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RESEARCH ARTICLE
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Abstract

Passive acoustic monitoring is an essential tool for studying beaked whale populations. This

approach can monitor elusive and pelagic species, but the volume of data it generates has

overwhelmed researchers’ ability to quantify species occurrence for effective conservation

and management efforts. Automation of data processing is crucial, and machine learning

algorithms can rapidly identify species using their sounds. Beaked whale acoustic events,

often infrequent and ephemeral, can be missed when co-occurring with signals of more

abundant, and acoustically active species that dominate acoustic recordings. Prior efforts

on large-scale classification of beaked whale signals with deep neural networks (DNNs)

have approached the class as one of many classes, including other odontocete species and

anthropogenic signals. That approach tends to miss ephemeral events in favor of more com-

mon and dominant classes. Here, we describe a DNN method for improved classification of

beaked whale species using an extensive dataset from the western North Atlantic. We dem-

onstrate that by training a DNN to focus on the taxonomic family of beaked whales, ephem-

eral events were correctly and efficiently identified to species, even with few echolocation

clicks. By retrieving ephemeral events, this method can support improved estimation of

beaked whale occurrence in regions of high odontocete acoustic activity.

Introduction

Monitoring species is a tremendous and fundamentally important effort to answering many

theoretical questions in ecology, and establishing species management and conservation strate-

gies. The fact that large marine species such as beaked whales (family Ziphiidae) are still being
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discovered in the 21st century [1–3] demonstrates the difficulty of monitoring and studying

megafauna in pelagic habitats. There are now 24 identified species of beaked whales [4], all of

which inhabit deep waters and are notoriously difficult to sight. One-third of these species are

Data Deficient on the International Union for Conservation of Nature (IUCN) Red List of

Threatened Species, meaning there is insufficient information to assess risk of extinction, and

half have been recently listed as Least Concern [5]. Population trends for all beaked whale spe-

cies are classified as unknown on the IUCN Red List (with the exception of three species with

signs of decreasing trends). One known issue is the sensitivity of this taxonomic group to cer-

tain types of noise generated by human activities [6, 7], suggesting the need for protective mea-

sures. However, the lack of data on most aspects of beaked whale life history and ecology—

abundance, distribution, habitat preferences, mating and population dynamics—impedes the

adoption of effective conservation and management strategies.

Beaked whales dive for up to an hour to depths of 500 m or more in search of deep-sea prey

[8], recovering briefly at the surface between these deep dives [9]. This limits visual sightings

and complicates traditional visual surveys, particularly as weather conditions deteriorate [10].

During foraging dives, beaked whales produce short, highly directional echolocation clicks to

locate prey and navigate, with rapid and weaker pulse sequences, known as buzzes, used dur-

ing prey capture efforts [11]. Clicks, produced at regular time intervals, have a characteristic

frequency-modulated upsweep that distinguishes them from clicks of other toothed whale spe-

cies [12]. These frequency-modulated clicks have species-specific differences in peak fre-

quency, bandwidth, duration, spectral content, and inter-click interval [13], which allows

monitoring of beaked whale species using passive acoustic monitoring (PAM) methods [14].

PAM has greatly aided the study of beaked whale populations, leading in one occasion to

the evidence of a new beaked whale species [15] and addressing wide range of ecological ques-

tions, such as spatial and temporal distributions [14, 16], population differences [17], habitat

use [18], and estimating animal densities [19], as well as the effects of anthropogenic activities

and possible mitigations [20]. Advances in PAM techniques also enabled the collection of

extraordinarily big datasets over longer periods of time, allowing year-round monitoring of

remote regions to assess population trends [19]. However, efficient methods for automating

the analysis of these large datasets are needed to reduce the effort in identifying and monitor-

ing beaked whale species.

Most existing automated approaches for analyzing acoustic data involve two stages: a detec-

tion phase that finds sounds of interest from the recordings, and a classification phase in

which detected sounds are assigned to specific categories (e.g., species) based on distinctive

acoustic features. Automatic detectors have been developed to identify beaked whale acoustic

events that meet certain heuristics [13, 21–23], but classification to species is often still manual

and time-consuming [13, 24], or inaccurate with high false positive and missed detections if

automated [25, 26]. Several machine learning techniques have emerged as effective tools for

beaked whale species-level classification, by learning patterns from manually developed train-

ing sets [26–29] or groups of similar click types identified using unsupervised clustering algo-

rithms [30–32]. By deriving clusters of similar click types based on the similarities of selected

click features, unsupervised learning has automatically generated large training sets needed to

teach supervised learning algorithms for species classification [29, 33]. This approach has

helped discover and learn known and novel signals, and the acoustic identification of species

previously not classifiable [31, 34, 35], allowing for realistic analysis with evolving knowledge

of species acoustics recognition.

Machine learning algorithms designed to generalize and perform on a broad range of spe-

cies may impair classification performance for particular species, which is detrimental to prop-

erly estimate animal densities or understand acoustic behavioral changes. Beaked whales dive
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in small groups, have highly directional clicks, and produce clicks at a slower rate than other

species such as delphinids, therefore, detected acoustic events are often short in duration (i.e.,

ephemeral), and unsupervised clustering algorithms used to group similar signals may over-

look them if they overlap in time with other species that dominate the recordings. When esti-

mating local densities of beaked whales from acoustics, a detection probability for signals

received above a particular amplitude threshold is necessary [19, 36]. The challenge with

beaked whales is that the ephemeral nature of their acoustic encounters often leads to those

occurrences being missed above the selected thresholds. This results in an undercounting of

beaked whales and potential bias towards larger groups or deeper dives, when more or higher

amplitude clicks are available. Similarly, behavioral studies assessing the effects of noise expo-

sure may be bias towards these cases when classification is more reliable, as noise-exposed

beaked whales have shown acoustic behavioral changes [6]. Animals interrupt foraging [e.g.,

37–39], leading to shorter acoustic events that are more challenging to detect. Therefore, when

using acoustics to accurately estimate beaked whale densities and the effects of noise exposure,

detection and classification methods must identify clicks from ephemeral acoustic events, even

in the presence of more acoustically dominant species. The generalization strength of machine

learning techniques to classify a broad range of species may not be appropriate for these partic-

ular population studies, and a targeted species classification pipeline may help minimize bias

by improving the detection of non-dominant signals, i.e. rarer signals.

The present study demonstrates that tailoring a deep neural network (DNN) to a subset of

data focused on a specific taxonomic family, in this case beaked whales (family Ziphiidae),

resulted in greater overall accuracy, particularly for ephemeral acoustic events. Building on

current methods [31, 33–35], we developed a classification pipeline consisting of a combina-

tion of unsupervised clustering with a DNN trained narrowly on beaked whale signal types to

improve species classification performance. A comprehensive library of the dominant click

types for six beaked whale species in the western North Atlantic is provided: Ziphius caviros-
tris, Mesoplodon densirostris, M. europaeus, M. bidens, M. mirus, and the unknown signal type

named “Beaked Whale Gulf” (BWG). Using this approach, we provide fine-scale detection and

classification of beaked whale species, which can allow efforts to advance the study of popula-

tions in long-term monitored regions. The training data is publicly available in the HARP

North Atlantic Beaked Whales repository hosted by Dryad. We aim to start the creation of a

central database to improve rare species detection.

Materials and methods

Overall workflow

We provide an overview of the processes involved in machine learning for training and imple-

menting a generalized and targeted species classification pipeline (Fig 1). All workflows

included automated stages for signal detection, clustering and classification. The training

workflow had three main steps: 1) a generic detector to detect pulses from audio data segments

with known occurrences of beaked whales, 2) unsupervised clustering to identify distinct sig-

nals within a time window, followed by another pass of unsupervised clustering to group simi-

lar clusters into signal types, 3) human guidance for signal categorization to classes, and 4)

development of a DNN with a training dataset (Fig 1A). The implementation of the trained

DNN for a generalized classification of sounds included three main parts: 1) a generic pulse

detector, 2) unsupervised clustering to identify distinct signals within a time window, and 3) a

trained DNN to classify clusters within each time window, returning labels for each individual

detection forming a cluster. For a targeted species DNN pipeline, a phase was added prior to

clustering to automatically delimitate signals of interest (e.g., taxonomic family) and remove
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non-targeted signals (referred as negatives). Two delimitation methods were proposed a) a

hard negative filter based on signal characteristics rules and b) a moderate negative filter that

passed through two runs of unsupervised clustering and classification with a trained DNN,

where the first run identified and excluded dominant non-beaked whale detections from later

steps (Fig 1B). All steps were carried out with user-interfaces within the publicly available

MATLAB-based (Mathworks, Natick, MA, USA) open-source software Triton [40].

Passive acoustic monitoring data

Acoustic data were collected using bottom-moored High-frequency Acoustic Recording Pack-

ages (HARPs) consisting of a calibrated hydrophone suspended about 10–30 m above a pack-

aged data logger, batteries, flotation, acoustic release, and ballast weight system [41]. Most

recently deployed devices had a single omnidirectional sensor (ITC-1042), while older deploy-

ments used a bundle of low frequency (Teledyne Benthos AQ-1) and high-frequency (ITC-

1042) sensors (S1 Table). The audio was digitized with 16-bit resolution at a 200 kHz sampling

rate, and all device configurations provided an effective frequency bandwidth from 10 Hz to

100 kHz. Representative hydrophone systems were calibrated at the U.S. Navy Transducer

Evaluation Center in San Diego, CA, to verify laboratory calibrations.

Fig 1. Overview of the workflow for a) training and b) applying a generalized and targeted species classification pipeline. Boxes indicate automated algorithms,

in black are the standard steps between workflows and in gray is an additional step to delimitate data to a target group.

https://doi.org/10.1371/journal.pone.0304744.g001
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Acoustic data with known occurrences of beaked whales from nine sites in the western

North Atlantic and four sites in the Gulf of Mexico at depths ranging from 450 to 2085 meters

were used to train a DNN (Fig 2 and S1 Table). A case study was conducted using two months

of data from seven sites in the western North Atlantic to evaluate the performance of a targeted

species classification pipeline in detecting ephemeral acoustic events by comparing the labels

produced by the classifier against traditional manual annotations. Additionally, at site Wil-

mington Canyon (WC) of the case study dataset containing a larger variety of beaked whale

species, the performance of two targeted species pipelines using a hard negative filter and a

moderate negative filter to delimit data were compared with the performance of a generalized

species pipeline.

Dataset with known beaked whale occurrence. Acoustic events with known beaked

whale occurrences documented on previous monitoring efforts were used to create a training

dataset for a DNN classifier. Beaked whale occurrences were documented using a standard

method for detection from PAM data [13]. The method included a Teager-Kaiser energy

Fig 2. Map of recording locations. Map showing the latitude and longitude locations of all passive acoustic

monitoring sites. Sites used in the representative training dataset are shown in red; sites included in the case study

dataset are shown in yellow. Site abbreviations in the western North Atlantic: Heezen Canyon–HZ, Oceanographer

Canyon–OC, Bear Seamount–BR, Nantucket Canyon–NC, Babylon Canyon–BC, Wilmington Canyon–WC, Norfolk

Canyon–NFC, Hatteras–HAT, Onslow Bay–ONB, Gulf Stream–GS, Blake Plateau–BP, Bermuda–BM, Blake Spur–BS,

Jacksonville–JAX. Site abbreviations in the Gulf of Mexico: Mississippi Canyon–MC, Green Canyon–GC, Dry

Tortugas–DT, Howell Hook–HH. Map land cover, shaded relief, and ocean-bottom relief were obtained from Natural

Earth (http://naturalearthdata.com/).

https://doi.org/10.1371/journal.pone.0304744.g002
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detector and a set of rules based on common signal characteristics of beaked whale species

[13]. All signals had to meet the following criteria: a minimum duration of 355 μs, a peak fre-

quency of at least 32 kHz, a center frequency of at least 25 kHz, a frequency-modulated

upsweep with a sweep rate of at least 23 kHz/ms, and a waveform envelope that sloped posi-

tively during the first 0.1 ms and stayed at or above 50% energy for at least the proceeding 0.1

ms. Clicks were then analyzed at 75-second intervals and kept for classification if intervals had

at least seven candidate signals or if 13% of the signals met all criteria. Finally, acoustic events

were manually classified to species based on the inter-click interval (ICI) and the overall shape

of the mean spectra of all clicks within an encounter.

Manually classified case study dataset. For the case study dataset a generic pulse detector

with the same settings described below was implemented and non-typical beaked whale signals

were removed using the common set of rules described above. All detections were manually

classified to beaked whale species using DetEdit [42], a MATLAB-based editing open-source

software. This provided interactive displays to compare detections, with information about,

for example, individual or averaged waveforms and spectra of selected detections, ICI and

long-term spectrograms to place detections in a broader context.

Generic pulse detector

A generic pulse detector was the first automated algorithm in all workflows, implemented

using the publicly available SPICE-Detector remora package [33] in Triton. Applying a band-

pass filter to all recorded data, potential toothed whale clicks were detected if the acoustic

pulse energy was over a received sound pressure level (SPL) threshold and if the peak fre-

quency and durations of the signals were within typical ranges for most species in this group.

The detector’s specifications included a fifth-order Butterworth filter with a high passband

between 5 and 100 kHz to remove low-frequency noise. Signals were required to have a mini-

mum received SPL of 118 dB peak-to-peak re 1μPa2 to maintain a constant detection range

around the recorder, and were kept if the durations were between 30 and 1200 μs and the peak

frequencies were between 5–100 kHz, which is within the ranges for the majority of clicks. If

there were less than 100 μs between signals, they were merged. Each signal start and end time

was defined by finding the first and last sample on each side of the main peak where energy

was greater than the 70th percentile for the entire high-energy event. Each signal time series

was Hann-weighted and zero-padded to 400 points before using a 400-point discrete Fourier

transform to compute spectra, resulting in a standard interpreted bandwidth of 50 Hz/fre-

quency bin.

Unsupervised clustering: Identification of distinct signal classes

An unsupervised clustering method designed by Frasier et al. [31] and available from the Clus-
ter-Tool remora package [33] in Triton separated detections into distinct signal types. Signal

types were identified in successive 5-min time windows, providing intervals both short enough

to limit the number of classes detected concurrently and long enough to allow the clustering

algorithm to identify meaningful groups. Signals within each time bin were compared for spec-

tral shape similarities using pairwise distance metrics [43] and clustered into similar types

using the agglomerative Chinese Whispers algorithm [44]. Spectra were truncated at 10 and 90

kHz and normalized to [0, 1] amplitude range for similarity metric calculation, creating a

[0, 1] edge weights matrix. For each 5-min bin, a network was built at the start of the clustering

phase, with detections as nodes and edge weights connecting each node. To identify distinct

clusters, weak edges below a certain threshold were removed to filter out “noisy” edges.

Although edge pruning is a standard strategy for revealing the underlying structure, it may
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remove highly distinct signals from any final clusters. Taking into account cluster consistency

and avoiding unnecessary splitting of strongly connected clusters, an edge pruning threshold

of 80% was selected after evaluating several clustering iterations with varying threshold from

70% to 95%. The agglomerative clustering algorithm divided clusters of similar nodes within a

maximum of 25 iterations and a maximum network size of 40,000 clicks for each 5-min bin.

The final partition for each bin was chosen based on the highest average normalized mutual

information score [45], which compares clusters across multiple partitions to decide on consis-

tency of types. Small clusters, likely capturing ephemeral beaked whale events, were allowed to

form within a bin with a minimum of 10 clicks per cluster, providing enough data for a unique

signal type to be identified.

Frasier et al. [33] successfully classified odontocete species based on three signal features

describing click duration, spectral shape, and clicking rate. The same features were computed

for each cluster formed at each 5-min bin and used for classification in the following phase.

Averaged features included a mean spectrum of all clicks within a cluster, mean waveform

envelope of clicks, and the ICI distributions from sequential clicks. To calculate mean spectra,

power spectral density of clicks was computed, converted to a dB scale, and normalized to the

[0, 1] range. Normalized spectra were then averaged to obtain the mean normalized spectra on

a dB scale. To address missed detections and gaps between clicking, ICI distributions were lim-

ited to 0.8 seconds within typical ranges for most toothed whale species, and a modal distribu-

tion was computed to characterize a consistent clicking rate.

Development of training dataset for ephemeral signals

Bulk unsupervised clustering of all detections does not guarantee quality training examples.

Therefore, this study aimed to create a high-quality beaked whale training set for a DNN classi-

fier. This involved detecting signals from known beaked whale acoustic events, unsupervised

clustering of high-quality events, training a DNN, and evaluating its performance on an inde-

pendent test set. The process ensured quality training examples and a representative dataset

for the DNN.

Building a representative dataset of signal classes. The generic pulse detector detected

signals during time intervals with known occurrences of beaked whales. These acoustic events

included both single-species and mixed-species beaked whale events, detected alongside other

delphinids or noise sources, requiring the separation of signal types. A two-step unsupervised

clustering approach was used to identify dominant signal types representative of the major sig-

nal classes observed within each acoustic event (further details in Frasier et al. [31]). First,

using the same settings as described before in the unsupervised clustering section, signals were

clustered within 5-min bins, with a higher edge pruning set at 95% to generate more consistent

clusters (following the approach of Frasier et al. [31]). Mean spectra, waveform envelopes, and

the mode of the ICI distributions were calculated for each 5-min bin cluster formed and used

as summary cluster features for the second phase. In the second round, the same algorithm

was used to the bin-level clusters to identify dominant signal types across all bins in each

instrument deployment independently. Similarities were computed by comparing the mean

spectral shape and the mean waveform envelope using pairwise distances. Euclidean distances

between modal ICIs were calculated to determine ICI distance values and converted into a

similarity metric. The similarity scores were joined and used in the Chinese Whispers cluster-

ing algorithm to allocate clusters with the same settings as in the first clustering step, though

retained clusters were required to have at least 5 bin-level clusters. To improve the number of

clusters formed of the BWG signal type, the joined similarity metric was computed only by

comparing the mean spectral shape and the modal ICI distributions, excluding the waveform
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envelope due to high variability in click duration. The collection of dominant signal types was

visually examined by analysts (ASB, AID, JST, and LMB) and attributed to known species or

sound source classes. Multiple clusters from a deployment were allowed to contribute to a sig-

nal class on the premise that click types show natural variability when recorded, and the clus-

tering parameters were set to err on the side of formation of more small clusters, which may

represent different versions of the same category. The alternative, formation of fewer clusters,

can lead to incomplete separation of similar types.

Training a deep neural network. A DNN was trained with the representative signal clas-

ses using the publicly available Triton remora Neural Net Tool package [33]. The dataset was

partitioned into training, validation, and test sets, with the training set for training the net-

work, the validation set for assessing the network’s fit and fine-tune parameters across training

iterations, and the test set for evaluating its performance on novel data. For this data partition

phase, individual detections from each class were sorted into encounters–times when detec-

tions were not separated by more than 15 minutes–and randomly assigned to the train/vali-

date/test sets in the proportions 70/10/20, without partitioning detections from the same

encounter within sets. Several classes had far more examples than others (Table 1) and a bal-

anced collection of 1,500 examples was obtained per class to improve the network’s perfor-

mance, as classification of rare species is crucial in this framework. Examples from well-

represented classes were subsampled and examples from minority classes were augmented by

adding Gaussian noise to obtain the same number of examples. The balanced collection was

randomly subdivided into 1,000 training examples and 500 testing examples, with the training

examples further partitioned at random into training and validation sets in 80/20 proportions.

The summary features of each cluster example were normalized on the [0, 1] range. The DNN

architecture was created using the Deep Learning Toolbox in MATLAB, consisting of an input

layer, four 512-node fully-connected layers with leaky rectified linear unit (ReLU) activations

[46] and 50% dropout between layers, as well as a softmax output layer that generated a vector

of probability scores over class labels [47]. Deep learning was completed with a batch size of

Table 1. List of labels assigned to classes representing signals from North Atlantic beaked whale species and other signal sources. Class summary with abbreviation

ID, description of the attributed class–species, taxonomic family, genus, or common descriptive features–and total number of bin-level clusters per class, median and inter-

quartile range of detections per cluster, and sites where clusters were acquired. Site abbreviations: in the western North Atlantic, Heezen Canyon–HZ, Bear Seamount–BR,

Nantucket Canyon–NC, Norfolk Canyon–NFC, Hatteras–HAT, Onslow Bay–ONB, Bermuda–BM, Blake Spur–BS, Jacksonville–JAX; in the Gulf of Mexico: Mississippi

Canyon–MC, Green Canyon–GC, Dry Tortugas–DT, Howell Hook–HH.

Class

ID

Description Total #

clusters

Signals per cluster

median (IQR)

Total # clusters per monitoring sites

HZ BR NC NFC HAT ONB BM BS JAX MC GC DT HH

BWG Unknown species named as Beaked

Whale Gulf

29 10 (9) 7 6 16

Mb Mesoplodon bidens 1,852 50 (116) 1,121 23 704 4

Md Mesoplodon densirostris 1,035 38 (90) 6 5 2 399 558 3 50 3

Me Mesoplodon europaeus 8,687 51 (125) 120 3,073 2 765 28 605 539 2,559 996

Mm Mesoplodon mirus 1,115 43 (116) 49 227 152 687

Zc Ziphius cavirostris 10,917 58 (139) 649 232 3 597 2758 20 25 187 84 179 4,447 1,738

De spp Unspecified species from the family

Delphinidae

25,316 95 (438) 3,295 490 312 2,793 15,367 140 132 145 121 769 179 1,062

Gg Grampus griseus 2,039 69 (218) 146 45 66 79 1,703

Ko spp Unspecified species from the genus

Kogia
50 25 (22) 19 18 13

Pm &

Boat

Detections with freq. < 20 kHz,

vessels and Physeter macrocephalus
10,411 46 (108) 2,262 547 91 880 1,809 1,196 248 76 1,170 646 900 586

ES ping Miscellaneous echosounder pings 262 41 (43) 170 92

https://doi.org/10.1371/journal.pone.0304744.t001
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100 examples per iteration, a constant learning rate of 0.0003 and a maximum of 15 training

epochs. To prevent overfitting, learning was stopped early if there was no performance

improvement on the validation set between iterations after three training epochs of patience.

Performance evaluation. The DNN’s performance was evaluated throughout training

and testing by visualizing confusion matrices and computing two metrics less sensitive to class

imbalance [48]: precision (true positives / (true positives + false positives)) and recall (or sensi-

tivity: true positives / (true positives + false negatives)). Precision indicates the likelihood that

the prediction was correct, while recall assesses the likelihood that the model will correctly pre-

dict or retrieve that label.

Targeted species classification pipeline

After training the DNN, the classification pipeline was used to automatically detect and classify

data from a case study dataset. A targeted species classification pipeline was developed and

compared to a generalized species pipeline. Both workflows applied a generic pulse detector,

unsupervised clustering and the trained DNN for cluster labeling (Fig 1B).

Taxonomic family delimitation

The targeted pipeline differed from the generalized pipeline in that it included a step for taxo-

nomic family delimitation before clustering to exclude non-beaked whale detections (i.e. nega-

tives) dominating the recordings. This allowed for more exact grouping of signals of smaller

and varying sizes. Two delimitation methods were tested (Fig 1B) and available from the Taxo-
nomic-Family-Delimitation remora package in Triton: a) a hard negative filter based on com-

monly used rules to identifying beaked whale signals from passive acoustic data [e.g., 13, 14,

16], and b) a moderate negative filter that underwent two iterations of unsupervised clustering

and classification with a trained DNN (Fig 1B). The hard negative filter discriminated beaked

whale clicks using the same set of rules as the manually-classified species datasets. The moder-

ate negative filter was less restrictive and consisted of two iterations of unsupervised clustering

and classification with the trained DNN, with the first iteration removing the most dominant

non-beaked whale detections. In the first iteration, unsupervised clustering allowed only large-

sized clusters to form within a 5-min bin with a minimum of 50 clicks per cluster and a prun-

ing threshold of 95%, providing enough data to likely capture the dominating species events

while being computationally efficient to cluster the large amount of detections. Next, the

trained DNN categorized clusters, and those with at least 50 clicks and a label other than

beaked whale were removed. This initial pass automatically eliminated a large number of del-

phinid signals and noise sources. In the second iteration, unsupervised clustering was imple-

mented using the same settings as in the generalized pipeline or the targeted species pipeline

with the hard negative filter, allowing small clusters to form within a 5-min bin with a mini-

mum of 10 clicks per cluster, and finally, the trained DNN classified clusters.

Performance evaluation. The efficacy of the targeted pipeline in detecting ephemeral

events and rare beaked whale species was assessed using the case study data. Manual species

labels were used as true classes and compared to the trained DNN classifications in 5-min

bins. The targeted pipeline with the hard negative filter was compared with the manual classifi-

cation across all sites of the case study dataset to ensure classification comparability of ephem-

eral events, as both methods used the same rules to remove non-typical beaked whale signals.

To quantify misclassifications, the class category “No label” was assigned to bins in which no

labels were applied during manual labeling or where no clusters formed and no labels were

given. The number of detected clicks within 5-min bins and the classification prediction prob-

ability score were used to assess performance per species and site. Performance was also
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assessed by visualizing confusion matrices, computing precision and recall rates, and plotting

acoustic features of the misclassified detections. Additionally, at site WC of the case study data-

set, which contained a larger variety of beaked whale species, the performance of both delimi-

tation methods in the targeted pipeline were compared with the generalized pipeline.

Confusion matrices, precision and recall rates, and acoustic features of the misclassifications

were also used to evaluate performance on a species-by-species basis.

Results

Training dataset of representative signal classes

A total of 11 classes of clustered signals at a 5-min bin level were generated (Table 1 and Fig

3), with six classes representing distinct beaked whale species. Mesoplodon densirostris (Md)

signal type was derived from clicks collected at two sites in the Gulf of Mexico, four sites in the

middle and southern parts of the western North Atlantic, and from the Bermuda region in the

central North Atlantic (Table 1). All clicks had highly similar spectral shapes, but the fre-

quency onset and peak frequency varied by region (Fig 3 and S1 Fig). Amongst the sites with

Fig 3. Signal classes formed using unsupervised clustering at a 5-minute bin level based on spectra, inter-click interval (ICI), and waveform envelope. For

each signal class, the top panels depict the mean and standard deviation of spectra among all clusters (top left) and concatenated mean cluster spectra (top

right); the middle panels depict the mean and standard deviation of ICI distributions among all clusters (middle left) and concatenated cluster ICI distributions

(middle right); and the bottom panels depict the mean and standard deviation of waveform envelops among all clusters (bottom left) and concatenated mean

cluster waveform envelope (bottom right). Concatenated clusters have been sorted by peak frequency. Color map is normalized amplitudes on a scale from 0

(dark blue) to 1 (dark red). Refer to Table 1 for abbreviation IDs.

https://doi.org/10.1371/journal.pone.0304744.g003
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the most Mesoplodon densirostris detections the frequency onset of clicks collected in the Ber-

muda region was higher (~ 25 kHz) than those recorded in the western North Atlantic (Blake

Spur) and the Gulf of Mexico (about 21–22 kHz). The peak frequency of clicks collected in the

Bermuda region varied between 29.5 and 36.5 kHz, whereas the peak frequency at the BS and

GC sites was between 31–32.5 kHz (S1 Fig). Due to their much shorter duration (less than

250 μs), clicks collected at GC site were different from those collected in the other two regions.

As a result, this class represented certain intraspecific variability. For the other beaked whale

species, no regional differences in the spectra, waveform and ICI were found. Clusters of the

Ziphius cavirostris (Zc) click type were formed by the unsupervised clustering process from all

sites except JAX, characterized by a peak frequency at around 40 kHz, three distinct secondary

peaks (at 19, 24, and 70 kHz), and an averaged modal ICI of 0.51 s (Table 1 and Fig 3). Meso-
plodon europaeus (Me) and M. mirus (Mm) click types differed consistently in the average

modal ICI. Mm had a shorter modal ICI than Me, which was about 0.19 s and 0.28 s, respec-

tively. The frequency onset of both click types was around 30 kHz; but the Me click type

reached its highest amplitude at 40–44.5 kHz at a steeper rate than Mm click type, which

reached its peak amplitude near 47 kHz. Moreover, Mesoplodon europaeus clicks often

decreased in amplitude at a steep rate after 45.5 kHz (Fig 3). Both click types presented a char-

acteristic secondary frequency peak (Me at 23.5 kHz and Mm at 24.5 kHz). Clusters of the

Mesoplodon mirus click type were formed by the unsupervised clustering only in the sites

north of Hatteras (HAT) in the western North Atlantic (Fig 1), whereas Mesoplodon europaeus
clicks were formed from all sites except the northern sites (Table 1). The unknown species

producing the BWG signal was exceptionally rare and challenging to cluster when 5-min bin

clusters were built using the averaged spectral characteristics. Knowing that the click duration

of this signal type is particularly long and distinct from the other signals, a separate approach

was applied to collect clusters representing this class from the known acoustic events, which

were built simply using the average waveform envelope rather than the averaged spectra. A

few clusters collected from two sites in the Gulf of Mexico region and the BS site in the western

North Atlantic’s southern region were used to create the BWG click type (Table 1). All clicks

had a particularly long duration exceeding 0.5 ms, with an averaged modal ICI of roughly 0.1

s. The spectral shape displayed a gradual increase in amplitude from the frequency onset at

around 22–24 kHz to the peak amplitude that varied between 40–60 kHz (Fig 3), and had a

secondary peak at 17 kHz. Mesoplodon bidens (Mb) click type was formed by the unsupervised

clustering from four sites across the western North Atlantic, and it had the most distinctive

spectral shape of any beaked whale type, with energy distributed across a wide band from 50

kHz to 90 kHz, and an average modal ICI of 0.13 s (Table 1 and Fig 3). This study did not

include a signal type for Hyperoodon ampullatus, which is commonly found in the polar and

subpolar regions of the North Atlantic, primarily in Canadian waters in the North Atlantic

[49]. Only two sightings were reported in the early 1980s off New Jersey and the Grand Banks,

corresponding to the northern sites of this study, and a recent survey did not detect them in

this area [49]. PAM recordings for this species exist in more northern locations, but due to dif-

ferent sampling rate, and that the species has a lower peak frequency than the other beaked

whale species in the North Atlantic [16], the hard negative filter of the targeted pipeline was

not optimal for detecting them and there were no acoustic encounters available to build a sig-

nal type class for the training dataset.

Non-beaked whale signals were identified during unsupervised clustering and assigned to

classes of other odontocete species and noise sources to reduce the possibility of them being

misclassified as beaked whales. Non-beaked whale odontocete species were divided into three

click type classes: a broad class encompassing multiple species of the family Delphinidae, a

class for narrow band high frequency clicks of the genus Kogia, and a class for Grampus griseus
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(Gg) clicks. Early training experiments revealed that providing one unique class for all delphi-

nid species caused a considerable number of Grampus griseus clicks to be misclassified as

beaked whales; as a result, Gg clicks were defined into one unique class. Diverse echosounder

pings (operating at 9.5, 28, 50.5, and 71 kHz) were categorized into a single class, as were low-

frequency signals below 20 kHz associated with ship cavitation noise and Physeter macrocepha-
lus (Pm) clicks.

The number of bin-level clusters varied between classes, ranging from large numbers for

more common signals such as Ziphius cavirostris, Mesoplodon europaeus, and Delphinidae

spp. to a small number for the BWG class and moderate numbers for Mesoplodon mirus, M.

densirostris, and M. bidens (Table 1). To increase signal class variability, the majority of classes

were formed of bin-level clusters from more than three sites, except for the echosounder class,

which consisted of clusters from two sites. The dataset collected is accessible under the HARP

North Atlantic Beaked Whales repository hosted by Dryad to facilitate the representation of

rare species. The collection provides a snippet of acoustic data centered on each detection and

organized by signal class.

DNN performance during training and testing

The training of a DNN using the balanced training set (N = 1,000 bin-level clusters per class)

required 10 learning epochs. The network classified the balanced test set of 500 cluster exam-

ples per signal class with an overall accuracy of 97.7%. As expected, confusion was higher for

non-beaked whale classes since multiple species of delphinids were grouped into one class to

prevent spurious assignments of unrepresented non-target signals to beaked whale categories

(Fig 4). Confusion was minimal for all beaked whale species, with the BWG and Mesoplodon
densirostris click type in particular being correctly classified with precision and recall of 100%

in all cases. Several clusters for Ziphius cavirostris, Mesoplodon bidens, M. europaeus, and M.

mirus click types appeared to be misclassified, but some of these clusters were correctly classi-

fied by the DNN and then incorrectly grouped during the unsupervised clustering step

(S2 Fig). Yet, the performance for the beaked whale species was still as desired, with the lowest

recall rate (>99%) exceeding the network’s precision (>98.4%). The Delphinidae spp. class

had the lowest performance among the non-beaked whale classes, with a recall rate of 82.4%

and precision of 92.6%, and the Grampus griseus click type had the lowest precision (89.2%).

Due to the inclusion of multiple species in the Delphinidae spp. class, a non-cohesive class

characterization may have resulted from resampling the data to achieve a balanced dataset.

Case study: Classification performance of a targeted species pipeline for

ephemeral beaked whale events

Five beaked whale species were manually identified with varying occurrences across the case

study sites. These included Ziphius cavirostris, Mesoplodon densirostris, M. europaeus, M.

mirus, and M. bidens (S2 Table). The BWG signal was not manually identified at any of the

locations, nor was the set of rules of the hard negative filter optimal for detecting Hyperoodon
ampullatus clicks [16]. Labels applied to each cluster formed at the 5-min bin level by the tar-

geted species classification pipeline with a hard negative filter was compared to the manually

identified species presence across sites (Table 2) and per site (S3 Table). The DNN applied

labels to clusters of clicks identified within 5-min time bins, while manual labeling was con-

ducted at the detection level, taking into account the context of clicks around an acoustic event

across multiple bins. When only one species was manually labeled per bin, but the classifier

assigned multiple clusters of clicks with distinct labels, the classification performance was eval-

uated as multiple labels within that bin and counted as a bin for each related class in the
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confusion matrix. Similarly, if the classifier identified only one cluster and assigned one label

but multiple species were manually recognized in one bin, each label was counted as a bin for

each true class in the confusion matrix. The total number of false negative and false positive

bins, as well as precision and recall rates were provided. Additionally, the performance metrics

were provided without considering the multiple labels as a bin described previously. Instead, if

the correct label was given to at least one detection with a bin, the bin was considered as cor-

rectly labeled; therefore, bins that were partially misclassified were not considered misclassifi-

cations, and the metrics were calculated considering only bins where none of the detections

were assigned the correct class (referred as full-misclassified bins).

The targeted species classification pipeline with a hard negative filter achieved an average

recall rate of 75% of bins with beaked whale presence, with varying performance among spe-

cies and sites. A proportion of the false negative bins were misclassified into other classes, and

a lesser amount were unlabeled because these bins were not directly available to the trained

DNN during the labeling step as a result of the clustering settings of a minimum number of

clicks per cluster. Mesoplodon densirostris had the lowest recall rate at 29% (or 33% when con-

sidering only full-misclassified bins), but the other beaked whale species (Ziphius cavirostris,
Mesoplodon mirus, and M. bidens) had recall rates above 87% (or 89% when considering only

Fig 4. Confusion matrix for the DNN classifier on the balanced test set. Each class consists of 500 cluster examples

formed at a 5-minute bin level. Values in the matrix show the total number of examples classified, on the right bar the

recall rate, and on the bottom bar the precision rate. Refer to Table 1 for abbreviation IDs.

https://doi.org/10.1371/journal.pone.0304744.g004

PLOS ONE Machine learning for the classification of beaked whale species in passive acoustic monitoring

PLOS ONE | https://doi.org/10.1371/journal.pone.0304744 June 4, 2024 13 / 26

https://doi.org/10.1371/journal.pone.0304744.g004
https://doi.org/10.1371/journal.pone.0304744


full-misclassified bins). Mesoplodon europaeus had the highest number of false negatives (with

a recall of 79% and 80% when considering only full misclassified bins), with more than half of

the misclassified bins assigned to Mesoplodon mirus. All misclassifications of this species as

Mm occurred at the most southern locations, corresponding to the GS site and the BP site

(S3 Table), where the abundance of Mesoplodon europaeus is known to be higher than at the

central and northern sites.

Mesoplodon densirostris was the rarest of the five beaked whale species detected, and it was

only manually identified in six 5-min bins at site BP (Table 2). The trained DNN correctly

classified two bins from the manually identified events (with at least 10 clicks) as belonging to

Mesoplodon densirostris, with one bin partially misclassified (three clicks) as Me. The remain-

ing four bins (with fewer than two clicks) were mislabeled as BWG and Delphinidae spp.

(Fig 5). All bins were correctly recognized to the species class for the other four beaked whale

species when there were more than 20 clicks in each bin, except for multiple bins manually

identified as Mesoplodon europaeus with varying numbers of clicks which were misclassified as

Mm (Table 2 and Fig 5). In contrast, the trained DNN had a low misclassification of Mesoplo-
don mirus bins as Me. Overall, the majority of bins entirely misclassified occurred when there

were fewer than 10 clicks associated with a beaked whale species as a result of prior criteria of

cluster formation with presumably low-quality features for classification (Fig 5). When there

were fewer than 10 clicks within a 5-min bin, no unsupervised clustering was applied and all

clicks were averaged to extract the classification features. The trained DNN applied a label

with respect to the averaged features from the clicks present in these bins, and if there was a

mix of species, the averaged features probably diverged from the common learned features of

the beaked whale classes and so misclassification occurred. Unsupervised clustering was

applied if bins had more than 10 clicks, but clusters with fewer than 10 clicks were discarded

from classification and so no labels were kept for the clicks within those clusters, therefore

Table 2. Confusion matrix for the targeted species classification pipeline with a hard negative filter on the case study dataset. Values show the total number of

5-minute bins classified per class. Refer to Table 1 for abbreviation IDs. Manually labeled bins are the true class. Bins with no clear assignment are indicated with the class

abbreviation in italic. The total number of false negative (FN) and false positives (FP), precision and recall rates are shown per species and in parentheses when only full-

misclassified bins (full bin) are considered.

Predicted Class # FN (full

bin)

% Recall (full

bin)Mb Zc Mm Me Md BWG De

spp

Gg Ko

spp

Pm-

boat

ES

ping

No
label

True

Class

Mb 766 1 14 1 2 6 27 1 3 2 - 30 87 (81) 89.8 (90.4)

Zc 1 1188 20 13 6 20 61 20 1 1 3 12 158 (146) 88.3 (89.1)

Mm 4 6 315 11 - 5 9 1 3 - - 5 44 (31) 87.7 (91.0)

Me 3 51 486 2563 4 82 32 3 7 - 1 - 669 (628) 79.3 (80.3)

Md - - - 1 2 1 3 - - - - - 5 (4) 28.6 (33.3)

Mm |
Me

- 1 32 5 - 3 2 - - - - - 43

Md |
Me

- - - 1 - - - - - - - - 1

likely
Me

- - - - - 1 - - - - - - 1

likely
Md

- - - - - 1 1 - 1 - - - 3

No label 28 604 809 231 713 2671 4309 2195 165 22 97 4772 16616

# FP (full bin) 36 (31) 663

(646)

1361

(1318)

263

(261)

725

(704)

2790 4444 2220 180 25 201 4819

% Precision (full

bin)

95.5

(96.1)

64.2

(64.8)

18.8

(19.3)

90.7

(90.8)

0.3 (0.3)

https://doi.org/10.1371/journal.pone.0304744.t002
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those bins remained unlabeled. Even when several clicks within a bin were correctly classified

to the species class, there was a trend of missed or misclassified clicks within bins for all beaked

whale species, where bins with fewer clicks had more clicks incorrectly labeled or unlabeled by

the DNN, and the proportion of clicks correctly predicted increased when bins had more than

40–50 clicks (Fig 5).

The targeted pipeline with the hard negative filter had an overall lower precision than recall

for the beaked whale species, with an averaged precision rate across all beaked whale species of

54%, due in an abundance of possible false positive bins for certain species and sites (Table 2).

Rates varied from high precision above 90% for Mesoplodon bidens and M. europaeus, to mod-

erate above 60% for Ziphius cavirostris and low below 20% for Mesoplodon mirus and M. den-
sirostris. Rates were similar when considering only full-misclassified bins. The majority of false

positive bins in this assessment were not manually identified with beaked whale presence,

except for approximately 40% (n = 486) of the false positive bins classified as Mesoplodon
mirus which were true M. europaeus (Table 2). Because the manual dataset only had labels for

beaked whale species, the majority of unlabeled bins were most likely associated with other

cetaceans and noise sources. However, the precision rates may be an underestimate as some

evidence suggests that some true events may have been missed by manual review. The cluster

averaged features of any bins categorized by the DNN as beaked whales and without a manual

label were inspected (Fig 6). The lowest numbers of false positive bins with no manual label

Fig 5. Correlation between the total number of clicks per 5-minute bins manually labeled to a class (true class) and total number of clicks classified to

predicted class by targeted species pipeline with a hard negative filter in the case study dataset. Each point is a bin, and each subplot displays all bins

manually assigned to a species, along with the class predicted by the DNN in color scale, with dark blue points representing true positives and other colored

circles representing misclassified bins. The class abbreviation displayed in bold shows the true class of each subplot. Points along the diagonal show bins for

which the number of manually labeled clicks were correctly predicted to a class. Above the diagonal, more clicks were predicted to a class than the true number

of clicks per bin, whereas below the diagonal, less clicks were predicted than the total number of true clicks per bin.

https://doi.org/10.1371/journal.pone.0304744.g005
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categorized by the trained DNN as beaked whales were at the two most southern sites, GS

and BP (Fig 6 and S3 Table), and the highest numbers were at the northern site NC (Fig 6

and S3 Table). Cluster features resembled detections similar to those of the Grampus griseus
click type, but without the characteristic lower peaks at 23.5 and 27 kHz. The majority of

Mesoplodon densirostris false positive clusters corresponded to this type of signal, although

they appear to have a frequency onset at around 21–22 kHz like Mesoplodon densirostris,
the peak frequency is similar to that of the Grampus griseus click type, and modal ICI is

shorter, like delphinid species. Similarly, the majority of clusters labeled as BWG corre-

sponded to detections of non-beaked whale clicks whose waveform seemed to be noisy or

have many reverberations and thus resembled the characteristic long-duration clicks of

BWG. Unfortunately, this class did not find potential BWG signals, and was instead trig-

gered by noisy signals. For the other species of beaked whales, a significant number of false

positive bins (which were not manually labeled) appeared to be correctly identified by the

neural network, in particular all of the clusters categorized as Mb (Fig 6). A large proportion

also appears to have been correctly classified as Me and Mm, and a smaller number as Zc.

All of these clusters contained fewer than 20 clicks, making it difficult to manually identify

the species if they were isolated, as the context of click around an acoustic event across mul-

tiple bins improves manual classification.

An ad hoc experiment revealed that adding white noise when creating a balanced dataset to

improve the variability of those rare classes for training the neural network yielded comparable

results when classifying the case study dataset (S4 Table). However, when the number of

examples used for training the neural network was increased from 1000 to 5000 examples per

class, the performance of the common species improved significantly with a higher precision

rate (S5 Table), presumably because it included more examples under varying conditions and

thus had higher generalization to properly classify novel data, whereas the rare classes showed

no improvement.

Fig 6. Case study dataset bins without a manual label classified by the targeted species classification pipeline with a hard negative filter. For each

predicted beaked whale class, concatenated mean cluster spectra (top panel), concatenated cluster ICI distributions (middle panel), and concatenated mean

cluster waveform envelope (bottom panel) are shown. Concatenated clusters have been sorted by site and classification prediction probability score. Color map

is normalized amplitudes on a scale from 0 (dark blue) to 1 (dark red). Many of the clusters counted as misclassifications appear to have been correctly

classified by the network, but were not labeled in the manual dataset. Refer to Table 1 for abbreviation IDs.

https://doi.org/10.1371/journal.pone.0304744.g006
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Case study: Comparative performance of a generalized and a targeted

species classification pipeline

Using the dataset at site WC, three classification methods were compared: the generalized spe-

cies classification pipeline (G), and a targeted pipeline with two different strategies to delimi-

tate the data to the taxonomic family of beaked whales based on a hard negative filter (Th), or

a moderate negative filter (Tm) (Table 3). Based on the manually labeled detections as true

labels, both Th and Tm pipelines showed higher recall rates than the G pipeline (with average

recall rates of 88%—Th, 82%—Tm, and 77%—G). However, recall rates were more similar

when considering only full-misclassified bins (with average recall rates of 90%—Th, 88%—

Tm, and 86%—G).

Precision was low for both the Tm and G pipelines, because both methods had an abun-

dance of possible false positive bins which were not manually labeled. Inspecting the averaged

features of clusters in these bins, many clusters were correctly allocated to beaked whale species

(Fig 7). Both methods correctly labeled at least 200 clusters as Mb, 150 clusters as Zc, and 60

clusters as Mm. These clusters originated from bins (corresponding to 160, 90 and 45 unique

Table 3. Confusion matrix for all classification pipelines on the case study dataset at site WC. Values show the total number of 5-minute bins classified per class orga-

nized by class and pipeline used: a targeted species classification pipeline with a hard negative filter (Th), or a moderate negative filter (Tm), and a generalized species classi-

fication pipeline (G). Manually labeled bins are the true class. Refer to Table 1 for abbreviation IDs. Bins with no clear assignment are indicated with the class abbreviation

in italic. The total number of false negative (FN) and false positives (FP), precision and recall rates are shown per species and in parentheses when only full-misclassified

bins are considered and those that are partially misclassified are excluded.

Pipeline Predicted Class # FN (full

bin)

% Recall (full

bin)Mb Zc Mm BWG Md Me De spp Gg Ko

spp

Pm-

boat

ES

ping

No
label

True

Class

Mb Th 393 1 6 2 - - 12 - - - - 11 32 (28) 92.5 (93.3)

Tm 391 - 26 - - 5 23 1 3 2 - 17 77 (30) 83.5 (92.9)

G 391 - 23 - - 3 27 - 4 4 - 22 83 (30) 82.5 (92.9)

Zc Th - 326 2 4 - 2 27 7 1 1 3 5 52 (48) 86.2 (87.2)

Tm 1 304 1 - - - 42 1 - 1 4 42 92 (70) 76.8 (81.3)

G 2 286 1 - 1 - 75 5 - 4 4 36 128 (88) 69.1 (76.5)

Mm Th 4 2 143 - - 9 4 1 2 - - 3 25 (19) 85.1 (88.3)

Tm 5 - 147 - - 2 5 - 1 - - 14 27 (15) 84.5 (90.7)

G 6 - 142 - - 2 13 2 1 - - 14 38 (20) 78.9 (87.7)

Mm|
Me

Th - - 9 - - 2 - - - - - - 11

Tm - - 8 - - - - - - - - - 8

G - - 8 - - - 2 - - - - 2 12

No
label

Th 9 160 22 176 55 21 1147 161 4 33 47 891 2726

Tm 244 269 216 99 30 41 10837 1102 306 6642 225 1435 21446

G 218 257 205 119 28 40 10749 1071 220 7246 272 711 21136

# FP (full bin) Th 13 (9) 163

(162)

39 (37) 182 55 34 1190 169 7 34 50 910

Tm 250

(241)

269

(268)

251

(246)

99 30 48 10907 1104 310 6645 229 1508

G 226

(215)

257

(252)

237

(230)

119 29 45 10866 1078 225 7254 276 785

% Precision (full

bin)

Th 96.8

(97.8)

66.7

(66.8)

78.6

(79.4)

Tm 61.0

(61.9)

53.1

(53.2)

36.9

(37.4)

G 63.4

(64.5)

52.7

(53.2)

37.5

(38.2)

https://doi.org/10.1371/journal.pone.0304744.t003
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5-min bins for Ziphius cavirostris, Mesoplodon bidens, and M. mirus, respectively) that were

not accessible for manual classification or for automated classification using the targeted spe-

cies classification with a hard negative filter, as the set of rules implemented in both methods

likely removed them as failing to meet all the criteria. The remaining false positive clusters

without a manual label for these classes (Mb, Zc, and Mm) were indistinguishable from

Fig 7. Case study dataset bins at site WC without a manual label and classified by a targeted species pipeline with a moderate negative filter and a

generalized species pipeline. For each predicted beaked whale class, concatenated mean cluster spectra (top panel), concatenated cluster ICI distributions

(middle panel), and concatenated mean cluster waveform envelope (bottom panel) are shown. Concatenated clusters have been sorted by site and classification

prediction probability score. Color map is normalized amplitudes on a scale from 0 (dark blue) to 1 (dark red). Many of the clusters counted as

misclassifications appear to have been correctly classified by the network, but were not labeled in the manual dataset. Refer to Table 1 for abbreviation IDs, and

Fig 6 for bins without a manual label and classified by a targeted species pipeline with a hard negative filter.

https://doi.org/10.1371/journal.pone.0304744.g007
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averaged features and further inspection of the individual clicks would be required to make a

class determination. Overall, false positive clusters assigned to the other beaked whale classes

(Md, Me and BWG) appear to represent genuine misclassifications. Regardless, this implied

that the precision rates for Ziphius cavirostris, Mesoplodon bidens, and M. mirus were underes-

timated, and recall rates for the Th pipeline were overestimated. Adjusting performance met-

rics based on the approximate number of clusters found to be correctly labeled by the Tm and

G pipelines, the Th pipeline had lower recall rates than the Tm and G pipeline for Ziphius
cavirostris (62%—Th, 83%—Tm, and 77%—G), Mesoplodon bidens (63%—Th, 89%—Tm, and

87%—G), and M. mirus (63%—Th, 89%—Tm, and 84%—G). Overall, the Tm pipeline had the

highest recall rates for the three beaked whale species. In contrast, precision rates were poten-

tially similar for Mesoplodon bidens using the different classification pipelines (97%—Th, 92%

—Tm, and 96%—G) and also for Ziphius cavirostris (67%—Th, 79%—Tm, and 80%—G), and

higher with the Th pipeline for Mesoplodon mirus (79%—Th, 57%—Tm, and 58%—G).

The efficiency of the three classification pipelines for processing 104GB of data at site WC

was compared using a desktop computer with 32 GB of RAM and a 6-core CPU, taking all

pipeline steps into account (beginning with a generic pulse detector to finally labeling clusters

with the trained DNN). By far the most time-efficient of the three approaches was the Th pipe-

line, which only needed seven hours to classify the detections at site WC, compared to two

days for the Tm pipeline, and up to 2 days and 18 hours when using the G pipeline.

Discussion

Rare scenarios, such as those involving rare species or acoustic ephemeral events, are more

likely to be missed or misclassified than common species or longer-lasting events because they

present fewer opportunities for data acquisition and limited information to capture the vari-

ability. Here we illustrated the difficulties inherent in recognizing such occurrences when

using the same automated techniques to classify the sounds of many species of toothed whales

simultaneously. Automated classification of all possible clicks is difficult, and often analysts

cannot determine whether weak or isolated signals are clicks. Even strong clicks can be diffi-

cult to find with certainty when they are isolated because pulse signals have limited informa-

tion [31]. Such manual classification decisions often rely on contextual information like

clicking rate and proximity of similar and high-amplitude signals, which ease the classification

of bins with varying numbers of clicks. However, relying too much on context when construct-

ing automatic classifiers can negatively affect their performance on rare signal events [33, 34].

Recent studies have used both deep learning [33–35] and random forest [29] methods for

automated classification of beaked whale echolocation clicks. While both approaches are effec-

tive, deep learning demonstrates higher and more robust classification performance [29, 33–

35]. Our study supports these findings, showing high classification performance comparable

with results of a deep learning method previously applied to the western North Atlantic [34],

with both classifiers achieving precision and recall rates above 98% for beaked whale species in

the test datasets. However, these studies also highlight the challenges faced by generalized spe-

cies classifiers in accurately classifying rare or ephemeral events in datasets beyond the test per-

formance phase [33, 34]. This underscores the need for methodological improvements tailored

toward identification of these events.

We described an automated approach to delimiting signals to the taxonomic family of

beaked whales by removing dominant non-beaked whale signals, which improved the effi-

ciency of classifying beaked whale species and lowered misclassification detection rates. The

generalized classifier implemented in the case study example was implemented to be compara-

ble with prior deep-learning-based methods [33–35] as a baseline model, to facilitate
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comparison with our proposed targeted species classification pipeline. A random forest

approach utilizing a hard negative filter to eliminate non-beaked whale species based on fre-

quency sweep rate of detected clicks [29] has also been proposed, with slightly poorer perfor-

mance than the baseline model. Our comparison results shows that when non-beaked whale

dominant clicks were not removed prior to clustering, a higher incidence of partial misclassifi-

cation of time bins occurred. In these instances, several clicks of beaked whales were incor-

rectly classified to another class within a time bin, leading to higher false positive click

detections, despite some clicks within the same window being correctly classified. The targeted

species classification pipeline with a hard negative filter eliminated most non-beaked whale

dominant signals and of those remaining signals high classification accuracy to species level

was reached, but the fixed set of rules also eliminated time bins with beaked whale presence.

This is likely to increase the false negative rates as many detections in time windows did not

meet all of the criteria. This highlights the primary challenge with delimitation, care must be

taken to define partitioning criteria which effectively remove the bulk of non-target signals,

without significant removal of target signals. This requires that the group of signals have a

robust set of shared features. A delimitation phase can be thought of as the application of a

weak classifier, which is then followed by a stronger DNN classifier in this case. The targeted

species classification pipeline with a moderate negative filter only used averaged feature char-

acteristics describing spectral shape, click duration, and consistent clicking rate, and was able

to partially remove non-beaked whale dominant signals providing a balanced performance

between false negative and false positive detections. All methods evaluated here can yield com-

parable results when the presence of beaked whale species is assessed at coarse time scale (e.g.

hourly, daily). However, if finer resolution to the click or minute level is needed, such as for

studies to understand beaked whale responses to noise exposure, a machine learning pipeline

with a targeted species classification can achieve lower misclassification rates while also being

more computationally efficient.

The application of a delimitation phase to the taxonomic family of beaked whales before

unsupervised clustering allowed for the grouping of signals of smaller and varying numbers,

and improved classification of beaked whale ephemeral events from long-term passive acoustic

monitoring recordings as shown by comparing the classifications made by a manual review

with a targeted species pipeline with a hard negative filter. The trained DNN had the ability to

retrieve a high number of bins with beaked whale presence and showed high performance in

classifying bins with a limited number of clicks. Our study shows that specifying the minimum

number of clicks per time bin necessary for unsupervised clustering should be done with care,

as doing so can result in high misclassification rates. When time intervals did not reach the

minimum number of detections per bin, unsupervised clustering was not applied and all sig-

nals were averaged to compute the features for classification. This can result in misclassifica-

tions because all signals are grouped when they are insufficient for clustering, particularly if

the few signals present correspond with more than one species and the most numerous clicks

would obscure the rare signals. An alternative could be to classify signals independently when

not reaching the clustering settings, though this approach may as well result in high misclassi-

fication because relevant features such as the modal ICI could not be computed. A better

understanding of the distribution of the number of signals per time interval of the species of

interest would be recommended when using unsupervised clustering methods.

False positive classifications obtained in the novel dataset for the rare classes warrant con-

sideration, setting up a balanced dataset with extremely rare species may not result in

increased classification performance. Training a DNN with an unbalanced dataset can lead to

the classifier learning that the common classes are more likely, causing it to categorize more

signals as belonging to the common classes. However, creating a balanced dataset for training
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can lead to a brittle classifier as common classes are subsampled and samples with varied con-

ditions of background noise and variability within these broadband directional clicks are

reduced. We have shown that increasing the number of samples for training increased the pre-

cision of the classifier, although the performance for the rarest classes, even when adding

noise, did not improve as they are likely to be over-fitted because the classifier did not have

enough examples to learn the species’ distinctive features. This appears to happen despite sig-

nals like the BWG type, which have very distinct features.

Although our classifier is focused on a particular taxonomic group, we found that the inclu-

sion of clearly defined non-target categories was necessary. DNNs assign the most probable

label, regardless of the probability of that label, therefore if no good match exists, a poor one

will be selected resulting in misclassifications. In this study, significant number of false positive

clusters appeared to be detections of a click type not represented in the training dataset. This

click type shared similarities with the clicks of Grampus griseus, but its lower frequency peaks

were not present. This click type was recently named UD36 [34] and, due to its similarities in

spectral pattern, click rate, and temporal overlap with Grampus griseus signals, the UD36 click

type was proposed as a potential alternative Grampus griseus signal or other species that often

co-occur with this species. Including this click type in the training dataset would potentially

reduce spurious assignments of the type to various beaked whale classes.

To perform effectively and comparably across different regions, training sets must be devel-

oped to reflect the full variability of each class over those regions. Previous research has found

subtle differences in the spectral shape of Grampus griseus clicks between regions and ocean

basins [50]. Intra-specific variability is less understood for beaked whales, and only differences

in the spectral shape and click rates have been documented for Mesoplodon densirostris [17].

Here, we demonstrate that the click characteristics of M. densirostris differ considerably across

regions and ocean basins, as measured by clicking rates, spectral patterns, click duration, but

that the other North Atlantic beaked whale species did not. The Md click type from the train-

ing dataset had a moderate number of samples and contained intraspecific variability, and

most likely contributed to a poorer performance than the other beaked whale species. Larger

training sample sizes are needed in such cases to capture the variability of these species across

regions and achieve the desired classification performance.

Site-specific noise and instrumentation differences may further confuse classifiers [51], and

could partially account for misclassifications between subtly different types which are not

detected within the same dataset sites, as in the case of Mesoplodon mirus and M. europaeus. In

these cases, a classifier may mistakenly learn to use non-species-specific features for classifica-

tion during training. Inclusion of additional strategies, such as domain adaptation [52], in the

pipeline may be needed to improve the robustness of these methods across locations and sen-

sor types. Because of the inherent heterogeneity of the beaked whale species’ occurrence, the

datasets will likely show a long-tailed distribution, with some classes having many more sam-

ples than others. A possible strategy may be to test recently developed techniques to handle

long-tailed learning [53], some of which reduce the bias in the feature space and decision

boundaries between common and rare classes.

The application of this system in the case study sites where it was not trained revealed vari-

able numbers of false negative and false positives, with the latter being largely influenced by

the presence of non-target species not included in the training dataset. This scenario highlights

the challenges of applying a trained classifier to other regions with different species not

accounted for during training. To ensure high performance, it is advisable to train the deep

neural network with signals that more accurately reflect the true distribution of classes in the

region (e.g., ocean basin). These issues are particularly important for density estimation meth-

ods that rely on being able to adequately characterize the classifier’s performance [36].
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Classifier performance metrics can be reported per site, but quality control using machine-

aided analysis, such as DetEdit [42] which allows rapid estimation of a classifier’s false positive

rate over a systematic random sample, remains particularly important in these cases.

Applying the trained neural network to new data can produce additional samples of each

species, which can then be used to retrain the classifier and further improve its accuracy. As a

result, we hope to ensure the continued availability of data and promote more representation

of rare species by making the training data public.

Conclusions

Findings from this study can aid in determining better practices for the design and use of clus-

tering approaches with trained deep neural networks. We have shown that the detection and

classification process using machine learning is more efficient and can lower the overall rate of

missed detections of ephemeral acoustic events when the pipeline is tailored to focus on the

taxonomic family of beaked whales. A delimitation phase to remove common non-target spe-

cies before unsupervised clustering has facilitated the grouping of signals of varying numbers,

and performed well in classifying clusters with a smaller number of clicks. The results demon-

strate that the minimal number of clicks per time bin necessary for unsupervised clustering, as

well as a representative training set of all non-target species, should be carefully chosen to

avoid high misclassification rates. We have shown that there are a variety of rare cases to con-

sider when classifying passive acoustic data, and that the approach presented improved the

detection of ephemeral events, but rare species, or species with intraspecific variability in their

click characteristic features, remain a challenge in machine learning classification, and we

expect that this study will not only improve understanding but also aid in identifying potential

innovation directions in rare class learning.
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