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Abstract

Competing Orders in Twisted Bilayer Graphene Systems under Magnetic Field

by

Tianyu Qiao

Remarkable phases have been observed in the magic angle twisted bilayer graphene

(MATBG) systems, including correlated insulators, superconductors and quantum anoma-

lous Hall states. In this paper, I present an integral scheme to study the interaction in

TBG system at mean-field level under megnetic field. The first part mainly focuses on

the non-interacting physics including the introduction and symmetry analysis in two effi-

cient models. The second part is aimed to derive a systematic method to treat magnetic

field semi-classically. By solving the Hartree-Fock kernel, different discrete symmetry

breaking modes are separated that are possible to host correlated ground states. The

first order phase transition from topological trivial to quantum anomalous Hall phase

in the magnetic region 1.8T to 3T is predicted, which partially agrees with the recent

experiments.
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2.1 Moiré lattice structure in TBG . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Plane-wave basis tight-binding (TB) model . . . . . . . . . . . . . . . . . 8
2.3 Bistritzer-MacDonald (BM) continuum model . . . . . . . . . . . . . . . 12
2.4 Non-interacting band structure . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Symmetries in the non-interacting Hamiltonian . . . . . . . . . . . . . . 17
2.6 Orbital Zeeman effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.7 Localized Wannier functions . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Hartree-Fock mean field within the flat band subspace under magnetic
field 27
3.1 Flat-band basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Interacting Hamiltonian Hint . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Hartree-Fock (HF) approximation . . . . . . . . . . . . . . . . . . . . . . 30
3.4 Semi-classical modification under magnetic field . . . . . . . . . . . . . . 33
3.5 Self-consistent schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Results 38
4.1 Hartree-Fock eigen channels . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2 Phase diagrams without magnetic field . . . . . . . . . . . . . . . . . . . 42
4.3 Phase diagrams under magnetic field . . . . . . . . . . . . . . . . . . . . 44

5 Conclusion 50

A Wannier function localization by variational method 52

B Calculation of Berry curvature matrix 56

vi



C Calculation of reference density ρ0 58

Bibliography 60

vii



Chapter 1

Introduction

Most of the striking phenomena in magic angle twisted bilayer graphene (MATBG) are

originated from its topological flat bands with high flavour (valley/spin/sublattice) de-

generacy [1, 2, 3, 4] near the Fermi level. Since the non-interacting band width is nearly

zero, multiple instabilities towards different types of spontaneous symmetry breaking

phases may occur with respect to different doping [5, 6, 7], twisting angle [8, 9, 10],

screening strength [9], and substrate potential [11]. Some of these phases can carry

nonzero Chern numbers and lead to quantum anomalous Hall effect, which has been ob-

served experimentally [12, 13] in the 3/4 filling samples with good alignment to the hBN

substrate.

Numerical studies [9, 10, 14] from different groups reveal that the energy difference

between different symmetry breaking phases can be lower than one meV, suggesting the

ground state of TBG can be easily tuned by external conditions. On the other hand,

both the transport [15, 16, 13, 17] and STM [18] measurements indicate that external

magnetic field is a very efficient way to tune the ground state of TBG from one to another.

For all integer filling systems, nonzero Chern insulator phases can be realised with the

field strength being greater than some thresholds [17, 15], whose range is around 0.3T
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Introduction Chapter 1

to 5T for different integer filling. Although in previous studies, several important sym-

metry breaking phases, such as Kramers inter-valley coherent state (KIVC), valley/spin

polarised state (VP/SP), quantum valley Hall state (QVH) and quantum anomalous

Hall state (QAH) have been proposed and studied within the Hartree Fock mean field

approach [9, 10, 14], we still didn’t understand clearly about the following two key ques-

tions. i) how many different symmetry breaking phases can be possibly stabilised once

we project the Coulomb interaction to the flat bands; ii) how these symmetry breaking

phases evolve under the magnetic field?

In the present paper, we will focus on the above two questions. For the first question,

we reorganise the energy functional containing both Hartree and Fock processes in a

generic bi-linear form of the k-dependent reduced density matrix ρ(k). By diagonalising

the corresponding “kernel tensor” defined after the above procedure, we can obtain the

standard form of the bi-linear function and the corresponding eigen channels. Interesting,

all these Eigen channels can be divided into two groups the discrete and continuous states

according to the different behaviour of the corresponding eigenvalues with respect to the

increment of the k points in the moiré Brillouin zone (mBZ). Those discrete channels

with large negative eigenvalue are the possible order parameters to be stabilised in the

Hartree-Fock mean field approach. For the spineless model, we find 15 discrete eigen-

channels including KIVC, VP, QVH, QAH and some other modes discussed intensively

in the literature. These 15 channels become 7+8 degenerate in the so called “chiral-flat”

limit [14, 19] corresponding to the 15 generators for the SU(4) symmetry in this particular

case. These channels will split for the realistic TBG model without exact flatness and

chiral symmetry, where three of the 15 channels including VP and two KIVC orders

have the strongest instability. When the magnetic field is considered, two types of terms

can be contributed by the vector potential, namely the inter and intra (flat/remote)

band terms. The former leads to the orbital Zeeman effect and the latter cause the

2



Introduction Chapter 1

formation of Landau levels (LL). In the present study, we consider the orbital Zeeman

effect rigorously and treat the intra flat band terms semi-classically, which is equivalent to

neglect the reformation of the LL wave functions but take into account the field induced

modification of the density of states (DOS) in the k-space so that the resulting Chern

insulator states satisfy the Streda theorem [20]. With the above approximation we have

conducted the full Hartree Fock mean field calculation under the field and obtained the

first order ground state transition from C = 0 KIVC or VP states to C = ±4 QAH state

at field strength around 2.5T, which is in good agreement with the recent experiments.

3



Chapter 2

Non-interacting single-electron

theory of TBG

In this chapter, we demonstrate the basic non-interacting picture to describe the flat-

band nature of MATBG. Several models including the planewave basis tight-binding (TB)

model and the Bistritzer-MacDonald (BM) continuum model [21, 22, 23] are introduced

to calculate the band structure and other properties induced by the moiré supercell

structure. Next the symmetry analysis is performed, including the descrete symmetries

C3z, C2z and the time reversal symmetry T , and the continuous symmetries such as

spin/valley rotational symmetry SU(2)×SU(2), particle-hole symmetry P [1, 19] and the

chiral symmetry C [19] at chiral limit. An adjustable maximally localized wannierization

procedure that fixes the gauge of flat-band basis for further interacting model studies is

also derived, together with the Zeeman effect calculation under magnetic field using the

velocity operator [24].
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Non-interacting single-electron theory of TBG Chapter 2

2.1 Moiré lattice structure in TBG

The unrotated basic monolayer graphene lattice is defined with the lattice vector

a1 =
(

1
2
,−

√
3
2

)
a,a2 =

(
1
2
,
√
3
2

)
a, where a = 2.46 Å is the lattice constant, and the

position of the two sublattice atoms A and B at (0, 0) and 2
3
(a1 + a2) respectively. The

corresponding reciprocal lattice vectors are b1 =
(

2π
a
, 2π√

3a

)
, b2 =

(
2π
a
,− 2π√

3a

)
with the

two Dirac points at ±K =
(
±4π

3a
, 0
)
. Then we twist the top and bottom AA staking

layers around one A atom by a small angles θ/2 and −θ/2 respectively forming the moiré

superlattice pattern. And the two Dirac points of each layer are also rotated to K
(±)
l .

For the commensurate TBG structure, the twist angle is exactly fixed by an integer called

Nmoire,

cos θ =
6N2

moire + 6Nmoire + 1

6N2
moire + 6Nmoire + 2

, (2.1)

and the corresponding moire lattice vectors can be chosen as L1 =
(√

3
2
,−1

2

)
LM and

L2 =
(√

3
2
, 1
2

)
LM where LM = a/(2 sin(θ/2)) is the lattice constant of the moiré supercell.

The twisted bilayer structure and periodic stacking pattern are shown in Fig 2.1. The

red/blue honeycomb lattice represents the original top/bottom layer graphene structure,

respectively, forming a periodically varying stacking pattern including AA stacking that

carbon atoms of two layers are facing to each other, and AB/BA stacking from the

chiral stackings of graphite. AA stackings are located at the twisted centers (in the D3

atomic structure we choose here), while AB/BA stackings are located at the other two

C3 invariant points. These exact periodic moiré patterns only occur in the so-called

commensurate condition [25] that the twist angle θ is restricted by the integer Nmoire as

Eq. (2.1).

The moiré reciprocal lattice vectors areG1 =
4π√
3LM

(
1
2
,−

√
3
2

)
andG2 =

4π√
3LM

(
1
2
,
√
3
2

)
.

The relation between the atomic graphene Brillouin zone and the moiré Brillouin zone

5



Non-interacting single-electron theory of TBG Chapter 2

Figure 2.1: Atomic structure of TBG at twisted angle θ = 9.43◦ and Nmoire = 3,
with moiré supercell shown. The red/blue honeycomb mesh denotes the top/bottom
graphene layer. The AA stacking regions are located at the twisted centers, and the
AB/BA stacking regions are located at the (13 ,

1
3)/(

2
3 ,

2
3) points inside the supercell,

which form three hexagonal lattices respectively.

6
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Figure 2.2: Brillouin zone folding in TBG at θ = 9.43◦ and Nmoire = 3. The large
red/blue hexagon represents the original Brillouin zone of the top/bottom graphene
twisted by angle θ. The small hexagon represent the moiré Brillouin zone (mBZ) that
comes from the original BZ folding corresponding to the moiré supercell, with the
exact matching between the graphene Dirac points K±

2 − K±
1 and the moiré Dirac

points KM −K ′
M .

7
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(MBZ) is shown in Fig 2.2. The graphene valley ±K± are slightly rotated by small

angle θ matching the KM − K ′
M and forming folded MBZ. The size of atomic BZ is

approximately
√
3Nmoire times larger than the size of mBZ. And the distance between

two original graphene valleys ±K also scales as Nmoire. At the first magic angle θ ≈ 1.1◦,

the moiré multiplier Nmoire ≈ 30 becomes sufficiently large to well seperate two atomic

valleys [21], where an electron can hardly hop from the plane-wave state in one valley

to another under the weak interlayer moiré potential, leading to the approximate valley

charge conservation within our single-electron model. In the following discussion, we

only focus on the low-energy physics which can be described by the plane-wave basis of

graphene folded back to the constrained region near the valley ±K separately.

2.2 Plane-wave basis tight-binding (TB) model

With the above defined moiré lattice structure, we can write down the tight binding

model for the pz orbital of carbon atoms,

HTB =
∑

ij,IJ,αβ

t(RIiα −RJjβ)C
†
IiαCJjβ, (2.2)

where I, J are the moiré cell indices, i, j are the atom positions in the moiré cells and

α, β = A1, B1, A2, B2 are the combined layer/sublattice indices. RIiα = LI + τiα is the

atom position after twist, where LI denotes the moiré translation vector and τiα denotes

the atomic position within the moiré supercell.

To construct the Hamiltonian matrix, we define the Bloch wave basis from the two

layers and A,B sublattice pz orbitals, which can be labeled by the conserved crystal

8
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momentum k +G in the graphene atomic BZ,

f †
α,k+G =

1√
NMNa

∑
I,i

C†
Iiαe

i(k+G)·RIiα , (2.3)

where k denotes the crystal momentum in the moiré BZ, G is the moiré reciprocal lattice

vector, NM is the number of moiré supercell in the system and Na = 3N2
moire+3Nmoire+1

is the number of graphene unit cell within one moiré supercell. And the TB Hamiltonian

will be transformed to k-space,

HTB =
∑
k

∑
αβGG′

HαG,βG′(k)f †
α,k+Gfβ,k+G′ , (2.4)

with the matrix element

HαG,βG′(k) =
1

NMNa

∑
IJ,ij

t(RIiα −RJjβ)

× e−i(k+G)·RIiαei(k+G′)·RJjβ

=
1

Na

∑
I,ij

t(LI + τiα − τjβ)e
−iG·τiα

× e−ik·(LI+τiα−τjβ)eiG
′·τjβ ,

(2.5)

using the translational symmetry of moiré supercell. Since the hopping cut-off Rc is much

shorter than the moiré size |L1|, the summation over I is just to search for a copy of τiα

atom inside the hopping cut-off around atom τjβ, which gives

HαG,βG′(k) =
1

Na

[
X̂†

αT̂αβ(k)X̂β

]
GG′

, (2.6)

X̂β,jG′ = eiG
′·τjβ , T̂αβ(k)ij = e−ik·τ̃iα,jβ t(τ̃iα,jβ), (2.7)

where τ̃iα,jβ = LI + τiα − τjβ is the vector pointed from τjβ to the nearest copy of τiα.

9
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The hopping integral can be obtained by the Slater-Kosler formula introduced below,

− t(R) = Vπ

[
1−

(
R · ez

R

)2
]
+ Vσ

(
R · ez

R

)2

, (2.8)

Vπ = V 0
π e

−(R−aEdge)/r0 , Vσ = V 0
σ e

−(R−d0)/r0 , (2.9)

where d0 = 3.35 Å being the interlayer spacing, r0 = 0.184a, V 0
π = −2.7 eV, V 0

σ = 0.48 eV.

All the above parameters are taken from equation (A1) of Koshino et al [22]. Here we set

the hopping cut-off Rc = 2.5113a to neglect all the hopping terms t(R) with R∥ > Rc.

Including out-plane corrugation effect in the TB model is quite straightforward. We

just need to add a periodic fluctuation in the height of the atoms, which takes the form

of the first-order harmonic functions

diα = ±d1
∑

n=1,2,3

cos(Gn · τ∥iα) (2.10)

for the atoms in up and bottom layers respectively, where G1, G2 and G3 = −(G1+G2)

are three shortest moiré reciprocal lattice vectors. d1 = 0.278 Å is obtained by looking

at the difference in interlayer spacing of AA and AB stacking graphene. The interlayer

distance in our calculation at first magic angle is shown in Fig. 2.3.

To diagonalize the TB model numerically in k-space, we have to make a truncation

over the summation of {G}. As the TB model shows, the interlayer coupling hybridizes

the original bands of graphene at k +G. In low-energy region and with weak interlayer

coupling, only those bands near the graphene’s two opposite valleys K
(+)
l and K

(−)
l

contribute to the bands we consider in moiré BZ after band folding. And when the period

of moiré superlattice is much larger than the original graphene period, the intervalley

coupling can be approximately neglected, which gives us the valley charge conservation.

10



Non-interacting single-electron theory of TBG Chapter 2

Figure 2.3: Interlayer distance at different stacking regions. The corrugation is ex-
panded to the lowest order harmonic functions in the moiré period. The AA stacking
configuration is more unstable than AB/BA type, leading to larger layer distance.

11
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Then we can decouple the Hamiltonian in terms of the two valleys,

HTB =
∑
τ=±1

Hτ
TB, (2.11)

Hτ
TB =

∑
k

∑
αβGG′

Hτ
αG,βG′(k)f

†
α,k+Gfβ,k+G′ , (2.12)

and make a truncation for the {G} summation around each valley of the original graphene.

To match the C3 rotation symmetry of this TBG system, we set two hexagonal truncation

regions centered at Γτ = τNmoire(G1 +G2) respectively, which are the nearest moiré Γ

points to the original graphene valley Kτ respectively, and the truncation radius is set

to 5|G1|, which is enough to produce the flat bands.

2.3 Bistritzer-MacDonald (BM) continuum model

Compare to the relatively straightforward and detailed TB scheme above focusing on

atomic scale, it is also natural to regard the system, to some extent, as two twisted-layer

continuum medium, and make more approximations to obtain a model in real space that

still capture the basic flat-band features. To construct the continuum Hamiltonian in

real space, we follow the derivation of Koshino et al [21, 1] that modifies the original BM

model [23] inspired by the single-orbital tight-binding model for the pz orbital of carbon

atoms and the understanding from a view of the envelope function.

As Nmoire ≈ 30 at the first magic angle, a moiré supercell contains more than 10000

atoms that form two nearly continuous honeycomb films twisted by a small angle [21],

with slowly varing moiré potential. It is inspired [21] that the complex interlayer hop-

ping can be replaced by a continuously varying term between two continuous medium

containing only the lowest available momentum transfers coming from the lowest-order

harmonic expansion of the moiré potential. The envelope basis is defined as the linear

12



Non-interacting single-electron theory of TBG Chapter 2

combination of the plane waves

ψα
nk(r) =

∑
G

DnGα(k)e
i(k+G)·r (2.13)

which envelopes the atomic pz orbitals to form the total wavefunction. In lower-energy

region, the intervalley hybridizing between two graphene valleys can be neglect, and the

total non-interacting Hamiltonian is blocked-diagonalized into separated valleys [22] as

Hτ (r) =

 h1 W †
τ

Wτ h2

 , (2.14)

where h± is the intravalley Dirac type Hamiltonian of layer ± near valley τK, given by

hl = ℏvF R̂l

(
θ

2

)[
(k −K

(τ)
l )
]
· (−σy, τσx), l = 1, 2, (2.15)

with k = −i∇ the momentum operator in real space. Here we take ℏvF = 5.82 eV · Å.

This intralayer term comes from the low-energy expansion at two Dirac points in single-

layer flat graphene, directly, where the Dirac point of two layers split and rotate by angle

θ. The rotational matrix acting on (k −K
(τ)
l ) is given by

R̂l

(
θ

2

)
=

 cos(θ/2) ∓ sin(θ/2)

± sin(θ/2) cos(θ/2)

 , +/− for l = 1/2. (2.16)

In most cases near the first magic angle, this small-angle rotational operator is neglected

because it only induces an approximate energy shift to the flat bands, which breaks

the particle-hole (PH) symmetry [21]. In such cases one may expects more symmetries

13
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reserved when using continuum model, and drops the rotational matrix as

hl = ℏvF (k −K
(τ)
l ) · (−σy, τσx), l = 1, 2, (2.17)

where the PH symmetry emerges that will be discussed below.

The interlayer hopping term W is given by

W =


w0 w1

w1 w0

 eiτq1·r +

 w0 w1ω
−τ

w1ω
τ w0

 eiτq2·r +

 w0 w1ω
τ

w1ω
−τ w0

 eiτq3·r


× eiτ(K

(τ)
2 −K

(τ)
1 )·r,

(2.18)

where ω = e2πi/3. The three vectors q1 =
4π
3a
(−1, 0), q2 =

4π
3a
(−1

2
,
√
3
2
), q3 =

4π
3a
(1
2
,
√
3
2
) are

the vectors pointing from ΓM to the three KM . The hopping parameter w0 = 0.08 eV

and w1 = 0.1098 eV denote the hopping at AA and AB/BA region, respectively, in the

sublattice space. Generically, w0 < w1 due to the corrugation and in-plane relaxation

[19, 25], and the (first) chiral limit is defined at w0 = 0 < w1 that adds higher symmetries

into the non-interacting part. The (second) chiral limit that is not focused in this paper

is defined at w1 = 0 < w0 that is far away from the experimental conditions, but it leads

to a perfect metal that all bands are connected togethe [19].

The non-interacting term in the momentum space can be expressed as the same form

of the plane-wave TB model,

H0 =
∑
k

∑
ταβs

∑
GG′

[
h
(τ)
GG′(k)

]
αβ
f †
kGτsαfkG′τsβ, (2.19)

where the matrix h
(τ)
GG′(k) is derived by the Fourier transformation of Hτ (r), and s =↑↓

is the spin index, and G,G′ are sampled in the list of moiré reciprocal lattice vectors near

14
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two valley ±K. Formally speaking, the plane-wave TB model and the BM continuum

model can be solved on the same set of plan-wave basis with the same G-list cutoff.

Differences appear in the intra- and inter-layer Hamiltonians. In the projected TB model,

the hopping terms directly come from the atomic Slater-Kosler formula projected into

low-energy valley regions. all the hopping terms depend on k. In the BM model, however,

the intra-layer terms are simplified to the Dirac linear form, and the inter-layer terms

are only considered to the lowest order that is k-independent over the mBZ.

2.4 Non-interacting band structure

After diagonalizing the non-interacting Hamiltonian given by either TB or BM model

in momentum space, we obtain the low-energy spectrum that can be divided to groups

of remote bands and two isolated flat bands per valley/spin flavor. Fig 2.4 a-d show the

band structure of the TBG at the first magic angle θ = 1.08◦, Nmoire = 30, calculated

using plane-wave TB model and BM continuum model, respectively. The right panels b

and d are the enlarged plot for the isolated flat bands details. The red solid and blue

dashed line represent the low-energy bands located at valley +K and −K, respectively.

The commensurate magic angle θ = 1.08◦ is determined by minimizing the Fermi velocity

of flat bands at Dirac points ±KM . By properly including the corrugation effect (varying

layer distance in TB model and w0 < w1 in BM model), the four flat bands per spin are

well separated from the remote bands on two sides, increasing the possibility to host

different interaction processes. The band width of flat bands is less than 10meV in both

models. In this work, we focus on the cases that the Fermi level is buried in the flat band

subspace, or the electrons fill up into the flat bands. At integer filling number, the non-

interacting flat bands seem partially filled from Fig 2.4, but the Coulomb interaction is

supposed to enlarge the band gap, leading to correlated insulators, quantum anomalous

15
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Figure 2.4: Low-energy band structure of TBG at the first magic angle. a-b show the
band structure calculated by plane-wave TB model, and c-d show the band structure
calculated by BM continuum model, respectively. The red solid and blue dashed line
represent the bands originated from +K and −K atomic valley, respectively. The
right panel b,d show the detailed plot of the isolate flat bands. Note that the energy
spectrum is exactly particle-hole symmetric in BM model.

16
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Hall states or other insulating states.

From Fig 2.4 a,c, roughly speaking, the energy bands are quite similar from TB and

BM models, but an interesting feature is that the flat bands from BM model exactly

preserve the particle-hole symmetry in d. In another word, the more precise TB model

reveals the slight PH symmetry breaking only in the flat-band scale. This PH symmetry

occurring in BM model is analyzed in next section.

2.5 Symmetries in the non-interacting Hamiltonian

In this section, we analyze the discrete symmetries such as the geometrical operations,

time-reversal symmetry, particle-hole symmetry, and the continuous symmetries at a

glance. Then the relation between symmetries and the energy band degeneracy occurring

in the flat bands given by the two models is demonstrated. In the last part, we discuss

the effect of choosing D3 or D6 atomic structure in our TB model.

It is straightforward that there isD6 symmetry inside the real-space BM model, which

contains C2z,C3z and C2x rotational operations. Starting from these, the representations

of the discrete symmetric operations acting on the atomic plane-wave basis (envelope

functions of pz orbitals) can be derived using the exact atomic structure. For C3z acting

on the plane-wave basis f †
kGταs,

C3z |k +G, τα⟩ = 1√
NMNa

∑
Ii

ei(k+G)·RIiαC3z |RIiα⟩

=
1√

NMNa

∑
Ii

eiC3z(k+G)·C3zRIiα |C3zRIiα⟩

=
1√

NMNa

∑
Ii

eiC3z(k+G)·RIiα |RIiα⟩ ,

(2.20)

where G is located near valley τ , and RIiα = RI + τiα. The last equation is be-

17
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cause C3z |RIiα⟩ returns to another site. By noticing the Fig 2.2, we have the relation

C3z(k+G) = C3zk+C3zG− τb2, where b2 is the atomic reciprocal lattice vector of the

corresponding layer. Then the Eq. (2.20) becomes

C3z |k +G, τα⟩ = e−iτb2·τα 1√
NMNa

∑
Ii

ei(C3zk+C3zG)·(RI+τi+τα) |RIiα⟩

= e−iτb2·τα |C3zk + C3zG, τα⟩

=

 |C3zk + C3zG, τα⟩ , α = A,

eiτ
2π
3 |C3zk + C3zG, τα⟩ , α = B,

(2.21)

which is equivalent to the representation in [19], except for a global phase factor.

For the 2-fold C2z operation, it seems to be more complicated because there is no

atomic site to catch the 180◦ rotated B sublattice atoms. This difficulty originates from

our choosing of TBG atomic structure that the two layers are twisted around the center

located at one atom, rather than the center of the hexagon, leading to a exact D3 rather

than D6 structure. We can take a tricky that shift the envelope wavefunction by a bond

length, then perform the similar derivation in Eq. (2.20,2.21) which approximately gives

the reasonable relation

C2z |k +G, τα⟩ ≈ |−k −G,−τ ᾱ⟩ , (2.22)

where the σ denotes the A/B sublattice index, and ᾱ represents the opposite sublattice.

C2z operation exchanges the two sublattices, two valleys, and reverse the momentum.

For the time-reversal symmetry T , since the spin-orbital coupling in TBG can be

totally neglected, one can take the spinless time-reversal operator that reverse the valley

and momentum. To sum up, the representation of general discrete symmetries on TBG
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plane-wave basis is

C3zf
†
kGταsC

−1
3z =

 f †
C3zk,C3zGταs, α = A,

eiτ
2π
3 f †

C3zk,C3zGταs, α = B,
(2.23)

C2zf
†
kGταsC

−1
2z = (σx)βαf

†
−k,−G,−τβs, (2.24)

Tf †
kGταsT

−1 = f †
−k,−G,−ταs, (2.25)

where the C2z equation is approximately true in D3 atomic structure.

As for the relation with the degeneracy in the band structure, we notice in Fig 2.4

b and d that for both models, the bands from different valleys degenerate on Γ-K path

and K-M path, and the four bands degenerate (approximately, higher than 10−10 eV)

at K,K ′ points. The valley degenerate on Γ-K path is somehow trivial, which can be

understood as C2x preservation. One of the three C2x maps the state to the opposite

valley (maps +K to −K) but remains the k unchanged, giving the two degenerate states

of opposite valleys. There is no C2 axis along Γ-M path, so there is no guarantee for the

four bands there.

For the approximate four-fold degenerate at Dirac points, actually it is preserved

by the two-dimensional representation in the little group of K,K ′ together with the

C2zT symmetry [26] which is only exact in D6 structure. However, in our studies the

energy splitting in D3 structure is less than 10−10 eV at first magic angle, which can be

understood as the large moiré peroid smoothing the atomic fluctuation and making it a

quasi-continuous medium, and also explains the success of BM continuum model. The

C2z breaking will split the four-fold degenerate at Dirac points into 2 + 2 degenerate

according to [27], but the splitting quickly decays below 10−10 eV when the twist angle

decreases to magic angle, which means the D3 structure still works well and is compatible

with the recent works.
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Another interesting thing is the particle-hole (PH) symmetry [21, 19, 14] occurring in

the band spectrum from BM model, which indicates another symmetry operator mapping

the two states. One can prove that there exists a so-called PH operator P that anti-

commutes with the BM Hamiltonian, with the small rotational matrix neglected. The

PH operator is defined as

P̂ f †
kGταsP̂

−1 = µc†−k,−G,ταs, (2.26)

where µ = ±1 represents the top/bottom layer. Another local transformation that helps

us understand how to construct the enhanced symmetries in chiral or flat limits is the

single-particle PH operator combined with C2z rotation and the so-called many-body PH

symmetry [19] that maps the entire system from filling ν to −ν. Since the PH operator

maps the momentum k to its opposite, the unitary combination C2zP will preserve the

momentum k that acts as

(C2zP )f
†
kGταs = µ(σx)βαf

†
kG,−τβs, (2.27)

which also anticommutes with the non-interacting part H0 and commutes with the in-

teracting part HI .

For the continuous symmetries, the total non-interacting Hamiltonian contains a

global U(2)×U(2) spin-charge rotational symmetry of the two valleys, which can be

decomposed to the total charge conservation U(1) with the total spin rotational SU(2),

and the valley charge conservation U(1) with the spin rotational SU(2) of each valley.

The corresponding generators [19] upon the eight-dimension flat-band subspace is given

by

s0b = τ0sb, szb = τzsb, (b = 0, x, y, z), (2.28)

with τ, s denoting the Pauli matrices in valley, spin subspace.
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2.6 Orbital Zeeman effect

When the out-plane magnetic field B = Bez is considered, the relatively large gap

between the flat bands and other remote bands makes it possible to perform the quasi-

degenerate perturbation theory to handle the magnetic response of the flat bands. Ac-

cording to the previous work by Song Sun et al [24], two types of additional terms can

be contributed by the vector potential, namely the inter and intra (flat/remote) band

terms. The former is gauge invariant, which leads to the orbital Zeeman effect and can

be described by a k-dependent effective g-factor tensor in the mean field Hamiltonian

written as

H0(B) = H0 + µBB
∑
kmn

(gomn(k) + gsmn) c
†
smkcsnk, (2.29)

where H0 denotes the non-interacting Hamiltonian, the c†snk denotes the flat band op-

erator, the spin part is gs = ±1 for spin ↑ / ↓ and the valley diagonal orbital part

is

gomn(k) = −ime

2ℏ2
∑
l ̸=m,n

(
1

Emk − Elk

+
1

Enk − Elk

)
× (vx,mlvy,ln − vy,mlvx,ln) ,

(2.30)

where l index runs over all the remote bands of each valley respectively, Emk represents

the energy dispersion of the non-interacting model, and vx, vy are the velocity operators

projected onto the flat band subspace at k. For plane-wave TB model, the velocity

operators are defined as

vi,ml =
1

Na

∑
αβ

D̂†
mα(k)X̂

†
α

[
∂kiT̂αβ(k)

]
X̂βD̂lβ(k), (2.31)
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where i = x, y and the matrices X̂, T̂ (k) are defined in Eq (2.7). For BM continuum

model, by using the relation

vi =
∂H0(k)

∂ki
, (2.32)

the velocity operators are only contributed by the intralayer part, written as

v(τl)x = −ℏvFσy, v(τl)y = τℏvFσx, τ = ±1, l = 1, 2. (2.33)

Figure 2.5: Distribution of

√
Tr[g†o(k)go(k)] over the mBZ, with 18× 18 k-grid sam-

pling. a, b show the g-factor from TB and BM model, respectively. The non-zero
orbital g-factor generally concentrates near the Γ point. For TB model in a, the g–
factor reaches 20 that is much larger than the intrinsic spin g-factor.

Fig. 2.5 shows the typical amplitude of g-factor over mBZ in both TB and BM

models. There exist peaks near the Γ point, which reaches over 20 in TB model, showing

a much larger orbital Zeeman factor than the intrinsic spin g-factor.
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2.7 Localized Wannier functions

We denote the wavefunction of the flat bands c†τnks as ψτnk(r), where the spin index

is omitted based on the spinless nature. In order to fix the gauge degree of freedom for

the flat-band subspace, first we use the time-reversal operator to link the states from two

opposite valleys,

Tc†τnksT
−1 = c†−τ,n,−ks. (2.34)

For the two flat bands in one spin/valley, a list of localized Wannier functions can be

construct to fix the sublattice gauge, and also provides a better basis for the further

interaction studies.

For each valley, we build Wannier functions from the two original flat band states

ψ1k(r), ψ2k(r), corresponding to the valance and conductance band. In order to generate

the orbitals that load the specific representation of C3 group, we prepare the initial

Wannier functions as below [22],

|R, 1⟩0 =
1√
Nk

∑
k

e−ik·R 1√
2

[
eiϕ

(1)
1k |ψ1k⟩+ eiϕ

(1)
2k |ψ2k⟩

]
, (2.35)

|R, 2⟩0 =
1√
Nk

∑
k

e−ik·R 1√
2

[
eiϕ

(2)
1k |ψ1k⟩+ eiϕ

(2)
2k |ψ2k⟩

]
, (2.36)

where the initial gauge transformation phase factors are chosen to make

eiϕ
(1)
nkψA1

nk(rBA) and e
iϕ

(2)
nkψB1

nk(rAB)

to be real and positive. Here rBA and rAB are the position of BA and AB stacking center,

given by

rBA =
1

3
(L1 +L2), rAB = −1

3
(L1 +L2). (2.37)
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Hence, the phase factors can be solved as

eiϕ
(1)
nk =

∣∣ψA1
nk(rBA)

∣∣
ψA1
nk(rBA)

, eiϕ
(2)
nk =

∣∣ψB1
nk(rAB)

∣∣
ψB1
nk(rAB)

. (2.38)

Then the Wannier functions of the home cell in real space is given by

w1(r) = ⟨r|0, 1⟩0

=
1√
Nk

∑
k

1√
2

[
eiϕ

(1)
1k ψ1k(r) + eiϕ

(1)
2k ψ2k(r)

]
=

1

Nk

√
ΩM

∑
k

1√
2

[
eiϕ

(1)
1k

∑
G,α

Cα
1k(G)ei(k+G)·r + eiϕ

(1)
2k

∑
G,α

Cα
2k(G)ei(k+G)·r

]

=
1

Nk

√
ΩM

eiKτ ·r
∑
k

1√
2
eik·r

[
eiϕ

(1)
1k u1k(r) + eiϕ

(1)
2k u2k(r)

]
= eiKτ ·rF1(r),

(2.39)

where

unk(r) =
∑
Gα

Cα
nk(G)e(G−Kτ )·r (2.40)

is the periodic part of ψnk(r), and Fn(r) is the slowly varying envelope of wn(r) because

of the high frequency part eiKτ ·r. Similarly, the second Wannier function is given by

w2(r) =
1

Nk

√
ΩM

eiKτ ·r
∑
k

1√
2
eik·r

[
eiϕ

(2)
1k u1k(r) + eiϕ

(2)
2k u2k(r)

]
= eiKτ ·rF2(r).

(2.41)

To localize the initial Wannier functions above, one can construct a trial Hamiltonian

acting on the two flat-band subspace ψ
(0)
nk (r). The trial Hamiltonian should preserve the
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C3 symmetry of the initial Wannier functions, which can be written as

Htrial(k) = H0(k) + P̂flat(k)VtrialP̂flat(k), (2.42)

where the kernel of the trial Hamiltonian acting on real space can be choose as the

massive Dirac form

Vtrial = (V1A, V1B, V2A, V2B), (2.43)

with

V1A = −V1B = −V2A = V2B = δ0 +2δ
(1)
1

∑
i=1,2,3

cos(Gi · r)− 2δ
(2)
1

∑
i=1,2,3

sin(Gi · r), (2.44)

with three real variational parameters δ0, δ
(1)
1 , δ

(2)
1 . We aim to minimize the localization

of the two Wannier functions. Here we referred to Vanderbilt’s theory of maximally

localized Wannier function that is shown in Appendix A.

Fig. 2.6 shows the amplitude of localized Wannier functions generated from a set of

typical parameters δ0 = 4.446meV, δ1 = (2.00 + 7.43i)meV.
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Figure 2.6: Amplitude of the two four-component localized Wannier functions from
valley +K at δ0 = 4.446meV, δ1 = (2.00+7.43i)meV. The green hexagonal grid shows
the position of AA, AB and BA stacking center. Most of the component from the four
sublattice is localized in the home moiré cell, with trefoil C3 symmetric distribution.
The charge density concentrates at three nearest AA stacking region.
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Chapter 3

Hartree-Fock mean field within the

flat band subspace under magnetic

field

3.1 Flat-band basis

The system can be described by H = H0+Hint, where H0 is the non-interacting part

within the flat band subspace.

H0 is diagonalized in flat-band subspace

H0 =
∑
sτnk

Eτnkc
†
sτnkcsτnk, (3.1)

where s, τ are the spin/valley indices, n denotes the two flat bands of each valley and

Eτnk denotes the flat band dispersion. The flat bands basis are expanded by the plane

waves of the graphene,

c†sτnk =
∑
αG

DτnαG(k)f
†
sα,k+G, (3.2)
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where the wave function DτnαG(k) can be calculated by either continuum model or tight

binding model. The gauge freedom between two valleys will be fixed by the time reversal

symmetry, which takes the form of

T csτnkT −1 = c−s,−τn,−k, (3.3)

and is equivalent to the relation on the wavefunction and some other quantities,

DτnαG(k) = D∗
−τnα,−G(−k), (3.4)

Eτnk = E−τn,−k, (3.5)

goτ,mn(k) = −go−τ,mn(−k)∗. (3.6)

For convenience, we absorb valley index into the band index in the order of

[c1, c2, c3, c4] = [cτn] = [c+1, c+2, c−1, c−2]. (3.7)

After adding the out-plane magnetic field, the H0 becomes

H0 =
∑
nk

En(k)c
†
snkcsnk + µBB

∑
mnk

[gsmn + gomn(k)] c
†
smkcsnk, (3.8)

where the spin part gsmn = ±δmn and the orbital part gomn(k) is given by continuum/tight-

binding model. In our code, µB = eℏ
2me

= 5.788× 10−5 eV/T
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3.2 Interacting Hamiltonian Hint

Now the interaction term Hint written on the original Bloch wave basis is [28]

Hint =
∑
ss′αα′

∑
k̃k̃′q̃∈BZ

Ueff(q̃)f
†
sα,k̃+q̃

f †
s′α′,k̃′−q̃

fs′α′k̃′fsαk̃, (3.9)

where k̃, k̃′, q̃ are defined in the original graphene BZ, and the effective Coulomb potential

Ueff(q̃) we use here takes the form

Ueff(q̃) =
1

2S

e2

2εε0
√
q̃2 + κ2

(3.10)

with S the total area S = NMΩM and the screening constant κ = 0.005 Å−1. Using the

projection on the flat bands provided from Eq (3.2),

f †
sα,k+G =

∑
τn

D∗
τnαG(k)c

†
sτnk, (3.11)

the projected interaction term Hint can be written as

Hint =
∑

ss′mnm′n′

∑
kk′q∈mBZ

∑
Q

Λmn(q +Q,k)Ueff(q +Q)

×Λm′n′(−q −Q,k′)c†sm,k+qc
†
s′m′,k′−qcs′n′k′csnk,

(3.12)

where Q is defined at moiré reciprocal lattice vectors, and we absorb the valley index

τ into the band index in the order cn = [c+1, c+2, c−1, c−2]n for convenience. The vertex

function Λmn(q +Q,k) can be expressed using the flat band wavefunctions as

Λmn(q +Q,k) =
[
D†(k + q) · C(Q) ·D(k)

]
mn
, (3.13)
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where C(Q)α′G′,αG = δα′αδG′,G+Q. Here we neglect the large momentum scattering

between the two different valleys Ueff(K
(+)
l − K

(−)
l ) in small twist angle case, which

means Λmn = 0 if band m and n belong to different valleys. For the effective Coulomb

potential, we set Ueff(q = 0,Q = 0) = 0 to exclude the term canceled by the uniform

positive charge background in the k-space summation of Eq (3.12).

3.3 Hartree-Fock (HF) approximation

Figure 3.1: The lowest order contractions of Hint lead to the Hartree and Fock terms.

In HF variational approach, the interaction part of the energy can be expressed as a

bi-linear form in terms of the single particle reduced density matrix in moiré k-space if

we only consider the states that preserve the translational symmetry of moiré supercell,

which can be given by the lowest order contraction of Hint in Eq (3.12) after fixing the

spin SU(2) axis along the z-direction, illustrated by Figure(3.1),

Eint =
∑
ss′

∑
mnm′n′

∑
kk′

ρsnm(k)F
ss′

mnm′n′(k,k′)ρs
′

n′m′(k′), (3.14)

where the single particle reduced density matrix is defined as ρsnm(k) =
〈
c†smkcsnk

〉
ν
at

filling ν. In the context, all the matrices with index m,n... such as ρmn(k), Fmnm′n′ are

written in flat-band basis. The bi-linear HF energy kernel F ss′ = U − V δss′ contains the

30



Hartree-Fock mean field within the flat band subspace under magnetic field Chapter 3

Hartree part and the Fock part,

Umnm′n′(k,k′) =
∑
Q

Λmn(Q,k)Ueff(Q)Λm′n′(−Q,k′), (3.15)

Vmnm′n′(k,k′) =
∑
Q

Λm′n(k
′ − k +Q,k)Ueff(k

′ − k +Q)Λmn′(−k′ + k −Q,k′).

(3.16)

Next, We expand the reduced density ρ in terms of the orthogonal normalized basis

Γγ = 1
2
τi ⊗ σj, γ = 4i + j, where τi and σj (i, j = 0, 1, 2, 3) are the identity matrix and

three Pauli matrices in valley and band space respectively. The matrices satisfy

∑
γ

Γγ∗
mnΓ

γ
m′n′ = δmm′δnn′ , Tr

[
Γγ†Γγ′

]
= δγγ′ . (3.17)

Then the density matrix is expanded by

ρsmn(k) =
∑
γ

asγkΓ
γ
nm, (3.18)

and inversion

asγk =
∑
mn

Γmnρ
s
mn(k). (3.19)

The HF interaction energy on this basis becomes a real quatratic form of asγk,

Eint =
∑

ss′γγ′kk′

asγkF̃
ss′

γγ′(k,k′)as
′

γ′k′ , (3.20)

where the kernel

F̃ ss′

γγ′(k,k′) =
∑

mnm′n′

Γγ
mnF

ss′

mnm′n′(k,k′)Γγ′

m′n′ (3.21)

becomes a real symmetric matrix denoted by F̃II′ , I = {sγk}, and can be diagonalized
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in real number,

F̃ ss′

γγ′(k,k′) =
[
C ·K · CT

]ss′
γγ′kk′

=
∑
l

KlC
s
γklC

s′

γ′k′l, (3.22)

where Kl is the energy of each HF eigenmode. Then the HF energy will be separated

into independent channel

Eint =
∑

ss′γγ′kk′

asγk
[
C ·K · CT

]ss′
γγ′kk′

as
′

γ′k′ =
∑
l

Kl

[ ∑
γksmn

Cs
γklΓ

γ
mnρ

s
mn(k)

]2
(3.23)

We define the order parameter operator Ol corresponding to the lth eigenmode of the

HF kernel, written as

Ol =
∑

sγmnk

Cs
γklΓ

γ
nmc

†
smkcsnk. (3.24)

The HF interaction energy becomes

Eint =
∑
l

Kl ⟨Ol⟩2 , (3.25)

All these eigen modes can be divided into two groups, the discrete and the continuous

modes according to the different behaviour of the corresponding eigenvalues with respect

to the increment of the k points in mBZ.

We find 31 discrete eigen modes for the spin-1/2 model, including KIVC, VP, QAH

and some other modes discussed intensively [9, 10, 14] in the literature which are the

possible order parameters to be stablished in HF mean field approach.

According to the HF variational scheme and the interaction eigen modes described

above, the mean field Hamiltonian without magnetic field can be chosen as

Hmf = H0 +
∑
l

αlOl, (3.26)
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where αl are the variational parameters.

Hmf = H0 +
∑
l

αlOl −→
Diagonalize

ρsmn(k) −→

E = E[ν,B;αl] = E0 + Eint =
∑
sk

Tr [H0(k)ρ
s(k)] +

∑
l

Kl ⟨Ol⟩2 .
(3.27)

Our goal is to minimize the total energy E[ν,B;αl] in terms of αl at specific filling ν and

magnetic field B to get the HF ground state Eg,

Eg[ν,B] = min
αl

E[ν,B;αl]. (3.28)

3.4 Semi-classical modification under magnetic field

We treat the intra-band terms caused by the magnetic vector potential semi-classically,

which is to take into account the field induced modification of the DOS in k-space, or

modified density matrix equivalently [20]. All the density matrices above should be

replaced by the modified version,

ρ̃s(k) =
1

2

[(
1 +

eB

ℏ
Ωs

k

)
· ρs(k) + ρs(k) ·

(
1 +

eB

ℏ
Ωs

k

)]
, (3.29)

ρ̃smn(k) = ρsmn(k) +
eB

2ℏ
∑
p

[
Ωs

mp(k)ρ
s
pn(k) + ρsmp(k)Ω

s
pn(k)

]
, (3.30)

where Ωs
mn(k) is the Berry curvature matrix transformed to the flat-band basis as

Ωs
k = W s

k · Ω̃s
k ·W s†

k , (3.31)

where Ω̃mn(k) is written on the diagonalized representation of Hmf derived in Appendix

B, and W s
mn(k) is the eigenfunction of Hmf on flat-band basis. We don’t write ρ̃ =
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(1 + eB
ℏ Ω)ρ because ρ and Ω may not commute on degenerate bands. In our code,

e
ℏ = 1.5191× 10−5 Å−2T−1.

Under this modification, we determine the chemical potential µ and density matrix

ρ̃s(k) in the following steps.

1. Diagonalize the mean-field hamiltonian Hmf to get the bands Es
n(k) and wavefunc-

tions W s
mn(k).

2. Calculate Berry curvature matrix Ωs
mn(k) from Appendix B, using W s

mn(k).

3. Try a chemical potential µ and calculate the original density matrix ρsmn(k),

ρsmn(k) =
∑
p

W s
mp(k)W

s∗

np(k)f
(
Es

p(k)− µ
)
, (3.32)

where f is the Fermi distribution.

4. Calculate

ρ̃s(k) =
1

2

[(
1 +

eB

ℏ
Ωs

k

)
· ρs(k) + ρs(k) ·

(
1 +

eB

ℏ
Ωs

k

)]
, (3.33)

and total number of electron per Moire cell

nc =
1

Nk

∑
sk

Tr[ρ̃s(k)]. (3.34)

If nc ̸= 4ν + 4, go back to Step 3.

We can also calculate the total Chern number of each spin,

Cs =
ΩBZ

2π

∑
k

Tr[ρs(k)Ωs
k], (3.35)
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where ΩBZ is the area of moire BZ.

Next, we try to remove the double counting of the density matrix in the interaction

energy. Note that the CNP charge density subtraction in Equation (2.21) is based on

the consideration that the parameters in the BM model are obtained by a method such

as DFT or by fitting the data in the experiment [14], which has already considered

some of the effect of interactions to some extent. In order to remove these parts of

double counting, it is convenient to subtract the charge density of a decoupled TBG

without interaction term at CNP that contains the whole intrinsic interaction effect in

the parameters modeling non-interacting graphene. These compensatory HF terms can

be proved [19, 14] to be exactly equavalent to the renormalized single-particle dispersion

in the Equation (S35,S38) of the supplementary information of [29] by noticing that the

density matrix P0 appeared denotes the projected density at CNP.

First we calculate the reference non-interacting density ρ0(k) at charge neutrality

point (CNP) on flat-band basis. It can be given from either coupled TBG or uncoupled

TBG. The details are shown in Appendix C. Then, we replace ρs(k) by ρ̃s(k)− ρ0(k) in

the interation energy Eint, and minimize it.

E[ν,B;αl] =
∑
sk

Tr[H0(k)ρ̃
s(k)] +

∑
l

Kl ⟨Ol⟩2 , (3.36)

where

⟨Ol⟩ =
∑

γksmn

Cs
γklΓ

γ
mn [ρ̃

s
mn(k)− ρ0,mn(k)] . (3.37)

3.5 Self-consistent schemes

In the case of zero magnetic field and integer filling, the variation of the energy

functional in terms of order parameters can be analytically computed directly. According
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to the HF variational scheme and the interaction eigen modes described above, the mean

field Hamiltonian without magnetic field can be chosen as

Hmf = H0 +

Nmode∑
l=1

αlOl, (3.38)

where αl are the variational parameters. This mean field Hamiltonian includes the lowest

31 symmetry breaking terms for the spin-1/2 model. Here we make a cutoff to neglect

most of the higher continuous modes which contribute little to the interaction of the

system. Our task is to find out if the non-interacting ground state will lose it stability

against those symmetry breaking variational parameters, that is to choose the parameters

αl to minimize the total energy

Etot = ⟨H0⟩+ Eint = ⟨Hmf⟩+
∑
l

(
Kl⟨Ol⟩2 − αl⟨Ol⟩

)
. (3.39)

The first order derivatives are

∂Etot

∂αi

=

〈
∂Hmf

∂αi

〉
+
∑
l

∂⟨Ol⟩
∂αi

[2Kl⟨Ol⟩ − αl]− ⟨Oi⟩ (3.40)

=
∑
l

∂⟨Ol⟩
∂αi

[2Kl⟨Ol⟩ − αl] . (3.41)

Then the variational scheme for the total energy gives us the self-consistent condition,

αl = 2Kl⟨Ol⟩. (3.42)

Therefore, after diagonalization of the HF kernel, the coupled multi-variable self-consistent

problem becomes many independent single variable self-consistent problem in different

”eigen channels”.
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In general case, We use the scipy.minimize package to minimize the total energy

functional.

Sometimes due to the complexity of Berry curvature estimation and convergence

problem, we have to make cutoffs Lv, Ls for the mode index l in the variational order

parameters αl and the summation
∑

l.

Eg[ν,B] = min
αl,l∈Lv

∑
sk

Tr[H0(k)ρ̃
s(k)] +

∑
l∈Ls

( ∑
γksmn

Cs
γklΓ

γ
mn [ρ̃

s
mn(k)− ρ0,mn(k)]

)2
 .

(3.43)

For example, we can choose Lv = {0, 1, 2} to vary SP/VP modes only, and Ls =

{0, 1, 2, ..., 50,−1} to consider the contribution of the lowest 50 channels and the highest

Hartree channel.
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Results

We first diagonalize the HF interaction kernel projected on the flat band subspace ob-

tained from our tight-binding model, and find several symmetry breaking discrete eigen

channels using symmetry analysis. Then we perform the HF self-consistent procedure to

compare the ground state energy of these symmetry breaking states at different integer

fillings under external out-plane magnetic field.

4.1 Hartree-Fock eigen channels

In order to study the different discrete symmetry breaking channels and decouple the

self-consistent procedure of the order parameters into the independent eigen channels, we

diagonalize the real symmetric HF kernel F̃ ss′

γγ′(k,k′) and arrange the energy of all 32Nk

eigen modes in the ascending order shown in Fig. 4.1(b), as well as the spinless version

shown in Fig. 4.1(a).

The order parameter operator Ol of the lth eigen mode can be projected onto the
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Figure 4.1: (a) The energy of all the 16Nk eigen modes of spinless HF kernel
F̃ = Γ(U − V/2)Γ, where we set k-mesh Nk = 18 × 18 in this paper. The inset
shows the 15 discrete symmetry breaking eigen modes. (b) The energy of all the 32Nk

eigen modes of spin-1/2 HF kernel F̃ ss′ = Γ(U − V δss′)Γ, with 31 discrete symmetry
breaking eigen modes shown in the inset.
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original graphene Bloch basis written as

Ol =
∑

ksGG′αβ

(∑
γmn

Γγ
nmC

s
γklDmαG(k)D

∗
nβG′(k′)

)
× f †

sα,k+Gfs′β,k+G′

=
∑
ks

∑
GG′αβ

O
(l)
ksGG′αβf

†
k+G,αsfk+G′,βs.

(4.1)

The matrix O
(l)
ksGG′αβ at special k-point or averaged over k-space is expressed by the Pauli

matrix Γi, representing the main order of such eigen mode.

In Fig. 4.1, there exists a highest Hartree mode in both spinless and spin-1/2 cases.

In spinless case, all the eigen modes are divided into 15 low-energy discrete modes and the

other continuous modes gathering around zero. The projection of eigen modes onto the

original plane-wave basis are shown in Table 4.1 (a). The eigen energy of these channels

are calculated at ϵ = 1. So the absolute values do not have physical meaning, while the

ratio between such energies do. In the spinless case, the lowest three modes that present

the valley polarized and two Kramer intervalley coherent states, respectively, have the

most instability under Coulomb interaction. And it is expected that these two competing

orders become ground states with out external field.

Since the time-reversal operation exchanges two valleys, the lowest VP mode breaks

the T symmetry. For the two KIVC modes, C3z symmetry is also broken because they

together load the two-dimensional irrep, yet neither of them along. One can check the

symmetry breaking boxes by acting the representation in Eq. (2.23) on the Pauli matrix

of specific mode.

Another example is the topological non-trivial orders 14 and 15 that represent quan-

tum anomalous Hall state and valley Hall state, respectively. The both two valence bands

in QAH mode have the same Chern number ±1, which host a totally non-zero Chern

number ±2 for spinless, and ±4 for spin-1/2 case. Fig. 4.2 shows the Berry curvature of
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(a) Mode Energy (eV) Uv(1) T C2T C3

1 τzσ0 −31.38 ✓ × ✓ ✓
2,3 (τx, τy)σy −31.29 × × ✓ ×
4-7 (τx, τy)(σ0, σz)k

2 −28.33 × ✓ ✓ ✓
8,9 τzσyk, τ0σxk −28.32 ✓ ✓ ✓ ×
10,11 τ0σyk, τzσxk −28.23 ✓ ✓ ✓ ×
12,13 (τx, τy)σx −27.58 × × × ✓
14 τzσz −27.53 ✓ × × ✓
15 τ0σz −27.50 ✓ ✓ × ✓

(b) Mode Energy (eV) Uv(1) T C2T C3

1,2,3 τ0σ0sz, τzσ0sz, τzσ0s0 −62.76 ✓ × ✓ ✓
4-7 (τx, τy)σy(s0, sz) −62.59 × × ✓ ×
8-15 (τx, τy)(σ0, σz)(s0, sz)k

2 −56.65 × ✓ ✓ ✓
16-21 (τ0, τz)(σx, σy)szk, τzσys0k, τ0σxs0k −56.63 ✓ ✓ ✓ ×
22,23 τ0σyszk, τzσxs0k −56.45 ✓ ✓ ✓ ×
24-27 (τx, τy)σx(s0, sz) −55.16 × × × ✓

28,29,30 τzσzsz, τ0σzsz, τzσzs0 −55.07 ✓ × × ✓
31 τ0σzs0 −55.00 ✓ ✓ × ✓

Table 4.1: (a)(b) Discrete symmetry breaking eigen modes of the spinless and
spin-1/2 HF kernel respectively. The second column shows the microscopic operators
of the corresponding order parameters on the original graphene Bloch basis, where
τ, σ, s denote the valley/sublattice/spin subspace respectively, and k reveals the parity
of each mode in terms of k vector starting from moiré Γ point. The last four columns
show whether each mode breaks these symmetries.
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one Chern band in QAH mode. The peak of Berry curvature is located at Γ point, which

Figure 4.2: Berry curvature of one Chern band in QAH mode. The calculation is
performed on 36× 36 k-mesh. The Berry curvature takes the unit of phase angle.

is different from the non-interacting flat bands.

The spinless modes 4-11 vanish at Γ point, presenting a strongly k-dependent distri-

bution. The notations in the table with k or k2 is obtained by expending the mode main

component to the lowest non-zero power of k, and the symmetry is also considered to

determine the form. Fig. 4.3 shows the k-dependent majority order components of mode

8,10 and 12. Mode 8 and 10 vanishes at Γ but mostly contribute at K and K ′, and also

break the C3 symmetry but preserve C2z symmetry.

4.2 Phase diagrams without magnetic field

Firstly, we study the total energy of several possible symmetry-broken states in

Hartree-Fock level. By comparing the energies of such states, the physical ground state

can be determined. At zero external magnetic field, one can take the interacting strength

ϵ as the varying parameter. In this part, the initial guess of the HF self-consistent cal-

culations is inspired by the work presented by Fuchun Zhang et al [10].
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Figure 4.3: Majority components of spinless eigen-mode 7,9,11 in k-space.

Figure 4.4: Majority components of spinless eigen-mode 13 (QAH) and 14(VH) in k-space
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Fig. 4.5 shows the phase diagram and HF quasi-particle band structures at CNP. In

(a) the competing order VP and KIVC are nearly degenerate, with the energy difference

less than 0.1meV per electron. Although there exists a first-order crossing near ϵ = 10,

this small energy gap can be easily tuned by the external dielectric environment, or even

the detail of our double-counting scheme. So one can hardly declare which one is the

predicted ground state.

Fig. 4.6-4.8 show the phase diagram of −1/2, −3/4 and −1/4 filling, respectively.

The results at corresponding positive fillings are quite similar due to the relatively strong

and particle-hole symmetry preserved interacting Hamiltonian [19]. Most of the typical

band structure of these symmetry broken states can be understood as the recombination

of the eight topological bands below the Fermi level. For −1/2 filling, the IVC state

is fully spin polarized. In FMI state, two flat bands within one spin/valley flavor is

occupied, leading to spin-valley polarized insulating state. In the two different favor of

QAH states, the C2zT is broken, resulting the degeneratcy splitting at Dirac points. In

−3/4 filling, the captured two topological states are highly degenerate due to the SU(2)

rotational symmetry in valley space occupied by one electron.

4.3 Phase diagrams under magnetic field

The external out-plane magnetic field affects the HF calculation by spin and orbital

Zeeman effect, and more importantly, by the density of states modification on Chern

bands. Starting from the modified charge density matrix ρ̃(k) defined in Eq. (3.29),

we sum the density matrix over mBZ that gives the total electron number for a specific

group of bands. For QAH state, this summation leads to the Streda relation [30, 20]

δn =
eB

ℏ
CΩM , (4.2)

44



Results Chapter 4

Figure 4.5: Phase diagram at filling ν = 0. (a) Total energy per electron for the
valley polarized (VP) state, Kramer intervalley coherent state (KIVC) and quantum
anomalous Hall state (QAH) at CNP in terms of the dielectric constant ϵ. The energy
zero point is set equal to the energy of VP state. The energy of QAH state is more
than 1.2meV higher than the VP state, not shown in the figure. (b-e) Typical inter-
acting mean-field band structure of spin-polarized (SP), VP, KIVC and QAH state,
respectively, at ϵ = 7. The red/blue line represents the band of spin-up/-down, also
for the remaining figures in this section. At zero magnetic field, the SP and VP states
are degenerate.

Figure 4.6: Phase diagram at filling ν = −1/2. (a) Total energy per electron for the
spin-favored IVC, spin-valley polarized (FMI), valley-favored QAH and spin-favored
QAH states, respectively. Energy zero point is set to the energy of IVC state. The
notation (τ0+τz)s0 and τz(s0+sz) are the main component of VP-QAH and SP-QAH
states, respectively, which are nearly degenerate at different Coulomb strength. (b-e)
Typical mean-field band structures of the four orders, respectively.
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Figure 4.7: Phase diagram at filling ν = −3/4. (a) Total energy per electron for
the mix-IVC and polarized QAH states, respectively. Energy zero point is set to the
energy of mixIVC state. (b,c) Typical mean-field band structure of the two orders
at ϵ = 7. The two states mainly contain the combination of QAH and IVC, QAH
and spin-valley polarized orders, respectively. Due to the approximate SU(2) valley
rotational symmetry, the two states are highly degenerate.
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Figure 4.8: Phase diagram at filling ν = −1/4. (a) Total energy per electron for
the mix-IVC and polarized QAH states, respectively. Energy zero point is set to the
energy of mixIVC state. (b,c) Typical mean-field band structures of such two states,
respectively.
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where C is the total Chern number under Fermi level, and ΩM is the area of moiré

supercell. The δn provides the additional occupied number under Fermi level. If we tune

the electron concentration proportional to the magnetic field that matchs the Streda

formula, The interacting band gap still remains, which may reduce the total energy to

compete with other topological trivial orders.

Fig. 4.9 shows the phase diagrams at even integer filling 0 and ±1
2
under magnetic

field. The calculation is performing along the Strade lines The calculation is performing

Figure 4.9: Phase diagrams around −1/2, 0 and 1/2 filling on the path in (ν,B)
parameter plane that obeys the Streda formula. (a) shows the lines of δn = CeBΩM/ℏ,
where C is the total Chern number, and n = 4(ν+1) is the electron number per moiré
cell. The brackets denote the possible (ν, C) pairs that satisfy the Streda formula.
Along these paths, the flat bands of corresponding QAH states remain full-filled due
to the semi-classical DOS modification under weak magnetic field. (b-d) show the
total energy of several symmetry broken states varying along the parameter paths
shown in (a). The total Chern number of the QAH states is marked in the legend.
The favored QAH states of opposite Chern number on both sides of the integer filling
are indicated by different colors.

along the Strade lines that match the corresponding competing QAH states from Fig.

4.5,4.6. Under the same direction of magnetic field, the Chern number takes the opposite
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sign on two sides of the integer filling. For the magic angle TBG we consider, a magnetic

field of 4T modifies the electron number of a C = 1 Chern band by about 0.018.

In Fig. 4.9 (b-d), crossing points between topological trivial orders and the QAH

orders emerge from 1.8T to 3T, which indicates the possible first-order phase transition

from topological trivial correlated insulating states to the topological QAH states as the

magnetic field enhancing. Taking ν = 0 for example, as the field strength increases, more

electrons/holes fill above/below the Fermi band gap, which raise the total energy. But

the QAH state remains an insulator. Here the exact energy change with magnetic field

intensity is also strongly affected by the double counting scheme we select, which needs

the follow-up studies in the future. The slight asymmetry on both sides of the central

integer filling line is maily caused by the PH symmetry breaking in our TB model. The

spin Zeeman splitting is also shown in the spin polarized QAH and correlated states.
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Conclusion

In this paper, we aim to focus on two problems. The first is how many different symmetry

breaking phases can be stabilized if we project the Coulomb interaction to the flat bands.

The second is how these phases envolve and compete under magnetic field. In order to

understand these two questions, we develop the flat-band projected Hartree-Fock theory

and its modification under magnetic field.

In the first part, two efficient non-interacting models, the BM continuum and the

plane-wave basis TB models are introduced. The common and different features from

the two models are compared. Then the main symmetries occurring in the single-particle

models are analyzed, together with the band structures. In the second part, an integral

process of Hartree-Fock study is introduced, including the flat-band basis gauge fixing,

HF approximation and the diagonalization of the HF kernel and the analysis of different

symmetry breaking eigen modes. In such procedure one of the most time-consuming

step is absorbed into the HF kernel solving that only needs to be calculated once. Under

magnetic field, the spin and orbital Zeeman effects are treated rigorously via effective

g-factor, and vector potential part is treated semi-classically using DOS modification by

Berry curvature.
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Several discrete low-energy eigen channels from the spinless and spin-1/2 HF kernel

are analyzed. The zero-field phase diagrams reveal the KIVC and spin/valley polarized

competing ground states. In the phase diagram calculation under magnetic field, a first-

order phase transition from topological-trivial states to QAH states at B = 1.8T up

to 3T is predicted, which agrees with some experimental results in a certain extent.

But we cannot ignore the fact that there are still a lot of arbitrariness in the double

counting scheme that can extremely change the energy of topological orders. The current

calculation results still meet several difficulties to understand the experimental results

that most experiments only observe the Landau fan on one side of the integer filling,

rather than both sides. These deficiencies require future studies and discussions.
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Wannier function localization by

variational method

In this chapter, I start from Vanderbilt’s work [31] on Maximally localized Wannier

functions. The spread function of a given Wannier orbital can be decomposed to two

parts

Ω = ΩI + Ω̃, (A.1)

where the gauge-invariant part

ΩI =
∑
n

[
⟨0n|r2|0n⟩ −

∑
Rm

| ⟨Rm|r|0n⟩ |2
]

(A.2)

and the gauge-dependent part

Ω̃ =
∑
n

∑
Rm ̸=0n

| ⟨Rm|r|0n⟩ |2. (A.3)
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On the uniform k-mesh, Ω̃ can be approximately expressed by

Ω̃ =
1

Nk

∑
k,b

wb

∑
m̸=n

∣∣M (k,b)
mn

∣∣2 + 1

Nk

∑
k,b

wb

∑
n

(
−Im lnM (k,b)

nn − b · r̄n
)2
, (A.4)

where b connects k to one of its neighbors and wb is a geometric factor, and the overlap

M (k,b)
mn = ⟨umk|un,k+b⟩ , (A.5)

and the Wannier center

r̄n = − 1

Nk

∑
k,b

wbbIm lnM (k,b)
nn . (A.6)

For triangle grid in our system, wb = 1/3b2 for the first shell. And the gauge-invariant

part is

ΩI =
1

Nk

∑
k,b

wb

(
J −

∑
mn

∣∣M (k,b)
mn

∣∣2) . (A.7)

In order to minimize Ω̃, we use the linear response theory. As the trial Hamiltonian

on basis ψ
(0)
(1,2)k is

Htrial(k) = H0(k) + P̂flat(k)VtrialP̂ (k) ≡ H = H0 + V. (A.8)

Consider an infinitesimal variation δV , the eigenstates becomes to

|unk⟩ → |unk⟩+ δ |unk⟩ . (A.9)

Under linear response theory (first-order perturbation theory), this variation can be given
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by

δ |unk⟩ = (Enk −H)−1δV |unk⟩ (A.10)

=
′∑
m

δVmn(k)

Enk − Emk

|umk⟩ , (A.11)

where δVmn(k) = ⟨umk|δV |unk⟩. But this is not actually the variation in our Wannier

functions. Because in our procedure, we also fix the gauge of ψnk + δψnk at rBA or rAB.

It means that the total variation of |unk⟩(denoted as |u⟩) is

δ |u⟩ = eiϕ(|u⟩+ δ′ |u⟩)− |u⟩ ≈ δ′ |u⟩+ iϕ |u⟩ , (A.12)

where the phase ϕ satisfies

eiϕ(ψ(r0) + δ′ψ(r0)) = |ψ(r0) + δ′ψ(r0)|. (A.13)

Here δ′ |u⟩ is directly from Eq. (A.10), and r0 = rBA or rmathrmAB is the gauge-fixed

point. The relation of such quantities is illustrated in Fig. A.1. To calculate ϕ from Fig.

Figure A.1: Relation of the wavefunction value at r0 and its variations in complex plane.

A.1, we have

ϕ = −Imδ′ψ(r0)

ψ(r0)
. (A.14)
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So the actual variation of the eigenstate is

δ |u1k⟩ =
δV21(k)

E1k − E2k

|u2k⟩ −
i

ψA1
1k (rBA)

Im[δV21(k)ψ
A12k(rBA)]

E1k − E2k

|u1k⟩ ,

δ |u2k⟩ =
δV12(k)

E2k − E1k

|u1k⟩ −
i

ψB1
2k (rAB)

Im[δV12(k)ψ
B11k(rBA)]

E2k − E1k

|u2k⟩ .
(A.15)

Then we perform variational process to Ω̃,

δΩ̃ =
1

Nk

∑
k,b

wb

∑
m̸=n

2Re
(
M (k,b)∗

mn δM (k,b)
mn

)
+

1

Nk

∑
k,b

wb

∑
n

2
(
ImM (k,b)

nn + b · r̄n
)(

Im
δM

(k,b)
nn

M
(k,b)
nn

+ b · r̄n

)
,

(A.16)

where

δr̄n = − 1

Nk

∑
k,b

wbbIm

(
δM

(k,b)
nn

M
(k,b)
nn

)
, (A.17)

and

δM (k,b)
mn = δ(⟨umk|unk+b⟩). (A.18)

Therefore, the variation δΩ̃ can be directly estimated in terms of (proportional to) δV ,

that is

δV = P̂flat(k)δVtrialP̂flat(k), (A.19)

where δVtrial = (δV1A, δV1B, δV2A, δ2B) with

δV1A = −δV1B = −δV2A = δV2B = δδ0 + δδ1
∑

i=1,2,3

eiGi·r + δδ∗1
∑

i=1,2,3

e−iGi·r. (A.20)
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Calculation of Berry curvature

matrix

Figure B.1: Small loop in k-space to calculate the Berry curvature.

We denote the flat bands as |ϕnk⟩, and the eigenstate of Hmf as |usnk⟩. We already

know the overlap matrix between two neighbor flat-band states ⟨ϕmk|ϕnk+ei⟩ , i = 1, 2.

In order to get an precisely integer Chern number, we estimate the Berry curvature

matrix of valence and conduction bands separately. For each spin, we calculate the Berry
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phase matrix γsv/c,mn(k) of the small loop,

γsv/c,mn(k) =
∑

l1l2l3∈v/c

⟨usmk|usl1k+e1
⟩ ⟨usl1k+e1

|usl2,k+e1+e2
⟩

× ⟨usl2,k+e1+e2
|usl3k+e2

⟩ ⟨usl3k+e2
|usnk⟩ , m, n ∈ v/c,

(B.1)

where

⟨umk|unk+ei⟩ =
∑
m′n′

W ∗
m′m(k) ⟨ϕm′k|ϕn′k+ei⟩Wn′n(k + ei). (B.2)

Because the small loop is an approximation, the γ matrix is not unitary rigorously.

we can normalize it by

γ†γ = UDU †, (B.3)

γ̃ = γUD− 1
2U †. (B.4)

Then we get the Berry curvature matrix on diagonalized representation,

Ω̃s(k) =
Nk

ΩBZ

Im
[
block diag{ln γ̃sv(k), ln γ̃sc (k)}

]
. (B.5)
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Calculation of reference density ρ0

We can calculate ρ0 from either coupled TBG or uncoupled TBG at CNP. For coupled

TBG,

ρ0(k) = diag{f(Enk − µ)}, (C.1)

where Enk is the flat-band dispersion, and µ is determined by CNP condition.

For uncoupled TBG, we need a projection onto the flat band,

ρ0(k) = D†
kD̃kdiag{f(Ẽnk − µ)}D̃†

kDk, (C.2)

where D̃kmα(G), Ẽnk are the full bands of uncoupled TBG, Dknα(G) is the flat-band

wavefunction.

Fig. C.1 shows the reference charge density at CNP projected onto the flat-band sub-

space. a and b shows the valley charge density over mBZ. The symmetric inhomogeneity

is induced by the particle-hole breaking in coupled TBG TB model, but the total charge

number remain neutrality approximately.
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Figure C.1: Reference charge density ρ0(k) of CN uncoupled TBG projected on two
flat-band valleys.
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