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Abstract—In this paper, the performance limits of faults
localization are investigated using synchrophasor data. The focus
is on a non-trivial operating regime where the number of Phasor
Measurement Unit (PMU) sensors available is insufficient to
have full observability of the grid state. Proposed analysis uses
the Kullback Leibler (KL) divergence between different fault
location hypotheses, which are associated with the observation
model. This analysis shows that the most likely locations are
concentrated in clusters of buses more tightly connected to the
actual fault site akin to graph communities. Consequently, a
PMU placement strategy is derived that achieves a near-optimal
resolution for localizing faults for a given number of sensors.
The problem is also analyzed from the perspective of sampling
a graph signal, and how the placement of the PMUs i.e. the
spatial sampling pattern and the topological characteristic of the
grid affect the ability to successfully localize faults is studied. To
highlight the superior performance of presented fault localization
and placement algorithms, the proposed strategy is applied to a
modified IEEE 34, IEEE-123 bus test cases and to data from
a real distribution grid. Additionally, the detection of cyber-
physical attacks is also examined where PMU data and relevant
Supervisory Control and Data Acquisition (SCADA) network
traffic information are compared to determine if a network
breach has affected the integrity of the system information and/or
operations [2].

Index Terms—Cluster Detection, Cyber-Physical Security,
Fault Location, Identification, Intrusion Detection, Optimal PMU
Placement, Phasor Measurement Units.

I. INTRODUCTION

One of the valuable uses of synchrophasor data from Phasor
Measurement Units (PMU) is for fault localization. However,
when the number of PMUs available are fewer than those
required for full observability, pin-pointing the location can be
problematic, as locating faults amounts to solving an under-
determined system of linear equations that has infinitely many
solutions.

There is rich literature on detecting and localizing events
on the grid using relatively few number of measurements,
but in general the existing methods fall short of providing
performance guarantees and insights on the structure of the
errors incurred while dealing with unobserved lines or buses
in the grid. This paper aims to fill this gap through a statistical
model that unveil fundamental limits in fault localization in the
incomplete observability regime.

This research was supported in part by the Director, Cybersecurity, En-
ergy Security, and Emergency Response, Cybersecurity for Energy Delivery
Systems program, of the U.S. Department of Energy, under contract DE-
AC02-05CH11231 and DE-OE0000780. Any opinions, findings, conclusions,
or recommendations expressed in this material are those of the authors and do
not necessarily reflect those of the sponsors of this work. Preliminary version
of this work was published in the proceedings of 2018 IEEE SmartGridComm
[1].

A. Background

Event detection and localization is an active area of research
in power grid. For example, Ardekanian et al., [3] exploit PMU
data to detect and localize a change in the admittance matrix of
a power grid. Zhou et al., [4] use PMU measurements for event
detection in the distribution grid with partial information. Our
previous work [5] describes a hierarchical architecture as the
host for event detection rules in distribution system using PMU
data when scarce measurements are available. Farajollahi et
al., [6] use distribution level PMUs for general event detection
and localization by generating an equivalent circuit so that the
event can be represented by the voltage and current phasors.

Event detection by itself is necessary but not sufficient, since
it is important for grid operators to be able to locate a faulty
section in order to apply corrective measures for isolation and
service restoration.

For example, Zhu et al., [7] describe an automated fault
localization and diagnosis for distribution grids. Using mea-
surements from the substation, the method first finds a set
of plausible locations for the fault. During the diagnosis,
the set of possibilities are ranked for the operator. Min and
Santoso [8] investigate the effect of the DC component in the
phasor data and how it can affect momentary fault localization
process. Kashyap et al., [9] implement a fault location and
isolation algorithm in a distributed fashion. Lee [10] uses
PMU voltage data to search for a fault in a radial network
in a timely manner. Dzafic et al., [11] take a graph marking
approach to spot the location of a fault. In [12], a Gaussian
Markov random field (GMRF) is defined for phasor angles
along with a fault detection algorithm and subsequently a
decentralized approach is used for fault localization. Authors
in [13] use voltage measurements from few PMUs on the
transmission network that are placed according to a “one-bus
spaced deployment strategy” that ensures protection to all the
lines in the grid. There are also a number of non-parametric
methods for fault localization that use spatio-temporal (loca-
tion and time) patterns of the measurements. For example, Jian
et al., [14] extract the time-frequency features of frequency and
voltage from a dictionary by matching pursuit [15], which
is then followed by a clustering method for fault detection.
Borghetti et al., [16] perform wavelet analysis on the voltage
waveform generated during fault-induced transients to obtain
the location of a fault in the distribution network. While the
exploitation of temporal patterns helps in the localization, they
do not provide an understanding on how the performance is
affected by the grid parameters and the sensor deployment.

Although there exist several methods in the literature for
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optimal placement of sensors [17], their goals are to en-
sure observability in the placement. Tackling the localization
problem becomes challenging when one considers a regime
where the sensors are insufficient to have full observability,
which is acknowledged in [18] for transmission networks.
However, their fault detection scheme and a placement scheme
for PMUs aims for the identification of the exact fault location
and ensures enough PMUs in the system to do the same.
In the same vein, work in [19] deals with PMU placement
for fault location observability. Only in [20], algorithms for
placement under incomplete observability is even considered.
Nonetheless, the goal of the aforementioned paper is not fault
localization.

With inadequate number of PMUs, which is usually the
case in distribution feeders, the optimal placement of sensors
in such a scenario would not guarantee a good reconstruction
of voltage or current signal but rather be aimed at detect-
ing the fault with the maximum possible resolution on the
graph topology. By resolution in localizing an event on the
network, we refer to the ability to localize the correct `-
hop neighborhood, with ` as small as possible. In this work
we use pre-fault and post-fault sample measurements along
with the knowledge of admittance/impedance matrix for fault
localization. The regime of interest is that where the number
of sensors available is less than the observability limit, as in
[21]. We refer to this operating condition as an under-sampled
grid regime.

B. Contributions
The paper contributions are threefold: 1) it develops a

maximum-likelihood method for fault localization; 2) it pro-
vides a direct connection between the errors made in fault
localization with the community structure in the underlying
system admittance matrix that acts as the Laplacian of the
graph defined by the buses and lines in the grid, and 3) it
derives an optimum PMU placement algorithm so that highest
possible resolution in fault localization is achieved with fewer
PMUs.

The paper also interprets cluster-level fault localization
using concepts from graph signal processing [22], [23] and
ties it to the theory of under-sampling [24] graph signals
that have a sparse excitation [25]. Specifically, it is shown
that the sampling pattern that provides the highest localization
resolution is similar to finding the optimum sampling pattern to
recover low-pass graph signals. To the best of our knowledge,
both the connection between the graph clustering and fault
localization resolution as well as the derivation of the corre-
sponding optimum sampling pattern (i.e., PMU placement) are
novel.

In addition to the analysis and placement method, the
comparison of proposed method with state of the art algo-
rithm in [21] shows that the proposed statistical approach is
superior in localization performance. Apart from validating
the proposed approaches on two IEEE test cases and real-
life distribution grid, the numerical section also showcases the
application of our method in the forensic analysis of cyber-
physical attacks to a distribution Fault Location, Isolation, and
Service Restoration (FLISR) system [26].

Preliminary results about the algorithm and error analysis
were presented in the conference paper [1]. Additional contri-
butions include:
• Employing a statistical model to find the fault location

using a multiple hypotheses testing approach as opposed
to the least-square method in the previous work. The
statistical approach helps to consider the error in ap-
proximating the fault current and show the relationship
between the clusters in the power grid graph used for
low-resolution fault localization with the locations of the
sensors.

• Performing extensive analysis of the sampling problem,
• Formulating an optimal PMU sensor placement strategy

that was mentioned as future work in the conference
version of [1],

• Presenting results by running fault localization and opti-
mal placement algorithms on data from a real distribution
grid,

• Integrating the proposed fault localization method in the
cyber-physical intrusion detection architecture developed
by the authors in [27], and show how such a methodology
can be used to detect intrusions on fault detectors.

Paper organization: Section II describes the fault localiza-
tion problem along with the formulation of the corresponding
hypothesis testing problem to distinguish between faults at
different locations. Section III elucidates upon the analysis
of fault localization through KL divergence. In Section IV,
the problem of optimal placement for highest possible reso-
lution for fault localization is presented. Section V contains
the numerical results of fault localization and placement for
synthetic and real distribution grids, comparison with state of
the art and application of the proposed methods for intrusion
detection. Finally, conclusions are presented in Section VI.

Notation: In the paper, IN is the N × N identity matrix.
AT ,AH refer to transpose and conjugate transpose of A.
||a|| is the 2-norm of vector a. ||A||F is the Frobenius norm
of matrix A, |A|, tr(A) are determinant and trace of A
respectively. Vector x ∼ N (µ,Σ) is distributed multivariate
normal with expected value µ and covariance Σ.

II. THE FAULT LOCALIZATION PROBLEM

Fault localization is a two-step process that first detects a
fault and then seek to determine the location of said fault.
This paper focuses on the latter, when a fault has already
been detected for instance using the method presented in [5],
that also provides an estimate of the beginning and end of
the transient event associated with the fault. To keep the
formulation general for balanced and unbalanced grids with
transposed/untransposed lines, the three phase formulation of
the Ohm’s law (instead of the sequence domain) is used so that
single and two phase lines can be considered. For a network
of size N , let Vi and Ii denote the nodal voltage and injection
current vectors at node i where depending on the number of
phases connected to node i, Vi and Ii can be vectors of size 1, 2
or 3. Thus, concatenated vectors V, I of size M are defined
as follows:

V = [V T1 , V
T
2 , ..., V

T
N ]T , I = [IT1 , I

T
2 , ..., I

T
N ]T , V, I ∈ CM×1
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From Ohm’s law:

I = YV (1)

where Y is the admittance matrix. The sources in the grid
are modeled with their Norton equivalent and their internal
admittances are included in the Y matrix as well. Even though
the formulation is general, all the numerical analyses are done
using distribution grid test cases, and the algorithm has not
been tested against transmission cases in this work.

Denote the pre-fault voltage and current as V0 and I0. If it
is assumed that a fault happens at bus j, the nodal injection
current after the fault can be decomposed as IF+IE , where IE
is a sparse vector containing the injected fault current at bus
j in its non-zero entries. The localization problem amounts
to finding the most likely set of indexes for these non-zero
entries, given the observed measurements.

From (1), I0 = YV0 and when the measurements have
stabilized during fault, IF + IE = YVF where VF is the
post-fault voltage1. By subtracting the pre-fault current from
the post-fault current provides the equation:

(IF − I0) + IE = δI + IE = Y(VF −V0) = YδV (2)

A. The Statistical Measurements Model

The current and voltages in (2) can be parsed as avail-
able and unavailable PMUs measurements. Let K denote
the total number of phases, for which the nodal voltage
and injection current are measured with PMUs. The matrix
Πa ∈ {0, 1}K×M is a selection matrix that picks the avail-
able measurements in the voltage/current vector and Πu ∈
{0, 1}(M−K)×M selects the unavailable measurements. Pre-
multiplying both sides of (2) by Π = (ΠT

a | ΠT
u )
T , and

replacing Y with YΠ−1Π (noting that Π−1 = ΠT ):(
Πa

Πu

)
(δI + IE) =

(
Πa

Πu

)
Y
(
ΠT
a ΠT

u

)(Πa

Πu

)
δV(

δIa
δIu

)
+

(
IaE
IuE

)
=

(
Yaa Yau

YT
au Yuu

)(
δVa

δVu

)
.

(3)

From (3), the following set of equations is obtained:

δIa + IaE = YaaδVa + YauδVu (4)

δIu + IuE = YT
auδVa + YuuδVu (5)

Substituting δVu in (4) using (5) and reordering some terms,
observation z is defined as:

z ,

H︷ ︸︸ ︷(
I | − (Yaa −YauY

−1
uuYT

au)
) s︷ ︸︸ ︷(

δIa
δVa

)

= (−I |

C︷ ︸︸ ︷
YauY

−1
uu )

x︷ ︸︸ ︷(
IaE
IuE

)
+

C︷ ︸︸ ︷
YauY

−1
uu

ε︷︸︸︷
δIu

z = [−I |C]x + Cε

(6)

The term Cε can be viewed as a noise term, while the term
[−I |C]x, in which x is a sparse vector (i.e. the vector IE

1The assumption is that the post-fault data is recorded before any corrective
protection measure is taken so that the admittance matrix stays the same.

reordered) whose non-zero entries point to the sites of the
fault.

Remark. Generally speaking, the noise term Cε is relatively
small, if the constant impedance loads and capacitors/reactors
are also included in the Y matrix, instead of being modeled
in the current injection vector. For constant power loads,
their equivalent admittance at the nominal voltage can be
included in the bus admittance matrix, and the deviation of
the actual consumed power from the nominal can be included
in the nodal injection vector, so that a similar model can be
adopted when the assumption of constant power loads is more
appropriate. This modeling implies that the vectors IF and I0
are small and, accordingly, their difference δI is small as well.

Assuming that the noise term ε is drawn from complex
normal distribution 2, i.e. ε ∼ CN (0, σ2

ε I), whitening the
noise term is appropriate. Let the economy-size singular value
decomposition [28] of C ∈ CK×M−K be:

C = UΣWH , Σ ∈ CK̃×K̃ (7)

where U is a (K × K̃), K̃ ≤ K containing the columns
spanning the column space of C, Σ is a diagonal matrix with
non-zero singular values of C on its diagonal entries and W
is of size (M −K)× K̃ containing the columns spanning the
row space of C. Pre-multiplying z by Σ−1UH :

d = Σ−1UHz = Fx + ε (8)

where F =
[
−Σ−1UH |WH

]
and the noise ε = WHε

and, since W is semi-unitary, ε ∼ CN (0, σ2
ε I). Model in

(8) is a well-known linear model with a sparse input and
additive Gaussian noise. Fault localization is then equivalent
to recovering the support of x.

The fault location hypotheses testing problem is formulated
based on (8). Let H` denote the hypothesis that a fault has
occurred at location ` ∈ Ft, where Ft is a set of candidate
locations for a detected fault t. To understand the structure
of Ft better, consider the three-phase diagram in Fig. 1 of a
sample 5-bus system including 3 three-phase nodes and two
single phase nodes: suppose that detected fault t indicates a

1a

1b

1c
4b

2a

2b

2c

3a

3b

3c

5a

Fig. 1. Sample Three-Phase Line Diagram.

three phase fault. The candidate fault locations are:

Ft =
{
{1a, 1b, 1c}, {2a, 2b, 2c}, {3a, 3b, 3c}

}
and buses 4 and 5 are excluded since they are single phase.

Let the noise variance σ2
ε be assumed to be known. It is also

assume that: 1) conditioned on the hypothesis H`, the sparse
vector x has its non-zero entries normally distributed. This can
be captured by x|H` ∼ CN (µ`,Φ`), where µ` is a sparse
vector containing the expected value for the fault current under

2The pseudo-covariance matrix is assumed to be zero for all complex
normally distributed vectors so it is omitted from the definition for simplicity.
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hypothesis H` at its non-zero entries and Φl = E[xxH |H`] is
a diagonal covariance matrix, which is only non-zero at entries
corresponding to the candidate location `. Thus:

Fx|H` ∼ CN (Fµ`,FΦ`F
H)

Assuming that Fx|H` and ε|H` are independent, we have:

d|H` ∼ CN (

m`︷︸︸︷
Fµ`,

Ψ`︷ ︸︸ ︷
σ2
ε I+ FΦ`F

H) (9)

Denoting by f(d|H`) the probability density function of d|H`
and by λ`(d) = ln f(d|H`) the log-likelihood function, the
maximum likelihood (ML) detector of the fault location is:

`∗ = argmax
`∈Ft

λ`(d)

= argmin
`∈Ft

(d−m`)
HΨ−1` (d−m`) + ln(πK |Ψ`|). (10)

In this case, the values of these non-zero entries in the
mean m` and covariance matrix Ψ` are not known but can
be approximated. Suppose that there is a PMU installed at
each source node in the grid (e.g., substation, generators).
Let the vectors Is,0 and Is,F denote the sum of the current
injected by each source for each faulty phase into the grid
during pre and post-fault condition, respectively. Note that
the formulation is applicable to active distribution networks
where distributed generators are placed in the grid as long
there is a PMU connected to each source as mentioned above.
Fig. 2 shows one-line diagram of a sample test case after
a fault, which is supplied through sources 1 and 2. There

Source 2
65I12I

1 2 3 4 5 6

PMU 1 PMU 2

Source 1

Fig. 2. Composition of Vectors Is,0 and Is,F .

is a PMU installed next to each one measuring the three-
phase line pre-fault currents I12,0 = (ia12,0, i

b
12,0, i

c
12,0)

T and
I65,0 = (ia65,0, i

b
65,0, i

c
65,0)

T and post-fault currents I12,F and
I65,F . Assume that the fault detectors indicate that a fault is
on phase b and c. The vectors, Is,0 and Is,F are formed as
follows for this fault:

Is,0 = [ib12,0, i
c
12,0]

T + [ib65,0, i
c
65,0]

T

Is,F = [ib12,F , i
c
12,F ]

T + [ib65,F , i
c
65,F ]

T

Forming the vectors Is,0 and Is,F for other types of fault
follows a similar approach. Note that if P denotes the number
of faulty phases, the vectors Is,0 and Is,F are of size P × 1.
These vectors can be used to estimate the values of the mean
and the covariance of the non-zero entries of IE . First, define
matrix Al ∈ {0, 1}M×P that is zero everywhere except for a
block equal to the identity matrix IP corresponding to the fault
location indexed by l. For a given fault at node `∗, the value of
the non-zero entries in µ` equal approximately to the sum of
the currents flowing from the sources into the grid minus the
current flowing into the grid before the fault occurred on the

corresponding faulty phases. Denoting by δIs = (Is,F −Is,0),
no matter where the fault is, the following approximation can
be used:

µ` = E[x|Hl] = AlδIs (11)

Also, the variance can be set to be a certain percentage of
the value |[δIs]j |2, i.e. [Γs]jj = ρ|[δIs]j |2, where ρ accounts
for the percentage approximation error made in assuming that
the fault current is completely accounted for by the source
currents change. Hence:

Φ` = AlΓsA
T
l → Ψ` = σ2

ε I+ FAlΓsA
T
l FH (12)

Even though Fig. 2 demonstrates a line to ground fault with
no resistance, the formulation does not restrict the model to the
type of fault. In fact, all that matters is the current withdrawn
from the faulty phases that later on form the vector x. The
same thing applies to symmetric and asymmetric faults. As
it was discussed, if only one or two phases are at fault, only
the elements corresponding to those phases would be non-zero
in the vector δIs and the the methodology to locate the fault
would not change.

Before going through the discussion of the fault identifiabil-
ity, it should be noted that we have introduced faults at nodes,
to have finite and countable number of hypotheses. In reality, a
fault occurs on a line. If the method was able to locate the fault
at full resolution, then the two nodes with the highest λl(d)
would determine the faulty line. However, as discussed in the
next section, the fault localization method here can locate a
fault with low-resolution up to a certain neighborhood of the
actual location, and therefore putting a fault on a line or on
its closest node would not change the end result.

III. FAULT LOCATION IDENTIFIABILITY

If for a given fault at location `∗, the value of the metric
λ`(d) in (10) is close to λk(d) (k 6= `∗, ` = `∗), the location
of the fault can be mis-identified due to different sources of
error such as approximation errors, noisy measurements, etc.

Definition. For each possible `∗ a cluster is a set of nodes
for which λ`(d) ≈ λ`∗(d) under d|H`∗ .

It is desirable to investigate if the properties of the grid
and the connection of the nodes affect the closeness of
the log-likelihood value in (10), using the Kullback-Leibler
(KL) divergence [29] of the two probability density functions
f(d|H`) and f(d|Hk). The KL divergence is:

DKL(f(d|H`)‖f(d|Hk)) = ln
|Ψk|
|Ψ`|

+ tr
(
Ψ−1k Ψ`

)
−K

+
(
F(Ak −A`)δIs

)H
Ψ−1k

(
F(Ak −A`)δIs

)
(13)

In this application the weighted mean of the observations
is very large compared to the noise σ2

ε . This leads to the
following proposition:

Proposition 1. Let F̃k = FAkΓ
1/2
s , ξ = Γ−1/2s δIs and

assume: ∀k ‖F̃k‖2F
σ2
ε
� 1. Then, the following holds:

DKL(f(d|H`)‖f(d|Hk)) ≈
ξHF̃H` Π̃

⊥
k F̃`ξ

σ2
ε

(14)
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where Π̃
⊥
k = (I−F̃k(F̃

H
k F̃k)

−1F̃Hk ) is the projector onto the
subspace orthogonal to the columns of F̃k.

Proof. First, the first and the second terms in the KL diver-
gence expression are just a function of the covariance matrices.
Therefore, the following approximation holds:

DKL(f(d|H`)‖f(d|Hk)) ≈ ‖F(Ak −A`)δIs‖2Ψ−1
k

(15)

Second, note that F(Ak −A`)δIs = (F̃k − F̃`)ξ and by ap-
plying the matrix inversion lemma while using the assumption
‖F̃k‖2F
σ2
ε
� 1:

Ψ−1k =
1

σ2
ε

(I− F̃k(σ
2
ε I+ F̃Hk F̃k)

−1F̃Hk ) ≈ 1

σ2
ε

Π̃
⊥
k (16)

Noting that by definition Π̃
⊥
k F̃k = 0, the statement follows.

Note that F̃k include a weighted subset of columns of the
matrix F defined in (8). Let fk denote a column of the matrix
F. Their correlation is the absolute value of the cosine of the
angle between them:

r`k =
|fH` fk|
||f`|| ||fk||

(17)

From what has been shown, as r`k increases for two locations
` and k, the divergence of their corresponding hypotheses
reduces and therefore it is more likely that they are mistaken
with each other. Locations with high correlation coefficient
belong to the same cluster.

A. Sparse recovery interpretation

One can consider (8) as a sparse recovery problem. From
the theory of recovery of sparse signals [30], it is well known
that, when

‖x‖0 ≤
1

2

(
1 + µ(F)−1

)
, µ(F) = max

k,`,k 6=`
r`k (18)

where µ(F) is the mutual coherence of matrix F, then the
`1 minimization of the support can recover x. In general,
the lower is the mutual coherence of a matrix, the better the
recovery performance as it is similar to unitary matrices. To
compute the mutual coherence, consider

FHF =

[
UΣ−2UH −UΣ−1WH

−WΣ−1UH I

]
. (19)

The magnitude of each entry of the matrix FHF, with suitable
normalization, corresponds to r`k except for the diagonal
entries. Naturally, the magnitude depends on the spectrum Σ
of the matrix C = YauY

−1
uu which must be as flat as possible

so as to lower the mutual coherence of the matrix F. This
suggests to minimize the so called Shatten infinity norm of
the matrix YauY

−1
uu , which is the infinity norm ‖σ‖∞ of the

vector σ containing the non-zero singular values of YauY
−1
uu .

The design strategy, detailed in the next section, is aimed
precisely at providing a flat spectrum for C.

IV. OPTIMAL PHASOR MEASUREMENT UNIT PLACEMENT

Following from the discussion in the previous section, for
better resolution of faults, it is desirable for a placement of
sensors such that it can provide a flat spectrum for C or in
other words minimize the Shatten infinity norm of the matrix
YauY

−1
uu . Let P denote the set of all permutation matrices.

Then, the objective of optimal placement of PMUs can be
realized by solving the following problem:

Πopt = argmin
Π∈P

‖σ(YauY
−1
uu )‖∞

s.t. ΠYΠT =

(
Yaa Yau

YT
au Yuu

) (20)

From (20), the placement problem is combinatorial and expo-
nentially complex so it does not scale well. We use a greedy
search as an alternative to reduce the time complexity to
polylog. The pseudo-code of the used greedy search is shown
in Algorithm. 1.

Algorithm 1: Greedy Search Pseudo-Code for PMU
Placement.
Initialization

P := Number of available PMUs;
S := Number of source nodes;
P := {Source Nodes} // Nodes with PMU;
M := Set of candidate placement buses;

begin
for p = 1..P − S do

Cost←∞;
for each m ∈M do
P := P ∪ {m};
given P, calculate ‖σ(YauY

−1
uu )‖∞;

if ‖σ(YauY
−1
uu )‖∞ < Cost then

mopt ← m;
Cost← ‖σ(YauY

−1
uu )‖∞;

P := P \ {m};
P := P ∪ {mopt};
M :=M\ {mopt};

Complexity of the fault localization algorithm: The
computational complexity of the proposed fault localization
method is composed of two parts: optimal placement of
PMUs and likelihood computation for fault localization. Time
complexity of the greedy search that is employed for optimal
placement is of the order of |M|(P − S). It depends linearly
on the number of candidate buses as well as number of PMUs
to be placed. The likelihood computation for fault localization
is inexpensive for small network sizes and is of the order of
number of possible fault locations, |Ft|. Also, this computation
can be done in parallel to save time for large networks.

A. Connection to graph signal sampling and graph clustering

In addition to interpretation using sparse recovery, one can
also understand the loss of resolution and consequent best
possible placement using sampling theory from graph signal
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processing [24]. Placing PMU sensors can be thought of as the
problem of sampling a graph signal in a fixed spatial pattern.
This is because voltage or current signals are graph signals
that occur on the electrical network. Not having sufficient
PMUs means not sampling from enough nodes in the graph.
This under-sampling leads to poor recovery or reconstruction.
However, if the graph signal is sparse in the graph Fourier
domain, then measurements of the order of the number of
approximately non-zero components in the Fourier domain are
enough for perfect reconstruction. For rigorous theory, please
see [31]. The same theory can be applied to signals from the
electrical grid like the measurement d.

In [25] it was established that voltage phasor measurements
are an output of a low-pass graph filter defined using the graph-
shift operator of system admittance matrix Y which means
that voltage signals are sparse or band-limited in the graph
Fourier domain where graph Fourier transform is defined as
UT
Y a where UY are the eigenvectors of Y and a is a graph

signal. It means that measurements from a certain number
of nodes say M̃ are needed for perfect reconstruction [24].
Since sparsity in graph Fourier domain is only approximate,
optimal placement of M̃ measurement units on the network
aims to minimize the reconstruction error. This criterion leads
to the optimization problem of maximizing the singular value
of DM̃UY i.e. σmin(DM̃UY ) where DM̃ is a diagonal matrix
with values from {0, 1} indicating 1 if the node is chosen
for placement and it is the same size as Y. Intuitively, this
amounts to choosing the rows of UY with the smallest possible
coherence or, in simpler terms, as close as possible to being
orthogonal.

Similar intuition continues while looking at C = YauY
−1
uu .

With UY , it is choosing a representative row per ‘cluster’ in
a graph. Similarly, in C, choosing the rows of YauY

−1
uu to

be uncorrelated is attained by having non overlapping support
among of the rows in YauY

−1
uu and having Yuu as close as

possible to a block diagonal matrix, where the diagonal blocks
as matched to the non zero portions of rows Yau.

Therefore, it is possible to predict how to obtain good place-
ments looking at the structure of the graph, and particularly
of its natural clustering in sub-graphs with higher connectivity
within themselves. In network science, these sub-graphs are
often referred to as communities. This is because the spectral
properties we are seeking can be tied to selecting nodes in
such a way that the sparsity patterns of the rows of Yau and
of Yuu separate in clusters. Since there are few observable
nodes, the rank of the matrix Yau is limited by its number
of rows. The algorithm performs best if the rows of YauY

−1
uu

are as uncorrelated from each other as possible. Given the
similarity of line parameter values, low correlation is mostly
attained by having non overlapping support among of the
rows in YauY

−1
uu . As the next example illustrates, this can be

attained by having Yuu as close as possible to a block diagonal
matrix, where the diagonal blocks are matched to the non zero
portions of rows Yau. This is possible if the neighborhoods
of the buses where the sensors are located, have the smallest
intersection possible. For example, for the system in Fig. 3, if
the PMUs are placed at bus 2 and 5 as shown, the admittance

1 2 3 4 5 6
34y 45y 56y12y 23y

Fig. 3. One-Line Diagram of a Sample Radial Network

matrix is partitioned in the following desirable way:

Y =


y2 0 −y12 −y23 0 0
0 y5 0 0 −y45 −y56
−y12 0 y1 0 0 0
−y23 0 0 y3 −y34 0
0 −y45 0 −y34 y4 0
0 −y56 0 0 0 y6


This design is clearly distancing the PMUs in the graph and
dividing the network in neighborhoods, each associated with
one of the sensors immediate and two hop neighbors where
measurements are unavailable. The remaining ambiguity is
confined to a connected set of buses that are topologically
close to the PMU sensors. Hence, the optimum resolution for
a certain grid is tied to the same intrinsic topological properties
that are studied in graph clustering.

V. NUMERICAL RESULTS AND APPLICATIONS

In this section, technical discussion is firstly corroborated
and then its application in the forensic analysis of cyber attacks
to FLISR systems is showcased. In the numerical simulations
the IEEE-34 bus and 123 test feeders (c.f. [32]) are used as
synthetic grids with publicly available data, Additionally, we
extend the analysis to a real distribution grid.

A. Sensor Placement and Identified Clusters

Before analyzing the results of the fault identification al-
gorithm based on (10), the greedy-based placement for the
PMUsis identified based on (20). The clustering is highlighted
by showing the values of r`k in (17) that exceed a certain
threshold τ through images where all r`k < τ are set to zero.

1) IEEE-34 Bus Test Feeder: The one-line diagram of the
test-case is shown in Fig. 4, where a 100 kW generator is
added at bus 848. This grid is unbalanced and radial and has
untransposed lines and one phase laterals. Also, without loss
of generality, only the nodes at the same voltage level have
been studied. During the placement, only three-phase buses

800
802 806 808

810

812 814
R1

850

816

818

820

822

824 826

828 830 854 856

852

R2

832

838

862

840836860834858

864
842

844

846

848

Substation

DG1

Fig. 4. Reduced IEEE-34 Test Case with Added Generator.

are kept as the candidate location for PMUs to better utilize
the resources. Assuming that there are 4 PMUs available i.e.,
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P = 4, Table. I shows the greedy-based location of the sensors
and the random placement used as a comparison. Since this

TABLE I
PMU LOCATIONS FOR IEEE-34 BUS

Test Case #PMUs Greedy-based sites Random sites
IEEE-34 4 800-830-848-840 800-814-816-848

is a small case, one is able to perform exhaustive search to
understand how well the greedy search has performed. For this
purpose, the calculated relative optimality gap shows a value
of 0.75% for the greedy-based search versus 7.61% for the
random case that puts the greedy-based strategy to fall below
1% optimality gap.

It is clear from the locations in Fig. 4 according to Table. I
that the sensors are placed to cover the grid. Fig. 5(a) shows
the correlation (17) of the columns of F after thresholding
corresponding to phase-A for the greedy-based placement in
Table I and Fig. 5(b) is the same quantity for the F that
corresponds to the random choice. Since high correlation
leads to low KL divergence, the clusters of light gray values
effectively represent fault locations that are hard to discrimi-
nate. The larger the cluster, the lower the resolution. Hence,
Fig. 5(b) clearly illustrates the impact on the resolution of a
bad sensor placement, when compared to the clustering that
emerges in Fig. 5(a). The correlation coefficients heat-map

Random Placement
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(a) (b)

Fig. 5. Correlation of Columns of F for IEEE-34 Bus Case related to Phase-A
for a) Greedy-based Location b) Random Location with τ = 0.814

for the columns corresponding to phase-B and phase-C in the
matrix F have a similar pattern as in Fig. 5. To corroborate
the conjecture that the placement is affected by the intrinsic
topology of the graph and its clusters, in Fig. 6 we highlight
the set of buses that exhibit high correlation based on the
greedy-based placement, by building a graph adjacency matrix
such that its `k entry [A]`k = u(r`k−τ)3 using the correlation
coefficients of columns of F corresponding to phase-A and
overlaying it on the IEEE-34 test case topology. As predicted,
the highly correlated nodes are those that are located in a
neighborhood of each other.

2) IEEE-123 Bus Test Feeder: The analysis of the larger
IEEE-123 test case, with a greedy-based assignment of 10
PMUs, returns the results in Table II. Once again, the place-
ment is done after rolling up the single and two-phase laterals

3u(x) is the step function u(x) = 1 if x > 0 and u(x) = 0 else.

800 802 806 808 812 814

828 830 854

832

858 834 860 836 840

862

850 816 824

852

848
822

846
820

844
818

864 842

Fig. 6. Adjacency Matrix Graph for Correlation Coefficients of Columns of
F with τ = 0.814 Corresponding to Phase-A.

TABLE II
GREEDY-BASED SENSOR LOCATIONS FOR IEEE-123 BUS

Test Case #PMUs Greedy-based Location
IEEE-123 10 149-81-61-56-105-250-86-151-72-57

and only nodes at the same voltage level are analyzed. The
one-line diagram and node numbering of this case can be
found in [32]. The PMUs in this case also are spread over
different areas of the grid topology to form communities of
neighboring nodes of comparable sizes. The thresholded heat-
map given in Fig. 7 based on the placement of Table II,
highlights the balance across clusters.

Greedy Search Placement
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0.9

1

Fig. 7. Correlation of Columns of F for IEEE-123 Bus Case Related to
Phase-A for Greedy-based Location with τ = 0.814

3) Real Utility Distribution Grid: To show the performance
of the sensor placement on a real grid, we use the data from
a partner utility grid, which is a medium voltage (12.47 KV)
network. Due to the non-disclosure agreements, the details of
the grid data cannot be published. The studied grid has 1066
nodes and we choose a very small number of P = 20 PMUs
to place. Fig. 8 shows the one-line diagram of the grid along
with the location of the placed PMUs based on the greedy
search that are marked with red circles. Fig. 9 demonstrates
some of the formed communities of neighboring nodes for part
of the studied grid4. As it can be seen, a very similar structure

4Due to large size of the grid, the full heat-map could not be shown.
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Fig. 8. Greedy Search PMU Placement with P = 20 PMUs.
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Greedy Search Placement

Fig. 9. Correlation of Columns of F for Utility Grid Related to Phase-A for
Greedy-based Location with τ = 0.814

of correlation matrix appears in the real-life distribution grid
that confirms observations in the synthetic grids.

B. Fault Localization Algorithm

The synthetic PMU data for this experiment were generated
using dynamic mode of the OpenDSS software [33] to better
model the behavior of the components during fault. The
voltage and current data corresponding to pre and post fault
conditions are recorded. Note that the tap changers usually
have a delay for 15-30 seconds in order to respond to a change
so the voltage and current data should be recorded before the
tap value changes, so that the admittance matrix stays the same
before and after the fault.

1) IEEE-34 Bus Test Feeder: Fig. 10 shows the value of the
log-likelihood function λ`(d) for different hypotheses when a
single-phase to ground fault occurs at phase-A of bus 820. As
analysis indicated, using the metric in (10) shown in Fig. 6,
it becomes readily apparent that one can narrow down the
location of the fault up to a certain resolution, since a cluster
of nodes return very close log-likelihood value. These are also
the nodes that correspond to high values of r`k with respect
to the actual location of the fault. To further test and verify
the fault localization method, we introduce different types of
fault and show the results of the fault localization in Table. III
under the greedy-based placement.
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Fig. 10. Log-Likelihood Value for Fault at Bus 820-Phase-A

To demonstrate the performance of the method when a
fault occurs on a line, we introduce a line-to-ground fault
on the line connecting bus 850 to 816 at 30% distance from
node 850. Fig. 11 shows the log-likelihood value of the
candidate locations. As it was mentioned in the discussion
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Fig. 11. Log-Likelihood Value for Phase A-to-Ground Fault on Line 850-816
with resistance=10 Ohms.

before, since our fault localization is at low-resolution level,
a line fault would still pick the nodes that are within the
community, where the line is located. In this sense, identifying
the community, in which fault has occurred is still possible.
One edge case of the algorithm is when a fault happens on
a line that connects two separate communities to each other.
First of all, it should be noted that separation of grid into
communities has been done with a threshold (τ ), otherwise
there is no clear border between the communities. In order
to test the method for such a case, a three-phase to ground
has been introduced on a line connecting buses 812 and 814.
From Fig. 12, it can be seen that the plausible locations for the
fault are from the two communities that are connected via line
812-814. However, nodes that are closer to the actual location
of the fault, have higher possibility based on the observed
values. The fact that not all the nodes within the community
have the same value of log-likelihood helps to understand that
the fault should be close to the edge of the two communities
of neighboring nodes.

2) IEEE-123 Bus Test Feeder: We extend the analysis of
the fault localization algorithm to IEEE-123 test case for
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TABLE III
IDENTIFIED FAULT LOCATIONS FOR IEEE-34 BUS CASE

Fault Type Fault Resistance (ohms) Exact Fault Location Locations with Highest λ`(d)
ABC 0 816 814,816,850
A-G 0 822 814,816,818,820,822,850

BC-G 0 852 832,852,858
AC-G 0 836 836,840,862
AB-G 0 808 800,802,806,808
AB-G 10 834 834,842

AC 5 850 850,814,816
ABC-G 5 806 800,802,806
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Fig. 12. Log-Likelihood Value for Three-Phase-to-Ground Fault on Line 812-
814 with resistance=0 Ohms.

different types of fault after the placement of the sensors on
the locations in Table II. Fig. 13(a) shows the log-likelihood
value of different hypotheses for a three-phase fault at bus 160.
Part of the correlation coefficients heat-map that illustrates the
correlation of the columns that have high correlation with bus
160 is snipped out of Fig. 7 and is illustrated in Fig. 13(b). As
expected, the neighboring nodes that also have high correlation
with bus 160 are those which have the closest log-likelihood
value in our metric and can be mis-detected as the fault
location.
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Fig. 13. a) Log-Likelihood Value for Three-Phase Fault at Bus 160 and b)
Correlation of Corresponding Columns of F-phase A.

Other types of faults and the potential locations with highest
λ`(d) are summarized in Table IV.

Faults are introduced at different locations of the grid
and the results show that the fault is identifiable up to the
resolution of the clusters of neighboring nodes identified with
the correlation coefficients. An interesting case is the two-
phase fault at node 57 (last row in Table IV), where the fault
is identifiable with a high resolution. This is consistent with
our claims, since the coefficients r`k reveal that there is no
other node with very high correlation with this specific node.

3) Real Utility Distribution Grid: To show the application
of the fault localization method on real grids, we introduce
different types of fault in the utility grid and evaluate the fault
localization algorithm. As the data is not publicly available,
the faults that are introduced are marked by a unique number.
Table. V describes the details of the type of fault each number
represents. In Fig. 14, the arrows point to the location where
the fault occurred and the circles around the location are
the plausible fault locations that the localization algorithm
returned.

Fault 1

Fault 2

Fault 3

Fig. 14. Fault Localization Algorithm Results for Three Different Types of
Fault in the Real Utility Grid.

4) Comparison with the State of the Art: Proposed ap-
proach in using the pre and post-fault samples and treating
the fault as a current injection improves upon the work in [21]
through its statistical underpinning. To show this, we introduce
a two-phase fault at bus 836-A-C in IEEE-34 case and the
results are shown in Fig. 15. The original method in [21] is
designed as a minimization problem to find the fault location
so we changed it to a maximization by adding a negative
sign to make a better visual comparison with our method.
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TABLE IV
IDENTIFIED FAULT LOCATIONS FOR IEEE-123 BUS CASE

Fault Type Fault Resistance (ohms) Exact Fault Location Locations with Highest
λ`(d)

LLL 0 42 40,42,44,47,48
A-G 0 108 105,108,109,300,110,

111,112,113,114
BC-G 0 89 86,87,89,91,93,95
AC-G 0 50 47,48,49,50,51,151
AB-G 0 57 57
AC-G 10 42 40,42,44

AB 20 21 21

TABLE V
UTILITY GRID INTRODUCED FAULT DESCRIPTIONS

Fault Number Fault Type Fault Resistance (ohms)
Fault 1 LLL-G 15
Fault 2 BC-G 10
Fault 3 A-G 0

The results clearly show that the proposed method can locate
the fault more accurately than the algorithm in [21].
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Fig. 15. Fault Localization for Fault at Bus 836-A-C Using a) Method in
[21] b) Described Method.

Besides this improvement, investigating the reason behind
this ambiguity is missing in [21], whereas we have investigated
this matter theoretically and analytically in our work. In
addition, we have presented a sensor placement strategy here
to place the sensors at nodes that would return the highest
fault localization resolution.

C. Application to Cyber-Physical Intrusion Detection

By leveraging the insights from this work, network intrusion
detection system testbed hosted at Lawrence Berkeley National
Lab (LBNL) [34] is enhanced and we incorporate additional
rules to monitor for cyber attacks that interfere with the
normal operations of FLISR systems [26]. Testbed (see Fig.
16) is defined as a hierarchical architecture to fast-detect
the presence of attacks against networked devices controlling
physical systems by correlating analytic results from SCADA
traffic (which includes traces from SCADA communications)

Local	PMU	data	
analytics	

Local	SCADA	
data	analytics	

Cassandra	/Elastic	
Search		Databases		

Central	PMU	
analytics		
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data	analytics					
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… 
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Fig. 16. LBNL Stream-Processing Architecture for Real-time Cyber-physical
Security (SPARCS) used in our experiments [34]–[36]. Its components are:
1) The Bro IDS, the industry-standard, network monitoring framework; 2) a
publish-subscribe messaging system called RabbitMQ used to transfer PMU
and SCADA data and analysis results; 3) the Cassandra database, used for
permanent archiving of all data; 4) The Elasticsearch database, which collects
analysis results in real time; 5) BeagleBone Black (BBB) devices that receive
synchrophasor data at a rate of 120 samples/sec, and analyze 1 sec. worth of
data at a time to rapidly detect a cyber-physical event [27].

with PMUs deployed sparsely over a distribution system [34].

1) The FLISR System Operations and Vulnerabilities:
FLISR systems detect the location of a permanent fault 5 in
a feeder and automatically restore service to customers in the
healthy section of the feeder. To do so they employ directional
fault detectors, installed at every line in a distribution feeder,
that communicate the occurrence of a fault and its direction to
a distribution management system (DMS). The DMS analyzes
these data and, once the faulted section is identified, issues
commands to a predetermined set of switches to first isolate the
faulted section and then restore service to the non-faulted areas
[26], so as to minimize the service disruption. Consider the
one-line diagram of a sample radial network shown in Fig. 17
to describe how FLISR works. The network is connected to a
substation at bus 1 and a distributed generation is connected

5Temporary faults that clear themselves do not trigger the FLISR operation.
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to bus 6. Fault detectors and normally-closed switches are
connected at the end of every line. When a fault happens at
line 3 − 4, all the fault detectors detect the presence of this
fault such that fault detectors at buses 1, 2 and 3 indicate that
the fault is in their right side, whereas fault detectors at buses
4, 5 and 6 indicate the fault is to their left. Fault localization
analysis at the DMS using this information identifies the
faulted section to be line 3 − 4. The DMS, therefore, sends
control signals to automatically open switches to the right of
bus 3 and to the left of bus 4 splitting the network into two
parts and restoring service to customers on both sections.

1  2  3  4  5  6 

DGsubstation

I65I12

Distributed generation DG Fault detector / Open/closed switch

Fig. 17. Diagram of a Sample Radial Network with a Fault in Line 3− 4.

Fault detector data is transmitted to the DMS through a wide
area network using industrial protocols such as DNP3 [37] or
Modbus [38] which are not designed with security concerns
in mind. Therefore, a dedicated attacker can tamper with fault
detector data either remotely, through a compromised network
device (e.g., a router), or by physically connecting herself to an
exposed section of the communication network. For instance,
the tampering can lead the DMS analysis to pick the wrong
location for an actual fault or hide the presence of a fault.

Although such attacks can be partially prevented by en-
abling cryptographically authenticated communication on top
of the stated communication protocols, such a measure does
not prevent the whole spectrum of possible cyber attacks.
Therefore, a more robust approach, that does not merely
rely on cryptographic solutions, is desired that is capable of
detecting the presence of an attacker. The analysis we carried
out in this paper shows that, even with a very limited number
of sensors scattered in the systems, the PMU localization per-
formed using (10) enhances an operator’s confidence about the
fault localization information (or the lack of thereof) extracted
from fault detectors data, by giving an additional means to
verify the trustworthiness of the SCADA messaging, albeit at
a lower spatial resolution. In the next section we illustrate the
effectiveness of the forensic analysis on FLISR attacks carried
out using a experiment, with simulated streaming SCADA and
PMU data, to our LBNL testbed in Fig. 16.
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Fig. 18. Output Mismatch as a Result of an Attack on SCADA data

2) Intrusion Detection on Fault Detectors: In our simu-
lation to demonstrate intrusion detection on fault detectors,
we use the modified IEEE 34-bus system shown in Fig. 18.
We introduce a two-phase AC-G fault at line 860− 836. Our
PMU data analytic results correctly indicate the fault to be
in Zone D. We generate simulated SCADA data for each
fault detector in the network using the openDNP3 library [39]
that implements the DNP3 communication protocol. In our
simulation, we modify the packets from some of the fault
detectors (those at buses 834 and 860) so that the SCADA data
analytics indicate the fault is at line 834 − 842, which is in
zone C. The inconsistent results from the PMU data analytics
and the SCADA data analytics raise an alarm about a possible
cyber-attack on the fault detectors.

VI. CONCLUSIONS

A fault localization method is presented where a fault can
be localized up to a cluster of neighboring nodes when very
few sensors are available in the grid. It is proved that these
clusters can be inferred from the properties of the network and
where the sensors are placed. Having that identified, a PMU
placement strategy to achieve fault localization with highest
resolution over the grid is proposed. Fault localization method
is integrated into a security detection framework, where the
results of PMU-based fault localization is correlated with the
SCADA-reported fault location to check the integrity of the
SCADA data.
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