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1 Introduction

Recent years have seen tremendous progress in the field of Post-Newtonian (PN) and
Post-Minkowskian (PM) Effective Field Theory (EFT), relevant for the analytic calculation
of compact object coalescence events. For comprehensive reviews of PN methods in
GR, see [1–3] and references within, as well as more recent progress up to 6-7PN [4–9].
This progress has been of fundamental importance for reliable analytic and semi-analytic
determination of gravitational waveforms, especially in the context of Effective-One-Body
Hamiltonians [10–23].

Besides the more conventional PN methods, there has also been a renewed interest
in PM methods [24–61], which involve an expansion in Newton’s constant G but not in
v/c. A central idea which underlies much of the PM approach (as well as some of the PN
approach) is the matching of General Relativity (GR) to an effective field theory [62, 63].
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This matching can be done at the level of classical observables such as the scattering
angle [64, 65] or the impulse [66, 67].

One promising approach to PM dynamics involves an unexpected connection — to rela-
tivistic scattering amplitudes in quantum field theory [24, 28, 66–71]. Since gravitons couple
with a

√
G factor, the PM expansion goes over to the usual perturbative loop expansion

of the corresponding scattering amplitude, with the (n− 1)-loop amplitude responsible for
the n-PM EFT coefficients. The basic advantage of the use of scattering amplitudes is they
can be evaluated using cutting edge tools such as generalized unitarity [72, 73], the double
copy [74–76], as well as sophisticated loop integration methods [77]. Impressive concrete
progress in this direction has been made [28, 78–82] by matching full GR to an effective
2-body theory at the level of quantum scattering amplitudes, or more precisely their ~→ 0
limit. Though very promising, the on-shell approach is not without its difficulties, especially
at order G4 and above where it need to capture tail effects [83–91] which are non-local in time,
e.g. an outgoing gravitational wave which is reflected in the far zone back into the inspiral.

A striking feature of the PM EFT approach has been the importance of the radial
action Ir(r) ≡

∫ r
rturn

pr(r′)dr′, which arises in the classical Hamilton-Jacobi equation for the
system [92]. This should not come as a surprise, as the radial action encapsulates all of the
classical dynamics of the system. In [93, 94], the radial action played a central role in the
Boundary-to-Bound map, which allowed for the analytic continuation of scattering data to
dynamical invariants for generic (bound) orbits. This was further utilized to extract compact
binary dynamics up to 4PM order [44, 46, 59, 95]. Inspired by the eikonal approximation,
the authors of [82] suggest the following amplitude-radial action relation

iA ∼
∫
j

(
eiIr − 1

)
. (1.1)

The aim of this paper is to derive this relation in the classical limit and in the probe limit
κ ≡ m1m2

(m1+m2)2 → 0, to all orders in G/j. We do this by solving the QM scattering problem
for a probe mass in curved space — the same calculation which leads to BH greybody
factors [96–98] and quasinormal modes [99, 100]. However, we are interested in the classical
~ → 0 limit of this calculation, which we take following the seminal work of [101, 102].
This limit exposes a simple relation between the quantum phase shifts δ̄j̄ , the azimuthal
scattering angle ∆ϕ and the radial action, namely:

δj −
πj

2 + c(~) = lim
r→∞

[Ir(r)− d(r)] , ∆ϕ = π − 2dδj
dj

. (1.2)

In these expressions, δj = lim~→0 ~δ̄j̄ |j̄=j/~− 1
2
is the saddle point value of the phase shift δ̄j̄ ;

c(~) is a j independent constant, which emerges from the regularization of δj in the ~→ 0
limit, while d(r) = kr + η log(2kr) is a universal function describing the accumulation of
phase as r →∞.

In this paper we calculate the probe-limit phase shifts δj explicitly by solving a
relativistic wave equation in a background gauge field/metric. See [52] for a related
connection between wave equations and classical scattering. Indeed the connection between
scattering amplitudes, quantum mechanics, and classical point particles has been a recurring
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theme in the literature. Evidently, point-particle actions of the kind taught in undergraduate
classes worldwide are somehow connected to relativistic quantum electrodynamics and
quantised (effective) general relativity. The relation is simply that point-particle actions
emerge as EFTs in a long-distance, low-energy limit for localised particles as was emphasised
by Goldberger and Rothstein [62]. Therefore the quantum mechanics of these worldline
actions captures the relevant dynamics. In the probe limit, fully non-perturbative amplitudes
are available by solving the relevant (relativistic) Schrödinger equation; formerly confusing
issues related to pair production are nowadays well understood and need not concern us.
Our work is closely connected to other approaches based on studying the quantum field
theory of the worldlines [103–105].

The outline of our paper is as follows. First, we review our setup in section 2, and also
review key quantities and their dimensions when c = 1, ~ 6= 1. In section 3 we re-derive the
relation (1.2) in a modern language, following the work of [101, 102]. We make use of this
relation to derive the all order classical scattering angle for relativistic Coulomb scattering
(a.k.a Darwin scattering) in section 4, including non-perturbative effects. In section 5 we
follow the steps taken for Coulomb scattering, and examine how the phase shifts for the
scattering of a scalar in a Schwarzschild background converges in the classical limit to the
relation (1.2).

Next, we generalize (1.2) to the scattering of particles with spin, as well as to the
scattering of monopoles and charges. The case of monopole scattering is unique in that
there is an extra angular momentum carried by the electromagnetic field [106–110]. The
non-perturbative effect of this angular momentum on monopole scattering amplitudes was
recently captured in the electric-magnetic S-matrix construction of [111], based on pairwise
helicity [112]. In section 7 we take the classical limit of this S-matrix for the scattering of a
Coulomb charge in a monopole background, and reproduce the classical scattering angle to
all orders.

A last, highly non-trivial check of our formalism is presented in section 7.1, where
we calculate the all-order scattering angle for a probe mass in NUT space. This is the
gravitational double copy of charge-monopole scattering [113–121]. Here we find the all-
order solution of the quantum scattering problem in terms of prolate spheroidal functions,
and show how its phase shifts exactly reproduce the classical scattering angle to all orders
in the PM expansion. Our results allows us to draw the following conclusions:

• Probe mass-NUT scattering is the double copy of charge-monopole sctatering, with
q̄ = ~−12EprobeG`NUT playing the role of pairwise helicity [111], and is quantized in
half integer units.

• The phase shift formalism captures the full non-perturbative dynamics of probe
mass-NUT (charge-monopole) scattering, including the angular momentum in the
gravitational (electromagnetic) field.

• The quantum-classical correspondence is based on a non-trivial number theoretical
relation between spheroidal eigenvalues and elliptic integrals.
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Finally, in section 8 we conclude our discussion and also briefly discuss future prospects
for applying our formalism beyond the probe limit, as a novel quantum approach to self-force
corrections [122–135].

2 Setup and notation

Our ultimate goal is to describe the scattering of two classical particles with arbitrary
classical spins. Since we work in the probe limit, we can always map the scattering problem
to an equivalent one body problem, in which a probe particle moves in the presence of a
central classical electric/magnetic/gravitational field. Classically, we are interested in the
trajectories of this particle, and in particular in the classical scattering angle χ defined as

cos (χ) = p̂in · p̂out , (2.1)

where p̂in(p̂ot) is the direction of the momentum of the incoming (outgoing) particle. In the
spinless (and non-magnetic) case with only orbital angular momentum, the entire effective
one body motion takes place in the plane transverse to the total angular momentum ~J .
When talking about classical trajectories, it is convenient to take ẑ || ~J and p̂in = −x̂, p̂out =
cos(∆ϕ)x̂+ sin(∆ϕ)ŷ, so that χ = ∆ϕ.

In more general cases with spin, the motion does not take place in the plane, and so
generally χ 6= ∆ϕ.

Since we are interested in taking the classical limit of quantum 2→ 2 scattering, it is
worthwhile to describe the setup there too. The quantum problem is also trivially reduced
to an effective one body problem. Unlike the classical one, here we take the incoming state
as a plane wave in the ẑ direction. In this case, the amplitude squared gives the probability
to scatter to a given angle θ. Taking the classical limit and we expect the amplitude to
peak at θ, corresponding to a scattering amplitude of χ = π ∓ θ. In the spinless (and
non-magnetic) case with only orbital angular momentum, this also implies θ = ∆ϕ.

Before moving on to the bulk of the paper let us briefly comment on notation, which
can be at times tricky when taking the classical limit of quantum results. Throughout the
paper, we keep factors of ~ explicit (while the speed of light is still c = 1). Consequently,
the different variables in our calculations have units that are a combination of [distance]
and [mass]. The different quantities and their units are detailed in table 1.

In our quantum calculation, we frequently make use of the dimensionless angular
momentum variables

j̄ ≡ ~−1j − 1
2 , δ̄j ≡ ~−1δj ,

ν̄ ≡ ~−1ν, h̄ ≡ ~−1h , q̄ ≡ ~−1q . (2.2)

In particular, j̄, h̄ and q̄ are quantized in half integer units. It is worth noting the −1
2

subtraction in the definition of j̄, which corresponds to the famous Langer correction to the
quantum angular momentum [102, 136]. We also make use of the quantities

m̄ ≡ ~−1m, k̄ ≡ ~−1k,

Ē ≡ ~−1E, η̄ ≡ ~−1η , (2.3)

all with units of [distance−1].
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Symbol Description Units
t time [distance]
r distance [distance]
m mass [mass]
E energy [mass]
k momentum [mass]
η Coulomb parameter [mass]
M Schwarzschild mass [mass]
` NUT parameter [mass]
j angular momentum [distance × mass]
δj phase shift [distance × mass]
ν effective angular momentum [distance × mass]
h helicity [distance × mass]
q pairwise helicity [distance × mass]
~ Planck’s constant [distance × mass]
G Newton’s constant [distance ×mass−1]

j̄, δ̄j , ν̄, h̄, q̄ ~−1j − 1
2 , ~

−1δj , ~−1ν, ~−1h, ~−1q dimensionless
m̄, Ē, k̄, η̄ ~−1m, ~−1E, ~−1k, ~−1η [distance−1]

Table 1. Different quantities used in their paper and their units when ~ 6= 1, c = 1.

3 Semiclassical scattering — scalar case

In this section we derive the relation (1.2) by Poisson summation of the partial-wave
expanded scattering amplitude in the classical limit [102]. Here start with the spinless,
non-magnetic case (see also [65, 81, 137, 138] for related work), but will be able to generalize
it to all spins and even to electric-magnetic scattering in the following sections.

The partial-wave decomposed amplitude for 2→ 2 scalar scattering takes the form

A = ~
k

∞∑
j̄=0

(2j̄ + 1)e
2iδ̄j̄ − 1

2i Pj̄(cos θ), (3.1)

where the Pj̄(x) are Legendre polynomials. Note that the map to effective one body
dynamics here is trivial if we interpret A as the amplitude for an incoming plane wave to
scatter to an angle θ. Here and below, an overbarred quantities are quantum, for example,
j̄ = ~−1j + 1

2 is a half integer quantum number.
We can write this expansion more compactly as

A =
∑
j̄

G(j̄) , (3.2)

– 5 –



J
H
E
P
0
3
(
2
0
2
2
)
1
4
1

where
G(j̄) ≡ ~

2ik (2j̄ + 1) e2iδ̄j̄ Pj̄(cos θ) . (3.3)

We also drop the −1 part responsible for forward scattering, which does not survive in the
classical limit. Using Poisson summation, we can express the same sum as

A =
∞∑

n=−∞

∫ ∞
0

dj̄ e−2πinj G(j) . (3.4)

Changing variables as j̄ = j
~ −

1
2 , we get

A = − i

~k

∞∑
n=−∞

e−iπn
∫ ∞

0
dj j e

2i
~ [δj−πnj] Pj̄(cos θ) . (3.5)

Taking the leading term in ~ for Pj̄(cos θ) with j̄ = j
~ −

1
2 , we have for sin θ & j̄ −1 [101],

Pj̄ (cos θ) ≈
{[

jπ

2~ sin θ
]−1/2

sin
[
jθ

~
+ π/4

]
. (3.6)

Plugging this in (3.5), we have

A = −1
k

√
1

2~π sin θ

∞∑
n=−∞

e−iπn
(
e
iπ
4 I+ − e−

iπ
4 I−

)
, (3.7)

where
I± =

∫ ∞
0

dj
√
j e

i
~ [2δj+(±θ−2πn)j] . (3.8)

In the ~→ 0 limit, we can take the saddle point approximation and get

Θ ≡ ±θ − 2πn = 2dδj
dj

, (3.9)

where Θ is the deflection angle [102] and n and the sign are fixed so that 0 ≤ θ < π and Θ is
positive for net repulsion. This in particular means that only one saddle point is selected for
every value of j. The relation between the deflection angle and the scattering angle χ is then

χ = π −Θ = π − 2dδj
dj

, (3.10)

where the ± is Note that in the absence of spin or electric-magnetic angular momentum,
the angular momentum ~J is just the orbital part. In this case, the motion is always in
the plane transverse to ~J , and we have χ = ∆ϕ. See [65, 81] for similar derivations of the
relation (3.10), in the absence of winiding.

The interpretation of (3.10) is clear — the classical trajectory winds n times and goes
to infinity, after accumulating a total scattering angle χ = ∆φ. The meaning of δj in
the classical limit becomes even clearer once we consider the classical expression for the
(azimuthal) scattering angle in terms of the radial action:

∆ϕ = −2 lim
r→∞

dIr(r)
dj

. (3.11)
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See, for example [92] for a textbook derivation of this relation from the Hamilton-Jacobi
equation, or [139] for the Hamilton-Jacobi equation for general geodesic motion. In light
of this relation, we can make the satisfying identification (1.2). This relation between the
classical limit of the quantum phase shift and the integral of the radial action is not a
coincidence. In fact, it is a direct consequence of the WKB approximation for δj , which
becomes exact in the ~ → 0 limit. We demonstrate this point in the next section by
explicitly working out the phase shift for relativistic Coulomb scattering.

Taking the stationary phase approximation in (3.7), we get the saddle point amplitude

iA ∼ e
i
~

[
lim
r→∞

(Ir(r)−d(r))+πj
2 −c(~)

]
, (3.12)

which is valid in the ~→ 0 limit. This is our saddle point version of the amplitude-angle
relation (1.1).

4 Relativistic Coulomb scattering

To demonstrate the relations between the phase shift, the radial action and the classical
scattering angle, we analyze the simple problem of a charged relativistic scalar scattering
off a central Coulomb potential. The phase shifts in this problem are obtained by solving
the Klein-Gordon (KG) equation for the scalar with mass m,[(

∂µ + i~−1 Z eAµ
)2
− ~−2m2

]
Φ = 0 (4.1)

in the background of the vector potential of a Coulomb charge:

At = e

4πr ,
~A = 0 . (4.2)

Keeping in mind that we wish to eventually take the classical limit, we have made factors
of ~ explicit in this equation. Taking Z = −1 for an attractive interaction and plugging in
the vector potential, the KG equation takes the more familiar form[(

∂t −
iα

~r

)2
−∇2 − ~−2m2

]
Φ = 0 . (4.3)

As is standard in QM scattering problems, we solve the KG equation subject to regularity
at r = 0. Substituting the ansatz

Φ = e−iĒt r−1 ∑
j̄

(2j + 1)Rj̄(r)Pj̄(cos θ) (4.4)

in (4.1), we get the radial equation

~2r2∂2
r Rj̄ +

[
k2 r2 + 2ηkr − ~2j̄(j̄ + 1) + α

]
Rj̄ = 0 , (4.5)

where we defined

k =
√
E2 −m2

η = Eα/k . (4.6)
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We can go further by defining ν(ν + ~) = ~2j̄(j̄ + 1)− α2 and so ν =
√
j2 − α2 − ~

2 . In this
case, the radial equation reduces to the form of a Coulomb equation,

r2∂2
r Rj̄ +

[
k̄2 r2 + 2η̄k̄r − ν̄(ν̄ + 1)

]
Rj̄ = 0 , (4.7)

where for any quantity a, the corresponding barred quantity is ā ≡ ~−1a. The solution
which converges at r → 0 is the Coulomb wavefunction (see [140], equation 3.2.33):

Rj̄ = γ̄(ν̄ + 1 + iη̄)
γ̄(2ν̄ + 2) M

(
−iη̄, ν̄ + 1

2 ; 2ik̄r
)
, (4.8)

where M (κ, µ;x) is the regular Whittaker function. As r →∞, the radial solution becomes

Rj̄ |r→∞ ∼ e
−i
(
k̄r+η̄ log(2k̄r)−πj̄2

)
+ e2iδ̄j e

i

(
k̄r+η̄ log(2k̄r)−πj̄2

)
, (4.9)

where
2δj = π(j − ν − iη − ~

2)− i log
{
γ̄[~−1(ν − iη) + 1]
γ̄[~−1(ν + iη) + 1]

}
(4.10)

is related to the famous Coulomb phase shift. Taking the classical limit ~→ 0, we have

2δj = π(j − ν)− 2ν arctan
(
η

ν

)
− 2η

[
log

(√
ν2 + η2

)
− 1

]
+ η log(−i~) . (4.11)

By (3.10), the classical scattering angle is then given by

χ = ∆ϕ = π − 2dδj
dj

= j√
j2 − α2

[
π + 2 tan−1

(
α

β
√
j2 − α2

)]
, (4.12)

where β = k
E is the velocity. This gives exactly the classical scattering angle for a relativistic

scalar in a Coulomb potential [141, 142]– the relativistic (scalar) generalization of the
Rutherford scattering angle.

Finally, we can relate the phase shift (4.11) to the one obtained in the WKB approxi-
mation [143], which becomes exact in the classical limit. Starting from (4.5), we substitue
the WKB ansatz R±

j̄
≡ r−1e±i

S(r)
~ and get

[∂rS(r)]2 ∓ i~∂2
rS(r) = FCoul(r) + ~2gCoul(r)

FCoul(r) ≡
k2r2 + 2kηr − ν2

r2 , gCoul(r) ≡
1

4r2 . (4.13)

Expanding S(r) and (4.13) to first order in ~, we get

S(r) = S0(r) + i~
4 log [FCoul(r)] +O(~2)

∂rS0(r) =
√
FCoul(r) . (4.14)

The equation for S0 is nothing but the radial Hamilton-Jacobi equation, and so S0(r) is
simply equal to the radial action Ir(r) in the classical limit. This is a well known fact about
the WKB approximation. Equation (4.14) can be trivially integrated, so that

Ir(r) = S0(r) =
∫ r

rturn

√
FCoul(r) dr, (4.15)
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where rturn = k−1
(
−η +

√
η2 + ν2

)
is the classical turning point. The result is

Ir(r) = S0(r) = δj −
πj

2 + d(r) + c(~) (4.16)

where c(~) = −1
2
η
2 log(−i~). This is a further demonstration of the relation (1.2). Clearly,

this relation always holds as a consequence of two facts (A) the WKB approximation
becomes exact in the classical limit (B) the WKB phase S(r) coincides with the radial
action Ir(r) in the classical limit.

Putting everything together, we get the WKB wavefunction using the “right of barrier”
linear combination of R±

j̄
≡ r−1e±i

S(r)
~ , [144]:

Rj̄ = − i

rf
1
4

Coul(r)

[
e
i
~ [Ir(r)+π

4 +O(~2)] − e−
i
~ [Ir(r)+π

4 +O(~2)]]
= 2

rf
1
4

Coul(r)
sin
(1
~

[
Ir(r) + π

4 +O(~2)
])

. (4.17)

To get the scattering angle, we use the Hamilton-Jacobi relation

∆ϕ = −2 lim
r→∞

dIr(r)
dj

=
∫ ∞
rturn

2j
r2
√
FCoul(r)

dr. (4.18)

This integral can be carried out analytically, giving exactly the result (4.12). In figure 1 we
plot this scattering angle (denoted by “Darwin”, who was the first to derive it), together
with the one for Rutherford scattering, ∆ϕ = π+2 arctan(α/j). We also plot the expansions
of (4.12) to 5th and 8th order in α/j. These clearly fail to converge beyond α/j ∼ 0.1. At
this point, the correct scattering angle is ∆θ ∼ 3

2π, so that the classical trajectory takes a
right turn around the origin. This behaviour clearly is not well captured in perturbation
theory, unless some sort of resummation is applied.

In this vein, we wish to clarify a few important points about our formalism. Even
though it involves a quantum amplitude, it by no means relies on a perturbative expansion.
This is in contrast with other methods which rely on an expansion in j−1. This is why we are
able to capture classical effects that are inherently non-perturbative from the quantum point
of view. The flip side, of course, is that we are working in the probe limit. We will come
back to this point, and to future directions away from the probe limit, in the last section.

5 Scalar in Schwarzschild background

As another application of our semiclassical analysis, we analyze the probe-limit scattering of
a scalar in the background of a Schwarzschild BH. To find the phase shifts, we need to solve
the Klein-Gordon equation subject to the boundary condition of an incoming wave [99] at
the BH horizon rh = 2GM , where M is the Schwarzschild mass and G is Newton’s constant.
The radial KG equation in a Schwarzschild background is [96, 97, 145],

∂r [∆ ∂rR] +
[
−j̄(j̄ + 1) + r4E2

~2∆ − r2~−2m2
]
R = 0 , (5.1)

with ∆ = r (r − 2GM). Again, we made factors of ~ explicit in this equation.
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Rutherfordbackscattering

right turn

Figure 1. Classical scattering angle ∆ϕ vs. α/j for relativistic Coulomb scattering. The result
from eq. (4.12) is shown in blue and labeled “Darwin”. We also show the Ruthrford scattering angle
in orange, as well as the expansions of (4.12) to 5th and 8th orders in green and purple, respectively.
We chose β = 0.1 for this plot. Note that unlike Rutherford scattering, our classical trajectory
involves winds around the origin for α/J & 0.4.

5.1 WKB-Hamilton-Jacobi analysis

As a first step, we will extract the phase shifts from the WKB approximation to (5.1). This
is guaranteed to reproduce the radial action and classical scattering angle, by virtue of the
general map (1.2). Substituting the WKB ansatz

R±
j̄

= 1√
r(r − 2GM)

e±i
S(r)
~ , (5.2)

we get

[∂rS(r)]2∓i~∂2
rS(r) =FSch(r)+~2gSch(r)

FSch(r)≡
k2r2+2kξr− r−2GM

r j2

(r−2GM)2 , gSch(r)≡ 1
4(r−2GM)2−

GM

2r2(r−2GM) ,

(5.3)

where ξ = GMm
k . Expanding S(r) and (5.3) to first order in ~, we get

S(r) = S0(r) + i~
4 log [FSch(r)] +O(~2)

∂rS0(r) =
√
FSch(r) . (5.4)

The equation for S0(r) is exactly the radial Hamilton-Jacobi equation [139, 146], with S0(r)
playing the role of the radial action where S0(r) = Ir(r). The formal solution for this radial
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equation is then
S0 = Ir(r) =

∫ r

rturn

√
FSch(r) dr, (5.5)

where rturn is the largest real zero of FSch(r), corresponding to the classical turning point.
Correspondingly, we get the “right of barrier” [144] WKB wavefunction

Rj̄ = 1√
(r − 2GM)f

1
4

Sch(r)
sin
(1
~

[
Ir(r) + ~

4 +O(~2)
])

. (5.6)

To get the scattering angle, we again use the Hamilton-Jacobi relation

∆ϕ = −2 lim
r→∞

dIr(r)
dj

=
∫ ∞
rturn

2j
r(r − 2GM)

√
FSch(r)

dr. (5.7)

This integral can be carried out analytically, giving the all-order expression to the classical
scattering angle of a probe scalar in a Schwarzschild background1

∆ϕ = 2j
GM
√
kmrturn

F1

(
1; 1

2 ,
1
2; 3

2; r1
rturn

,
r2
rturn

)
, (5.8)

where F1 is the Appell-F1 function (see [140], section 16.15). The characteristic radii r1,2
are defined by

pSch(r) ≡ r(r − 2GM)2

k
FSch(r) = (r − rturn)(r − r1)(r − r2) , (5.9)

with r1,2 ≤ rturn, and the result is symmetric under r1 ↔ r2. To have a sensible result, we
need all three radii to be real, and so the cubic discriminant of pSch(r) has to be non-negative.
This, in turn, sets a lower bound on the angular momentum:

GMm

J
≤ fcrit ≡

1
4

√
1− 18c0 − 27c2

0 +
√

(1 + c0)(1 + 9c0)3

2 , c0 = k2

m2 . (5.10)

Expanding (5.8) to 4PM order, we get

∆ϕ
2 = π

2 + 2c0 + 1
√
c0

(
GMm

j

)
+ 3π (5c0 + 4)

8

(
GMm

j

)2

+ 64c3
0 + 72c2

0 + 12c0 − 1

3c
3
2
0

(
GMm

j

)3

+ 105π
(
33c2

0 + 48c0 + 16
)

128

(
GMm

j

)4
+O

[(
GMm

j

)5
]
, (5.11)

in complete agreement with [25, 64]. The full scattering angle, as well as its 5PM and 8PM
expansions, are depicted in figure 2. As in the Coulomb case, the perturbative expansion
fails at GMm/j ∼ 0.4fcrit, which is approximately when the classical trajectory makes a
full right turn around the BH.

1Cf. [147] for an alternative expression in terms of elliptic functions.
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Figure 2. Classical scattering angle ∆ϕ vs. f−1
critGMm/j, where fcrit is the maximal allowed value

of GMm/j given by (5.10). The result from eq. (5.8) is shown in blue. Also shown are the 4PM
and 8PM expansions of (5.8) in green and purple, respectively. We chose β = 0.1 for this plot. Our
scattering angle corresponds to trajectories which wind around the origin for GMm/j & 0.75fcrit.

5.2 Full quantum solution and its classical limit

We now wish to relate the full quantum mechanical solution of (5.1), to the WKB-Hamilton-
Jacobi result (5.5). The relevant boundary condition for this quantum scattering problem
is an incoming wave at the BH horizon [99]:

R(r)|r→2GM ∼ e−iĒr∗ , r∗ = r + 2GM log
(
r − 2GM

2GM

)
. (5.12)

To this end we change variables to z = 1 − r
2GM and substitute the ansatz R = e−iĒr∗

ei(Ē−k̄)(r−2GM)H(z). Any solution with H(2GM) = const. now satisfies the boundary
condition (5.12). In terms of H(z), the radial equation now becomes

z(z − 1)H ′′(z) + [γ̄(z − 1) + δz + εz(z − 1)]H ′(z) + [αz − q]H(z) = 0 , (5.13)

where

q = j̄(j̄ + 1) + 2iGM(Ē + k̄)− 4G2M2(Ē − k̄)2, α = 4iGMk̄ − 4G2M2(Ē − k̄)2,

γ̄ = 1− 4iGMĒ, δ = 1, ε = 4iGMk̄ . (5.14)

This equation is known as a Confluent Heun Equation, and it has a solution

H(z) = HeunC (q, α, γ̄, δ, ε; z) , (5.15)

which is defined in Mathematica12 and has a branch cut on the real line for 1 ≤ z < ∞.
The full solution to the radial equation is then

Rj̄(r) = e−iĒr∗ei(Ē−k̄)(r−2GM) HeunC
(
q, α, γ̄, δ, ε; 1− r

2GM

)
, (5.16)
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and is regular for all r > 0. Its asymptotic behavior is given by

Rj̄ |r→∞ ∼ e
−i
(
k̄r+η̄ log(2k̄r)−πj̄2

)
+ e2iδ̄j e

i

(
k̄r+η̄ log(2k̄r)−πj̄2

)
, (5.17)

where we defined the effective Coulomb parameter η = GM E2+k2

k , and also η̄ = ~−1η.
The phase shifts δ̄j are not easy to obtain. For small j̄, they can be obtained reliably

using the well known method of Mano, Suzuki and Takasugi (MST) [148, 149]. In this
method, several different solutions to (5.13) are expressed as infinite sums of hypergeometric
functions, following the seminal work of [150]. A solution H0 of (5.13) that converges
at z = 0, is obtained as an infinite sum of Gauss Hypergeometric functions. H0 is then
expressed as a linear combination of the solutions H± that converge at z → ∞, and
are in turn given as an infinite sum of Coulomb functions. The MST method has been
extensively used in the calculation of both BH perturbations and self-force corrections, see
for example [17, 19, 135, 151–154], as well as the living review [155]. The method is also
implemented numerically in the Black hole Perturbation Toolkit code [156]. However, in
the ~ → 0 limit we found it somewhat difficult to apply the MST method directly, and
we leave it for future work. Instead, we simply plot the full solution (5.16), together with
the WKB solution (5.6). As can be seen from figure 3, the two functions coincide already
when we take ~ ∼ 0.2. The spike of the WKB seen in the plot is the usual divergence at the
classical at the classical turning point — which is usually resolved using an Airy function
(see for example [144]). Since we only care about the phase at r →∞, we will not dwell on
this further.

6 Generalization to higher spins and electric-magnetic scattering

The expression (3.1) can be easily generalized to the case of arbitrary spin particles by
means of the Jacob-Wick formula2 [162]. The 2→ 2 scattering amplitude for particles with
helicities3 h̄1,...,4 is

A = N ei(h̄12−h̄34)ϕ ∑
j̄

(2j̄ + 1)e
2iδ̄j̄ − 1

2i dj̄
h̄12,h̄34

(θ) , (6.1)

where h1,...,4 are the helicities of the scattered particles, hab ≡ ha−hb. The normalization N
is conventionally taken as N =

√
8πs. Meanwhile, d is the famous Wigner matrix, defined as

dj̄ab(θ) ≡
〈
j̄, a|e−iθJz |j̄, b

〉
. (6.2)

For simplicity, we will focus on the case where h̄12 = ah̄34 ≡ h̄, with a = ±. In this case
we have, up to a phase,

A = N
∑
j̄

(2j̄ + 1)e
2iδ̄h̄ − 1

2i fa d
j̄

h̄,ah̄
(θ) , a = ± (6.3)

2See, for example [157, 158] and chapter 2 of [159] for pedagogical presentations of the Jacob-Wick
formalism. For an on-shell derivation of this formula, see [160, 161].

3As the particles can be massive, their helicities are not Lorentz invariant. Here we specialize to the
COM frame with the incoming particles traveling along the z-axis.
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Figure 3. Comparison of the full radial function and the WKB approximation for Schwarzschild
scattering. The exact radial function is taken from eq. (5.16), while the WKB radial function is from
eq. (5.6). The WKB function diverges as usual at the classical turning point. Here ∆ = r(r− 2GM)
and we’ve taken M = 1, m = 0.1, k2 = 0.1m2, j = 5 and ~ = 0.2. Smaller values of ~ result in a
numerical instability in the Mathematica evaluation of HeunC.

and f+ = (−1)j̄+h̄, f− = 1. The case a = + in the equation above is easily interpreted in
terms of effective one body dynamics: it is the amplitude for a helicity h plane wave to
scatter into the angle θ. We will comment on the one body interpretation of a = − below.

Our next step is to take the classical limit, noting that h = ~h̄ is the classical spin/helicity
of the particle which is finite when ~ → 0. Repeating the Poisson summation of (3.5),
we can take the classical limit of the d-matrix as worked out by Schwinger et al. in [109].
Defining θ+ = π − θ and θ− = θ, we have

fa d
j̄

h̄,ah̄
(θ)→ ~

1
2[

cos2 θa
2 −

h2

j2

]1/4√
πj sin θa

2

sin
(
αa

j

~
− βa

h

~
+ π

4

)
, sin θ & j̄ −1 (6.4)

Where a = ±, sin
(αa

2
)

=
(
1− h2

j2

)− 1
2 sin

(
θa
2

)
and sin

(
βa
2

)
= h

j

(
1− h2

j2

)− 1
2 tan

(
θa
2

)
. For

h = 0 the Schwinger approximation reproduces (3.6). Plugging the asymptotic form (6.4)
into the Poisson sum, we now get the generalization of (3.7),

Ah̄,ah̄ = − N

~3/2
1√

π sin θa
2

∞∑
n=−∞

e−iπn
(
e
iπ
4 I+ − e−

iπ
4 I−

)
, (6.5)

with

I± =
∫ ∞

0
dj

√
j[

cos2 θa
2 −

h2

j2

]1/4 e i~ [2δj ±(αa j−βa h)+2πnj] . (6.6)
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Following Schwinger et al. [109], we take the stationary phase approximation of I±, and
find that the classical scattering angle χ is given by

+case: sin
(
χ

2

)
=
√

1− h2

j2 cos
(
dδj
dj

)

−case: cos
(
χ

2

)
=
√

1− h2

j2 sin
(
dδj
dj

)
. (6.7)

Note that in this case the classical trajectory is not confined to the xy-plane, and so χ 6= ∆ϕ.
However, the relation ∆ϕ = −2 limr→∞

dIr(r)
dj = π − 2dδjdj still holds as a consequence of the

WKB-Hamilton-Jacobi analysis.

6.1 Classical interpretation

To interpret (6.7), we pick a = + such that the effective one body dynamics is that of a
spin h p̂ particle scattering in a central field. The particle enters with its momentum along
p̂in and leaves along p̂out, with the scattering angle given by cos(χ) = p̂in · p̂out. As the
particle moves from t→ −∞ to t→∞, it gets deflected azimuthally by ∆ϕ = π − 2dδjdj in
the plane transverse to ~J , or in other words:

cos (∆ϕ) = ~pin⊥ · ~pout⊥
|~pin⊥||~pout⊥|

~pi⊥ ≡ p̂i −
(
p̂i · Ĵ

)
Ĵ . (6.8)

In addition, the motion is constrained by total angular momentum conservation. The total
angular momentum in this case is

~J = ~r × ~p+ h p̂ . (6.9)

Since p̂ = ∓r̂ at t→ ±∞, we have

p̂in · ~J = p̂out · ~J = h . (6.10)

The combination of (6.8) and (6.10), and some elementary trigonometry, leads to

sin
(
χ

2

)
=
√

1− h2

j2 sin
(∆ϕ

2

)
, (6.11)

consistently with (6.7).

6.2 Electric-magnetic scattering

In [111], the Jacob-Wick formula was generalized to the 2→ 2 scattering of electric-magnetic
scattering, i.e. the scattering of mutually non-local particle like an electric charge and a
monopole or two dyons with charges (ei, gi). First, we define the pairwise helicity [112] of
the two particles to be the half integer

q̄ = e1g2 − e2g1
~

. (6.12)
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We also define the corresponding classical quantity q = ~q̄. The generalized Jacob-Wick
formula is then

Aq = N
∑
j̄

(2j̄ + 1)e
2iδ̄j̄ − 1

2i Dj̄∗
q̄+h̄12,−q̄+h̄34

(ϕ, θ,−ϕ)

= N ei(2q̄+h̄12−h̄34)ϕ ∑
j̄

(2j̄ + 1)e
2iδ̄j̄ − 1

2i dj̄
q̄+h̄12,−q̄+h̄34

(θ) . (6.13)

The q̄−modified D-matrices are also known as monopole harmonics [163] or spin-weighted
spherical harmonics [99]. Their appearance reflects the fact that the total angular momentum
~J includes a contribution −qr̂ from the electromagnetic field sourced by the scattering dyons.
The generalized Jacob-Wick formula (6.13) was derived in [111] for fermion-monopole
scattering, but it can be shown to hold for all helicities by the same pairwise helicity
arguments.

The semiclassical result (6.7) holds in this case as well. In fact, to obtain the scattering
angle for a scalar charge on a scalar monopole, we simply take h12 = h34 = 0 but q = ~q̄ 6= 0.
We can now directly apply (6.7) with a = − and h = q and get [108, 109]

cos
(
χ

2

)
=
√

1− q2

j2 cos
(∆ϕ

2

)
. (6.14)

The classical interpretation of this relation is similar to the a = + case, with a slight
modification. The total angular momentum is now given by

~J = ~r × ~p− q r̂ , (6.15)

which means that the entire motion is confined to the cone r̂ · ~J = −q. Together with (6.8),
this immediately gives the result (6.14).

We can now apply the semiclassical limit to charge-monopole scattering, or equivalently
to its gravitational double copy, a probe mass in Newman-Taburino-Unti (NUT) space. We
will do this in the next two sections.

7 Charge-monopole scattering

By the arguments of the previous section, the classical scattering angle for a scalar charge
in the background of a scalar monopole is given by (6.14), with |∆ϕ| = −2dδdj . To apply it,
we need to solve for the phase shifts of a scalar plane wave in the background field of the
monopole. To do this, we solve the Klein-Gordon equation (4.1), with a vector potential
given by

At = 0 , ~A = g
1− cos θ
r sin θ ϕ̂ , (7.1)

and ϕ̂ = − sinϕx̂+ cosϕŷ. This potential has a “Dirac string” along the negative ẑ axis,
but we will see without loss of generality that the test charge always stays in the upper
hemisphere, so this will not play a role in our analysis. Of course the formal way to fix this
is to define the vector potential on the north and south hemispheres separately [163].
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Substituting the vector potential in the KG equation (4.1), we find

~2∂2
t Φ−

[
~2r−2∂r(r2 ∂r)−

~−2J2 − q2

r2 −m2
]

Φ = 0 . (7.2)

Here the squared angular momentum operator J2 is given by [110]

J2 = q̄2 − 1
sin2 θ

[
sin θ ∂

∂θ

(
sin θ ∂

∂θ

)
+
(
∂

∂ϕ
− iq̄ (1− cos θ)

)2]
. (7.3)

As expected, this operator is modified by the presence of the angular momentum −qr̂
carried by the EM field. The eigenvalues of J2 are related to our d-matrices

J2Dj̄∗q̄,−q̄(ϕ, θ,−ϕ) = j̄(j̄ + 1)Dj̄∗q̄,−q̄(ϕ, θ,−ϕ) , (7.4)

where Dj̄∗q̄,−q̄(ϕ, θ,−ϕ) = e2iqϕ dj̄q̄,−q̄(θ) are the complex conjugates of Wigner’s D-matrices.
Now we can separate variables as Φ = e−iĒtR(r) e2iϕ dj̄q̄,−q̄(θ) and get the radial equation

[
~2r2∂2

r + 2~2r∂r + k2 r2 − ν(ν + ~)
]
R = 0 , (7.5)

where k2 = E2 −m2 and

ν ≡ ~ν̄
ν̄(ν̄ + 1) ≡ j̄(j̄ + 1)− q̄2 →

ν ≡
√
j2 − q2 − ~

2 . (7.6)

We recall here the Langer correction [136] of −1
2 in j = ~−1j̄− 1

2 . Equation (7.5) a spherical
Bessel equation whose regular solution at r → 0 is R(r) = jν̄(k̄r). Asymptotically we have

R|r→∞ ∼ e
−i
(
k̄r−πj̄2

)
+ e2iδ̄j e

i

(
k̄r−πj̄2

)
, (7.7)

with 2δj = π(j − ν − ~
2). Taking the classical limit, we have

2δj = π

(
j −

√
j2 − q2

)
(7.8)

By (6.14), the classical scattering angle is then given by

cos
(
χ

2

)
=
√

1− q2

j2 cos

 π

2
√

1− q2

j2

 . (7.9)

This all order expression was first derived in [108, 109, 164] in a non-relativistic context,
and it exactly reproduces the classical calculation of [108, 109].
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7.1 Probe mass in NUT space

In this section we use our phase shift formalism to derive the all-order classical scattering
angle for a probe mass (equivalently, a probe Schwarzschild BH) in the background of a
pure NUT, i.e. the MNUT → 0 limit [165] of Taub-NUT space [166, 167]. NUT space is the
double copy of a magnetic monopole [113–121], and so this problem is the double copy of
charge-monopole scattering.

The metric for Taub-NUT space in Boyer-Lindquist coordinates is given by

ds2
Taub-NUT = −f(r) [dt+ 2G`(cos θ − 1) dϕ]2 + 1

f(r) dr
2 +
(
r2 +G2`2

) (
dθ2 + sin2 θ dϕ2

)
,

(7.10)
where M is the mass and G` in the NUT charge while

f(r) = r2 − 2GMr −G2`2

r2 +G2`2
. (7.11)

Here we use the upper hemisphere metric of [117]. The pure NUT metric is then obtained by
settingM = 0 (conversely, in the ` = 0 limit the metric reduces to the Schwarzschild metric).

As we will show explicitly below, when considering the scattering of a test mass Φ in
NUT space, regularity of the angular wavefuctions at the Misner string [168] (here on the
negative z-axis) requires the quantization of

q̄ ≡ ~−1q ≡ ~−1(2G`E) , (7.12)

in half-integer units (see also [169] for a similar conclusion). This is a further validation
of the classical double copy relation between mass-NUT scattering and charge-monopole
scattering [113, 115–121] — this time in terms of an inherently non-perturbative quantization
condition. In complete analogy with the charge-monopole case, the gravitational field sourced
by the NUT and the probe mass contains additional angular momentum −qr̂, where r̂ is
the unit vector from the NUT to the probe mass. This has been shown classically a long
time ago [165, 169–173].

Note that this angular momentum is proportional to the overall energy of the probe
mass and not its rest mass, which we can take to be small or even zero. In other words,
this is not a gravitational backreaction effect from the mass of the probe, but rather the net
angular momentum carried by the soft gravitons exchanged between the NUT and the probe.

Consequently, the modified Jacob-Wick formula (6.13) is also valid in the mass-NUT
case, with appropriate phase shifts δj . To compute these phase shifts, we solve the Klein-
Gordon equation (

DµD
µ − ~−2m2

)
Φ = 0 , (7.13)

in the background (7.10). Writing the D’Alembertian explicitly and substituting the ansatz
Φ = e−iĒt T (r, θ, φ), we get

~2(r2+G2`2)−1∂r
[(
r2−G2`2

)
∂rT

]
+
[
r2+G2`2

r2−G2`2
E2− ~2J2−q2

r2+G2`2
−m2

]
T = 0 . (7.14)
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Here k2 = E2−m2, q = 2G`E, and the squared angular momentum operator J2 is given by
the same expression as the monopole case, (7.3), whose eigenfunctions are Dj̄∗q̄,−q̄(ϕ, θ,−ϕ) =
e2iqϕ dj̄q̄,−q̄(θ). Now we can separate variables as

T (r, θ) =
∑
j̄

(2j̄ + 1)Rj̄(r) e2iqϕ dj̄q̄,−q̄(θ) , (7.15)

and find (cf. [169, 174])

~2(r2 −G2`2)−1∂r
[(
r2 −G2`2

)
∂rRj̄

]
+
[
r2 +G2`2

r2 −G2`2
E2 −

j2 − ~2

2 − q
2

(r2 −G2`2) −m
2
]
Rj̄ = 0 .

(7.16)
We will now solve this equation and extract the classical scattering angle in two ways: first,
by the WKB-Hamilton-Jacobi method, followed by taking the classical limit of the full
quantum solution.

7.2 WKB-Hamilton-Jacobi analysis

Substituting the WKB ansatz Rj̄ = (r2−G2`2)−1/2 ei~
−1Ir(r), we deduce the radial Hamilton-

Jacobi equation [146, 170–173]. To leading order in ~, this is

∂rIr(r) =
√
FNUT(r), FNUT(r)≡ r

2+G2`2

r2−G2`2

(
r2+G2`2

r2−G2`2
E2− j2−q2

r2+G2`2
−m2

)
. (7.17)

The formal solution for this radial equation is then

Ir(r) =
∫ r

rturn

√
FNUT(r) dr, (7.18)

where rturn is the largest real zero of FNUT(r), corresponding to the classical turning point.
To determine the scattering angle, we use the Hamilton-Jacobi relation

∆ϕ = −2 lim
r→∞

dIr(r)
dj

=
∫ ∞
rturn

2j
(r2 −G2`2)

√
FNUT(r)

dr . (7.19)

The above integral can be carried out analytically, giving the all-order expression to the
classical scattering angle of a probe scalar in a NUT background

∆ϕ = 2j
kr+

K

(
r−
r+

)
, (7.20)

where K(kmod) is Legendre’s complete elliptic integral, and in this case it is a function of
kmod ≡ r−/r+. Note that in Mathematica, elliptic integrals are expressed as functions of
mmod = k2

mod. The characteristic radii r± are defined by

(r −G`)2

k
FNUT(r) = (r2 − r2

+)(r2 − r2
−) , (7.21)

with r− ≤ r+ ≡ rturn. Explicitly, r± are

r± = j√
2k

√√√√1− 3
2
q2

j2 ±
√

1− (β2 + 3)q
2

j2 +
[1

4(β2 + 1) + 2
]
q4

j4 , β = k/E . (7.22)
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Expanding ∆ϕ to 6PM order, we find

∆ϕ = π + 3π
(
5E2 −m2)
16E2

(2G`E
j

)2
+ 3π

(
515E4 − 246E2m2 + 19m4)

1024E4

(2G`E
j

)4

+ 15π
(
3257E6 − 2599E4m2 + 515E2m4 − 21m6)

16384E6

(2G`E
j

)6
+ . . . (7.23)

It is nice to note that this expression is consistent with the 2PM result obtained by on-shell
methods in [120]. This resolves the apparent discrepancy in [120] in a simple way — by
evaluating the integral (7.19) analytically as an elliptic integral.

7.3 Full quantum solution and its classical limit

Here we find the exact phase shifts of the full quantum problem, and show that their classical
limit reproduces (7.20). Changing variables in (7.16) as Rj̄(r) = F (x) with x = 2Er

q , and
remembering that q = 2G`E, we deduce the radial equation

∂x
[(

1− x2
)
∂xF

]
+
[
λ̄+ γ̄2(1− x2)− µ̄2

1− x2

]
F = 0 (7.24)

where
~2λ̄ = j2 − ~2

4 −
q2

2
(
β2 + 3

)
, ~γ̄ = βq

2 , ~µ̄ = iq , (7.25)

and β = k/E. This is a prolate spheroidal equation with a complex separation constant µ̄ —
a very well studied equation [175–177]. The solution we are looking for is the one which
satisfies an absorbing boundary condition at r = G` [99]:

F (x)|x→1 ∼ e−iĒr∗ , r∗ = G`

[
x− log

(
x+ 1
x− 1

)]
. (7.26)

Here r∗ is the “tortoise” coordinate [145, 178, 179], which satisfies limr→G` r∗ = −∞. This
solution is conventionally denoted by F (x) = S

(1);µ̄
ν̄ (γ̄, x). The parameter ν̄ is the index of

the radial spheroidal function, and is related to λ̄, µ̄ and γ̄ by a transcendental equation,
which is explicitly given in appendix A. We explicitly checked that the other solution to the
radial equation, S(2);µ̄

ν̄ (γ̄, x), only leads to quantum corrections that die off in the ~ → 0
limit. The asymptotic behavior of the solution at x→∞ is given by

S
(1);µ̄
ν̄ (γ̄, x)|x→∞ ∼ jν̄(γ̄x) = jν̄(k̄r) . (7.27)

In appendix A we show how to calculate ν̄ explicitly. By a similar argument to the monopole
case, we have −2δj = π(ν + ~) and so the classical scattering angle is given by

cos
(
χ

2

)
=
√

1− q2

j2 cos
(∆ϕ

2

)
, (7.28)

where
∆ϕ = π lim

~→0

dν

dj
, (7.29)
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and ν = lim~→0 ~ν̄ is given to all orders in appendix A. This expression coincides to all
orders with the one obtained by the WKB-Hamilton-Jacobi method, equation (7.20).

Note that although the consistency of (7.29) and (7.20) is guaranteed by the corre-
spondence principle between quantum and classical physics at ~→ 0, the actual all-order
equality involves a highly non-trivial number theoretical identity:

π
dν

dj
= π lim

~→0

2j
~
dν̄

dλ̄
= 2j
kr+

K

(
r−
r+

)
, (7.30)

or in other words

lim
s→∞

s−2 dλ (sν, sγ, sµ)
dν

= πkr+

[
K

(
r−
r+

)]−1
, (7.31)

where γ = kq
2E , µ = iq and s is ~−1. Here ν is given implicitly as the value which solves

λ (sν, sγ, sµ) = s2
[
j2 − q2

2
(
β2 + 3

)]
− 1

4 , (7.32)

where β = k/E. The function λ(ν, γ, µ) is known in the literature as the (analytically
continued) spheroidal eigenvalue [175, 177]. Here we uncover a very non-trivial relation
between its derivative in the limit ν, γ, µ → ∞ and the elliptic integral K. We are not
aware of previous derivations of this relation in the literature.

8 Outlook: towards non-perturbative self-force calculations

Our results clearly demonstrate that classical effects that appear to be non-perturbative in
the PM expansion can be fully captured in the ~ → 0 limit of quantum wave equations.
In and of itself, this should not surprise the reader much, as it is a consequence of the
correspondence principle between quantum and classical physics. However, we uncovered
in detail exactly how the quantum amplitude encodes the classical scattering data in the
~→ 0 limit, namely

• The phase shifts go over to their WKB-Hamilton-Jacobi values, which are in turn
related to the classical radial action by (1.2).

• The Poisson resummed partial wave decomposition has a saddle point at the classical
j, which in turn leads to the classical scattering angle (6.7) (cf. (3.10) for the scalar
case).

We applied this formalism in the probe limit to calculate classical effects that are inherently
non-perturbative from the qunatum point of view. For example, we reproduced the winding
of classical trajectories for relativistic Coulomb and Schwarzschild scattering, as well as the
effect of the extra angular momentum −qr̂ in the gravitational (electromagnetic) field for
probe mass-NUT (charge-monopole) scattering. In the two latter cases, we also correctly
reproduced the fact that the classical trajectories are confined to a cone around the total
angular momentum ~J .
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Finally, our quantum-classical matching uncovers previously unknown (to us) number-
theoretic relations such as (7.31). We expect a similar number-theoretic relation to hold in
the context of probe scattering off Schwarzschild: that is, between the phase shift emerging
from the HeunC function, and the Appell F1 function which we know describes the classical
trajectory.

An obvious direction for future work is to apply similar methods to black hole scattering
away from the probe limit, i.e. to all orders in G/j but perturbatively in κ = m1m2

(m1+m2)2 . In
other words, it would be interesting to apply our method to calculate O(κn) “self-force”
corrections. Since our method is non-perturbative in G/j, its application away from the
probe limit will inevitably involve both energy loss to radiation and conservative tail effects
that are nonlocal in time [83–91].

One possible way forward would be to consider quantum scattering in the full Arnowitt-
Deser-Misner Hamiltonian [180, 181], without integrating out the gravitational field. This
would lead to a set of coupled wave equations for the two black holes and the gravitational
field, which could be solved to all orders in G/j but order-by-order in κ. To focus on
conservative dynamics, we could impose the boundary condition of a pure Schwarzschild
metric at r →∞, such that there is no leakage of energy via gravitational waves. However,
tail effect will be captured since outgoing gravitational waves would be reflected back to
the center by the ambient Schwarzschild metric in the far zone.

Calculating self-force corrections in terms of wave equations would have the additional
advantage of smoothing out the inherent divergences which are ubiquitous in coupling point
masses to GR, which requires very careful regularization in the standard treatments [124,
134, 135, 181–184].

Turning away from gravitational wave physics, our methods may have an application
to the study of the double copy beyond perturbation theory [113, 185–194]. It is by now
well-established that a pure NUT is related to the magnetic monopole by the double copy
in perturbation theory; indeed, this was an initial motivation for our work on the pure NUT.
We have now seen how to construct amplitudes for monopoles and NUTs to all orders, so we
have the theoretical data to explore this double copy to all orders. Of course this would just
be a prelude to the study of the double copy relating a charge and Schwarzschild to all orders.
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A Characteristic equation for the NUT spheroidal equation

In this appendix we calculate the index ν̄ for the prolate spheroidal equation eq. (7.24).
The index is linked to the scattering phase shift by −2δj = π lim~→0 ν. The index ν̄ is
related to the parameters of the spheroidal equation λ̄, µ̄, γ̄ by a transcendetal equation.
Following [177], we define the following variables:

A2k = −γ̄2 (ν̄ − µ̄+ 2k − 1)(ν̄ − µ̄+ 2k)
(2ν̄ + 4k − 3)(2ν̄ + 4k − 1)

B2k = (ν̄ + 2k) (ν̄ + 2k + 1)− 2γ̄2 (ν̄ + 2k) (ν̄ + 2k + 1) + µ̄2 − 1
(2ν̄ + 4k + 3)(2ν̄ + 4k − 1)

C2k = −γ̄2 (ν̄ + µ̄+ 2k + 1)(ν̄ + µ̄+ 2k + 2)
(2ν̄ + 4k + 3)(2ν̄ + 4k + 5) , (A.1)

as well as

α2k = A2kC2k−2

β2k = B2k . (A.2)

The variables λ̄, γ̄ and µ̄ for NUT scattering are defined in (7.25). In this appendix k is an
integer index, not to be confused with the plane wave momentum k. In terms of α2k, β2k,
we define two continued fractions, whose sum is required to vanish. These are

F+ = β0 − λ̄−
α0

β−2 − λ̄−
α−2

β−4 − λ̄−
. . .

F− = − α2

β2 − λ̄−
α4

β4 − λ̄−
. . . (A.3)

The transcendental equation for ν is then given by

F+ + F− = 0 . (A.4)

Note that it is usually treated as an equation for λ̄, which is known as the “spheroidal
eigenvalue” of the problem. In this case the index ν̄ is treated as an integer enumerating
the eigenvalue λ̄(ν̄). In particular, ν̄ and λ̄(ν̄) related by eq. (A.4) satisfy the continuity
relation lim

γ̄→0
λ̄(ν̄) = ν̄(ν̄ + 1). Here we use the same machinery in a different manner, by

fixing λ̄, γ̄, µ̄ and solving for ν̄. It is particularly useful for our purposes to substitute an
ansatz for ν̄ of the form

ν̄ =

√√√√λ̄+
∞∑
i=0

ciλ̄−i −
1
2 . (A.5)
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We can solve for the coefficients explicitly by substituing this ansatz in the transcendental
relation (A.4). The first 4 coefficients (corresponding to a 6PM expansion) are then

c0 = 1
4
(
2γ̄2+1

)
c1 =− γ̄

2

32
[
γ̄2−4(4µ̄2−1)

]
c2 = γ̄2

128
[
2γ̄4−(8µ̄2+1) γ̄2+12(4µ̄2−1)

]
c3 =− γ̄2

8192
[
77γ̄6−96(4µ̄2+1) γ̄4+32(104µ̄4−172µ̄2+41) γ̄2−576(4µ̄2−1)

]
. (A.6)

See (7.25) for the definitions of λ̄, γ̄, µ̄.
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