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Abstract We approach mosaicing as a camera tracking
problem within a known parameterized surface. From a
video of a camera moving within a surface, we compute
a mosaic representing the texture of that surface, flattened
onto a planar image. Our approach works by defining a warp
between images as a function of surface geometry and cam-
era pose. Globally optimizing this warp to maximize align-
ment across all frames determines the camera trajectory, and
the corresponding flattened mosaic image. In contrast to pre-
vious mosaicing methods which assume planar or distant
scenes, or controlled camera motion, our approach enables
mosaicing in cases where the camera moves unpredictably
through proximal surfaces, such as in medical endoscopy
applications.

Keywords Image registration and mosaicing · Pose
estimation · Endoscopy

1 Introduction

Mosaics enable capturing the appearance of an entire scene
in a single image. Many techniques have been proposed in
the literature, based on a range of projection models in-
cluding both perspective (Chen 1995; Szeliski and Shum
1997) and multi-perspective varieties (Wood et al. 1997;
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Agarwala et al. 2006; Seitz and Kim 2002). A common fea-
ture of almost all known projection models is that they in-
troduce distortions, as certain scene characteristics (e.g., lin-
earity, parallelism, length, angles, etc.) are not preserved in
the mosaic. While some distortions may be tolerable or even
desirable for casual visualization tasks, they can pose prob-
lems when precision or measurement is required.

One approach that avoids distortions is to define the pro-
jection based on a known reference plane in the scene. In
this case, the images can be rectified to align with the physi-
cal coordinates on the reference plane, and stitched together.
The result is a mosaic that removes the effects of perspective
distortion and preserves lengths and angles for points on the
reference plane (Szeliski 1996).

In this paper, based on our original work presented in
Carroll and Seitz (2007), we generalize the approach of
plane rectification to allow distortion-free rectified mosaics
for any developable surface (e.g., boxes, cylinders, cones,
generalized cylinders, etc.). More generally, our framework
supports any kind of parametric surface, in which case the
resulting mosaic image has the same parameterization as the
surface itself. This generalization has a number of possible
uses, but is particularly motivated by endoscopy applica-
tions, i.e., building mosaics of internal organs for medical
diagnostics.

Our approach takes as input a video from a camera mov-
ing through a tube or other surface, and produces as output a
planar image that represents the surface texture unwrapped
onto a plane. The form of the surface must be known in
advance, but the camera path may be unknown and uncon-
strained. Towards this end, we seek to align the images using
a global objective function that is parameterized by surface
geometry and camera pose in every image. We minimize
this objective function using a global space-time version of
Lucas-Kanade registration (Lucas and Kanade 1981), and
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composite strips of the aligned images into a mosaic. As a
side effect, the approach solves for camera pose.

1.1 Related Work

Rousso et al. introduced “pipe projection” as a method that
allows the mosaicing of video containing forward motion
(Rousso et al. 1998). While this approach is very related to
our goals, the “pipe” in their case is not meant to correspond
to a physical surface in the scene, but is rather used as a man-
ifold that allows radial optical flow to be transformed into
parallel optical flow on the pipe’s surface. Their approach
is most effective when the scene is distant, or in the special
case when the camera is moving along the center axis of
a perfect cylinder. This pipe projection method is therefore
not well suited for cameras moving freely through proximal
physical pipes or other surfaces, as in the case of endoscopy
video, and produces significant distortions in these cases.

In computing camera pose through a global optimization,
our approach bears relation to work in computer vision and
photogrammetry on structure from motion (SfM) and bun-
dle adjustment (Hartley and Zisserman 2004). Indeed, SfM
could in principle be used to compute the camera motion, as
an alternative to the approach proposed in this paper. How-
ever, SfM methods require tracked features as input, which
is particularly problematic for endoscopy video of anatom-
ical surfaces, as such video tends to have few distinct fea-
tures and large parallax between frames. Instead, we adopt
an alignment approach that simultaneously solves for corre-
spondence and camera pose in order to build the mosaic.

The problem of estimating camera pose in endoscopy
imagery has been explored in the medical imaging com-
munity. Notably, several researchers (Bricault et al. 1998;
Mori et al. 2000; Helferty et al. 2004) have demonstrated
the ability to track a camera moving through the lung, com-
puting six degree of freedom pose. This line of work builds
on the use of virtual endoscopy to generate synthetic render-
ings of a CT model of the lung acquired off-line, which can
be compared to the images captured online for the purpose
of registration. This use of virtual images has the advantage
of being able to correct for drift that would otherwise occur
in frame-to-frame image registration. However, the accuracy
of the alignment depends not just on the accuracy of the CT
scan, but also the models for surface reflectance, shading,
and lighting, and the ability to create renderings that approx-
imate the true appearance of the scene. In contrast, our ap-
proach avoids the need to render a virtual model, and instead
compensates for drift problems using a global multi-frame
simultaneous alignment. A disadvantage of our approach is
that the global optimization is not well-suited for real-time
applications.

Vercauteren et al. (2006) present an endoscopic mosaic-
ing technique where frame-to-frame motion can be approxi-
mated by rigid transformations. This approach is well suited

for situations where the camera directly faces the surface
being imaged and the surface is relatively flat. A number
of other researchers (Reeff et al. 2006; Konen et al. 2007;
Miranda-Luna et al. 2008) have presented similar techniques
for endoscopic mosaicing, but they all assume each frame
of the video sequence views a portion of the surface which
is locally flat, or that the center of projection of the cam-
era is mostly stationary. These assumptions allow the use
of simple motion models (rigid, affine, homography, etc.)
and a planar mosaicing surface, but they are not appropri-
ate for applications we show, like that of a camera moving
down a tubular structure. Seshamani et al. (2006) addressed
the problem of mosaicing of tubular structures, but assume
the camera motion is completely axial, allowing the warp-
ing and alignment procedures to be done independently. In
contrast, our approach is aimed at applications where the
camera moves arbitrarily, and we provide a more general
formulation that works on other static surfaces.

Some authors have explored the related problems of un-
folding 3D geometry (Carrascosa et al. 2006; Truong et al.
2006), computing triangle texture maps from images regis-
tered with CT scans (Rai and Higgins 2006), and unwrap-
ping a single image using a circular parameterization (War-
math et al. 2005).

2 Overview

The input to our algorithm is a sequence of perspective
views from a camera moving within a known type of sur-
face. From this sequence we wish to output a mosaic which
represents the texture of the surface. To do this we estimate
the 6 DOF camera pose for each frame. With known pose,
we can do an inverse projection of each frame onto the sur-
face. The 2D mosaic is formed by flattening the surface onto
a plane, which can be done without creating any distortions
if the surface is developable.

Pose estimation is done by defining a warping function
between neighboring video frames. This warp is based on
an inverse projection of one image onto the mosaicing sur-
face followed by a projection onto another image plane.
The warp is a function of the pose parameters of both im-
ages and the surface parameters. We use this warp to define
an intensity minimization between frames, using the frame-
work of Lucas-Kanade alignment (Lucas and Kanade 1981;
Baker and Matthews 2002; Szeliski and Shum 1997). We
would like to compare each image to at least its two neigh-
bors in the sequence, but this results in two (likely inconsis-
tent) pose estimations for each frame. The series of duplicate
pose estimations are not readily combined into a single cam-
era path, so we instead generalize the registration algorithm
into a global minimization across all frames.

To compute a consistent pose for each image, based on
warps to multiple other images, we simultaneously solve the
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pose parameters of every frame. We use a generalization of
Lucas-Kanade that handles multiple warps with interdepen-
dent parameters, which in our case are the camera pose pa-
rameters. Additionally, we show that the iterative update for
the global optimization can be constructed from elements
of the standard pairwise Lucas-Kanade method. Our global
formulation is similar to the space-time tracking framework
proposed by Agarwala et al. (2004b), who also used global
optimization for tracking, but in the context of tracking 2D
contours in a sequence of images.

Furthermore, we show that our framework can be ex-
tended to handle correspondences between input images and
the projection surface. If the surface contains one or more
known features that can be identified in the video, the pose
estimations can be constrained to maintain the correspon-
dence. This is useful in medical applications when the van-
ishing point of a cylindrical structure can be found or when
known fiducials are present.

3 Surface Projection Warp

We model the video sequence as a pinhole camera moving
freely within a static surface (Fig. 1). Under this model it is
possible to warp an image taken at one location to an image
taken somewhere else. We will use this warp to define an ob-
jective function parameterized by camera pose. The image
warp we wish to solve for is modeled as the combination of
an inverse perspective projection from one camera location
onto the mosaicing surface, followed by the projection to
another camera location. An arbitrary surface S in 3-space
can be parameterized by two variables, (s, t), and the image
plane is parameterized by (u, v).

The mapping from surface coordinates to image coordi-
nates and vice-versa are given by

[
u

v

]
= P

([
s

t

]
,X

)
and

[
s

t

]
= P−1

([
u

v

]
,X

)
, (1)

where X = (x, y, z,α,β, γ ) contains the six-degree-of-
freedom camera pose.

The relationship between the 3D surface point S(s, t) and
its projection onto the image plane at u = (u, v, f ) is de-
scribed by

S = x + Ruc (2)

where x = (x, y, z) is the position of the camera and R =
Rx(α)Ry(β)Rz(γ ) is the rotation matrix representing the
camera’s orientation. The quantity Ru is the direction from
the optical center to the 3D pixel location, adjusted to the
coordinate system of the surface, and c is the scale factor
corresponding to the intersection of this surface along Ru.

Fig. 1 (Top) The motion model is that of a static surface and a freely
moving cameral. (Bottom) The surface projection warp is a combina-
tion of inverse projection onto the surface from camera 1, and projec-
tion back to the image plane of camera 2

Solving (2) for u yields the following relation:

u =
⎡
⎣ u

v

f

⎤
⎦ = R−1(S − x)/c. (3)

We can easily find c, since the focal length f is known, and
thus we have the forward projection.

The inverse projection is defined by intersecting a ray
from the camera with the surface. We define the projec-
tion such that the intersection with the smallest positive c

is used if there are multiple ray-surface intersections. See
the Appendix for an example with a cylindrical surface.

Composing P−1 and P projects the first image through
the surface into the coordinate system of the second image,
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giving the warp

W (u,X1,X2) = P
(

P−1 (u,X1) ,X2

)
. (4)

4 Pairwise Pose Estimation

We wish to solve for a warp that minimizes the sum squared
difference between two frames. That is, we wish to find X1

and X2 that minimizes the function
∑

u

[I1(u) − I2 (W (u,X1,X2))]
2 . (5)

We use a Lucas-Kanade style forwards additive1 approach
as described by Baker and Matthews (2002). Given a cur-
rent estimate of X1 and X2, we wish to find iterative updates
�X1 and �X2 that reduces the error function
∑

u

[I1(u) − I2 (W (u,X1 + �X1,X2 + �X2))]
2 . (6)

The closed form additive update for this equation is

[
�X1

�X2

]
= H−1b (7)

where H is the Hessian

H =
∑

u

[
∇I2

∂W
∂(X1,X2)

]T [
∇I2

∂W
∂(X1,X2)

]
, (8)

and b is the residual (Szeliski and Shum 1997)

b = −
∑

u

[
∇I2

∂W
∂(X1,X2)

]T

[I1(u) − I2(W(u,X1,X2))] .

(9)

Our warping function is the combination of two projec-
tions, so the Jacobian of the warp can be expressed in terms
of the Jacobians of the projections

∂W
∂(X1,X2)

=
[
∂P
∂s

∂P−1

∂X1

∂P
∂X2

]
. (10)

In order to compute the Jacobian it is necessary that the sur-
face be differentiable.

To improve convergence, we initialize the pose parame-
ters based on the surface and the expected type of motion

1The forwards additive algorithm is computationally more expensive
than the alternatives described in Baker and Matthews (2002), but since
the set of warps does not generally form a semi-group or group, the
compositional algorithms are not applicable. Furthermore, the require-
ments for inverse additive approach are not satisfied.

relative to that surface. For example, for a pipe we initial-
ize the camera to be oriented axially, facing directly down
the pipe. For a planar surface we initialize the camera to be
facing the plane. All frames are given the same initial pose.
For convenience, the world coordinates are chosen so that
the initial pose is the zero vector. Depending on the surface
there can be ambiguities in the warp, such as for a circular
cylinder which is radially and axially symmetric. In these
cases it may be desirable to partially constrain one of the
frames, so as to prevent the minimization from searching
among equivalent results. In the case of a cylinder, we con-
strain the first camera position to be at a particular depth and
angle around the axis. The iterative update is run on a coarse
to fine basis to improve convergence and performance.

5 Global Pose Estimation

The algorithm outlined in Sect. 4 estimates two camera
poses given two input images. To register a full video, we
could apply the pairwise registration to each pair of consec-
utive images. However, this would result in two pose esti-
mates at each frame, and they would likely be inconsistent.
To obtain a single consistent pose at each frame, we refor-
mulate the pairwise optimizations into one global optimiza-
tion that minimizes the error between successive frames si-
multaneously.

The error function we wish to minimize is a sum of the
pairwise errors,

n−1∑
i=1

∑
u

(Ii(u) − Ii+1 (W (u,Xi ,Xi+1)))
2 . (11)

As in Sect. 4, the Jacobian for the warp between frame i and
i + 1 is given by

Ji = ∂W(u,Xi ,Xi+1)

∂(X1,X2, . . . ,Xn)
, (12)

the Hessian by

H =
n−1∑
i=1

∑
u

[∇Ii+1Ji

]T [∇Ii+1Ji

]
, (13)

and the residual by

b = −
n−1∑
i=1

∑
u

[∇Ii+1Ji

]T [
Ii(u) − Ii+1(W(u,Xi ,Xi+1))

]
.

(14)
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Fig. 2 The banded Hessian
matrix used in the global
optimization is constructed from
Hessians of the pairwise
registration. The overlapping
regions are summed

The iterative update becomes

⎡
⎢⎣

�X1
...

�Xn

⎤
⎥⎦ = H−1b. (15)

Note that the Jacobian is sparse, as the parameters for each
frame depend only on previous and next frame in the se-
quence. The Hessian for the global optimization is a 6n×6n

square matrix. However, since only consecutive frames are
compared the Hessian is sparse and banded, allowing (15) to
be solved efficiently. The global Hessian and residual can be
constructed from their pairwise counterparts, as is illustrated
in Fig. 2.

We have derived a global optimization where each frame
is compared to the immediately previous and next frames.
However, this method is easily extended to compare each
frame to any number of neighbors, at the cost of additional
computational complexity. If we alter the global error to be

n−1∑
i=1

i+k∑
j=i+1

∑
u

(
Ii(u) − Ij

(
W

(
u,Xi ,Xj

)))2 (16)

the pose for each image will be determined by comparisons
to k frames on each side. The value of k determines the
width of the band in the global Hessian. The advantage of
larger values of k is more reliable pose estimation that uses
large and small motions for better local and global align-
ment. In the limit we compare each image to every other
image and the objective function becomes

n−1∑
i=1

n∑
j=i+1

∑
u

(
Ii(u) − Ij

(
W

(
u,Xi ,Xj

)))2
, (17)

in which case the Hessian is completely filled in.

6 Surface Feature Constraints

It may be possible to detect certain features in the input im-
ages that are known to correspond to a particular location

on the surface. For example, for the case of endoscopy in-
side of cylindrical surfaces, it is straightforward to detect
the cylinder’s vanishing point as it appears as a dark spot
in the video. We wish to constrain our optimization so that
the location of the detected feature in each image coincides
with the projection of its known surface location into that
image. We can include these constraints in our optimization
by adding the weighted squared distance of the two into the
error function. The new global error is

n−1∑
i=1

∑
u

(Ii(u) − Ii+1 (W (u,Xi ,Xi+1)))
2

+
n∑

i=1

∑
f

w
∣∣P(sf ,Xi ) − uf

∣∣2 (18)

where sf is the known location of a feature on the sur-
face, uf is the location of the feature in image i, and w is
a weighting term. Since the constraints are independent of
other images, we can treat them individually. The constraint
for features in an image is given by

∑
f

∣∣P(sf ,X) − uf

∣∣2 (19)

We can proceed as in Sect. 4 to get the Hessian for the sur-
face feature constraints

H =
∑
f

∂P
∂X

T ∂P
∂X

, (20)

and the residual

b = −
∑
f

∂P
∂X

T [
P(sf ,X) − uf

]
. (21)

The weighted Hessian and residual for each feature con-
straint can be added to their global counterparts in the same
way as the pairwise pose estimation.

7 Mosaic Construction

With known camera pose for each input frame we are left
with the problem of selecting patches of pixels from the ap-
propriate input frames, and stitching them together seam-
lessly. We render the output mosaic using an inverse map-
ping, i.e., for each pixel in the output frame we sample from
a corresponding point in the video sequence. However, each
pixel in the mosaic image may be captured by multiple video
frames. A simple approach is to traverse the video sequence,
projecting onto previously unseen regions of the surface as
they come into view. This is highly scene dependent, but
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Fig. 3 Section of a mosaic created with and without gradient domain
blending

we found that it works well for the case of a camera mov-
ing backwards out of a cylindrical surface (or a forward
sequence traversed in reverse). We also disallow sampling
from peripheries of the image frame since these regions tend
to have more distortions and misregistrations.

Simply stitching together pixel intensities (or colors) will
produce noticeable artifacts along seams due to exposure
differences and any misregistations. To address this issue
we use gradient domain blending (Agarwala et al. 2004a;
Pérez et al. 2003; Fattal et al. 2002). In this technique, gra-
dient fields from the different patches are stitched together
instead of their intensity values. The output mosaic is pro-
duced by finding the image that most closely corresponds
to this accumulated gradient field. Since there are no strong
gradients on either side of the seems, the integrated image
will have no visible seem (see Fig. 3).

8 Experimental Results

In this section we will demonstrate our algorithm on various
data-sets to produce scene visualizations that could not have
been captured with a single physical camera. Runtime for
each of these experiments was 20–30 minutes on a 3.2 GHz
Pentium IV.

8.1 World Map

This experiment involved moving a camera down a rigid
10 inch diameter, 5 ft. long tube lined with a rolled up
world map. The camera was inserted into the tube on a plas-
tic tray. The video was taken with a consumer camcorder
and the scene was unevenly lit, as can be seen in the in-
put images. Along with a limited depth of field, these is-
sues make the registration challenging. The resulting mo-
saic (Fig. 4) is constructed from strips taken from 400 im-
ages. The bottom of the map is cut off since it is not visible

Fig. 4 Input frames from video of a rolled up world map, the resulting
mosaic, and the ground truth map

when rolled up. The mixed exposure in the mosaic is caused
by uneven lighting conditions. Despite the low quality input
video, the recovered mosaic closely matches the reference
image, demonstrating the algorithm’s capability for metric
accuracy.

8.2 Esophageal Endoscopy

This example (Fig. 5) was made from 220 frames of an
esophageal endoscopy procedure on a sedated patient. This
is one of the motivations for our project, to create a diagnos-
tic tool for pre-cancer screenings. For this sequence a dark
spot corresponding to cylinder’s axial vanishing point was
detected, and this constraint was used in the registration.

8.3 Model Esophagus

This mosaic (Fig. 6) was created as a proof of concept for
the algorithm’s use with an ultrathin Scanning Fiber En-
doscope being developed at the University of Washington
Human Photonics Lab (Seibel et al. 2006). The camera is
unique in that it captures pixels sequentially from a spiral-
ing optical fiber. The fiber scope was inserted into a model



Int J Comput Vis (2009) 85: 307–315 313

Fig. 5 Mosaic from esophageal endoscopy video using a cylindrical
surface. The dark spot is constrained to correspond to the cylinder’s
vanishing point

esophagus to capture a 250 frame sequence. Given the low
quality, grainy input video our registration algorithm pro-
duces an impressive result.

9 Conclusion

We have presented a technique for creating mosaics from
a camera moving through a proximal surface with known
geometry and demonstrated its applicability to endoscopic
video of tubular structures. To our knowledge, in relation to
other endoscopic mosaicing techniques, ours is the first to
handle scenes that are not locally planar and where the cam-
era moves arbitrarily. Our rectified mosaics use the known
surface geometry as the mosaicing surface to reduce distor-
tions and facilitate accurate measurement. We demonstrate
our algorithm’s accuracy by testing it on a cylindrical ob-
ject that allows evaluation with respect to ground truth, and
further demonstrate its robustness on real-world endoscopy
video. The approach is shown to produce good results even
with low quality input video.

There are a number of directions for future work in
this area. Our current implementation is unoptimized and
there is much potential for improving runtime by develop-
ing faster optimization techniques. Registration currently as-

Fig. 6 Mosaic of a model esophagus imaged using a Scanning Fiber
Endoscope (Seibel et al. 2006)

sumes brightness constancy, but this is a simplification in
many cases since both the camera and light position can be
moving. Specular highlights deviate from this assumption
particularly and cause pixels to become saturated. Further-
more, our formulation can also be extended to include shape
parameters to enable mosaicing of shapes where the geom-
etry is not fully known. If allowed to vary at each time-step,
the shape parameters could be used to model dynamic sur-
faces.
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Appendix: Cylindrical Pipe

The case of a cylindrical surface (Fig. 7) is derived by re-
placing the surface parameters (s, t) from Sect. 3 with the
cylinder’s parameters (k, θ), where k is depth along the
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Fig. 7 The pipe projection:
l, m, and n represent the
image’s basis vectors in scene
coordinates. [l m n] = R
represents the camera’s
orientation, and x is its position

pipe’s axis and θ is the angle around the axis. Then

S(k, θ) =
⎡
⎣ r cos(θ)

r sin(θ)

k

⎤
⎦

and relation between surface coordinate and image coordi-
nate becomes

⎡
⎣ r cos(θ)

r sin(θ)

k

⎤
⎦ =

⎡
⎣x

y

z

⎤
⎦ + R

⎡
⎣ u

v

f

⎤
⎦ c.

From this equation the mapping from (k, θ) to (u, v) is
straightforward, but going from (u, v) to (k, θ) is a bit more
tricky. If u and v are known we can solve for c by noting

r2 = (r cos(θ))2 + (r sin(θ))2

= (c(Ru)x + x)2 + (c(Ru)y + y)2.

This gives us a quadratic in c. With known c it fol-
lows that α = arctan((y + (Ru)xc)/(x + (Ru)xc)) and
k = z + (Ru)zc. Here it is assumed r is known, but this
can be chosen arbitrarily as it is an ambiguity in the scene.
Changing r will result in a stretching of the mosaic.
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