
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Dynamics and Shapes of Galaxies: Orbit Modeling of Triaxial Galaxies Hosting Supermassive 
Black Holes

Permalink
https://escholarship.org/uc/item/5663z45v

Author
Quenneville, Matthew Eric

Publication Date
2022
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5663z45v
https://escholarship.org
http://www.cdlib.org/


Dynamics and Shapes of Galaxies: Orbit Modeling of Triaxial Galaxies Hosting
Supermassive Black Holes

by

Matthew E. Quenneville

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Physics

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Chung-Pei Ma, Chair
Associate Professor Jessica Lu

Associate Professor Daniel Kasen

Summer 2022



Dynamics and Shapes of Galaxies: Orbit Modeling of Triaxial Galaxies Hosting
Supermassive Black Holes

Copyright 2022
by

Matthew E. Quenneville



1

Abstract

Dynamics and Shapes of Galaxies: Orbit Modeling of Triaxial Galaxies Hosting
Supermassive Black Holes

by

Matthew E. Quenneville

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Chung-Pei Ma, Chair

Elliptical galaxies display a wide variety of photometric and kinematic features. Supermas-
sive black holes are thought to lie in the centers of all elliptical galaxies, with masses that
exhibit tight correlations with the masses and velocity dispersions of their hosts. Measure-
ment of these correlations in the local universe underpin our understanding of the growth of
supermassive black holes throughout cosmic time. These measurements can only be as pre-
cise as our measurements of the underlying supermassive black hole masses and host galaxy
properties.

The most massive ellipticals exhibit photometric and kinematic signatures of triaxiality.
While axisymmetric dynamical modeling has been most prevalent over the past decades,
triaxial orbit modeling allows models to capture the orbital complexity that the more general
geometry allows. The limited number of direct tests of triaxial models have revealed biased
shape recoveries and inconsistencies with axisymmetric models.

This dissertation begins by addressing the inconsistency between axisymmetric and triaxial
models. Starting from the most commonly used existing triaxial orbit code, the axisymmetric
limit is approached in a careful manner in order to acheive consistent and stable results. An
updated version of this code is introduced which is about twice as fast and does not suffer
from the same spurious minima that have been observed in the literature. This version is
applied to fast-rotating massive elliptical galaxy NGC 1453.

I then proceed to the triaxial case. I demonstrate that the existing code uses kinematics
that are incorrect, and describe several other improvements to the code and the way it is
typically applied. A novel search strategy is used to explore the six dimensional parameter
space more accurately and with far fewer expensive model evaluations than previously used
grid based searches. This methodology is applied to obtain a simultaneous measurement of
the triaxial shape, dark matter halo, stellar mass-to-light ratio, and central black hole mass
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of NGC 1453.

Next, the updated code is validated against mock galaxy data. The code updates have
dramatically improved the precision of the code. When used to measure the triaxial shape
of a mock galaxy, the axis ratios p and q are recovered with far more accuracy and precision
than would be suggested by any previously reported triaxial recovery tests.

Finally, I turn from dynamical modeling to examining photometry of massive elliptical galax-
ies. I present new measurements of K-band total magnitudes and half-light radii for a volume
limited sample of ∼ 100 galaxies. These new, more accurate values are used to study the
scaling relations among massive ellipticals. The resulting relations are consistent with a pic-
ture in which massive ellipticals form through dissipationless mergers. As the relationship
between total luminosity and velocity dispersion are found to be poorly fit by a single power
law, this suggests that theMBH−L relation is likely to be a better predictor of central black
hole mass than the MBH − σ relation for high mass ellipticals.
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Chapter 1

Introduction

1.1 Galaxies

Our understanding of the universe has advanced in tandem with technological advancements
that have allowed astronomers to map the night sky more precisely. Telescopes have revealed
an enormous variety of objects in exquisite detail that are entirely invisible with the naked
eye. The recognition that many of these objects are galaxies beyond our own Milky Way
galaxy has revolutionized our understanding of the true scale of the universe.

Galaxy Morphologies

Galaxies have been observed with a wide variety of characteristics. In order to begin to
understand these characteristics, it is natural to classify galaxies according to their shapes,
or morphologies. The Hubble sequence classifies galaxies into three broad categories: spirals,
ellipticals, and lenticulars.

Spirals are characterized by a flattened disk-like shape, often with a central bulge-like
structure. Within the plane of the disk, stars are arranged to form the spiral arms that
give these galaxies their name. Elliptical galaxies, on the other hand, are largely feature-
less in comparison. These galaxies appear smooth and have observed surface brightness
distributions that have roughly elliptical level surfaces (isophotes). Lenticular galaxies are
intermediate between these two classifications, consisting of both a central elliptical-like
bulge as well as an extended flattened disk. Galaxies that do not fall into any of these clas-
sifications are broadly classified as irregular. The term early-type galaxy (ETG) is used to
refer collectively to elliptical and lenticular galaxies, while the term late-type galaxy refers
to spirals and irregulars [1].

While elliptical galaxies do not exhibit the elaborate structures observed in late-type
galaxies, they are nevertheless fascinating systems with diverse structure and dynamics.
These galaxies span many orders of magnitude in total mass, and many of the most massive
galaxies in the universe fall under this classification. These elliptical galaxies are the focus
of this dissertation.
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Photometric Observations

Photometric observations can reveal a wealth of information about ellipitical galaxies. Most
such information is based on measuring the surface brightness (SB) or flux density per unit
area of the galaxy in a given passband. This surface brightness is largest near the center of
the galaxy and decreases away from the center with roughly elliptical isophotes.

From this SB profile, many other properties can be determined. For example, if the
distance to the galaxy is known, a total luminosity can be derived. Elliptical galaxies span
an enormous range in total luminosity, and many of the most luminous observed galaxies
are ellipticals. Many other photometric properties are found to correlate with this total
luminosity.

A characteristic length scale can be inferred for the galaxy from the size of the isophote
containing half of the galaxy’s total light. This is referred to as the half-light radius. On
average, galaxies with larger luminosities tend to have larger half-light radii. This can
be quantified either through the luminosity-size relation or the closely related Kormendy
relation [2].

In addition to global photometric properties like the total luminosity and half-light radius,
the SB profile itself is rich with information. For many ellipticals, the SB profile as a function
of isophotal semi-major axis, R, is well described by a Sérsic profile:

I(r) = Ie exp
(
−bn

[
(R/Re)

1/n − 1
])
, (1.1)

where Re is the profile half-light radius, Ie is the surface brightness at R = Re, n is a
parameter known as the Sérsic index that describes the degree of central concentration of
the profile [3]. bn is a numerical factor that depends on n and can be calculated by numerically
inverting:

γ(2n; bn) =
1

2
Γ(2n), (1.2)

where Γ represents the Gamma function and γ represents the lower incomplete Gamma func-
tion. The best-fit Sérsic index, n, is observationally found to increase with total luminosity
[4]. In many of the most luminous ellipticals, the true SB profile is overestimated by a Sérsic
profile [5]. In these galaxies the central SB profile flattens, exhibiting a central core. These
central cores stand in contrast to less luminous ellipticals which tend to have steep central
SB cusps [6].

Beyond the SB profile, the shapes of the isophotes themselves can be examined. Isophotes
tend to be more round for highly luminous ellipticals, and more flattened for less luminous
ellipticals [7, 8]. As well, the isophotal position angle (PA) on the sky tends to be constant
with R for less luminous ellipticals, while many of the most massive ellipticals exhibit twists
in PA with R [9]. Despite their name, the isophotes of many ellipticals are observed to
deviate from perfectly elliptical shapes. These deviations can be quantified through the
lowest order fourier component a4, with a4 < 0 giving “boxy” isophotes and a4 > 0 giving
“disky” isophotes [10]. This deviation also correlates with total luminosity with isophotes
in more luminous ellipticals appearing more boxy and isophotes in less luminous ellipticals
appearing more disky [11, 12].
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Spectroscopic Observations

Spectroscopic data can be used to gain information about the internal motions of distant
galaxies. When light emitted from a star is plotted against wavelength, clear absorption
lines appear in the spectrum. These lines are due to gas in the stellar atmosphere absorbing
light at specific wavelengths governed by atomic or molecular transition energies. When the
star is moving towards or away from the observer, these absorption lines will be shifted due
to the Doppler effect. By comparing absorption line positions to their known wavelengths
at rest, the component of the stars velocity along the line-of-sight can be inferred.

In the Milky Way and some other very nearby galaxies, individual stars can be resolved
and individual stellar velocities (along the line-of-sight) can be inferred. In most galaxies,
however, individual stars cannot be resolved. In this case, the combined spectrum of a
group of stars within an area on the sky can be measured. This spectrum can be regarded
as a convolution of an average rest-frame stellar spectrum with the line-of-sight velocity
distribution (LOSVD) of the stars.

Spectroscopic measurements are essential for studying galaxies as they allow us to mea-
sure internal motions of galaxies. In turn, this allows us to learn about the gravitational
forces acting within these galaxies giving us direct insight into the mass distributions within
these galaxies.

Much like with photometric observations, data from spectroscopic observations can be
used to produce many different kinematic measurements. One common global kinematic
measurement is the width of the LOSVD, referred to as velocity dispersion, as measured
within a single aperture. In some cases, this aperture size is set by the instrument used for
measurement. It is also common to use an aperture that covers the half-light isophote of the
galaxy [13].

The velocity dispersion along the line-of-sight, σ correlates closely with total luminosity.
This correlation is known as the Faber-Jackson relation [14]. In fact, ellipticals are found to
lie on a thin plane in the three dimensional (L,Re, σ) space. This relationship is known as
the Fundamental Plane [15].

Many modern telescopes are equipped with an integral field spectrograph (IFS) [16, 17].
An IFS allows for measurement of spectra within small bins at numerous positions within
the field of view. When used for spectroscopic galaxy observations, this allows astronomers
to measure the LOSVD as a function of position on the sky plane. This allows for much
more detailed measurements of internal stellar motions than a single aperture.

Galactic rotation appears as a differential average velocity between the two sides of a
galaxy. The amount of rotation is often quantified as the ratio between rotation speed V
and velocity dispersion σ. This ratio strongly correlates with galaxy luminosity: typically
V/σ ≲ 0.1 for the most luminous ellipticals, while V/σ can be up to∼ 0.8 for lower luminosity
ellipticals [7].

In practice, LOSVDs are not perfectly gaussian. Deviations from gaussianity are typically
quantified through Gauss-Hermite (GH) moments h1, h2, h3, .... V and σ can be chosen such
that h1 = h2 = 0, meaning h3, h4, ... are typically used to quantify deviation from a gaussian



CHAPTER 1. INTRODUCTION 4

distribution [18].

Triaxiality

Information about 3-dimensional galaxy shapes can be inferred from both photometric and
spectroscopic data. However, since we can only observe the galaxy’s light as projected along
the line-of-sight, complete knowledge of the galaxy’s shape is not possible from photometry
alone.

Perhaps the most obvious indication of the galaxy’s intrinsic shape are the shapes of
its projected isophotes. Almost all elliptical galaxies appear at least somewhat flattened in
projection. The lack of galaxies that appear perfectly round suggests that real galaxies tend
not to be perfectly spherical.

A less obvious photometric indication of intrinsic galaxy shape arises from the relative
alignment of a galaxies isophotes. For a perfectly axisymmetric intrinsic shape, all isophotes
will appear perfectly aligned in position angle when viewed along any line-of-sight. If a
galaxy has a triaxial intrinsic shape, however, this need not be the case. Even if a galaxy’s
3-dimensional luminosity distribution is stratified on ellipsoidal surfaces that all have the
same principal axes, the isophotes can appear to twist in projection. These twists arise if
the axis ratios vary with radius (or more precisely, if the triaxiality varies) [19]. Isophotal
twists have been observed in many galaxies [9]. The presence of isophotal twists, however,
appears to be highly correlated with galaxy luminosity. Lower luminosity galaxies tend to
have regular, aligned isophotes, while isophotal twists are much more common among more
massive galaxies [8].

While twisting isophotes suggest that the galaxy is intrinsically triaxial, triaxial galaxies
do not necessarily have isophotes that twist. The degree of isophotal twisting will depend
strongly on the line-of-sight that the galaxy is observed along. As well, galaxies that have a
fixed triaxiality with radius will not have twisting isophotes [20].

By combining kinematic and photometric data, far more can be inferred about galaxy
intrinsic shapes [21]. For a perfectly oblate axisymmetric galactic potential and distribution
function, the projected velocity field will be perfectly aligned with the projected major
axis. Further, the resulting kinematics will be symmetric across the major axis and anti-
symmetric across the minor axis. This is due to the azimuthal symmetry of orbits within
an axisymmetric potential. Any deviation from this symmetry suggests an intrinsic galaxy
shape that deviates from oblate axisymmetry.

In triaxial galaxies, multiple orbit families are allowed[22, 23, 24, 25]. In addition to the
short-axis tubes that are present in oblate axisymmetric galaxies, long-axis tube are also
present, which rotate about the galaxy’s major axis. This allows for the angular momentum
vector to be misaligned with respect to the galaxy’s minor axis, and projected velocity fields
that need not be aligned with the principal axes of the projected SB distribution. As well,
orbital populations that vary with distance from the galaxy center can result in projected
velocity maps with rotation directions that vary with radius. Kinematically decoupled cores
(KDCs) are extreme examples of this phenomenon where there is a central cluster of stars
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with an entirely different rotation direction than the rest of the galaxy [11, 26]. Such kine-
matic misalignments and twists have been observed in real galaxies. Much like photometric
twists however, they are far more prevalent in more luminous galaxies [27].

While these features are relatively intuitive and visible in the kinematic and photometric
data, the combination of photometric and kinematic IFS data are likely to contain far more
information than this about galaxy shape and alignment. More detailed dynamical modeling
is needed to take advantage of this information.

Supermassive Black Holes

Supermassive black holes are ubiquitously found in the centers of elliptical galaxies [28].
Initial evidence for these enormous objects arose from the observation of extremely luminous
emission from the centers of many distant galaxies, known as active galactic nuclei (AGN)
[29, 30]. This emission can be so bright as to outshine entire galaxies. The source of this
emission is now recognized as radiation resulting from matter accreting onto central SMBHs.

Along with a growing sample of observed AGN, there is a plethora of more direct evidence
for SMBHs in the local universe as well. The strongest evidence for the existence of an
SMBH comes from the center of our own Milky Way galaxy. By following the trajectories of
individual stars near the galactic center over years, the influence of a central dark object with
a mass of about 4 × 106 M⊙ can be measured [31]. This central dark object’s size must be
comparable to its Schwarzschild radius - much denser than any known astrophysical object
other than a black hole. Black holes have been detected in other galaxies through their
gravitational influence on nearby luminous matter - typically stars, gas, or astrophysical
masers [32].

In recent years, the Event Horizon Telescope (EHT) collaboration has used very-long-
baseline interferometry together with an array of ground-based telescopes from around the
world to directly image the centers of both M87 (a nearby massive elliptical galaxy) and
our own Milky Way galaxy with resolutions comparable to the SMBH event horizons [33,
34]. In both cases, the resulting images were entirely consistent with previously dynamically
determined SMBH masses [35, 36]. This provides an important independent verification of
the dynamical measurements of these SMBHs.

More massive SMBHs tend to lie at the centers of more massive galaxies. Among the
sample of dynamically determined SMBH masses, there are tight correlations between SMBH
mass,MBH, and both total lumionsity and velocity dispersion. Decades of studies have shown
these scaling relations to hold over several orders of magnitude in MBH (eg. [37, 28, 38, 32]).
Typically, central SMBHs account for ∼ 0.2% of the total mass of the galaxy. As such
the SMBH has a significant dynamical effect on stars within a small volume at the galaxy’s
center, referred to as the SMBH’s sphere of influence. The tight correlation betweenMBH and
global galactic properties such as σ and L is therefore surprising. This has led to suggestions
that central SMBHs may play a key role in galaxy evolution, affecting their growth and star
formation through feedback processes [39].
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The local population of SMBHs where dynamical MBH measurements can be performed
presents key insights into the population of SMBHs elsewhere in the universe. These local
SMBH measurements are used to calibrate MBH estimations in AGNs where measurements
have much larger intrinsic uncertainties [40]. Therefore, a complete understanding of the
local SMBH population is vital to our understanding of SMBH growth throughout cosmic
time. The most massive SMBHs are particularly important as these are thought to be relics
of the most luminous AGNs in the early universe.

1.2 Dynamical Modeling

Distribution Functions

The stellar distribution function (DF) f(x⃗, v⃗) describes the mass distribution of stars within
the phase space (x⃗, v⃗). The stellar density is therefore related to f by:

ρ∗(x⃗) =

∫
f(x⃗, v⃗)dv⃗. (1.3)

Assuming the stars do not collide and that they interact solely via gravitational forces, the
system has no dissipation and must therefore obey the Liouville equation:

∂f

∂t
+
∂f

∂x⃗
· ˙⃗x+ ∂f

∂v⃗
· ˙⃗v = 0. (1.4)

Assuming that the distribution function is stationary, and assuming the stars are subject to
a total potential Φ(x⃗) gives the stationary Collisionless Boltzmann Equation (CBE) [41]:

v⃗ · ∂f
∂x⃗

− ∂Φ

∂x⃗
· ∂f
∂v⃗

= 0. (1.5)

The potential is generated by the stellar density, combined with any additional contributions
to the mass such as dark matter or a central black hole. The potential must follow Poisson’s
equation:

∇2Φ(x⃗) = ρ∗(x⃗) + ρext(x⃗), (1.6)

where ρext(x⃗) is any additional mass component.
While the CBE itself has many useful applications, it is also common to instead work

with velocity moments of this equation, referred to as Jeans equations. The 0th velocity
moment equation is given by simply integrating equation (1.5) over velocity, giving:

0 =

∫ ∑
i

(
vi
∂f

∂xi
− ∂Φ

∂xi

∂f

∂vi

)
dv⃗

=
∑
i

∂

∂xi
(ρ∗vi) ,

(1.7)
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where we have used index notation for clarity, and vi represents the expectation value of vi
at a given position.

The 1st velocity moment equations are obtained by multiplying equation (1.5) by velocity,
and integrating over all velocities:

0 =

∫ ∑
i

(
vi ·

∂f

∂xi

)
vjdv⃗ −

∫ ∑
i

(
∂Φ

∂xi

∂f

∂vi

)
vjdv⃗,

=
∑
i

(
∂

∂xi

∫
fvivjdv⃗ −

∂Φ

∂xi

∫
vj
∂f

∂vi
dv⃗

) (1.8)

where index notation has been used for the sake of clarity. Using the divergence theorem
and setting the boundary terms to 0 gives:

0 =

(∑
i

∂

∂xi
(ρ∗vivj) +

∂Φ

∂xj
ρ∗

)
. (1.9)

The Jeans equations are then given by subtracting ⟨vj⟩ times equation 1.7 from equation 1.9
leading to:

0 =
∑
i

(
∂

∂xi
(ρ∗vivj)− vj

∂

∂xi
(ρ∗vi)

)
+
∂Φ

∂xj
ρ∗

=
∑
i

(
∂

∂xi

(
ρ∗σ

2
ij

)
+ ρ∗vi

∂vj
∂xi

)
+
∂Φ

∂xj
ρ∗,

(1.10)

where σ2
ij = (vi − vi)(vj − vj) is the velocity dispersion tensor.

Virial Theorem

Multiplying equation (1.9) by xj, integrating over positions, and summing over j gives:

0 =
∑
j

∫ (∑
i

∂

∂xi
(ρ∗vivj) +

∂Φ

∂xj
ρ∗

)
xjdx⃗

=
∑
j

∫ (
ρ∗v2j +

∂Φ

∂xj
ρ∗

)
dx⃗.

(1.11)

The first term in this equation can be recognized as twice the total kinematic energy, K,
while the second can be recognized as the total potential energy, W , giving the scalar virial
theorem:

0 = 2K +W. (1.12)

This relationship can be used to estimate mass. Defining the gravitational radius radius
rg = GM2/|W | where M is the total mass of the galaxy and writing the kinematic energy
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term as K = 1
2
M ⟨v2⟩ (where ⟨v2⟩ represents the expectation value of v2 over both velocity

and position) gives:

M =
rg ⟨v2⟩
G

. (1.13)

While rg and ⟨v2⟩ are not directly observable, if we regard Re and σ2
e as proxies for these

two variables, this suggests the scaling:

M = c
Reσ

2
e

G
, (1.14)

where the proportionality constant c can be set by observations. Cappellari et al. [13] and
Cappellari et al. [42] find that c = 5 gives a reasonable estimator of the total mass. Assuming
a fixed mass-to-light ratio, equation (1.14) gives an expected scaling for the fundamental
plane in the (L,Re, σe) space.

While the virial theorem allows for rough mass estimation, even more can be learned by
using a more complex modeling procedure that utilizes high quality IFS data that is now
available for many nearby galaxies.

Jeans Modeling

Jeans modeling uses the velocity moment equations derived in section 1.2 in order to estimate
the observed root-mean-square velocity as a function of position on the sky. In its most com-
monly used form, the potential and distribution function are assumed to be axisymmetric.
Then, re-writing (1.9) in cylindrical coordinates gives:

νv2R − νv2ϕ
R

+
∂(νv2R)

∂R
+
∂(vRvz)

∂z
= −ν ∂Φ

∂R

νvRvz
R

+
∂(νv2z)

∂z
+
∂(νvRvz)

∂R
= −ν ∂Φ

∂z
,

(1.15)

where ν = ρ/Υ is a stellar luminosity density obtained by assuming a fixed mass-to-light
ratio, Υ. The third equation for the ϕ component is identically 0. Taking the density
and potential to be known, the four unknowns v2R, v

2
z , v

2
ϕ, and vRvz are related by the two

equations (1.15). These two equations alone do not provide enough information to specify
a unique solution. Instead, this set of equations can be closed by including additional
assumptions on these unknowns.

Cappellari [43] suggested using the assumptions that the tensor vivj be aligned in cylin-
drical coordinates (ie. vRvz = 0, and that the anisotropy is constant in the sense that

v2R = bv2z . These two assumptions together with the two equations (1.15) thus provide the
four constraints needed to specify the four unknowns.

A trial potential is given by specifying by a deprojected stellar luminosity density, stellar
mass-to-light ratio, central SMBH mass, and possibly a dark matter halo. Given this trial
potential, a value for the anisotropy parameter b, and the assumed stellar luminosity density,
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the velocity moments v2ϕ, v
2
R, and v

2
z can be calculated. By projecting along the line-of-sight,

the resulting model can be compared to the observed mean-square velocity along the line-of-
sight for each bin with an LOSVD measurement. The goodness-of-fit can then be compared
for different trial potentials in order to obtain a best-fit model. Cappellari [43] gives general
expressions that can be computed using a single numerical quadrature by assuming a flexible
parameterization of the luminosity density that allows for a unique deprojection. This allows
for fast evaluation of these models, making them both fast and easy to use.

Unlike the virial theorem, this method allows for constraints to be put on multiple indi-
vidual mass components such as the stellar mass-to-light ratio, SMBH mass, and dark matter
halo. However, its major shortcoming is the strictness of the assumptions that have been
made. Real galaxies appear to have variations in velocity anisotropy, with central regions
that are tangentially biased or isotropic and outer regions that are radially biased. This
differs from the constant anistropy parameter, b, assumed here. Further, the assumptions
that vRvz = 0 and v2R = bv2z dramatically limit the allowed orbital configurations.

Cappellari [44] presents an alternative version of these expressions using similar argu-
ments, but with spherical coordinates in place of cylindrical coordinates. In a similar man-
ner to the cylindrical case, the four velocity moments v2ϕ, v

2
r , v

2
θ , and vrvθ are determined by

the two non-trivial velocity moment equations (1.9) and the assumptions that vrvθ = 0 and

v2r =
v2θ
1−β

. While this suffers from similar short-comings to the cylindrical version, running
models with both sets of assumptions on orbital anistropy can help to quantify the system-
atic uncertainty that comes from imposing these restrictions. Both of these Jeans modeling
techinques have seen wide-spread use.

Schwarzschild Orbit Modeling

Schwarzschild orbit modeling allows for more freedom in the model DF than the Jeans models
previously described. The original ideas behind these models were laid out by Schwarzschild
[45]. In order to generate a model, a model potential is first chosen. Next, a large number of
orbits are integrated within the potential, and their positions are recorded throughout the
orbit. Non-negative weights are then chosen for these orbits such that the weighted sum of the
individual orbital mass distributions reproduces the original assumed stellar mass density.
This results in a self-consistent DF for the original model. In the original Schwarzschild
[45], this method was used to find a self consistent triaxial galaxy model, showing that such
triaxial configurations can indeed be in equilibrium.

Schwarzschild [23] improved on this implementation further. In order to have as much
model flexibity as possible, a wide variety of orbits should be provided to the model.
Schwarzschild [23] demonstrated that for a somewhat realistic potential, orbit initial con-
ditions sampled in a pair of 3-dimensional subspaces of the full 6-dimensional phase space
gave a sufficient orbit sampling in triaxial potentials.

The next major step forward for this modeling technique came in a series of papers that
adapted Schwarzschild’s method of generating equilibrium models in order to directly model
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data from real galaxies. Rix et al. [46] provided the first example of a direct fit to real
galaxy data. In this paper, a spherical model of elliptical galaxy NGC 2434 was constructed
using techniques based on Schwarzschild’s method. The mass density was chosen to be a
combination of the spherically deprojected SB, together with a dark matter halo. The orbital
weights were then chosen to fit both the deprojected stellar density as well as the observed
kinematics as parameterized through GH moments. The likelihood of each model was then
determined based on the χ2 statistic, quantifying the goodness of fit for each model. Using
this technique Rix et al. [46] showed that a constant mass-to-light ratio was insufficient to
accurately reproduce the observed kinematics of NGC 2434. Instead, a dark matter halo
was needed to accurately match the outer velocity dispersion.

van der Marel et al. [47] and Cretton et al. [48] extended this technique to construct
axisymmetric models. van der Marel et al. [47] presented axisymmetric Schwarzschild models
of elliptical galaxy M32 were presented. These models demonstrate that the central velocity
dispersion is not able to be matched unless a central dark mass concentration, consistent
with an SMBH, is included in the potential. They estimate the central dark object to have
a mass of (3.4 ± 0.7) × 106M⊙. Cretton et al. [48] outlines the details of the modeling
implementation.

Since these original papers, axisymmetric Schwarzschild modeling has become widely
adopted as the most reliable stellar-dynamical mass modeling method. This same imple-
mentation has been used to measure numerous central black hole masses (eg. [49, 50, 51, 13,
52]). Other implementations have since arisen (eg. Gebhardt et al. [53] and Valluri, Merritt,
and Emsellem [25]) and been used to measure a large sample of central SMBH masses (eg.
[54, 55, 56, 57, 58]).

Triaxial Orbit Modeling

Despite Schwarzschild’s initial application of orbit superposition to constructing triaxial
models in 1978, it was not until van den Bosch et al. [59] that the first effort to infer
parameters from real galaxy data using triaxial models was published. van den Bosch et al.
[59] outlined the detailed implementation of this triaxial orbit code, and applied it to infer
the mass-to-light ratio and triaxial shape of elliptical galaxy NGC 4365. The shape recovery
of this code was then tested on a mock triaxial galaxy, with multiple additional tests in van
den Bosch and van de Ven [60]. These papers concluded that the shape could be accurately
recovered, but with an uncertainty estimate that is significantly larger than suggested by
the commonly used criterion. This alternative method of uncertainty estimation, discussed
further in chapter 4, is now widely used in the literature for triaxial shape recovery. Ven,
De Zeeuw, and Van Den Bosch [61] studied the ability for these orbit models to recover the
true DF within a known triaxial potential. The recovered DF was found to be qualitatively
consistent with the true DF.

This code has seen wide-spread use since its introduction. In addition to measure triaxial
galaxy shapes (eg. [59, 62, 63, 64, 65]), it has also been used to determine central SMBH
masses in triaxial galaxies (eg. [66, 67, 68, 69]).
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Another widespread use case has been to perform “nearly” axisymmetric modeling. The
shape is set to be nearly axisymmetric in the sense of having an intermediate-to-major axis
ratio that is close to 1. This reduces the dimension of the parameter space to be explored.
This method has been used for several MBH determinations (eg. [70, 71, 72, 73, 74]).

Despite its widespread use, several papers have reported shortcomings and inconsistencies
between this code and other methods. Ahn et al. [74] found that when the code was used to
generate “nearly” axisymmetric models, the best-fitMBH in ultracompact dwarf galaxy M59-
UCD3 was consistent with 0 in contrast to multiple other modeling methods which preferred
MBH = (4.2+2.1

−1.7) × 106 M⊙. More recently, den Brok et al. [69] found a similar result for
their triaxial models of PGC 046832. In terms of shape recovery, Jin et al. [75] reported a
bias in recovered axis ratios of 0.07 for the intermediate-to-major axis ratio and 0.14 for the
minor-to-major axis ratio. Biases of this size can result in models with significantly different
triaxial shapes and alignments.

In addition to potential biases on other mass parameters, measurements of triaxial galaxy
shapes are needed to recover the intrinsic orbital structure of galaxies. The allowed orbit fam-
ilies depend strongly on the galaxy’s shape [61]. As well, the brightest galaxy in a cluster is
thought to be well-aligned with the underlying dark matter halo [76]. Alignment of a triaxial
dark matter halo with respect to the line-of-sight is a major source of systematic uncertainty
in mass estimations from gravitational lensing [77]. Understanding and constraining the
intrinsic shapes of these galaxies may be useful for reducing these uncertainties.

1.3 Outline

This dissertation takes significant steps towards an understanding of the shapes of these
most massive SMBHs and their host galaxies. In chapter 2, I present a modified version
of the van den Bosch et al. [59] orbit modeling code capable of modeling axisymmetric
systems. Allowing modeling of axisymmetric systems and triaxial systems within the same
modeling framework allows for consistency checks between the two cases. The ability for
this code to accurately recover SMBH masses is validated on a simple mock dataset. This
version represents a significant improvement over the common practice in the field of using
nearly axisymmetric models which can lead to significant biases in recovered SMBH masses.
Additional improvements were also made to the code that extend beyond the axisymmetric
case, including a reduction in computing time of about 50%.

In chapter 3, I build upon the results of chapter 2 to present a further updated version of
the fully triaxial van den Bosch et al. [59] code and describe a general search strategy for the
triaxial parameter space. This version corrects significant errors in model kinematics allowing
for stable parameter recovery. The search strategy described requires far fewer expensive
model evaluations than commonly used grid-based strategies. This search strategy is then
applied to massive elliptical galaxy NGC 1453 to obtain a simultaneous measurement of its
central SMBH, mass-to-light ratio, dark matter halo, and 3-dimensional shape.
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Chapter 4 presents a validation of this final code version. I present a new code for
generating mock galaxy observations. This code is then used to generate both axisymmetric
and triaxial galaxy models to validate both the axisymmetric and triaxial versions of the
updated orbit modeling code. Unlike previous shape recovery tests with triaxial galaxy
models which have adopted ad hoc confidence levels, I have employed consistent confidence
level estimation between the axisymmetric and triaxial cases. The improvements outlined
in prior chapters resulted in recovered parameters that are dramatically more accurate than
any prior published recovery tests.

While chapters 2, 3, 4 address dynamical modeling of individual massive ellipticals, chap-
ter 5 explores the photometric properties of the local population of massive elliptical galaxies.
This chapter presents deep infrared images and measurements of the scaling relations for the
most luminous volume-limited sample of galaxies in which these relations have been mea-
sured. Our results are consistent with the conclusion that massive ellipticals form from
dissipationless mergers, suggesting that the MBH − L relation will be a better predictor of
central SMBH mass than the MBH − σ relation for these galaxies.
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Chapter 2

Modeling of Axisymmetric Galaxies

With the goal of measuring shapes of triaxial galaxies, it makes sense to start with the sim-
pler case: axisymmetry. While axisymmetric orbit models have been utilized for decades,
these models are manifestly axisymmetric. The azimuthal symmetry is used to reduce the
orbit integration to 2-dimensions, and the resulting kinematics are manifestly bisymmetric.
This is qualitatively different than the “nearly axsiymmetric” models that have been run in
several cases in the literature. In fact, Ahn et al. [74] found that while manifestly axisymmet-
ric models preferred a non-zero MBH, consistent with Jeans modeling, nearly axisymmetric
models within the van den Bosch et al. [59] preferred no central black hole. In early tests,
I found similar behavior for models of NGC 1453. This chapter explores the process of
generating axisymmetric models within a triaxial orbit modeling code. This chapter was
originally published as:

Matthew E. Quenneville, Christopher M. Liepold, and Chung-Pei Ma. “Dynamical Mod-
eling of Galaxies and Supermassive Black Holes: Axisymmetry in Triaxial Schwarzschild
Orbit Superposition Models”. In: The Astrophysical Journal, Supplement 254.2, 25 (June
2021), p. 25. doi: 10.3847/1538-4365/abe6a0. arXiv: 2005.00542 [astro-ph.GA].

2.1 Introduction

The orbit superposition method of Schwarzschild [45] enables efficient construction of self-
consistent and equilibrium mass models of galaxies. The basic procedure consists of two
steps: integrating a representative set of orbits in a static triaxial gravitational potential,
and finding weights for these orbits such that their superposition reproduces the assumed
mass distribution.

The orbit superposition method has been extended to include kinematic information and
used to determine mass distributions in real galaxies, starting with studies such as Pfenniger
[79], Richstone and Tremaine [80, 81], and Rix et al. [46]. From the quality of the fit to both
kinematic and photometric data, this method can be used to assess the relative likelihood



CHAPTER 2. MODELING OF AXISYMMETRIC GALAXIES 14

of a range of mass models and to determine best-fit mass parameters such as MBH, stellar
mass-to-light ratios, galaxy shapes, and dark matter halo parameters.

Due to the large number of orbits needed to sample the relevant phase space, the orbit
superposition method is computationally expensive. To reduce the number of orbits and the
dimensions of the model parameter space, a few orbit-based numerical codes have been de-
veloped for axisymmetric systems (e.g., [48, 53, 82, 25, 13]). Many dynamical measurements
of MBH from stellar kinematics have been obtained using these axisymmetric orbit codes.

Triaxiality allows for more general galaxy shapes and additional orbit types, but model-
ing orbits in triaxial potentials comes at the cost of increased complexity and computation
time. van den Bosch et al. [59] presented a triaxial orbit-based code capable of comparing
directly to observations, using an orbital sampling scheme based on Schwarzschild [23]. Ven,
De Zeeuw, and Van Den Bosch [61] performed recovery tests of this code for analytically
tractable triaxial potentials (excluding central black holes). Only a handful dynamical de-
terminations of MBH have been obtained using triaxial models from this code [83, 67, 84].
Several additional MBH were determined using this code in the (nearly) axisymmetric limit
[70, 71, 72, 73, 74]. This code has also been used to construct axisymmetric and triaxial
galaxy models to determine stellar dynamics and dark matter distributions for a wide range
of galaxies (e.g., [62, 63, 65]). Vasiliev and Valluri [85] recently presented a new triaxial
orbit-based code using a different method for phase space sampling and orbit initialization;
the method was tested on mock data but had not been applied to real data.

An important test of the orbit superposition codes is the ability to produce consistent
results between an axisymmetric code and a triaxial code in the axisymmetric limit. We
note that the code by van den Bosch et al. [59] is written for triaxial potentials and “is
not capable of making a perfectly axisymmetric model” [83]. Studies that attempt to run
it near axisymmetry and then compare with results from axisymmetric codes have reached
conflicting conclusions. For instance, van den Bosch and de Zeeuw [83] used their triaxial
code to construct (nearly) axisymmetric models for M32 and NGC3379, and found the mass-
to-light ratios and MBH to be consistent with those from earlier studies using axisymmetric
codes ([47, 86, 50] for M32; [53, 51] for NGC 3379). Ahn et al. [74], on the other hand,
found a puzzling global χ2 minimum at MBH = 0 while using this triaxial code to perform
axisymmetric modeling of the ultracompact dwarf galaxy M59-UCD3. They found this
minimum to be inconsistent with the best-fit non-zero MBH from Jeans modeling and the
axisymmetric orbit code of Cappellari et al. [13].

It is the purpose of our recent work [87] and this paper to investigate how to modify the
van den Bosch et al. [59] code to enable it to handle properly both axisymmetric and triaxial
systems. Since no galaxy in nature is likely to be exactly axisymmetric, it may appear that
we are taking a step backwards in examining the axisymmetric limit of a triaxial code. While
our next goal is indeed to adopt the more realistic triaxial potentials, we believe that one
critical test of a triaxial code is its behavior in the simpler, axisymmetric limit. Such a study
– the main goal of this paper – is a particularly important step in the quest for dynamical
MBH measurements in view of the facts that almost all existing MBH measurements have
been obtained assuming exact axisymmetry, and that the aforementioned recent comparison
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of axisymmetric and triaxial codes have led to unresolved conflicting results.
In Liepold et al. [87], we described a set of recipes and code changes for achieving ax-

isymmetry. We then performed proper axisymmetric orbit modeling using the revised code
to obtain a newMBH measurement for the massive elliptical galaxy NGC 1453, a fast rotator
in the MASSIVE survey [88] well suited for axisymmetric orbit modeling. Similar to Ahn
et al. [74], we had encountered difficulties in constraining MBH in NGC 1453 when we used
the original code with comparable settings. Through extensive testing, we came to two main
conclusions: (1) higher Gauss-Hermite moments (beyond the typically used h4) of the line-
of-sight velocity distributions (LOSVDs) are needed to fully constrain the orbital weights,
and (2) the orbit libraries need to be modified to satisfy axisymmetry. The use of higher
moments is described in detail in Liepold et al. [87]. Here, we focus on the construction of
axisymmetric orbit libraries in a triaxial orbit code.

In this paper, we provide a full discussion of the required steps to axisymmetrize the
model and the various modifications that we have implemented to the triaxial code by van
den Bosch et al. [59]. The code was never given a name; we will refer to it as the TriOS
(“Triaxial Orbit Superposition”) code from this point on. In Section 2.2, we provide some
background information about the implementation of the orbit superposition method in this
code. We focus on four topics that are pertinent to subsequent discussions: the three major
orbit types in a triaxial potential (Section 2.2), orbit sampling and initialization (Section 2.2),
orbit integration (Section 2.2), and parameters used to quantify triaxial shapes (Section 2.2).

In Section 2.3, we give an in-depth discussion of the three main ingredients for axisym-
metry listed in Section 4.1 of Liepold et al. [87]: axisymmetrization of short-axis tube orbits
(Section 2.3), criteria for how to exclude long-axis tube orbits (Section 2.3), and exclusion
of box orbits (Section 2.3).

We have made additional improvements and corrections to the code (Section 2.4). We
identify a subset of slowly precessing quasi-planar orbits that are misclassified and are “mir-
rored” improperly in the orbit library (Section 2.4). We correct an issue with the zero point
of the logarithmic potential for the dark matter halo that would otherwise render energy
conservation checks ineffective in the code (Section 2.4). We are able to speed up the total
runtime of a mass model by a factor of 2 to 3 by a simple modification to how the point spread
function convolution is implemented in the code (Section 2.4). An improvement in setting
the intrinsic mass grid used to constrain stellar density profiles is described in Section 2.4.
Finally, we illustrate the effects of these changes in the case of NGC 1453 (Section 2.5).

Three appendices are included as well. Appendix A derives a simple analytic criterion for
the existence of long-axis tube orbits within a model. Appendix B outlines a change in the
thin orbit finding algorithm that must be made to the TriOS code in order to generate the
correct orbit sampling. Finally, Appendix C presents a mock recovery test demonstrating
the ability of our revised TriOS code to recover the input mass parameters.
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2.2 Orbit Modeling Background

A summary of the implementation of the Schwarzschild orbit superposition method in the
TriOS code is given in Section 4 of Liepold et al. [87]. Here we focus on the topics relevant for
subsequent discussions of axisymmetry (Section 2.3) and code modifications (Section 2.4).

In this paper, we use a Cartesian coordinate system in which the x, y, and z axes are
directed along the intrinsic major, intermediate, and minor axes of the galaxy, respectively.
The z-axis is therefore the symmetry axis of an oblate axisymmetric potential, and the x-axis
is the symmetry axis of a prolate axisymmetric potential. We focus on oblate axisymmet-
ric systems in this paper, although our discussions can be easily modified for the prolate
axisymmetric case.

Orbit Types in a Triaxial Potential

In a static triaxial gravitational potential, time invariance is the only global continuous
symmetry of the Hamiltonian, H. By Noether’s theorem, this symmetry gives rise to con-
servation of energy as the only “classical” integral of motion. This conservation law restricts
the allowed phase space for a given orbit from the full six phase space dimensions to a five
dimensional subspace defined by the energy H = E. An integral that reduces the allowed
phase space dimension in this way is referred to as an isolating integral.

Numerical studies have revealed that orbits in many potentials often conserve two addi-
tional “non-classical” isolating integrals of motion [45], which we refer to as I2 and I3. These
additional integrals do not typically have simple analytical expressions nor correspond to
global symmetries of H. Orbits that conserve three (or more) isolating integrals of motion
are referred to as regular. These regular orbits often fall into one of three main orbit types:
short axis tubes, long axis tubes, and boxes.

Both types of tubes have a fixed sense of rotation. For short-axis tubes, the component
of angular momentum along the potential’s minor axis, Lz, does not change sign. Similarly,
for long-axis tubes, the component of angular momentum along the potential’s major axis,
Lx, does not change sign. For box orbits, all three components of angular momentum change
sign, leaving no fixed sense of rotation. Box orbits also have the property of touching the
equipotential surface, Φ(x, y, z) = E, at some point during their trajectory. Intermediate
axis tube orbits are typically unstable in triaxial models [89].

A triaxial system generally admits all three of these main orbit types. For oblate axisym-
metric systems, the orbit structure is simpler because Lz is an integral of motion, and only
short-axis tubes are present. Similarly, for prolate axisymmetric systems, Lx is an integral
of motion and only long-axis tubes are present.

Orbit Sampling and Initialization

The set of initial conditions (referred to as a start space) should sample over all orbit types
supported by the potential. Even though regular orbits in a triaxial potential conserve energy
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Figure 2.1: Two examples of the initial orbit locations in the x-z start space. Two nearly
axisymmetric models for massive elliptical galaxy NGC 1453 are shown: (left) triaxiality
parameter T = 0.002, (luminosity weighted) axis ratio p = 0.9997, and viewing angles
(θ, ϕ, ψ) = (89◦, 45◦, 90.001◦); (right) T = 0.05, p = 0.993, and (θ, ϕ, ψ) = (89◦, 45◦, 90.026◦).
Both models have the best-fit MBH, mass-to-light ratio, and dark matter halo from Liepold
et al. [87] and assume the orbit sampling parameters (NΘ, NR, NDither) = (9, 9, 3) (see Sec-
tion 2.3). In each panel, one energy is shown, where the energy is chosen such that the
potential is dominated by the stellar mass. Each symbol represents the initial location for
a single trajectory, which are bundled with adjacent trajectories to form one dithered orbit.
The long-axis tubes (red crosses) are all contained within the angle η of the z-axis for both
values of T , where η and T are related by Equation (2.2). In general, more triaxial potentials
contain a larger fraction of long-axis tubes in the x-z start space.

plus two additional integrals of motion, the non-classical integrals of motion, I2 and I3, may
not be the same quantities for each orbit type [90, 41]. Thus, for a given energy, each orbit
type can be sampled by a 2D start space, but the start spaces for the different orbit types
cannot necessarily be combined into a single 2D start space.

Schwarzschild [23] argued that a 4D space can guarantee that all orbit types of a given
energy are sampled, and further suggested that a pair of 2D start spaces is sufficient for
sampling phase space in realistic galaxy potentials. The first of these start spaces, the x-
z start space, is defined by sampling over a grid of points in the x-z plane, and setting
y = vx = vz = 0 and vy from v2y = 2[E −Φ(x, 0, z)] for a given E. For simplicity, vy is taken
to be positive and a second copy is added to the orbit library with the velocity direction
flipped. Two examples of this x-z start space are shown in Figure 2.1.
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Typically, tube orbits will pass through the positive quadrant of the x-z plane perpendic-
ularly at two points, separated by the thin orbit curve (see Figure 2.1). Orbits launched along
that curve will perpendicularly pass through the plane at a single point, so the curve can be
found by iteratively launching orbits at different radii to identify those which pass through
the x-z plane in a thin curve (see Appendix B). Each orbit in the x-z start space passes
once inside and once outside the thin-orbit radius, so the code avoids double counting by
initializing orbits only between the thin-orbit curve and the equipotential where E = Φ(r),
as shown by the crosses in the examples in Figure 2.1. All three main orbit types pass
through this start space.

The second 2D start space proposed by Schwarzschild [23] is referred to as the stationary
start space. In this start space, orbits are started from rest on the equipotential surface and
are sampled over solid angle. Since tube orbits never come to rest, box orbits will be the only
main orbit family in this start space. By combining the x-z start space that samples mainly
tube orbits with the stationary start space that samples mainly box orbits, Schwarzschild
[23] suggests that any remaining unsampled region of phase space is likely to be small.

The TriOS code is designed for static triaxial potentials that possess reflection symmetry
along each of the three principal axes. Under this assumption, any orbital property only
needs to be calculated in one octant; it can then be “mirrored” into the other seven octants
by symmetry. Taking advantage of this symmetry, the code initializes orbits only in one
octant (x, y, z > 0) and integrates only these orbits. Seven additional copies of each orbit
are then created by simply mirroring along the three axes. The details are described in
Section 4.5 of van den Bosch et al. [59] and the mirroring scheme is given in Table 2 there.
A key feature to note in Table 2 is that the exact mirror procedure (i.e., how the signs of the
velocity components are flipped in each octant) depends on whether the orbit is a short-axis
tube, long-axis tube, or box. The orbits therefore must be classified first.

To classify an orbit, the code determines how the angular momentum components change
sign over the course of its integrated trajectory and uses these rules: (1) short-axis tubes, if
Lx and Ly flip signs while Lz does not, (2) long-axis tubes, if Ly and Lz flip signs while Lx

does not, and (3) box orbits, if all three angular momentum components change signs. The
velocities are mirrored in order to maintain the orbit’s sense of rotation. If an orbit does not
fall into any of these categories, its velocity is mirrored to have zero angular momentum.

Orbit Integration

The TriOS code uses the DOP853 explicit Runga-Kutta integrator with order 8(5,3). The
integrator performs adaptive time stepping to ensure that the relative error in the positions
and velocities are below a set threshold, typically 10−5. After each orbit is integrated,
a relative energy tolerance is used to check energy conservation. If the change in energy
exceeds this tolerance (typically set to 10%), it is re-integrated with a smaller integration
error threshold.

The default integration time for each orbit is 200 dynamical times, where a dynamical
time is set to the period of a closed elliptical orbit of the same energy. To enforce smooth-
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ness of the recovered distribution function, the orbital initial conditions can be “dithered”
by combining N3

Dither trajectories corresponding to nearby initial conditions. By merging
trajectories in this way, each orbit represents a small volume of the start space rather than
a single point. This results in smoother orbital properties without a significant memory
increase, since only the bundled orbital properties are stored.

After integration, the trajectory of each orbit is interpolated onto a set of points (typically
50,000) that are uniformly spaced in time. These interpolated points are then stored and
used for computing orbital properties. Once the orbit libraries are constructed, weights are
found for each orbit to reproduce the observed surface brightness (SB) distribution, the
LOSVDs, and intrinsic 3D mass distribution.

Viewing Angles, Axis Ratios, and Triaxiality

Three viewing angles (θ, ϕ, ψ) can be used to relate the intrinsic and projected coordinate
systems of a triaxial galaxy [21]. The two angles θ and ϕ describe the orientation of the
observer’s line of sight with respect to the intrinsic axes of the galaxy. The angle ψ specifies
the remaining degree of freedom – rotation of the galaxy around the line of sight. The angle
ψ = 90◦ corresponds to an oblate axisymmetric potential. In the oblate axisymmetric limit,
θ is the inclination with θ = 90◦ corresponding to edge-on, and ϕ describes rotations about
the symmetry axis.

These three viewing angles are related to the intrinsic axis ratios p and q, where p = b/a
is the intrinsic intermediate-to-major axis ratio, q = c/a is the intrinsic minor-to-major
axis ratio, and a, b, c are the lengths of the three principal axes of a triaxial system (with
c ≤ b ≤ a). A third parameter, u = a′/a, represents a compression factor due to projection,
where a′ is the major axis of the projected shape on the sky; u = 1 corresponds to the intrinsic
major axis lying in the plane of the sky, while u = p corresponds to the intrinsic intermediate
axis lying in the plane of the sky. These quantities obey the inequality 0 ≤ q ≤ p ≤ u ≤ 1.
The relationship between the viewing angles, intrinsic axis ratios and observed axis ratio is
given in Equations (7)-(10) of van den Bosch et al. [59]. In addition, a triaxiality parameter
is often used:

T =
1− p2

1− q2
. (2.1)

This parameter ranges from 0 for oblate axisymmetry to 1 for prolate axisymmetry, with
values in between indicating a triaxial shape.

The oblate axisymmetric limit can be achieved by setting either p = 1 or ψ = 90◦, but for
numerical reasons, the code does not run when ψ is exactly 90◦. As we discussed in Liepold
et al. [87] and elaborate below (Section 2.3), axisymmetry in the code can be achieved only
with carefully chosen values of ψ or p.
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2.3 Ingredients for Achieving Axisymmetry

In this section, we discuss a number of steps that need to be taken to generate orbit-
superposition models in the oblate axisymmetric limit using the TriOS code. It is straight-
forward to modify these steps for the prolate axisymmetric limit. In Appendix C, we test
the modified TriOS code on a mock dataset showing that we can accurately recover input
parameters.

Axisymmetrize Short-Axis Tube Orbits

As we described in Section 2.2, a triaxial potential exhibits reflection symmetry along each
principal axis, allowing the TriOS code to initialize orbits in only one octant of the x-z start
space. These orbits are then mirrored via eight-fold reflections about the principal axes into
each of the other seven octants. This setup is not meant for axisymmetric systems, in which
the orbit library should respect azimuthal symmetry about the symmetry axis.

To enable modeling axisymmetric systems, we have implemented an axisymmetrized
version of the orbit library by creating 80 copies of each short-axis tube orbit in the original
loop library: 40 copies rotated evenly through an angle 2π about the short axis with velocities
rotated to preserve Lz, and another 40 copies generated by flipping the sign of z and vz in
each of the 40 rotations. We choose 40 rotations, as this gives several copies per quadrant,
with a comparable density to the start space grid sampling. Once we perform this operation,
it is unnecessary to perform the eight-fold reflections in the original code. A similar rotation
scheme was tested on mock data with no central SMBH in Hagen, Helmi, and Breddels [91].

The net result of our axisymmetrization process is to create a library of short-axis tube
orbits in the TriOS code that samples the azimuthal angle uniformly with effectively equal
orbital weights. In order for this procedure to be justified, the library should consist solely
of short axis-tubes. In the next section, we show how to ensure that no long-axis tubes occur
in this library.

Exclude Long-Axis Tube Orbits

In an oblate axisymmetric potential, the long-axis tube orbits become unstable since there
is no longer a single preferred long axis. These orbits therefore should not be present in the
orbit library. 1

As we discussed in Section 2.2, the potential is oblate axisymmetric when ψ is set to 90◦

exactly, and long-axis tubes should be absent in this limit. For numerical reasons, however,
the code does not run when ψ is set to 90◦ within machine accuracy. Prior work using
this code for black hole mass measurements in the axisymmetric limit chose either |ψ − 90◦|
between 0.001◦ and 0.01◦ [72, 74], or an axis ratio of p = 0.99 [70, 71, 73]. As we first pointed

1Similarly, in the case of a prolate axisymmetric potential, the short-axis tube orbits become unstable
and should be absent.
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out in Liepold et al. [87], some of these values may not have been close enough to the desired
axisymmetric values to exclude long-axis tubes. Here we provide a detailed explanation.

We use two examples of the x-z start space in Figure 2.1 to illustrate how long-axis tube
orbits are initialized in the code. As shown in Appendix A, long-axis tube orbits in many
realistic triaxial potentials are confined to pass through the x-z start space within an angle η
from the z-axis. The angle η depends on the shape of the potential, and we find the relation
between η and the triaxiality parameter T (Equation 2.1) to be well approximated by

η = tan−1

√
T

1− T
. (2.2)

This is demonstrated in Figure 2.1 where the black line at angle η separates the short-axis
tube orbits (black crosses) from the long-axis tube orbits (red crosses). As the potential
becomes more oblate axisymmetric (T = 0.05 in the right panel vs. T = 0.002 in the left
panel), η becomes smaller and the area in the x-z start space occupied by long-axis tubes
shrinks. To effectively achieve oblate axisymmetry, η needs to be small enough so that no
orbits are sampled within an angle of η of the positive z-axis. Two additional mass models
with higher triaxiality, (T = 0.25 and 0.75) are shown in Appendix A and Figure A.1.
Equation (2.2) again provides an excellent approximation for the angle demarcating the
long-axis and short-axis tube orbits in the x-z start space.

Whether orbits are sampled within the angle η on the x-z plane depends on the input
parameters. For a given energy, the code starts the orbits on a grid of NR radii between the
inner and outer thin orbit radii and NΘ angles between 0◦ and 90◦ in the positive quadrant
on the x-z plane [59]. The code further allows for dithering, where N3

Dither nearby initial
conditions, adjacent in (E,R,Θ), are bundled together to improve the phase space sampling.
Orbits are therefore sampled at a total of NΘ×NDither angles, where the first angle from the
z axis is chosen to start at half of the grid spacing (i.e., at an angle of (π/2)/(2NΘNDither)
from the z-axis). The criterion to satisfy oblate axisymmetry is therefore

1

2NΘNDither

π

2
≳ η. (2.3)

The two examples of NGC 1453 shown in Figure 2.1 have NΘ = NR = 9, NDither = 3,
and 27 × 27 orbits initialized in the x-z start space. The orbits closest to the z-axis are
therefore at an angle of ≈ 1.67◦ away. These orbits lie within the demarcation angle η of
Equation (2.2) for either model in Figure 2.1: η = 2.56◦ for T = 0.002 (left) and η = 12.9◦ for
T = 0.05 (right). Both models therefore violate Equation (2.3) and contain long-axis tubes.
This provides the physical explanation for our statement in Liepold et al. [87] that even
|ψ− 90◦| as small as 0.001 (left panel) is not sufficiently close to 90◦ to achieve axisymmetry
in our models.

To extend the discussion beyond the two specific mass models shown in Figure 2.1, we
illustrate in Figure 2.2 the relation between T and ψ for nearly axisymmetric models of
NGC 1453 (top panel), and the corresponding fraction of long-axis tubes that are initialized
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in the x-z plane (bottom panel). The inclination angle θ is assumed to be 89◦ here, and
the shaded band indicates the additional dependence of T on ϕ. Figure 2.2 shows that
T ≲ 5 × 10−4 is needed to exclude long-axis tube orbits in this case. The corresponding
requirement on ψ is |ψ − 90◦| ≲ 8.7 × 10−6 for ϕ ∼ 1◦, 89◦ and |ψ − 90◦| ≲ 2.5 × 10−4 for
ϕ ∼ 45◦. We advocated |ψ − 90◦| = 10−9 in Liepold et al. [87], which safely excluded all
long-axis tube orbits.

Earlier work using the code in the near axisymmetric limit does not typically sat-
isfy the criterion in Equation (2.3). For M59-UCD3, Ahn et al. [74] used (θ, ϕ, ψ) =
(85◦,−49.99◦, 89.99◦), which we find to correspond to T = 0.004 and η = 3.64◦. The orbit
sampling parameters were not explicitly given for the runs using the triaxial code. Assuming
the same parameters used in their runs with the axisymmetric orbit code (NΘ = 8, NDither =
6), we find that the innermost ray would be at an angle of 0.94◦ from the z-axis, which is
well inside η = 3.64◦, and therefore violates the criterion in Equation (2.3).

For M60-UCD1 [70], NGC 1271 [71], and Mrk 1216 [73], each paper quoted an axis ratio
of p = 0.99. The minimum possible triaxiality with this value of p is T = 1−p2 = 0.0199 (in
the unrealistic limit of a razor-thin disk with q = 0), leading to a minimum η of 8.1◦. For
NGC 1271 and Mrk 1216, NDither = 5 was used, while NΘ was set to 8 and 9 respectively.
Thus, orbits were sampled starting at 1.125◦ and 1◦ away from the z-axis, indicating that
neither satisfies the criterion in Equation (2.3). For M60-UCD1, not enough information is
given about the orbit sampling to determine whether the criterion is satisfied. However, for
typical orbital sampling parameters quoted above, the criterion in Equation (2.3) would not
be satisfied.

The modeling of the NGC 1277 black hole used NΘ = 9 and NDither = 5 [72]; the
innermost ray of initial orbits therefore lies at 1◦ from the positive z-axis. The complete
shape information was not given in the paper, but private communication indicated that
(θ, ϕ, ψ) = (75.3◦, 71.6◦, 90.001◦) was used. We find this set of viewing angles to correspond
to T = 0.0002 and η = 0.85◦, narrowly satisfying the criterion in Equation (2.3).

We note that the presence of the long-axis tube orbits in the orbit library does not nec-
essarily imply that they receive significant weights after fitting to observational constraints
for a given galaxy. Direct tests would need to be performed for each galaxy to assess the
impact of these orbits on previous work.

Exclude Box Orbits

As we discussed in Section 2.2, all orbits in the (oblate) axisymmetric limit conserve Lz.
Box orbits in this limit have Lz = 0 and therefore have similar properties as the tube orbits
with small Lz. In this case, as long as angular momentum is sufficiently sampled by the tube
orbits, there is no need to include box orbits explicitly.

The TriOS code devotes an entire library to box orbits and initializes them in the station-
ary start space (Section 2.2). One can modify the code to exclude this library when needed.
We use a simpler approach without changing the code itself: we skip running the orbit in-
tegration routine orblib f.f90 for the stationary start space, and replace the box library
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Figure 2.2: (Top panel) Relationship between the viewing angle ψ and the triaxiality of
the deprojected stellar density. Exact oblate axisymmetry has T = 0 and ψ = 90.0◦. The
other viewing angle θ is taken to be 89◦, and ϕ is varied from 1◦ to 89◦. (Bottom panel)
Fraction of long-axis tube orbits in the x-z start space as a function of the triaxiality of the
stellar density near the oblate axisymmetric limit. The same mass model and orbit sampling
parameters for NGC 1453 shown in Figure 2.1 is assumed here. In this example, long-axis
tube orbits begin to appear when T is as small as ∼ 5 × 10−4 , or |ψ − 90◦| as small as
∼ 9×10−6, and the fraction of these orbits increases monotonically as the potential becomes
more triaxial, reaching ∼ 6% at T = 0.05.
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with a copy of the x-z library in the input file for the weight-finding routine triaxnnls.f90.
These modifications typically reduce the total computation time of the original code by more
than half.

While box orbits are unnecessary in the axisymmetric limit, they also should be harmless
and not affect the results if included. As a test, we have run our revised code including
the box library for comparison. Since the box orbits launched at different azimuthal angles
are allowed to have different weights in the triaxial code, we have to impose an additional
constraint of equal weights to enforce axisymmetry in the box library. Once these weights
are forced to be equal, we indeed find similar results as the case when the box library
is excluded altogether. The case where the box library weights are free to differ between
azimuthal angles is discussed in Section 2.5. To reduce computational cost, we recommend
excluding the stationary start space for axisymmetric models.

For a triaxial potential, we note that box orbits can also occur in the x-z start space
(e.g., Figure 1 of [23]). However, the region in the x-z start space that would generate box
orbits shrinks as the potential becomes increasingly axisymmetric. When exact axisymmetry
is reached, only the orbits that begin exactly on the equipotential surface in the x-z start
space have Lz = 0 (since they have zero initial velocities) and are box orbits. The TriOS
code does not sample orbits lying exactly on the equipotential curve in the x-z start space,
so the number of box orbits will shrink to 0 as axisymmetry is approached. In other orbit-
based codes that assume axisymmetry from the start, the Lz = 0 orbits also are not usually
sampled, as they are presumed to be represented by the tube orbits with small but non-zero
Lz (e.g., [48, 82]).

2.4 Additional Code Fixes and Improvements

We have made several modifications in the TriOS code in addition to those described in
Section 2.3. These modifications include corrections, improvements and speedups that are
general to the code regardless of the issue of axisymmetry. We describe these changes in this
section.

Correct Orbit Misclassifications

As we described in Section 2.2, the TriOS code assumes the triaxial potential to possess
reflection symmetry along each of the three principal axes and integrates only orbits that
are initialized in one octant of space to save computation time. It then uses an eight-fold
reflection scheme to generate seven more copies of each orbit. How the orbits are “mirrored”
depends on whether the orbit is classified as a short-axis tube, long-axis tube, or box orbit.

We have discovered that the mirroring scheme in the original code misclassifies a subset
of orbits for which the angular momenta vary on timescales slower than the integration
time. We find this to happen in at least two situations. First, in nearly oblate axisymmetric
models, many box orbits in the stationary start space tend to be misclassified as short axis
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tubes due to the near conservation of Lz. Because Lz varies slowly, it may not change sign
throughout the integration time. However, these orbits have very low angular momentum,
so it is unlikely that mirroring these orbits to preserve Lz would cause significant issues in
the models themselves.

The second situation occurs in regions of space where the potential is nearly spherical,
e.g., deep within the SOI of an SMBH, or in the outer part of a galaxy where a (spherical) dark
matter dominates the potential. Some orbits in these regions follow quasi-planar rosettas or
Keplerian-like ellipses with nearly constant angular momentum vectors, consistent with prior
studies of orbits near a central point mass [92, 93, 94]. For the subset of orbits with precession
time longer than the integration time, no component of their angular momentum changes
sign over the entire integrated trajectories. These orbits therefore do not fall into any of the
categories listed above and are mirrored incorrectly to have no net angular momentum.

These quasi-planar orbits will not be significant in most Schwarzschild models, as they
are only present at extreme radii. We checked this in our models of NGC 1453, with the prop-
erly axisymmetrized code as described in Section 2.3 using the lowest four Gauss-Hermite
kinematic moments as constraints. In this model, we find that ∼ 10% of the total weight
after orbital weight minimization is assigned to orbits that would have been quasi-planar
in the original version of the code (∼ 10% of the mass within the Mitchell apertures and
∼ 2% of the mass within the GMOS apertures). These relatively low percentages suggest a
minimal effect on the model for NGC 1453.

We expect the issues with orbit integration time and misclassification to be more severe
for galaxies with data that resolve well within the black hole’s sphere of influence (SOI), or
well beyond the stellar half-light radius, e.g., M87 and the Milky Way black hole. The effect
is also likely to be more significant if the galaxy has a net rotation at these radii.

We find a further issue with orbit classification in the orbital composition information
outputted in the file intrinsic moments.out. This file reports the mass fraction of box
orbits for each bin in the intrinsic spatial grid described in Section 2.4. In this case, however,
all orbits that are neither long-axis tubes or short axis-tubes are grouped together as box
orbits. Since this includes the quasi-planar orbits discussed above, the reported fraction of
true box orbits may be overestimated.

In our revised code for axisymmetric systems, these orbit misclassification issues are not
present because we manually assign all orbits as short-axis tubes and exclude all other orbit
types. We will discuss further these quasi-planar orbits in triaxial systems in Section 2.6.

Fix Zero-point Issues with the Logarithmic Halo

A logarithmic potential is often used to approximate the dark matter halo in prior orbit
modeling work. The spherical version of a logarithmic halo is given by

Φ(r) =
1

2
V 2
c ln

(
R2

c + r2
)
+ Φ0 , (2.4)
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where Rc is the core radius, and Vc is the circular velocity at large r:

Vc(r) =
Vc r√
R2

c + r2
. (2.5)

The zero point Φ0 can in principle be chosen arbitrarily; the original code set Φ0 = 0. In
practice, we find the choice of Φ0 = 0 and the use of physical units such as kilometers for all
distances to create numerical problems. The cause is simple: unlike other commonly used
dark matter potentials such as Hernquist [95] and Navarro, Frenk, and White [96] that are
negative at all locations and approach 0 at large r, the logarithmic potential with Φ0 = 0
is positive everywhere and grows unbounded at large r. Thus, for the other potentials,
|Φ(r)| can be interpreted as the local maximum kinetic energy for a bound orbit, but the
orbital binding energy is infinite in the logarithmic potential. Furthermore, with the choice
of Φ0 = 0, |Φ(r)| is much larger than the kinetic energy for all orbits in a logarithmic halo.
This is because the central potential energy value, Φ(0) = V 2

c ln(Rc), is much larger than
the maximum possible kinetic energy sampled by the orbits, which is Φ(rmax)−Φ(0), where
rmax is the largest equipotential radius of any orbit in a model.

To illustrate this point, we plot the ratio of |Φ(r)| and |Φ(rmax) − Φ(0)| for the best-fit
logarithmic dark matter halo of NGC 1453 [87] in Figure 2.3 (dotted curve). Additional
contributions to the potential from the stars and black hole reduce the value of the potential
energy and help lower this ratio (dot-dashed and dashed solid curves), but the ratio is well
above unity for all relevant radii in all cases.

An unintended consequence of this large central offset is that even a ∼ 100% change in
the kinetic energy would contribute to only a tiny fraction of the total energy and would be
difficult to detect. The energy conservation checks in the code are therefore effectively not
performed for most orbits. While these numbers are worrying, we did not find the choice
of Φ0 = 0 to affect significantly the best-fit mass parameters of NGC 1453 in Liepold et al.
[87]. The reason for this particular case is that the orbit integrator happened to be accurate
enough to satisfy the energy conservation tolerance (set to the default 10%) even when this
conservation criterion was unchecked. There is, however, no guarantee that this would be
true for other galaxies or for parameters outside the ranges that we had explored.

To ensure energy conservation is checked in the code for the logarithmic potential, we
choose a different zero point

Φ0 = −Φ(r = 2rmax) , (2.6)

so that Φ(r) is negative for the entire allowed radial range of the orbits and approaches 0
outside the largest equipotential radius rmax. The resulting ratio of |Φ(r)| to |Φ(rmax)−Φ(0)|
for the best-fit model of NGC 1453 is shown by the solid line in Figure 2.3.

Our choice of Φ0 in Equation (2.6) also removes another issue that we have encountered
with the original code: the orbit start space was sometimes not calculated correctly for mass
models in which the black hole is either absent or has small mass compared to the stellar
component and the logarithmic halo. As discussed in Section 2.2 and shown in Figure 2.1,
the x-z start space of Schwarzschild [23] requires finding equipotential curves in the x-z
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plane. The code locates it by finding the equipotential radius for each of a series of angles
in the plane. For each angle, the equipotential radius is found via bisection with a relative
tolerance that is typically taken between 10−7 and 10−5. For Φ0 = 0, this tolerance again is
not enforcing the intended accuracy level due to the large central value of Φ. For NGC 1453,
this issue exists only for a few central equipotential radii and thus did not have a significant
impact on our results.

Speed Up Point Spread Function Implementation

The point spread function (PSF) of the relevant observations needs to be incorporated into
a mass model before the model is fitted to data to determine the orbital weights. The TriOS
code approximates the effect of the PSF by perturbing each trajectory at every stored time
step with a pair of δx and δy randomly drawn from the PSF, which is assumed to be a single
or multiple Gaussian functions. This scheme involves a large number of operations since an
orbit is typically stored at 50,000 points along the trajectory (see Section 2.2), and up to
∼ 106 orbits can be used to represent a single mass model.

The code generates each orbit perturbation by drawing two independent numbers, kx
and ky, from a uniform distribution over the interval (−1, 1) repeatedly until a pair with

k ≡ |⃗k| < 1 is found. The perturbations δx = kx
k

√
−2 ln(k2) and δy = ky

k

√
−2 ln(k2) are

then normally distributed. This large number of operations is not easily vectorized and is
computed sequentially.

We are able to speed up this process significantly using instead the Box-Muller transform,
which is easily vectorized. In this scheme, we draw a pair of independent numbers A and
B from the uniform distribution over (0, 1) and then construct the normal distribution with
δx =

√
−2 lnA cos(2πB) and δy =

√
−2 lnA sin(2πB). We have tested that the resulting

distributions of displacements are consistent with analytical PSFs to within the counting
error from the finite number of timesteps, and the consistency increases as expected when
the number of timesteps increases.

To benchmark the amount of speedup gained by our scheme, we note that PSF convo-
lution is one of several operations performed in the orbit library construction subroutine
orblib f.f90 in the code. This subroutine first integrates the orbits and generates the nec-
essary reflected or rotated copies of the orbits about the symmetry axes (see Section 2.3).
It then computes each orbit’s contribution to the 3D mass grid and projects each orbit onto
the sky plane. The projected trajectories are then perturbed according to the PSF as de-
scribed above. Finally, the subroutine determines each orbit’s contribution to each observed
kinematic aperture on the sky and stores the associated LOSVDs. The tasks performed in
this subroutine consume the bulk (> 90%) of the total runtime of the code (for one mass
model); much of the remaining time is spent on performing minimizations to find optimal
orbital weights.

To our surprise, our timing analysis of the various tasks executed in this subroutine
(using NDither = 5 and NGC 1453 as a test case) shows that the PSF portion of the code
(before implementing orbit axisymmetrization in Section 2.3) takes up∼ 55% of the run time,
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Figure 2.3: Illustration of the issue with setting the zero-point of the logarithmic potential
to Φ0 = 0 in Equation (2.4), as is assumed in the original code. As an example, we use the
best-fit mass model for NGC 1453 in Liepold et al. [87] with a logarithmic dark matter halo
of Rc = 15 kpc and Vc = 633km s−1. The ratio of the potential energy to the maximum
kinetic energy is plotted for this halo (dotted), halo plus stars (dot-dashed), and all three
mass components (dashed). When this ratio is much larger than 1, as is shown for a large
range of radius, even large errors in the kinetic energy would have little effect on the total
energy. Energy conservation is therefore effectively not enforced in the original code for a
logarithmic potential. The solid line shows the same ratio with all three mass components
included, but with the halo zero point set according to Equation 2.6.
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while the orbit integration itself only contributes ∼ 20%, and sky projections contributes the
remaining ∼ 25%. When we switch to the vectorized Box-Muller transform, the computation
time for the PSF step becomes negligible. We are therefore able to reduce the total runtime
of the code by a factor of ∼ 2 in this test.

The speedup is even more dramatic in our axisymmetrized version when the orbits are
copied azimuthally (Section 2.3). In this case, 80 (instead of 8) copies of each orbit are
projected onto the sky and perturbed by the PSF. We find ∼ 70% of runtime is spent on
the PSF portion with the original scheme, while our new scheme reduces the runtime by a
factor of ∼ 3.

Improve Intrinsic 3D Mass Grid

The TriOS code uses an intrinsic 3D spatial grid to constrain the stellar component in a model
to reproduce the 3D stellar density profile deprojected from the photometry of a galaxy. The
code calculates the mass contributed by each orbit as it passes through a spatial bin and
records this information during the stage of orbit library construction. At the subsequent
stage of orbital weight optimization, the superposition of the orbits is required to match the
input mass profile within a pre-specified precision (typically 1%) in each bin.

In each octant of this 3D spatial grid, the code uses azimuthal and polar bins for the two
angles, each linearly spaced between 0 and 90◦. The radial bins are logarithmically spaced
between rmin and rmax/2, where rmin and rmax are the innermost and outermost equipotential
radii used to determine the orbital energies sampled in the model. The innermost bin is then
extended down to r = 0 and the outermost is extended out to 100rmax.

For the outer boundary of the innermost mass bin, we find it preferable not to base the
value on rmin, which is used for a different purpose of specifying the innermost equipotential
radius for sampling orbital energy. Instead, we modify the code to make it an independent
parameter, which we set to be of similar scale as the PSF of the photometric data since these
are the data used to constrain the deprojected 3D mass density. To ensure that sufficient
orbits are used to represent the innermost mass bins, we recommend that rmin be set to be
smaller than the outer boundary of the innermost mass bin. In the case of NGC 1453, we
set the outer boundary of the innermost mass bin to be 0.03′′ and set rmin to 0.01′′.

For similar reasons, we allow the outermost mass bin’s edges to also be set independently
from the outermost equipotential radius, rmax. The remaining bin boundaries are then
logarithmically sampled between the outer boundary of the innermost bin and the inner
boundary of the outermost bin.

2.5 A Case Study: NGC 1453

We use the massive elliptical galaxy NGC 1453 reported in Liepold et al. [87] to illustrate the
effects of the modifications described thus far. In Liepold et al. [87], we demonstrated that
using more than 4 Gauss-Hermite moments was essential for obtaining robust constraints on
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Figure 2.4: Illustration of the changing MBH constraints in NGC 1453 as the orbit model
goes through the step-by-step axisymmetrization procedure described in Sections 2.3 and
2.4. The starting case (red dotted) uses the original code with typical (near) axisymmetric
parameters assumed in the literature (ψ = 90.001◦; see Section 2.5 for details). The end case
(black solid) uses our final axisymmetrized code including all changes from Sections 2.3 and
2.4. The four intermediate curves have all the code fixes described in Section 2.4, but have
different combinations of orbit types according to Sections 2.3 and 2.3. The left panel is for
models with orbital weights chosen by fitting to the first four Gauss-Hermite moments of the
LOSVDs determined from kinematic data, as is typical in the literature. The right panel uses
12 moments as constraints and shows tighter constraints on MBH, as is reported in Liepold
et al. [87]. The 1D χ2 in MBH is obtained by marginalizing over the stellar mass-to-light
ratio using a smoothed 2D χ2 landscape generated by Gaussian Process regression with a
squared-exponential covariance function [97]. The dark matter halo is fixed to the best-fit
logarithmic halo in Liepold et al. [87].
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the model LOSVDs. Below we examine the effects in both the 4-moment and 12-moment
cases, with the latter being our chosen configuration. We stress that the 4-moment case is
included here only for comparison purposes since this is the typical configuration used in the
literature. We have found the 4-moment case to lead to unconstrained higher moments and
spurious features in the LOSVDs for NGC 1453 (Figs. 10 and 11 of Liepold et al. [87]); the
resulting χ2 in this case should therefore not be trusted.

Fitting up to h4

We begin with the case labeled “up to h4” and “original Leiden version” in Figure 12 of
Liepold et al. [87]. This case is run with the original code, NDither = 3, NΘ = 9, and the
viewing angles (θ, ϕ, ψ) = (89◦, 45◦, 90.001◦), corresponding to a nearly oblate axisymmetric
potential with a triaxiality parameter of T = 0.002. As we discussed in Section 2.3, these
parameters are chosen to resemble those used in earlier studies, and the models include both
the x-z and stationary start spaces and contain all three major types of orbits: short-axis
tubes, long-axis tubes and box orbits. The left panel of Figure 2.1 illustrates the starting
locations of both short- and long-axis tube orbits in the x-z start space for one energy in
this configuration.

The 1D χ2 as a function of MBH (marginalized over the mass-to-light ratio) is shown
in the left panel of Figure 2.4 (red dotted curve). As first shown in Liepold et al. [87],
the favored model in this case contains no black hole. The χ2 minimum at MBH = 0 here
resembles the finding for the dwarf galaxy M59-UCD3 by Ahn et al. [74], which also used four
Gauss-Hermite moments as constraints and a set of viewing angles with a similar deviation
from axisymmetry.

Applying the code changes described in Section 2.4 results in minor changes in the χ2

contour for NGC 1453 (purple short dashed curve in Figure 2.4), but theMBH = 0 minimum
remains. In the next step, we exclude the box orbits and long-axis tube orbits as described
in Section 2.3. The box orbits are eliminated by the simple procedure in Section 2.3. To
remove the long-axis tube orbits, we choose a galaxy shape that is sufficiently axisymmetric,
as discussed in Section 2.3. For NGC 1453, we simply change ψ from 90.001◦ to (90+10−9)◦,
as was done in Liepold et al. [87]. This new value is far enough from 90.0◦ to avoid numerical
issues in the code but is close enough to 90.0◦ so that all of our orbits lie outside the long-axis
tube region in the x-z start space shown in Figure 1.

The effect of excluding these orbits on the best-fit parameter values for NGC 1453 is
significant. The preferred MBH is changed from 0 to 2.8 × 109M⊙ (green dot-dashed curve
in Figure 2.4a). Before their removal, box orbits generally accounted for less than 10-35%
of total mass, while long axis tube orbits accounted for less than 2%. Removing box orbits
(orange long dashed curve in Figure 2.4a) has a significant effect on MBH because box orbits
starting at different azimuthal angles are not forced to have equal weights in the original
code (Section 2.3). Removing the long-axis tubes (blue dashed curve in Figure 2.4a) has a
significant impact likely due to their ability to fit minor-axis rotation in triaxial potentials.
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Figure 2.5: Same as the left panel of Figure 2.4 but showing the azimuthal dependence of
the original code when ψ is chosen to be 90.001◦ and all three main orbit types are included
(red curves). Our final axisymmetrized code does not depend on ϕ and obeys azimuthal
symmetry.
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In addition to excluding the box and long-axis tubes, we describe in Section 2.3 the need
to enforce axisymmetry in the code by generating many azimuthally rotated copies of each
short-axis tube in the x-z start space. For NGC 1453, we find that the main effect on the
χ2 contour of this axisymmetrization procedure is to widen the minimum (black solid curve
in Figure 2.4a), as a broader range of orbital weights are able to fit the mass constraint for
each mass model.

The results presented thus far with the original version of the code all assumed a viewing
angle of ϕ = 45◦. When the model galaxy is perfectly axisymmetric, this angle is irrelevant
and the resulting χ2 landscape should be independent of ϕ. As a test, we have repeated the
run with the original code (using four Gauss-Hermite moments) with two other values of ϕ
(15◦ and 75◦) while keeping all other parameters fixed. The resulting χ2 as a function of
MBH for the three values of ϕ are shown in Figure 2.5. The dependence on ϕ indicates that
the mass models are indeed not consistent with axisymmetry. All three values of ϕ exhibit
the same preference for MBH = 0.

Fitting up to h12

We now examine models in which the orbital weights are constrained to fit the first 12 Gauss-
Hermite moments of the observed LOSVDs for NGC 1453. The first 8 moments are measured
from spectroscopic observations, while the 9th-12th moments are set to 0 with an error bar
based on the lower moments, as described in detail in Liepold et al. [87]. Even without
any of the modifications described in this paper, Liepold et al. [87] showed that the original
code performed better when 12, rather than 4, moments were used as constraints. The right
panel of Figure 12 in Liepold et al. [87] illustrated how the best-fit black hole mass moved
from MBH = 0 for 4 moments (green curve) to MBH = 2.2 × 109M⊙ for 12 moments (black
curve). The result from the original code, however, was highly dependent on the number of
input moments and showed no convergence even at 12 moments. By contrast, after the orbit
and code modifications were implemented, the main effect of increasing the constraining
kinematic moments was to tighten the error bars while leaving the best-fit values largely
unchanged (left panel of Figure 12 in Liepold et al. [87]).

Here we examine the progression of changes after each of the key modifications described
in Sections 2.3 and 2.4 is implemented, all for the case of using 12 moments as constraints.
The right panel of Figure 2.4 shows that implementing the code fixes described in Section 2.4
(purple dot-dot-dashed curve) and removing long-axis tubes (blue dot-dashed curve) move
the best-fit MBH by ∼ 10% in comparison to MBH ∼ 2.2 × 109M⊙ from the original code
(red dotted curve). Removing the box orbits increases MBH to ∼ 2.9 × 109M⊙ (orange
dot-dash-dashed and green dashed curve). The subsequent axisymmetrization of short-axis
tubes (Section 2.3) has essentially no effect (black solid curve).

To ensure that the number of orbits included in the modeling is sufficient, we tested the
effect of increasing the number of orbits. We increased the density of energy sampling by
a factor of 4, from 40 energy values to 160 over the same range. With 4 times the number
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of orbits, the best-fit MBH changed by less than 3%, and the 1σ error changed by less than
10%, demonstrating that our results do not depend on the exact number of orbits used.

2.6 Conclusion

We have presented a revised version of the triaxial orbit superposition code by van den
Bosch et al. [59], which we refer to as the TriOS code, that is capable of properly modeling
axisymmetric systems. The original code was designed for triaxial systems with (discrete)
reflection symmetry along each of the three principal axes. The setup was not capable of
modeling exactly axisymmetric systems in which the orbit library should respect (continuous)
azimuthal symmetry about the symmetry axis.

We have implemented two main changes needed for modeling axisymmetric systems
within the triaxial code: excluding all orbit types that are not allowed in an axisymmetric
model, and enforcing axisymmetry among the allowed orbits. In the case of oblate axisym-
metry, our recipe involves (1) axisymmetrizing the short-axis tube orbits by creating multiple
copies of the orbits rotated about the symmetry axis (Section 2.3), (2) setting the viewing
angle ψ to be sufficiently close to 90◦ to allow no long-axis tube orbits (Section 2.3), and (3)
excluding the stationary start space used to generate box orbits (Section 2.3).

We have made further improvements and corrections to the code in general. We discussed
an issue with slowly precessing quasi-planar orbits that are misclassified and are “mirrored”
improperly in the orbit library (Section 2.4). We also corrected a problem with the loga-
rithmic halo implementation that prevented checking energy conservation of the integrated
orbits (Section 2.4). We achieved a factor of 2 to 3 speedup in the runtime of the code
by adopting a different algorithm for modeling PSF convolution (Section 2.4). Finally, we
allowed the orbit sampling and mass constraints to be set independently (Section 2.4).

For NGC 1453, we found the shape of the χ2 contours for MBH to vary significantly
as we went through the step-by-step axisymmetrization procedure described in this paper
(Figure 2.4). As we described in Liepold et al. [87], the orbit models favored no black
holes when we used the original code with typical (near) axisymmetric parameters in the
literature and four Gauss-Hermite moments to constrain the stellar LOSVDs. In contrast,
we obtained a well constrained non-zero MBH using our final axisymmetrized code including
all the changes described in Sections 2.3 and 2.4.

One issue that warrants further investigation in triaxial models is the equilibrium behavior
of quasi-planar orbits in regions where the potential is nearly spherical, e.g., well within a
SMBH’s SOI, or far outside the galaxy’s effective radius in a spherical dark matter halo. As
we discussed in Section 2.4, the subset of quasi-planar orbits with precession times longer
than the integration time has a nearly constant L⃗ and is misclassified and mirrored incorrectly
in the original code. Furthermore, the integration time for these orbits is not long enough
to fill the allowed volume of phase space. For axisymmetric systems, we resolve these issues
in our revised code described in this paper by including only short-axis tubes and enforcing
axisymmetry in the orbits, while preserving Lz.
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We also expect the severity of the orbit integration issue to vary from system to system:
the better a SMBH’s SOI is resolved by the available kinematic data, the more care is
needed to test orbital integration time because quasi-planar orbits occupy a large fraction
of the orbit library, and more orbits are deeper in the SMBH’s potential and hence have
longer precession times. For the NGC 1453 SMBH studied in Liepold et al. [87] and here,
since our kinematic data do not reach deep inside the SOI, orbits in our mass models with
precession time exceeding 200 dynamical times account for less than 4% of luminosity within
the central arcsecond. The integration issue (and the resulting misclassification) therefore
does not significantly impact our results, as is evidenced by the similarity between the solid
black and green dashed curves in Figure 2.4. We expect a different situation for better
resolved systems such as the M87 and Milky Way SMBHs.

In future work, a straightforward solution to ensure that quasi-planar orbits are repre-
sentative of their equilibrium distributions is to extend the default integration time of 200
dynamical times in the code. Our preliminary tests suggest that integrating the orbits up to
∼ 10 times longer is computationally feasible, but this may still be insufficient for the orbits
closest to the SMBH and in the outermost part of the galaxy where the precession times are
slowest. A more reliable treatment of these orbits would be needed.
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Chapter 3

Modeling of Triaxial Galaxies

Having demonstrated the ability of our updated code to recover stable and reliableMBH val-
ues in the axisymmetric case, I now proceed to examine the triaxial case. The triaxial case
is significantly more complex than the axisymmetric case. This chapter presents significant
improvements and corrections to the van den Bosch et al. [59] code, improved search and
modeling strategies for the triaxial case, and an application of this version to simultaneously
measure the triaxial shape, dark matter halo, mass-to-light ratio, and central black hole
mass in the massive elliptical galaxy NGC 1453. This chapter was originally published as:

Matthew E. Quenneville, Christopher M. Liepold, and Chung-Pei Ma. “Triaxial Orbit-
based Dynamical Modeling of Galaxies with Supermassive Black Holes and an Application
to Massive Elliptical Galaxy NGC 1453”. In: The Astrophysical Journal 926.1, 30 (Feb.
2022), p. 30. doi: 10.3847/1538-4357/ac3e68. arXiv: 2111.06904 [astro-ph.GA].

3.1 Introduction

Elliptical galaxies exhibit a wide range of isophotal shapes and surface brightness profiles.
There is an intrinsic uncertainty in inferring the 3D stellar luminosity density from the ob-
served 2D isophotes on the sky. When stellar kinematics from spectroscopic observations are
combined with photometric information, stronger constraints can be placed on the intrin-
sic 3D shapes of elliptical galaxies (e.g., Binney [21] and Franx, Illingworth, and de Zeeuw
[99]). An idealized galaxy obeying exact axisymmetry would, by construction, have a reg-
ular surface brightness distribution without any isophotal twists and have perfectly aligned
photometric and kinematic axes. Triaxial systems, on the other hand, can have isophotal
twists, misaligned photometric and kinematic axes, and other spatially varying kinematic
features absent in an axisymmetric system. This consideration led Binney [21] to argue that
triaxiality is common among elliptical galaxies.

Since then, a more detailed picture has emerged. Elliptical galaxies with lower stellar
mass (M∗ ≲ 1011.5M⊙) tend to exhibit properties typical of axisymmetry [e.g., 100, 20, 101,
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102]. Comparatively, elliptical galaxies with higher mass (M∗ ≳ 1011.5M⊙) typically exhibit
photometric twists, slow or no rotation, and misalignments between the photometric and
kinematic axes, suggesting triaxial intrinsic shapes [e.g., 103, 104, 105, 106, 27, 8, 107]. Thus,
it is vital to understand the role of triaxiality in dynamical galaxy modeling, particularly in
studying massive elliptical galaxies and their central black holes in the local universe.

The most massive SMBHs observed in the nearby universe lie in centers of some of the
most massive nearby elliptical galaxies [88]. However, few triaxial SMBH mass (MBH) mea-
surements have been published thus far, perhaps because of the complexity in orbital struc-
tures, high-dimensional parameter space, and the associated computational cost required to
model stellar orbits in triaxial potentials. To date, all published MBH measurements based
on triaxial orbit modeling have been performed using the code initially presented in van den
Bosch et al. [59]. This code was first applied to determine the intrinsic shapes and MBH of
two fast-rotating elliptical galaxies M32 and NGC 3379 [83]. In this work, M32 was found
to be near oblate axisymmetry with MBH = (2.4± 1.0)× 106M⊙, fully consistent with MBH

from earlier axisymmetric models [47, 86, 50]. NGC 3379, on the other hand, was found to
be moderately triaxial, and the inferredMBH = (4±1)×108M⊙ was double the value derived
from axisymmetric models [53, 51]. In a subsequent application to the S0 galaxy NGC 3998
[67], the best-fit model was found to be moderately triaxial although oblate axisymmetry
was not ruled out.

Feldmeier-Krause et al. [84] applied the van den Bosch et al. [59] code to the nuclear star
cluster and SMBH at the Galactic center. The cluster shape was strongly triaxial, and the
inferred MBH was consistent within 1σ of the values inferred from the orbit of the S2 star
[31, 108].

More recently, den Brok et al. [69] used the van den Bosch et al. [59] code to model PGC
046832. This galaxy exhibits dramatic twists, and the resulting models preferred strong
variations in triaxiality. However, while axisymmetric models suggested a central black hole
mass of 6×109M⊙, the triaxial models prefer models with no central black hole. Instead they
report an upper bound on the central black hole mass of 2×109M⊙. This differs significantly
from the value determined from axisymmetric models.

In addition to these published triaxialMBH values, the van den Bosch et al. [59] code has
been used to determine several MBH in the nearly axisymmetric limit [70, 71, 72, 73, 74]. It
has also been used to estimate the intrinsic triaxiality of galaxies under the assumption of a
fixed MBH [e.g., 59, 109, 110, 62, 63, 111, 65].

We have been revamping the van den Bosch et al. [59] code for a systematic study
of the SMBHs and other mass components in the ∼ 100 most massive local early-type
galaxies in the MASSIVE survey [88]. As a first step, we introduced a version of the code
capable of achieving the exact axisymmetric limit [87, 78]. The original van den Bosch
et al. [59] code was (intentionally) not built to respect axisymmetry, but it had been used
to perform (nearly) axisymmetric orbit modeling, leading to unexplained inconsistencies
when the resulting MBH values were compared to those from axisymmetric orbit codes (e.g.,
Ahn et al. [74]). Our axisymmetrized version of the code has bridged this gap and now
enables dynamical modeling of galaxies using stellar orbits that properly obey axisymmetry.
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We applied our axisymmetrized code to NGC 1453, a fast-rotating elliptical galaxy in the
MASSIVE survey, and obtained a significant detection of its SMBH with MBH = (2.9 ±
0.4)× 109 M⊙ [87]. Models without black holes were excluded at the 8.7σ level.

For clarity, we refer to the original code (which was unnamed) by the citation van den
Bosch et al. [59], and refer to our versions as the TriOS (Triaxial Orbit Superposition) code.

In this paper, we move beyond the axisymmetric limit of Quenneville, Liepold, and Ma
[78], and present a triaxial version of the TriOS code and a first application of this code.
This triaxial TriOS code differs in a number of major ways from the original van den Bosch
et al. [59] code. We have implemented these changes to correct a number of bugs and issues
that we uncovered during extensive tests of the original code for triaxial potentials. As a
start, we correct a major error in the orbit construction part of the code that incorrectly
flips some velocity components for the tube orbits. Our tests indicate that for most viewing
angles, correcting this mistake has a significant impact on the resulting orbital kinematics
and galaxy model parameter recovery within the code. Other major changes include (i)
modifying the acceleration table used for orbit integration to gain a significant speedup in
runtime, (ii) resolving issues with insufficient orbit sampling that can result in spurious
shape preferences, and (iii) using a more uniform mass binning scheme to eliminate frequent
problems in satisfying mass constraints. Details of these changes are described in Section 3.4.

In addition to these code changes, we introduce a new set of shape parameters in this
paper (Section 3.3) that are chosen to improve the efficiency of parameter searches in triaxial
galaxy shapes and orientations. These parameters strike a balance between sampling in
galaxy intrinsic shape and galaxy orientation, and result in fewer unrealistically flat galaxy
shapes. To place these new parameters in context, we provide a summary (Section 3.2) of
the parameters used in previous work to describe a triaxial galaxy’s intrinsic and observed
axis ratios, the relations of viewing angles and sky projections, and how an observed surface
brightness is deprojected to obtain a 3D intrinsic shape within the TriOS code.

We apply our triaxial TriOS code to NGC 1453 in the final part of the paper (Section 3.5).
Since triaxial modeling typically involves at least five parameters (three for shapes and at
least two for mass parameters), we introduce an efficient new search strategy for sampling
this multi-dimensional parameter space. This new strategy does not rely on direct grid
searches used in previous orbit modeling studies. Instead, we apply nested Latin hypercube
sampling to a 6D parameter space and are able to converge to a best-fit model for NGC 1453
with an order-of-magnitude fewer sample points. The resulting best-fit triaxial model is
compared to the best-fit axisymmetric model from Liepold et al. [87].

3.2 Modeling a Triaxial Galaxy

In this section we summarize the information relevant for modeling a triaxial galaxy, e.g.,
coordinate systems, intrinsic and apparent shape parameters, viewing angles, and sky pro-
jections.
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Intrinsic Shapes and Axis Ratios

To describe the 3D structure of a galaxy, we use a Cartesian coordinate system centered at
the galaxy’s nucleus, in which the x, y, and z axes are directed along the intrinsic major,
intermediate, and minor axes of the galaxy, respectively. The z-axis is therefore the symmetry
axis of an oblate axisymmetric galaxy, and the x-axis is the symmetry axis of a prolate
axisymmetric galaxy.

It is convenient to use a different coordinate system to describe properties projected on
the sky. We follow the standard practice and take the x′ and y′ axes of this coordinate system
to be along the major and minor axes of the projected surface brightness distribution of a
galaxy. The z′ axis is along the line-of-sight.

We use a, b, c to denote the lengths of the three principal axes of a triaxial ellipsoidal
isodensity surface, assuming c ≤ b ≤ a. We use a′ and b′ to denote the lengths of the
(observed) major and minor axes of the projected ellipse on the sky. Four useful axis ratios
are

p =
b

a
, q =

c

a
, u =

a′

a
, q′ =

b′

a′
, (3.1)

where p is the intrinsic intermediate-to-major axis ratio, q is the intrinsic minor-to-major axis
ratio, u represents a compression factor between the intrinsic major axis and the apparent
major axis on the sky due to projection, and q′ is the flattening of the projected shape.
These quantities obey the inequalities

0 ≤ c ≤ b′ ≤ b ≤ a′ ≤ a ,

or 0 ≤ q ≤ uq′ ≤ p ≤ u ≤ 1 . (3.2)

The upper and lower limits of u correspond to the intrinsic major axis lying in the plane of
the sky (u = 1 or a′ = a) and the intrinsic intermediate axis lying in the plane of the sky
(u = p or a′ = b), respectively.

The commonly used triaxiality parameter is

T =
a2 − b2

a2 − c2
=

1− p2

1− q2
, (3.3)

which ranges between 0 for an oblate axisymmetric shape (a = b), and 1 for a prolate
axisymmetric shape (b = c), with values between 0 and 1 indicating a triaxial shape.

Viewing Angles and Sky Projections

A line of sight between an observer and a galaxy is specified by two viewing angles (θ, ϕ),
where θ and ϕ are the usual polar angles in the galaxy’s intrinsic (x, y, z) coordinate system.
Thus, θ = 0◦ is for a line of sight along the intrinsic minor axis (i.e., a face-on view down
the z-axis), and θ = 90◦ is for lines of sight in the x− y plane (i.e., an edge-on view with the
intrinsic minor axis in the sky plane). Similarly, ϕ = 0◦ is for lines of sight in the x− z plane
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(i.e., the intrinsic intermediate axis is in the sky plane), and ϕ = 90◦ is for lines of sight in
the y − z plane (i.e., the intrinsic major axis is in the sky plane).

Given a triaxial 3D density stratified on similar concentric ellipsoids, the viewing angle
θ and ϕ are sufficient to project the 3D shape and determine the 2D projected coordinate
system (x′, y′). To de-project an observed 2D shape on the sky, however, a third angle, ψ,
is needed to completely specify the intrinsic coordinate system. This third angle ψ specifies
the remaining degree of freedom once θ and ϕ are fixed – a rotation of the galaxy around
the line of sight. More precisely, ψ is defined as the angle between the y′ axis, and the line
defined by the intersection of the x′ − y′ and x − y planes. When ψ = 0◦, the x − y plane
and x′− y′ plane intersect along the y′ axis; when ψ = 90◦, the x− y plane and x′− y′ plane
intersect along the x′ axis.

Together, the three angles (θ, ϕ, ψ) uniquely specify the orientation of the intrinsic axes
with respect to the projected axes. If the 3D density is stratified on similar concentric
ellipsoidal surfaces, the axis ratios (p, q, u) of Equation (3.1) can be uniquely determined
from the projected surface brightness and (θ, ϕ, ψ) using the equations from Appendix A of
de Zeeuw and Franx [112].

Deprojecting Observed Surface Brightness

Within the TriOS code, the 3D stellar density distribution is described by a sum of multiple
Gaussian components of varying widths and axis ratios using the Multi-Gaussian Expansion
(MGE) scheme [113]. To determine these components, one first fits a 2D MGE to the
observed surface brightness of the galaxy. Each MGE component is allowed to have its own
projected flattening q′ to account for radially varying ellipticity in the observed isophotes.
In addition, each MGE component can have a different position angle (PA) to accommodate
any observed isophotal twists.

In general, the deprojection of a 2D surface brightness distribution to give a 3D triaxial
luminosity density is not unique. MGE is a parametric method of choosing one particular
3D density for a given 2D surface brightness and set of intrinsic axes. Non-parametric
deprojection methods have also recently been developed for triaxial galaxies in de Nicola
et al. [114], but the TriOS code is not yet capable of using these deprojections.

For a set of (θ, ϕ, ψ) that specifies the alignment of the galaxy’s intrinsic principle axes
(x, y, z), one can determine the deprojection of each MGE component that shares these prin-
ciple axes (if a valid deprojection exists). This deprojection is unique due to the assumption
that each 2D gaussian corresponds with a 3D gaussian density with similar concentric el-
lipsoidal surfaces of constant density. The axis ratios p and q of each deprojected MGE
component can have their own values. The triaxiality parameter T , on the other hand, has
the convenient property that it is identical for all MGE components when the components
share the same PA (i.e., no isophotal twists).1

1This is valid as long as the line-of-sight does not lie in a principal plane of the triaxial shape. If it
does, then all aligned 3D ellipsoids will have parallel or perpendicular PAs when viewed in projection, and
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3.3 New Parameters for Triaxial Space Sampling

Prior practice

As discussed in Section 3.2, either (p, q, u) or (θ, ϕ, ψ) can be used to specify the shape
of a triaxial galaxy and its sky projections. One can in principle search in either space
when running orbit models to determine a galaxy’s intrinsic shape and mass parameters. In
practice, however, prior triaxial orbit modeling studies favored (p, q, u) over the angles. In
these studies, the orbit models were typically run for a grid of regularly spaced values of
(p, q, u) [e.g., 60, 83, 67, 75]. In a few other triaxial studies, u was fixed to some value close
to 1 while the parameter search was conducted over p and q in a regular 2D grid [e.g., 110,
62, 63]. Since u ∼ 1 corresponds to the intrinsic major axis lying close to the sky plane,
these studies did not search over all allowed viewing angles.

The argument used by van den Bosch and van de Ven [60] for favoring conducting pa-
rameter searches in (p, q, u) rather than (θ, ϕ, ψ) is that a change in the angles can result
in either a very small or very large change in axis ratios, depending on the angles being
explored. We note, however, that the converse is also true: a change in the axis ratios can
result in either a very small or very large change in the principal axes’ alignment, depending
on the values of these ratios. Two models with similar axis ratios, but viewed along very
different lines of sight, can result in very different observables. An optimal sampling should
consider both the intrinsic shape and the alignment of the line of sight.

Properties of new parameters

Here we propose a new set of variables to parameterize a galaxy’s intrinsic triaxial shape
and its sky projections. The advantages of conducting parameter searches in these variables
over either (p, q, u) or (θ, ϕ, ψ) during triaxial orbit modeling will be discussed in Section 3.3.

For the first shape parameter, we choose the triaxiality parameter T (Equation 3.3). We
define the next two parameters with forms analogous to T :

T =
a2 − b2

a2 − c2
=

1− p2

1− q2
,

Tmaj ≡
a2 − a′2

a2 − b2
=

1− u2

1− p2
,

Tmin ≡ b′2 − c2

b2 − c2
=

(uq′)2 − q2

p2 − q2
,

(3.4)

where Tmaj parameterizes the length of the projected major axis, a′, relative to its allowed
limits a and b, and Tmin parameterizes the length of the projected minor axis, b′, relative

differences in T cannot be inferred from differences in projected PA. We do not consider any models with
lines-of-sight lying directly in the principal planes.
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to its allowed limits b and c. It then follows from the inequalities in Equation (3.2) that
(T, Tmaj, Tmin) form a unit cube, i.e.,

0 ≤ T ≤ 1 ,

0 ≤ Tmaj ≤ 1 ,

0 ≤ Tmin ≤ 1 .

(3.5)

The limiting cases represented by each face of the unit cube has the following physical
significance: (i) T = 0 and 1 correspond to oblate axisymmetric (a = b or p = 1) and prolate
axisymmetric (b = c or p = q) shapes, respectively; (ii) Tmaj = 0 and 1 correspond to the
intrinsic major axis lying in the sky plane (a′ = a or u = 1) and the intrinsic intermediate
axis lying in the sky plane (a′ = b or u = p), respectively; (iii) Tmin = 0 and 1 correspond
to the intrinsic minor axis lying in the sky plane (b′ = c or uq′ = q) and the intrinsic
intermediate axis lying in sky (b′ = b or uq′ = p), respectively. While both the Tmaj = 1 and
Tmin = 1 planes correspond to the intrinsic intermediate axis in the sky plane, they represent
two complementary ranges of viewing angles such that b is equal to the projected major axis
a′ for Tmaj = 1, whereas b is equal to the projected minor axis b′ for Tmin = 1.

Equation (3.4), along with the requirement that q > 0, yields the inequality

(1− T )Tmin

1− TTmaj

< q′2 , (3.6)

implying that for an observed axis ratio q′ on the sky, only the (T, Tmaj, Tmin) region satisfying
the inequality has valid deprojections. When the projected shape is flattened (q′ < 1), some
models within the unit cube will result in negative (and thus invalid) values of the squared
minor axis length, c2. This volume surrounds the line (T, Tmaj, Tmin) = (T, 1, 1), which does
not have a valid deprojection for any flattened projected shape.

Relating (T, Tmaj, Tmin) to old parameters

While Equations (3.4) relate our new parameters to (p, q, u), it is often useful to do the
inverse and convert a given set of (T, Tmaj, Tmin) to (p, q, u). To do so, we use these sequential
expressions

1− q2 =
1− q′2

1− (1− T )Tmin − q′2TTmaj

,

1− p2 = T (1− q2) ,

1− u2 = Tmaj(1− p2) .

(3.7)

For a given set of (T, Tmaj, Tmin), these equations define the deprojection from an observed
MGE component with flattening, q′, to its 3D shape parameters, (p, q, u).
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Similarly, it is useful to convert (T, Tmaj, Tmin) to the angles (θ, ϕ, ψ):

cos2 θ = Tmin(1− T Tmaj) ,

tan2 ϕ =
1− Tmaj

Tmaj

1− Tmin

1− Tmin(1− T )
,

tan2 ψ =
[1− Tmin(1− T )] (1− T Tmaj)(1− Tmin)

T 2(1− Tmaj)Tmaj Tmin

.

(3.8)

We choose to use the branch where 0◦ ≤ θ ≤ 90◦, 0◦ ≤ ϕ ≤ 90◦, and 90◦ ≤ ψ ≤ 180◦, though
other equivalent branches exist as well.2 The inverse expressions relating (T, Tmaj, Tmin) and
(θ, ϕ, ψ) are given in Appendix D.

Equations (3.7) and (3.8), as well as Equations (D.1) and (D.2), follow directly from the
definitions in Equation (3.4), and the general expressions for the deprojection of a triaxial
density that is stratified on similar, concentric ellipsoids [e.g., 112, discussed further in
appendix D]. Furthermore, since Equation (3.8) and its inverse Equation (D.2) make no
reference to the observed flattening, the same set of values (T, Tmaj, Tmin) can be used for
a density that is composed of multiple such components with different flattening values.
Thus, (T, Tmaj, Tmin) and (θ, ϕ, ψ) are simply different parameterizations of the same space.
Equations (3.7) and (3.8), along with the equations listed in Appendix D, make no reference
to the MGE formalism and are applicable to any triaxial system that meets these conditions.
The existence and uniqueness of a valid deprojection are not affected by the choice of shape
space parameterization outside the principal planes.

To illustrate the properties of Tmaj and Tmin, we plot a set of lines of constant Tmaj

and Tmin in a galaxy’s intrinsic coordinate system x, y, and z in Figure 3.1. The corner
points (Tmaj, Tmin) = (1, 0), (0, 0), and (0, 1) correspond to viewing angles along the short,
intermediate, and long axes, respectively. The point (Tmaj, Tmin) = (1, 1) represents a line

of sight lying along the line θ = η = tan−1(
√
T/(1− T )) in the x − z plane, which only

results in a valid model for round projected shapes. For flattened shapes, there are no
valid deprojections for lines of sight within a solid angle surrounding this direction. This
non-deprojectable region increases in size, as the projected shape becomes flatter.

Advantages of T, Tmaj and Tmin

The parameters T , Tmaj, and Tmin have a number of desirable properties. First, as Figure 3.1
illustrates, Tmaj and Tmin change relatively uniformly with the line-of-sight direction. This
is in contrast to the axis ratio space, (p, q, u), in which tiny changes can result in large
differences in the angles. For example, models with p = 0.99 and a fixed q would undergo a
90◦ rotation in ϕ when u is varied from 0.99 to 1.

Similarly, the galaxy shape varies much more uniformly with (T, Tmaj, Tmin) than with
(θ, ϕ, ψ). Again, tiny changes in the latter can result in large differences in galaxy shape. For

2For instance, if one prefers 0◦ ≤ ψ ≤ 90◦ and 0◦ ≤ θ ≤ 90◦, then ϕ obeys −90◦ ≤ ϕ ≤ 0◦.
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Figure 3.1: Isocontours of the new shape parameters, Tmaj and Tmin, in a galaxy’s coordinate
system, where the x, y, and z axes are chosen to be the intrinsic major, intermediate,
and minor axes, respectively. The triaxiality parameter, T , is assumed to be 0.35 here.
The parameters Tmaj and Tmin are seen to change relatively uniformly with the line-of-sight
direction, resulting in fewer unrealistically flattened models near non-deprojectable regions
(see text).
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example, when an observed surface brightness (without isophotal twists) is deprojected into a
3D ellipsoidal shape with principle axes defined by (θ, ϕ, ψ) = (89◦, 45◦, 90◦), Equation (A2)
shows that the resulting 3D shape has T = 0, i.e., it is oblate axisymmetric. As ψ is
increased from 90◦ by only ∼ 1◦, however, the deprojected shape varies drastically, with
oblate axisymmetry at ψ = 90◦ to prolate axisymmetry at ψ ∼ 91◦, with the full range of
triaxialities lying in between. From Equation (A2) with ϕ = 45◦, we find prolate axisymmetry
(T = 1) to occur when ψ− 90◦ = (90◦/π) arctan

(
2 cos θ/ sin2 θ

)
on our chosen branch. As θ

approaches 90◦, the value of ψ that gives prolate axisymmetry approaches 90◦. For θ = 89◦

(and ϕ = 45◦), prolate axisymmetry occurs at ψ = 90.99985◦.
The behavior in the example above arises from coordinate singularities in the (θ, ϕ, ψ)

space. When the line-of-sight is chosen to lie in a principal plane (i.e., cos (θ) = 0, 1 or
sin (2ϕ) = 0), it is impossible for continuous photometric twists to arise in projection as
triaxiality is varied. One consequence of this is that the only valid values of ψ are 0◦ or 90◦,
meaning it is no longer an independent parameter. Thus, (θ, ϕ, ψ) are insufficient to fully
specify the 3D projection. The parameters (T, Tmaj, Tmin), on the other hand, have no such
singularity. In the above example, the proximity of the chosen value of θ to 90◦ causes the
rapid shift in shape with ψ.

Another desirable property of Tmaj and Tmin is that, similar to T (see Section 3.2), they
do not vary among MGE components with different axis ratios, so long as there are no
isophotal twists.

This invariant property can be explained by identifying Tmaj and Tmin as the shifted
and rescaled versions of the conical coordinates, µpro and νpro within the galaxy’s intrinsic
coordinate system [115], where µpro = a′2 and νpro = b′2. Since the coordinate surfaces of
µpro and νpro are the same for all MGE components, the shifted and scaled quantities Tmaj

and Tmin do not vary between components.
The advantages of T , Tmaj, and Tmin are especially clear for systems not far from ax-

isymmetry. Towards oblate axisymmetry (T ≈ 0), we have Tmin ≈ cos2 θ and Tmaj ≈ cos2 ϕ.
Thus, a uniform sampling in

√
Tmin and

√
Tmaj will result in a nearly uniform sampling in

the cosines of the inclination and the azimuthal angle. The same behavior holds towards
prolate axisymmetry (T ≈ 1) since the roles of Tmaj and Tmin are simply switched if the x and
z axis labels are interchanged. Thus, for nearly axisymmetric galaxies, a uniform sampling
in (T,

√
Tmaj,

√
Tmin) results in fewer unrealistically flattened models.

3.4 Code Corrections and Improvements

In this section, we describe the key corrections, improvements, and speedups made to the
van den Bosch et al. [59] code. See Section 4 of Quenneville, Liepold, and Ma [78] for other
general changes that we had implemented (regardless of axisymmetry).
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Position Long-axis tube Short-axis tube Intermediate-axis tube
(x, y, z) (vx, vy, vz) (vx, vy, vz) (vx, vy, vz)
(−x, y, z) (−vx, vy, vz) (vx,−vy,−vz) (vx,−vy,−vz)
(x,−y, z) (−vx, vy,−vz) (−vx, vy,−vz) (vx,−vy, vz)
(x, y,−z) (−vx,−vy, vz) (vx, vy,−vz) (−vx,−vy, vz)
(−x,−y, z) (vx, vy,−vz) (−vx,−vy, vz) (vx,vy,−vz)
(−x, y,−z) (vx,−vy, vz) (vx,−vy,vz) (−vx, vy,−vz)
(x,−y,−z) (vx,−vy,−vz) (−vx, vy,vz) (−vx,vy, vz)
(−x,−y,−z) (−vx,−vy,−vz) (−vx,−vy,−vz) (−vx,−vy,−vz)

Table 3.1: Corrected mirroring scheme of the three types of tube orbits in our TriOS code.
Boldfaced velocity components have the opposite signs from the original scheme in Table 2
of van den Bosch et al. [59]. These components were flipped incorrectly in the original code.

Correct orbital mirroring mistakes

The TriOS code is written for a static triaxial potential that is symmetric under reflection
along each of the three principal axes of a triaxial system. Under this assumption, any
orbital property only needs to be calculated in one octant of the orbit space; it can then be
“mirrored” into the other seven octants by symmetry.

Taking advantage of this symmetry, the code initializes orbits in only one octant (x, y, z >
0) and integrates only these orbits. Seven additional copies of each orbit are then created
by simply mirroring along the three axes. The recipe for how to flip the signs of the velocity
components is given in Table 2 of van den Bosch et al. [59]. The exact procedure depends on
whether the orbit is a short-axis tube, long-axis tube, or box. These orbits are classified as
follow: throughout its trajectory, an orbit is labelled a box orbit if all three components of
its angular momentum (Lx, Ly, Lz) change sign, and a tube orbit if exactly one component
of angular momentum maintains its sign. The tube orbits are further classified according
to the angular momentum component that maintains its sign, i.e., a long-axis (i.e. x-axis)
tube maintains the sign of its Lx, an intermediate-axis (y-axis) tube maintains the sign of
Ly, and a short-axis (z-axis) tube maintains the sign of Lz. Orbits that don’t fall into the
tube or box orbit classifications are flipped in the same way as box orbits.

We discovered that the tube orbits are incorrectly flipped for four of the eight octants
in Table 2 of van den Bosch et al. [59]. We indicate the incorrect components in boldface
and give the corrected expressions in Table 3.1. The mistakes are such that the mirrored
positions and velocities are inconsistent with one another, and the two do not combine to give
a valid trajectory. A consequence of these mistakes is that the magnitude of each component
of L⃗ is not always preserved by the mirroring, as it should be, and the resulting |L⃗| is also
not preserved. For instance, for the short-axis tube flip, the original recipe would change
the amplitudes of Lx and Ly for 4 of the 8 copies, and the resulting total L would not be
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Figure 3.2: Illustration of the impact of the incorrect mirroring scheme in the van den Bosch
et al. [59] code. We plot the fractional error between the incorrect and corrected schemes
(see Table 1) in the kinematic map of the line-of-sight velocity dispersion, σ, for a single
orbit. The orbit is chosen from the x−z start space of a triaxial model with T = 6×10−6 for
NGC 1453, but it is representative of typical short-axis tubes in a triaxial potential. Each
panel represents a different viewing inclination angle θ. The fractional error is largest near
θ = 45◦, reaching beyond 50% for some parts of the orbit.

preserved. Similarly, Ly and Lz are incorrect for 4 copies of the long-axis tubes, and Lx and
Lz are incorrect for 4 copies of the intermediate-axis tubes.

To illustrate the impact of the incorrect orbital flips, we plot the error in the line-of-sight
velocity dispersion, σ, for a single short-axis tube orbit for three different viewing angles
in Figure 3.2. We first integrate the trajectory of this orbit within the potential and then
compute the 7 mirrored copies using the original and corrected flips in Table 3.1. The
fractional difference in the projected σ between the two schemes is then plotted for three
different values of viewing inclination angle θ. The errors vary across the plane of the sky
and exceed 50% for θ = 45◦. For this orbit, the incorrect flip scheme tends to under-predict σ
along the galaxy’s projected major axis and over-predict σ near the edges. The orbit shown
in Figure 3.2 is typical of short-axis tubes in triaxial potentials. Long-axis tube orbits exhibit
similar error patterns when the appropriate axis labels are switched. While the pattern of
velocity dispersion error is different for each orbit, systematic errors with magnitudes of
10%−100% are typical, with peak errors of over 1600% in some cases for orbital inclinations
near 45◦.

To assess further the impact of the incorrect flips, we perform full orbit modeling for
a grid of triaxial models for NGC 1453 using the original and then the corrected scheme.
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Overall, when the correct flips are used, we find that χ2 is lowered by a wide range of values
depending on the triaxiality and viewing angles. For instance, the value of χ2 can decrease
by more than 100 for strongly triaxial models, while it can change by less than 5 or even
increase slightly for other models. The overall χ2 landscape is therefore significantly altered
by our corrections.

Due to the symmetry of the tube orbits, the errors in the orbital flips can cancel out when
the galaxy is viewed along a principal axis. Nearly axisymmetric models that are viewed
edge-on or face-on will be similarly unaffected. Outside of these special cases, the orbital
kinematics have significant errors. The incorrect flips were not used in our axisymmetric
modeling of NGC 1453 [87, 78] since we used an axisymmetrization procedure in place of
the flips in the TriOS code.

The discussion above is relevant only for tube orbits. For box orbits, we find the flips
given in Table 2 of van den Bosch et al. [59] to be correct. However, in addition to this
set of 8 mirrored orbits, we choose to include 8 more orbits for each point in the stationary
start space (defined in section 3.4) that correspond to enforcing time reversal symmetry for
the box orbits. This addition ensures that box orbits have the expected even parity in their
line-of-sight velocity distributions (LOSVDs). In the cases that we have examined, these
orbits already have small enough odd LOSVD components that this change makes very little
difference.

Modify acceleration table for significant speedup

In order to speed up orbital integration, the orbit code pre-computes a lookup table of
acceleration values over a spatial grid and performs a trilinear interpolation to closely ap-
proximate the true acceleration. If an orbit passes outside the radial range of this grid, the
acceleration is then computed from scratch, which is multiple orders of magnitude slower
than interpolating values from the lookup table. It is therefore prudent to choose the extent
of the grid wisely because even a small number of orbits passing outside the table’s cover-
age can dominate the total runtime and unnecessarily increase the computation time of the
entire orbit library.

We have noticed that some orbits can indeed pass outside the radial range used in the
original code and result in a significant slow down. To eliminate this situation, we have made
a simple modification to the radial range used for the acceleration table. In van den Bosch
et al. [59], the acceleration is pre-computed over a grid spanning the radial range

rinterp,min = min [0.1×min (σ′
i), 0.01 rmin] ,

rinterp,max = max [6×max (σi), 1.05 rmax] , (3.9)

where σ′
i is length of the semi-major axis of the ith projected MGE component, σi is the

length of the semi-major axis of the corresponding intrinsic MGE component, and rmin and
rmax are the innermost and outermost orbital equipotential radii in the model. Thus, the
lowest and highest energy orbits included in the model have energies Φ(x = rmin, y = 0, z = 0)
and Φ(x = rmax, y = 0, z = 0), where Φ is the gravitational potential of the model.



CHAPTER 3. MODELING OF TRIAXIAL GALAXIES 49

10 5 10 4 10 3
rinterp, min (")

0

1

2

3

4

5

6

7

8

Re
la

tiv
e 

In
te

gr
at

io
n 

Ti
m

e
pe

r O
rb

it
Stationary
start space
x z
start space
Old rinterp, min
New rinterp, min

Figure 3.3: Average orbital integration time (per orbit) as a function of the inner interpola-
tion radius, rinterp,min, used to tabulate the accelerations. The stationary start space contains
mostly box orbits that pass near the galaxy center. The box orbit integration time increases
drastically with rinterp,min, and the value used in the van den Bosch et al. [59] code is typically
not small enough to minimize the integration time.
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In practice, we find that the second conditions in Equation (3.9) typically determine
the range of the acceleration table, i.e., rinterp,min = 0.01 rmin and rinterp,max = 1.05 rmax.
The outer boundary is never exceeded because energy conservation prevents orbits from
passing outside rmax and therefore rinterp,max. The inner boundary of rinterp,min = 0.01 rmin,
however, can be problematic because centrophilic box orbits can pass well within 0.01 rmin.
The DOP853 Runga-Kutta integrator in the TriOS code uses adaptive timesteps, tuning
them to minimize errors in the position and velocity between timesteps. In this scheme
many acceleration evaluations are required in regions of the trajectory where the timestep is
smaller, namely, when the trajectory passes closest to the central black hole where the orbits
are most likely to reach below 0.01 rmin. The fraction of acceleration evaluations within this
boundary is somewhat model-dependent and may be higher when box orbits are launched
from well within the SMBH’s sphere of influence because the potential felt by those orbits
is largely spherical and supportive of highly centrophilic box orbits. For a typical case of
rmin = 0.1′′ and rinterp,min = 0.01 rmin = 0.001′′, we find as many as a sixth of the acceleration
evaluations during the box orbit integrations to lie outside the lookup table. This minority
of acceleration evaluations take up more than 50% of the total time when constructing the
orbit library.

To enable a more efficient use of the acceleration table, we choose to decouple rinterp,min

and rinterp,max from rmin and rmax which are used to determine the range of orbital energy
sampling. When rinterp,min is allowed to be smaller than 0.01 rmin, we find the total time to
integrate orbits can be reduced by a factor of a few, with a negligible change in accuracy.
This speed-up is illustrated in Figure 3.3. As the acceleration table is extended to smaller
radii, fewer orbits fall outside the radial coverage of the table, and the average integration
time for box orbits drops significantly with decreasing rinterp,min. For the example shown in
Figure 3.3, choosing rinterp,min ∼ 0.0001′′ would reduce the orbit integration time by a factor
of ≳ 2 compared with the original setting of rinterp,min = 0.01 rmin = 0.001′′. Since energy
conservation prevents orbits from passing outside rmax, setting rinterp,max to be slightly larger
than rmax minimizes the integration time while maximizing the interpolation accuracy.

Since we don’t typically vary the interpolation boundaries by more than 1 dex, the
density of points in the interpolation grid does not change dramatically, and we find that the
accuracy of the interpolated potential is sufficient. However, if the boundaries are changed
more drastically, the number of radial interpolation points should be adjusted to maintain
the desired accuracy.

Resolve issues with insufficient orbit sampling

The TriOS code samples orbit initial conditions from two separate spaces, referred to as start
spaces [23, 59]. In the first start space (“stationary start space”), all orbits start from rest
on the equipotential surface for a given energy. This start space contains only box, box-like,
and chaotic orbits.

The second start space (“x − z start space”) contains mainly tube orbits and samples
orbits in the x − z plane, with velocity vectors pointing along the y-axis. As illustrated in
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Figure 3.4: An example of the initial orbit locations in the x − z start space for a single
energy value in the triaxial TriOS code. Orbits are launched from within the thin-orbit curve
(inner grey arc) and equipotential curve (outer grey arc). The orbit initial conditions are
sampled with NI2 = 9 radial rays uniformly spaced in the polar angle from the z-axis to
the x-axis, NI3 = 9 points along each ray, and Ndither = 3 to further improve the sampling,
resulting in a total of 27 × 27 orbits. Each of the 27 × 27 color dots indicates the initial
locations of an orbit (color coded by the type of orbits). The black line at angle η (see text)
approximates the boundary between long-axis and short-axis tube orbits within this start
space. Model χ2 values are sensitive to the alignment between the angle η and orbit cell
boundaries.
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Figure 3.4, orbits of a given energy in this space are sampled over the region bounded by the
equipotential and thin-orbit curves. Typically, NI2 = 9 rays of orbits are sampled uniformly
in polar angles from 0 to π/2 in the positive x and z quadrant; along each ray, NI3 = 9
orbits are uniformly spaced between thin-orbit curves and equipotential curve. Additionally,
the code allows for dithering, where orbits with Ndither adjacent initial conditions in each
dimension are integrated and then bundled together to form each of the 9×9 orbits in order to
improve phase space sampling. Figure 3.4 illustrates the case of (NI2 , NI3 , Ndither) = (9, 9, 3),
where 27× 27 tube orbits are launched in the positive quadrant of the x− z start space for
a given energy.

For a triaxial model, the short-axis tubes (red points in Figure 3.4) and long-axis tubes
(blue points) occupy two regions of the x − z start space separated by the focal curve. As
derived in Appendix A of Quenneville, Liepold, and Ma [78], the focal curve is roughly
approximated by a line at angle

η = tan−1

√
T

1− T
. (3.10)

Thus, as T increases from 0 to 1, the focal curve moves smoothly from the z-axis to the x-
axis, and the composition of the tube orbits changes from being all short-axis tubes (for an
oblate axisymmetric potential) to all long-axis tubes (for a prolate axisymmetric potential).

When orbits are well sampled, model properties such as the goodness-of-fit (χ2) should
vary smoothly as η (and hence T ) is varied. In our test runs for NGC 1453, however, we find
that on top of a smooth variation, χ2 varies periodically with T with a frequency matching
the spacing between dithered orbits, (π/2)/NI2 , resulting in multiple spurious local minima
at different values of T . Further testing reveals that these local minima arise from insufficient
orbit sampling: as T increases, the focal curve approximated with η crosses rays of orbits
in a periodic manner, resulting in the artificial oscillations in χ2 with that same period.
Since the periodic behavior is coherent as other model parameters are changed, it can have
a significant impact on the recovered value of T and its uncertainty. Other parameter values
are mainly impacted through their correlations with T .

We are able to eliminate the spurious oscillations in χ2 vs. T by increasing NI2 , which
increases the number of radial rays in the x − z start space and therefore improves the
sampling in the polar angle. For the models presented in Section 3.5, we find that increasing
NI2 from the default value of 9 to 15 and beyond removes the oscillations and also yields
convergent results. We choose NI2 = 18 for the x− z start space.

We do not find similar issues for the other start space. Nonetheless, we increase NI2

to 18 for the stationary start space as well so as to maintain equal sizes for the tube and
box orbit libraries. In summary, we use (NE, NI2 , NI3 , Ndither) = (40, 18, 9, 3) for both start
spaces. This results in a total 40×18×9×33×3 = 524, 880 integrated orbits in each galaxy
model, where the last factor of 3 accounts for the 3 orbit libraries (the x− z start space, its
time-reversed copy, and the stationary start space).
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Figure 3.5: Comparison of the original (left) and new (right) mass binning scheme in the
TriOS code. The top row shows that the bins near the x−y plane contain far more mass than
the bins near the z axis due to the significant difference in bin volume in the original scheme
(top left). Our new binning scheme evens out the mass considerably (top right). The color
scale here indicates the fraction of mass that falls within a given angular bin, summed over
radius. The bottom row shows an example of the resulting χ2 in the mass fits for a triaxial
galaxy for the two binning schemes. The color scale here indicates χ2 from attempting to fit
a particular mass model, summed over radius. Only the 3D mass distribution is fit, with an
error of 1% assumed on each bin. The most significant contributions to the mass χ2 are from
bins near the z-axis that contain very little mass. The triaxial mass model shown here has
MBH = 2.9× 109M⊙, M∗/LF110W = 2.0, T = 0.10, q = 0.96q′, Tmaj = 0.95, and Tmin = 0.12.

Improve intrinsic mass binning scheme

In addition to kinematic constraints, the TriOS code enforces self-consistency of the mass
model by requiring that the orbital weights be chosen to reproduce an input mass distribution
(e.g., deprojected surface brightness profile of a galaxy). This is done by binning the mass
in spherical coordinates (r, θ, ϕ), and requiring that the mass in each bin be reproduced to
within a pre-specified precision (typically 1%). van den Bosch et al. [59] uses linearly spaced
bins between 0◦ and 90◦ for θ and ϕ, and logarithmically spaced bins between rmin and rmax/2
for r, where rmin and rmax are the innermost and outermost equipotential radii discussed in
Section 3.4.

In the axisymmetrized TriOS code [78], we changed the radial binning scheme above
to ensure sufficient orbits are used to represent the innermost and outermost mass bins.
During our subsequent tests for triaxial systems, however, we noticed occasional problems
with mass misfits in which a handful mass bins would have difficulty satisfying the 1%
precision and/or contribute disproportionately high values to the total χ2 of the galaxy
model under examination. We are able to trace the problem to uneven bin sizes in θ used
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in the original code: the bins near the poles contained much less mass, as shown in the
left panel of Figure 3.5. Because of this, the mass near the z axis was subject to much
more stringent constraints than elsewhere, leading to frequent difficulties in satisfying the
1% fitting criterion. Even in the absence of kinematic constraints, spurious variations would
arise in the χ2 landscape, as illustrated in the right panel of Figure 3.5. The more oblate
(T ≲ 0.1) and round (q ≳ 0.9q′) systems are more prone to this issue.

We find that this mass misfitting problem can be easily resolved by using mass bins
linearly spaced in cos (θ) and ϕ, rather than in θ and ϕ. The resulting bins at a given radius
then occupy the same volume, and the mass in each bin is much more uniform, with the
bin-to-bin variations representing the galaxy’s intrinsic deviation from spherical symmetry.
Correspondingly, the pre-specified mass constraint criterion is enforced more uniformly.

For clarity, we have chosen to illustrate the mass misfitting issue in Figure 3.5 without
imposing any kinematic constraints. When kinematic constraints are added in full orbit
modeling (see Section 3.5), the total χ2 returned by the code includes contributions from fits
to the masses as well as kinematics. In this case, models with significant mass misfits due to
uneven binning schemes would have disproportionately larger χ2 values, leading to potential
biases in the recovered galaxy parameters.

3.5 Triaxial Orbit Models of NGC 1453

NGC 1453

We apply the updated TriOS code described in the previous section to NGC 1453, a massive
elliptical galaxy targeted by the MASSIVE survey [88]. In Liepold et al. [87], we performed
orbit modeling of NGC 1453 using the axisymmetrized TriOS code. We refer the reader to
that paper for a detailed description of the input kinematic and photometric data. In brief,
the stellar kinematics are measured over 135 spatial bins from our high-spatial resolution
Gemini GMOS IFS data [116, 107] and wide-field McDonald Mitchell IFS data [103, 104,
105]. The first eight Gauss-Hermite moments are measured from the IFS spectra and used
to constrain the stellar LOSVD in each kinematic bin; see Figure 4 of Liepold et al. [87].

The MGE components representing the galaxy’s mass distribution (see Section 3.2) are
obtained from deprojections of our HST WFC3 photometry [8]. Here we use the same input
data but relax the assumption of axisymmetry in the orbit models. In order to ensure that
all trajectories within the model are representative of their equilibrium distributions, we
integrate each orbit in the x− z start space for 2000 times the orbital period for a thin tube
orbit of the same energy. For orbits in the stationary start space, we integrate for 200 times
the orbital period, as is typical of previous studies using the van den Bosch et al. [59] code.

Due to the regular isophotes of NGC 1453 (Figure 5 of Liepold et al. [87]), we use the
same PA for all MGE components and do not model isophotal twists. This is a common
simplifying assumption [e.g., 83, 67, 84] and it enables us to explore the galaxy’s shape using
the new scheme outlined in Section 3.3.
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Figure 3.6: (Left) 6D likelihood landscape for orbit models of NGC 1453. As described
in the text, the models are sampled in T ,

√
Tmaj,

√
Tmin, MBH, M

∗/LF110W, and M15,
and the 1D and 2D likelihood landscapes are obtained by marginalizing over a smoothed
6D landscape generated by Gaussian process regression. The red, green, and blue curves
represent the 1σ, 2σ, and 3σ contours, respectively. (Right) 3D likelihood in axis ratio
space, (p, q, u), marginalized over MBH, M

∗/LF110W, and M15. All three axis ratios are
significantly correlated with one another, in particular between p and u. This degeneracy is
significantly reduced when our new shape parameters T , Tmaj, and Tmin are used.
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For the distance to NGC 1453, we adopt our new determination of 51.0 Mpc from the
MASSIVE-WFC3 project [8] using the surface-brightness fluctuation technique [117]. At
this distance, 1′′ is 245 pc for a flat ΛCDM model with a matter density of Ωm = 0.315 and
a Hubble parameter of H0 = 70km s−1 Mpc−1.

Parameter Search Using Latin Hypercube Sampling

We conduct the search for the best-fit galaxy shape in the new triaxial parameters (T, Tmaj, Tmin)
introduced in Section 3.3. The dark matter halo is modeled as a logarithmic potential. We
parameterize it through its mass within 15 kpc, M15, which is roughly the central radius of
the outermost kinematic bins, following Liepold et al. [87]. As in Liepold et al. [87], we fix
the scale radius of the dark matter halo to 15 kpc. Combining the three shape parameters
with the three mass parameters MBH, M

∗/LF110W, and M15, we sample the 6D parameter
space of galaxy models.

We determine the best-fit parameters by minimizing a χ2 that includes terms for each
LOSVD moment within each aperture, the projected light within each aperture, as well as
the binned 3D mass density in order to enforce self-consistency for the stellar density. For
each model, the best-fit set of weights are used to calculate the χ2 differences between models.
Lipka and Thomas [118] recently suggested that recovery of the inclination of axisymmetric
models can be biased unless the intrinsic flexibility of the models is accounted for. However,
a triaxial exploration of model flexibility is beyond the scope of the present study.

Instead of conducting model searches on a regular grid as was done in previous studies, we
use the more efficient method of Latin hypercube sampling [119]. There are many techniques
for ensuring spatial uniformity in multidimensional spaces. We adopt the scheme described
in Deutsch and Deutsch [120], as implemented in the LHSMDU python package [121]. This
procedure results in models that span a more continuous range of values than a regular
grid, and are more uniformly spaced than random sampling. This approach allows a more
representative sampling of the 6 dimensions with many fewer points than a regular grid.

We initially use a hypercube consisting of 1000 models spanning the range ofM∗/LF110W ∈
[1.7, 2.3], M15 ∈ [3.5, 10.5]× 1011M⊙, and MBH ∈ [1, 5]× 109M⊙, and the full range between
0 and 1 for (T,

√
Tmaj,

√
Tmin). Of these models, 927 resulted in valid deprojections. We

then use a rejection-based scheme to choose subsequent sets of model points. A Gaussian
process interpolation of the 6-dimensional χ2 surface is computed from the previously-run
models. We use this interpolation to estimate the χ2 for O(104) points chosen using the
LHS scheme described above in the original volume and select points where the estimated
χ2 is within ∆χ2 = 20.06 (3σ for 6 parameters) of the estimated global minimum. To avoid
premature optimization we perform this routine 10 times where random subsets of half of
all previously-run models are used to build the interpolation function. With this scheme we
select roughly 1000 model points which are expected to lie near the global χ2 minimum to
evaluate with the TriOS code. We perform two iterations of this rejection scheme, yielding
roughly 3000 total model evaluations.
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The resulting 6D likelihood landscape is shown in Figure 3.6. To determine the best-fit
value and uncertainties, we fit the χ2 landscape using Gaussian process regression with a
squared-exponential covariance function [97]. To make the 2D contours shown in Figure 3.6,
we transform this smoothed surface from (T,

√
Tmaj,

√
Tmin) to (T, Tmaj, Tmin), or (p, q, u).

The marginalized 1D likelihood is also shown for each parameter. The shapes of the 2D con-
tours in Figure 3.6 clearly demonstrate that (T, Tmaj, Tmin) do not have the strong degeneracy
apparent in (p, q, u).

The standard values of ∆χ2 = 1, 4, 9 are used to define the 1σ, 2σ, and 3σ confidence
intervals for 1 degree of freedom when considering the marginalized landscape for each vari-
able individually. For the 2D contours, we use the values for 2 degrees of freedom, giving
∆χ2 ≈ 2.3, 6.2, 11.8. This is different from most previous work using the van den Bosch
et al. [59] code, where typically ∆χ2 =

√
2Nobs is used to define the 1σ confidence interval,

where Nobs is the number of apertures on the sky, multiplied by the number of moments
fitted within each aperture. This value is chosen to represent the intrinsic noise in the χ2

values for each model, and is much larger than our values. However, while this is true when
the input data are varied according to its noise level as discussed in Vasiliev and Valluri [85],
the noise level in the χ2 values between models are significantly smaller when the input data
are fixed.

Best-fit Triaxial Model

The best-fit values and the uncertainties for each NGC 1453 parameter are listed in Table 3.2.
For each parameter, all other dimensions have been marginalized over. The best-fit MBH

is consistent with the value determined from axisymmetric modeling in Liepold et al. [87].
The value of M∗/LF110W has shifted down slightly, but is still consistent within 2σ of the
axisymmetric value.

The best-fit shape, on the other hand, is inconsistent with axisymmetry. It is useful to
compare our best-fit values of p = 0.93 and q = 0.78 with those inferred statistically from
the observed distributions of ellipticity and misalignment angle between the kinematic and
photometric axes for 49 slowly-rotating massive elliptical galaxies with measurable kinematic
axes in the MASSIVE survey [27]. In that sample, 56% of the galaxies have p > 0.9 with
a mean value of 0.88, and the mean value of q is 0.65. Our best-fit shape for NGC 1453
indicates this fast-rotating galaxy is relatively oblate like the MASSIVE slow rotators and
is slightly less flattened than the mean of that population.

The orbital composition of the best-fit triaxial model is shown in Figure 3.7 (top panel).
Long-axis tubes and box orbits – two orbit types that are present only in triaxial potentials
– together account for ∼ 30% of the orbital weights in the inner part and ∼ 45% in the
outer part of NGC 1453. Quasi-planar orbits account for a small fraction of the total mass
at small and large radii and are excluded from the plot. While long-axis tubes contribute
a significant fraction of the mass, the projected model has fairly little minor axis rotation,
due in part to the LOS being close to the intrinsic major axis.
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Figure 3.7: Orbital composition (top) and velocity anisotropy (bottom) of the best-fit tri-
axial model of NGC 1453 as a function of radius. Short-axis tubes (solid) are dominant
throughout the model, with significant contributions from long-axis tubes (dashed) and box
orbits (dotted) that are present only in triaxial potentials. The velocity anisotropy parame-
ter, β, has a similar radial profile for the best-fit triaxial (solid) and axisymmetric (dashed)
models, being mildly tangentially anisotropic in the inner part and becoming more radially
anisotropic in the outer part.
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Parameter Value
MBH (109M⊙) 2.9± 0.4

M∗/LF110W (M⊙/L⊙) 2.02± 0.07
M15 (10

11M⊙) 7.0+0.6
−0.5

T 0.33± 0.06
Tmaj 0.89± 0.03
Tmin 0.12± 0.03
u 0.941+0.012

−0.013

p 0.933+0.014
−0.015

q 0.779± 0.012
θ (◦) 73± 3
ϕ (◦) 19± 3
ψ (◦) 92.7+0.7

−0.8

Table 3.2: Best-fit triaxial model parameters for NGC 1453 from the 6D likelihood landscape
in Figure 3.6. For each parameter, all other dimensions have been marginalized over.

The orbital velocity anisotropy of the best-fit model (bottom panel of Figure 3.7) is mildly
tangential (β < 0) in the inner part and becomes increasingly radial outward. The radial
profile has a similar shape to the axisymmetric model presented in Liepold et al. [87].

Triaxial vs. Axisymmetric Best-fit Models

The best-fit triaxial model presented above matches the observed kinematics significantly
better than the best-fit axisymmetric model in Liepold et al. [87].

Even though the best-fit χ2 values in the two cases – 493.0 for axisymmetric versus
382.7 for triaxial – differ by ∼ 110, they should not be compared directly because triaxial
potentials require a new library of box orbits, and different numbers of orbits are used (6480
independent weights for axisymmetric versus 19440 for triaxial). Nonetheless, within triaxial
modeling, our best-fit triaxiality of T = 0.33 is preferred over nearly oblate axisymmetric
models with T ≈ 0 at a confidence level of about 5σ. To understand why non-axisymmetric
models are favored, we examine the 2D maps of V and the lowest 3 even Gauss-Hermite
moments in the GMOS data in Figure 3.8 (first row). We recall that axisymmetric models
by construction produce only bisymmetric kinematics about the photometric major axis
on the sky, meaning that the LOSVDs would be symmetric for points mirrored across the
projected major axis and anti-symmetric for points mirrored across the projected minor axis.
Any observed systemic deviation from bisymmetry would then indicate triaxiality.

For this reason, we decompose each GMOS moment map into a bisymmetrized component
(second column) and a non-bisymmetrized component (third column). The latter exhibits
clear systemic deviations from bisymmetry. The most obvious feature is the residual minor
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Figure 3.8: Maps of the stellar kinematics from the Gemini GMOS IFS in 135 spatial bins of
the central 5′′×7′′ of NGC 1453. Four velocity moments are shown (from top down): V , σ, h4
and h6. The maps are oriented such that the horizontal and vertical axes are aligned with the
galaxy’s projected major and minor photometric axes, respectively. The data (first column)
are decomposed into a bisymmetric component (second column) and a non-bisymmetric
component (third column). To accentuate systematic patterns, we plot the non-bisymmetric
component normalized by the moment uncertainty. Since an axisymmetric model can only
produce bisymmetric kinematic maps, the residuals from the best-fit axisymmetric model
(fourth column) show similar patterns to the bisymmetrized residuals. h6 shows additional
residuals that are consistent with bisymmetry, but unable to be fit by an axisymmetric
model. A triaxial model (right column) is able to capture most of the systematic behaviour
in the input map, resulting in largely random residuals. The residuals have been normalized
by the moment uncertainty.
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axis rotation indicative of kinematic misalignment. These maps assume a bisymmetrization
along the projected photometric major axis used by our dynamical models, with a PA of
28.5◦. The residual pattern persists and can not be “rotated away” even if the PA is within
uncertainties in the PA determination determined from the isophotal profile from [8]. An
axisymmetric model (consistent with the photometry) would be incapable of fitting these
non-bisymmetric features in the data. To confirm this point, we plot the residual maps
(fourth column) between the GMOS data and the best-fit axisymmetric model of Liepold
et al. [87]. Indeed, the axisymmetric model exhibits similar residual patterns as in the data
(third column). In comparison, the best-fit triaxial model is able to fit these non-bisymmetric
features to a large extent, producing essentially random residuals (fifth column).

Figure 3.8 indicates that the preference for triaxiality is driven by the non-axisymmetric
features in the NGC 1453 kinematics. Even though the non-bisymmetric features are some-
what subtle, they lead to detectable triaxiality, which we find to be best fit with p = 0.933,
q = 0.779, and T = 0.33. Thus, despite being a fast rotator with regular isophotal and
kinematic features, NGC 1453 is best fit by a triaxial model. This is further evidence for
widespread triaxiality in massive elliptical galaxies.

Importantly, however, the best-fit black hole mass MBH = 2.9 × 109M⊙ is unchanged
from that in the axisymmetric model. The stellar mass-to-light ratio and dark matter mass
within 15 kpc agree to within a 1σ confidence level.

3.6 Conclusions

In this paper we have presented a revised code and a revamped approach for performing dy-
namical modeling of triaxial galaxies and their central SMBHs using the orbit superposition
technique. We discussed a new triaxial version of the TriOS code that is capable of modeling
triaxial systems while avoiding several shortcomings of the original van den Bosch et al. [59]
code. As a first application of this code, we performed triaxial orbit modeling of the massive
elliptical galaxy NGC 1453 and presented the best-fit galaxy shape and mass parameters.
This work complements Liepold et al. [87] and Quenneville, Liepold, and Ma [78], in which
we introduced a properly axisymmetrized version of the TriOS code.

We discovered and corrected a major error in the orbit kinematics in the van den Bosch
et al. [59] code: the tube orbits had wrong signs in certain mirrored velocity components in
the orbit library (Table 1), resulting in incorrect projected kinematics. The magnitude of
the kinematic errors varies spatially and depends on the viewing angles (Figure 3.2). This
issue impacts all triaxial models that are not viewed along a principal axis, and all nearly
axisymmetric models that are not viewed edge-on. How this error affects the best-fit galaxy
shapes and mass parameters would have to be assessed on a galaxy-by-galaxy basis by re-
running the models with the corrected orbital flips in Table 1. In the case of NGC 1453, we
find the χ2 landscapes to be altered drastically, with χ2 values changing non-uniformly by
more than 100 for some models.
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Following Quenneville, Liepold, and Ma [78], we continued to find ways to speed up the
code. In this updated version of the TriOS code, we achieved another significant speedup (of
up to ∼ 50 %; Figure 3.3) in orbit integration time by a simple extension of the interpolation
table used to evaluate orbit accelerations (Section 3.4). The reduction in integration time is
particularly pronounced for centrophilic orbits.

We have made two other adjustments in the code that significantly improve the sampling
of long-axis tube orbits (Section 3.4) and enforce more uniformly the 3D mass constraints
(Section 3.4). After these changes, the behavior of χ2 vs. T (triaxiality parameter) no longer
exhibits spurious oscillations, and the orbit code is able to find reasonable solutions for some
mass models that were previously strongly disfavored.

The rest of this paper is devoted to new and improved strategies for searching the multi-
dimensional parameter space required to specify triaxial galaxy models. We introduced a new
set of shape parameters (Section 3) as well as a novel sampling technique (Section 3.4), which
together lead to a remarkable gain in parameter searching efficiency. Searching in the new
parameters T , Tmaj, and Tmin (Equation 3.3) avoids significant non-uniformities associated
with other parameters used in earlier work. Our Latin hypercube sampling scheme results
in an order-of-magnitude reduction in needed sampling points compared with conventional
grid searches.

We applied the TriOS code and triaxial sampling scheme to the fast-rotating massive
elliptical galaxy NGC 1453 in the MASSIVE survey (Section 5). NGC 1453 has a relatively
small twist in the isophotes, and the kinematic and photometric axes are nearly aligned.
Despite these properties that are typically invoked to justify the use of axisymmetric orbit
codes, we find the best-fit model to have a triaxiality value of T = 0.33, with intrinsic
axis ratios p = 0.933 and q = 0.779. This best-fit triaxial model is able to match the
observed kinematic maps significantly better than the best-fit axisymmetric model in Liepold
et al. [87]. The improvement is mainly due to the ability of triaxial models to account for
non-bisymmetric features in the data (Figure 3.8). Most other galaxies in the MASSIVE
survey exhibit less (or no) rotation and more twists in their photometric and kinematic maps
compared to NGC 1453. This is further evidence that massive elliptical galaxies have triaxial
intrinsic shapes.

MBH in the best-fit triaxial model for NGC 1453 is unchanged from the value measured
with the axisymmetrized TriOS code from Liepold et al. [87]. Among the many dozens of stel-
lar dynamicalMBH measurements in local galaxies (e.g., McConnell and Ma [38]), NGC 1453
is only one of a handful galaxies whose central SMBH is studied with the full triaxial orbit
modeling technique not limited to axisymmetry. In four other galaxies (Section 1), M32 had
consistent MBH from axisymmetric and triaxial modeling, the NGC 3379 MBH increased by
a factor of ∼ 2 when axisymmetry was relaxed, the PGC 046832 MBH decreased enough
to be consistent with 0, while NGC 3998 was only modeled with the triaxial code so no
comparison can be made. All four systems were modeled with the original van den Bosch
et al. [59] code, which used the incorrect mirroring scheme. Triaxial orbit modeling of more
galaxies is needed for a full assessment of the systematic effects on stellar dynamical MBH

measurements when the commonly-made assumption of axisymmetry is relaxed.
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Chapter 4

Recovery Tests on Mock Galaxy
Observations

With the code improvements and modeling strategies of the previous sections in hand, I now
validate this code using mock galaxy data. Previous such validations have used far more
conservative uncertainty estimations than comparable validations for axisymmetric models.
Significant biases have also been found in recovered shape. In this chapter, we re-examine
this validation in the context of the improved version of the code, as described in the previous
chapters.

4.1 Mock Generation Framework

In this section, I describe the code pipeline that I have written to go from a stellar distribution
function to mock photometric and IFU data inputs for the TriOS code. Generating galaxy
models therefore requires selecting a total potential and a stellar DF that obey eq. (1.5).
In order to be maximally flexible with respect to the choice of distribution function, I have
chosen to estimate the projected galactic properties numerically by sampling directly from
the DF via Markov chain Monte Carlo (MCMC) sampling. Phase space points are sampled
from the DF, which can then be binned into image pixels or IFU apertures. While the
required number of samples varies depending on the required accuracy of the model, I have
found about 108 particles to be adequate for realistic cases.

Given the N-body samples from the chosen DF, a distance and viewing angles must be
chosen for the mock observation. With these in hand, mock photometric data is generated
by binning the N-body samples into a uniform grid according to their coordinates within
the sky plane. The resolution and field-of-view for this mock image should be chosen to be
roughly representative of realistic image data such as from HST or CFHT. These points can
also be convolved with a gaussian photometric PSF before binning. This mock image is then
run through the MGE pipeline in order to extract an MGE fit.

Like the mock photometric data, the mock IFU data is generated by first binning the
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N-body points on a uniform grid to imitate uniform lenslets or fibers. Again, the resolution
and FOV should be chosen to be comparable to realistic IFU instruments such as GMOS or
KCWI. These lenslets can then be merged to form the apertures that will be fed into the
TriOS code. This can either be done by forming annular bins, or by voronoi binning based
on an estimated signal-to-noise ratio in each bin based on the flux. With the kinematic
apertures decided, LOSVDs can then be constructed for each aperture. The GH moments
can either be fitted in a least-squares sense to the LOSVD, or estimated directly from the
N-body points. Moments from the two methods were found to be consistent.

Outside of the discreteness due to the finite number of MCMC samples, the resulting
kinematics are extremely and smooth free of noise. Thus, observational noise needs to be
added to the mock observations. Schwarzschild modeling results differ significantly if no
additional noise is added [25]. Detailed modeling of the uncertainties in moments extracted
from real spectra is beyond the scope of this thesis. Instead we assume gaussian noise
on each moment, as is typically assumed in modeling. We further validated that adding
uniform gaussian noise to the bins of the LOSVD resulted in moment values that were
largely consistent with adding noise directly to the moments. It is often useful to perform
orbit modeling with multiple draws of this gaussian noise to ensure that results are not due
to random fluctuations within the noise.

4.2 Spherical Models

Before proceeding to axisymmetric and triaxial models, it is useful to consider the simpler
case of spherical symmetry. One method of finding solutions to equations (1.5) and (1.6) is
to impose an assumption on the form of f . It will be useful to define the relative potential:

Ψ = −Φ(x⃗) + Φ0 (4.1)

and the relative energy:
E = −E + Φ0, (4.2)

where Φ0 is a constant chosen such that f = 0 when E ≤ 0. One common method of finding
a valid DF is to assume that the DF is ergodic - namely, f depends only on the relative
energy E .

If the potential and stellar density are assumed to be spherical, an ergodic DF can be
found with a relatively simple form, as outlined by Eddington [122]. These assumptions
allow us to simplify the integral in equation (1.3). Since v⃗ enters E and therefore f only
through its magnitude v, we can perform the integration over directions of v⃗ as:

ρ∗(r) = 4π

∫ ∞

0

v2f(E)dv. (4.3)

Changing the variable of integration from v to E gives:

ρ∗(r) = 4π

∫ Ψ(r)

0

f(E)
√
2(Ψ− E)dE , (4.4)
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where it is assumed that Φ0 is chosen such that f = 0 when E ≤ 0. Because Ψ(r) is a
monotonic function of r, we can regard Ψ instead of r as the independent variable. If we do
this and differentiate the previous equation with respect to Ψ, we get:

∂ρ∗
∂Ψ

= 4π

∫ Ψ

0

f(E)√
2(Ψ− E)

dE . (4.5)

Integrals of the form

g(x) =

∫ x

0

h(t)

(x− t)α
dt, (4.6)

with 0 < α < 1 are said to be of “Abel” form and can be inverted relatively simply to give

h(t) =
sin πα

π

∫ t

0

g(x)

(t− x)(1−α)
dx. (4.7)

Using this Abel inversion formula with α = 0.5, we obtain the result given by Eddington:

f(E) = 1√
8π2

d

dE

∫ E

0

1√
E −Ψ

∂ρ∗
∂Ψ

dΨ. (4.8)

For any given potential and stellar density, this equation gives a physically valid DF so long
as f(E) ≥ 0 for all values of E .

These ergodic models are isotropic, in the sense that the DF does not depend on the
direction of the velocity vector. However, these models can be generalized to be anisotropic,
with a DF that depends on both E and the angular momentum L. The DF can be written
relatively simply if the DF is chosen to be of the form f(E , L) = L−2βf1(E), where β is a
parameter controlling the degree of anisotropy. Another popular choice is to write the DF
as f(Q) = f(E − L2

2r2a
), where ra is a length scale over which the anistropy varies. These are

referred to as Osipkov-Merritt models [123, 124].

4.3 Hunter-Qian Models

Theoretical Background

While useful for some specific systems, the spherical models described in the previous section
are unable to represent many of the non-spherical stellar systems observed in nature. Most
galaxies appear flattened on the sky, indicating that these galaxies are not spherical.

Another useful class of models can be obtained by assuming the galaxy potential and
stellar distribution function to be axisymmetric. Eddington’s solution for spherical potentials
was generalized to axisymmetric models with a DF that depends on both E and Lz by
Hunter and Qian [125]. If the potential has reflective symmetry along the z axis, then Ψ is
a monotonic function of z2 at fixed R2. Thus, ρ can be regarded as a function of R2 and Ψ
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instead of R2 and z2. This is in analogy with the spherical case, where ρ was regarded as a
function of Ψ instead of r. Writing this density as ρ(Ψ, R2), the Hunter-Qian (HQ) solution
involves the analytic continuation of this density to complex inputs which we write as ρ̃.
For a given axisymmetric potential and stellar density, there is a unique stellar DF that is
even in Lz. Models that are not even in Lz can be obtained by taking the odd part of the
distribution function to equal the product of fe and any function with magnitude less than
1 that is odd in Lz. The unique even stellar DF is given by:

fe(E,Lz) =
1√
8π2i

∂

∂E

∫ [Ψenv(E)+]

Ψ∞

1√
ξ − E ρ̃1

[
ξ,

L2
z

2(ξ − E)

]
dξ. (4.9)

A subscript 1 (2) on a function indicates a derivative with respect to its first (second)
argument. Ψ∞ indicates the value of the potential as |x⃗| → ∞, and Ψenv(E) is the potential
evaluated on the circular orbit with relative energy E . For simplicity, we choose Ψ0 such
that Ψ∞ = 0, and do not consider potentials where Ψ∞ = −∞. The integration is along a
contour in the complex ξ plane beginning at ξ = Ψ∞ below the real axis, continuing below
the real axis until passing through the real axis at ξ = Ψenv(E), and returning to ξ = Ψ∞
above the real axis. Following Qian et al. [126], we choose the contour to be elliptical with
the form:

ξ =
1

2
Ψenv(E)(1 + cos θ) + ih sin θ, −π ≤ θ ≤ π. (4.10)

The parameter h describing the width of the contour should be chosen to be sufficiently
small so as to not enclose any complex conjugate singularities, but sufficiently large so as
to not come near the singularities on the real-axis. An example of this contour is shown in
figure 4.1.

The analogy between the axisymmetric and spherical cases is apparent in the similarity
between the forms of equations (4.8) and (4.9).

A more useful form for evaluation of this integral is:

fe(E,Lz) =
1√
8π2i

∫ [Ψenv(E)+]

Ψ∞

1√
ξ − E ρ̃11

[
ξ,

L2
z

2(ξ − E)

]
dξ, (4.11)

where ρ̃11 can be evaluated as

ρ̃11(ξ, R
2) =

ρ22(R
2, z2)

[Ψ2(R2, z2)]2
− ρ2(R

2, z2)Ψ22(R
2, z2)

[Ψ2(R2, z2)]3
, (4.12)

where z2 is regarded as a function of ξ and R2 which can be evaluated numerically. At a

given point on the contour, R2 = L2
z

2(ξ−E) , and thus z2 is given by the numerical solution of

ξ = Ψ

[
L2
z

2(ξ − E) , z
2

]
, (4.13)

such that z2 is real at ξ = Ψenv(E) and follows from analytic continuation for the remainder
of the contour.
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Figure 4.1: Integration contour for Hunter-Qian models with Ψ∞ = 0 for a given E and
Lz. The elliptical contour starts from 0 below the real axis, passes through the real axis
at ξ = Ψenv(E), and returns to 0 above the real axis. The shaded region of the real line
indicates values of ξ which are physically allowed values of the potential at this E and Lz.
The minimum and maximum physically allowed values of the potential are indicated by Ψmin

and Ψmax.

Double Power-law Models

While the equations described above apply more generally, we now consider the specific case
of stellar density models of the form:

ρ(m2) = ρ0

(m
b

)α(
1 +

m2

b2

)β

, m2 = R2 + z2/q2 (4.14)

where ρ0 is a characteristic density, b is a characteristic length, q is the model flattening, and
α and β are parameters controlling the inner and outer power law slopes. To roughly model
the central region of a giant elliptical galaxy, we choose ρ0 = 9.46× 1010 M⊙kpc

−3, b = 0.29
kpc, q = 0.85, α = −0.57, and β = −1.0. This density has a central power-law cusp with
slope −0.57 and an outer slope of −2.57. We consider models with a central black hole for
which we choose MBH = 3.0×109 M⊙. In order to evaluate fe(E , Lz) using the results of the
previous section, each term in equation (4.12) needs to be evaluated for this potential and
stellar density model. The necessary density derivatives are:

ρ2(m
2) = ρ′(m2)/q2

=
ρ(m2)

q2
αb2 + (α + 2β)m2

2m2(m2 + b2)

(4.15)
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and

ρ22(m
2) = ρ′′(m2)/q2

=
ρ(m2)

q4
(α− 2)αb4 + (2α2 − 4α + 4αβ)m2b2 + (α2 − 2α + 4αβ − 4β + 4β2)m4

4m4(m2 + b2)2
.

(4.16)

The stellar potential can be calculated by numerical quadrature for complex inputs as:

Ψ∗(R2, z2) =
2πGq

e

{
arcsin e

∫ ∞

R2+z2/q2
ρ(m2)dm2

+

∫ ∞

0

ρ(U)

[
R2

(1 + u)2
+

z2

(q2 + u)2

]
arcsin

e√
1 + u

du

}
,

(4.17)

where

U =
R2

1 + u
+

z2

q2 + u
, (4.18)

and e =
√

1− q2. Equation (4.17) holds so long as the integrals converge at large radii
which we find to be true for the models that we consider. The derivatives of this potential
can be calculated by numerical quadrature as:

Ψ∗
2(R

2, z2) = −πGq
∫ ∞

0

du

(1 + u)(q2 + u)3/2
ρ(U) (4.19)

Ψ∗
22(R

2, z2) = −πGq
∫ ∞

0

du

(1 + u)(q2 + u)5/2
ρ′(U). (4.20)

The total potential is given by the stellar contribution added to that of the black hole:

Ψ(R2, z2) = Ψ∗(R2, z2) +
GMBH√
R2 + z2

Ψ2(R
2, z2) = Ψ∗

2(R
2, z2)− 1

2

GMBH

(R2 + z2)3/2

Ψ22(R
2, z2) = Ψ∗

22(R
2, z2) +

3

4

GMBH

(R2 + z2)5/2
.

(4.21)

Numerical Implementation

In order to evaluate the HQ distribution function, we use a similar scheme to that outlined
in Qian et al. [126]. For a given value of (E , Lz), the integration is performed via Gauss
quadrature. Beginning on the real axis at ξ = Ψenv(E), the (complex) value of z2 is evaluated
from equation (4.13) at each subsequent point via Newton’s method using the previous
point’s z2 value as an initial guess. The integrand is then evaluated using (4.12). The
integral is calculated cumulatively by adding the Guass quadrature weight multiplied by the
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integrand for each point. The contribution to the integral falls off as ξ approaches 0. We thus
terminate the integration when the weighted integrand falls below 10−6 of the cumulative
integral value.

In practice, this procedure is too computationally demanding to evaluate the DF directly
during MCMC sampling. Instead, we evaluate the DF on a grid of E and η = Lz/Lc(E),
where Lc(E) is the angular momentum of a circular orbit at relative energy E . Intermediate
values are then interpolated linearly between values of log fe on the grid points. For E values
larger than those in the interpolation table, we use an approximation to the DF. For large
E , the even DF is approximately given by:

fe(E , Lz) =
ρ0q

−α

(2πB)3/2

(
E −Ψ∗

0

B

)−α−3/2
Γ(1− α)

Γ(−α− 1/2)
3F2(

1− α

2
, 1− α

2
,−α

2
;−α− 1

2
,
1

2
; e2η2),

(4.22)
where B = GMBH

b
is a characteristic energy scale, Γ is the Γ-function, and 3F2 is a general-

ized hypergeometric function. The smallest value of E in the interpolation table is chosen
such that fe is roughly described by a power-law for the smallest E in the table. We then
extrapolate values beyond the table as a power law for each value of η within the table.

With this interpolation scheme, I sampled 108 points using the potential parameters
outlined in the previous section. Since the DF depends only on E and Lz, the MCMC sam-
pling can be performed in the four dimensional space (R, z, vϕ, vT ) where vϕ is the azimuthal
component of velocity, and vT is the component perpendicular to the azimuthal direction.
The DF needs to be multiplied by a Jacobian determinant given by J = (2πR)(2πvT ). 6-
dimensional phase space points can be calculated by drawing two angles ϕ and ϕv between
0 and 2π, where ϕ is the azimuthal angle in cylindrical coordinates and ϕv describes the
angle of vT within the meridional plane. In order to increase the sampling with negligible
computation costs, we sample 10 different values of these angles for each 4-dimensional point
in order to obtain a total of 109 N-body points. Following Qian et al. [126], we choose the
odd part of the DF to be:

fo(E , Lz) = (2F − 1)
tanh [aη/2]

tanh[a/2]
fe(E , Lz), (4.23)

with the two parameters set to F = 1 and a = 5.5. We then project the model along an
inclination angle of θ = 50◦. We take the galaxy to be at a distance to be 51.0 Mpc. We
use a mock IFU with a resolution of 0.1 arcseconds and a 5 arcsecond field-of-view, and
assume a gaussian PSF with a standard deviation of 0′′.5. Within each bin, we fit the first
8 GH moments, and apply gaussian noise of magnitude 0.03 in each moment (h1 − h8). The
resulting kinematics are shown in figures 4.2 and 4.3. The mass-to-light ratio for the model
is taken to be 1M⊙/L⊙.

Recovery

In order to determine best-fit parameters for these HQ mock observations via Schwarzschild
modeling, a latin hypercube was used to sample the 3 dimensional (MBH,M/L, θ) space.
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Figure 4.2: Noiseless kinematic maps for the HQ models described in the text.

Figure 4.3: Kinematic maps for the HQ models described in the text for a given noise
realization.
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MBH was sampled between 0 and 6× 109 M⊙, M/L was sampled between 0.4 and 1.4, and
cos θ was sampled from 0 up to the maximum deprojectable value for the MGE. Sampling
in cos θ is equivalent to sampling in

√
Tmin for the oblate axisymmetric case. For each set of

parameters, the stellar potential was determined by deprojecting the surface brightness from
the MGE, and multiplying by the mass-to-light ratio. Within each trial potential consisting
of the stellar mass and MBH, a library of orbits was integrated following the same procedure
as 2. The orbit library consists of 40 × 9 × 9 orbits, each composed of 33 trajectories with
dithered starting positions.

Following 2, the stationary start space is not included since the models are taken to be
axisymmetric. The two viewing angles that were not sampled directly were set to (ϕ, ψ) =
(45◦, (90 + 10−7)◦) in order to exclude long-axis tube orbits from the model. Each orbit was
rotated 40 times in ϕ in order to enforce axisymmetry within the orbit library.

Orbital weights were determined by minimizing a χ2 function that includes contribu-
tions from the GH moments within each kinematic aperture, the projected mass within each
kinematic aperture, and the intrinsic mass distribution. The resulting χ2 values were inter-
polated in 3D using a Gaussian process regression. A likelihood was then calculated from
this landscape as p = e−χ2/2, before marginalizing to obtain the 2D likelihood contours and
1D likelihoods shown in figure 4.4. The true values of MBH and M/L are both well within
the 1σ confidence intervals. The inclination θ, however, is far beyond the 1σ confidence
interval, with the Schwarzchild models strongly preferring edge-on inclinations.

While figure 4.4 shows the likelihood landscape for a single realization of noise in the GH
moments of the mock observation, this procedure can be repeated for multiple realizations
of the noise to ensure that the results are consistent. This is shown in figure 4.5. The
results are extremely consistent between noise realizations. Namely, the MBH and M/L are
recovered very well with 1σ confidence intervals that are somewhat conservative, while θ is
consistently biased towards 90◦ indicating a preference for edge-on models.

4.4 Triaxial Abel Models

While the HQ models described previously are excellent for testing the recovery of black hole
mass and mass-to-light ratio in axisymmetric models, recovery of triaxial shape requires mock
triaxial galaxy data with a known input galaxy shape and alignment. For this purpose, we
use the triaxial Abel models described in Ven, De Zeeuw, and Van Den Bosch [61], based
on the models originally described in Dejonghe and Laurent [127] and extended in Mathieu
and Dejonghe [128].

Stackel Potentials

Stackel potentials are a class of potentials for which orbital dynamics can be expressed in
relatively simple analytic forms. We first must define a set of confocal ellipsoidal coordinates
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Figure 4.4: 3D likelihood landscape for orbit models of the Hunter-Qian model described in
the text. The models are sampled in MBH, M/L, and θ. The 1D and 2D likelihood land-
scapes are obtained by marginalizing over a smoothed 3D landscape generated by Gaussian
process regression. The red, green, and blue curves represent the 1σ, 2σ, and 3σ contours,
respectively. MBH and M/L are consistent within 1σ, while the inclination recovery exhibits
a clear bias towards edge-on models.
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Figure 4.5: 1D marginalized 1σ confidence intervals for orbit model parameters of the Hunter-
Qian model described in the text. The 1D confidence intervals are obtained by marginalizing
over a smoothed 3D landscape generated by Gaussian process regression. The estimated
uncertainties are somewhat conservative on MBH and M/L, while the inclination θ is clearly
biased towards edge-on.

(λ, µ, ν) as the three roots for τ in the expression:

x2

τ + α
+

y2

τ + β
+

z2

τ + γ
= 1, (4.24)

where (x, y, z) are the normal cartesian coordinates, and α, β, and γ are constants such that
−γ ≤ ν ≤ −β ≤ µ ≤ −α ≤ λ. The inverse transformation is given by:

x2 =
(λ+ α)(µ+ α)(ν + α)

(α− β)(α− γ)

y2 =
(λ+ β)(µ+ β)(ν + β)

(β − γ)(β − α)

z2 =
(λ+ γ)(µ+ γ)(ν + γ)

(γ − α)(γ − β)
.

(4.25)
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Thus, each point in confocal ellipsoidal coordinates (λ, µ, ν) represents 8 points in cartesian
coordinates (±x,±y,±z).

A Stackel potential is then defined as having the form:

ΦS(λ, µ, ν) =
U(λ)

(λ− µ)(λ− ν)
+

U(µ)

(µ− ν)(µ− λ)
+

U(ν)

(ν − λ)(ν − µ)
, (4.26)

where U(τ) is an arbitrary smooth function for τ = λ, µ, ν.
It will prove useful to introduce an expression for a divided difference of U(τ) following

Hunter and de Zeeuw [129]. We define the first order divided difference of U(τ) as:

U [τ1, τ2] =
U(τ1)− U(τ2)

τ1 − τ2
. (4.27)

Higher order divided differences can then be defined recursively in terms of lower order
divided differences as:

U [τ1, τ2, . . .] =
U [τ1, . . .]− U [τ2, . . .]

τ1 − τ2
. (4.28)

Such divided differences are symmetric in their arguments. Direct calculation reveals that
equation (4.26) can be re-written as a second order divided difference:

ΦS(λ, µ, ν) = U [λ, µ, ν]. (4.29)

The mass density that generates this potential follows from Poisson’s equation as:

ρS(λ, µ, ν) =
1

4πG
∇2Φ(λ, µ, ν). (4.30)

For such a potential, the triaxiality parameter is defined as:

T =
β − α

γ − α
. (4.31)

The utility of these potentials follows from the fact that the Hamilton-Jacobi equation
separates in the coordinates (λ, µ, ν) for potentials of the form (4.26). This allows us to write
the three integrals of motion analytically as:

E =
1

2
(v2x + v2y + v2z) + U [λ, µ, ν]

I2 =
1

2
L2
z +

1

2
TL2

y +
1

2
(α− β)v2x + (α− β)x2U [λ, µ, ν,−α]

I3 =
1

2
L2
x +

1

2
(1− T )L2

y +
1

2
(γ − β)v2z + (γ − β)z2U [λ, µ, ν,−γ].

(4.32)

In order to classify these orbits, it is useful to define the effective potential:

Φeff(τ) =
I2

τ + α
+

I3
τ + γ

−G(τ). (4.33)
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is defined as:

G(τ) = −
U(τ)− τ+γ

γ−α
U(−α) + τ+α

γ−α
U(−γ)

(τ + α)(τ + γ)
. (4.34)

For τ = y2 − β ≥ −β, −G(y2 − β) is the value of the potential along the intermediate
axis. Assuming the density ρS that generates this potential is centrally concentrated and
has finite central density, G(τ) decreases monotonically with τ , G(τ) falls off slower than
1/τ as τ → ∞, and G(τ) is either finite at τ = −γ or diverges slower than 1/τ + γ [22].

Under this assumption, the potential supports four major orbit families: box orbits,
inner long-axis tube orbits, outer long-axis tube orbits, and short-axis tube orbits. Bounded
motion is allowed at a given position so long as:

E ≥ Φeff(λ)

E ≥ Φeff(µ)

E ≤ Φeff(ν)

E ≤ 0.

(4.35)

At a given position, each constraint in equation (4.35) represents a plane in the (E, I2, I3)
integral space. The volume in this space is therefore a tetrahedron bounded by these four
planes, which we denote as Tλµν . This volume is shown in figure 4.6. With this definition
of the effective potential in hand, orbits can be classified relatively simply according to the
scheme outlined in table 4.1.

I2 < 0 I2 > 0
E < Φeff(−β) Inner Long-axis Tube orbit Outer Long-axis Tube orbit
E > Φeff(−β) Box orbit Short-axis tube orbit

Table 4.1: Orbit classification within a Stackel potential.

Abel Distribution Functions

Following Dejonghe and Laurent [127], we define our triaxial DF to depend only on a variable
S which can be written as:

S = −E + wI2 + uI3. (4.36)

This choice is analogous to the ansatz chosen for axisymmetric Osipkov-Merritt models,
where the DF depends only a variable Q = −E − L2

2r2a
. The magnitudes of w and u can thus

be considered as characteristic inverse squared distances at which the orbital anisotropy
changes.

Under the assumption of a DF that depends only on S, self-consistency is only possible
in the spherical case [130]. However, following Ven, De Zeeuw, and Van Den Bosch [61], we
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Figure 4.6: Volume in integral space that is accessible by orbits at a given position, Tλµν .
The four orbit types, separated by the blue and red planes, are indicated by I (inner long-axis
tube orbits), O (outer long-axis tube orbits), B (box orbits), and S (short-axis tube orbits).
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will choose the DF to roughly approximate the total mass near the center and underestimate
the total mass at larger distances, roughly approximating the effect of dark matter in real
galaxies.

The DFs described in Ven, De Zeeuw, and Van Den Bosch [61] can sample only a subset
of the volume Tλµν . This allowed subset, Sλµν , is defined by the additional contraint that S
must be greater than some minimum value, Slim. This value is given by:

Slim =


−U [−α, 1/u− γ,−γ] u ≥ 0 and U [−α,1/u−γ,−γ]

β−α
≤ w ≤ u

1−(γ−α)u

−U [−α, 1/w − α,−γ] w ≥ 0 and u ≤ w
1+(γ−α)w

w(β − α)Φ0 otherwise,

(4.37)

where Φ0 = U [−α,−β,−γ] is the central value of the potential. In order to have a non-zero
volume of Sλµν at the origin, we must have u ≤ 1

γ−β
and w ≥ − 1

β−α
.

With these definitions in hand, we define our distribution function to have the form:

fδ(S) =

(
S − Smin

−Φ0 − Smin

)δ

within Tλµν and S ≥ Smin ≥ Slim. (4.38)

In this expression, Smin and δ are constants, with δ being non-negative. The DF is 0 outside
the volume Tλµν and for S < Smin.

As written, equation (4.38) describes a distribution function that includes no rotation;
all four orbit families are included with equal prograde and retrograde weights for tube
components. Components consisting of a single orbit type can be constructed by imposing
constraints from table 4.1.

Since each integral in equation (4.32) is quadratic in velocities, they are invariant under
time reversal. Thus, prograde and retrograde components for each tube orbit type correspond
to the same values of (E, I2, I3). Therefore, in order to introduce rotation, unequal weights
must be assigned based on the sign of Lz for short-axis tube orbits, or Lx for long-axis tube
orbits. Following Ven, De Zeeuw, and Van Den Bosch [61], we refer to these DFs as triaxial
Abel models.

Isochrone Potentials

Thus far in this section, all results have applied for any function U(τ), so long as it is
generated by a density ρS(λ, µ, ν) that is centrally concentrated and finite at the origin. We
now specify the choice of U to be:

U(τ) = −GM√
τ(τ + β). (4.39)

Since τ ≥ −γ, this expression is valid so long as γ ≤ 0. Since equation (4.24) is invariant
under shifts of the form α, β, γ, τ → α−∆, β−∆, γ−∆, τ +∆, the parameter γ can always
be chosen to be non-positive without loss of generality.



CHAPTER 4. RECOVERY TESTS ON MOCK GALAXY OBSERVATIONS 79

The resulting potential is:

ΦS(λ, µ, ν) = −GM
√
λµ+

√
µν +

√
νλ− β

(
√
λ+

√
µ)(

√
µ+

√
ν)(

√
ν +

√
λ)
, (4.40)

and the third-order divided difference that enters equation (4.32) is:

U [λ, µ, ν, σ] = GM

√
λµν +

√
µνσ +

√
νσλ+

√
σλµ− β(

√
λ+

√
µ+

√
ν +

√
σ)

(
√
λ+

√
µ)(

√
λ+

√
ν)(

√
λ+

√
σ)(

√
µ+

√
ν)(

√
µ+

√
σ)(

√
ν +

√
σ)
.

(4.41)
The function G(τ) that enters the effective potential in equation (4.33) is:

G(τ) =
GM√−α +

√−γ

(√
τ(
√−α +

√−γ) +√
αγ − β√

τ(
√−α +

√−γ) +√
αγ + τ

)
. (4.42)

The mass density that generates this potential is given in Appendix C of de Zeeuw and
Pfenniger [131] as:

ρ(λ, µ, ν) =
M

4π

1

Z3(XY − Z)3

×
{ [

(β − α− γ)(Y 2 +XZ) + (αβ − β2 + 2αγ + βγ)(X2 + Y )
]
Z3

− 3αβγZ2(X3 + Z) + αβ2γX(X2Y 2 +X3Z − 3XY Z + 3Z2)
}
,

(4.43)

where:

X =
√
λ+

√
µ+

√
ν

Y =
√
λµ+

√
µν +

√
νλ

Z =
√
λµν.

(4.44)

Numerical Implementation

We take a significantly different implementation approach to van den Bosch and van de Ven
[60]. While the projected properties of these models can be calculated in a relatively simple
numerical manner, we instead elect to sample the DF directly with an MCMC as outlined in
section 4.1. In this case, we sample in the 6 dimension space (λ, µ, ν, vx, vy, vz). In order to
account for the change cartesian and ellipsoidal coordinates, the distribution function must
be multiplied by the Jacobian determinant, which is given by:

J =
(λ− µ)(λ− ν)(µ− ν)

8
√

(λ+ α)(λ+ β)(λ+ γ)(µ+ α)(µ+ β)(µ+ γ)(ν + α)(ν + β)(ν + γ)
. (4.45)

For each trial phase space point, it is verified that the point lies within the volume Tλµν and
that S ≥ Smin. If the DF is specified to consist of only a subset of orbit types, then the
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trial point must lie within the associated subvolume of Tλµν according to the constraints in
table 4.1. If the trial point lies within the allowed volume, the log distribution function and
Jacobian determinant are evaluated.

Each phase space point can be mapped to 16 points in cartesian phase space: one position
in each octant of configuration space, together with its time-reversed (velocity mirrored) copy.
Weights are assigned to these 16 points depending on the desired rotation fraction of these
orbits. If the component is non-rotating, all 16 points receive equal weights. For a purely
rotational short-axis tube component for example, the 8 weights with Lz > 0 would receive
equal weights while the 8 with Lz < 0 would receive no weight. These phase space points
are then used to calculate a stellar luminosity MGE and stellar kinematics.

In addition to the phase space points, a separate set of MCMC points are drawn from
the density distribution (4.43) in order to fit an MGE to the mass distribution. We choose
to study a triaxial model similar to those studied in van den Bosch and van de Ven [60].
We take a set of ellipsoidal coordinates with (α, β, γ) = (−0.94,−0.70,−0.40), which gives
comparable axis ratios to the triaxial models explored in van den Bosch and van de Ven [60].
This gives a triaxiality parameter of T = 0.45. We adopt a triaxial Isochrone Potential with
M = 1011M⊙. The stellar distribution function is then taken to be stratified on planes of
constant S defined by parameter values u = −0.5

−α
and w = −0.5

−α
for S ≥ Smin = Slim. The

models are projected along a line-of-sight directed along (θ, ϕ) = (60◦, 60◦). We take the
mock galaxies to be at a distance to be 20.0 Mpc. We use a mock IFU with a resolution of
1.0 arcseconds and a 40′′×30′′ field-of-view.

I consider two distinct DFs within this potential. The first is composed of a non-rotating
componenent with a relative weight of 0.8 (filling the entire volume Sλµν) and a purely
prograde short-axis rotating component with a relative weight 0.2 (filling the subset of Sλµν

that consists of short-axis tube orbits). This DF, referred to as DF1 here, is the same as
the “ST2” model explored in van den Bosch and van de Ven [60]. The surface brightness
and kinematic maps for DF1 are shown in 4.7. The model kinematics have been randomly
perturbed with a gaussian distribution of width 0.03 for each GH moment. V and σ were
perturbed by a gaussian distribution with width 0.03

√
2σ.

The projected kinematics of DF1 exhibit fairly little kinematic misalignment, similar to
NGC 1453. However, DF1 rotates more slowly than NGC 1453, and is more representative
of the slow rotators that are common among high mass ellipticals. h4 is consistently negative
throughout the field of view. The model exhibits a mild misalignment between the mass and
luminosity distributions.

The second DF that I consider replaces a quarter of the short-axis tube component with a
long-axis tube component. The complete model thus consists of a non-rotating componenent
with a relative weight of 0.8 (filling the entire volume Sλµν), a purely prograde short-axis
rotating component with a relative weight 0.15 (filling the subset of Sλµν that consists of
short-axis tube orbits), and a purely prograde long-axis rotating component with a relative
weight of 0.05 (filling the subset of Sλµν that consists of long-axis tube orbits). This DF
is referred to as DF2. The kinematics for this model, perturbed with gaussian noise in the
same manner as DF1, are shown in 4.8. The same random seed was used for DF1 and DF2
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Figure 4.7: Kinematic maps for the DF1 Abel model described in the text for a given noise
realization.

Figure 4.8: Kinematic maps for the DF2 Abel model described in the text for the same noise
realization as figure 4.7.

in order to compare more directly.
The projected kinematics of DF2 exhibit a large kinematic misalignment, similar to

NGC 57 Ene et al. [116]. The kinematics look qualitatively similar to DF1 beyond the
first moment. By testing both of these models, we can study whether strong kinematic
misalignments result in tighter constraints on the underlying triaxial shape. The model
exhibits a mild misalignment between the mass and luminosity distributions. A mass-to-
light ratio of 1M⊙/L⊙ is assumed for both DF1 and DF2.

Recovery

In order to test the recovery of these models within the TriOS code, a similar search strategy
to chapter 3 was used. The 4-dimensional (M/L, T,

√
Tmaj,

√
Tmin) space was sampled with

a latin hypercube. M/L was sampled from 0.7 to 1.3, while (T,
√
Tmaj,

√
Tmin) was sampled

over the unit cube. For each point in the latin-hypercube, a set of viewing angles were
calculated using (3.8) on the branch 0◦ ≤ θ ≤ 90◦, 0◦ ≤ ϕ ≤ 90◦, 90◦ ≤ ψ ≤ 180◦. Since
the mass density MGE has no twists, the deprojected mass density does not depend on the
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choice of branch. For each set of viewing angles, the mass density MGE was then deprojected
(when such a deprojection is valid according to equation (3.6)).

A library of orbits was then integrated within the potential for each potential based on
the start-space outlined in 3.4. 40× 18× 9 orbits were used in each orbit library for a total
3× 40× 18× 9 orbits. Each orbit was dithered 33 times.

Next, the surface brightness MGE was deprojected for each mass model. Since the
luminosity density is misaligned relative to the mass density, the deprojected luminosity
density will depend on the choice of branch. Thus, for each deprojected mass density, there
are two possible sets of viewing angles and thus two possible deprojected luminosity densities.
We denote the branch with 0◦ ≤ θ ≤ 90◦, 0◦ ≤ ϕ ≤ 90◦, 90◦ ≤ ψ ≤ 180◦ as branch 1. Branch
2 is then taken to be related to branch 1 via (ϕ, ψ) → (−ϕ, 180◦−ψ) such that 0◦ ≤ θ ≤ 90◦,
−90◦ ≤ ϕ ≤ 0◦, 0◦ ≤ ψ ≤ 90◦. The misalignment between the projected mass and luminosity
densities results in a smaller region of valid deprojections for the lumionsity than the mass
alone.

Finally, orbital weights can be chosen to best reproduce the mock observations. For each
branch of each model, the weights are found using a non-negative least squares (NNLS)
solver to minimize a χ2 value that includes contributions from each GH moment for each
kinematic aperture. The projected and intrinsic luminosity distributions are included in the
χ2 value with an assumed 1% uncertainty. For each branch, we employ a Gaussian process
interpolation with a Matern covariance kernel with ν parameter of 3/2 to the 4-dimensional
χ2 values [132]. Then, taking each model to have a likelihood of p = e−χ2/2, we use a Markov
Chain Monte-Carlo procedure to sample points from this likelihood function in order to
marginalize the likelihood to give 2-dimensional contours and 1-dimensional distributions.
This marginalized likelihood is shown on branch 1 for a single noise realization for DF1 and
DF2 in figures 4.9 and 4.10 respectively. This branch contains the true deprojection for the
input model and has a best fitting model that is significantly preferred over the best-fit in
branch 2 for both DFs.

I performed the same fitting and marginalization procedure for 5 separate realizations of
noise in the GH moments. Since branch 1 was significantly preferred over branch 2 in each
case, we present only the confidence intervals for branch 1. The branch 2 landscapes are
qualitatively similar in shape. The same random seed was used for the noise in the two DFs.
The marginalized 1σ confidence intervals are shown in figures 4.11 and 4.12 for the two DFs.

Overall, the model parameters are recovered well. For DF1, the true value is contained
within the 1σ confidence interval for 4/5 realizations for T , 2/5 realizations for

√
Tmaj, and

1/5 realizations for
√
Tmin. For DF2, the true value is contained within the 1σ confidence

interval for 4/5 realizations for T , 3/5 realizations for
√
Tmaj, and 2/5 realizations for

√
Tmin.

Between the two DF models, only one realization of a single shape parameter (
√
Tmin for

realization 5 of DF1) lies beyond 3σ of the true value. For both DF1 and DF2, the estimated
1σ confidence intervals are largely representative of the true variation in recovered values of
the shape parameters. In either case, the mass-to-light ratio is consistently overestimated
by about 5%.



CHAPTER 4. RECOVERY TESTS ON MOCK GALAXY OBSERVATIONS 83

M/L (M /L ) = 1.06+0.03
0.03

0.3
0

0.4
5

0.6
0

0.7
5

T

T = 0.44+0.09
0.08

0.3
0

0.4
5

0.6
0

0.7
5

0.9
0

T m
aj

Tmaj  = 0.60+0.07
0.07

0.9
6

1.0
2

1.0
8

1.1
4

1.2
0

M/L (M /L )

0.3
0

0.4
5

0.6
0

0.7
5

T m
in

0.3
0

0.4
5

0.6
0

0.7
5

T

0.3
0

0.4
5

0.6
0

0.7
5

0.9
0

Tmaj

0.3
0

0.4
5

0.6
0

0.7
5

Tmin

Tmin  = 0.43+0.06
0.06

Figure 4.9: 4D likelihood landscape for orbit models of the trixaial Abel model DF1 described
in the text. The models are sampled in M/L, T ,

√
Tmaj,

√
Tmin, and deprojected using

viewing angles lying in branch 1. The 1D and 2D likelihood landscapes are obtained by
marginalizing over a smoothed 4D landscape generated by Gaussian process regression. The
red, green, and blue curves represent the 1σ, 2σ, and 3σ contours, respectively.

√
Tmaj and√

Tmin are within 1σ of their true values of 0.47 and 0.53 respectively. M/L and T are within
2σ of the true values of 1.0 and 0.45 respectively.
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Figure 4.10: 4D likelihood landscape for orbit models of the trixaial Abel model DF2 de-
scribed in the text. The models are sampled in M/L, T ,

√
Tmaj,

√
Tmin, and deprojected

using viewing angles lying in branch 1. The 1D and 2D likelihood landscapes are obtained
by marginalizing over a smoothed 4D landscape generated by Gaussian process regression.
The red, green, and blue curves represent the 1σ, 2σ, and 3σ contours, respectively.

√
Tmaj

and
√
Tmin are within 1σ of their true values of 0.47 and 0.53 respectively. M/L and T are

within 2σ of the true values of 1.0 and 0.45 respectively.
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Figure 4.11: 1D marginalized 1σ confidence intervals for orbit model parameters of the trix-
aial Abel model DF1 described in the text, deprojected with viewing angles lying in branch
1. The 1D confidence intervals are obtained by marginalizing over a smoothed 4D land-
scape generated by Gaussian process regression. While M/L is consistently overestimated
by about 5% (∼ 2σ), the deviations in the shape parameters are of order 1σ.

4.5 Discussion

Confidence Criteria

Schwarzschild modeling has been widely used to estimate mass distributions in galaxies for
several decades. The majority of such work has involved axisymmetric galaxy models. For
axisymmetric modeling, the most common method of determining 1σ confidence intervals
for a given parameter is to find the maximum and minimum values of this parameter among
models with ∆χ2 < 1. This method is based on the assumption of a likelihood for each
model given by e−χ2/2, together with the assumption that this likelihood is roughly gaussian
near the best-fit value (ie. χ2 is roughly parabolic).

Throughout this thesis, I have employed a related, but somewhat more general method
of determining confidence intervals. In order to relax the assumption of gaussianity near the
best-fit value, we instead seek to construct the likelihood as a function of all input parameters.
We find gaussian process regression to be a stable, reliable method of determining a smooth
interpolation between parameter values in these spaces. We then perform a MCMC in order
to sample from this likelihood function. The best-estimate for each parameter is taken to be
the median value from these MCMC samples, and the confidence interval is taken to be the
range between the 16th and 84th percentiles of the distribution in each parameter.
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Figure 4.12: 1D marginalized 1σ confidence intervals for orbit model parameters of the trix-
aial Abel model DF2 described in the text, deprojected with viewing angles lying in branch
1. The 1D confidence intervals are obtained by marginalizing over a smoothed 4D land-
scape generated by Gaussian process regression. While M/L is consistently overestimated
by about 5% (∼ 2σ), the deviations in the shape parameters are of order 1σ.

This method stands in contrast with most other triaxial orbit modeling. The most
commonly used method for triaxial models is based on van den Bosch et al. [59] and van
den Bosch and van de Ven [60], though several variations exist. This method is based on
the idea that the noise in the χ2 values themselves is large compared to the ∆χ2 < 1 levels
that are typically used. This noise level is estimated as

√
2(Nkin −Npar), where Nkin is the

number of kinematic constraints in the model (ie. the number of kinematic apertures times
the number of GH moments included for each aperture) and Npar is the number of mass
parameters that are explored (eg. M/L, shape parameters, etc.). Since Nkin ≫ Npar for
Schwarzschild models, this noise level is approximated as

√
2Nkin, and the 1σ confidence

interval for a given parameter is taken to be the range between the maximum and minimum
values of this parameter among models with ∆χ2 <

√
2Nkin. This criterion was validated

in van den Bosch and van de Ven [60], where it was found that recovered parameter values
did indeed differ from their true values by roughly the scale set by this criterion. Confidence
intervals determined via this method are significantly larger than those determined using the
method that I have employed throughout this thesis.

The choice to use a different confidence interval criterion than most previous triaxial
models is based on the following argument. For a fixed set of input kinematics, we do not
find the χ2 values of our models to have noise at a scale of

√
2Nkin. For a fixed set of input

kinematics, the only statistical noise is due to the PSF convolution which is performed by
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randomly perturbing projected positions according to a parameterized PSF model. This
results in noise levels of ∼ 1 ≪ √

Nkin. While there are likely to be systematic uncertainties
associated with this modeling method, these would certainly would not be well estimated
by the assumption of gaussianity used to arrive at

√
2Nkin. The χ2 values do indeed vary

on the scale of
√
Nkin when the input kinematics are varied according to their uncertainties,

but this is mainly an overall shift in the landscape - the ∆χ2 between any two models tends
to be much smaller than this estimate.

Ultimately, the correct choice of confidence interval should be the one that best repre-
sents deviations from the true parameter values. Further, chapters 2 and 3 outlined several
issues with the code that was used to perform the original tests in van den Bosch and van
de Ven [60]. The tests performed in this section allow us to compare these two criteria with
the updated version of the code. The confidence intervals on the mass averaged axis ratios
(u, p, q) are shown in figures 4.13 and 4.14 for several realizations of noise on the input kine-
matics of DF1 and DF2 respectively. The axis ratios are calculated for the models presented
in figure 4.11 and 4.11 by luminosity averaging the axis ratios over the deprojected mass
MGE for each model. The black points and errorbars indicate the 1σ confidence intervals
calculated via the 16th and 84th percentiles of MCMC samples from a smoothed likelihood
function. The red points and errorbars indicate the 1σ confidence intervals calculated as the
range of models with ∆χ2 <

√
2Nkin. The errorbars in red are excessively conservative. The

black errorbars are more representative of the deviations of the black points from the true
parameter values.

Reliability of Estimated Parameters

In most cases, the tests described in this section indicate that the statistical uncertainties,
as estimated via MCMC samples from a smoothed likelihood function, are representative
of actual deviations from the input parameter values. The main exceptions to this for the
triaxial Abel models are the ∼ 5% overestimate of M/L and a slight ∼ 1% overestimate of
q (or underestimate of

√
Tmin by about 0.1). These biases are both of order ≲ 2σ.

It is illustrative to compare these tests to those performed in van den Bosch and van de
Ven [60]. In that paper, parameter estimates were found to differ from the true values by
amounts comparable to the ∆χ2 <

√
2Nkin confidence interval. Given that our deviations are

significantly smaller, this suggests that the improvements to the code outlined in chapters 2
and 3 have improved the precision dramatically.

The model DF1 is a particularly direct comparison to van den Bosch and van de Ven [60],
as it is equivalent to their ST2. It is important to note that the comparison is not perfect, as
the number of kinematic bins is significantly different (I use far fewer bins) and the moment
noise is somewhat different between the two analyses. The binning of van den Bosch and
van de Ven [60] is not entirely specified, but it is apparent by comparing to figure 4 of van
den Bosch and van de Ven [60] that their input kinematics appear to much smoother. One
would therefore expect less noise in their parameter estimates than ours. Reading off values
from figure 4 of van den Bosch and van de Ven [60], the recovered p value appears to be
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Figure 4.13: 1D marginalized 1σ confidence intervals for luminosity averaged axis ratios of
the trixaial Abel model DF1 described in the text, deprojected with viewing angles lying in
branch 1. The 1D confidence intervals in black are obtained by marginalizing over a smoothed
4D landscape generated by Gaussian process regression. The 1D confidence intervals in red
are determined using the criterion laid out in van den Bosch and van de Ven [60]. The
black confidence intervals are a more accurate representation of the deviation from the true
parameter values than the red confidence intervals which are overly conservative.
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Figure 4.14: 1D marginalized 1σ confidence intervals for luminosity averaged axis ratios of
the trixaial Abel model DF2 described in the text, deprojected with viewing angles lying in
branch 1. The 1D confidence intervals in black are obtained by marginalizing over a smoothed
4D landscape generated by Gaussian process regression. The 1D confidence intervals in red
are determined using the criterion laid out in van den Bosch and van de Ven [60]. The
black confidence intervals are a more accurate representation of the deviation from the true
parameter values than the red confidence intervals which are overly conservative.
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overestimated by 0.08, and the q value appears to be overestimated by about 0.07. These
deviations are comparable to the red confidence intervals shown in figure 4.13.

Another point of comparison comes from Jin et al. [75]. In their case, using mock galaxies
from the Illustris simulation, they find recovered estimates of p and q to have biases of
order 0.07 and 0.14 respectively. Again, these biases are comparable to the red confidence
intervals and significantly larger than the black confidence intervals, or any potential bias in
our recovered axis ratios.

Another point of comparison is offered by Thater et al. [133]. The authors of this paper
concluded that fixing the orbit mirroring bug according to table 3.1 did not have a significant
impact on the recovered parameter values. However, figure 4 in this paper shows that the
recovered shape parameters differ between the two versions by amounts that are comparable
to or larger than their confidence interval based on the ∆χ2 <

√
2Nkin criterion.

The results presented here are consistent in that the recovered value for model DF1 differs
from van den Bosch and van de Ven [60] by an amount comparable to the ∆χ2 <

√
2Nkin

criterion. However, our conclusion is significantly differnt. Our results demonstrate instead
that this confidence interval is overly conservative, and that deviations on this scale indicate
dramatic differences in recovered models. We find the updated version of the TriOS code
to be able to recover parameter values with ∼ 3 − 5 times the precision suggested by the
∆χ2 <

√
2Nkin criterion.

Further evidence for this conclusion is provided by Pilawa et al. [134]. In this case, the
recovered inclination from models of massive elliptical galaxy NGC 2693 using the updated
version of the code outlined in this dissertation was consistent within 1σ of the inclination
inferred from the central dust disk.

The most obvious recovery bias in our tests is in the inclination of the axisymmetric
HQ mocks. Edge-on Schwarzschild models are strongly preferred over the true inclination
of θ = 50◦. This is consistent with several previous papers such as Krajnović et al. [135]
and Cappellari et al. [13] which found that Schwarzschild models can place constraints on
inclination that may not be reliable. This effect was further explored in Lipka and Thomas
[118], who found similar biases towards edge-on inclinations when assigning a likelihood to
each model according to e−χ2/2. By estimating and accounting for the effective number of
degrees of freedom for each model, they find that the inclination can indeed be recovered.

Lipka and Thomas [118] go on to suggest that this effect will impact the triaxial case as
well. While the fully triaxial case is likely to benefit from a model selection framework that
accounts for model flexibility, our results indicate that the problem is not as severe as in the
axisymmetric case, at least for the triaxial Abel models explored here. The relatively small
upwards bias in M/L and downwards bias in Tmin (equivalent to a bias towards edge-on) are
consistent with the direction of bias observed in Lipka and Thomas [118] for axisymmetric
models.

In addition to the sources of systematic uncertainty explored here, real data is likely
to give rise to further complications. One major source of uncertainty that we have not
addressed is in extraction of the LOSVDs from spectra. This relies on accurate modeling
and fitting of stellar templates which can have strong effects on recovered GH moments.
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Accurate extraction of kinematics and modeling of their uncertainties is thus essential to
obtain accurate estimates of galactic shapes and dynamical masses.
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Chapter 5

Scaling Relations of Massive
Ellipticals

While the previous chapters demonstrate how to use photometric and spectroscopic data
to constrain stellar density profiles and central SMBHs in elliptical galaxies, this chapter
focuses on what can be learned from photometric data alone. Photometric data is much
more easily accessible for large galaxy samples. Measuring accurate total magnitudes among
massive ellipticals is an important step towards quantifying the MBH − L relation. As well,
scaling relations can offer insights into the formation history of galaxies, which are intimately
connected with the growth of SMBHs in their centers. For example, variations in formation
history with mass can result in curvature in the Faber-Jackson relation. If the Faber-Jackson
relation is curved, the power law MBH − σ and MBH − L relations must necessarily predict
different MBH values for some galaxies. In this chapter, I obtain total magnitudes and
luminosities for a volume limited sample of the most massive nearby elliptical galaxies, and
explore the scaling relations of this sample. This chapter is taken from a manuscript that
is currently in preparation for publication that was co-authored with John P. Blakeslee,
Chung-Pei Ma, and Jenny E. Greene. Image stacking was performed by Stephen D. J.
Gwyn. Preliminary data analysis was performed by Stephanie Ciccone and Blanka Nyiri.

5.1 Introduction

By studying the properties of nearby massive early-type galaxies (ETGs), we can learn about
their evolutionary histories. The growth history of these galaxies can leave measurable
impacts on their observed properties. Many of these properties are found to be strongly
correlated: the Size-Luminosity (SL) relation describes the correlation between a galaxy’s
half-light radius (Re) and its total luminosity (L), and the Faber-Jackson (FJ) relation
describes a correlation between a galaxy’s velocity dispersion (σ) and total luminosity. These
and other scaling relations provide insight into the formation and growth histories of early-
type galaxies [e.g., 136, 137, 138, 42].
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In order determine the slopes and intercepts of these scaling relations, accurate and
precise measurements are needed of the velocity dispersions, half-light radii, and total lumi-
nosities. Velocity dispersions were reported for a large subset of the MASSIVE galaxies in
Veale et al. [105]. In this paper, we measure the half-light radii and total luminosities for
∼ 100 galaxies in the MASSIVE survey for which we have obtained deep, wide-field K-band
imaging.

The MASSIVE survey is an ongoing effort to measure and characterize the properties of
the most massive nearby ETGs [88]. The full sample comprises 116 galaxies with K-band
magnitude < −25.3 mag as measured in the 2MASS extended source catalog, correspond-
ing to stellar masses M∗ ≳ 1011.5M⊙. The survey is volume limited within a distance of
about 100 Mpc in the northern sky. These massive ETGs contain supermassive black holes
(SMBHs) at their centers. One of the major goals of the MASSIVE survey is to dynami-
cally model these galaxies and measure their central SMBH masses. Thus, we have obtained
wide-field spectroscopic data from the Mitchell IFS [103, 105] as well as high-resolution spec-
troscopic data from the GMOS IFU [116] to study the kinematics of these galaxies. We have
also obtained high resolution photometry from the Hubble Space Telescope’s Wide Field
Camera 3.

Accurate total luminosities and half-light radii are key to many science goals of the
MASSIVE survey. Half-light radii provide a natural scale for each galaxy that have many
uses, including studies of both stellar dynamics [116] and the stellar initial mass function
[139]. Total luminosities are needed to study the M–L relation, one of the most commonly
used local SMBH-host scaling relations [38].

The total magnitude and half-light radii of ETGs can be deduced from their surface
brightness profiles. Imaging in the K-band is particularly useful since it accurately traces
the stellar populations within ETGs and minimizes extinction due to dust. K-band imaging
already exists for the MASSIVE galaxies from the 2MASS extended source catalog (XSC).
However, total magnitudes from the XSC have been found to be systematically too faint.
The half-light radii from the 2MASS XSC tend to be systematically smaller than other
estimates, perhaps due to the underestimate of the total luminosity. This may be due to a
combination of extrapolation from insufficiently deep photometry [e.g., 6, 32] and systematic
issues in the 2MASS analysis pipeline [140].

In Section 5.2, we describe the CFHT WIRCam data, the data reduction process, and the
process for determining total luminosities and half-light radii from the reduced images. In
Section 5.3, we compare the resulting parameter values to those from 2MASS, and demon-
strate the systematic bias in total luminosities from 2MASS. We analyze the SL and FJ
relations in Section 5.5 and Section 5.6 respectively. We then compare these relations to
previous analyses from the literature, and discuss their implications about galaxy formation
and evolution.



CHAPTER 5. SCALING RELATIONS OF MASSIVE ELLIPTICALS 94

5.2 Observations and Reductions

CFHT WIRCam Observations

The selection of galaxies for the MASSIVE survey is described in detail by Ma et al. [88]
and is based on 2MASS photometry combined with distances estimated from the the 2MASS
galaxy redshift survey [141]. To obtain improved estimates of the photometric and structural
parameters for the MASSIVE sample, we targeted the galaxies for deep wide-field near-
infrared imaging with the Wide-field InfraRed Camera [WIRCam; 142] on the Canada-
France-Hawaii Telescope (CFHT). We chose to use theK band for these observations because
it traces the old populations that make up most of the stellar mass in these galaxies, and
it minimizes dust extinction. Priority was given to the subset of 72 MASSIVE galaxies
with absolute MK < −25.5mag, as these were also the priorty targets for the integral field
spectroscopy.

The observations presented here were conducted by CFHT staff in Queued Service Ob-
servation over a series of semesters from late 2014 to early 2017. The focal plane of WIRCam
contains four HAWAII-2RG detectors imaged at a pixel scale of 0′′.307 pix−1, so that each
detector covers 10′.2×10′.2. They are arranged in a square mosaic with ∼ 0′.6 gaps between
the detectors. The full field of view thus spans approximately 20′.8 square.

We used the “WIRCam Dithering Pattern 5” (WDP5) sequence that successively places
the target on each of the four detectors array of the mosaic, and then steps through the
sequence five times, ensuring small offsets of about 1′′ between subsequent placements of
the target on the same detector, for a total of 20 exposures. For the first two semesters of
the program, we executed this pattern twice in succession with individual exposures of 20 s,
followed by a WDP3 sequence (stepping through all four chips 3 times) with exposures of
10 s to avoid saturation. This gave total on-target exposure times of 920 s for extremely deep
images. With overheads, the executime time was 24 minutes per target, not including slew.

However, by analyzing the images, we found that this amount of exposure was excessive
for our purpose. Tests showed the results were not significantly affected when using half of the
exposure stack, as systematic effects in the sky estimation become dominant. In addition, we
found that in good seeing conditions, the centers of some galaxies could saturate even in 10 s
exposures (these were later reobserved). We therefore adopted a revised observing strategy
that consisted of a single “long” WDP5 sequence with 20 s exposures followed by another
“short” sequence with 3 s exposures to ensure that none of the galaxies saturated in the
center. The resulting total exposure time was thus 460 s per galaxy. Under typical conditions,
this approach yielded a 3-σ surface brightness limit of µK ≈ 23.0 ABmag arcsec−2, roughly
2.5 mag fainter than 2MASS. Repeat observations showed that there were no systematic
differences between the results obtained with the original and revised observing strategies.

In all, we obtained high quality imaging for 98 MASSIVE survey galaxies, but for the
luminous galaxy pair NGC 545 & NGC 547, our standard photometric analysis procedure
did not yield reliable results because their isophotes are so strongly overlapping. Thus, in
this work, we present new photometric and structural parameter measurements for a total
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of 96 galaxies.

Image Processing

Standard detrending of the WIRCam exposures was performed by the IDL Interpretor of
WIRCam Images (‘I‘iwi) processing pipeline at CFHT.1 ‘I‘iwi identifies and flags saturated
pixels, corrects the pixel intensities for nonlinearity effects, performs bias and dark current
subtraction, divides by the normalized flat field, and then masks the known bad pixels. It
also performs initial sky subtraction using offset fields; the sky level estimation is improved
during the stacking process.

The sets of detrended exposures for each galaxy observation were then processed with
the WIRWolf imaging stacking pipeline [143]. WIRWolf performs automatic photometric
and astrometric calibration by matching the detected sources in each WIRCam exposure
against the 2MASS catalog data. After this initial iteration, it then matches the stellar
magnitudes for each exposure to a master catalogue generated from the full set of images in
the stack. This procedure results in an internal photometric accuracy typically better than
0.003 mag for each exposure relative to all the others. WIRWolf also refines the relative
background levels of each detector in each exposure at this stage. It then uses SWarp [144]
to resample and stack the images onto a fixed grid with a default pixel size of 0′′.3 (very close
to the average raw pixel scale of WIRCam). It then performs a final absolute photometric
calibration by comparing the source magnitudes in the stack image against the magnitudes
from 2MASS.

According to the online documentation for WIRWolf,2 the absolute photometric accuracy
of the stacked WIRCam images is typically 0.02 mag in the J and H bands and 0.03 mag
for the K band because there are generally fewer sources that are of sufficient signal-to-noise
in 2MASS and not saturated in the WIRCam K-band images. We checked the photometric
calibrations by running SExtractor [145] on our stacked K-band images to extract point
source magnitudes and then comparing to 2MASS. Any sources that had poor quality flags
or that appeared to be saturated were omitted from the comparison. We confirmed that the
mean photometric offsets determined from the stacked images with respect to 2MASS are
accurate within a scatter of 0.03 mag. This is small compared the scatter in the comparison
of the total magnitudes of our sample galaxies (see Section 5.3). Thus, we do not find any
reason to adjust the photometric calibrations derived by WIRWolf. However, for consistency
with 2MASS, we convert from AB to Vega magnitudes by subtracting 1.88 mag following
the WIRWolf online documentation.

In some of the images, a cross-shaped pattern is apparent, centered on a star that was
used for guiding the telescope during the observation. This pattern indicates a deficit of
light within the columns and rows containing the star. In these cases, we mask the affected
rows and columns within the image. In a few cases, the galaxy itself was used for guiding,

1https://www.cfht.hawaii.edu/Instruments/Imaging/WIRCam/
IiwiVersion1Doc.html

2https://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/en/wirwolf/
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resulting in a cross pattern on the galaxy nucleus. These observations could not be used,
and we reobserved the galaxies in subsequent runs, explicitly instructing the software to
avoiding guiding on sources within a 30′′ radius of the galaxy center. In addition, some very
bright stars can producing a bleeding effect, giving an excess of light along the entire column
containing the star. In these cases, we also masked the affected column.

In addition to the above problems relating to stars in the images, vertical bands of variable
bias levels appeared in the WIRCam data in 2016A, and CFHT implemented a correction
by subtracting the median of each column. However, due to the extended nature of our
targets, this did not work well for our data and resulted in significant deficits of light above
and below the galaxy. We corrected for this by aggressively masking the main galaxy and
all other foreground sources above the local background, and then subtracting the median
values from each column determined near the top and bottom of the image. This essentially
removed the correction applied by CFHT. We then requested the observatory to process all
subsequent data without applying that correction. The vertical bias bands tend to average
out in the stacked image.

5.3 Galaxy Parameter Measurements

Curve of Growth Analysis

We determine the total magnitude and half-light radius of each galaxy from the stacked
image using the galaxy photometry package ARCHANGEL [146]. Specifically, we use the
profile, sky box, bdd, and el routines within ARCHANGEL. Figure 5.1 illustrates the basic
procedure using the galaxy NGC 393 as an example. The steps in the procedure are discussed
in more detail below.

The profile routine produces an elliptical isophotal profile from an input image. It begins
by determining an approximate sky level in the image. Sky boxes are scattered around the
edge of the image. After discarding boxes that differ from the mean by more than 4 standard
deviations, the mean intensity value from these boxes is then taken as the sky intensity. The
uncertainty on the sky value is taken to be the standard deviation of this mean. The routine
then searches for sources in the image that exceed the sky level by a given number of standard
deviations and masks them.

Next, the routine performs the elliptical isophote fitting. The resulting ellipses are shown
in the top right panel of Figure 5.1 for NGC 393. Ellipses are first fit to the isophotes of the
cleaned image. The ellipticities and position angles of the ellipses are allowed to vary with
radius. Any drastic changes between adjacent ellipses are smoothed out to generate a more
regular profile. Then, any pixels along each isophote that differ from the mean intensity by
more than 4 standard deviations are masked. Then, ellipses are fitted to this new cleaned
image, and the process is repeated to obtain a final cleaned image. A final set of ellipses are
fitted to the final cleaned image and the profile is smoothed once again. This results in an
isophotal profile for the image.
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Figure 5.1: Output plots from the ARCHANGEL pipeline for elliptical galaxy NGC 393.
(Top left) The original CFHT WIRCam image. (Top right) Elliptical isophotes overlaid on
the image, with masked regions in red. (Bottom left) Surface brightness profile as a function
of radius. (Bottom right) Curve of growth, showing the enclosed magnitude as a function
of isophotal semi-major axis. After iterating to improve the sky estimate, the program
converges on a total K magnitude for the galaxy of 8.95 mag. The magenta diamond marks
the empirically-determined half-light radius.
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In order to get an improved estimate of the sky value, we use the sky box routine on the
cleaned image. This routine scatters boxes that are 20 pixels by 20 pixels around the image,
using the fitted isophotes to avoid the galaxy light. We find that re-fitting the sky value with
the cleaned image results in a more robust determination than the preliminary fit performed
in the profile routines

The bdd routine takes the sky value and isophotal profile and determines the correspond-
ing surface brightness profile. The surface brightness profile for NGC 393 is shown in the
bottom left panel of Figure 5.1. Parametric fits to this surface brightness profile can also be
performed.

Finally, the el routine performs aperture photometry using the elliptical isophotes. The
routine begins by filling in the masked pixels in the image with values interpolated from
the isophotal profile. Then, the total luminosity within each elliptical isophote is calculated
from this interpolated image. The curve of total luminosity or magnitude versus isophotal
semimajor axis (shown in the bottom right panel of Figure 5.1) is referred to as a curve-of-
growth. Near the edge of the image, galaxy light can be dominated by sky noise. In this case,
directly summing the pixels within each isophote can lead to unreliable values. To obtain a
more reliable estimate, the aperture luminosities are instead estimated by interpolating the
1D surface brightness profile. This reduces noise near the outer edge of the curve of growth.

If the galaxy light is fully contained within the field of view of the image and the sky is
accurately estimated, the curve of growth will flatten at large radii. In some cases, the curve
of growth does not flatten for our images. This happens in our images of 14 galaxies. Since
these galaxies appear to be fully contained within the image frame, we adjust the sky value
within its uncertainty in order to force the curve of growth to flatten at large radii.

Once the curve of growth visually flattens, the outer end of the curve of growth is then
fit with a rational function given by a ratio of two polynomials of degree 2 as described in
Schombert [146] in order to capture the asymptotic behaviour. This fit is then evaluated at
the outermost fitted isophote to estimate the total luminosity. The semi-major axis of the
elliptical isophote containing half the total galaxy light is then determined by interpolating
the curve of growth. We also interpolate the surface brightness profile to determine the
semi-minor axis (and thus the observed axis and ellipticity) of the half-light isophote.

The main photometric parameters that we consider in this paper are the total absolute
K-band magnitude MK (or, equivalently, the K-band luminosity LK) and the semi-major
axis half-light radius Re (or, alternatively, the circularized version Re,circ). Table 5.1 lists our
measurements of these photometric parameters as well as other properties of the MASSIVE
survey galaxies. The following sections discuss these measurements in more detail.

Total Magnitudes

We compare our total K-band magnitudes derived with Archangel to those from the 2MASS
Extended Source Catalog (XSC). For apparent K-band magnitude, we use 2MASS param-
eter k m ext. This is the K-band magnitude measured within a 20 mag/arcsec2 isophotal
aperture, extrapolated beyond the aperture via a Sérsic fit.
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Figure 5.2: Comparison of photometric properties measured with CFHT to 2MASS values.
(a) Total K-band magnitudes. (b) K-band half-light radii.

The galaxy magnitudes measured from the CFHT curve of growth are systematically
brighter than the corresponding magnitudes from the 2MASS survey. This is demonstrated
in the left panel of Figure 5.2. The best-fit linear relation between the apparent K-band
magnitudes from CFHT and 2MASS is given by

(KCFHT − 9) = bK(K
2MASS − 9) + aK , (5.1)

where the best-fit values of these parameters are aK = −0.273+0.009
−0.010 and bK = 0.949+0.019

−0.018

from LinMix. The slope is mildly inconsistent with unity. KCFHT has an average scatter of
0.09 about this relation. On average, KCFHT is brighter than K2MASS by 0.27± 0.01 mag.

Schombert and Smith [140] reported a bias in total magnitudes extracted from the 2MASS
XSC. The surface brightness profiles extracted from 2MASS are systematically too dim,
particularly at larger radii. The source of this discrepancy was determined to be an issue
with the 2MASS sky subtraction scheme. The surface brightness profiles, which are used to
determine aperture and total magnitudes, were found to be too dim by a uniform shift in
intensity for each galaxy. Consequently, total J magnitudes from 2MASS were found to be
systematically too faint by an average of 0.33 mag. These authors did not provide a direct
comparison for the K band, but their discussion suggests that the size of the offset should
be similar.

The offset that we measure at K2MASS ∼ 10 mag is 0.32± 0.02 mag, consistent the
result of Schombert and Smith [140] in the J band. However, we find the slope of the
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relation between KCFHT and K2MASS to be less than 1, meaning the offset between the
two sets of magnitudes decreases for the brightest galaxies in our sample. For example,
KCFHT −K2MASS ∼ −0.18 mag at K2MASS ≈ 7.5 mag. For giant ellipticals, this corresponds
to J2MASS ≈ 8.5 mag. Examination of Figure 12 from Schombert and Smith [140] reveals
that the offset for the brightest ∼ 2 mag of their comparison with 2MASS is significantly
smaller than the quoted mean and is approximately J − J2MASS ∼ −0.2 mag, which is very
similar to what we find in our K-band comparison.

Comparable 2MASS magnitude offsets have been observed in other samples as well. Ŕıos-
López et al. [147] use Galfit to measure total extrapolated magnitudes from 2MASS images
for 101 bright, nearby galaxies, including 20 early-type galaxies. They find no significant
offset with respect to the 2MASS XSC total magnitudes for late-type galaxies, but they do
find significant offsets for the smaller sample of early-type galaxies. In the K-band, they
report a mean offset of 0.34±0.07 mag; however, the scatter is large, and the sample includes
several intrinsically faint nearby galaxies, including two Local Group dwarf ellipticals. If we
limit the comparison to the subsample of 17 early-type galaxies ≳ 10 Mpc to make it more
similar to our sample, then the weighted offset is 0.36± 0.08 mag, with a scatter of 0.32 mag
and a median offset of 0.27 mag. The scatter is several times larger than we find, but the
offset agrees with our result.

Läsker, Ferrarese, and Van De Ven [148], again using Galfit to do 2-D parametric model-
ing, measure extrapolated K-band magnitudes from CFHT/WIRCam data for a sample of
35 nearby galaxies of all morphological types with well-measured central black hole masses.
These authors report several versions of the total magnitudes, including magnitudes derived
from a single Sérsic model, a “standard bulge plus disk” model, and an “improved” model
that adds structural components (up to six in some cases) to the standard model until the
residuals over the field are judged visually to be at an acceptable level. They quote an av-
erage offset of 0.34 mag for their the total magnitudes from their “improved” models with
respect to 2MASS, in the sense that 2MASS is too faint.

If we omit the spirals and consider only the 31 galaxies that Läsker, Ferrarese, and Van
De Ven [148] classify as either elliptical or S0, then the mean offset (unweighted, as the
authors do not provide uncertainties) with respect to the magnitudes from their “improved”
models is 0.34 mag, the scatter is 0.28 mag, and the median offset is 0.25 mag. However, we
note that for this subset of early-type galaxies, the standard bulge+disk models in Läsker,
Ferrarese, and Van De Ven [148] give better agreement with the 2MASS total magnitudes,
with a scatter of 0.20 mag, or 40% less than the scatter given by their “improved models.”
Using this set of model magnitudes, the mean magnitude offset for the 31 early-types is
0.27± 0.04 mag, and the median offset is also 0.27 mag. This is identical to the mean offset
that we find with respect to 2MASS, but the scatter in our comparison is a factor of two
lower.

Four of the galaxies in the MASSIVE survey were studied in Läsker, Ferrarese, and Van
De Ven [148]: NGC 4486 (M87), NGC 4649 (M60), NGC 5252, and NGC 7052. Of these, we
obtained new CFHT data for NGC 5252 and NGC 7052, which were processed as described
in Section 5.2. For NGC5252, our K-band total magnitude is 0.27 mag brighter than the



CHAPTER 5. SCALING RELATIONS OF MASSIVE ELLIPTICALS 101

result from their standard model, and 0.13 mag fainter than their “improved” model (which
is 0.40 mag brighter than 2MASS). For NGC 7052, our measurement is 0.09 mag fainter
than their standard model, and they do not make any improvements to that model. Thus,
from this very small direct comparison, the offsets are consistent with the scatter.

We conclude that our measured offset of 0.27 ± 0.01 mag with respect to the K-band
total magnitude from the 2MASS XSC agrees well with previous studies. The scatter we
find of 0.09 mag is considerably less than previous comparisons using parametric modeling.
Finally, for the subset of early-type galaxies in Läsker, Ferrarese, and Van De Ven [148], the
standard bulge+disk models appear to give more robust magnitudes than the “improved”
models.

Half-light Radius

The half-light radii derived from CFHT can be compared to those of the 2MASS XSC.
2MASS measured the semi-major axis of the half-light elliptical isophote in 3 different bands
(listed as parameters j r eff, h r eff, and k r eff). We take the K-band half-light radius,
k r eff, to compare to our CFHT K-band photometry.

The effective radii derived from CFHT are systematically larger than those from 2MASS.
This is shown in the right panel of fig. 5.2. The best-fit power-law relation between the
2MASS and CFHT half-light radii is given by:

log10

(
RCFHT

e

101.2 arcsec

)
= bRe log10

(
R2MASS

e

101.2 arcsec

)
+ aRe , (5.2)

where the best-fit values of these parameters are aRe = 0.072± 0.006 and bRe = 0.96± 0.04.
The slope is consistent with unity to within 1σ. RCFHT

e has a mean scatter of 0.06 dex about
this relation. On average, the half-light radii from CFHT range are a factor of 100.072 = 1.18
times larger than from 2MASS. Since half-light radii are derived from total magnitudes, a
shift in a total magnitude value will translate into a shift in the half-light radius. Thus,
the offsets reported in half-light radius correlate with the offsets in magnitude between our
CFHT data and 2MASS.

In some contexts, it is useful to consider the geometric, or circularized radius of the
half-light isophote. The ellipticity of the half-light isophote is needed to determine this from
the major axis. We compare the elliptical axis ratios of our isophotes to those reported by
2MASS. For this, we use the sup ba parameter from the 2MASS catalog. Our average ob-
served flattening is in excellent agreement with 2MASS. There is no significant shift between
the two. The CFHT values display a scatter of 0.06 about the 2MASS values.
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5.4 Fitting the Scaling Relations

Uncertainties

In order to study the relationships between the photometric parameters determined in the
previous Section and other galaxy properties, we need to estimate the uncertainties on these
measurements. For most of our galaxy images, the dominant source of uncertainty is due
to the sky determination. By comparing sky estimates from the automated sky box routine,
manually placed sky boxes and the asymptotic intensity of the isophotal profile, we find that
our sky estimates result in values of K with an uncertainty of about δK = 0.05 mag. The
uncertainty in the half-light radius is dominated by the uncertainty in the sky determination.
We thus assume the uncertainties in these two measurements to be perfectly correlated. We
measure the slope of the curve-of-growth (aperture magnitude versus logarithm of aperture

semi-major axis) at log (Re,app), S =
∣∣∣ dK(R)
d log (R)

∣∣∣
log (Re,app)

and assign a corresponding uncer-

tainty on log (Re,app) of δ log (Re,app) = SδK. This results in a median uncertainty on Re,app

of about 8%. We therefore adopt a covariance matrix on these quantities given by:

Cov(log (Re,app), K) =

(
(SδK)2 −S(δK)2

−S(δK)2 (δK)2

)
(5.3)

The corresponding absolute quantities, Re and MK or L, will also have correlated uncer-
tainties. This covariance arises for two reasons: the measurements of the apparent magnitude
K and angular size Re,app are strongly correlated, and the intrinsic quantities Re and MK

both depend on the distance. The total covariance matrix between these two quantities is
given by:

Cov(log (Re),MK)

= Cov(log (Re,app), K) + (δ logD)2
(

1 −5
−5 25

)
=

(
(SδK)2 + (δ logD)2 −S(δK)2 − 5(δ logD)2

−S(δK)2 − 5(δ logD)2 (δK)2 + 25(δ logD)2

) (5.4)

For our given uncertainties, this results in a mean correlation coefficient between the un-
certainties on log (Re) and MK of about 0.87. Ignoring the correlation between the apparent
quantities and only including the correlation due to the distance estimation would still result
in a median correlation of 0.39 for galaxies with distances measured via SBF and 0.76 for
galaxies with distances measured via group-corrected flow velocities.

Linear Fitting Procedure

Since our data can have correlated uncertainties in both the dependent and independent
variables, as well as a selection on absolute magnitude, MK , a robust fitting procedure is
needed in order to obtain reliable results.
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The fitting procedure we use throughout this paper is the LinMix procedure outlined
in Kelly [149]. This procedure constructs a likelihood function for the data, in which the
distribution of the independent variable is modeled as a mixture of gaussian functions. The
dependent variable is then assumed to be drawn from a gaussian distribution centered on a
linear relation with respect to the independent variable. The main strengths of this proce-
dure are its explicit model for the data, and its ability to account for both selection effects
and covariances between the uncertainties on the dependent and independent variables. It
also returns samples from the posterior distribution over parameters, allowing for a clearer
interpretation of the fit uncertainties. For each parameter, we report a marginalized 1D
best-fit value and uncertainty. The best-fit value is determined as the 50th percentile of the
1D distribution of samples, while the 1σ uncertainties are determined from the 16th and
84th percentiles.

Velocity Dispersions and Conversion to Physical Parameters

To explore relations among the physical properties of the galaxies in our sample, we require
a set of reliable distances. We use distances from Jensen et al. [117], where available. These
distances are derived using surface brightness fluctuations (SBF) in WFC3 Hubble Space
Telescope images, and have a median uncertainty of 3.9%. For galaxies not studied in
Jensen et al. [117], we use the values reported in the first MASSIVE paper, Ma et al. [88]. In
some cases, these distances were derived using SBF. Where SBF distances were not available,
distances from group-corrected flow velocities were used. In the following, we adopt a 4%
uncertainty on SBF derived distances, and a 10% uncertainty on those derived from group-
corrected flow velocities.

We also use the velocity dispersion values reported in Veale et al. [105]. Mainly, we use
the velocity dispersion measured within the central fiber of the Mitchell IFU, σc. We also
use σe, which is measured via a luminosity-weighted average of σ for fibers within a radius
Re,NSA of the galaxy center3. Here, Re,NSA is the half-light radius reported by the NASA-
Sloan Atlas (NSA), based on the SDSS DR8 catalogue [150]. Where values from NSA were
not available, values from 2MASS were used and corrected for the relative slope and offset
between the two using equation 4 of Ma et al. [88]. We do not attempt to correct these values
to the newly determined radii reported above. In the following, we adopt a 5% uncertainty
on both σc and σe values.

5.5 Size-Luminosity Relation

The size-luminosity (SL) relation describes an observed correlation between the projected
size and total luminosity of early-type galaxies. The projected size is quantified through the

3Note that this luminosity-weighted average is not the same as determining the velocity dispersion for a
single spectrum with radius Re,NSA. For slow-rotating galaxies, the difference is very minor. For fast-rotating
galaxies, the difference can be significant.
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Sample aSL bSL ϵSL
(1) MASSIVE 0.634± 0.018 0.90+0.10

−0.11 0.100± 0.008
(2) ATLAS3D 0.52± 0.02 0.41± 0.03 0.143+0.007

−0.006

(3) MASSIVE (SRs) 0.63± 0.03 0.94± 0.12 0.097+0.012
−0.010

(4) ATLAS3D (SRs) 0.63± 0.03 0.48± 0.04 0.115+0.016
−0.014

Table 5.2: Fit parameters for the Size-Luminosity relation, as defined by equation 5.5,
in various galaxy samples. (1) All galaxies in the MASSIVE sample for which we report
measured Re and L from CFHT. (2) All galaxies in the ATLAS3D sample. (3) All galaxies
in the MASSIVE sample which are classified as slow rotators by Veale et al. [104] for which
we report measured Re and L from CFHT. (4) All galaxies in the ATLAS3D sample which
are classified as slow rotators by Emsellem et al. [7].

geometric radius of the half-light ellipse.
We consider a power-law SL relation of the form

log
Re,circ

1kpc
= bSL log

L

1011.5L⊙
+ aSL . (5.5)

We further assume an intrinsic normal scatter in log (Re,circ) about this relation with standard
deviation ϵSL.

MASSIVE and ATLAS3DGalaxies

Our fit results are summarized in Table 5.2. For the galaxies within the MASSIVE survey for
which we measured Re,circ and L, our best-fit parameter values and associated uncertainties
for the SL relation are listed in row (1) of Table 5.2. The uncertainties in aSL and bSL are
strongly correlated. These fit results are summarized in the left panel of Figure 5.3. Linear
relations corresponding to a number of samples from the posterior distribution are shown by
the gray lines distributed about the best-fit relation.

One of the defining selection criteria for the MASSIVE survey is the absolute K-band
magnitude selection, MK < −25.3 mag, as measured in the 2MASS XSC. However, this
limits the dynamic range over which we can study scaling relations. In order to extend
this dynamic range, we compare with points from ATLAS3D , a volume limited sample of
early-type galaxies with MK < −21.5. MASSIVE includes galaxies out to a distance of
approximately 100 Mpc, while ATLAS3D includes galaxies out to 42 Mpc. The similarity in
selection criteria makes ATLAS3D a natural comparison point to MASSIVE.

A fair comparison of the relations for MASSIVE and ATLAS3D galaxies requires consis-
tent sets of measurements for the two surveys. For the half-light radii of ATLAS3D galaxies,
we use the values reported by Cappellari et al. [151]. These radii were taken from the RC3
[152], where available, and from 2MASS otherwise. The RC3 values are based primarily on
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Figure 5.3: Size-luminosity relation for early-type galaxies in the MASSIVE survey (left)
and the MASSIVE (black) and ATLAS3D (blue) surveys together (right). The best-fit linear
relation to the MASSIVE survey shown in black is described by the parameters listed in
row (1) of Table 5.2. The grey lines represent MCMC draws from the posterior distribution
over the parameters describing this linear relation. Low luminosity galaxies within the
ATLAS3D survey are clearly oversized compared to this linear relation.

B-band photoelectric photometry extrapolated to infinite aperture and the interpolated to
find the equivalent circular aperture containing half the total light, without corrections for
nearby contaminating sources. Cappellari et al. [151] find that the RC3 values are a factor
of 1.7 times larger than 2MASS on average, with a scatter of 0.11 dex. The values from
2MASS were thus scaled up by a factor of 1.7. In order to directly compare with our radii
as measured with CFHT, we take these radii, divide by a factor of 1.7, and then multiply
by a factor of 1.18 (see Section 5.3) to agree with CFHT on average.

The K-band luminosities of ATLAS3D galaxies were taken from 2MASS without correc-
tions [151]. We apply a constant shift to these values of 0.27 magnitudes, such that they
agree with the average offset between 2MASS and our CFHT magnitudes. We do not account
for any deviation of the slope from unity in this relation. However, Schombert and Smith
[140] found that the systematic offset in J-band 2MASS magnitudes is roughly constant over
a wide range of apparent magnitude.

In the right panel of Figure 5.3, we plot the SL relation as determined from the MAS-
SIVE data but overlay the points from ATLAS3D . Above MK ∼ −24, the two appear
to agree well, no visually obvious offset or change in slope. At around MK ∼ −23, the
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ATLAS3D galaxies exhibit a clear change in slope. This is qualitatively similar to the non-
linear zone-of-exclusion observed in the size-mass plane in Cappellari et al. [153] using dy-
namically determined total stellar masses. Despite the clear non-linearity in ATLAS3D , we
report the best-fitting linear relation parameters in row (2) of Table 5.2 for completeness.

Fast and Slow Rotators

Elliptical galaxies have properties that vary significantly with stellar mass. More massive
ellipticals tend to exhibit central cores, round shapes, boxy isophotes, and little or no ro-
tation. Less massive ellipticals tend to have power law central surface brightness profiles,
flattened shapes, disky isophotes, and significant rotation [e.g., 154, 155, 156].

In order to study these two populations of galaxies, we categorize our sample into fast
rotators (FRs) and slow rotators (SRs). The exact classification scheme is described in Veale
et al. [104]. Due to the tendency for more massive galaxies to exhibit less rotation, most of
the MASSIVE galaxies are SRs. The left panel of Figure 5.4 shows the SL relation fit to
only the SRs in MASSIVE. The FRs are plotted in red, but are not included in the fit. Some
galaxies were not observed with the Mitchell IFU, and thus did not receive classifications
- they do not appear in this figure. The fit to SRs alone results in the best-fit parameters
and uncertainties listed in row (3) of Table 5.2. These values are consistent within their
uncertainties with the values determined from fitting the full CFHT MASSIVE sample (row
(1) of Table 5.2). Due to the small number of FRs within the MASSIVE sample, we do not
attempt to measure a best-fit SL relation for the FRs alone.

Galaxies in the ATLAS3D survey were classified as FRs and SRs in Emsellem et al. [7].
The classification scheme in Veale et al. [104] was based on that of Emsellem et al. [7],
and the two differ only by relatively minor differences in the apertures used to measure the
rotation. We adopt the classifications from Emsellem et al. [7] in order to compare SRs
between the MASSIVE and ATLAS3D samples. In the right panel of Figure 5.4, we plot
the SL relation for MASSIVE combined with ATLAS3D , but only for galaxies that are SRs.
The SRs form a tight, continuous sequence within this plane. The best-fit linear relation
for the ATLAS3D SRs is described by the parameters given in row (4) of Table 5.2. There
is a significant difference in slope between low luminosity (ATLAS3D ) and high luminosity
(MASSIVE) galaxies.

5.6 Faber-Jackson Relation

The Faber-Jackson (FJ) relation describes an approximately power-law relationship between
the central velocity dispersion and total luminosity of elliptical galaxies [14]. We consider a
Faber-Jackson Relation of the form:

log
σc

1km s−1
= bFJ log

L

1011.5L⊙
+ aFJ. (5.6)
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Figure 5.4: Size-luminosity relation for slow-rotator galaxies in the MASSIVE survey (left)
and the MASSIVE (black) and ATLAS3D (blue) surveys together (right). The fast-rotator
galaxies in the MASSIVE survey are shown in red in the left panel, but are excluded from the
fit. The best-fit linear relation to the slow-rotators in the MASSIVE survey shown in black is
described by the parameters listed in row (3) of Table 5.2. The grey lines represent MCMC
draws from the posterior distribution over the parameters describing this linear relation. Low
luminosity galaxies within the ATLAS3D survey are clearly oversized compared to this linear
relation. The best-fit linear relation to the slow-rotators in the ATLAS3D survey shown in
blue is described by the parameters listed in row (4) of Table 5.2.

We further assume an intrinsic normal scatter in log (σc) about this relation with standard
deviation ϵFJ.

Combined Sample

The FJ relation for the MASSIVE sample is shown in the right panel of Figure 5.5. The
parameters describing the best-fit linear relation are given in row (1) of Table 5.3, along with
their associated uncertainties. The uncertainties in aFJ and bFJ are strongly correlated. This
best-fit relation is shown by the solid black line in Figure 5.5. Other relations described by
samples from the posterior probability distribution are shown in grey.

As with the SL relation, the ATLAS3D can be used to extend the dynamic range in total
luminosity. We use the same luminosities as in Section 5.5. For central velocity dispersion, we
adopt the value measured within a circular aperture of radius 1 kpc, as reported in Cappellari
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Sample aFJ bFJ ϵFJ
(1) MASSIVE 2.399+0.011

−0.011 0.22+0.06
−0.06 0.049+0.005

−0.005

(2) ATLAS3D 2.445± 0.016 0.391± 0.017 0.090+0.005
−0.005

(3) MASSIVE (SRs) 2.415± 0.015 0.14± 0.07 0.052+0.007
−0.006

(4) ATLAS3D (SRs) 2.423± 0.02 0.36+0.02
−0.03 0.063+0.012

−0.011

Table 5.3: Fit parameters for the Faber-Jackson relation, as defined by equation 5.6, in
various galaxy samples. (1) All galaxies in the MASSIVE sample for which we report mea-
sured Re and L from CFHT. (2) All galaxies in the ATLAS3D sample. (3) All galaxies in
the MASSIVE sample which are classified as slow rotators by Veale et al. [104] for which we
report measured Re and L from CFHT. (4) All galaxies in the ATLAS3D sample which are
classified as slow rotators by Emsellem et al. [7].
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Figure 5.5: Faber-Jackson relation for early-type galaxies in the MASSIVE survey (left)
and the MASSIVE (black) and ATLAS3D (blue) surveys together (right). The best-fit linear
relation to the MASSIVE survey shown in black is described by the parameters listed in
row (1) of Table 5.3. The grey lines represent MCMC draws from the posterior distribution
over the parameters describing this linear relation. Low luminosity galaxies within the
ATLAS3D survey clearly have lower velocity dispersion than would be predicted by this linear
relation.
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et al. [153]. This aperture is only moderately larger than the average aperture used for the
MASSIVE galaxies which is typically between about 0.6 kpc and 1 kpc depending on the
distance to the galaxy.

The FJ relation for the MASSIVE and ATLAS3D samples is shown in the right panel
of Figure 5.5. Above MK ∼ −24, the two samples appear to agree in terms of both slope
and normalization. However, there is significant curvature at lower luminosities within the
ATLAS3D sample with lower luminosity galaxies having smaller central velocity dispersion
than predicted from the linear relation fromMASSIVE. This curvature is qualitatively similar
to the change in slope of the mass-velocity dispersion relation reported in Cappellari et al.
[153]. Despite the nonlinearity, our best-fit linear fit parameters for the ATLAS3D sample
are reported in row (2) of Table 5.3 for completeness.

Fast and Slow Rotators

The left panel of Figure 5.6 shows the Faber-Jackson relation for SRs in the MASSIVE survey.
The FRs are shown in red, but are not included in the fit. The parameters associated with
the best-fit linear relation for the MASSIVE SRs alone are given in row (3) of Table 5.3.
The slope for the SRs alone is consistent with, but moderately shallower than, the slope for
the complete sample.

As in the previous section, we can combine the SRs in the MASSIVE and ATLAS3D samples
in order to extend the dynamic range in L. When MASSIVE and ATLAS3D are combined,
the SRs form a thin sequence in the σc − L plane (right panel of Figure 5.6). There is a
significant change in slope between the two galaxy samples, with σc increasing less quickly
at larger luminosities. The best-fit linear FJ relation parameters for the sample of SRs in
ATLAS3D are given in row (4) of Table 5.3.

Choice of Velocity Dispersion Aperture

The FJ relation has been studied using central velocity dispersions measured within various
aperture sizes. In our case, the velocity dispersions are measured within the central fiber
of the Mitchell IFU, corresponding to a radius of 2 arcseconds. These velocity dispersions
are largely consistent with other measures of central velocity dispersion taken from the
literature [157, 103].

Typically, these apertures are significantly smaller than the half-light radii of the galaxies.
However, velocity dispersion is often measured within an aperture defined by the half-light
radius of the galaxy. For our sample, Veale et al. [105] reported velocity dispersions measured
by averaging the velocity dispersion for all Mitchell IFU fibres within a circularized half-light
radius of the center. In this case, the half-light radii were taken from NSA. We used these
σe values in order to check that our results are not sensitive to the precise aperture used to
measure velocity dispersion.

For ATLAS3D , Cappellari et al. [153] report velocity dispersions as measured within an
aperture defined by the half-light elliptical isophote. In this case, the half-light isophote is
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Figure 5.6: Faber-Jackson relation for slow-rotator galaxies in the MASSIVE survey (left)
and the MASSIVE (black) and ATLAS3D (blue) surveys together (right). The fast-rotator
galaxies in the MASSIVE survey are shown in red in the left panel, but are excluded from
the fit. The best-fit linear relation to the slow-rotators in the MASSIVE survey shown in
black is described by the parameters listed in row (3) of Table 5.3. The grey lines represent
MCMC draws from the posterior distribution over the parameters describing this linear
relation. Low luminosity galaxies within the ATLAS3D survey have lower dispersions than
would be predicted by an extrapolation of the linear relation from MASSIVE. The best-fit
linear relation to the slow-rotators in the ATLAS3D survey shown in blue is described by the
parameters listed in row (4) of Table 5.3.

determined from r-band photometry, scaled to match values from the RC3 catalog on average
[152]. The semi-major axis of this elliptical aperture is thus larger than the half-light radii
from 2MASS by an average factor of 1.7. The velocity dispersions for MASSIVE [taken from
105], are measured within an aperture scaled to agree with values from NSA on average, and
are thus larger than those from 2MASS by a factor of 1.35 on average.

A further difference between these two velocity dispersion measurements is that the
velocity dispersions from ATLAS3D include the effects of rotation within the galaxy, while
those from MASSIVE do not. To account for this, we plot only the SRs within each sample,
where galaxy rotation has a negligible effect. The resulting FJ relation is shown in Figure 5.7,
for the MASSIVE survey alone in the left panel and the MASSIVE and ATLAS3D surveys
together in the right panel.

After restricting to SRs, the situation is qualitatively similar when σe is used instead of
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Figure 5.7: Faber-Jackson relation for slow-rotator galaxies in the MASSIVE survey (left)
and the MASSIVE (black) and ATLAS3D (blue) surveys together (right), but using the veloc-
ity dispersion measured within Re instead of σc. The fast-rotator galaxies in the MASSIVE
survey are shown in red in the left panel, but are excluded from the fit. The best-fit line
for MASSIVE is given by the parameters aFJ = 2.375 ± 0.011, bFJ = 0.20 ± 0.05, and
ϵFJ = 0.032+0.006

−0.005. The grey lines represent MCMC draws from the posterior distribution
over the parameters describing this linear relation. Low luminosity galaxies within the
ATLAS3D survey have lower dispersions than would be predicted by an extrapolation of the
linear relation from MASSIVE. The best-fit line for ATLAS3D is given by the parameters
aFJ = 2.368± 0.019, bFJ = 0.31± 0.02, and ϵFJ = 0.057+0.011

−0.009.

σc. There is a significantly shallower slope for the MASSIVE sample (bFJ = 0.20 ± 0.05)
than for the ATLAS3D sample (bFJ = 0.31± 0.02). The best-fit parameters are given in the
caption of Figure 5.7. The slope and normalization for each sample are consistent within 1σ
between the two choices of velocity dispersion. The intrinsic scatter, ϵFJ, is smaller for the
MASSIVE SRs when σe is used (0.032 versus 0.052 dex), which is reasonable because the
velocity dispersion over the effective radius gives a better tracer of the total mass. Regardless,
we regard the fits in the previous subsection using the central velocity dispersion, σc, as our
fiducial FJ relation due to its prevalence in the literature.



CHAPTER 5. SCALING RELATIONS OF MASSIVE ELLIPTICALS 117

5.7 Discussion

In Sections 5.2 and 5.3, we described new CFHT imaging for a large sample of galaxies in
the MASSIVE survey, and how we obtained accurate half-light radii and total luminosities
from these images. In Sections 5.5 and 5.6, we used these photometric parameters along
with other measurements from the literature to perform fits to the Size-Luminosity and
Faber-Jackson relations for galaxies in the MASSIVE and ATLAS3D surveys. In both cases,
we found evidence of curvature in the relations. Further, this curvature was present in the
relation for SRs alone.

Virial Mass Consistency Check

In Figure 5.8, we plot the Re,circσ
2
c which is a dynamical measure of mass if the galaxy

has virialized. When plotted versus L, we see that all galaxies in both MASSIVE and
ATLAS3D lie on a single tight power-law relation. In this sense, the curvature in the SL and
FJ relations cancel to give a single power law, suggesting that galaxies in both samples have
virialized. This uniformity is also evidence that the curvature observed is not a consequence
of the different definitions of σc and the corrections applied to Re,circ and L for ATLAS3D .
The best-fit power-law relation shown in Figure 5.8 is given by:

log
Re,circ σ

2
c

1 kpc km2 s−2
= 1.21 log

L

1011.5 L⊙ + 5.44. (5.7)

This is consistent with a linear scaling of the mass with σ2
cRe, given that M/L ∝ L0.2 for

elliptical galaxies [e.g., 136, 158]. The data are consistent with a small intrinsic vertical
scatter of 0.017 about the best-fit relation.

We now compare our observed relations with previously published scaling relations from
the literature, and discuss their physical implications.

Size-Luminosity Relation

The SL relation has been observed in a wide variety of galaxy populations in different
photometric bands. This is closely related to the Kormendy relation, which describes a
correlation between the effective radius and surface brightness within the effective radius.
The SL relation was studied in the SDSS survey for elliptical galaxies in Bernardi et al. [159],
and re-analyzed with a particular focus on brightest cluster galaxies (BCGs) in Bernardi et
al. [160]. The resulting scaling relations for r-band photometry reported in Bernardi et al.
[160] were Re ∝ L0.68 for elliptical galaxies as a whole and Re ∝ L0.88 for BCGs alone. This
is the same scaling we find for the full MASSIVE sample, as reported in Table 5.2, and
the scaling does not change significantly, Re ∝ L0.94, when we restrict the analysis to slow
rotators. The SL relation for the bulge component of early-type galaxies SDSS was analyzed
by Bernardi et al. [161], who found a power-law scaling relation of Re ∝ L0.85

bulge, with a
comparable scaling in total luminosity among the most luminous early type galaxies. Thus,



CHAPTER 5. SCALING RELATIONS OF MASSIVE ELLIPTICALS 118

10 11 12
log10(LK/L )

4

5

6

lo
g 1

0(
R e

,c
irc

2 c
)

Best-fit Line
MASSIVE
ATLAS3D

262422
MK

Figure 5.8: Relationship between dynamical mass (Mdyn ∝ Reσ
2) and total luminosity for

galaxies in the MASSIVE (black) and ATLAS3D (blue) surveys. The curvature in the SL
and FJ relations cancel, leading to a relation that is well described by a single power-law.
The black line shows a linear fit to the combined MASSIVE and ATLAS3D samples.
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the K-band SL relation in the MASSIVE survey is consistent with the r-band relation from
SDSS for BCGs and the bulge components of a broader range of early-type galaxies, but is
significantly steeper than the r-band relation for early-type galaxies as a whole within SDSS.
We have found that it is also steeper than the relation for low-luminosity slow rotators.

Among massive elliptical galaxies, curvature has been measured in the SL relation. For
example, Graham and Guzmán [4] and Graham and Worley [162] demonstrate that a curved
SL relation can result from two quantities having power law relationships with luminosity:
the central surface brightness of an inward interpolation of the outer Sérsic profile and total
magnitude, and the Sérsic index n. Similar curvature has also been suggested in the K-band
in Forbes et al. [163], using 2MASS photometry. However, in this case, the half-light radii
were calculated from the semi-major axes of the 20 mag/arcsec2 isophote and an assumed
Sérsic profile.

Further evidence for curvature in this relation for massive elliptical galaxies was presented
in Bernardi et al. [160] and Bernardi et al. [161]. They suggested that this curvature may
arise from an increased fraction of BCGs at high-luminosity, together with the fact that
BCGs tend to have larger sizes than expected from global scaling relations for ellipticals.
We further examine this picture in Section 5.7.

Faber-Jackson Relation

The FJ relation has also been studied in a wide variety of galaxy samples, since the introduc-
tion of the canonical bFJ = 0.25 (L ∝ σ4) relation in Faber and Jackson [14]. Our power-law
slopes for this relation in the MASSIVE survey give a somewhat less steep scaling of σ with
L compared to the canonical value, ranging from bFJ = 0.22 ± 0.06 for the full sample, to
bFJ = 0.14 ± 0.07 for the SRs alone. The latter value corresponds to a steep luminosity
scaling of L∼σ7, although with a wide uncertainty range.

The slope for the full MASSIVE sample (bFJ = 0.22 ± 0.06) is consistent with previous
K-band studies of the FJ relation from both Pahre, Carvalho, and Djorgovski [164] and
La Barbera et al. [165], where the slopes were found to be 0.24 and 0.22 respectively. La
Barbera et al. [165] also finds that the slope of the FJ relation is relatively constant over a
range of wavelength bands. In the r-band, Bernardi [166] reports a slope of bFJ = 0.25 for
early-type galaxies the SDSS, consistent with our measured K-band slope in MASSIVE.

Curvature in the FJ relation was suggested by Oegerle and Hoessel [167], with many more
recent studies supporting this claim. Lauer et al. [6] finds an FJ relation of L ∼ σ(6.5±1.3) for
core galaxies and BCGs, consistent with our reported slopes. Our results are also consistent
with the reported slopes for BCGS of L ∼ σ(5.32±0.37) from Von Der Linden et al. [168]
and σ ∼ L(0.16±0.01) from Samir, Takey, and Shaker [169]. Such changes have also been
predicted in simulations, leading to a flattening of the σ − L relation [e.g., 170]. With K-
band photometry from 2MASS, Batcheldor et al. [171] analyzed a sample of BCGs and found
that there was no significant difference in the σ − L distribution of BCGs when compared
to other ellipticals. However, Lauer et al. [6] suggests that this may be due to 2MASS being
insufficiently deep to recover accurate total magnitudes. In contrast, Von Der Linden et al.
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[168] did find a flattening of σ with increasing L for BCGs using 2MASSK-band photometry,
consistent with our results.

Environment

Throughout this paper, we have focused on the variation of galaxy properties with total
luminosity. For elliptical galaxies, total luminosity is a strong predictor of both half-light
radius and central velocity dispersion, and it is tightly coupled to a galaxy’s evolutionary
history. However, a galaxy’s environment can also have a significant impact on its evolution.
One common environmental classification criterion is whether a galaxy is the central domi-
nant galaxy in the cluster, which is most often the same as the BCG. Scaling relations for
BCGs have been studied in the literature [e.g., 161, 172, 173]

In order to classify galaxies within the MASSIVE survey, we use classifications from the
high density contrast (HDC) group catalogue [174]. More specifically, we classify all galaxies
as BCGs if they belong to a group of three or more members, and are the most luminous
galaxy within that group. Being the brightest in their clusters, BCGs tend to be more
massive than non-BCGs. Thus, BCGs are overrepresented within the MASSIVE survey,
compared to their proportion among galaxies as a whole. Therefore, the curvature described
in the previous sections could conceivably be attributed to differences between BCG and
non-BCG populations, rather than a curvature in the relation itself. In order to distinguish
between these scenarios, we have explored fitting separate linear relations to the BCG and
non-BCG populations within MASSIVE.

For both the SL and FJ relations, we find that the parameters obtained for BCGs and
non-BCGs individually were consistent with those obtained for the complete MASSIVE
sample. We conclude that there is no evidence of different SL or FJ relations between BCGs
and non-BCGs, and the curvature in the relations cannot be due to a changing fraction of
BCGs with increasing luminosity.

Merger Histories

Our fits provide further evidence that the most luminous elliptical galaxies have larger radii
and smaller velocity dispersions than predicted from power-law fits at lower luminosities.
This can provide insight into the assembly history of these galaxies. Curvature in scaling
relations for elliptical galaxies may indicate changes in the relative influence of different for-
mation mechanisms with galaxy luminosity [6]. One example of this is the role of dissipation
in galaxy mergers. Dissipation is thought to play a larger role in the merger history of
lower mass, rotation dominated ellipticals and a smaller role for more massive, slow-rotating
ellipticals [e.g., 175, 156, 176, 177].

The pre-merger galaxy trajectories may leave detailed imprints on the FJ and SL relations
in dissipationless mergers. For example, Boylan-Kolchin, Ma, and Quataert [170] suggest
that dissipationless mergers that occur along more radial trajectories lead to a steeper SL
relation, and an FJ relation where σ increases less steeply with L. They also argue that
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massive elliptical galaxies are preferentially formed by radial mergers due to mergers occuring
along cosmological filaments [e.g., 178]. This suggests that both the SL and FJ relations
should exhibit curvature, due to more massive galaxies forming on preferentially radial orbits,
qualitatively consistent with what we observe. Bernardi et al. [138] provides an argument
that a qualitatively similar change in slope will occur for dissipationless mergers of pairs of
galaxies on parabolic orbits. Thus, our observed steepening of Re and flattening of σ at
large L may be interpreted as evidence of dissipationless merging playing a larger role for
the assembly of the most massive elliptical galaxies.

The curvature in both relations is apparent in both the FJ and SL relations even when
only SRs are included in the fits. Therefore, the curvature can not be attributed solely
to a changing fraction of SRs and FRs. This suggests that SRs can not be considered a
homologous population, but instead that high and low luminosity populations of SRs have
distinct structures and formation physics.

Prior studies have suggested distinct populations of low and high mass SR elliptical
galaxies based on other evidence. Krajnović et al. [179] showed that while the most massive
ellipticals are cored, some less massive SRs can be core-less. Thus, the difference between
low-mass core-less and high-mass cored galaxies is not simply related to angular momentum.
The increased prevalence of cores among SRs occurs around a characteristic stellar dynamical
mass of 2×1011 M⊙, which would correspond to an absoluteK magnitude∼ −24.9 mag using
the stellar mass relation from Cappellari [180] together with the correction between 2MASS
and CFHT magnitudes reported in Section 5.3. This characteristic luminosity is qualitatively
consistent with what we observe in both the SL and FJ relations. Our observations of
a change in slope of the SL and FJ relations is further evidence of a difference between
high-mass and low-mass SR populations.

Central Black Hole Scaling

Black hole scaling relations are often used to predict SMBH masses in galaxies where they
cannot be measured directly. Two of the most commonly used relations are the MBH − σ
[181, 182] and MBH − L [158] relations. If σ and L are related by a simple power-law, then
power-law fits to these two relations must be consistent with one another. However, if there
is curvature in the relationship between σ and L, power-law fits to theMBH−σ andMBH−L
relations will result in different predictions for black hole masses.

This is precisely what occurs at large luminosities: since the slope of σ flattens with
respect to L, the MBH − σ relation predicts smaller central black hole masses than the
MBH − L relation. This was outlined by Lauer et al. [6], who argue that the MBH − L
relation predicts the black hole mass more accurately for very luminous galaxies. If these
galaxies form through dissipationless mergers, the central SMBHs grow primarily through
mergers of the SMBHs in the progenitor galaxies. This maintains theMBH−L relation, while
σ may grow more slowly. There is evidence that the MBH−σ relation does underpredict the
highest SMBH masses [e.g., 38, 183], although this may be due to differingMBH−σ relations
for cored and non-cored galaxies [184], with a predominance of cored galaxies at the highest
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luminosities. Further exploration of the scaling of SMBH mass with galaxy luminosity and
structural parameters is needed at the high-mass end [e.g., 185].

5.8 Conclusions

We have presented CFHT WIRCam data for ∼ 100 galaxies within the MASSIVE survey,
and measured K-band total luminosities and half-light radii. The updated luminosities are
systematically brighter by about 0.27 mag than those from the 2MASS XSC, similar to
the offset found by Schombert and Smith [140] in the J band. The half-light radii are
systematically larger than those from 2MASS by about 17%.

Using these measured values, we study the SL and FJ relations for the MASSIVE galaxies.
For the SL relation, we find Re ∼ L0.88±0.10

K . This is consistent with prior studies, and
indicates a significant steepening of the SL relation at high luminosities. For SRs alone,
ATLAS3D and MASSIVE combine to form a tight continuous sequence in the Re − L plane,
but once again, there is a significant steepening of the SL relation at luminosities LK ≳
1011.5 M⊙.

For the FJ relation, we find L ∼ σ4.5
c for the full MASSIVE sample. However, when we

consider the SRs alone, the power law steepens to L ∼ σ7.1
c . Consistent with other studies,

we find σ flattens as a function of luminosity for the most massive galaxies. This is likely
related to the prevalence of central cores in these massive galaxies.

The curvature in these two relations is further evidence for a picture in which the most
luminous elliptical galaxies grow largely through dissipationless “dry” mergers, with dissipa-
tion playing a larger role for less luminous galaxies. Even within a sample composed purely
of slow rotators, there is a significant change in the slopes of the SL and FJ relations, sug-
gesting different formation histories for low and high luminosity slow rotators. We have also
separately explored the relations for the BCGs and non-BCGs in our sample. We find no
evidence that the BCGs follow different relations from the general population of luminous
early-type galaxies.

These results suggest that the curvature in the SL and FJ relations is not due to varying
fractions of either BCGs or SRs, but is instead intrinsic to the relations for early-type
galaxies. The curvature we observe is consistent with the picture put forth in Lauer et al. [6],
suggesting that velocity dispersion plateaus as luminosity continues to increase through dry
mergers, leading to an underprediction of central SMBH masses from theM−σ relation. We
are currently working to increase the number of dynamical black hole mass measurements
in our sample and plan to explore this issue further.
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Chapter 6

Conclusion and Future Directions

This dissertation presented studies of several aspects of giant elliptical galaxies. Chapter 2
presented updates to the modeling code originally described in [59], along with an application
of this code to axisymmetric models of NGC 1453. A fully triaxial version of this code was
then presented in Chapter 3, and a new triaxial search strategy was outlined. This framework
was then applied to NGC 1453, resulting in a simultaneous determination of the central black
hole mass, mass-to-light ratio, dark matter halo mass, and triaxial shape.

In order to validate this code, a pipeline for generating photometric and kinematic data of
realistic mock galaxies was described in Chapter 4. The ability for the orbit modeling code to
recover galaxy parameters was tested for both axisymmetric and triaxial models. These tests
demonstrate recovery of the intrinsic galaxy shape that is far more accurate than comparable
tests of the original code version. Together, these chapters provide dramatic improvements
on existing dynamical modeling frameworks, allowing for precise measurements of intrinsic
galaxy shapes.

Chapter 5 presents measurements of K-band total magnitudes and half-light radii for
a volume-limited sample of the ∼100 most massive nearby elliptical galaxies. The Faber-
Jackson and luminosity-size relations are studied within this sample. The addition of these
massive elliptical galaxies reveals curvature in these relations when compared with less mas-
sive ellipticals.

The updated code described in this dissertation can be used to infer triaxial shapes, mass
distributions, and orbital distributions in elliptical galaxies. Specifically, this dissertation
takes significant steps towards many of the science goals of the MASSIVE survey [88]. The
updated code described in this dissertation can now be used to model this sample of massive
elliptical galaxies for which photometric and spectroscopic observations have been made. A
volume-limited sample of central black hole masses in the most massive nearby galaxies,
together with the photometric parameters measured in Chapter 5, would give key insights
into the local scaling relations and allow for a more complete understanding of how these
galaxies formed.
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[147] Emmanuel Ŕıos-López et al. “2D surface brightness modelling of large 2MASS galaxies
- I: photometry and structural parameters”. In: Monthly Notices of the Royal Astro-
nomical Society 507.4 (Nov. 2021), pp. 5952–5973. doi: 10.1093/mnras/stab2321.
arXiv: 2108.04461 [astro-ph.GA].
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Appendix A

Criterion for Existence of Long-axis
Tubes (Appendix for Chapter 2)

We use Stäckel potentials to gain insights into the existence of long-axis tubes. A potential
is said to be in Stäckel form if it can be written as:

V (λ, µ, ν) = − F (λ)

(λ− µ)(λ− ν)
− F (µ)

(µ− ν)(µ− λ)
− F (ν)

(ν − λ)(ν − µ)
, (A.1)

for some function F (τ) where (λ, µ, ν) are ellipsoidal coordinates defined as the roots of τ in
the equation

x2

τ + α
+

y2

τ + β
+

z2

τ + γ
= 1 , (A.2)

such that −γ ≤ ν ≤ −β ≤ µ ≤ −α ≤ λ. Here, (α, β, γ) are constants that define the
coordinate system. Such a potential is said to be separable in these coordinates. When
a density corresponding to a Stäckel potential is projected in any direction to give a 2D
surface density, it will have no isophotal twists [115]. Thus, we can use the viewing angles
(θ, ϕ, ψ) of Binney [21] to define the relationship between the primary axes of the projected
and intrinsic densities. This set of viewing angles imposes a constraint on the allowed values
of (α, β, γ) given by:

√
β − α√
γ − β

=

√
sin2 θ

cot 2ψ sin 2ϕ cos θ + cos2 ϕ(cos2 θ + 1)− 1
. (A.3)

This expression follows from Equation (B9) of Franx [115]. Orbital structure in Stäckel
potentials has been well studied [22]. This structure is what motivated the x-z start space
described in Schwarzschild [23]. Long axis tube orbits pass through the x-z start-space above
the focal curve, defined by

z2

γ − β
+

x2

α− β
= 1 . (A.4)
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For large x, this curve is approximately a line given by z ≈ x
√
γ−β√
β−α

. Therefore, the angle
that this line forms with the z axis can be written simply in terms of the viewing angles as

tan η =

√
sin2 θ

cot 2ψ sin 2ϕ cos θ + cos2 ϕ(cos2 θ + 1)− 1
. (A.5)

Any orbits launched initially between the focal curve and the positive z-axis in the x-z
plane will be long axis tubes which violate axisymmetry. To effectively achieve axisymmetry,
the angle η must be small enough for no orbits to be sampled above the focal curve. Since
the line defined by the angle η is a lower bound to this curve, if all initial orbits in the
positive x-z quadrant are launched outside of the approximate angular region between the
z-axis and the angle η, there will be no long-axis tubes in the model.

This expression is derived for Stäckel potentials. However, in the absence of isophotal
twists, we expect it to apply reasonably well to more realistic models as they can often be
locally approximated by a Stäckel potential [186]. A central SMBH is inconsistent with a
Stäckel potential and can thus destroy the ordered orbital structure. However, we suggest
that Equation (A.5) could give a rough rule-of-thumb for where the boundary between long-
axis and short-axis tubes will exist in models from the code, particularly at radii far from
the SMBH.

The stellar mass distribution is represented by an MGE in our models. Each gaussian
component is stratified on similar ellipsoids, and can thus be related to its deprojection via
the equations given in Binney [21]. These equations can be rearranged to give

T

1− T
=

sin2 θ

cot 2ψ sin 2ϕ cos θ + cos2 ϕ(cos2 θ + 1)− 1
, (A.6)

where T = (1−p2)/(1−q2) of each MGE component. For an MGE with no isophotal twists,
each MGE component has the same triaxiality parameter, T . Thus, in this case, the angle,
η, can be written simply as:

η = tan−1

√
T

1− T
, (A.7)

where T is the triaxiality parameter for each MGE component. Two examples of triaxial
start spaces for NGC 1453 models are shown in Figure A.1. The boundary between long-axis
tubes and short-axis tubes is well approximated by the angle η for a wide range of galaxy
shapes.
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Figure A.1: Same as Figure 2.1 but for two additional mass models with larger triaxiality:
(left) triaxiality parameter T = 0.25, (luminosity averaged) shape parameters (u, p, q) =
(0.96, 0.95, 0.77), and viewing angles (θ, ϕ, ψ) = (67.62◦,−28.38◦, 86.61◦), and (right) T =
0.75, (u, p, q) = (0.96, 0.85, 0.79), and (θ, ϕ, ψ) = (48.74◦,−51.33◦, 67.15◦). The diagonal
black line in each panel represents the angle η given in Equation (2.2). As in Figure 2.1,
this angle approximates well the boundary separating long-axis (red symbols) and short-axis
(black symbols) tube orbits in the x-z start space.
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Appendix B

Thin Orbit Finding (Appendix for
Chapter 2)

The TriOS code uses the thin orbit curve to construct its start space. This curve has to be
found numerically in the x-z plane. For a given angle in this plane, the thin orbit radius is
found by integrating test orbits starting at different radii. For each orbit, the radius of the
orbit is recorded each time it passes through the x-z plane. The thin orbit radius is found
by minimizing the difference between the maximum and minimum of these radii.

This algorithm should work for triaxial models but needs some revision in the axisym-
metric case, particularly when there is no central density cusp or mass concentration. In
this case, when close enough to the center, the potential should be well approximated by
a harmonic oscillator. When the potential is axisymmetric, the motion can be regarded as
two separate contributions: an oscillation in the z-axis and a closed elliptical orbit about the
z-axis. Since the x-y motion constitutes a closed ellipse centered on the z axis, all orbits will
pass through the x-z plane at a fixed x value, with some z value. The orbit width is then
simply set by the maximum and minimum z values. Thus, for a given ray in the x-z plane,
the orbital width in this plane can be minimized by simply taking the initial radius to be
as small as possible. To solve this issue when running an axisymmetric model, we instead
record radii when passing through the x-y plane. Closed ellipses will have a finite width in
this plane while all thin orbits should pass through this plane in a circle of 0 width.

It is unclear how much this issue should affect the resulting orbit libraries. If orbits are
sampled starting at the origin instead of the thin orbit, the result should be a less uniform
sampling of angular momentum. There should also be some range of energies where the thin
orbit radius is not estimated to be 0 or the correct value, but rather somewhere in between.
This would result in a significantly non-uniform sampling of angular momentum since orbits
passing through the x-z plane within this radius will be undersampled relative those that do
not. This issue should be essentially resolved outside of the axisymmetric limit, or if a black
hole or density cusp is included. However, axisymmetric studies that use this code with no
central cusp may be affected [91].
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Appendix C

Michie-like Mock Recovery Tests
(Appendix for Chapter 2)

In 2, we demonstrated that our changes to the TriOS code result in a consistent, non-zero
SMBH mass estimate for our NGC 1453 dataset. Here, we show that the changes correctly
recover the SMBH mass in a mock dataset with known parameter values. Mock tests have
been performed within various other Schwarzschild codes [e.g. 25, 187, 188, 56, 85].

For our mock galaxy, we use a flattened version of the spherical potential introduced in
Siopis et al. [56]. These models have an axisymmetric gravitational potential given by

Φ(R, z) =
1

2
V 2
c ln

(
R2 + z2/q2Φ

1 pc2

)
− GMBH√

R2 + z2
, (C.1)

where qΦ is the flattening of the potential due to the extended mass distribution. The stellar
DF is chosen to have a Michie-like form:

f = A exp

{
−
[
E + L2

z/(2r
2
a)

σ2

]}
L2N
z ⊓ (E1, E, E2), (C.2)

where A is the normalization, and ra, N , σ, E1, and E2 are parameters of the model: ra is an
anisotropy distance, N controls the Lz dependence, σ is a characteristic velocity dispersion,
and E1 and E2 are energy cutoffs. The symbol ⊓ denotes a step function defined by

⊓(E1, E, E2) =

{
1, if E1 ≤ E ≤ E2

0, otherwise.
(C.3)

Because Lz only enters Eq. (C.2) in even powers, there is additional freedom in how f differs
for positive and negative values of Lz. Here, we set a fixed fraction of stars to rotate in each
positive direction. In this model, the stars are essentially regarded as massless tracers of
the underlying potential in eq. C.2. Even when the potential is chosen to be spherical, the
stellar distribution function can be axisymmetric.
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We use the same potential parameters as Siopis et al. [56], with Vc = 220 km s−1 and
MBH = 1.126 × 108 M⊙. We generated two models: one model with a spherical potential
(qΦ = 1) to compare with Siopis et al. [56], and one model with a flattened potential (qΦ =
0.95). The models both have a sphere of influence of about 10 pc. We also use the same
two component DF parameters as Siopis et al. [56]: the first component is a non-rotating
nearly spherical bulge-like component which has σ = 160 km s−1, ra = 600 pc, N = 0,
E1 = Φ(10 pc), E2 = Φ(1000 pc) with equal numbers of stars having positive and negative Lz;
the second component is a rotating disk-like component w has σ = 120 km s−1, ra = 200 pc,
N = 2, E1 = Φ(10 pc), E2 = Φ(1000 pc) with 3/4 of the stars having positive Lz and 1/4
having negative Lz. The two components have equal numbers of stars.

We draw points in phase space from this distribution function for each star to generate
mock data. We use a nearly edge-on projection, with an inclination of θ = 89◦. For the model
with the flattened potential, we convolve the projected positions with a circular gaussian PSF
with standard deviation 5 pc. We bin the stars into mock IFU data with a resolution of
10 pc, with a square FOV of 1000 pc. We fit an MGE to the projected surface brightness.
We then run Voronoi binning on all bins with central radii > 20 pc, resulting in 12 inner
unbinned kinematic points and 108 larger outer bins. In order to keep the bins between
the two models fixed, we use the Voronoi bins derived from the spherical potential. Each
LOSVD is fit with a Gauss-Hermite expansion up to h12. Gaussian noise is added to each
LOSVD bin, resulting in a scatter of about 0.03 in each moment and about 0.03

√
2σ in the

average velocity and velocity dispersion for each bin. We draw 20 realizations of this noise,
and run the updated TriOS code for each realization.

Figure C.1 shows the resulting constraint on MBH for each noise realization. The left
panel is for the mock in the spherical potential, while the right panel is for the mock in
the flattened potential. The kinematic contribution to the reduced χ2 in these realizations
ranges from 0.81 to 0.94 for the spherical potential and 0.71 to 0.84 for the flattened potential,
indicating a good fit to the projected kinematics for all realizations.

The average SMBH masses and corresponding sample standard deviations from these
combined 20 runs are MBH = (1.17± 0.09)× 108 M⊙ for the spherical potential, and MBH =
(1.18 ± 0.13) × 108 M⊙ for the flattened potential. In both test cases, the estimated MBH

values are in excellent agreement with the true value of MBH = 1.126× 108M⊙.
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Figure C.1: Illustration of the MBH constraints for the mock datasets described in the text.
Each dashed curve represents a separate realization of the noise.

In the left panel, the potential is spherical, no PSF convolution is performed and each DF
component has 5× 108 stars. In the right panel, the model is flattened, projected stellar
positions are convolved with a circular gaussian PSF with a standard deviation of 5 pc,

and each DF component has 5× 109 stars. The 1D χ2 curves are obtained by marginalizing
over Vc in the smoothed 2D χ2 landscape generated by Gaussian Process regression with a

squared-exponential covariance function [97].
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Appendix D

Relating new and old parameters
(Appendix for Chapter 3)

The expressions given in Equation (3.8) can be written in a simpler form when expressed
sequentially:

cos2 θ = Tmin(1− TTmaj) ,

sin2 ϕ =
(1− Tmaj)(1− Tmin)

sin2 θ
,

tanψ =
−(1− Tmin) cos θ

(Tmin − cos2 θ) tanϕ
.

(D.1)

The inverse expressions are then

T =
sin2 θ

cos θ sin 2ϕ cot 2ψ + cos2 ϕ− cos2 θ sin2 ϕ
,

Tmaj = 1− sin2 ϕ(1− cos θ cotϕ cotψ) ,

Tmin = 1− sin2 θ(1− cos θ cotϕ cotψ)−1 .

(D.2)

The deprojection equations, giving the intrinsic shape in terms of the projected flattening
and angles (θ, ϕ, ψ) are given by [113]:

1− q2 =
δ′[2 cos 2ψ + sin 2ψ(sec θ cotϕ− cos θ tanϕ)]

2 sin2 θ[δ′ cosψ(cosψ + cotϕ sec θ sinψ)− 1]

p2 − q2 =
δ′[2 cos 2ψ + sin 2ψ(cos θ cotϕ− sec θ tanϕ)]

2 sin2 θ[δ′ cosψ(cosψ + cotϕ sec θ sinψ)− 1]

u2 =
1

q′

√
p2 cos2 θ + q2 sin2 θ(p2 cos2 ϕ+ sin2 ϕ),

(D.3)

where δ′ = 1 − q′2. While [113] presents these expressions in the context of the MGE
formalism, they are more broadly applicable to all densities that are stratified on similar
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concentric ellipsoids. This is demonstrated in de Zeeuw and Franx [112]. The first two
expressions in equation D.3 are listed as their equation A8. The third expression giving the
projection axis ratio, u, follows from expressions in this paper as well. Following appendix
A of this paper, combining their equations 3.37, 3.38, and 3.49 gives:

a′2 + b′2 = 2c2 + (a2 − c2)(sin2 ϕ+ cos2 ϕ cos2 θ) + (b2 − c2)(cos2 ϕ+ sin2 ϕ cos2 θ)

(a′2 − b′2)2 = [(a− c2)(sin2 ϕ− cos2 ϕ cos2 θ) + (b2 − c2)(cos2 ϕ− sin2 ϕ cos2 θ)]2

+ 4(a2 − b2)2 sin2 ϕ cos2 ϕ cos2 θ.

(D.4)

Here, (α, β, γ) in the original expressions have been set to (−a2,−b2,−c2) in order to con-
sider a perfect ellipsoid. The first of these expressions is explicitly given in equation A6
of the original paper. Squaring the first expression and subtracting the second gives (after
significant simplification):

4a′2b′2 = 4a2b2 cos2 θ + 4a2c2 sin2 ϕ sin2 θ + 4b2c2 cos2 ϕ sin2 θ. (D.5)

Substituting the definitions of the axis ratios reduces this expression to the third line of
equation D.3 above.

Equation 3.8 follows from equations 3.39 and 3.42 of de Zeeuw and Franx [112], together
with the definitions given in equation 3.4. Equation 3.7 then follows from equation D.3,
together with equation 3.8. As in appendix A1 of de Zeeuw and Franx [112], while these
expressions are derived in the context of a perfect ellipsoid, the results are independent of the
assumed profile and are thus valid for all densities stratified on similar concentric ellipsoids.




