
UC San Diego
UC San Diego Previously Published Works

Title
Visual Image Annotation for Bowel Obstruction: Repeatability and Agreement with 
Manual Annotation and Neural Networks.

Permalink
https://escholarship.org/uc/item/5659c28d

Journal
Journal of Digital Imaging, 36(5)

Author
Murphy, Paul

Publication Date
2023-10-01

DOI
10.1007/s10278-023-00825-w
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5659c28d
https://escholarship.org
http://www.cdlib.org/


Vol.:(0123456789)1 3

Journal of Digital Imaging (2023) 36:2179–2193 
https://doi.org/10.1007/s10278-023-00825-w

Visual Image Annotation for Bowel Obstruction: Repeatability 
and Agreement with Manual Annotation and Neural Networks

Paul M. Murphy1,2 

Received: 4 February 2023 / Revised: 21 March 2023 / Accepted: 29 March 2023 / Published online: 6 June 2023 
© The Author(s) 2023

Abstract
Bowel obstruction is a common cause of acute abdominal pain. The development of algorithms for automated detection and 
characterization of bowel obstruction on CT has been limited by the effort required for manual annotation. Visual image 
annotation with an eye tracking device may mitigate that limitation. The purpose of this study is to assess the agreement 
between visual and manual annotations for bowel segmentation and diameter measurement, and to assess agreement with 
convolutional neural networks (CNNs) trained using that data. Sixty CT scans of 50 patients with bowel obstruction from 
March to June 2022 were retrospectively included and partitioned into training and test data sets. An eye tracking device was 
used to record 3-dimensional coordinates within the scans, while a radiologist cast their gaze at the centerline of the bowel, 
and adjusted the size of a superimposed ROI to approximate the diameter of the bowel. For each scan, 59.4 ± 15.1 segments, 
847.9 ± 228.1 gaze locations, and 5.8 ± 1.2 m of bowel were recorded. 2d and 3d CNNs were trained using this data to predict 
bowel segmentation and diameter maps from the CT scans. For comparisons between two repetitions of visual annotation, 
CNN predictions, and manual annotations, Dice scores for bowel segmentation ranged from 0.69 ± 0.17 to 0.81 ± 0.04 and 
intraclass correlations [95% CI] for diameter measurement ranged from 0.672 [0.490–0.782] to 0.940 [0.933–0.947]. Thus, 
visual image annotation is a promising technique for training CNNs to perform bowel segmentation and diameter measure-
ment in CT scans of patients with bowel obstruction.

Keywords Bowel obstruction · Eye tracking · Segmentation · Quantification · Convolutional neural networks

Introduction

Bowel obstruction is a common cause of acute abdominal 
pain [1], found in approximately 15% of emergency depart-
ment presentations for that indication. Abnormalities such 
as adhesions, hernias, or tumors block transit of contents 
through the gastrointestinal tract, resulting in dilation of the 
upstream bowel [2]. Imaging such as radiographs and CT 
help determine the severity and etiology of the obstruction 
to guide management decisions [3]. On these modalities, 
obstruction is suggested if the diameter of the bowel exceeds 
approximately 3 cm for the small bowel or 6 cm for the large 
bowel [4, 5]. It is differentiated from adynamic ileus by the 

absence of distal bowel gas and by the presence of a transi-
tion point in the caliber of the bowel, at which the cause of 
the obstruction can often be identified.

Automated detection and characterization of bowel 
obstruction may help guide diagnosis and management. 
Development of such methods requires annotation of imag-
ing studies for training and validation. Manual annotation 
can be time-consuming, due to the large number of voxels 
within cross-sectional imaging studies that must be labeled 
for applications such as segmentation. Fortunately, other 
approaches based on the use of eye tracking devices have 
been developed [6–9]. These approaches leverage the cogni-
tive skill of radiologists to identify anatomic or pathologic 
structures within an imaging volume. Eye tracking devices 
can record in real time the location on a monitor at which 
a radiologist casts their gaze. If these gaze locations can be 
used in place of manual annotations, it may accelerate the 
process of image annotation.

This study investigates visual annotation of two aspects 
of the bowel relevant to obstruction: measurement of its 
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diameter and segmentation between foregut, midgut, and 
hindgut. The diameter of the bowel determines whether 
a segment qualifies as dilated. The threshold for dilation 
depends on whether the dilated segment is part of the mid-
gut or of the hindgut. Repeatability between two sessions of 
visual annotation can be quantified with the Dice coefficient  
for segmentation [10] and with intraclass correlation and lim-
its of agreement for diameter measurements [11–13]. These  
same quantities can be calculated to assess the agreement 
between visual and manual annotations. These metrics pro-
vide information about the suitability of visual annotations 
for subsequent applications. The first aim of this study is to 
determine the repeatability of visual annotation and to assess 
its agreement with manual annotation for bowel segmenta-
tion and diameter measurement.

Convolutional neural networks (CNNs) promise to 
expand the range of bowel diseases for which automated 
detection and characterization on medical imaging is pos-
sible [14, 15]. Some imaging studies of the gastrointestinal 
tract, as well as the classic image processing algorithms 
used for their interpretation, require specific preparation of 
the bowel prior to the study. For instance, in CT colonog-
raphy, the colon must be adequately insufflated with gas, 
after a sufficient bowel preparation, to increase the visual 
and algorithmic conspicuity of polyps [16–20]. Insufficient 
preparation reduces the performance of CT colonography 
algorithms due to their reliance on specifically encoded fea-
tures of the input data.

In other contexts, such as CT scans performed for acute 
abdominal pain, there may be no opportunity for such prepa-
ration, resulting in a more heterogeneous appearance of the 
bowel and its contents [2]. Similarly, patients imaged for 
acute abdominal pain often have a wide range of comorbidi-
ties, resulting in a heterogeneous appearance of the remain-
der of the peritoneal cavity as well. These clinical and tech-
nical features pose challenges to the automated detection and 
characterization of bowel obstruction, one common cause of 
such presentations.

Fortunately, neural networks do not rely upon specifically 
encoded features of the input data, but rather, they can learn 
from annotated training data regardless of its heterogeneity 
[21–25]. In addition, even the quality of the annotations need 
not be perfect in every instance, since neural networks can 
learn to perform well on average over the entire training data 
set [26]. However, a critical requirement for neural network 
development is the availability of large sets of annotated data 
for training and validation.

Visual annotation with an eye tracker may serve to gener-
ate such data sets. The approach described in this study can 
be used to annotate bowel segmentation and diameter maps 
in a large number of subjects. CNNs can then be trained to  
predict these features of importance in bowel obstruction. 
Agreement can be quantified with the Dice coefficient for 

bowel segmentation [10] and with intraclass correlation and 
limits of agreement for diameter measurements [11–13]. 
If their predictions are sufficient for downstream applica-
tions, CNNs may contribute to the diagnosis of this com-
mon cause of acute abdominal pain. The second aim of this 
study is to assess the agreement of CNN predictions with 
visual and manual annotations of bowel segmentation and 
diameter measurements in CT scans of subjects with bowel 
obstruction.

Materials and Methods

Study Design

IRB approval was granted for this HIPAA-compliant study 
with a waiver for informed consent due to its minimal risk. 
There was no overlap in the subject population with previ-
ously published results and no conflict of interest.

Population

Patients from a single adult tertiary care center were retro-
spectively included if they had a CT scan of the abdomen 
and pelvis with a clinical report containing in its impres-
sion the phrase “bowel obstruction.” This criterion captured 
reports where that phrase was prefaced by the words “small,” 
“large,” or “no” to ensure that the data set included examples 
of dilated and non-dilated segments across the gastrointes-
tinal tract. The impression rather than indication for the CT 
was used to ensure inclusion of an adequate number of scans 
with obstruction. Such scans may have been ordered for an 
indication of abdominal pain, but obstruction is found in 
only a fraction of scans for that indication. CT scans were 
included regardless of whether their clinical context was 
emergent, inpatient, or outpatient.

Consecutive CT scans between March and June 2022 
were included until the population reached 50 subjects, a 
sample size feasible for subsequent annotation. Some CTs 
contained multiple phases, and some subjects had multiple 
CT scans, yielding 60 scans in total. Only thick slice axial 
reconstructions were included. Scans were deidentified prior 
to annotation.

Relevant clinical and technical features were character-
ized on each scan as present or absent or as another dichot-
omy if appropriate: sex; jejunal, ileal, or colonic dilation; 
bowel resection; ostomy; hernia; abundance or paucity of 
mesenteric fat; peritoneal or mesenteric malignancy; ascites; 
pneumoperitoneum; and intravenous or enteric contrast. 
Subjects were partitioned to minimize the sum squared dif-
ference in the prevalence of these features between training 
and test data sets. Subjects with more than one scan were 
excluded from the test data set.
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Visual Annotation

Each scan was visually annotated using a Tobii 4c eye 
tracker and a custom-developed module of 3D Slicer [27]. 
The eye tracker generated data at 60 Hz corresponding to the 
location on the monitor at which a radiologist cast their gaze. 
The module transformed those gaze locations, along with the 
slice position, averaged over 0.75 s intervals, into 3-dimen-
sional coordinates within the imaging volume. A region of 
interest (ROI) was depicted at the gaze location within the 
imaging volume, with a diameter that was adjusted with a 
rotary encoding knob.

For each scan, a series of segments was recorded until 
the entire gastrointestinal tract had been covered. For each 
segment, a radiologist cast their gaze at the centerline of the 
bowel. They adjusted the diameter of the ROI to approxi-
mate the diameter of the bowel. They adjusted the slice 
location with a mouse scroll wheel to navigate along the 
length of the bowel, for as long as its course was apparent. 
Each segment was assigned a label indicating to which of 
13 parts of the gastrointestinal tract it belonged: esopha-
gus; stomach; duodenum; jejunum; ileum; cecum; appen-
dix; ascending, transverse, descending, and sigmoid colon; 
rectum; and anus.

The series of segments was transformed into volumet-
ric segmentations and diameter maps through a geometric 
model (Fig. 1). For each voxel, the closest segment was iden-
tified. If the distance was within one-half of the diameter of 
the segment, the voxel value was set to the corresponding 
label or zero otherwise. The diameter map was defined simi-
larly, except that voxel values were set to the diameter of the 
closest segment. Segmentations were shown superimposed 
on the CT scan in 3D Slicer and were updated after each seg-
ment was recorded for real-time feedback (see Supplemental 
Information video).

Calibration of the eye tracker was performed using the 
vendor’s software prior to recording. Fine adjustments to 
the calibration could be made based on offsets of the mouse 
position. The gaze location within the imaging volume was 

centered in the viewport of the 3D Slicer window to reduce 
the range of the screen over which calibration was needed.

A radiologist (PM) with 10 years of experience performed 
all annotations. Visual annotations were repeated two times 
for each scan with minimal intervening time between repeti-
tions. Both repetitions of visual annotation were included in 
the training and test data sets. Visual and subsequent manual 
annotations were performed during different sessions sepa-
rated by at least 1 week.

Manual Annotation

Each scan was manually annotated. Segments of the bowel 
that were en face to the axial plane were chosen for each of 
the 13 parts of the gastrointestinal tract listed above if they 
were present in each scan. A pair of calipers was placed 
on the short and long axes of those segments in 3D Slicer. 
Four pairs of calipers were placed on different segments of 
the jejunum and ileum in different locations throughout the 
quadrants of the abdomen.

Since the time required for manual segmentation of the 
entire imaging volume would have been prohibitive, a single 
slice of the imaging volume was randomly chosen. All bowel 
present on that slice was segmented by tracing its margin  
in 3D Slicer and was assigned one of 3 labels: foregut 
(esophagus through duodenum), midgut (jejunum and 
ileum), or hindgut (cecum through anus).

These divisions were intended to correspond to thresholds 
for obstruction rather than embryologic definitions [28]. The 
embryologic foregut includes the duodenum only to the level 
of the ampulla, but the parts of the duodenum had not been 
labeled to allow such a division. Since at baseline, the duo-
denal bulb can be larger than the threshold for small bowel 
obstruction, the duodenum was included with the foregut for 
purposes of this study. Likewise, the embryologic hindgut 
includes only the distal colon, but the proximal colon was 
included with the hindgut as well, due to similar thresholds 
for obstruction.

Fig. 1  Diagram of visual annotation. A series of gaze points repre-
senting the centerline of the bowel were recorded with an eye tracker 
(a). An approximate diameter of the bowel was also recorded for 
each gaze point (b). For segmentation, the region of the imaging vol-

ume closest to each segment was assigned the label of that segment 
(c). For the diameter map, each voxel of the imaging volume was 
assigned the diameter of the closest segment (d)
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Data Normalization and Augmentation

Data were normalized prior to training. CT scans were 
scaled to a range of [−1,1] using a window of 400 HU and 
a level of 40 HU. The 13-part segmentation of the entire 
gastrointestinal tract was reduced to a 3-part segmentation 
corresponding to foregut, midgut, and hindgut. The diameter 
maps initially expressed diameter in units of millimeters but 
were divided by the voxel dimensions of the scan to express 
diameter as a number of voxels instead. This conversion was 
performed since the field of view of CT scans varies in size, 
as do patients themselves, which may confound diameter 
prediction in units of millimeters. On the other hand, meas-
urements in units of voxels are consistent across scans and 
patients and can be converted to millimeters subsequently, 
by multiplication with the known voxel dimensions. The 
volumes were resized from a matrix size of 512 × 512 voxels 
to 256 × 256 voxels for the 2d model or to 128 × 128 × 64 
voxels for the 3d model. Since the CT scans varied in their 
number of slices, they were zero padded in that direction 
prior to resizing for the 3d model so that no interpolation 
was needed.

Data augmentation was performed using random transla-
tions between ± 30 mm along the x and y axes; random rota-
tions between ± 30° around the x, y, and z axes; and random 
magnifications of ± 30%. The values of the diameter map 
were scaled by the same magnification factor so that diam-
eters expressed as a number of voxels would be consistent 
after augmentation. Augmentation was performed in a way 
that preserved geometry despite the anisotropy of the voxels 
of the thick slice CT scans. The number of augmentations was 

chosen such that the training data set filled nearly the entirety 
of system memory (32 GB).

Neural Networks

Two CNNs were constructed in Keras/Tensorflow version 2.7.0 
[29] based on the U-net topology [23, 30]: a 2d model for which 
the input was a slice of the scan and a 3d model for which the 
input was the entire scan (Fig. 2, adapted from [31]). Each level 
of the model consisted of two convolutional layers, two activation 
layers, a maxpool layer in the descending limb or an upsampling 
layer in the ascending limb, a batch normalization layer, a dropout 
layer, and feedforward connections between levels of equal shape 
in the descending and ascending limbs. The number of levels was 
selected such that the midpoint of the network was 2 × 2 in shape. 
The number of filters in each level was selected such that the 
2d and 3d models had a similar number of parameters (approxi-
mately 8 M and 9 M), and both fit in GPU memory (12 GB) using 
16-bit floating point precision. Two model outputs were generated 
from the final level of the network: a segmentation output via a 
softmax layer and a diameter output via another activation layer.

The loss function was the sum of three terms: categorical 
cross-entropy of the 3-part segmentation, binary cross entropy 
of the dichotomized segmentation, and a mean squared error 
of the diameter, weighted to approximately the same order of 
magnitude as the first two terms.

LCE = −

∑3

k=0
tk log

�

pk
�

LBCE = −t0 log(p0) − (1 − t0) log(1 − p0)

Fig. 2  Diagram of CNN topology. CNNs were constructed from 
multiple blocks in a U-net topology. Convolutional, maxpool, and 
upsampling layers in each block are depicted in yellow, red, and 
blue, respectively. Batch normalization and dropout layers were 
also included in each block, and a softmax layer was included in the 
segmentation output, but these are omitted from this figure for sim-
plicity. Direct and skip connections between blocks are depicted as 

arrows. Dimensions were either halved or doubled between each 
block and are listed below each convolutional layer. For the 2d CNN, 
the initial dimensions were 256 × 256 voxels by 8 channels, and the 
U-net had 14 blocks. For the 3d CNN, the initial dimensions were 
128 × 128 × 64 voxels by 16 channels, and the U-net had 10 blocks, to 
maintain a similar number of parameters. The input of the CNN was 
the CT scan, and the outputs were a segmentation and a diameter map
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The dichotomized segmentation between the background 
and any of the foregut, midgut, or hindgut was intended to 
favor differentiation from the background even when dif-
ferentiation among parts of the gut was ambiguous. A sam-
ple weight was applied to increase the contribution to the 
loss function of all voxels that were non-zero in the training 
data. Ten percent of the training data set was reserved for 
validation. The test data set was not used for either training 
or validation of the models. Models were trained on a sin-
gle NVIDIA Titan XP GPU for 100 epochs with the Adam 
optimizer, a learning rate of 1e-3, and randomly initialized 
parameters. The model with the best validation loss was 
saved. The predictions were resized to the initial CT scan 
dimensions for subsequent analysis.

Statistical Analysis

Summary statistics including total, mean, and standard devi-
ation were calculated. The prevalence of each relevant clini-
cal and technical feature was calculated. The length of each 
segment was calculated as the sum of the distance between 
sequential gaze points. For segmentations, Dice scores were  
calculated as the ratio of the size of the intersection to the 
sum of the sizes of the components [10]. For diameter meas-
urements, intraclass correlation was calculated using the 
“irr” package and “icc” function for two-way agreement in 
R version 4.1.2 [32]. Ninety-five percent limits of agree-
ment were also calculated [13]. Both repetitions of visual 
annotation were included in the comparisons with manual 
annotations and CNN predictions.

Results

Summary Statistics

Summary statistics of 60 CT scans of 50 subjects included 
in the study are given in Tables 1 and 2.

The prevalence of each clinical and technical feature 
was similar between the entire data set and the set of sub-
jects partitioned into the test data set, which ensured that 

LSE = (dt − dp)
2

tk = true probability for label k

pk = predicted probability for label k

dt = true diameter

dp = predicted diameter

examples of each feature would be available for both train-
ing and testing. Both dilated and non-dilated segments 
of the jejunum, ileum, and colon were included, which 
ensured that the full range of relevant diameters would 
be present for each part of the gastrointestinal tract. The 
prevalence of features such as paucity of mesenteric fat, 
peritoneal malignancy, and ascites reflects the complexity 
of the subjects included in this study. The distribution of 
manual annotations across the foregut, midgut, and hind-
gut was approximately 3:8:7 in the test data set, similar to 
the entire data set.

Overall, 59.4 ± 15.1 segments, 847.9 ± 228.1 gaze loca-
tions, and 5.8 ± 1.2 m of bowel were recorded per scan. The 
large number of short segments reflects the fact that much of 
the bowel could be followed for only a short distance before 
its course became inapparent.

Table 1  Clinical and technical features of subjects and scans in the 
entire data set and in the set of subjects reserved for testing using a 
denominator equal to the number of scans (n = 60 or 10)

All Test

Sample size
    Subjects 50 10

    CT scans 60 10
Demographics
    Sex (F) 0.50 0.40
    Age (years) F:59.2, M:60.4 F:61.9, M: 56.8
    Age range (years) 19–90 + 33–76
Clinical features
    Jejunal dilation 0.62 0.70
    Ileal dilation 0.34 0.30
    Colonic dilation 0.10 0.10
Surgical features
    Hernia 0.16 0.20
    Bowel resection 0.38 0.40
    Ostomy 0.32 0.30
Peritoneal contents
    Abundant mesenteric fat 0.50 0.50
    Paucity of mesenteric fat 0.38 0.40
    Peritoneal malignancy 0.18 0.20
    Ascites 0.22 0.20
    Pneumoperitoneum 0.06 0.10
Technical features
    Intravenous contrast 0.88 0.80
    Enteric contrast 0.16 0.10
Manual annotations
• All scans, one repetition
    All 1102 178
    Foregut 192 32
    Midgut 483 81
    Hindgut 427 65
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Since each gaze location represented 0.75  s of the 
recording time of the eye tracker, the total amount of 
time used to record gaze locations was 10.6 ± 2.9 min per 
scan. However, that quantity underestimates the total time 
required to annotate each scan, since it does not include 
the time required for the radiologist to deduce the course 
of the bowel, calibrate the eye tracker, inspect the results, 
redo inaccurate recordings, or manage interruptions. That 
total time was not feasible to record in the scope of this 
study.

The length of several meters of bowel per scan is of 
the same order of magnitude as the known length of the 
gastrointestinal tract of humans [33]. Recorded lengths 
may be lower due to the exclusion of most of the esopha-
gus from the field of view of the CT scans or due to prior 
bowel resections in the population included in this study.

In total, 1102 pairs of calipers were placed across the 
gastrointestinal tract over all 60 scans for manual annota-
tion of bowel diameter. Annotations were distributed in an 
approximate 3:8:7 ratio through the foregut, midgut, and 
hindgut, which was intended to reflect a combination of the 
length and subjective clinical importance of each part of 
the gastrointestinal tract in the context of bowel obstruction.

Examples of Annotations and Predictions

Examples of manual and visual annotations and CNN pre-
dictions for ten subjects in the test data set are shown in 
Figs. 3 and 4.

Agreement of Visual Segmentations

Dice scores for all segmentations are reported in Table 3 
and shown in Fig. 5. Between two repetitions of visual 
annotation, Dice scores were 0.81 ± 0.04 for the entire gas-
trointestinal tract. Dice scores were slightly lower for the 
foregut, midgut, and hindgut separately, ranging from 0.77 
to 0.81, which may reflect variations in the boundaries at 
which each part was annotated.

Between manual and visual annotations, Dice scores 
were 0.79 ± 0.08 for the entire gastrointestinal tract. Simi-
larly, Dice scores were lower for the foregut, midgut, and 
hindgut separately, ranging from 0.72 to 0.74. Dice scores 
could not be calculated if a part of the gastrointestinal tract 
was absent from the single slice chosen for manual annota-
tion. For instance, if a slice through the pelvis was chosen, 
the foregut may be absent from both manual and visual 
annotations for that slice. Therefore, such slices were 
excluded from the calculations for that part, and sample 
sizes were lower for the foregut, midgut, and hindgut sepa-
rately than they were for the entire gastrointestinal tract.

Overall, these Dice scores represent good repeatabil-
ity of visual annotation and good agreement with manual 
annotations.

Agreement of Visual Diameter Measurements

Intraclass correlation and 95% limits of agreement for 
diameter measurements are reported in Table 4 and shown 
in Fig. 6. Between two repetitions of visual annotation, 
intraclass correlation and 95% limits of agreement were 
0.940 [95% CI = 0.933–0.947] and −0.41 ± 8.2 mm across 
the entire gastrointestinal tract. Between manual and visual 
annotation, intraclass correlation and 95% limits of agree-
ment were 0.917 [95% CI = 0.905–0.927] and 0.9 ± 10 mm 
across the entire gastrointestinal tract.

As a comparison, the intraclass correlation and 95% 
limits of agreement were 0.807 [0.366–0.915] and 
7.4 ± 16 mm for manual measurements of the short-axis as 
compared with the long-axis diameters. Thus, manual and 
visual diameter measurements agreed better than short-
axis and long-axis diameters measured manually, even 
though measurements were taken at segments that were 
en face to the axial plane.

Table 2  Summary statistics of technical features and annotations. 
Total, mean, or standard deviations are reported using a denominator 
equal to the number of scans (n = 60) except where indicated

CT scan dimensions

    Axial matrix size 512
    Axial voxel size (mm) 0.75 ± 0.09
    Axial FOV (cm) 38.6 ± 4.9
    Number of slices 127.9 ± 16.9
    Slice thickness (mm) 3.72 ± 0.26
    Longitudinal FOV (cm) 47.3 ± 5.1

Visual annotations

• Per segment
    Gaze points 14.3 ± 7.0
    Recording time (sec) 10.7 ± 5.3
    Length (mm) 97.5 ± 61.6
• Per scan
    Segments 59.4 ± 15.1
    Gaze points 847.9 ± 228.1
    Recording time (min) 10.6 ± 2.9
    Length (meters) 5.8 ± 1.2
• All scans, two repetitions
    Segments 7131
    Gaze points 101,743
    Recording time (hours) 21.2
    Length (kilometers) 0.7
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Fig. 3  Examples of manual and visual annotation. Each row corre-
sponds to a single slice of a CT scan for 10 different subjects. The CT 
scan is shown in the first column. Manual segmentations are shown in 
the second column. Segmentations from visual annotation are shown 
in the third column. In both segmentations, red, yellow, and green 

correspond to foregut, midgut, and hindgut, respectively. Diameter 
maps from visual annotation are shown in the fourth column. Diam-
eters are expressed in units of millimeters. Manual diameter measure-
ments are not shown
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Fig. 4  Examples of CNN predictions in 10 test subjects. Each 
row corresponds to the same single slice of a CT scan as in Fig. 3. 
2d CNN predictions for bowel segmentation and diameter maps 
are shown in the first and second columns. 3d CNN predictions are 

shown in the third and fourth columns. In both segmentations, red, 
yellow, and green correspond to foregut, midgut, and hindgut, respec-
tively. Diameters are expressed in units of millimeters. Some incor-
rect predictions of features are noted



2187Journal of Digital Imaging (2023) 36:2179–2193 

1 3

Overall, there was excellent repeatability of visual 
diameter measurements and excellent agreement with 
manual annotations.

Agreement of CNN Segmentations

Dice scores between segmentations are reported in Table 5 
and shown in Fig. 7. For 3d CNN segmentations of the 
entire gastrointestinal tract over the 10 CT scans of the 
test data set, Dice scores were 0.69 ± 0.07 compared to 
visual annotations and 0.69 ± 0.17 compared to manual 
annotations. As expected, Dice scores were higher over the 
50 CT scans of the training data set than over the test data 
set, 0.75 for both visual and manual annotations. Although 
these Dice scores reflected only moderate agreement, they 
would not be expected to exceed the Dice scores between 
two repetitions of visual annotation or between visual and 
manual annotations.

Dice scores were lower for segmentations of the fore-
gut, midgut, and hindgut, over both the training and test 
data sets, reflecting considerable variation in segmentation 
of each part of the gastrointestinal tract.

Dice scores were higher for the 3d CNN than for the 2d 
CNN, for both the training and test data sets, and across 
all parts of the gastrointestinal tract. This suggests that 
despite the lower in-plane resolution of the 3d CNN, which 
was 128 × 128 × 64, compared to the 2d CNN, which was 
256 × 256, contextual information provided by adjacent 
slices was helpful for segmentation.

Agreement of CNN Diameter Measurements

Intraclass correlations and 95% limits of agreements for 
diameter measurements are reported in Table 6 and shown 
in Fig. 8. For 3d CNN predictions over the 178 segments 
of the bowel in the test data set, intraclass correlation and 
95% limits of agreement were 0.672 [95% CI = 0.490–0.782] 
and −4.9 ± 19 mm compared to visual annotations and were 
0.739 [95% CI = 0.646–0.808] and −3.1 ± 19 mm compared 
to manual annotations. The slightly higher correlation with 
manual annotation than visual annotation suggests that the 
CNN may produce better measurements than existed in the 
data it was trained upon, which is possible since visual anno-
tations did not agree perfectly with manual annotations.

Intraclass correlations with manual annotations over the 
test data set were slightly higher for the 3d CNN than for the 
2d CNN but were similar for visual annotations and for the 

Table 3  Agreement of Dice scores for segmentation between two rep-
etitions of visual annotations and between manual and visual annota-
tions. Means, standard deviations, and sample sizes are reported

Dice score Visual, two repetitions Manual versus visual

All 0.81 ± 0.04 (n = 60) 0.79 ± 0.08 (n = 60)
Foregut 0.81 ± 0.06 (n = 60) 0.74 ± 0.13 (n = 29)
Midgut 0.77 ± 0.06 (n = 60) 0.74 ± 0.14 (n = 44)
Hindgut 0.80 ± 0.05 (n = 60) 0.72 ± 0.16 (n = 51)

Fig. 5  Agreement of segmentations. Boxplots are shown for Dice scores between two repetitions of visual annotation (left) and for manual ver-
sus visual annotations (right)
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training data set. This suggests that the contextual informa-
tion available from adjacent slices was more important than 
in-plane resolution for diameter measurement.

The 95% limits of agreement were in the range of 1–2 cm 
for all comparisons, which compares unfavorably to the rel-
evant diameter ranges in the context of bowel obstruction. 
Overall, the agreement of CNN predictions with visual and 
manual diameter measurements was only moderate.

Discussion

These results show that visual image annotation with an eye 
tracker can be used for bowel segmentation and diameter 
measurement in CT scans of subjects with bowel obstruction, 

with good to excellent agreement over two repetitions and with 
manual annotations. These results also show that convolutional 
neural networks can be trained to perform bowel segmenta-
tion and diameter measurements in CT scans of subjects with 
bowel obstruction, with moderate agreement to visual and 
manual annotations. Whether such agreement is acceptable 
ultimately depends on downstream applications.

Previous Studies

Eye tracking has been used in radiology for analysis of the 
patterns of eye motion during diagnostic evaluation of cancers 
on mammograms [34, 35], nodules on chest CTs [36, 37], and 
polyps on CT colonography [38–40]. More recently, eye track-
ing has also been used for the annotation of abnormalities on 

Table 4  Agreement of diameter measurements made with manual and visual annotations. Intraclass correlation and its 95% confidence interval, 
as well as bias and 95% limits of agreement, are reported

Comparison ICC [95% CI] Bias ± 95% LOA Sample size

Manual, short axis vs long axis 0.807 [0.366–0.915] 7.4 ± 16 mm 1102
Visual, two repetitions 0.940 [0.933–0.947] −0.41 ± 8.2 mm 1102
Manual vs visual 0.917 [0.905–0.927] 0.9 ± 10 mm 1102

Fig. 6  Agreement of diameter measurements. Scatterplots (top) and 
Bland–Altman plots (bottom) of diameter measurements are shown 
for manual annotation of short- versus long-axis measurements (left), 

for two repetitions of visual annotation (middle), and for manual ver-
sus visual annotations (right)
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chest radiographs and brain tumors on MRI for subsequent 
deep learning [6–8]. This study expands the usage of eye track-
ing for annotation of the gastrointestinal tract for similar analy-
ses and applications. Neural networks have also been used to 
accelerate image annotation with fewer manual interactions 
[41, 42]. Similar approaches may allow better use of eye track-
ing data than the geometric model of this study.

Diameter maps have been described for the characteri-
zation of biliary diseases [43]. In that study, classic image  
processing techniques were used to convert magnetic  
resonance cholangiopancreatography (MRCP) images 
into diameter maps. Metrics derived from these diameter  
maps were proposed as disease markers. The results of this  
study expand the usage of diameter maps to the gastroin-
testinal tract, and similar metrics may be derived for bowel 
obstruction.

Although Dice scores for automated segmentation exceed 
0.9 for some abdominal organs [44, 45], the gastrointestinal 
tract presents additional challenges because of its variability. 
The results of this study are similar to prior studies, where 
Dice scores for segmentation of the gastrointestinal tract 
ranged from 0.55 to 0.88 [45–51]. However, direct com-
parison is limited due to differences in the modality [50, 51], 
the technique of the CT acquisition [47, 49], the part of the 
gastrointestinal tract that was segmented [45], or the sample 
size and demographics [47–49]. Most of these prior stud-
ies focused on segmentation, and only one reported agree-
ment with quantitative parameters characterizing the bowel 
[51]. Several of these studies have noted the substantial time 
required for manual image annotation, resulting in little 
available public training data [47, 49–51]. The achievement 
of similar levels of agreement using visual image annotation 
may help address these limitations.

Sources of Error

The gastrointestinal tract is not a perfect cylinder, and some 
approximation error is expected when modeling it with a 

constant diameter. Nonetheless, since the caliber of the bowel 
is common in clinical usage, the diameter was appropriate to 
annotate in addition to segmentation. Since multiple loops 
of bowel can be so closely apposed that there is no interven-
ing mesentery, bowel diameter cannot be derived from seg-
mentation. Eye tracking makes annotating diameter feasible 
ergonomically, since one has a free hand to use to adjust the 
knob encoding diameter, while adjusting slice location with 
a mouse in the opposite hand and recording in-plane position 
based on the gaze location generated by the eye tracker.

Eye trackers may have errors that are heteroskedastic over 
the space of the monitor or over the time of recording, and 
must be calibrated for maximal accuracy and precision [52]. 
Viewing continuous structures such as the gastrointestinal 
tract on cross-sectional imaging studies may minimize errors 
by inducing the small eye motions of smooth pursuit rather 
than the larger eye motions of saccades [53]. The design of 
the 3D Slicer module was intended to minimize errors by 
recentering the viewport to use a smaller portion of the mon-
itor and by adjusting calibration with small mouse motions 
during recording.

Limitations

This study itself had several limitations. First, the entire 
length of time required for manual versus visual annota-
tions was not assessed. If the visual annotation is found to 
be sufficient for downstream applications, an investigation 
of its efficiency relative to manual annotations will be pur-
sued in future research. Another limitation was that complete 
blinding was not possible due to project staffing, though 
manual and visual annotations were separated by at least 
1 week. Lastly, manual diameter measurements were only 
made on thick slice axial reformats, since thin slices were 
not routinely stored at the investigator’s institution. The per-
formance in other planes will be the topic of future research.

Another limitation was that diagnostic performance for 
bowel obstruction was not assessed. Neural networks have 

Table 5  Agreement of 2d and 
3d CNN predictions with visual 
and manual annotations over 
the training and test data sets. 
Mean, standard deviation, and 
sample size of Dice scores for 
segmentation are reported

2d CNN Visual Manual
Dice score Train Test Train Test

    All 0.69 ± 0.09 (n = 50) 0.63 ± 0.10 (n = 10) 0.73 ± 0.15 (n = 50) 0.65 ± 0.20 (n = 10)
    Foregut 0.54 ± 0.17 (n = 50) 0.49 ± 0.21 (n = 10) 0.39 ± 0.32 (n = 24) 0.22 ± 0.26 (n = 8)
    Midgut 0.55 ± 0.13 (n = 50) 0.48 ± 0.09 (n = 10) 0.50 ± 0.28 (n = 44) 0.44 ± 0.28 (n = 9)
    Hindgut 0.38 ± 0.14 (n = 50) 0.30 ± 0.14 (n = 10) 0.35 ± 0.27 (n = 48) 0.30 ± 0.26 (n = 9)
3d CNN Visual Manual
Dice score Train Test Train Test
    All 0.75 ± 0.06 (n = 50) 0.69 ± 0.07 (n = 10) 0.75 ± 0.14 (n = 50) 0.69 ± 0.17 (n = 10)
    Foregut 0.64 ± 0.12 (n = 50) 0.52 ± 0.19 (n = 10) 0.48 ± 0.33 (n = 27) 0.31 ± 0.27 (n = 8)
    Midgut 0.59 ± 0.13 (n = 50) 0.55 ± 0.13 (n = 10) 0.59 ± 0.24 (n = 37) 0.47 ± 0.30 (n = 8)
    Hindgut 0.51 ± 0.18 (n = 50) 0.38 ± 0.14 (n = 10) 0.45 ± 0.30 (n = 46) 0.44 ± 0.20 (n = 8)
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been applied directly to the detection and characterization 
of bowel obstruction on abdominal radiographs [54–56] 
and for the identification of transition points of obstructed 
bowel on abdominal CT scans [57]. However, the purpose 
of this study was to generate parametric maps, which may 
help characterize the severity and etiology of the obstruc-
tion, rather than only its presence or absence. The results 
of this study will enable future investigations of automated 
detection of bowel obstruction using metrics based on diam-
eter maps [43].

An additional limitation of this study was that there 
were too few subjects to allow statistical analysis strati-
fied by each relevant clinical or technical feature. The per-
formance of segmentation may depend on these features. 
Bowel resections, ostomies, or hernias may change the 
location within a scan at which bowel must be identified. 
The contents of the peritoneal cavity cause variation in 
the background from which bowel must be differentiated. 
Intravenous or enteric contrast may alter the appearance 
of the bowel itself. These features were balanced between 

the training and test data sets. Some incorrect predictions 
of these features are noted in the test data set. However, 
statistical evaluation will be the topic of future research 
involving larger data sets.

Another limitation was the low resolution of the nor-
malized data used for training. Training data needed to be 
resized in both axial and longitudinal dimensions so that 
a batch could fit within the memory of the single 12 GB 
GPU available for the study. Patch-based approaches were 
not investigated, since it was unclear how to measure the 
diameter of segments that would extend across patches. 
Fortunately, newer GPUs with more memory will enable 
the use of higher-resolution training data and of deeper 
neural networks, from which greater performance is 
expected. Fortunately, visual annotations were recorded 
parametrically, so derived bowel segmentations and 
diameter maps can be reconstructed at higher resolutions. 
Higher levels of agreement may be possible using manual 
annotations in addition to visual annotations for training. 
These efforts will also be the topic of future research.

Fig. 7  Agreement of segmentations. Boxplots are shown for Dice scores between 2 and 3d CNN predictions and visual and manual annotations 
for the training and test data sets

Table 6  Agreement of CNN 
predictions with visual and 
manual annotations over the 
training and test data sets. 
Intraclass correlation and its 
95% confidence interval, as 
well as bias and 95% limits of 
agreement, are reported for 
diameter measurements

CNN Annotation Subjects ICC [95% CI] Bias ± 95% LOA Sample size

2d Visual Train 0.859 [0.825–0.885] −1.7 ± 12 mm 924
Test 0.675 [0.520–0.775] −3.8 ± 17 mm 178

Manual Train 0.830 [0.808–0.850] −0.94 ± 15 mm 924
Test 0.677 [0.586–0.751] −2 ± 19 mm 178

3d Visual Train 0.847 [0.729–0.904] −3.5 ± 13 mm 924
Test 0.672 [0.490–0.782] −4.9 ± 19 mm 178

Manual Train 0.850 [0.794–0.887] −2.7 ± 15 mm 924
Test 0.739 [0.646–0.808] −3.1 ± 19 mm 178
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Conclusion

In conclusion, eye tracking is a promising technology for 
visual image annotation for training CNNs in the context 
of bowel obstruction. Agreement between two repetitions 
of visual annotation and between visual and manual anno-
tations was good for bowel segmentation and excellent for 
diameter measurement. Agreement of CNN predictions 

with manual and visual annotations was moderate for 
bowel segmentation and diameter measurements, but 
improved performance may be achieved if limitations are 
addressed. Whether these levels of repeatability and agree-
ment are acceptable ultimately depends on downstream 
applications, but the availability of CNN predictions based 
on visual image annotations will allow the development 
and validation of such applications.

Fig. 8  Agreement of diameter measurements. Scatterplots (top) and Bland–Altman plots (bottom) of diameter measurements are shown for 2d 
and 3d CNN predictions and visual and manual annotations over the training and test data sets
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