindowEnd(;
SetGo(OFF) :

bat[receiverl].SetPing(BOTH, OFF);
bat[receiver2].SetPing(BOTH, OFF);
bat [sender] .SetPing(BOTH, OFF) ;
timeOfFlight E MaxCount - masterClock.Count();
distance = (((float) timeOfFlight * ClockRate) * SpeedOfSound) / 2;
HardInit (1 ;
return distance;

b /

roid Board::ArrayCalibrate(Intl6 receiverl, Intl6 receiver2,
Intl6 sender, Intl6 WindowDelay)

float measuredl, measured2;

float gain, offset:
float actuall, actual2;

float sum I 0;
float temporary;

int index;
FILE 'fp;

sum + = temporary;
1
measuredl = sum/AVERAGE;
printf('Enter actual distance of target : .);
scanf ("%g',&actuall) ;
printf("\nPlace target at a far distance (approx 9ft.l \n"l;
printf ("Hit enter when ready for measurement\n') ;
while(!kbhit 0
(

measured2 = sum/AVERAGE;
printf('Enter actual distance of target : ') :
scanf('%g',&actual2);
/ / Calculate gain and offset according to the formula
/ / actual distance = gain*raw-distance t offset
gain = (actual2 - actuall) / (measured2 - measuredl):
offset = ((actuall-(gain'measuredl]) + (actual2-(gain*measured2)))/2;

bat[CENTERl.offset = offset:
bat[CENTERl.gain = gain:

Printf('Gain is %.4g and the offset is %.4g\n', gain, offset);
/ / Write information to disk
fp = fopen(CALF1LE;w');
fprintf(fp, '%.4g\n%.4g\nm, gain, offset):
return;

1
float Board::ArrayMeasure(Intl6 receiverl, Intl6 receiver2,

(
Intl6 sender, Intl6 windowDelay)

float calibrated, raw:

raw = PhasedArrayPing(receiver1, receiverl, sender, windowDelay);
calibrated = (raw*bat[CENTER].gain) t bat[CENTER].offset;
printf ('Raw distance : %.4g Calibrated distance : %.4g\n",raw,calibrated)

float Board::ArrayMeasure(Intl6 receiverl, Intlci receiver2,
Intl6 sender, Intlrj windowDelay. FILE 'filePtr, float 'raw)

(float calibrated;

*raw = PhasedArrayPing(receiver1, receiver2, sender, windowDelay):
calibrated = (('raw) *bat [CENTER] .gain) t bat [CEIJTER] .offset;
return calibrated;

1

I (Boolean Board::TimeOut (void]

union masterReg master;

Boolean type;
int mastercount, openWindowCount, closeWindowCount, pulseMatchCount;

I

master.data = inportb(masterRegAddr);
return (Boolean) master.bits.zero-cnt;

oid Board::WindowStart(Intl6 openDelay, Intl6 closeDelay)

/ oPenWindow.HardInit(Softwarestrobe, OpenDelay);
SetWindowMode(0N);

aid Board::WindowEnd(void)

lid Board::SetInterrupt(Boolean value)

union controlReg2 theReg;

theReg.data = inportb(controlReg2Addr);
theReg.bits.enable-int = value;
outportb(controlReg2Addr, theReg.data];
return:

lolean Board::GetInterrupt(void)

union controlReg2 theReg;
theReg.data = inportb(controlReg2Addr):
return theReg.bits.enable-int;

id Board::PingStart(Int16 batNm)

bat[batNuml.SetPing(BOTH, ON);
SetGo(0N);
Windowstart (PING-OPEN, MaxCount] ;
delay(500) ;

/ / 300 * lOus = 3ms

/ * Generate the interrupt after doing the chirp so
* the int-errupt handler finishes reading the master
* counter and does the calculation of distance *;

geninterrupt (1NTERP.UPT) ;
return:

1

void Board::EchoInterrupt(void interrupt (*oldfunc) (. . .))
r

float. distance;
int batNum, timeOfFlight:

printf("Ech0 interrupt handler running!\n");

if (Timeout ())
(

printf('Timeout! !!!\n");
return;

1
else if (EchoReturn (1)
(

SetGo(0FF) ;
WindowEnd (1 ;
for(batNum.0; batNum < 4 ; batNumt+)

bat(batNum1 .SetPing(BOTH, OFF) ;
timeOfFlight = MaxCount - masterClock.Count();
distance = (((float) timeOfFlight * ClockRate) * SpeedOfSound) 2;
HardInit () ;
printf("Distance is %.4g ft\n',distance);

1
else
(

/ * Call the original interrupt handler because
* none of our conditions were met, so it must
be for the other function * /

oldfunc (1 ;
)
return;

)
void Board::PhasedArrayInitAndPing()
(

Intl6 receiverl = 0;
Intl6 receiver2 = 2:
Intl6 sender = 1;

bat [receiver11 .SetPing(ECHO-ONLY, ON) ;
bat [receiver21 .SetPing(ECHO-ONLY. ON) ;
bat[senderl.SetPing(CHIRP-ONLY, ON);
SetGo(ON1 ;
SetInterrupt (ON) ;
return;

)

float 6oard::PhasedArrayFinishPingO
(

Intl6 receiver1 = 0;
Intl6 receiver2 = 2;
Intl6 sender = 1;
int timeofflight;
float distance;

SetGo(0FF) ;
WindowEnd() :
bat [receiverl] .SetPing(BOTH, OFF) ;

batcreceiver21 .SetPing(B@TH, OFF) :

timeOfFlight = MaxCount - masterClock.Count();
bat[senderl.SetPing(BOTH, OFF):

distance = (((float) timeOfFlight * ClockRate) * SpeedOfSound) / 2;
PhasedArrayHardInitO;
return distance;

//Functions for logging data
int Board: :LogDataInit ()

(
char filename[l31;

//Change the environment variable Ti

putenv(tzstr);
//Set the time variable for Pacific Standard Time

tzset () ;
delaytime = 0;

//Initialize delay time
//Determine the delay between each pulse transmitted
delaytime = 0;
do (

printf('Enter delay time between measurements in milliseconds (5 0 - 1000)
scanf("%d*, &delaytime);

) while ((delaytime < 50) I I (delaytime > 1000));

printf("Enter filename to store data to: " I ;
scanf('%s', filename);
filePtr = fopen(fi1ename. 'w") ;
if (filePtr =E NULL)
(

printf ('Error opening file\n') ;
return ERROR;

1

//Clear the current text window
//Determine the time and fill fields of parameter
//Convert date and time to a structure
clrscr () ;
ftime(&t) ;
tblock = localtime(&(t .time) 1 ;
return TRUE;

)

void Board::PingLogData()
(

char tirnestring[EOl;
float distance;

char c;

I if (LogDataInitO == TRUE)
(

fprintf(fi1ePtr;Test start time: %s\n',asctime(tblock)) ;
fpr in t f (f i1ePt r ;Ul t rasonic Ranging Ping Datafile\n');

fprintf(filePtr, 'Time stamp : Distance(ft) \n*);
printf('Hit x to quit.\n");
do (

do (

print f ('
gotoxy(1.2);

gotoxy(l,2);
distance = (float) Ping((Intl6)CENTER);
ftime(&t):

\n" 1 ;

I

tblock I localtime(&(t .time)) ;
strftime(timestrin9, 80, '%H:%M:%S",tblock);
if(distance < 90)
{

fprintf(filePtr.'%s.%-3d : %g\n",titnestring,t.mil
printf("L7istance is %.4g.\n",distance);

1
else

fprintf(filePtr.'%s.%-3d : Timeout\n",timestring,

) while(!kbhit()) ;
c = getcho;
if(tolower(c) == 'x,)

break ;

gotoxy (1 # 2 ;
fprintf(filePtr,"'*'**'** User Pause *******\n");

printf("******* User Pause * * * * * * * * * \ n ") ;
while(!kbhit());
c = getch();

) while (tolower(c) ! = 'x,);

fclose(fi1ePtr);
fprintf(filePtr;******** User Exit *******'\n");

delay (delayt imel ;

return;

)

void B0ard::PhasedArrayLogDataO
(

char timestring[801;
float calibrated, raw;

char c;

if (LogDataInit() == TRUE)
(

fprintf(fi1ePtr;Ultrasonic Ranging Phased Array Datafile\n*
fprintf(fi1ePtr;Test start time: %s\n',asctime(tblock)) ;

printf('Hit x to quit.\n") ;
fprintf(filePtr,"Time stamp : Calibrated(ft) Raw(ft) \n

do (
/ * PhasedArrayInit(LEFT, RIGHT, CENTER); * /

do (
gotoxY(l.2); - .
print€(' \n") ;
gotoxy(l,2);
//calibrated = (float) ArrayMeasure(LEFT, RIGHT, CENTER,
calibrated = 100;
Etime(&t);
tblock = localtime(&(t .time)) ;
strftiine(timestring, 80, '%H:%M:%S*,tblock) ;
if(ca1ibrated < 90)
(

Eprintf(EilePtr;%s.%-3d : %g %g\n',timestring
printf('Ca1ibrated distance : %.4g Raw distan

)
else

delay (delayt ime) ;
fprintf(filePtr,'%s.%-3d : Timeout\n',timestring

1 while(!kbhitO 1 ;
c = getch() ;
if (tolower (c) == 'x')

break ;
fprintf(filePtr,"******* User Pause * * * * * * *
gotoxy(l.2);

\n') ;

printf("**tr*t* user pause "** '* '**\n .) .
while(!kbhit 0) ;
c = getch(1 ;

while (tolower(c) ! = ' x ,) ;
fprintf(filePtr,"*'****** User Exit ******"\n');
fclose(fi1ePtr);

I

1
return;

http://g\n",titnestring,t.mil

/ / * * * t * * * . t t t t * * * t t l ~ ~ ~ t ~ ~ ~ ~ * ~ * ~ * ~ * ~ ~ ~ * ~ ~ * ~ * ~ ~ ~ * ~ ~ ~ * * ~ * * * * ~ ~ ~ * ~ * * ~ * ~ ~ ~ * ~ * * ~ ~ *

/ / Abstract: Ultrasonic Board Software Version B
/ /
/ / Author:
/ /
I / Revision History:
f / When P.ev i si on Who What
/ /
I f 5 / 2 8 / 9 2 1 M.King Creation
, / t t * t t t t + t t * t t t t * t t ~ * ~ * * ~ ~ ~ ~ * ~ ~ ~ ~ * ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ * ~ ~ * ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ * ~ ~ ~ ~ ~ * ~ ~ ~ ~ ~ ~

Xinclude 'typedefs.h'
Winclude 'g1obal.h'
Rinclude 'c0unter.h'
Rinclude 'typedefs.h"
Winclude <math.h>
#include <conio.h>
Xinclude <stdlib.h>
#include <stdio.h>

void Counter::SoftInit(Int16 theAddress, Intl6 theCounterNum)
(

//Create addresses.
//myAddress is the Counter's address.
//myNumber is the Counter's reference number.
//myControlAddress is the address of the Counter's control word.
//myControlData is holds the data for restoring the control word.

myAddress = theAddress + counterMap[theCounterNum][CNTR~MAP_ADD];
myNumber = counterMapftheCounterNum1 [REF-NUMBER];
myControlAddress = theAddress +

myControlData = 0 ;
return;

a (counterMapltheCounterNum][CNTR-MAP-ADD] I 3) ;

1

void Counter::HardInit(Byte theMode, Intl6 thecount)
(

//Set the counter's mode and initial count.
SetMode (theMode) ;
SetCount (thecount) ;
return;

1

void Counter::Diagnose(void)
(

HardInit(EventC0unt. MaxCount);
if((Mode0 !I Eventcount) I I (count0 ! = MaxCount))

else

return;

printf("Counter %d not responding\n', myNumber);

printf('Counter %d okay\n', myNumber);

)

Byte Counter: :Mode(void)
(

//Create the proper readback control word.
//select = 3 for readback command
readBack.bits.select = 3 ;
readBack.bits.countLow = 1;
readBack.bits.statusLow = 0;

readBack.bits.zex-o = 0 ;
//zero is ALWAYS equal to zero

//The counterNum bits are as indicated on pg. 3-69 of the 8 2 5 4 datasheet.

//myNumber is a number from 0 to 2 that identifies the counter number
//to b e used. So given a 1, we can left shift the bits by myNumber
//to access the desired counter.
read0ack.bits.counterMum = 1 << myNumber;

outportb(myControlAddress, readBack.data);
//Write the readback control word.

//Read the status byte of the counter.
statusReg.data = inportblmyAddress) ;

outportb(myControlAddress, myControlData);
//Restore orignal control word.

return (Byte) statusReg.bits.mode;
)

Joid Counter::SetMode(Byte theMode)
(

//Create the proper control word to switch the mode.
controlWord.bits.select = myNumber;

//readwrite = 3 to default to 16-bit counters.
contro1Word.bits.readWrite = 3 ;
controlWord.bits.rnode = thenode;
contro1Word.bits.BCD = 0;
//Write the control word to the counter.

myControlData = controlWord.data;
outportb(myControlAddress, contro1Word.data);

return;
I

?oid Counter::SetCount(Int16 thecount)
(

Byte lsb, msb; //Least and most significant byte

//Get the least significant byte by AND'ing with OxFF
lsb = thecount & OxFF;

//Get the most significant byte by AND'ing with OxFF and
//dividing the result by 256 to shift the bits over.
msb = (thecount & OxFF00) / 256 ;

outportb(myAddress, lsb) ;
//Always write the least significant byte first.

outportb(myAddress, msb) ;
return:

I

tntl6 Counter: :Count (void)

Byte lsb, msb;
Intl6 total;

//Read the counter least significant byte first.

msb = inportb(myAddress) ;
lsb = inportb(myAddress);

total = (msb * 2 5 6) t lsb;
//Create the 16-bit integer count value.

return total;
I

3001ean Counter::Output(void)

//Create the proper readback control word.

readBack .bits. select = 3 :
readBack.bits.countLow = 1;

readBack.bits.zero = 0 ;
readBack.bits.statusLow = 0:

readBack.bits.counterNum = myNumber;

//Write the readback control word.
outportb(myControlAddress, readBack.data);

//Read the status byte of the counter.
statusReg.data = inportb(myAddress);

outportb(myControlAddress, myControlData);
//Restore the original control word.

return (Boolean) statusReg.bits.output:
1

Byte Counter::Status(void)
(

printf ("mynumber = %d mycontrol = %x\n',myNumber,myControlAddress) ;
//Create the proper readback control word

readBack.bits.select = 3:
//select = 3 for readback command

read6ack.bits.countLow = 1;
read8ack.bits.statusLow = 0:

readBack.bits.zero = 0;
//zero is ALWAYS equal to zero

//The counterNum bits are as indicated on pg. 3 - 6 9 of the 8254 datasheet. myNumb
//identifies the counter number to be used. So given a 1, we can left
//shift the bits by myNumber to access the desired counter.

printff'readback command word Ox%x\n', readBack.data);
readBack.bits.counterNUm = 1 << myNumber:

outportb(myControlAddress, readBack.data);
//Write the readback control word

//Read the status byte of the counter

printf('Read in word Ox%x\n',statusReg.data);
statusReg.data = inportb(myAddress):

outportb(myControlAddress, myControlData);
//Restore the original control word

printf(*restoring Ox%x\n",myControlData);
return (Byte) statusReg.data:

)

Boolean Counter::ZeroCount(void)
(

)
return Output () :

#include 'b0ard.h'
#include <stdio.h>
#include <dos.hz

#define SAFETY 256
/ * define interrupt vector to use * /

void interrupt ('oldfunc) (-CPPARGS) ;
void interrupt handler(-CPPARGS);

/' Reduce heaplength and stacklength to make a smaller program in memory * /
/ I extern unsigned -heaplen = 1 0 2 4 ;
/ / extern unsigned -stklen = 512:

Board theBoard(Ox320);

int main (void)
(

theBoard.HardInit();
/ * Save original interrupt handler * /
oldfunc = getvect(1NTERRUPT):

setvect(1NTERRUPT. handler);
/ * Install Echo Interrupt handler * /

/ * Terminate and Stay Resident Command * /

keep(0, (unsigned) 8000) :
/ * For testing purposes, call Pingstart which generates

/ / keeplo, (-SS t ((-SP t SAFETY) /16) - _psp)) ;

* the correct interrupt after a chirp * /
/ / printf('pause ... \nu);
/ / delay(500) ;
/ / theBoard.PingStart(0);

1

void interrupt handler(-CPPARGS)

return 0;

%
d

printf("Entering handler \n');
theBoard.EchoInterrupt(o1dfunc);

)

#inc lude ' typedefs .h"
inc lude 'g1obal .h"
inc lude < s t d i o . h >
inc lude <dos.h>

union cn t r lReg controlWord;
/ /Dec la re g loba l union v a r i a b l e s

union rdBack readBack;
union s ta tReg s ta tusReg;

/ / T h i s is a mapping from counter number
/ / r e g i s t e r s f o r a counter . Each e n t r y is re fe renced by t h e a l o b a l

d r e s s and c o n t r o l to ac :tua 1 ad

/ / c o u n t e r number. The f irst number i; t h e address of i h e c o i n t e r . The
/ /second number is t h e address of i ts c o n t r o l r e g i s t e r . The t h i r d number
/ / is t h e counter number i n t e r n a l to t h e 8254.
I n t l 6 counterMap [MAX-COUNTERS1 [CNTR-MAP-SIZE] = (

(oxo , 0x10, 0) ,
(0x1 , 0x10, 1) ,

(0x4 , 0x10, 0) ,
(0x2 , 0x10, 2) ,

(0x5 , 0x10, 1) ,
(0x6 , 0x10, 2) ,

Iu (0x15, Oxll, 1) ,
2 (0x14, 0x11, 0) ,

(0x16, Oxll, 2)
1;

i n t b a t l a p [BAT-CNT] [BATJlAP-SIZE I = (
/ / T h i s is a mapping from a ba t number t o its counter g loba l r e f e r e n c e number.

0.
1,
2.
3

) ;

mai
/ / * t * t * * t * * t t t * t t t * t ~ t ~ ~ ~ ~ ~ . ~ ~ * ~ ~ * ~ ~ * ~ ~ t ~ ~ * t t ~ ~ ~ ~ ~ * * ~ * * ~ ~ * * ~ ~ ~ ~ * ~ * ~ ~ t ~ * ~ * * ~ * ~

/ / Abstract: Ultrasonic Board Software Version B
/ /

/ /
/ / Author:

1 , Revision History:
/ / When Revision Who What
/ / ____-------_--__--~_.____________________-----------~

/ / 2/10/92 1 M. King
/ / * t * t t t t t * t t t * t * t + t t * t t t t * t t * * t t * t t * * t t t ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ * ~ ~ ~ * ~ ~ ~ ~ ~ ~ . ~ , ~ ~ * ~ ~ ~ ~ ~

Creation

#include 'us.h"
#include <stdlib.h>
#include <conio.h>

#include <dos.h>
#include <stdio.h>

#include <ctype.h>
#include <time.h>
tinclude <sys\timeb.h>

#define BASEADDRESS 0x320

void PrintOptions()
(

printf('Usage : usb [option]\n');
printf('Avai1able options :\n*);
printf ('p 10-31
printf ('I [O-31

Ping - - measures raw distance with specified transducer\n'
Loop -- continuous Pings until key pressed\n');

printf('c
print f ('m

Calibrate -- calibrate one transducer\n");
Measure -- measures calibrated distance\n");

z!
w

printf

print t
print f

print f
printf

print f
print f

printf
printf

(
(

return;
1

'f (0 - 3 1 L O - 3 1 Full Duplex Ping -- measures distance with two transducers

' ac
'a1 . am
'd
'9 Log Data -- logs data to disk. Hit any key to toggle pause

'ap Phased Array Ping -- does path matched ping\n');
Phased Array Calibrate - - calibrate the array\n');
Phased Array Loop -- phased ping until key pressed\n");
Phased Array Measure -- measure calibrated distance\n');
Diagnostic - - performs extensive hardware test\n');

' i
-2 Testing Window Count \n') ;

Hit 'x' to exit.\n');
Do 1/0 lmp\n');

void main(int argc,char *argv[l)
(

float distance;
Intl6 number;
Board theBoard(BASEADDRESS) ;

if(argc < 2)
(

PrintOpt ions () ;
exit (0) ;

)

//The 1/0 loop option.
i f (argv[1] 101 =I 'i')
(

while(!kbhit())

I

//theBoard.HardInit();

outportb(BASEADDRESS , 0 1 ;

switch (argv[ll [O])
(

case 'p' :

number = atoi(argvl21) ;
printf("Distance is %.4g\n',(float)theBoard.Ping((Int161 number))
break;

case '1' :

clrscr () ;
number = atoi(argv[2] 1 ;
do (

gotoxy (1 I2) :

gotoxy(1,1) ;
distance = (float) theBoard.Ping((Intl6) number);

printf("Distance is 8 . 4 9 ft.\n", distance);
delay(250) ;
gotoxy(1,2);
print f (" \n') ;

) while (!kbhit()) ;
break;

case 'c' :

theBoard.ArrayCalibrate(LEFT, RIGHT, CENTER, PING-OPEN);
break ;

case 'm' :
theBoard.ArrayMeasure(LEFT, RIGHT, CENTER, PING-OPEN);
break;

case ' g ' :

switch(argv[ll [11] (
case 'at:

theBoard.PhasedArrayLogData();
break ;

theBoard.PingLogData();
break;

case 'p':

1
break;

case ' f ' :
Intl6 sender;
Intl6 receiver;

receiver = (Intl6) atoi (argv[3]);
sender = (Intl6) atoi(argvI21);

do (
theBoard.FullDuplexInit(sender, receiver);

distance = (float)theBoard.FullDuplexPing(PING-OPEN, send
printf('Distance is 8.49 ft.\n', distance);

1 while (! kbhit ()) ;
break;

case 'a' :

switch(argv[ll [l]) (
case 'p' :

theBoard.PhasedArrayInit(LEFT, RIGHT, CENTER);
distance = (float)theBoard.PhasedArrayPing(LEFT,
printf('Distance is %.4g ft.\n', distance);
break;

case 'c' :

theBoard.ArrayCalibrate(LEFT, RIGHT, CENTER, PING

break ;

case 'm' :

thesoard.PhasedArrayInit(LEFT, RIGHT, CENTER);
thesoard.ArrayMeasure(LEFT, RIGHT, CENTER, PING
break ;

case '1' :

cl rscr () ;

do (
theBoard.PhasedtrrrayInit(LEFT, RIGHT, CENTER);

gotoxy(l.2):
distance = (float)theBoard.PhasedArrayp

Printf("Distance is % . 4 g ft.\n', distan
gotoxy (1,l) ;

delay(250) ;
gotoxy(l.2):
printf (" \n*) :

) while (!kbhit());
break ;

1
break;

case 'd' :

theBoard.Diagnostic();
break:

default : theBoard.HardInit();

/ * Abstract: Ultrasonic Board Software Version B
t

Author:

* Revision History:
* When Revision Who What

* 5/28 /92 1 M.King Creation
' I

t _____________......_____________________----------.--

#include "typedeis.h'
#include "global .h'
#include "c0unter.h'
#include 'xducer.h'
Xinclude <conio.h>
#include <stdlib.h>
Xinclude <stdio.h>
#include <string.h>

void Xducer::SoftInit(Intl6 theAddress, int myNumber)
(

char number[MAXLENGTHl;
FILE 'ip;

/ * myRegAddr is the address of the xducer's control register * /
/ * masterRegAddr is the address of the master register * I
/ * xducerNum is the transducer number * /

chirp.SoftInit(theAddress, batMap(myNumber][CHIRP-CNTRJ);
myRegAddr = theAddress + counterMap[batMapfmyNumber1 [CHIRP-CNTR] I

[CNTR-MAP-REG1 ;
masterRegAddr = theAddress t 0x11; / * Same as board level masterRegAddr * f
xducerNum = myNumber ;
/ * Convert xducerNum to a string then create calibration filename

sprintf(myCalFile, "%s%d%s',NAME, number, EXTENSION) ;
/ * read calibration file. If unable to read it, then set defaults * /
fp = fopen(myCalFi1e;r') :
if(fe)
(

2
cn

example: xducerNum=O, then myCalFile = 'batO.ca1' * /

fscanf(fp, '%g', &gain);
fscanf (fp, '%g', &offset) ;

I
else
(

fclose(fp) ;

gain = 1;
offset = 0 ;

1
return;

1

void Xducer::WriteCalibration(void
(

FILE 'fp;

fu = foDen(mvCalFi1e. 'w*) ;

fclose(fp);
fbrintfifp. '% .dg\n%.dg\n", gain, offset) ;

return;
I

void Xducer::HardInit(void)
I

SetChirp(0FF) ;
SetEcho(0FF) ;
chirp .HardIni t (EventCount , INITIAL_COUNT);
return;

/Used for full duplex ping in reinitializing the counter for chirps.
/Similar to Xducer::HardInit but HardInit is used when starting from

/duplex ping to set up for the next full duplex ping.
/scratch whiel FullDuplexHardInit used for reinitialization, after a full

oid Xducer::FullDuplexHardInit(x-oid)

chirp.HardInit(EventCount, INITIAL-COUNT) ;
return;

oid Xducer::DiagnoseCounter(void)

chirp. Diagnose () ;
return;

oid Xducer::DiagnoseRegister(void)

Byte tester;

outport(myRegAddr, 0x0);
tester = inport(myRegAddr);
if(tester ! = 0)

else

return:

printf('Xducer Control Register not responding\n');

printf('Xducer Control Register okay\n");

boolean Xducer::GetEcho(void)

union xreg theReg;

theReg.data = inportb(myRegAddr);
/ * Select the correct bitmask according to bat number * /
switch (xducerNum)
(

case 0:
return (Boolean) theReg.bits.en-echo0;

case 1:
return (Boolean) theReg.bits.en-echol;

case 2 :
return (Boolean) theReg.bits.en-echo2;

case 3 :
return (Boolean) theReg.bits.en-echo3;

default :
return FALSE;

)
return FALSE;

oid Xducer::SetEcho(Boolean value)

union xreg theReg;

theReg.data = inportb(myRegAddr1;

switch (xducerNum)
(

case 0:

break ;
theReg.bits.en-echo0 = value;

case 1:
theReg.bits.en-echo1 = value;
break ;

case 2:

break ;
theReg.bits.en-echo2 = value;

case 3:
theReg.bits.en-echo3 = value;
break;

default :
break ;

)
outportb(rnyRegAddr, theReg.data) ;
return;

)

Boolean Xducer : :Getchirp (void)
(

union xreg theReg;

theReg.data = inportb(myRegAddr);

switch (XducerNum)
(

z!
Q\

case 0:
return (Boolean) theReg.bits.enLchrp0;

case 1:
return (Boolean) theReg.bits.en-chrpl;

case 2 :
return (Boolean) theReg.bits.en-chrp2;

case 3:
return (Boolean) theReg.bits.en-chrp3;

default:
return FALSE;

1
return FALSE;

1

void Xducer::SetChirp(Boolean value)
(

union xreg theReg;

theReg.data = inportb(myRegAddr1;

switch (xducerNum)
(

case 0:
theReg.bits.en-chrpO = value;

xduc
break ;

case 1:

break ;
theReg.bits.en-chrpl = value:

case 2:
theReg.bits.en-chrp2 = value;
break;

case 3:

break ;
theReg.bits.en-chrp3 = value;

default:
break;

1
outportb(myRegAddr, theReg.data);
return;

3001ean Xducer: :GetInhibit (void)

union rnasterReg theReg;

theReg.data = inportb(masterRegAddr);

switch (xducerNum)
(

case 0:
return (Boolean) theReg.bits.chrp-inhO;

case 1:
return (Boolean) theReg.bits.chrp-inhl;

case 2:
return (Boolean) theReg.bits.chrp-inh2;

case 3 :
return (Boolean) theReg.bits.chrp-inh3;

default:
return FALSE;

1
return FALSE;

roid Xducer::SetInhibit(Boolean value)

union masterReg theReg;

theReg.data = inportb(masterRegAddr);

switch (xducerNum)
(

case 0:
theReg.bits.chrp-inhO = value;
break;

case 1:
theReg.bits.chrp-inhl = value;
break;

case 2:
theReg.bits.chrp-inh2 = value;
break;

case 3:

break;
theReg.bits.chrp-inh3 = value;

default :
break :

!
outportb(masterRegAddr, theReg.data):
return;

)

void Xducer::SetPing(int select, Boolean on)
(

switchfselect)
(

case BOTH:

SetChirp(on) ;
SetEcho(on1 ;

SetInhibit (!on) ;
break;

case CHIRP-ONLY:
SetEcholOFF) ;
SetChirp(on1 ;
SetInhibit (!on) :
break;

case ECHO-ONLY: 2 SetEcho(on);
v SetChirp(/*OFF'/ on) ;

SetInhibit(0FF);
break;

)
return;

/ *

/t SetChirp(on1 for init signal * /

if ((select == BOTH) I I (select == CHIRP-ONLY)) (
SetChirp(on) ;
SetInhibit(!on) ;

)
else (

Setchirp(OFF) :
SetInhibit(OFF) ;

1
if ((select == BOTH) 1 I (select == ECHO-ONLY)) {

1
else (

)
if (select == ECHO-ONLY) (

/ / changed to OFF for testing
SetInhibit(OFF 1 ;

SetEcho(on I ;

SetEcho(0FF) ;

* /
)

1

void Xducer::SetEcho-Inhibit(int select, Boolean on1
(

switch(se1ect)

xduc
(

SetEcho(on):
case BOTH:

SetInhibit (!on! :
break ;

case CHIRP-ONLY:
Set Echo (OFF) ;
SetInhibit (!on) :
break ;

case ECHO-ONLY :
SetEcho(on);
SetInhibit (OFF) ;
break;

I
return;

oid Xducer::SetChirp-Inhibit(int select, Boolean on!

switch(se1ect) (
case BOTH:
SetChirp(on) ;
SetInhibit (! on1 ;
break;

case CHIRP-ONLY:
SetChirp(on) ;

break;
SetInhibit (!on) ;

SetChirp(/*OFF*/ on); / * SetChirp(on) for init signal ' /
case ECHO-ONLY:

SetInhibit(OFF1:
break;

1
return;

b0ard.h
I / / * t * t t t t t t t t t t t t * * t ~ ~ ~ * ~ ~ ~ ~ ~ ~ ~ . ~ ~ , ~ ~ ~ ~ ~ * ~ * . ~ * ~ ~ ~ ~ , ~ ~ . * . ~ ~ . ~ ~ ~ * ~ ~ ~ * ~ = ~ ~ ~ ~ * ~ ~ ~

/ / Abstract: Ultrasonic Board Software Version B
/ /
/ / Author:
/ /
/ / Revision History:
/ / When Revision Who What
/ / _____---_-_-___-___.____________________-------------

/ / 5/28/92 1
/ / 8/10/93

M. King Creation

/ /
/ / t * * * t * * t t t * t t t t * t t ~ ~ ~ ~ ~ ~ ~ t ~ * * t t * t ~ ~ ~ * ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ * ~ ~ ~ ~ * ~ ~ ~ ~ ~ ~ ~ * ~ ~ ~ ~

2 J. Chen Add prototype for loggin<

fdefine BOARD-H
#i fndef BOARD-H

//Define macros for the counter to counter number mapping
#define MCLOCK-CNTR-NUM 6 //master clock
#define OWIN-CNTR-NUM 8
#define CWIN-CNTR-NUM 7 //close window
#define PULSE-CNTR-NUM 4 //pulse matching

#define ARRAY-ARGS receiverl, receiver2, sender, windowDelay
//Define arguments for phased array functions

#define CALFILE 'phased.ca1'
//Define calibration filename for the phased array

#include <time.h>
#include <stdio.h>

#include <sys\timeb.h>

class Board
(

//open window

public:

03
2 //INITIALIZATION METHODS

Board(Intl6 aBaseAddress);
void HardInit(void):
void FullDuplexHardInit(void);
void FullDuplexInit(Intl6 sender, Intl6 receiver);

//The following two functions are tests to implement
//PhasedArrayPing
void PhasedArrayHardInit (void) ;
void PhasedArrayInit(Intl6 receiverl, Intl6 receive^-2, Intl6 sender):

//DIAGNOTIC FUNCTIONS
//Perform hardware test and report any errors.
void Diagnostic(v0id);

//CALIBRATIONS FUNCTIONS

void Calibrate(Intl6 batNum) ;
//Calibrate 1 xducer (find gain and offset)

//Calibrate phased array
void ArrayCalibrate(Intl6 receiverl, Intl6 receiver2, Intl6 sender,

Intl6 windowDelay);

//MEASURING DISTANCE FUNCTIONS
//Do a Ping and use gain and offset to calculate real distance
float PingMeasure(Intl6 batNum);

//Ping measures distance using one xducer.
float Ping(Intl6 xducer) ;

1

I

t

L

//Measure distance using one transducer to chirp and one to receive.
float FullDuplexPing(Intl6 windowDelay, Intl6 sender, Intl6 receiver);

//Measure calibrated distance using the array
float ArrayMeasure(Intl6 receiverl, Intl6 receiver2, Int16 sender,

float ArrayMeasure(Intl6 receiverl, Intl6 receiver2, Intl6 sender,
Intl6 windowDelay);

Intl6 windowDelay, FILE 'filePtr, €loa

//Measure distance using 1 xducer to chirp and 2 to receive using
//path length matching. Open window after windowDelay clock ticks.
float PhasedArrayPing(Intl6 receiverl, Intl6 receiverz, Intl6 sender,

Intl6 windowDelay);

//INTERRUPT FUNCTIONS (not implemented because of iRMX)
//Interrupt handler
void EchoInterrupt(void interrupt ('oldfunc) (. . .) I ;

//Start of a Ping then generate interrupt for handler to finish

void PingStart(Intl6 batNum);
//calculating distance and disabling hardware.

//SONAR PAW0 FUNCTIONS
//Initialize for phased array mode and ping
void PhasedArrayInitAndPing();

//Calculate the distance and reset transducers
float PhasedArrayFinishPingO;

Boolean TimeOut (void) ;
//Read the time out status.

//Read the status of the returned echo bit.
Boolean EchoReturn(void) ;

//Initializes the statistics for time stamps used in logging
//data.
int LogDataInit (void) ;

void PingLogData (void) ;

void PhasedArrayLogData(void);

private:
//Board Level addresses
Intl6 baseAddress;
Intl6 masterRegAddr;
Intl6 controlReg2Addr;

//Array calibration parameters
float myGain;
float myoffset;

//Board Level Objects
Counter masterClock;
Counter openwindow;
Counter closewindow;
Counter pulseMatch;
Xducer bat [BAT-CNTI ;

struct t imeb t :
//Members for statistics for time stamping when logging data

struct tm *tblock;

FILE ‘filePtr;
int delayt ime:

//Detect which version of the board is installed and exit if
//it is not the correct one.
void CheckVersion(void);

//measurement. SetGo controls this signal.
//Read the Go signal. The Go signal is active during a distance

Boolean Go (void) :
void SetGo(Boo1ean go) :

//Turn the windowing system on or off.
void SetWindowMode(Boo1ean mode):

Boolean WindowMode(void) :
//Read the current status of the window system.

//Open and close window functions.

void WindowEnd(void) :
void WindowStart(Intl6 openDelay, Intl6 closeDelay):

void SetInterrupt(Boo1ean value):
//Set interrupt mode on or o f f .

Boolean GetInterrupt (void) :
//Read interrupt mode status.

) ;

//Bit map for control register #2.
union controlReg2 (

struct (
Byte enable-int
Byte unused2
Byte unused3

Byte unused5
Byte unused4

Byte unused7
Byte unused6

Byte unused8
bits;

Byte data:
) ;

Xendif

See US-B schematic page 5 of 6

: 1;
: 1;
: 1:
: 1:
: 1;
: 1:
: 1:
: 1:

b0ard.h

I

I

/ / t * t t t t * t t t * * t t * t t + t t * * t t t t t t * * t t t t * t * t ~ ~ ~ ~ ~ ~ * ~ ~ , * ~ ~ ~ ~ ~ ~ ~ ~ ~ . ~ ~ * ~ , ~ * ~ ~ , ~ ~ ~ . ~ ~

/ /
/ / Abstract: Ultrasonic Software Version B

/ / Author:
/ /
/ / Revision History:
/ / when Revision Who what
,/

/ / t t t t t t * * t t t t t t t t * t * ~ ~ t ~ * ~ ~ ~ * ~ ~ ~ ~ * ~ ~ ~ ~ ~ * . * ~ * ~ ~ ~ * ~ ~ ~ ~ ~ ~ * ~ ~ ~ ~ ~ * ~ ~ ~ * ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
/ / 5 0 a m 1 M.King Creation * I

#i fndef COUNTER-H
Udefine COUNTER-H

class Counter
(

public:
//Set addresses
void SoftInit(Intl6 theAddress , Intl6 theCounterNum);

void HardInit(Byte thelode, Intl6 thecount):
//Set the mode and initial count

void Diagnose(void);
//Diagnostic €or a counter

//Reads the current count
Intl6 Count(void):

//Reads the status of the masterclock output to check if there has
//been a time out. This is obsolete now that there is a direct

I? //readback function called 6oard::Timeout.
0 Boolean ZeroCount(void);

private:
Intl6 myAddress;
Intl6 myNumber;
Intl6 myControlAddress;
Byte myControlData:

Byte Mode(void);
//Read the current mode of the counter. SetMode selects the mode.

void SetMode(Byte theMode):

//Writes an intial count to the counter.
void SetCount(Intl6 thecount):

//Reads the output of the counter.
Boolean Output (void) :

//Read the status byte of the counter
Byte Status(void);

) :

tendi f

'r b o a r d //Number of t r a n s d u c e r s pe
d e f i n e BAT-CNT 4

//Number o f c o u n t e r s on t h e b o a r d
d e f i n e MAX-COUNTERS 9

/ /Dimensions of lookup t a b l e s
t d e f i n e CNTR-MAP-SIZE 3
t d e f i n e BAT-MAP-SIZE 1

/ / Index macros €or lookup t a b l e s
n t d e f i n e CNTR-MAPADD 0
5 tdef i n e CNTR-MAP-REG 1

d e f i n e REF-NUMBER 2

t d e f i n e ECHO-CNTR 1
t d e f i n e CHIRP-CNTR 0

t d e f i n e UNUSED-CNTR 2

/ / D e f i n e ON and OFF boo lean v a l u e s

#define OFF 0
t d e f i n e ON 1

/ /Macros f o r t h e GetByte f u n c t i o n
d e f i n e LSB 1
Xdefine MSB 2

//Macros f o r Xduce r : :Se tP ing t o select f u n c t i o n a l i t y o f t h e t r a n s d u c e r

d e f i n e CHIRP-ONLY 1
d e f i n e BOTH 0

Xdefine ECHO-ONLY 2

/ / D e f i n e x d u c e r numbers €or phased a r r a y p i n g
t d e f i n e CENTER 1
Xdefine LEFT @
#def ine RIGHT 2

/ / D e f i n e d e l a y time before window o p e n s
#de f ine PINGCOPEN 250

/ / D e f i n e i n t e r r u p t f u n c t i o n a rgumen t s
d e f i n e INTERRUPT-ARGS v o i d i n t e r r u p t (* f a d d r) ()
#de f ine INTERRUPT 0x33
* d e f i n e -CPPARGS . . .

/ /Lookup t a b l e d e f i n i t i o n s
e x t e r n I n t l 6 counterMap[MAX-COUNTERS] [CNTR-MAP-SIZE] :
e x t e r n i n t batMapI BAT-CNT 1 1 BAT-MAP-SIZE 1 :

/ /Used w i t h t h e 8254 c o u n t e r s o n l y .
/ / U n i o n d e f i n i t i o n s €or b i t - f i e l d t o b y t e c o n v e r s i o n

m i o n c n t r l R e g
: i c n t r o l R e g is u s e d €or t h e C o n t r o l Word

(
s t r u c t

By te BCD
Byte mode
Byte readwrite : 2 ;
Byte select : 2 ;

: 1:
: 3 :

I b i t s :

Byte d a t a :

) :

I J r d B a c k i s u s e d fo r t h e Read Back c o n t r o l b y t e .
/ / B i t s a r e from t h e l e a s t t o most s i g n i f i c a n t . Orde r is s p e c i f i e d
/ / i n t h e 8254 d a t a s h e e t .
union rdBack
(

s t r u c t
(

Byte zero
Byte counterNum : 3 :
Byte s t a tu sLow : 1:
Byte countLow : 1;
Byte s e l e c t : 2 ;

: 1;

) b i t s :

Byte d a t a ;

1 :

/ / s t a t R e g is u s e d for decod ing t h e S t a t u s By te .
/ / S t a t u s b y t e is def ined i n t h e 8254 d a t a s h e e t .
union s t a t R e g
(

s t r u c t
(

Byte bcd
Byte mode
Byte r e a d l 4 r i t e : 2 ;
Byte n u l l c o u n t : 1 ;
Byte o u t p u t

: 1;
: 3 ;

) bi t s :

Byte d a t a :

: 1;

1:

/ /mas t e rReg is t h e master control r e g i s t e r on t h e u l t r a s o n i c b o a r d .
/ / S e e t h e s c h e m a t i c s for US-B, page 5 o f 6.
/ / echoRe tu rn g o e s a c t i v e when a v a l i d e c h o i s r e c e i v e d .
/ /Zero-Cnt g o e s a c t i v e when t h e master c o u n t e r r e a c h e s zero. T h i s is
/ / a t i m e o u t .
/ / c h r p - i n h 3- 0 s t o p a t r a n s d u c e r from C h i r p i n g .
/ / g o i s a c t i v e d u r i n g a d i s t a n c e measurement .

//wndwJnode is active when the window mode is activated
union masterReg
(

st ruct
(

Byte echoReturn : 1;
Byte zero-cnt : 1;
Byte chrp-inh3 : 1:
Byte chrp-inh2 : 1:
Byte chrp-inhl : 1:
Byte chrp-inh0 : 1;
Byte go
Byte wndw-mode

: 1;
: 1;

) bits:

Byte data:
1;

extern union cntrlReg controlword;
//Declare global union variables

extern union rdBack readBack;
extern union statReg statusReg;

const float SpeedOfSound = 1100.0; //units = ft/sec
//Define global constants

const float ClockRate = 1.0e-5; //lOus -> l M H X

//If this const is TRUE then debugging messages are
//printed to standart out.
const Boolean debug = TP.UE;

b

n //The longest possible count before the master counter returns a zero-count.
//The figure corresponds to the number of slow clock cycles needed to measure
//lo0 feet multiplied by 2 (for a round trip).
//This was found by 2 lOOkHz * [lOO(ft)/llOO(€t/sec)1
Const Intl6 MaxCount = 18200:

//These are the 8 2 5 4 counter modes.
const int Eventcount = 0:

const int RateGenerator = 2;
const int HdwareOneShot = 1;

const int Softwarestrobe = 4 ;
const int SquareWave = 3 :

const int HdwareStrobe = 5;

//Define pulse matching window length
const int PulseLength = 1000;

const char Thisversion = 'EI';
//Define version of the software

//Used to set the statistics for time stamping
Static char 'tzstr = "TZ=PSTEPDT';

#endi f

/ , t t t * t * * t t t . t * t * t * t . ~ ~ * ~ ~ ~ ~ ~ ~ ~ * , . ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ * ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ * ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

//Abstract: Ultrasonic Board Software Version B
/ /
/ / Author: M.Ring
/ /

/ / When
i / Revision History:

/ / ______-__-.___-__.._____________________----..-.-.---

/ / 5 / 2 8 / 9 2 1 M.King Creation
/ / + * * t t t t t + + + * t t r t t t t t t t t t t t t t l t t * * t t t t t ~ ~ . * ~ ~ ~ ~ ~ ~ , ~ ~ ~ ~ , ~ ~ ~ ~ * * ~ ~ ~ ~ * ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

/ * Software Documentation

Revision Who What

I. Program Structure

The ultrasonic board software takes advantage of Ctt object
oriented programming and creates objects corresponding to the
various functional blocks on the actual board.

The objects and a short description are as follows:
1. Board : board level object that defines

counters and registers on the board
the base address and the various

2. Xducer : a transducer object defines its address
and its various control registers.

3 . Counter : a counter object defines its address,
the actual 8 2 5 4 chip it belongs to, and
its control word.

Each object is heirarchical. For example, the board object
calls its Ping function which measures a distance. The
Ping function accesses an Xducer object which accesses a
Counter object and so on. Each object gets closer to the
low level commands that directly manipulate the ultrasonic
board hardware.

Each object also includes various methods to control the
operation of the hardware or to perform functions.

2
W

11. Declared Objects

This is a heirarchical list of all the objects specifically
declared:

Board theBoard
Counter masterClock
Counter openwindow
Counter closeWindow
Counter pulseMatch
Xducer bat [O.. 3 1

Counter chirp

This means that one Board object is declared and named theBoard.
This board object contains 4 counter objects and 4 Xducer objects.
Each Xducer object contains one Counter object - - making a total
of 8 Counters on the board. But because of the object oriented
nature of the program, the Xducer's counter is isolated from
board level functions.

111. Theory of Operation

The program is designed to operate from the W S command line.

It must receive a parameter to tell it which function to perform.

a list of valid parameters.
If a parameter is not received, then the program will display

Available options :

P Ping - - measures raw distance
1 Loop - - continuous Ping until key pressed
C Calibrate - - calibrate one transducer
m Measure - - measures calibrated distance
f Full Duplex ping - - measure distance using one xducer to send

ap Phased Array Ping -- does path matched ping
and one to receive

ac
am

Phased Array CalibraCe - - calibrate array

d Diagnostic - - does an extensive hardware test
Phased Array Measure -- uses array to measure calibrated distance

The first action taken by the program is the declaration of
a Board object called theBoard. During this procedure all
of the lower level objects are also declared and all of the
objects are soft initialized by their respective SoftInit
function. The soft initialization sets up all the addresses
for the hardware corresponding the software object.
The address of the actual board must be the same in hardware
as well as in the software. All of the offsets of the various
components of the board are already stored in lookup tables

performed anytime a Board is declared.
in the file called GLOBAL.CPP. This procedure is automatically

Next, all of the hardware must be initialized. The counters
need modes and starting counts, the control registers need
to be reset, and so on. This is accomplished with the HardInit

a distance measurement is taken. Each distance measurement
function. This needs to be run once before the first time

automatically performs a hardware re-initialization after it
is finished.

After initializing the board and using the lookup tables to
set up the addresses for the objects, the different options
operate as follows:

Ping :
Sets a single transducer to chirp and receive echoes,
Then it sets the Go signal active to begin the chirp.
It also opens the window after a short delay to keep
from considering the chirp as an echo. Once the chirp
is finished, the program polls one of the control registers.
"do bits of this register are important. One goes active
when an echo is returned. The other goes active when
the device times out. If the time out occurs, then the
program displays a time out message and ends. If the
echo return is detected then the Go signal, the transducer,
and the window are disabled. Then the function calculates
the distance using the speed of sound and the delay time

by calling the initialization function.
between the chirp and the echo. Then it resets the board

Full Duplex Ping:
This operates the same as the normal Ping function except that
it used one transducer to chirp and one to receive the echoes.

Phased Array Ping :
This operates basically the same as the normal Ping

on the board itself. However instead of using just one
function because the actual path matching is implemented

f2
P

transducer, this function uses three - - one to chirp and
two to receive echoes. Since the path length matching is
implemented in hardware, the rest of the function operates
similar to the Ping function. The main difference is that
this function has more control bits to set because of the
greater number of transducers used.

The path length matching is simple. As soon as one echo

transducer's echo signal must occur while this window is
is received, then a short window is opened. The other

open for an echo to be considered valid. I f it does not,
then the window is reset and the board waits for the next
echo .

Calibrate :
This option calibrates a transducer assuming a

using the Ping function. Then the user must input
linear error. It takes two distance measurements

calculate the gain and the offset of the transducer
the actual distance measured. Then the program will

are of the form 'batt.ca1'. where the U is the
and store it in a file. File names for the transducers

transducer number. Each transducer has its own file.
The XDUCER.H source code contains the definition for
the filename. The file for the phased array is called
'phased.ca1" and is defined in B0ARD.H.

The Measure option uses this data along with the Ping
function to calculate the actual distance.

Diagnostic :
This function tests all of the hardware on the board.
First it writes Ox0 to all of the control registers.
Then it reads them back. If they are still 0x0, then
the component is operating correctly, if not 0x0, then
an error is reported.
Because of the hardware, it is impossible to test each
counter to see if it counts using just software. However,
the program does read/write tests of all the counters

Finally, a test Ping using the center transducer, and
and reports any errors.

a full Phased Array Ping are performed.

IV. Operation with iRMX Real Time Operating System

As of 6/3/92 the software still polls the board to see when an
echo is received. This will be changed to work with an interrupt

or other distance measurement and then sleep until an interrupt
later. The iRMX version of the software will initiate a Ping

from the board occurs. Then it will determine whether a valid
echo or a time out occured. If a valid echo is detected, then
the program will send the data to an iRMX mailbox for processing.

V. Differences Between Version A and Version B

The USJ and US-B boards are significantly different in design,

version checking function so that the software will not operate
so two versions of the software exist. There is an automatic

if the hardware is mismatched.

There are many differences in the hardware. U S A has fewer control
registers and more 8 2 5 4 counters than US-B. US-B is a more recent
design that incorporates path-length matching of the echoes
to eliminate multi-path errors in the distance measurements. So

addresses of the objects change drastically from US-A to US-B.
the software takes this into account. The lookup tables for the

Also, US-A does not have a phased array ping function implemented.

End Documentation * I

r?
ln

, / ~ t * * * t t t t t t t t * * t t t * ~ ~ ~ ~ ~ ~ ~ * ~ ~ ~ * ~ ~ ~ ~ * ~ * ~ ~ ~ * * * * * ~ ~ ~ * ~ * * ~ ~ ~ * * * ~ ~ * * * ~ ~ ~ ~ * * ~ ~ ~ ~

/ / Abstract: Ultrasonic Board Software Version B

/ / Author:
/ /

/ I
/ / Revision History:
/ / When Eevision Who What

/ i 5 / 2 8 / 3 2

,,
/ / t t * t * t t * t t t t t + t * * t t * - t t t t t t t t * t t * * * t l * ~ ~ ~ * . ~ ~ ~ ~ ~ ~ ~ ~ * ~ ~ ~ ~ ~ ~ ~ * ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

Xifndef Dxducer
#define Dxducer

//MAXLENGTH is max filename length plus NULL terminator
#define MAXLENGTH 13

//Define the parts of the calibration filename
#define NAME "bat'
#define EXTENSION '.calm

//Define initial chirp counter value
#define INITIAL-COUNT 2

class Xducer
(

1 M.King Crea t ion

pub1 ic :
//Variables €or calibration
float gain;
float of €set;

void SoftInit(Intl6 theBoardBase, int anXducerNum);
//Set up addresses

void HardInit(void);
//lbrn off xducer and set initial delay.

void FullDuplexHardInit(void);

//CALIBRATION FUNCTIONS

void WriteCalibration(void);
//Write gain and offset calibration info to a file.

//DIAGNOSTIC FUNCTIONS
//Register diagnostic
void DiagReg(int value);

//Test the xducer's control register and counter.
void DiagnoseRegister(v0id);
void Diagnosecounter (void) ;

void SetPing(int select, Boolean on) ;
//Sets control registers properly €or a distance measurement

void SetEcho-Inhibit(int select, Boolean on);
//Set the EN-ECHO and inhibit signals accordingly.

//Set the chirp and inhibit signals accordingly.
//Same as Xducer::SetPing except doesn't reset the echo.
void Setchirp-Inhibit(int select, Boolean on);

private:
Counter chirp;

Intl6 myRegAddr;
Intl6 masterRegAddr;

char m y C a l F i l e [f ~ l A % L E l . I G ~ l ; //Calibration filename
int xducerNum:

Boolean GetEcho(void);
//Echo functions to set or read the xducer's echo enable bit.

void SetEchoIBoolean value);

//Chirp functions to set or read the xducer's chirp enable bit.
//The Inhibit functions set or read the chirp inhibit bit.
void SetChirp(Boo1ean value) ;
Boolean GetChirp(void) ;
Boolean GetInhibit (void) ;
void SetInhibit(Boo1ean value);

I ;

'!Xducer control register. Bits from LSB to MSB.
'/See US-B schematics page 5 of 6.
mion xreg

st ruct
(

Byte en-echo0
Byte en-echo1
Byte en-echo2
Byte en-echo3

Byte en-chrpl
Byte en-chrp0

Byte en-chrp2
Byte en-chrp3

) bits;

Byte data;
I :

lendif

: 1;
: 1;
: 1;

: 1;
: 1;

: 1;
: 1;
: 1;

The following are schematics of the transmitting and receiving circuits, made of discrete
components.

Dl

k a, 3
-rl
a, u a,
d

D
2

D
3

Amendix E:

The following graphs contain data from the ultrasonic transducer Experiment I. The attenuation
of signal received was measured at transmitting frequencies ranging between 25 and 60 kHz, at 5
kHz increments.

El

Experiment I (2 meters)
Attenuation (dB)

test.2meters

Frequency (kHz)
25.00 30.00 35.00 40.00 45.00 50.00

E2

Experiment I (10 meters, 225 kHz)
Attenuation (dB)

test. 1Ometers.225

-34.00

-35.00

-36.00

-37.00

-38.00

-39.00

-40.00

-4 1 .OO

-42.00

-43.00

-44.00

-45.00

-46.00

-47.00

-48.00
Frequency (kHz)

30.00 40.00 50.00 60.00

E3

Experiment I (10 meters, 400kHz)

,

25.00 30.00 35.00 40.00 45.00
Frequency (kHz)

	Abstract
	1 O Introduction
	2.0 System Overview
	2.1 Modes of Operation
	2.2 Window Mode

	3.0 Hardware Documentation
	3.1 Summary of Signal Names
	3.1.1 PC Interface Signals
	3.1.2 Address Decode Signals
	3.1.3 Sonar Related Signals

	3.2 Functional Block Diagram
	3.2.1 PC Interface
	3.2.2 Address Decode for Control Registers and Counters
	3.2.3 Return Echo Processing and Xducer Control
	3.2.4 Xducer Counters
	3.2.5 Master Timer and Window Control Counters
	3.2.6 Control Signal Latches and Readback 3-state Buffers
	3.2.7 Crystal and Div
	3.2.8 IRQ7 Generator

	3.3 Paddle Board

	4.0 Software Documentation
	4.1 Theory of Operation
	4.1.1 Ping
	4.1.2 Phased Array Ping
	4.1.3 Calibrate
	4.1.4 Diagnostic
	4.1.5 Interrupts

	4.2 Operation with a Real Time Operating System

	5.0 Ultrasonic Transducer Modifications

