
UCLA
UCLA Electronic Theses and Dissertations

Title
Learning Task-sufficient Representation of Video Dynamics

Permalink
https://escholarship.org/uc/item/5681g3sr

Author
Bei, Xinzhu

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5681g3sr
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Learning Task-sufficient Representation of Video Dynamics

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Xinzhu Bei

2022

© Copyright by

Xinzhu Bei

2022

ABSTRACT OF THE DISSERTATION

Learning Task-sufficient Representation of Video Dynamics

by

Xinzhu Bei

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2022

Professor Stefano Soatto, Chair

This dissertation provides a generic solution to model dynamic systems whose hidden state

and the transition model are unknown in practice. We build the task-sufficient filtering

framework to maintain a finite, abstract, and learnable representation (memory) that is

sufficient to update itself, casually and iteratively, and to predict downstream task variables

of interest. We show our realization of the framework by recurrent neural networks as

universally-approximating function classes to imitate the functionality of a state transition

model and a task prediction model.

In addition, we provide practical methodologies to impose generic priors of the physical

scene on the hidden representation. We leverage (lower-level) topological and regularity

constraints of natural images, such as occlusion relations, to define object regions. Hence,

we capture the motion priors associated with different (higher-level) semantic categories,

that are combined to describe the dynamics of the whole scene.

The framework takes videos as sequential input streams and produces representations

of video dynamics. We show the success of our framework by applying it to solve real-

world computer vision tasks, including generic object tracking and video prediction. The

ii

learned dynamic models are extensible to multiple circumstances requiring a dynamically

and casually updated memory with uncertainty.

iii

The dissertation of Xinzhu Bei is approved.

Yizhou Sun

Quanquan Gu

Yingnian Wu

Stefano Soatto, Committee Chair

University of California, Los Angeles

2022

iv

TABLE OF CONTENTS

1 Introduction . 1

1.1 Learning cycle of human and machine . 1

1.2 Learning from video data . 3

1.3 Outline . 4

2 Modeling the Dynamic System . 6

2.1 Notations . 6

2.2 Modeling with unobserved variables . 7

2.3 Optimal Bayesian filter . 8

2.4 Sub-optimal filters . 9

2.4.1 Kalman filter . 9

2.4.2 Sequential Monte Carlo methods . 10

2.4.3 Particle filter . 12

2.4.4 Grid-based filter . 12

3 Freeing Task Variable from the State . 14

3.1 Notations . 15

3.2 Derivation of task-sufficient dynamics . 16

3.3 Relation to Bayesian optimal filter . 17

3.4 Properties of task-sufficient representation 17

4 Realizing Task-sufficient Dynamics with Deep Neural Networks 19

4.1 Recurrent Neural Networks . 19

v

4.2 Notion of task: generic object tracking . 22

4.3 Math formulation and toy experiments . 24

4.4 Methodology . 27

4.4.1 Measurement model . 27

4.4.2 State transition model . 28

4.4.3 Task prediction model . 29

4.4.4 Training loss . 29

4.5 Experiments . 30

4.5.1 Engineering concerns . 30

4.5.2 Training . 30

4.5.3 Evaluation . 31

4.6 Discussion on predicting the full posterior 33

5 Building Object Hypotheses with Generic Prior 37

5.1 Notion of task: video object segmentation 38

5.2 Methodology . 40

5.2.1 Prediction . 43

5.2.2 Object detection . 43

5.2.3 State update . 46

5.3 Experiments . 49

5.3.1 Implementation detail . 49

5.3.2 Quantitative and qualitative results 49

5.4 Discussion of matching results with standard benchmarks 52

vi

6 Learning Semantic-Aware Dynamics . 53

6.1 Notion of task: video prediction . 55

6.2 Methodology . 57

6.2.1 Semantic-aware dynamic model . 58

6.2.2 Warping with semantic informed dis-occlusion 62

6.2.3 Semantic-aware dis-occlusion synthesis 64

6.3 Experiments . 65

6.3.1 Quantitative results . 67

6.3.2 Qualitative results . 68

6.3.3 Ablation study . 70

6.3.4 Computation complexity . 72

6.3.5 Failure cases . 73

7 Conclusion . 76

8 Glossary of Notation . 78

References . 80

vii

LIST OF FIGURES

1.1 Comparison of human and machine learning cycle. 1

3.1 Markov chain of hidden state, observations and task variable. 15

4.1 Unrolling a recurrent neural network. 20

4.2 Moving MNIST digits undergoing occlusion. 25

4.3 Sample experiments on multi-modal tracking. 26

4.4 Visualizing the hidden state of our model at one temporal snapshot. 27

4.5 A zoom-in visualization of ground truth annotation and our tracking results. . . 33

4.6 A visualization of a subsequence where a distractor enters and leaves the search

region. 34

4.7 A visualization of temporal lose track. 36

5.1 Illustration of the update of tracking and detection 41

5.2 Illustration of our framework causally processing a video 42

5.3 Object detections from our pseudo-measurement module. 44

5.4 Illustration of the updated estimate of object regions. 48

6.1 Different representations have dynamics with different complexity. 53

6.2 Our video prediction architecture with learned semantic-aware dynamics. 55

6.3 The architecture of our semantic-aware dynamic model (SADM). 58

6.4 Two criteria for dis-occlusion detection. 63

6.5 Visual comparison on the Cityscapes dataset. 74

6.6 Ablation study by swapping semantic-aware encoders. 75

viii

6.7 Ablation study of with/without explicit modeling of semantic-aware dynamics. . 75

6.8 Failure cases. 75

ix

LIST OF TABLES

4.1 Evaluation Results on VOT 2017 benchmark. 35

5.1 Evaluation results on FBMS-59. 51

5.2 Foreground-background segmentation results on MoSeg. 51

5.3 Quantitative results on BVSD dataset. 52

6.1 Quantitative comparison on the Cityscapes dataset. 67

6.2 Quantitative comparison on the KITTI Raw dataset. 68

6.3 Quantitative comparison in next-frame prediction on the KITTI Flow dataset. . 69

6.4 Quantitative results of semantic map prediction on the Cityscapes dataset. . . . 70

6.5 Ablation study on the number of classes used for our semantic-aware dynamic

model. 72

6.6 Number of parameters in comparison with state-of-the-art models. 73

x

ACKNOWLEDGMENTS

I would like to thank my advisor, Professor Stefano Soatto, whose extraordinary achieve-

ments, unique insights into the field of computer vision, and rigorous attitude towards aca-

demic research have deeply influenced me. This provides a solid foundation for my 7-year

doctoral research journey and future professional career.

I would like to thank my committee members, Professor Yingnian Wu, Professor Quan-

quan Gu, and Professor Yizhou Sun, for their valuable input throughout my Ph.D. studies. I

would particularly like to thank Professor Quanquan Gu, as the tutor of two classes I TA’d,

who guided me on being a good knowledge transmitter.

I would also like to thank all my labmates from UCLA Vision Lab. We encourage each

other, learn from each other, and tackle complex academic problems together. Specifically,

my collaborator Dr. Alessandro Achille, who contribute the theoretic proofs of task-sufficient

dynamics in Chapter. 4; Dr. Yanchao Yang, who implemented the prediction module, and

Dr. Brian Taylor, who implemented the object proposal module, of Chapter. 5; Dr. Yanchao

Yang for co-authored Chapter. 6 as a version of [BYS21]. Also thank ARL W911NF-20-1-

0158 and ONR N00014-17-1-2072 for the funding support of Chapter. 6.

In addition, I would like to thank my family that always offer me support and security

coupled with unconditional love. Thank my parents for their life advice to help me make

the right choices. Thank my grandparents, whom both departed during my Ph.D. study in

the US, for their fostering in my childhood.

xi

VITA

2011–2015 Received B.S. in Electronic and Information Engineering, Xi’an Jiaotong

University, China. Program of Special Class for the Gifted Young of China.

2014 Research Intern, Cross-disciplinary Scholars in Science and Technology

Program, UCLA.

2015–2022 Graduate Student Researcher, Computer Science Department, UCLA.

2018–2019 Teaching Assistant, Computer Science Department, UCLA. Taught CM146

(Introduction to Machine Learning) winter 2018, spring 2018; CS260 (Ma-

chine Learning), fall 2018; CS269 (Foundations of Deep Learning), winter

2019.

2019 Operations Research Scientist Intern, Facebook Inc.

2019–2022 Visiting Applied Research Scientist, Meta Platforms, Inc.

xii

CHAPTER 1

Introduction

1.1 Learning cycle of human and machine

Figure 1.1: Comparison of human and machine learning cycle.

Human interaction with the physical world benefits from the ability to re-use past expe-

riences, both in the short-term, via functions of recent measurements gathered in the current

environment, and in the long-term, transferred from other environments. For instance, as

illustrated in the Fig. 1.1, imagine how kids learn the concept of “car”. They may have

concrete experiences of an actual car in the surroundings, from which they perceive various

kinds of signals through their body sensors. After exploring the environment more, they

start to propose general regulations or assumptions of these objects by summarizing similar

1

characteristics or distinguishing against the others. Under teachers’ instruction, they bind

their discoveries with the naming “car” and store it as a piece of knowledge in their long-term

memory. In the future, they can validate their cognition by solving practical problems, such

as predicting a car motion or deciding whether to cross the road.

Educationalists [Kol84] summarize this learning cycle as a four-stage loop (shown in Fig.

1.1): first be engaged in a concrete experience (CE) where we collect reflective observa-

tion (RO), then transfer into abstract conceptualization (AC) and finally validate by active

experimentation (AE). While these steps seem natural to humans, in the field of machine

learning (ML), it is fairly challenging as we need to cast the steps into machine-executable

programs.

Humans are constantly observing new things from their surroundings on-the-fly: eyes

take in lights reflected from objects’ surfaces, ears take in sound waves of the vibrate, the

nose inhales particles from the air, the skin activates on touching, and the tongue distin-

guishes food moleculars. Despite cutting-edge sensors have been developed to preceive the

world, however, mathematical models are still demanded to convert physical or digital sig-

nals from different data domains into unified, machine-readable data, which we call data

representations.

Knowledge is created from the data we memorized. Ideally, our brain should carry all we

received, so we do not lose track of any bit of information in order to solve future problems.

This is impossible for human to achieve this, given the bounded size of human brain, and in

the meantime, unnecessary - to safely across a road, we need to detect cars and understand

the traffic lights, yet no need to figure out their model, make or license number. We humans

are clever enough to store only useful information: the knowledge that is crucial for us to

solve practical problems impinging on our survival. Then one may ask: “what information

is regarded as useful for machines?” Well, as the machines are created to facilitate humans,

the knowledge stored in the machine memory should be valuable enough to achieve the goals

set up by humans.

2

Another question we are interested is: how to apply our learned skills to solve actual

problems? The knowledge should be generalized enough to transfer among different situ-

ations. For example, the program that tracks an apple falling from the tree is demanded

to track a falling orange, even if it has not seen an orange yet. This involves training the

machine to capture generic regularities of the physical world, either from direct supervi-

sion, by penalizing results different from what we expected, or from the modeling itself, by

introducing decent architectures to match desired functionality.

Our ultimate goal is to develop machine learning models to imitate the human learning

behavior based on real-world sequential data like videos. In this dissertation, we first intro-

duce the concept of “task-sufficient dynamical model”, then show that it is realizable with

deep learning architectures, and further suggest feasible methodologies to impose generic

priors of the physical world on the learned representation.

1.2 Learning from video data

Although the observations of the world can be collected from different resources, we choose to

instantiate the models with optical measurements of videos captured by a variant of cameras,

serving to transform the measurements of the light of the scene into digital signals.

Even with modern technologies of fast-speed computation units and high-volume mem-

ory devices, modeling sequential video data can be very challenging. First, as videos are

high-dimensional in both spatial and temporal horizons, one can easily lose track of long-

term memory if there is no generalization from the past data. Hence, videos are noisy and

incomplete: they lose one entire dimension in the projection from the 3-D world to the 2-D

image, whose quality suffers from numerous failures such as vibrating, blurring, or being out

of focus. Thus, the captured video is just a single datum sampled from some probability

density, and there is no way for us to approach the “real state” of the world if no proper

uncertainty model is established.

3

However, from another perspective, if we understand how pixels evolve from frame to

frame, we should have captured some regularities imposed by the physical world. For exam-

ple, a cluster of pixels is more likely to move together as they belong to the same object; an

object constantly appear and disappear in the video might be occluded by another object

closer to the camera. Learning the dynamics of videos is, in essence, the problem of modeling

the generic regularities of the scene [MSK04] under certain assumptions or constraints.

1.3 Outline

In Chapter. 2, we first describe a classical way of modeling a dynamic system by Bayesian op-

timal filter, followed by an introduction of a few sub-optimal filters proposed to approximate

the complex posterior probability.

In Chapter. 3, we propose the task-sufficient filtering framework integrating an extra

task variable into the filtering framework, that maintains an abstract hidden state sufficient

to update itself and predict the task variable. Relation and comparison with the classical

Bayesian filtering framework are discussed.

In Chapter. 4, we show that the proposed framework is realizable by recurrent neural

networks (RNNs) whose hidden state represents an estimate of the abstract hidden state, and

can be supervised by annotated data from the task. We validate the learned representation

by producing a maximum a posteriori (MAP) estimate on the task posterior (after bypassing

a task prediction model) and comparing on a standard object tracking benchmark.

In Chapter. 5, we show the significance of introducing generic priors, such as topological

and regularity constraints imposed by the physical scene, to the modeling. We demonstrate

the model’s capability of segmenting moving objects from the video frames as video object

segmentation problem without supervision from human annotated data.

In Chapter. 6, we analyze the maximum capacity of the learned representation by en-

forcing it to predict the high-dimensional observation data not yet observed (future data).

4

The process can be used as a generic proxy task for generating representations for different

downstream tasks. We model by introducing hypotheses of partitioning the video frames

into semantically-consistent regions and learning the class-specific motion regularities from

unlabeled video data.

5

CHAPTER 2

Modeling the Dynamic System

People use a stochastic process to describe the evolution of a random phenomenon against

some other variable or set of variables, such as time series. Since the middle of the last cen-

tury, stochastic processes have been widely used to model mathematical systems in biology,

chemistry, neuroscience, physics, control theory, signal processing, etc. Concrete examples

include the growth of a bacterial population, the variations in stock prices, or a location of

a moving object.

In this chapter, we first review notations and terminologies associated with a stochastic

process (Sec. 2.1) and describe general assumptions of the models with unobserved variables

(Sec. 2.2). Then we define an optimal filter with classical Bayesian settings (Sec. 2.3),

which is realized by several sub-optimal filters (Sec. 2.4) in practice, such as the Kalman

filter (KF), particle filter (PF), and grid-based filter (GBF).

2.1 Notations

Each random variable of the stochastic process is uniquely associated with an index such

as a timestamp t. A stochastic process of random variable x can be denoted as XT
t=1

.
={

x1,x2, . . . ,xT

}
,1 where each xt represents the random variable at time t. We use the

subscript or superscript of XT
t=1 to indicate the starting and ending timestamp of the series,

respectively. In this dissertation, we omit the subscript if the starting timestamp is 1, i.e.,

1Note that xt here is regarded as an abuse of function notation - xt refers to the random variable indexed
by t, not the entire stochastic process.

6

XT .
= XT

t=1.

The random variables xt all take values from the same mathematical space, known as

state space, which can be either discrete (e.g., finite set of numbers) or continuous (e.g., real-

valued numbers). Due to the randomness, a stochastic process can have many outcomes,

while a single outcome of the process is called a sample function or realization.

2.2 Modeling with unobserved variables

In many real-world problems, the variables we wish to estimate are not directly observed

but inferable from other observations. For example, the quality of life of a person is gener-

ally unobservable, of which the measurements come from measurable variables like wealth,

employment, health, etc. To be consistent, we use random variable x to denote unobserved

signals (hidden states) and y as the observations of x.

Causality. The observations arrive sequentially in time, and one wishes to update the

posterior density online, or casually. We assume that the system output depends on past

and current inputs, not future inputs, i.e., the system state xt+1, depends only on inputs{
y1, . . . ,yt

}
. For instance, the model aiming to track the status of an aircraft in real-time

takes in sensor data from the radar, which come one datum at a time and only available up

to the current time.

Markov property. Per the computation complexity concern, we don’t want to store all

the past data in order to make current or future prediction. This requires the model to be

“memoryless”, or Markovian, that the conditional probability of future states of the process

(conditional on past and present) depends only upon the present state. In other words, we

assume P(xt+1 | x1, . . . ,xt) = P(xt+1 | xt).

Problem definition with unobserved data. Assuming that the stochastic process is

modeled by a random variable x, known as the “hidden state”. The state cannot be directly

observed, but can be monitored through measurements of another random variable y which

7

is available up to current time t, i.e., Y t .
= {y1, . . . ,yt}. The goal is to build an estimate of

the hidden state (e.g., a posterior density) given the observations, either at the current time

P(xt | Y t) (filtering), or at future times P(xt+τ | Y t) for some τ > 0 (prediction).

2.3 Optimal Bayesian filter

Bayesian theorem computes and updates the posterior probability after obtaining new data,

based on the conditional probability of the latent variable given the observations, and the

prior information (beliefs) about the latent variable itself.

Bayes’ theorem. Given the proposition x and its evidence y, the conditional probabil-

ities of x given y is true can be computed as:

P(x | y) = P(y | x)P(x)

P(y)
(2.1)

where P(x | y) is the posterior probability of x after taking the observations of y into

account; P(x) is the prior probability which describes one’s beliefs about x before data y

is obtained; and P(y | x) is the likelihood function, interpreted as the probabilities of the

evidence y given x is true. Essentially, Bayesian theorem allows us to update our prior

beliefs P(x) after evidence data y is obtained.

Bayesian filtering. Applying the Bayes’ theorem to the modeling of the stochastic

process yields Bayesian filtering: With an initial distribution P(x0), the unobserved signal

(hidden states), XT .
=

{
x1, . . . ,xT ;xt ∈ S

}
is modelled as a Markov process with a tran-

sition probability P(xt+1 | xt), whose observations Y T .
=

{
y1, . . . ,yT

}
are conditionally

independent on the process XT and of marginal distribution (likelihood) P(yt | xt).

At any time t, the model aims to estimate the posterior distribution P(X t | Y t) given

by Bayes’ theorem2:

P
(
X t | Y t

)
∝ P

(
Y t | X t

)
P
(
X t

)
(2.2)

2We use lowercase t to refer to any timestamps within 0 < t ≤ T , whereas uppercase T refers to the last
index of the series. T → ∞ if the sequence is infinite in terms of time.

8

or recursively and causally as

Prediction: P
(
xt+1 | Y t

)
=

∫
P
(
xt+1 | xt

)
P
(
xt | Y t

)
dxt (2.3)

Update: P
(
xt+1 | Y t+1

)
∝ P

(
yt+1 | xt+1

)
P
(
xt+1 | Y t

)
(2.4)

where in Eqn. 2.3 we marginalize over xt. We omit the denominator as it is just a normalizing

factor.

As such, all the information past observations Y t contained about the hidden state is in

the posterior density P
(
xt | Y t

)
, called “belief state”(BS). This allows people to maintain a

stochastic system with finite memory: to update to P
(
xt+1 | Y t+1

)
after yt+1 being observed,

one only need to memorize P
(
xt | Y t

)
, given that the transition model P

(
xt+1 | xt

)
and

the measurement model P
(
yt+1 | xt+1

)
are known beforehand.

2.4 Sub-optimal filters

Since the posterior density function can be very complex, obsessive attempts have been made

to obtain approximations of the distributions. We list the most classical methods below.

2.4.1 Kalman filter

The Kalman filter [Kal60] approximates the posterior distribution as a multivariate normal

(Gaussian) distribution and keeps track of the mean (or estimate) and variance (or uncer-

tainty) of the hidden state on each dimension over time. With this assumption, the transition

and measurement models become closed-form and linear. This character makes it popular in

many areas like engineering and econometric applications, especially during the 1960s and

1970s, given the modest computation resources available at that time.

Kalman filter is one of the most efficient approximations of the Bayesian optimal filter,

as the transition model, measurement model and belief state in Eqn. 2.3 and Eqn. 2.4 are

9

all parameterized normal distributions, i.e.,

Transition model: P
(
xt+1 | xt

) .
= N

(
At+1xt;Σt+1

)
Measurement model: P

(
yt+1 | xt+1

) .
= N

(
Bt+1xt+1;Γt+1

)
Posterior density: P

(
xt+1 | Y t+1

) .
= N

(
x̂t+1;Ψt+1

) (2.5)

where xt ∈ Rm is the hidden state, yt ∈ Rn the observations and N (µ;Σ) is a normal

distribution with mean µ and covariance matrix Σ. The transition model transforms xt

to the next step by a linear matrix At+1 ∈ Rm×m and an estimated covariance matrix

Σt+1 ∈ Rm×m, the measurement model projects xt+1 into the space of observation yt+1 by

a matrix Bt+1 ∈ Rn×m with an estimated covariance of observation noise Γt+1 ∈ Rn×n.

Hence, the posterior density it maintained, is also a normal distribution parameterized by a

posteriori state estimate x̂t+1 ∈ Rn and a covariance estimate Ψt+1 ∈ Rn×n.

Kalman filter dynamically maintains a state estimate (mean) and its covariance matrix

of the Gaussian posterior density in a way that minimizes the mean-square error in the state

estimation as ∥xt − x̂t∥22. Theoretically, the Kalman filter is the optimal filter if the “true”

system is linear, which seldomly holds in real-world problems. Thus, the extended Kalman

filter (EKF) is introduced as a non-linear enhancement of the Kalman filter, allowing its state

transition and observation model to be non-linear functions. However, unlike the Kalman

filter, the EKF is not an optimal estimator in general. In addition, EKFs can quickly diverge

if the initial estimation of the state or the process instantiates incorrectly.

2.4.2 Sequential Monte Carlo methods

To not be subject to any linearity or Gaussianity constraints, from the 1990s, considerable

efforts have been devoted towards the development of Monte Carlo (MC) integrated methods

[Dou98, DGA00, GSS93, Iba01, Laf96]. The core idea is to approximate the intractable

posterior density by a large number of samples.

More precisely, at any time step t, assume that we are able to sample N independent

10

and identically distributed (i.i.d.) random samples
{
X t[1], . . . ,X t[N]

}
, called “particles”.

Equipped with law of large numbers, one wish that with decent amount of particles, the

empirical measure:

P̂N

(
X t | Y t

) .
=

1

N

N∑
i=1

δXt[i]

(
X t

)
(2.6)

is able to simulate the posterior of the optimal filter as in Eqn. 2.2. Here X t[i] denotes the

ith particle within time range [1, t] and δa stands for the Delta-Dirac mass located in a.

Sequential Importance Sampling (SIS). Given that the posterior distribution can be

multi-variate and non-standard, however, it is usually impossible to sample efficiently from

the posterior distribution with finite number of particles. To tackle this, people introduce

importance sampling methods, whose core idea is to approximate the density by sampling

particles from an arbitrary “support” distribution π, called importance sampling distribution,

each with an importance weight. Formally, given the current simulated particles
{
X t[i]; i =

1, . . . , N
}

sampled from the distribution π
(
X t | Y t

)
, the weighted empirical measure is

given by3:

P̃N

(
X t | Y t

) .
=

N∑
i=1

st[i]δXt[i]

(
X t

)
; where st[i]

.
=

P
(
X t[i] | Y t

)
π
(
X t[i] | Y t

) ∈ RT (2.7)

By injecting into the iterative steps in Eqn. 2.3 and Eqn. 2.4 of optimal Bayesian filter, we

can formulate SIS as an iterative process updating the importance weight:

st[i] ∝ st[i] · P
(
yt+1 | xt+1[i]

)
· P

(
xt+1[i] | xt[i]

)
(2.8)

where st[i] ∈ R1, P
(
yt+1 | xt+1[i]

)
can be considered as a likelihood measure located at the

ith particle, and P
(
xt+1[i] | xt[i]

)
is the transition model of each individual particle.

3Here we denote P̃N (·) as the weighted empirical measure, to distinguish with the unweighted version

denoted as P̂N (·).

11

2.4.3 Particle filter

In practice, a general issue the SIS method encountered is that, as the time increases, the

distribution of importance weights st[i] becomes more and more skewed, known as the “de-

generacy” problem. As such, Gordan et al. [GSS93] proposed the bootstrap particle filter,

which in essence is an practical approach to eliminate the particles with low importance

weights while duplicate particles with high importance weights.

Pros and Cons. The family of Monte Carlo methods in filtering is very flexible, easy to

implement, and parallelizable in many general settings. However, with the thriving of deep

neural networks, particle filters become obscure to fit into an end-to-end training schema such

as the back-propagation of a neural network. Although a few attempts have been made to

cast the particle filtering into deep neural networks [JRB18], they are either computationally

inefficient to run on GPUs with batch-wise operator, or requires complicated hand-craft

design.

2.4.4 Grid-based filter

Grid-based filters (GBFs) can be regarded as a brute-force sampling strategy in the family

of Monte Carlo methods. In a grid-based representation, samples are located at a fixed-size

mesh grid with equal intervals, whose importance weights reflect the probability at that

location. Compared to other sequential Monte Carlo methods such as particle filters, the

grid-based filter also retains the advantage of having no underlying assumption of linearity

or Gaussianity, while eliminates the important sampling step at each update, which can be a

potential weakness point in the iteration. Even in continuous scenarios, GBFs can produce

accurate state estimate as no approximation errors are caused by inappropriate sampling or

resampling. However, given limited computation capability in the early years, GBFs were not

studied much in the past decades before they were deprecated and replaced by methods with

down-sampling (e.g., particle filters) proposed to avoid exponential complexity. Nowadays,

12

it is worthy for us to re-visit the algorithm of GBFs, as they are naturally compatible with

tensor operations of deep neural networks.

13

CHAPTER 3

Freeing Task Variable from the State

In Chapter. 2, we reviewed the Bayesian optimal filter to model a dynamic system, whose

core component is to maintain a posterior density of the hidden state that is sufficient to

update itself casually and iteratively as a Markov process. However in practice, the model

is intractable when it is realized, unless proper approximation methodologies are integrated

to represent the posterior density, the transition probability, and the likelihood function.

Even with a perfect simulation of the probability density, there are problems retained in

such a framework. First, the hidden state variable x ceases to have the physical meaning

as there is no way to associate it to the “true state” of the system, assuming one exists,

absent a supervision mechanism that ties it to the real state, such as a direct observation

yt
.
= xt. Hence, the “true” transition and likelihood models are seldom available in practice.

Even if the state space is well-defined or some characters of the underlying distribution (like

Gaussianity) are known, there are still infinitely many models and state sequences that can

generate the given measurement sequence for any finite length.

What is always well-defined is the notion of a task variable - the variable of interest. Here,

we free the task variable from the hidden state and demand that the latter be sufficient to

update itself and predict the task variable [AS18]. In this chapter, we first derives the

recursive task-sufficient filtering steps that involve the state update and prediction along

with a task variable z (Sec. 3.2), and then address its relation to the Bayes’ filtering (Sec.

3.3 and Sec. 3.4).

14

3.1 Notations

Figure 3.1: Markov chain of hidden state x, observations y and task variable z.

Task variable. We denote zt as the quantity of interest (task) at time frame t, and

ZT .
=

{
z1, . . . ,zT

}
as the time series of task up to time T . We omit the subscript if the

time series starts with t = 1, i.e., ZT .
= ZT

t=1.

Sufficiency. Given random variable x, y and z, the posterior density P(x | y) is

sufficient of y for z if:

P(z | y) =
∫

P(z | x)P(x | y)dx (3.1)

Hence, we say x is a sufficient representation1 of y for z if they form a Markov chain of

y → x → z, i.e., P(z | x,y) = P(z | y). Note that, the posterior distribution of the

sufficient representation is always sufficient, as

P(z | y) =
∫

P(z,x | y)dx =

∫
P(z | x,y)P(x | y)dx =

∫
P(z | z)P(x | y)dx

while the converse does not hold. We abuse the notation “sufficient” to refer to the case

when both the variable x is a sufficient representation and the posterior of x is sufficient.

1We call x a representation of y if x are sampled by any stochastic function of y, i.e., x ∼ P(x | y). A
simple but common case in machine learning is that x is a deterministic function of y, x

.
= ϕ(y;w) from

some functions parameterized by w.

15

Fig. 3.1 demonstrates a common case of formulating a sufficient representation in a time

series. Denote xt, yt and zt the hidden state, observed data and task variable at any time t

where 1 ≤ t ≤ T , the hidden state xt is a sufficient representation of all the observed data

up to time t as Y t, in order to predict the task variable zt, if no new observation comes.

3.2 Derivation of task-sufficient dynamics

As illustrated in Fig. 3.1, given hidden state xt with no physical meaning, our goal is to

learn a parametric model to predict the task posterior P
(
zt | xt;wpred

)
with parameters

wpred, and a state update model P
(
xt+1 | xt,yt+1;wupdate

)
, to maintain an estimate of the

posterior density P
(
x;wmemory

)
representing the (short-term) memory of the system. For

simplicity of notation, we omit the parameters w as it is understood that all functions P(·)

are parameterized.

Then, starting from an initial distribution P
(
x0

) .
= P

(
x0 | ∅

)
, we impose that the

learned model be sufficient for task prediction and state update as following.

Task prediction. The hidden state xt is sufficient of Y t for the task zt at time t:

P
(
zt | Y t

)
=

∫
P
(
zt | xt

)
P
(
xt | Y t

)
dxt (3.2)

This means that the memory P
(
xt | Y t

)
and the task posterior distribution P

(
zt | xt

)
that

predicts the task variable given the state, are sufficient to approximate the real posterior

density P
(
zt | Y t

)
of task given past observations.

State update. The posterior density of xt is sufficient for xt+1:

P
(
xt+1 | Y t+1

)
=

∫
P
(
xt+1 | xt,yt+1

)
P
(
xt | Y t

)
dxt (3.3)

That is, the posterior of the representation xt contains enough information about the dy-

namics to update itself given new measurements.

16

3.3 Relation to Bayesian optimal filter

The classical Bayesian filtering (described in Sec. 2.3) can be considered as a particular case

of the above process when the task is to predict the data at the next time. The task-sufficient

dynamics is also optimal but does not need to apply Bayes’ rule in the iterative process.

Precisely, by applying the Bayes’ rule to the state update term P
(
xt+1 | xt,yt+1

)
yields:

P
(
xt+1 | Y t+1

)
=

∫
P
(
xt+1 | xt,yt+1

)
P
(
xt | Y t

)
dxt

∝
∫

P
(
yt+1 | xt,xt+1

)
P
(
xt+1 | xt

)
P
(
xt | Y t

)
dxt

∝ P
(
yt+1 | xt+1

) ∫
P
(
xt+1 | xt

)
P
(
xt | Y t

)
dxt

which is indeed the combination of the iterative state prediction (Eqn. 2.3) and update step

(Eqn. 2.4) in Bayesian filtering framework. Note that P
(
yt+1 | xt,xt+1

)
= P

(
yt+1 | xt+1

)
holds with the Markovian property. Hence, by setting the task variable zt

.
= yt+1, Eqn. 3.3

is simply a marginalization over random variable xt:

P
(
zt | Y t

) .
= P

(
yt+1 | Y t

)
=

∫
P
(
yt+1 | xt

)
P
(
xt | Y t

)
dxt (3.4)

3.4 Properties of task-sufficient representation

First, note that we only process data causally, one at a time, yet we obtain an estimate of the

posterior given all past measurements. There is no need to carry around, store, or process

batches of data.

Also, note that the posterior of the state, P
(
xt | Y t

)
, represents the short-term (run-

ning, or ontogenic) memory: it evolves over time and adapts on the fly. Task prediction and

state update models, on the other hand, are static, as their time-dependence is only through

their inputs (current measurement and hidden state). Once learned for a task, they can be

transferred to other models. They represent the long-term (phylogenic, transferable) mem-

ory of the system. Therefore, our approach naturally breaks down into three components:

17

a recurrent update, a task-prediction model, and a state transition model, similar to the

classical filtering equations.

Like in classical filtering, memory propagation is exact. However, unlike the filtering

equations, we can directly learn the transition probability P
(
xt+1 | xt,yt+1

)
without using

Bayes’ rule, and therefore there is no need to compute the (generative) likelihood function

P
(
yt+1 | xt+1

)
, which is generally intractable for high-dimensional and complex data such

as natural images. This is a key innovation of our framework.

Finally, unlike Eqn. 2.4, our model only involves distributions over zt and xt, which

are typically of lower dimension than the data yt, or at least have a simpler distribution

(e.g., Gaussian). When the data is generated by a linear system driven by white, zero-

mean Gaussian noise with known parameters, and the task is one-step prediction, our model

reduces to the Kalman filter, with some subtle differences.2

The inference criterion for all the unknowns involved (hidden state and model parameters)

is the maximum likelihood. The models are chosen in the parametric function class like deep

neural networks, as we describe in the next chapter.

2For example, Pt

(
xt | Y t

)
could either be a Gaussian distribution over speed and position (in which case

the update rule is trivial) or a Dirac delta over the mean and covariance matrix (in which case the update
rule is the Riccati equation, but there are no integrals to be approximated with Monte-Carlo).

18

CHAPTER 4

Realizing Task-sufficient Dynamics with Deep Neural

Networks

In Chapter. 3, we propose a task-sufficient filtering framework that produces a state estimate

that is sufficient to update itself and predict a concrete task variable. This chapter proposes

a straightforward approach to realize our task-sufficient framework by recurrent neural net-

works (RNNs), and to validate the learned dynamic representation on the real-time visual

object tracking task. The implementation is conceptually simple: it does not require specific

nominations of the physical or semantic attributes of the targeted objects. We also show that

the proposed architecture can provide a full multi-modal posterior estimate (rather than a

point estimate of the object location in common trackers), which is extensible to different

circumstances that require a dynamically and casually updated memory with uncertainty.

4.1 Recurrent Neural Networks

To realize the model, we choose recurrent neural networks [RHW86], a powerful function

class and natural candidate to represent the memory and its transition. A recurrent neural

network (RNN) is a particular type of deep neural network architecture designed to enable

connectivity between nodes along a temporal sequence. RNNs accumulate the input infor-

mation at each time and store the data in a finite, discontinuous internal memory space.

Unlike fully-connected feedforward neural networks, RNNs can process arbitrary lengths of

input sequences.

19

Figure 4.1: Unrolling a recurrent neural network. Here we omit the the parameters w as it

is understood that all functions ϕ
(
·;w

)
are parameterized.

Vanilla RNN is a directed acyclic graph that can be unrolled and replaced with a strict

feedforward neural network. As shown in Fig. 4.1, the hidden representation of the RNN at

each step, denoted by ht+1, persists the historical information by applying a transition model

ϕrnn to the previous state, and absorbs the representation of the current-time observation

as ϕin

(
yt+1

)
. Note that we use the notation ht instead of the generic hidden state variable

xt to specifically refer to the hidden representation of an RNN, which can be considered as

an estimate of the hidden state, i.e., ht
.
= P̂N

(
X t | Y t

)
. The network modules, ϕrnn, ϕin

and ϕout are all time-invariant, so that the same functions can be deterministically applied

to every temporal snapshots, no matter where the node locates or how long the sequence is.

LSTMs, or long short-term memory networks, were first introduced by Hochreiter and

Schmidhuber [Gra12] in 1997 as a type of RNNs with special designs to (partially) solve the

vanishing gradient problem in implementation: given limited computation precision of the

computation units, the gradient values of a vanilla RNN can approach zero or infinity during

training, since we can always unroll an RNN into an infinite-length feedforward network

whose gradient’s precision error can aggregated throughout the long back-propagating chain.

To tackle this, LSTMs introduce gates at each time step to selectively “persist” or “forget”

information, where each gate is a weighted sum of input data and previous hidden state

followed by an activation function.

20

Convolutional LSTM. Many variants are introduced in implementing the LSTM units,

and a typical enhancement is to integrate with the convolution operator into the recursive

unitl, called Conv-LSTM [SCW15]:

Forget gate: f t+1
.
= σ

(
wf,in ∗ yt+1 +wf,h ∗ ht +wf,c ◦ ct + bf

)
Input gate: it+1

.
= σ

(
wi,in ∗ yt+1 +wi,h ∗ ht +wi,c ◦ ct + bi

)
Cell vector: ct+1

.
= f t+1 ◦ ct + it+1 ◦ tanh

(
wc,in ∗ yt +wc,h ∗ ht + bc

)
Output gate: ot+1

.
= σ

(
wo,in ∗ yt +wo,h ∗ ht +wo,c ◦ ct+1 + bo

)
Hidden vector: ht+1

.
= ot+1 ◦ tanh

(
ct+1

)
(4.1)

where yt is the input vector (observation) to the LSTM unit; f t, it and ot ∈ (0, 1)d are

d-dimensional activation vectors of the forget gate, the input gate, and the output gate,

respectively; ht and ct ∈ (−1, 1)d together represent the hidden state up to time t (i.e.,

X̂
t .
=

[
ct,ht

]
), called “hidden vector” and “cell vector” respectively; σ(·) and tanh(·) are

sigmoid and hyperbolic tangent activation functions; ∗ is the convolution operator; ◦ denotes

the Hadamard product (element-wise product). The initial state x̂0
.
=

{
c0,h0

}
is set to all

zeros.

LSTMs demonstrate significant impacts on multiple disciplines like machine translation,

handwriting recognition, and speech recognition, etc., but are less applicable in the domain

of computer vision. One possible reason is that, compared to natural language data, image

or video data are generally high-dimensional, thus require more computation and memory

resource to conduct the training successfully.

In the next section, we will introduce an approach to implement the task-sufficient fil-

tering framework by a convolutional LSTM, whose hidden vector is used to represent a

posterior estimate of the hidden state, hence can predict the probability of the task variable

conditioned on the data after bypassing a task prediction model.

21

4.2 Notion of task: generic object tracking

The task-sufficient dynamic framework is general and can be instantiated for many tasks,

but we choose to validate on the generic object tracking: Given one sample image of an

arbitrary object (target), detect and localize it in all subsequent frames.

Notation. Given a video sequence as observation Y T .
=

{
y0, . . . ,yT

}
, where each

frame yt ∈ RH×W , the goal is to predict (the posterior density of) the task variable zt

at each subsequent time. The physical meaning of the task variable varies, for instance,

zt ∈ R5 .
= [c, px, py, ow, oh] as an object’s index c and the scaled translation group for axis-

aligned bounding boxes, where the translation component determines the center (px, py),

and the size (ow, oh) of the bounding boxes. More in general one could consider the affine

or projective group, or general deformations where zt ∈ {0, 1}H×W is a binary segmentation

mask. The hidden state xt represents whatever internal representation necessary to predict

the task variable, and to update the model. Supervision consists of a single sample bounding

box z∗
0
.
= z0

(
y0

)
in the initial frame y0,

1 so that the initial posterior density is:

P
(
z0 | y0

) .
= δz∗

0

(
z0

)
(4.2)

where δz∗
0
is the Dirac delta function at position defined by z∗

0.

Recent tracking schemes have attempted to infer a model (system identification)

along with a point estimate2 of the target pose in subsequent frames, exploiting temporal

regularity and complex heuristics for data association [KMM12, HGS16] that often result in

trackers that drift and lock to persistent portions of the background rather than the object

of interest.

1We abuse the notation and write zt

(
yt

)
to indicate the video frame yt restricted to a point estimate

zt at time t, for instance an image patch cropped by a rectangular bounding box. Typically, we use z∗
t to

denote a ground truth annotation, while use ẑt to represent an estimated location.

2A point estimate is one particular state – which is generally multi-dimensional – in contrast with a
distributional estimate, also known as “belief state”, which is the posterior density. This does not mean that
the state is a point on the image plane; it could be the parameters of a reference frame or bounding box
attached to the object.

22

Probabilistic inference trackers typically represent states of objects as a distribution

with uncertainty. Various kinds of probabilistic inference models have been applied to track-

ers, including Kalman Filter [Rei79, RSL11], Extended Kalman Filter [ML11] and Particle

Filter [KBD04, BRL09, CFL06, YDD05, HF09], the latter when the posterior is assumed to

be multi-modal. Other less-popular variants include Exponential Filters, Sum-of-Gaussian

filters, and various numerical integration schemes for the optimal filter that tend not to scale

to high-dimensional state spaces.

CNN-based trackers generally model tracking as a similarity learning problem. [SMG17]

reformulates the classical DCF framework as a one-layer convolutional neural network. By

extracting and comparing pre-trained CNN representations of the target image patch and

the candidate patch [WY13, HYK15, WOW15, MHY15, DRK16], the real-time computa-

tion can be achieved with none or little online training. Other losses have been employed by

[SBC, ZGH16, HSA17, TGS16, SBC17] tailored to Siamese or triplet networks. Many end-to-

end training trackers either formulate the tracking problem as regression problem [HTS16] or

classification problem [NH16]; [BVH16] is the pioneering work for fully convolutional Siamese

network and there are a large number of follow-up works, e.g., [HLT18, FPZ17, LYW18];

[HLR17, SR17, CKL17] attempt to learn decision-making policies including feature selection

and re-initialization actions; [CCY, COL17, WTX18] use attentional networks.

RNN-based trackers include end-to-end trainable recurrent neural models for multiple

purposes. [KMM15, NZH17, KBP17] use RNN to focus computation on task-related infor-

mation by presenting attention module or spatial supervision;[ZMW17] formulates an RNN

agent that can be trained with reinforcement learning to capture inter-frame correlations.

RNNs are natural candidates for accumulating temporal information in tracking. Many

works [SAS17, GFZ17, YC17, GFF18, KLR18] explored the potential of RNN to perform

appearance feature embedding of the target. There are a few attempts in using RNN to refor-

mulate filtering or prediction. [MRD17] use customized RNNs to cast the classical Bayesian

state estimation and data association under the track-by-detection framework. [XGY17] use

23

LSTM to predict future actions of cars in the driving dataset.

4.3 Math formulation and toy experiments

Rather than picking a plain RNN architecture, we wish to impose some constraints from the

problem domain. Deep convolutional networks trained with the cross-entropy loss approx-

imate, at their penultimate layer, produces the likelihood of the classes given the current

image and a region hypothesis. They are, therefore, the natural candidate for a component

of our model. A second component exploits short-term regularities that are captured to

first-order by correlation. Finally, a recurrent network with finite memory imposes a Markov

structure without requiring an explicit model. These choices inform the design of our archi-

tecture that captures the complex and multi-modal posterior estimates of the task variable;

in tracking, this is the pose of the projection of objects onto the image.

More specifically, we would like to build a recurrent network (RNN) that which im-

plements the transition probability P
(
xt+1 | xt,yt+1

)
(short-term memory), and a decoder

network (DNN) that realizes P
(
zt+τ | Y t

)
(long-term memory), from which the task memory

P
(
xt | Y t

)
can be updated via a deterministic integrator. Following the sampling schema

of Grid-based Filters (described in Sec. 2.4.4), we approximate the posterior distribution by

sampling from a mesh grid defined within a local window of the image domain, called the

region-of-interest (ROI):

PM×N

(
xt | Y t

) .
=

1

M ×N

M×N∑
i=1

st[i] · δxt[i]

(
xt

)
(4.3)

where i indexes the sampling point on a 2-D mesh grid with size M × N ; st[i] ∈ R1 de-

notes the (posterior) density at the location of the ith sample xt[i]; and δxt[i](·) is the Dirac

delta function at the ith sample point. Similar grid-based sampling strategies also apply to

approximate the likelihood function of observed data as Sim
(
yt; z

∗
0

)
(Sec. 4.4.1), the state

update probability P(xt+1 | xt,yt+1) (Sec. 4.4.2), as well as the posterior of the task variable

24

P
(
zt | Y t

)
(Sec. 4.4.3), as described next.

Toy experiments of single and multiple object(s) tracking at pixel-level are demon-

strated in Fig. 4.2 and Fig. 4.3.

Figure 4.2: Moving MNIST digits undergoing occlusion (central vertical bar in each image).

The blue rectangle is the ground truth bounding box. In red is the posterior probability

inferred by the network that a given pixel belongs to the digit (exaggerated for clarity).

In Fig. 4.2, we show an illustrative experiment where the task is pixel-level localization

(or video segmentation). The network is initialized with the position of the digit in the first

frame with the shape unknown. In the top row of Fig. 4.2, the network keeps track of the digit

while it is occluded and remembers the approximate shape of the digit. When two similar

digits cross, the network keeps tracking. In the central row, the object to track is initially

occluded, and its initial velocity is unknown. The network evolves a complex posterior over

the position of the object. When the object becomes visible again, the posterior collapses

on the object. And in the bottom row, again, the object is initially occluded. When two

plausible objects become unoccluded, the network keeps tracking both of them using a multi-

25

modal posterior rather than collapsing on only one of them.

Note that the initial shape of the target is unknown and becomes increasingly better

defined as the sequence goes on, and then more information is accumulated. Meanwhile,

a simplistic multi-tracker can be implemented naively using the realization just described

by assuming that each object exists and moves independently of others (a patently wrong

assumption) and evolving independent representations for each. With the similar setting as

Fig. 4.2, in Fig. 4.3, we model the hidden state as a joint state estimation of multiple objects

and assume independent task posteriors for each target. The number of targets is known,

while the shape is unknown. The posterior correctly converges to two modes. At the top

row, the network correctly tracks the top “5” and remembers the approximate shape when

being occluded. The network also correctly collapses on the bottom “5”, initially partially

occluded. And at the bottom row, two targets are both initially occluded. The network

disperses the probability with large uncertainty until the digits are detected.

Figure 4.3: Sample experiments on multi-modal tracking with the same setting as Fig. 4.2.

Also note that, the evolution being deterministic and the density unimodal, does not

mean that the task posterior (object location) is. Fig. 4.2 shows the latter is typically multi-

modal, reflecting multiple possible locations and trajectories for the objects of interest, even

if their dynamics are relatively simple. Note also that, even though images are processed

26

one at a time, the hidden state represents the cumulative memory. This is illustrated in Fig.

4.2, where a target initially partially occluded becomes visible during the sequence. Once

fully seen, it remains known (and its position predicted) even when fully occluded.

4.4 Methodology

Figure 4.4: Flow-chart of our model at one temporal snapshot. ht typically refers to the

hidden representation of a conv-LSTM.

The overall architecture is illustrated in Fig. 4.4. The previous hidden state (left) is

processed, together with the template and ROI of the current frame (top), to yield the

updated state (right) and task prediction (bottom).

4.4.1 Measurement model

In addition to long and short-term memory, we retain the initial annotation (or the “tem-

plate”) as it defines the task. The resulting architecture uses convolutional layers computed

at multiple scales to capture the nuisance variability to which the data is subject, and a

correlation layer to relate the resulting representation to the task variable. Note that the

correlation layer is not adapted online, so that a tighter connection should be established.

27

More precisely, the multi-scale similarity representation is generated by taking feature

maps of both the template of the object z∗
0 and the current image frame yt extracted by a

shared-weighted descriptor parameterized by wsiam as input, and the similarity measurement

learns a function Sim
(
yt, z

∗
0

)
that matches the search area into a similarity density as:

Sim
(
yt, z

∗
0

) .
= ϕ

(
yt;wsiam

)
∗ ϕ

(
z∗
0;wsiam

)
+ b (4.4)

where ϕ
(
·;wsiam

)
is the mapping from an image patch to the feature space (activation)

specified by the network parameters wsiam; ∗ denotes the (normalized) 2-D spatial cross-

correlation. In our experiment, similar to [BVH16], we integrate a pre-trained AlexNet

[KSH12] architecture as Siamese branches and fine-tune end-to-end with other parts of the

network. In practice, the similarity map is also approximated by the grid-based sampling

strategy as:

ŜimM×N

(
yt, z

∗
0

) .
=

1

M ×N

M×N∑
i=1

simt[i] · δyt[i]

(
yt

)
(4.5)

Here we use simt[i] ∈ R1 to represent the similarity score on the ith sample. Note that simt[i]

and st[i] are different scalars but can be defined on a same location (i.e., yt[i]
.
= xt[i]).

The measurement model outputs a concatenation of the similarity score map and the

search area’s feature vector, yielding:

ϕmeas

(
yt, z

∗
0

) .
=

[
ŜimM×N

(
yt, z

∗
0

)
, ϕ

(
yt;wsiam

)]
(4.6)

where [·, ·] denotes the concatenation operation.

4.4.2 State transition model

State transition model is realized by a recursive unit ϕrnn of an RNN that takes in the

measurement model’s output ϕmeas

(
yt+1, z

∗
0

)
as well as the current internal memory of RNN

as ht
.
= P̂M×N

(
xt | Y t

)
and produce the updated hidden representation at t+ 1:

ht+1
.
= ϕrnn

(
ht,xt, ϕmeas

(
yt+1, z

∗
0

))
(4.7)

28

We choose a convolutional long-short-time memory network (Conv-LSTM) [XCW15] as

the recurrent unit. It extends a fully connected (FC-LSTM) with convolutional input-to-

state and state-to-state transitions structures. This architecture retains fully-convolutional

characteristic that accepts inputs of arbitrary size. It also retains spatial relationships among

elements of the hidden state xt, which enables the entire system to adapt to the movement

of the search region.

4.4.3 Task prediction model

The task prediction model serves to transfer the posterior distribution defined on the hidden

state space to the space of task variable. The module consists of a few de-convolutional

layers followed by a sigmoid layer, yielding an activation tensor as a discretized grid-based

approximation of the task posterior PH×W (zt|Y t). Note that the mesh grid we used to

sample the task posterior is comparable with the image size H ×W .

4.4.4 Training loss

Instead of directly comparing with the ground truth data point z∗
t , we match the predicted

task posterior PH×W (zt|Y t) with a (pseudo) ground truth heatmap P̂∗
H×W (zt | Y t) generated

by computing the Intersection-over-Union (IoU) with each sample zt[i], and binarize the IoU

scores with a threshold, yielding:

P̂∗
H×W (zt | Y t)

.
=

H×W∑
i=1

1

[
IoU

(
zt[i], z

∗
t

)
> λ

]
· δzt[i]

(
zt

)
(4.8)

with λ = 0.7. 1[·] is the indicator function, IoU refers to the Intersection-over-Union opera-

tion defined as IoU(a, b) = (a∩b)/(a∪b), where a and b are bounding boxes. The network

is trained using truncated back-propagation through time (TBPTT) [Elm90, WP90] with

stochastic gradient descent (SGD) to minimize the binary cross-entropy (logistic loss) as

customary.

29

4.5 Experiments

4.5.1 Engineering concerns

We discuss a few engineering concerns specific to the problem as below.

Search region. To reduce computation complexity, we crop a region-of-interest (ROI)

around the mode of the posterior distribution P̂H×W (zt|Y t) from the current frame. To

estimate translation and scale jointly, we also formulate an image pyramid by adding context

margins of different sizes and then apply a set of resizing ratios.

Spatial transformer layer. Cropping ROIs requires transforming the hidden represen-

tation in a co-variant manner. We take off-the-shelf spatial transformer layers (STL) [JSZ15]

to transform the hidden representation of the RNN according to the predicted motion.

Synthesized data for training. Inspired by [MRD17], we train the network using a

combination of actual and synthesized data, the latter obtained by sampling from a simple

generative trajectory model learned from real data. We first learn a trajectory model by

estimating the mean and variance of the average velocity from annotated trajectories in

the sequence. Then we generate tracks by sampling from a normal distribution with the

learned parameters. Finally, we render synthesized video frames by randomly selecting

background pixels from the same video and then pasting the foreground (randomly extracted

from annotated bounding boxes) onto sampled background area based on the generated

tracks. We also augment the data by placing random obstacles to the video frames to

simulate occlusion and dynamic objects to simulate distractors.

4.5.2 Training

The training uses ALOV300+ [SCC14] with 214 sequences, of which 23 were removed as they

overlap with the test set for VOT2017 [KML16]. Although the network can be adapted to

arbitrary input sizes, we fixed the ROI to 225× 225 and rescaled the template to 127× 127,

30

which we know will incur some performance loss, but at the benefit of inference speed. Due

to padding issues, the predicted task posterior is of resolution 199 × 199, slightly smaller

than the original ROI. The RNN is trained using TBPTT [Elm90]: after 10 forward steps

we back-propagate 20 steps. The hidden state is of dimension 49 × 49 × 16. We start

with a pre-trained AlexNet [KSH12] fine-tuned by [BVH16] as the Siamese backbone while

randomly initializing the rest of the network. We fixe parameters up to Conv4 layer and

create two Conv5 layers, one to feed into the cross-correlation layer and another to compute

the visual representation of the search area of yt. Spatial transformation layers are jointly

trained end-to-end. The initial learning rate is 0.0004.

4.5.3 Evaluation

In order to evaluate our method, we use tracking benchmarks, that however comes with

some challenges: all existing benchmarks only score point estimates, not the entire state.

Therefore, to submit to any of the evaluation benchmarks, we reduce our posterior density

to a point estimate, which is an additional aspect of the problem that we do not focus on

in this work. This can be as simple as the maximum a posteriori (MAP) estimate (the

instantaneous peak of the posterior) or as complex as an explicit model to maintain multiple

hypotheses [BL95]. We choose the former, maximum a posteriori, cognizant that in cases

where there are multiple modes of the posterior, the MAP estimate can jump between them.

Even if this is penalized in the benchmarks, we believe reporting the full posterior is better

than any point estimate, as it allows more sophisticated downstream processing when the

output is used for decision or control. This is further discussed in Sec. 4.6.

Dataset. We choose the standard object tracking benchmarkVOT2017 [KML16] to

evaluate our learned representation. VOT2017 comprises 60 video sequences of various

objects in challenging backgrounds. We use the official evaluation toolkit for quantitative

evaluation, which produces a combined measure of rankings and scores, along with expected

average overlap between predictions and ground truth bounding boxes. The protocol resets

31

after 5 frames in case of failure, reporting zero accuracies and expected overlap within these

frames. Our tracker does not need re-initialization, so it is penalized by this protocol.

Evaluation set-up. We evaluate our methods using a single NVIDIA GeForce GTX

1080 Ti and Intel Core i7-7700K CPU at 4.2GHz. To handle multiple scales, we construct

an image pyramid with 3 scales
{
1.1−1, 1, 1.1

}
, and let the task prediction module learn

to regress the posterior at 9 scales
{
1.1−1, 1, 1.1

}
×
{
1.1−1, 1, 1.1

}
to handle various aspect-

ratios. We crop the template based on the smallest enclosing bounding box to further reduce

computation cost, so its size is not fixed during inference.

Evaluation results. We compare our method against a collection of participants of the

VOT 2017 challenges. Our quantitative results are reported in Tab. 4.1 using the expected

average overlap (EAO) criteria. Note that, we improved 3.9% from SiamFC [BVH16], al-

though the latter one cannot be considered a superficial ablation of our model3. Fig. 4.5

shows representative examples of our results against competitive trackers during occlusion,

specifically when the object is occluded, our competitors without memory drift to other

objects, e.g., another person, human arm, or the trophy in Fig. 4.5. We also discover a

phenomena that potentially penalizes our overall accuracy performance: when the object is

partially occluded, our trackers report the 2-D bounding boxes projected from 3-D location,

while both ground truth annotation and results of many trackers shift to the bounding box

enclosing the revealing part of the object.

Ablation studies are performed to quantify the impact of the LSTM. We run the

tracker under the same parameters settings while reporting the estimation with the highest

response after the measurement module discussed in Sec. 4.4.1 (tagged as “ablation” in Tab.

4.1). Although comparable results are reported, the memory module improves the EAO

performance with trivially extra execution cost. Fig. 4.6 shows representative examples of

3As discussed in Sec. 4.4.1, to test the power of learned dynamics, we eliminate the post-processing part
from [BVH16] which applies a spatial cosine-window penalty to locations from the central location in the
heatmap. We also eliminate the temporal aggregation of template representations.

32

Figure 4.5: A zoom-in visualization of ground truth annotation and the results of our tracker

against competitive trackers in occlusion scenario. The left-most image of each line defines

the target objects.

both outputs.

4.6 Discussion on predicting the full posterior

Our method produces the entire posterior density of the task variable conditioned on all

past data. Alas, there is no public benchmark to evaluate posterior density estimates. To

adapt our method to available benchmarks, we need to produce a point estimate. We

choose the mode, according to a maximum a-posteriori criterion. We do not implement

any post-processing, cognizant that the forced choice of a point estimate may penalize our

results in the presence of clutter, where the mode estimate can jump around. The problem is

manifest, especially when the evaluation protocol has quirks. For instance, in VOT challenges

[KML16], the evaluator forces the tracker to re-initialize 5 frames after a failure is detected.

If the true posterior has two modes as of two similar targets, the MAP can jump, thus

triggering a “failure”, yet the multi-modal estimate of the posterior is smooth and correctly

33

Figure 4.6: A visualization of a subsequence where a distractor enters and leaves the search

region while the target is partially occluded. Best viewed on a color display. Top row

is zoom-in visualization of video frames, ROIs (in black rectangles), and MAP estimate

of the posterior (in red rectangles). Central row is a slice of heatmaps generated by a

cross-correlation layer from one scale. Bottom row shows a slice of output posterior from

the same scale. The redder the color, the higher the probability (or likelihood). The memory

module successfully disambiguates the distractors.

34

EAO ↑ FPS ↑ OCC ↑

struck [HGS16] 0.0966 16.9176 0.3635

SRDCF [DHS15] 0.1189 2.4624 0.4194

CGS [DWQ17] 0.1405 0.3906 0.4392

DPT [LZK17] 0.1576 20.7689 0.4156

HMMTxD [VMN16] 0.1682 3.5507 0.4348

SAPKLTF [VM17] 0.1836 31.4607 0.4435

SiamFC [BVH16] 0.1880 31.9134 0.4158

Ours 0.1955 21.5630 0.4592

Ours (ablation) 0.1840 32.8331 0.4132

Table 4.1: Evaluation Results on VOT 2017 benchmark. “EAO” is short for expected average

overlap, which means the expected no-reset overlap of a tracker run on a shortterm sequence.

“OCC” is short for tag occlusion.

predicts the presence of two equiprobable targets. Unlike memoryless trackers or point-

estimators, our model maintains multiple hypotheses, and smoothly evolves the posterior

distribution (Fig. 4.2).

Since our tracker maintains the full multi-modal posterior, updated smoothly over time,

“lost tracking” in our case only consists of another region of state-space having a temporarily

higher posterior. There is no discontinuity in the estimate of the posterior, just in the location

of the maximum. As shown in Fig. 4.7, the tracker obtains the dynamics from the ant, which

is still for a few frames and then flicks. A temporal multi-modal posterior is generated with

large uncertainty, and the peak of the posterior jumps between two modes. This phenomenon

also occurs after object sticks for a long time followed by a sudden move or an unpredictable

camera motion. Since we do not include any sophistication in the choice of a point estimate,

we observe that in a few sequences, the peak of the posterior jumps between two modes,

each time triggering a miss in the evaluation. Even after re-initialization, jumping can occur,

thus resulting in perceived multiple misses in the evaluation scheme.

35

Figure 4.7: A visualization of temporal lose track. Top row is zoom-in visualization of

video frames, multi-scale ROIs (black rectangles), and MAP estimation of posterior (red

rectangles). Bottom row is a slice of posterior from one scale.

A more sophisticated logic to extract a point estimate would easily avoid this phe-

nomenon, but is beyond our scope here. The purpose of these experiments is to ascertain

whether, even in the presence of a naive choice of the point estimate, our method shows

state-of-the-art performance with the simple choice of MAP. Of course, our method provides

a full posterior, which offers significant advantages when the tracker is integrated into more

complex systems that can ingest, or even require, uncertainty estimates or maintain multiple

hypotheses for each tracked object.

36

CHAPTER 5

Building Object Hypotheses with Generic Prior

In Chapter. 4, we implemented an recurrent neural network as a practical solution to separate

the memory “state” – the function of past measurements that is sufficient to predict future

ones – from the task variable. Via validation on the standard benchmark, we show that

the framework can learn video’s dynamical representation that are sufficient to update and

predict the task, with no specific modeling of the state itself.

However, there are still problems remaining. First, the representation we learned is used

to solve the object tracking problem whose task domain is of low dimension (i.e., the 4-D

bounding box and the object index), while the same architecture may under-fit if we apply

it to other fine-grained problems such as pixel-level object tracking. Second, collecting data

on video-related problems is costly. Third, even though we have sufficient data for training,

we may still encounter objects that do not occur in the training set.

In this chapter, we propose an unsupervised method to obtain object-level representation

by imposing the generic priors of the scene. The task we choose is detecting and tracking

generic moving objects at pixel-level, known as “video object segmentation”. To detect

and maintain the state of objects efficiently, we leverage generic priors such as temporal

consistency, regularity of the resulting deformations, visibility relations, and other Gestalts.

For us, “objects” are regions of 3-D space that project onto simply-connected portions of

the image domain, although we abuse the term to refer to such portions of the image instead.

We wish to capture the shape and deformation of such image regions, which are informative

of characteristics of the objects in 3-D, a process which we refer to as “tracking”, as opposed

37

to simple bounding boxes. We specifically focus on moving objects, whereby relative motion

between them and the viewer causes changes in visibility (occlusion).

Our objects do not have names: We do not use a supervised training set, and we do not

require manual initialization. Indeed, we wish to assume as little as possible other than the

generic regularities arising from physical constraints. One could use our objects to train or

initialize a semantic detector.

5.1 Notion of task: video object segmentation

We aim to model the video signals by organizing a video into regions informed by generic

priors in the scene, a problem known as “video object segmentation”. The goal is to detect

and track the generic moving objects in videos.

Notation. Given a video sequence as observations of the scene as Y T .
=

{
y1, . . . ,yT

}
with each element a video frame yt ∈ RH×W , our goal is to partition the video frame into

regions, i.e., yt =
⋃Nt

i=0 rt[i], corresponding to the background region rt[0] and a collection

of (projections of partially) visible objects
{
rt[1], . . . , rt[Nt]

}
at the current frame t. Note

the number of foreground objects Nt can vary over time. We call a point estimate of these

regions based on prior image measurements the “object state”, i.e., x̂t[i]
.
= rt[i], which is

maintained by a tracker.

Pixel-wise annotation [LSD15, HGD17, CPK17, WSY17, BM10] thrives over the re-

cent years, as it provides a precise boundary of objects, especially irregularly shaped objects

like landscape, sky, or sea, etc. Hence, many studies of dynamics at pixel level involves the

estimation of optical flow [HS81, BA96, BBP04, ZPB07, BM11]. Optical flow is typically

estimated between consecutive frames without partitioning the image domain into objects,

but [WA94, SWS13] showed how to explicitly isolate regions corresponding to piece-wise

parametric motion, whereas [YSS15, CMP07, BMT05, BS09] allow generic deformations. In

particular, [YSS15, RM07, BWS09, CF13] require some form of initialization (manual or

38

automated pre-processing of the flow and images).

Video Segmentation problem partitions the video frames into non-overlapping regions

[RM07, BT09, GKH10a, VAP10, XXC12, GCS12, ZJS13, PF13, OMB14, XYW11], while

video object segmentation attempts to assign a single label to each object [OMB14, SSB15] or

the foreground [LKG11, ZJS13, CCB06, PF13]. One added benefit of some of these methods

is to produce, with the segmentation, depth layers [DP91, WA94, BM98, JF01, SDC04,

JYS08, KTZ08, SSB12, SC12, CF13, YS13] that are informative of occlusion relations in

the scene. Most of these methods, however, involve non-convex optimization. On the other

hand, cascading motion estimation and depth ordering, while sub-optimal, can be framed as

a sequence of two convex optimization problems and solved efficiently [CP11].

Dense 3-D reconstruction of surface geometry [KBC12, ND10, GPB11, KSC15, VSR15]

is also related to this work, as a reconstructed scene trivially yields a partition of the video

into regions. However, unlike our work, 3-D reconstruction approaches are typically re-

stricted to static scenes and cannot handle multiple independently moving and deforming

objects.

It is worth mentioning that while many approaches operate offline (or non-causally),

with the entire video available for processing [OMB14, LKG11, ZJS13, PF13], our method

processes the video causally and can scale to very long or even “endless” videos (as is the case

with most autonomous agent applications). However, our method fails to detect objects that

are not moving or attached to their background. This is by design, as we wish to distinguish,

say, a car in the scene from a poster image of a car. Nevertheless, this behavior is penalized

in benchmark evaluations. Our method also processes the data causally, since we also target

closed-loop robotic applications, so it is naturally at a disadvantage compared to methods

that process the entire video as a batch. Despite these challenges in video segmentation

benchmarks, we achieve state-of-the-art performance.

39

5.2 Methodology

The key idea of this work is to leverage topological and regularity constraints imposed by

the physical scene, namely occlusion relations, connectedness, and regularity of the induced

domain deformations, to partition the video into “objects.”

We employ a pseudo-measurement module that leverages local (in space and time) oc-

clusion relations to provide an update (detector) on a running estimate of object shape

maintained as the state of a tracker. The interplay between detector and tracker is critical:

if one had a perfect detector, the tracker would extrapolate to the next frame; vice-versa,

if one had the perfect tracker, it would be easy to detect objects. In practice, we leverage

existing methods for detection and tracking, and integrate them in a manner that improves

on their simple concatenation, allowing one to recover from failures of the other, as shown in

Fig. 5.1. The result is a fully automatic pipeline that is competitive with the state-of-the-art

video object segmentation benchmarks.

Specifically, at each temporal snapshot t, given measurements up to t as Y t and (the

point estimate of) the objects’ state at time t as x̂t
.
=

{
rt[i]; i = 0, . . . , Nt

}
(Fig. 5.2, row 1),

a prediction module (tracker) serves to predict the (foreground) objects’ state at next time

as x̃t+1
.
=

{
x̃t+1[i], i = 1, . . . , Nt

}
(Fig. 5.2, row 2)1; a pseudo-measurement module (object

detector) processes the next frame’s observation yt+1 or small batch of frames (for us, 3) to

produce object hypotheses or “proposals”,
{
ot[j]; j = 1, . . . ,Mt+1

}
(Fig. 5.2, row 3); and

an update module to generate updated estimate at next time frame, x̂t+1
.
=

{
x̂t+1[i]; i =

0, . . . , Nt+1

}
(marked in orange in Fig. 5.2). The state update module should ensure that

visibility constraints are satisfied, so each point on the image yt+1 corresponds to a single

object, which is equivalent to enforcing opacity of objects in the scene. Initially, we assume

that the scene is empty, i.e., x0
.
= ∅.

1Although x̂t and x̃t are both point estimates, we use x̂t to represent the estimate of the posterior
state (i.e., state after updates) and x̃t as prior state (i.e., predicted state from previous time frame without
observation at current time).

40

Figure 5.1: Illustration of the update of tracking and detection. Errors made by prediction

or detection (marked in red rectangles) are corrected in the final estimate.

41

Figure 5.2: Illustration of our framework causally processing a video. The pseudo-measure-

ment (object detector) (bottom 2 rows) proposes regions in the image that correspond to

objects in the scene, which are integrated with the prediction (row 2) into the final object

labeling (row 1). We begin with no objects in the state (left column) and an object is only

added to the state after being detected across multiple frames (highlighted by orange ar-

rows).

42

Note that we only process foreground objects in the prediction and pseudo-measurement

modules, so the object index starts from 1. Also note that the number of objects at current

time Nt, object hypotheses at next time Mt+1, and objects maintained in the next time’s

posterior state estimate Nt+1, can be different.

5.2.1 Prediction

Given the current state of objects
{
x̂t[i]; i = 1, . . . , Nt

}
, we predict their next location{

x̃t+1[i]; i = 1, . . . , Nt

}
by warping the current regions with optical flow f t. The occlusion

portion of each object region Ot[i] should be predicted and removed, while dis-occluded parts

Dt+1[i] be estimated and added, yielding the operation as:

x̃t+1[i]
.
= W

(
x̂t \ Ot[i] ; f t

) ⋃
Dt+1[i]; ∀i = 1, . . . , Nt (5.1)

where W(·;f) denotes warping operation with optical flow f ; \ is the set minus; and
⋃

the

set union operator. The computation of inter-frame optical flow leverages on the assumptions

of photometric persistence of objects and illumination: radiance changes slowly relative to

the temporal sampling rate of the video. Additional assumptions such as boundary regularity

and connectedness are needed to infer the occluded and dis-occluded regions. Since there

exists extensive literature on the topic, rather than developing our own, we employ a recent

deformable shape tracker that automatically infers dis-occlusions [YSS15], for which code

is available online. It is important to note that this method assumes manual initialization,

whereas in our case it is initialized using the current state of objects. Since each object is

predicted independently, the update phase must manage conflicts among different objects

predicted to overlap in the next image, in order to make our method viable.

5.2.2 Object detection

The pseudo-measurement module provides object proposalsOt+1
.
=

{
ot+1[j]; j = 1, . . . ,Mt+1

}
using the image at time t + 1 or a small batch of images (short-term memory; long-term

43

Figure 5.3: Object detections from our pseudo-measurement module. Object detection

generates many false positives in this difficult scenario containing multiple deforming objects

with complex motion dynamics. In this work, we trust consistently appearing regions to

correspond to true objects in the scene. The accumulation of evidence from detections

identifies the red segment (by the 31th frame) and the blue segment (by the 48th frame) as

real objects and allows us to ignore the remaining proposals as noisy measurements. In this

figure, the colors of consistent regions correspond across frames for ease of viewing, but in

the actual system, correspondence is determined by the matching procedure in Sec. 5.2.2.

memory is represented by the object’s state) to produce hypotheses of objects informed by

occlusion relations. These exploit assumptions of the spatial connectedness of objects and

the scene’s topology. Object proposals also spawn new objects that appear and are not

attributed to existing predicted ones. Occlusions have been used extensively to prime object

detection or layer segmentation [WA94, BM98, AS12]. Again, since our approach is agnostic

to the proposed method, we employ the last, for which code is available online. Note that,

although [AS12] appears instantaneous, the method employs two or three temporally adja-

cent frames. In this case, the prediction is not fed back to the detector, but one could adopt

different pseudo-measurement schemes where the prediction is used to guide the detection of

the new image. Note that the prediction produces the inter-frame motion or deformation as

a byproduct, including the forward motion as f t→t+1 and the backward motion as f t+1→t.

if three frames are employed, thus closing the loop in our tracker.

To be robust to the gross failure of the pseudo-measurement module, we require objects

to be detected in multiple frames before they are added to the objects’ state in the tracker.

This is useful when the motion or the scene is very complex (see Fig. 5.3 for an example

44

where multiple horses are moving independently), as occlusion detection and subsequently

object detection from occlusions can be considerably noisy in these cases. This reduces the

number of false positives in our output and helps keep the computational cost of prediction,

which scales linearly with the number of objects tracked, manageable.

Thus, object proposals are accumulated over time before being declared as a true object.

For the accumulation, each proposal ot[j] is associated with a continuity confidence score as:

cft
(
ot[j]

)
=

∫
∂ot[j]

e(pt)dpt

A
(
ot[j]

) ∈ R1 (5.2)

for all j = 1, . . . ,Mt, where A(·) is the area of a region, pt represents a pixel on the tth video

frame, ∂ot[j] defines the boundary of object ot[j], and e(pt) ∈ R1 measures the intensity

and motion discontinuity strength, defined as

e(pt)
.
= max

(
c1eimg(pt) + c2emotion(pt) , ε

)
(5.3)

where eimg and emotion are the output of an edge detector on the image data and motion field,

respectively, and 0 < ε ≪ 1 a constant number. We then associate each proposal ot+1[j]

from the current frame with a warped region õt+1[k]
.
= W

(
ot[k];f t

)
from the past2 if ot+1[j]

and õt+1[k] achieves a sufficient overlap as measured by the Intersection-over-Union (IoU)

score:

IoU
(
ot+1[j], õt+1[k]

)
=

ot+1[j] ∩ õt+1[k]

ot+1[j] ∪ õt+1[k]
(5.4)

Each matched proposal contributes its shape and score to the accumulated proposal. We

define the accumulated measurement likelihood of the jth object as a running score computed

recursively as:

st+1

(
ot+1[j]

) .
=

∑
pt+1

cft+1

(
ot+1[j]

)
1
[
pt+1 ∈ ot+1[j]

]
+ st

(
ot[kj]

)
1
[
pt+1 ∈ õt+1[kj]

] (5.5)

2Here we abuse the notation õt+1[k] to represent the current-time object proposal ot[k] warped by a
forward optical flow f t[k], which is computed during prediction. We use the index k to distinguish with j
as the indices of warped objects from t and the detected objects of t+ 1 can have different order.

45

where cft+1(·) is defined in Eqn. 5.2; kj is the index of the object at time t with the best

IoU score with ot+1[j], i.e., kj
.
= argmaxMt

k=1 IoU
(
ot+1[j], õt+1[k]

)
, and õt+1[kj] is the region

of warping the object ot[kj] to time t + 1 with optical flow f t. The initial likelihood is set

to the continuity confidence score, i.e., st0
(
ot0 [j]

) .
=

∑
pt0

cft0
(
ot0 [j]

)
· 1

[
pt0 ∈ ot0 [j]

]
when

the proposal was first added into the proposal pool at time t0. Finally, pixels with likelihood

st+1(ot+1[j]) exceeding a nominal threshold λ = 0.5 are promoted to objects added to the

objects state maintained by the tracker and removed from the proposal pool.

5.2.3 State update

For each warped object x̃t+1[i], we first determine its persistency from the past by associating

it with any of the detected object proposals with ji
.
= argmax1≤j≤Mt+1 IoU

(
ot+1[j], x̃t+1[i]

)
.

The object proposals failed to match a presented one (new objects) are added into our

updated state directly, while we established a conditional random field (CRF) model [LMP01]

to generate the updated estimate x̂t+1[i] (Fig. 5.4.e) of persisted ones based on its predicted

mask x̃t+1[i] and detected mask ot+1[ji] (Fig. 5.4.d), yielding the updated state as a combined

set:

X̂ t+1
.
=

{
x̂t+1[i]; i = 0, . . . , Nt

}︸ ︷︷ ︸
persisted objects

⋃{
ot+1[i]; i = Nt + 1, . . . , Nt+1

}︸ ︷︷ ︸
new objects

(5.6)

Fully connected conditional random field is introduced to refine the region of

persist objects. The fusion of predicted and proposed object masks is formulated as a

multi-class labeling function that maps the image domain yt+1 ∈ RH×W to class labels

lt+1
.
=

{
lt+1[a]; 1 ≤ a ≤ H ×W

}
given combined region ut+1[i]

.
= x̃t+1[i]∪ot[ji], 1 ≤ i ≤ Nt,

where each element lt+1[a]
.
= l

(
pt+1[a]

)
∈ {0, 1, . . . , Nt} is the label assigned to the ath pixel

pt+1[a]. Note l[·] = 0 refers to the label of background.

Objective function of solving the ith object region is defined as:

Ji(lt+1) =
∑

a≤H×W

φunary

(
lt+1[a] = i

)
+

∑
a<b

a,b≤H×W

φpair

(
lt+1[a], lt+1[b]

)
(5.7)

46

where φunary is the unary potential and φpair is the pairwise potential.

Pairwise term incorporates the regularity of image edge topology and optical flow edge

topology (Fig. 5.4.b) as:

φpair

(
lt+1[a], lt+1[b]

)
.
= 1

[
lt+1[a] = lt+1[b]

]
×[

αI exp
(
−

ξI
(
pt+1[a],pt+1[b]

)
2θ2I

)
+ αF exp

(
−

ξF
(
pt+1[a],pt+1[b]

)
2θ2F

)] (5.8)

where ξI(·) and ξF (·) represent the geodesic distance on image and optical flow edge graph,

respectively; 1
[
lt+1[a] = lt+1[b]

]
is the label compatibility function of pt+1[a] and pt+1[b].

Unary term is simply a weighted indicator function revealing if pt+1[a] falls into the

union region of detected and predicted mask of the ith object:

φunary

(
lt+1[a] = i

)
.
= wi[a] · 1

[
pt+1[a] ∈ ut+1[i]

]
(5.9)

where the weight wi[a] ∈ R1 represents how we trust the results of (the union of) detection

and prediction mask at pt+1[a]. Specifically, wi[a] should be bigger if pt+1[a] ∈ x̃t+1[i]∩ot+1[i]

or pt+1[a] /∈ x̃t+1[i] ∪ ot+1[i], and should be smaller if the predicted and detected labels

disagree as pt+1[a] ∈
(
x̃t+1[i] \ ot+1[i]

)
∪
(
ot+1[i] \ x̃t+1[i]

)
.

Geodesic distance measures the distance of a graph’s two vertices as the shortest

(weighted) path between them. Ideally, solving Eqn. 5.7 evolves computing geodesic distance

of arbitrary two pixels on a 2-D edge map, which is extremely costly. To solve this, we

introduce a super-pixel clustering model to assign each pixel pt+1[a] to the center of its

corresponding super-pixel (Fig. 5.4.c). We abuse the notation Spt+1[a] as the super-pixel

the pixel pt+1[a] belongs to, whose centroid is computed as the average of pixel coordinates

along with the spatial axis. Then approximate the geodesic distance as:

ξι
(
pt+1[i],pt+1[j]

)
= ξι

(
pt+1[i],p

c
t+1[i]

)
+ ξ′ι

(
pc
t+1[i],p

c
t+1[j]

)
+ ξι

(
pc
t+1[j],pt+1[j]

) (5.10)

where ι ∈ {I, F}, ξ′ι(·) is a graph-based approximation of the geodesic distance of the centroid

of two super-pixels, as described in [RWH15]. The distance ξι
(
pt+1[i],p

c
t+1[i]

)
is set to a

47

Figure 5.4: Illustration of updated estimate of object regions. (f.) demonstrates a super-pixel

located on the rabbit leg (masked in blue) and its top 10 nearest super-pixel neighbors. The

red dots represent the centroid of super-pixels respectively.

constant small value ϵ according to the smoothness property of a super-pixel, which states

that the image boundary rarely cut across inner super-pixels.

We further assume that pixels belongs to the same super-pixel share the same label.

Therefore, computing the unary term φunary and pairwise term φpair are of complexity

O
(
Ā(Spt)

)
and O

(
Ā(Spt)

2
)
, respectively, where Ā(Spt) is the average area of all the super-

pixels of frame t. We further set the scalar wi[a] to infinity in Eqn. 5.9 if the super-pixel

Spt[a] locates far away from the object boundary with a threshold, i.e., wi[a]
.
= +∞ if

minpt[b]∈ut[i] ∥pc
t [a],pt[b]∥2 > γ. In practice, the number of super-pixels we use to compute is

≤ 350.

48

5.3 Experiments

5.3.1 Implementation detail

Our method segments video into object labels. We evaluate our approach on two popular

datasets, MoSeg [OMB14] and BVSD [GNJ13]. We used the toolbox of [DZ13] for edge

detection on both the image and motion field to obtain eimage and emotion mentioned in Eqn.

5.3. The linear weights are set to c1 = 0.1, c2 = 0.9 for MoSeg and c1 = 0.3, c2 = 0.7 for

BVSD. ε is set to 0.0001. θI and θF in Eqn. 5.8 are both set to 0.9, and the geodesic distance

matrix is normalized by its mean.

Timing. Our method takes approximately 2 minutes for a VGA frame with 3 objects

in the state on a single core and around 1 minute per frame when running in parallel on a

standard desktop (8 core i7-3770 3.4GHz with 16GB RAM).

Detection. We modified the publically available code from [TKS15] to yield object

pseudo-measurements, which takes approximately 30s per frame.

Tracking. We leveraged the publically available code of [YSS15] to perform the predic-

tion step. Given the labeled object regions, the method takes approximately 44s to estimate

motion and predict each region at time t+ 1, increasing slightly with the number of objects

provided. The code can also be run in parallel, reducing to 15-20s per frame depending on

the number of cores available.

Update. The per-object update and the energy minimization problem can be solved in

less than 5 seconds using any convex optimization solver (we used [GB08, GB14]).

5.3.2 Quantitative and qualitative results

For MoSeg, the task is multi-label object segmentation in the video. The dataset contains 59

sequences containing anywhere from 19 to 800 frames, a small subset (3–41) are annotated

with pixel-wise ground truth. Given that our approach operates causally and the pseudo-

49

measurement relies on occlusions, and thus motion, we are unable to detect objects before

they move (see Fig. 5.2 where two ladies are detected over time). To combat this, since

our tracking module provides motion estimates between consecutive frames, we accumulate

the motion estimate across frames until it is sufficiently large for our pseudo-measurement

module to perform detection. This helps alleviate the lack of object detections near the

beginning of videos in the datasets.

In order to avoid false detections from the pseudo-measurement module, our system only

labels new objects when they have been detected multiple times. While valuable for ensuring

reliable object hypotheses, this penalizes our system for evaluation, where the first frame

is always annotated in the ground truth. To combat this issue, we back-propagate object

labels captured by our system (as soon as they are added to the objects’ state) to the first

frame. Our tracking module can run this in a separate thread, which does not affect the

casualty of our system.

The updated objects might overlap, which does not satisfy the general constraints of

objects projected into the image plane. To ensure that only a single object label occupies

each pixel, for each pixel in the overlapped area pt+1 ∈
⋂Nt+1

i=0 xt+1[i], we adopt the dominant

label (i.e. the mode of labels) within top 10 neighbors based on geodesic distance.

Following the evaluation protocol of [OMB14], we report precision, recall, F-measure, and

the number of extracted objects (labeled regions with F-measure ≥ 0.75) in Tab. 5.1. We

outperform other state-of-the-art methods in recall and F-measure for both the training and

testing splits of the dataset. In addition, our system discovers more objects, indicating the

advantage of our system for building object hypotheses.

In Tab. 5.3, we show our quantitative results on the BVSD dataset. We report both

boundary precision-recall (BPR), a commonly used metric in image segmentation, and vol-

ume precision-recall (VPR), which quantifies the spatio-temporal overlap of our labels and

the ground truth regions. We obtain higher numbers than the other video object segmenta-

tion approaches. We do perform worse, however, than the video segmentation comparisons

50

Training set (29 sequences) Test set (30 sequences)

P R F N/65 P R F N/69

[GKH10b] 79.17 47.55 59.42 4 77.11 42.99 55.20 5

[OMB14] 81.50 63.23 71.21 16 74.91 60.14 66.72 20

[AS12] 87.20 59.60 70.81 17 79.64 50.73 61.98 7

[TKS15] 85.00 67.99 75.55 21 82.37 58.37 68.32 17

[TKS15]-NC 83.00 70.10 76.01 23 77.94 59.14 67.25 15

[YSS15] 89.53 70.74 79.03 26 91.47 64.75 75.82 27

ours 88.54 76.54 82.11 29 89.63 69.69 78.41 32

Table 5.1: Evaluation results on FBMS-59. Average precision (P), recall (R), and f-measure

(F) over all sequences in the training and test datasets of FMS-59. Higher values indicate

superior performance. All methods are fully automatic. Methods [TKS15] and our method

are causal. The other methods process the whole video in batches.

Training set (29 sequences) Test set (30 sequences)

P R F P R F

[AS12] 75.94 61.64 68.05 78.11 54.68 64.33

[LKG11] 64.86 52.70 58.15 62.32 55.97 58.97

[PF13] 71.34 70.66 71.00 76.29 63.29 69.18

[TKS15] 83.92 68.19 75.24 86.54 63.20 73.05

[TKS15]-NC 79.26 78.99 79.12 83.41 67.91 74.87

[YSS15] 84.52 75.47 77.11 86.13 74.08 77.68

ours 82.50 81.56 79.95 86.68 81.26 82.27

Table 5.2: Foreground-background segmentation results on MoSeg. Average precision (P),

recall (R), and f-measure (F) over all sequences in the training and test sets from FBMS-59.

[LKG11, PF13] and [TKS15]-NC process the video in batch, while [AS12, TKS15] and

[YSS15] and our method are completely causal.

on this dataset, but this is expected as we cannot segment the background into multiple

regions.

51

Boundary Volume

P R F P R F

[OMB14] 0.566 0.100 0.170 0.146 0.852 0.249

[TKS15] 0.760 0.186 0.299 0.136 0.870 0.234

ours 0.697 0.198 0.308 0.164 0.874 0.276

Table 5.3: Quantitative results on BVSD dataset. Average precision (P), recall (R), and

f-measure (F) over all sequences in the test datasets of BVSD. Higher values indicate superior

performance.

5.4 Discussion of matching results with standard benchmarks

Although our goal is semi-supervised learning of objects, we do not evaluate our method

end-to-end in object recognition benchmarks, since this entails a large number of engineering

choices that would cloud the evaluation. Instead, we choose to evaluate our method as a

video-object segmentation, using existing benchmarks, even though they penalize behaviors

that are actually desirable in our actual goal. This includes penalizing the detection of

objects that are present but not labeled in the dataset, and failure to detect objects that do

not move. This is manifest in cases where objects move very little if at all in the benchmark

videos, and therefore one cannot be sure if they are real or just poster images of them.

It should be noted that we wish to track the evolving occluding boundary of objects as a

geometric entity, as that is informed by the shape of the object in 3-D. One could also track

bounding boxes, and then delegate the encoding of geometric characteristics of objects (say

shape) to photometric characteristics of the images (say the appearance of pixels within the

bounding box), leaving the task of deciding which pixels within the bounding box belong to

the actual object for later, in a multiple-instance learning framework. In our case, we make

the separation of geometric and photometric properties explicit, which can be useful for the

analysis and classification of objects that are defined solely by their shape, irrespective of

reflectance, or vice-versa.

52

CHAPTER 6

Learning Semantic-Aware Dynamics

Figure 6.1: Different representations (video frame, semantic map, flow field) have dynamics

with different complexity. Top: a sequence of video frames (left), semantic maps (middle),

and flow fields (right). Bottom: dynamics or changes visualized in terms of their difference.

The dynamics in video frames are much more complex than in semantic maps and flow fields.

So far, we modeled the scene dynamics from two different perspectives: Chapter. 4

learned task-specific representation that has no physical meaning, whose supervision is from

the fully annotated data of the task variable; Chapter. 5 leverages generic regularities of

the scene to decompose the video frames into object hypotheses, so there is no need (and no

way) for the model to be trained with data.

53

The most informative function of past observations is the actual data itself. Instead of

engineering the model architecture, we wish to capture generic regularities of video dynamics

by learning a representation and enforcing it to predict future (observation) data, whose

supervision is always available. This also fits into the self-supervised learning pipeline,

whereas our self-supervised learning task and downstream task are the same - to predict

the data itself. Hence, we validate the quality of the learned representation by achieving

state-of-the-art performance on both video prediction (i.e., pixel intensity prediction) and

semantic segmentation prediction tasks.

Given that the video data is high-dimensional, introducing assumptions or hypotheses of

the environment is inevitable. We hypothesizes that decomposing the scene into independent

entities is beneficial to prediction, each with its attributes. For example, in Fig. 6.1, different

objects have different geometry and motion, which induces distinctive temporal changes in

the video.

We propose a video prediction architecture that explicitly models the different dynamics

of semantically consistent regions (Fig. 6.2). The model, described in Sec. 6.2.1, decomposes

the video into regions, corresponding to different semantic classes in the scene, and learns

class-specific characteristics while ensuring that their re-composition can predict the image,

along with class labels and flow fields.

Unlike warping the past using globally predicted flow fields [LLD17, LFY18, PWJ19,

GXC19], in our semantic-aware dynamic model (SADM), local regions are represented by

binary semantic masks, whose evolution is simpler and easier to learn than the motion of the

entire video frames (see Fig. 6.1). Each region is predicted and then fused with its content to

generate future semantic maps and flow fields. The prediction in co-visible regions of future

frames is warped from the past, with dis-occlusion detection mediated by the predicted

semantic maps. Furthermore, the dis-occluded regions are filled in by a generative model

or conditional renderer, trained with not only the warped images, but also the predicted

semantic maps, enabling a more structured and semantically-aware synthesis. Modeling

54

Figure 6.2: Our video prediction architecture with learned semantic-aware dynamics. It

first decomposes the scene into semantically consistent regions to facilitate the modeling

of class-specific characteristics. Using the proposed semantic-aware dynamic model, each

region is predicted and fused to generate the future scene layout (semantic map) and motion

(flow field). Content-aware video inpainting for dis-occlusions is performed after warping to

generate the future video frames.

dis-occlusions explicitly spares the model the effort otherwise needed to learn this complex

phenomenon.

6.1 Notion of task: video prediction

Video generation and prediction tasks aim to synthesize video frames’ pixel values. Video

generation creates videos from white noise or style preferences, while the video prediction

task predicts future frames conditioned on past (observed) frames. We are more interested

in the latter one, which is challenging from two perspectives: one must generate high-quality

images at each temporal snapshot of the video while ensuring the video clips have consistent

and realistic dynamic motion.

Notation. Given a clip of (observed) video frames IT .
=

{
I1, . . . , IT

}
up to time T ,

where each element I t ∈ RH×W is an image frame at time t, the task is to predict (not yet

55

observed) data up to future time T + k with k > 1, i.e., IT+k
T+1

.
=

{
IT+1, . . . , IT+k

}
. Note

that, unlike the above chapters, we use T to denote the current time step (i.e., the last time

step with observations available.), to distinguish with t that refers to any time frame within

the video clip {1, . . . T + k}.

Video generationmethods produce image sequences either from noise [VPT16] or other

input including pose [CBT18] and text [MMB17]. SVG-LP [DF18] proposes to sample noise

from learned priors; MoCoGAN [TLY18] samples latent variables from the motion and con-

tent spaces separately to improve temporal consistency. Similarly, TGAN [SMS17] employs

a temporal generator and an image generator to model temporal correlations; [HLM18] mod-

els the dynamics in the latent space with attribute controls. Given that the visual scene is

highly structured, [VYZ17, CBT18, YWZ18] propose to generate a sequence of poses, which

are transformed into images for human action sequences; [ZPT18] generates videos of a sin-

gle object by first generating a sequence of conditions using a 3-D morphable model, while

[HHB18] controls the video generation using sparse trajectories specified by the user. VGAN

[VPT16] trains video generators with explicit separation of the foreground and background,

assuming static background. Seg2vid [PWJ19] resorts to warping using flows generated by

the semantic mask, hoping to preserve the scene structure implicitly. We also employ se-

mantic maps to generate future flows but with a semantic-aware dynamic model. [YCS20]

decomposes images into objects utilizing contextual information separation [YLS19] and

synthesizes the motion of single objects through perturbations in the object-centric latent

space.

Video prediction models are typically approximations of conditional generative models

[HLH18, BFE17, WVE18, VPT16, SMS17, DF18, TLY18, RLS18, XNL18]. The quality of

predictions is typically evaluated by image quality and temporal consistency. Given the high

complexity and dimensionality of the signal to be predicted, the process usually requires

explicit modeling or constraints [PWJ19, GXC19]. PredNet [LKC16] proposes a predictive

model with coding-based regularization. ContextVP [BWK18] uses a context-aware module

56

with parallel LSTMs. SDC-Net [RLS18] applies flow guided spatially-displaced convolutions,

while [JDT16] predicts with dynamic filters that depend on the inputs. DDPAE [HLH18]

and [WVE18] map the observed images to a low-dimensional space, so temporal correla-

tions are easier to learn. TPK [WMG17] predicts future poses to guide appearance changes.

To address the loss of realism, [PGS14, LLD17, LPH17, LFY18] explicitly model the flows,

and DVF [LYT17] uses flow to synthesize future frames. Similar to MCNet [VYH17] and

[XWB16], DPG [GXC19] proposes motion-specific propagation and motion-agnostic gener-

ation with confidence-based occlusion maps. [LNC17] predicts future semantic maps, and

[JXS17] jointly predicts the future semantic maps and flow fields. We use a semantic-aware

model such that the predicted maps can exploit class-specific motion priors. Our method gen-

erates future optical flows and semantic maps before rendering future images. In [WGP20],

moving object segmentation masks are used but restricted to 2-D affine motions, with two

categories: moving and static.

6.2 Methodology

In the modeling, we incorporate semantic segmentation (scene layout), optical flow (scene

motion) and synthesis (scene appearance) into a complete generative model for videos, which

facilitates semantically and geometrically consistent prediction of complete video frames.

Specifically, besides the directly observed video frames IT , we aim to explicitly model the

semantic aware dynamics of both the semantic maps MT .
=

{
m1, . . . ,mT

}
and flow fields

F T .
=

{
f 1, . . . ,fT

}
, where each elementmt ∈ [0, C]H×W and f t ∈ RH×W×2 are the semantic

mask and flow field measure of the video frame I t ∈ RH×W , 1 ≤ t ≤ T . And C is the number

of semantic classes in the semantic map.

Thus, the problem can be reformulated as: given past measurements Y T .
=

{
IT ,MT ,F T

}
up to time T , our task variable zt at time t is to predict k frames into the future, i.e.,

zt
.
= Y T+k

T+1
.
=

{
IT+k
T+1 ,M

T+k
T+1,F

T+k
T+1

}
. The predictions should match the statistics, quality,

57

Figure 6.3: The architecture of our semantic-aware dynamic model (SADM) for learning

class-specific dynamics of the scene layout and motion. Input semantic maps and flow fields

are parsed and processed by the semantic-aware recurrent encoders ϕenc and decoders ϕdec,

with context incorporated into the prediction through a multi-layer perceptron. The predic-

tions of semantically consistent regions are combined by the fusion network ϕfuse to generate

the prediction on the whole image domain, which further improves contextual compatibility

in the predicted semantic maps and flow fields. The illustration is for two classes, but can

be easily extended to more classes.

and content of past frames of the same scene and exhibit variations consistent with the

motion of objects within. As illustrated in Fig. 6.2, our approach falls in the direction of

prediction by propagation, where video prediction for the co-visible part1 of the scene can

be accomplished by warping, i.e., propagating pixels via the corresponding flow field.

6.2.1 Semantic-aware dynamic model

In general, the proposed semantic aware dynamic model takes as the flow fields and semantic

maps up to time T , i.e.,
{
MT ,F T

}
and outputs the future k (estimated) flow fields and

semantic maps
{
M̂

T+k

T+1, F̂
T+k

T+1

}
, as shown in Fig. 6.3. The components therein are elaborated

on below.

Recurrent encoder. Let mt[c] = 1
[
mt = c

]
∈ [0, 1]H×W be the binary mask that

1Image regions that are observed/visible across multiple frames

58

indicates the region of semantic class c at time t. Similarly, f t[c] = f t◦mt[c] ∈ RH×W×2 is the

masked flow field2 showing only the motion of the pixels that are classified as c. The semantic

aware recurrent encoder ϕenc[c] operates recursively to produce a hidden representation from

the past
{
MT [c],F T [c]

}
while enforcing temporal continuity of the representation3:

ht+1[c] = ϕenc[c]
([

mt+1[c],f t+1[c]
]
,ht[c]

)
(6.1)

for all 1 ≤ t ≤ T , with ht[c] refers to the hidden representation of an RNN that summarizes

the past regions and flow fields of the pixels within class c, up to time t. In other words,

ht
.
=

{
x̂m,t, x̂f,t

}
is an (point) estimate of the hidden state XT in terms of mask and flow

field measurements as in our generic pipeline in Sec. 3.2.

For now, we instantiate C such semantic aware recurrent encoders ϕenc[c] with 0 ≤ c ≤ C,

which together generate the hidden representation ht
.
=

{
ht[c]; c = 0, . . . , C

}
that summa-

rizes the past semantic maps and flow fields, covering all semantic classes. Note that the

collection ht explicitly represents independent objects. While this may appear inefficient, in

reality, the model reduces the number of parameters needed since the individual objects are

simpler to represent. We also carry out an ablation study in Sec. 6.3.3 on different C’s by

merging some of the semantically similar classes, showing the accuracy-efficiency trade-offs.

Moreover, we can efficiently parallelize the computation using the grouped convolution op-

erator proposed in [KSH17]. Next, we describe the procedure to predict the future semantic

maps and flow fields.

Recurrent decoder. Given the hidden representation of the past, ht, the seman-

tic aware recurrent decoder produces k estimated future semantic maps and flow fields{
M̂

T+k

T+1, F̂
T+k

T+1

}
. We first describe a deterministic decoding procedure, for simplicity, which

can then be easily adapted to a stochastic one to account for the randomness of the future.

2The operator ◦ is the Hadamard product (or elemen-wise product) of two matrices.

3Here we abuse the notation of ϕenc[c] to refer to the cth component of function group ϕenc that applies
to the cth semantic category. Similarly, MT [c] and F T [c] represents the set of masked semantic masks and
flow fields of the cth category, at time from 1 to T , respectively.

59

Again, we consider decoders that learn the dynamics and predict the future in a semantic

aware manner. Let ϕdec[c] be the recurrent decoder for semantic class c, which generates the

estimates for
{
MT+k

T+1,F
T+k
T+1

}
by recursively executing the following procedures:

ht+1[c], et+1[c] = ϕdec[c]
(
ht[c], ϕmlp[c]

(
ht

))
; (6.2)

m̂t+1[c] = ϕdec,m[c]
(
et+1[c]

)
; f̂ t+1[c] = ϕdec,f[c]

(
et+1[c]

)
(6.3)

for all T + 1 ≤ t ≤ T + k. Here we abuse the notation ϕdec[c] to refer to the recurrent

unit that updates the latent representation ht[c], while generating a common embedding

et[c], which is then decoded into the predicted semantic mask m̂t[c] and flow fields f̂ t[c],

respectively through separate decoding heads ϕdec,m[c] and ϕdec,f[c]. This separate decoding

design aligns with the practice that improves the decoding efficiency in multi-task learning.

Note, we also apply a multi-layer perceptron ϕmlp[c] (due to its efficiency) on the collection of

the hidden representations for all classes
{
ht[c]; c = 0, . . . , C

}
, to ensure that the semantic

aware decoder has access to the context provided by other classes within the scene (Fig.

6.3).

The decoders for each class
{
ϕdec,m[c], ϕdec,f[c]; c = 0, . . . , C

}
can also be running in par-

allel, so that we have the semantic aware predictions for each class, i.e.,
{
M̂

T+k

T+1[c], F̂
T+k

T+1[c]
}

with c = {0, . . . , C}. Next, we apply late fusion to get predictions that can be directly

compared to the ground truth semantic maps and flow fields, and to further improve the

contextual compatibility between different classes.

Context-aware late fusion. Given the predicted
{
M̂

T+k

T+1, F̂
T+k

T+1

}
for each c ∈ {1, ..., C},

we apply a three-layer ConvNet ϕfuse to first fuse the binary semantic maps:

m̂t = ϕfuse

([
m̂t[1], . . . , m̂t[C]

])
(6.4)

for all T +1 ≤ t ≤ T + k, where the dimension of m̂t is H ×W ×C, [·, ·] is the operation of

concatenation. We use softmax as the last layer for ϕfuse, such that each slice of m̂t indexed

by the last dimension, is still a scalar field indicating the probability of each pixel belonging

60

to class c. And the fused flow field f̂ t is obtained as following:

f̂ t =
C∑
c=0

1
[
m̂t = c

]
◦ f̂ t[c] (6.5)

which is a linear combination of the flow vectors predicted by each semantic aware recurrent

decoder, whose visibility comes from the fused semantic map.

Training loss. With the ground truth semantic mask and optical flow at t + 1 up to

t+ k, the training loss for flow fields is the L1 loss:

Lflow =
1

k

T+k∑
t=T+1

∥f̂ t − f t∥1 (6.6)

which penalizes the discrepancy between the predicted flow and the ones computed from the

ground truth images. For the semantic maps we apply the cross entropy loss:

Lmask =
T+k∑

t=T+1

(1 + α G ∗ ∇mt) · X (mt, m̂t) (6.7)

Here X represents the cross-entropy, which is weighted by whether the pixel is near the

boundaries between different classes or not. Note that ∇ is the gradient operator, and we

binarize its response to 0 and 1 to discount the artifacts caused by naming different classes

with different integers. The binarized boundary map is then smoothed by a Gaussian kernel

G to expand the weights to nearby pixels, making the boundaries thicker. The variance of

the Gaussian, which determines the spatial extent of the boundaries, is set to 9.0 and fixed.

With this weighting scheme, the network will focus more on the pixels near the semantic

boundaries, thus better preserving the shape of each semantic segment in the prediction.

The relative importance between boundary and non-boundary pixels is controlled by the

scalar α, which is set to 5.0 for all experiments.

The stochastic model. So far, we have described the proposed semantic aware dynamic

model in its deterministic mode. However, extending it to account for the stochasticity of

the future is straightforward. For this purpose, we instantiate C semantic aware recurrent

61

encoders ϕ′
enc[c], which operate in a similar way as the encoders for the past:

rt+1[c] = ϕ′
enc[c]

(
mt+1[c],f t+1[c], rt[c]

)
(6.8)

at training time, or

rt+1[c] =
[
µt+1[c],Σt+1[c]

]
(6.9)

at inference time. The goal of the recurrent encoder ϕ′
enc[c] is to generate a random vari-

able rt[c], represented by its mean µt[c] and variance Σt[c] through reparameterization,

whose initial value is set to rt[c]
.
=

[
ĥt[c],1

]
.4 At the end of the recursion, we would like{

rt+1[c], . . . , rt+k[c]
}
to be a zero-mean unit-variance Gaussian. At each recursion step t > T ,{[

µt[c],Σt[c]
]
; c = 0, . . . , C

}
will be added to ht in Eqn. 6.2, also through reparameteriza-

tion, for decoding the future with randomness. To learn ϕ′
enc[c]’s, we add a KL-divergence

term to the loss:

Lkl =
T+k∑

t=T+1

KL
(
N (µt,Σt),N (0,1)

)
(6.10)

where N represents the normal distribution. We summarize the training loss for the stochas-

tic semantic aware dynamic model in the following:

Ldynamic = Lflow + Lmask + βLkl (6.11)

with β the weight on the KL-divergence term. As in VAEs,
{
ϕ′

enc[c]; c = 0, . . . , C
}
are used

only during the training for the stochastic decoder, and will not be used during testing since

the random noise can be directly sampled from the prior N (0,1).

6.2.2 Warping with semantic informed dis-occlusion

We warp the past video frames to provide an anchor point for future synthesis using the

predicted future semantic masks and flows fields
{
M̂

T+k

T+1, F̂
T+k

T+1

}
from the semantic-aware

dynamic model. To ease the warping and comply with the literature, here we mark the

4This ensures that the generation of the random variable is conditioned on the past.

62

Figure 6.4: Left: Two criteria for dis-occlusion detection. Pixel Occupancy: pixels A, B

in the target image domain are mapped onto pixel C in the input image domain, which is

occupied by more than one pixel when the predicted (backward) flow (blue arrows) is correct;

in this case, pixel A, as the cause of over-occupancy, can be detected as dis-occlusion. Pixel

Semantic Consistency: if the predicted flow is incorrect, pixel occupancy fails in detecting

A as dis-occlusion; however, given that semantic mask can be accurately predicted, A will

be mapped to pixel C with inconsistent semantic labels, thus can be correctly detected as

dis-occlusion. Right: Semantic-aware dis-occlusion synthesis, where both the generator and

the discriminator take in the predicted semantic mask, and the generator is dis-occlusion

aware.

63

predicted flow f̂ t as the backward flow, i.e., f̂ t+1→t. The warping can be simply performed

via bilinear interpolation5:

Ĩ t+1(pt+1) = I t

(
pt+1 + f̂ t(pt+1)

)
, ∀pt+1 /∈ Dt+1 (6.12)

where I t

(
pt

)
and f t

(
pt

)
represents the pixel value and optical flow value at pixel pt. The

key is to estimate the dis-occluded area Dt+1, which invalidates the assumption that a pixel

in frame I t+1 is propagated from the previous frame I t.

Note, [GXC19] proposes to use pixel occupancy for dis-occlusion detection, however,

miss-detection happens due to errors in flow prediction on the object boundaries where dis-

occlusion resides (see Fig. 6.4). Given that semantic masks are easier to predict than flows,

particularly, with our semantic-aware dynamic model, we propose a semantic consistency

criteria for dis-occlusion estimation, i.e., pt+1 ∈ Dt+1, if m̂t+1(p̃t+1) ̸= mt(pt). Here p̃t+1 =

W
(
pt;f t

)
is the pixel pt warped by flow f t. The above semantic consistency criteria can

still correctly detect dis-occlusions even if the flow is wrong, as shown in Fig. 6.4. Our

experiments use both the pixel occupancy and the proposed semantic consistency criterion

for dis-occlusion detection, given their complementarity.

After warping, we end up with the future frames warped from the past and the corre-

sponding dis-occlusion masks, i.e.,
{
ĨT ,DT+1, . . . ,DT+k

}
. Note Ĩ t is only valid (up to noise)

in the complement of Dt, which will be extrapolated as we describe next.

6.2.3 Semantic-aware dis-occlusion synthesis

Using the warped frames ĨT+k
T+1

.
=

{
ĨT+1, . . . , ĨT+k

}
as the anchor, we employ a conditional

inpainting network to further complete the dis-occluded parts and improve the quality of the

synthesized images via adversarial training. The conditional inpainting network ϕsyn takes

as input the anchor frame Ĩ t, and tries to complete the missing region indicated by Dt based

5We use Ĩt to represent the warped image at time t and Ît as the final (synthesized) image after filling
the dis-occlusion area.

64

on the predicted semantic map m̂t in a content-aware manner:

Î t = ϕsyn(Ĩ t,Dt, m̂t) (6.13)

for all T+1 ≤ t ≤ T+k. Note, image details and their temporal consistency can be improved

by semantic maps informing the scene content as shown in [WLZ18], which only focuses on

translating known semantic maps to images. Given the ability to model the dynamics of the

semantic map and its prediction, our conditional inpainting network can be informed about

the scene content, thus able to generate better synthesis (see Fig. 6.5).

To help the training of the content-aware conditional inpainting, we also employ two

discriminators Disvideo, Disimg for the video clip and frame respectively, with Disvideo focuses

on the temporal continuity and Disimg focuses on the image quality. So the training loss for

the content-aware inpainting network is:

Lsyn =
T+k∑

t=T+1

(
1−Dt

)
· ∥Î t − Ĩ t∥1 + λLper

(
Î t, I t

)
+ ηDisvideo

(
ÎT+k
T+1 ,M̂

T+k

T+1

)
+ γ

T+k∑
t=T+1

Disimg

(
Î t, m̂t

) (6.14)

where the first term measures the discrepancy between the completed image and the warped

image in the co-visible area; the loss Lper measures the perceptual similarity between the

generated images and the real images [PWJ19]. Disimg and Disvideo measure the plausibility

of images/videos conditioned on the semantic content. The final predictions of our model

are
{
M̂

T+k

T+1, F̂
T+k

T+1, ÎT+k
T+1

}
, i.e., predicted semantic maps, flow fields and video frames with

the semantic-aware dynamics model as their driving force.

6.3 Experiments

Datasets. We evaluate our method on multiple prediction tasks, e.g., video frames and

semantic maps, using three commonly used datasets, Cityscapes [COR16], KITTI Flow

[GLU12] and KITTI Raw [GLS13]. Cityscapes [COR16] contains driving sequences recorded

65

in 50 different cities. We use the training split for training our semantic-aware dynamic

model and the validation set for evaluation. The training and evaluation subsets contain

2975 and 500 videos, respectively. Pixel-wise annotations for semantic segmentation are

only available every 20 frames for the Cityscapes dataset. KITTI Raw [GLS13] contains

156 long sequences. Following [WGP20], we use 4 of them for testing and the rest for

training. KITTI Flow [GLU12] is designed for benchmarking optical flow algorithms and is

more challenging than KITTI Raw [GLS13]. It consists of 200 training videos and 200 test

videos. Following [GXC19], we downsample the videos to 128× 424 and then center-crop to

128× 256, yielding 4000 clips for both training and testing. Since per-frame dense semantic

maps and optical flow annotations are not available, we leverage the off-the-shelf semantic

segmentation network DeepLabV3 [CZP18] to extrapolate annotations for 20 classes and

compute the optical flow using the PWC-Net [SYL18].

Implementation and training. We adapt the grouped Conv-LSTM network [XCW15]

for the semantic-aware recurrent encoders and decoders to perform temporal aggregation of

semantic maps and flow fields. The inpainting network is a modified U-Net [RFB15], con-

ditioned on predicted anchor frames and semantic maps. We also replace the convolutional

layers in the encoder with the partial convolution proposed in [LRS18], which masks the

dis-occluded area in the feature space at different resolutions. The video and image discrim-

inators are similar to those in CycleGAN [ZPI17], except that the video discriminators have

ordinary 2-D convolutions replaced with 3-D convolutions.

Though our model can be trained end-to-end, we split the training into two stages to

manage on a single work-station: 1) Training the semantic-aware dynamic model with loss

Eqn. 6.11; 2) Training the inpainting network to fill in the dis-occluded area with loss Eqn.

6.14. The training is performed on 2 GeForce GTX 1080 Ti GPUs with a batch size equals

to 6, and each video clip in the batch contains 10 frames. Learning rates for both stages start

from 0.001 and decay by 0.8 every 20 epochs. The training of the semantic aware dynamic

model needs 40 hours to converge, and the training of the inpainting network takes about

66

MS-SSIM (×1e-2) ↑ LPIPS (×1e-2) ↓

Method T+1 T+5 T+1 T+5

PredNet [LKC16] 84.03 75.21 25.99 36.03

MCNET [VYH17] 89.69 70.58 18.88 37.34

Voxel Flow [LYT17] 83.85 71.11 17.37 28.79

Vid2vid [WLZ18] 88.16 75.13 10.58 20.14

Seg2vid [PWJ19] 88.32 61.63 9.69 25.99

FVS [WGP20] 89.10 75.68 8.50 16.50

SADM 95.99 83.51 7.67 14.93

Table 6.1: Quantitative comparison on the Cityscapes dataset.

20 hours.

Model complexity and inference. The semantic-aware dynamic model for predicting

semantic maps and flow fields contains 8.6M parameters. The inpainting network contains

5.18M parameters. Inference can be performed on a single GeForce GTX 1080 GPU with

8GB memory. The inference runs at 19 frames per second.

6.3.1 Quantitative results

Video prediction. Tab. 6.1 and Tab. 6.2 report the multi-frame video prediction per-

formance evaluated in terms of Multi-scale Structural Similarity Index Measure (MS-SSIM)

[WSB03] and LPIPS [ZIE18], on the Cityscapes and the KITTI Raw datasets respectively.

Higher MS-SSIM scores and lower LPIPS distances suggest better performance. Specifi-

cally, on longer horizon prediction (T + 5), our model improves Seg2vid [PWJ19], which

also employs semantic segmentation, by 35.50% (MS-SSIM) and 20.85% (LPIPS). Moreover,

our model outperforms FVS [WGP20], which infers 2-D affine transformations of moving

objects, by 10.35% (MS-SSIM) and 9.39% (LPIPS) on the T + 5 predictions.

67

MS-SSIM (×1e-2) ↑ LPIPS (×1e-2) ↓

Method T+1 T+3 T+5 T+1 T+3 T+5

PredNet [LKC16] 56.26 51.47 47.56 55.35 58.66 62.95

MCNet [VYH17] 75.35 63.52 55.48 24.05 31.71 37.39

Voxel Flow [LYT17] 53.93 46.99 42.62 32.47 37.43 41.59

FVS [WGP20] 79.28 67.65 60.77 18.48 24.61 30.49

SADM 83.06 72.44 64.72 14.41 24.58 31.16

Table 6.2: Quantitative comparison on the KITTI Raw dataset.

Following DPG [GXC19], we report the next-frame prediction results on the KITTI

Flow dataset in Tab. 6.3. For a fair comparison, we also include the commonly used Peak

Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM) [WBS04] as

the evaluation metrics, in addition to Learned Perceptual Image Patch Similarity (LPIPS)

[ZIE18]. Our model improves DPG [GXC19], the previous state-of-the-art method evaluated

on this dataset, by 9.7% in terms of PSNR, 2.2% in terms of SSIM, and 4.4% in terms of

LPIPS.

Semantic segmentation mask prediction. We evaluate our model’s performance on

semantic mask prediction using the Cityscapes dataset, with the standard mean Intersection-

over-Union score (mIoU) as the evaluation metric. Following [LNC17], the scores are com-

puted with respect to the ground truth segmentation of the 20th frame in each sequence.

Tab. 6.4 shows the semantic mask prediction performance on multiple prediction lengths.

Our method performs the best among the other methods, especially when the prediction

horizon gets longer.

6.3.2 Qualitative results

In Fig. 6.5, we compare to FVS [WGP20] and Seg2vid [PWJ19], two most recent methods

that employ semantic segmentation or moving object segmentation to facilitate video pre-

68

Method PSNR↑ SSIM (×1e-2)↑ LPIPS (×1e-2)↓

Repeat [GXC19] 16.5 48.9 19.0

PredNet [LKC16] 17.0 52.7 26.3

SVP-LP [DF18] 18.5 56.4 20.2

MCNet [VYH17] 18.9 58.7 23.7

MoCoGAN [TLY18] 19.2 57.2 18.6

DVF [LYT17] 22.1 68.3 16.3

CtrlGen [HHB18] 21.8 67.8 17.9

DPG [GXC19] 22.3 69.6 11.4

SADM 24.47 71.1 10.9

Table 6.3: Quantitative comparison in next-frame prediction on the KITTI Flow dataset.

diction. The motivation of Seg2vid [PWJ19] is that the high-level semantics of the scene will

result in more accurate predictions. However, without explicit modelings, such as SADM,

predicted flow fields from [PWJ19] still suffer from over-smoothing. Moreover, given that

most of the videos in Cityscapes are captured by a camera moving forward with a car, there

is a strong tendency in the model from Seg2vid to produce flow fields showing zooming-

in motion. On the other hand, FVS [WGP20] divides the whole scene into moving and

non-moving segments by moving object detection. Although 2-D affine transformations are

predicted per frame to approximate the object motion, complex motion, including deforma-

tion and 3-D rotation, may not be captured by a single 2-D affine transformation. Even for

non-moving rigid objects whose motion is induced by the camera motion, e.g., parked cars

and buildings, their projected 2-D flow fields still depend on the 3-D geometries and thus

are not 2-D affine. Our model can generate high-quality video frames with more accurate

motions with semantic-aware dynamics and inpainting.

69

Method T+1 T+5 T+9

Repeat 67.1 52.1 38.3

S2S-dil [LNC17] - 59.4 47.8

PSPNet [NRW18] 71.3 60 -

Jin [JXS17] 66.1 - -

Terwilliger [TBL19] 73.2 67.1 51.5

Bayes-WD-SL [BFS18] 74.1 65.1 51.2

F2MF-DN121 [al20] - 69.6 57.9

SADM 73.8 70.3 60.1

Table 6.4: Quantitative results of semantic map prediction on the Cityscapes dataset mea-

sured by the mIoU score.

6.3.3 Ablation study

Effectiveness of semantic-aware layers. To demonstrate the effectiveness of decompos-

ing the video into semantically consistent regions for video prediction, we train a baseline

model (“single class” in Fig. 6.7) with the same network architecture as SADM, and with a

naive concatenation of semantic masks and flow fields as the input to the baseline model. The

encoder and decoder of this baseline model share similar structures as those in SADM, be-

sides that ordinary convolutions are used. Note that an ordinary convolution layer has more

parameters than a grouped convolutional layer (O(K2) v.s. O(K)). As shown in Fig. 6.7,

without explicitly modeling the class-wise dynamics, the baseline model trained to predict

flow fields or video frames has difficulties estimating the motion near the boundaries between

different semantic regions (the black car in the top left). There is heavy over-smoothing near

the boundary of the car, which is problematic for the consecutive warping procedure, since

the flow there will warp pixels on the car to the background or vice versa, generating the

“ghost effect”. With the proposed semantic aware dynamic model, the motion of either the

car or the background can be accurately estimated since the influence on motion estimation

70

from occlusions is automatically handled through the decomposition. Similarly, in the bot-

tom left of Fig. 6.7, the warped image using the flow predicted by the baseline model shows

far more artifacts on the red car.

To show that the learned dynamics from our model are indeed semantic-aware, we test

the model with semantic labels intentionally swapped in the input. For example, we input

the “car” segments to the semantic-aware encoder that learns the “road” class dynamics

and vice versa. As expected (Fig. 6.6), the predicted motion of the “car” segments using

the encoder for the “road” class (middle row) now looks like the one of the “road” (bottom

row). Similarly, the “road” segments’ predicted motion using the encoder for the “car” class

(middle row) now looks more like the one from the “car” (bottom row). This shows that the

proposed model captures exactly that semantic-aware dynamics.

Number of semantic classes. We have experimented with different numbers of classes

(C) for training our semantic-aware dynamic model (SADM). Our observations are: 1) the

performance of our model, measured in terms of the video prediction quality, is robust with

respect to the number of classes C; 2) the optimal performance may not be achieved by the

model which has access to the full range of semantic classes; The results we reported in the

main paper are from our model trained with nine classes (C = 9), i.e., the 20 classes within

the Cityscapes dataset include 12 static categories and 8 moving categories, and we merge

the 12 static categories into a single class, resulting in 9 classes. In Tab. 6.5, we show the

quantitative results of SADM trained with C = 9 and C = 20 (no merging of any classes),

together with comparisons to other state-of-the-art methods on the Cityscapes dataset. One

can observe that both of them achieve comparable or better performance than the other

state of the arts. And SADM with C = 9 performs slightly better than SADM with C = 20.

Our conjecture is that the estimation error in the semantic maps generated by Deeplab

or any off-the-shelf semantic segmentation networks have a larger impact on SADM with

C = 20. For example, the segmentation boundary may not be accurate between two static

classes and the errors could propagate. However, when these two static classes are merged,

71

MS-SSIM (×1e-2) ↑ LPIPS (×1e-2) ↓

Method T+1 T+5 T+1 T+5

PredNet [LKC16] 84.03 75.21 25.99 36.03

MCNET [VYH17] 89.69 70.58 18.88 37.34

Voxel Flow [LYT17] 83.85 71.11 17.37 28.79

Vid2vid [WLZ18] 88.16 75.13 10.58 20.14

Seg2vid [PWJ19] 88.32 61.63 9.69 25.99

FVS [WGP20] 89.10 75.68 8.50 16.50

SADM-20 93.25 79.14 10.06 17.55

SADM-9 95.99 83.51 7.67 14.93

Table 6.5: Ablation study on the number of classes used for our semantic-aware dynamic

model with comparisons to other state-of-the-art methods on the Cityscapes dataset.

the in-between erroneous boundaries just disappear, leaving no errors for propagation, which

indeed can facilitate the training.

6.3.4 Computation complexity

As mentioned in Sec. 6.3, SADM use grouped convolution in the encoder/decoder and

employ class-specific recurrent units. This breaks combinatorial complexity, can run in

parallel and leaves the modeling of relations among classes to a separate fusion layer besides

the context-aware MLP in the decoders. As discussed in Sec. 6.3.3, jointly modeling the

dynamics of all classes would require much larger capacity and a much larger training set.

To provide a quantitative measurement of the complexity of our model, we compare the

number of parameters w.r.t to several state-of-art models as in Tab. 6.6, from which we can

make the following observations: 1) even with more parameters, SADM with single class

(C = 1) still can not learn the dynamics well; 2) the number of parameters in SADMs with

72

C = 9 and C = 20 are comparable to the other state-of-the-art methods, which demonstrates

that the learning efficiency of SADM does not come from any increase in the network capacity

but purely from the explicit modeling of semantic-aware dynamics.

Method Num of parameters

PredNet [LKC16] 6.9M

ContextVP [BWK18] 8.6M

DVF [LYT17] 8.9M

STMFA [JHT20] 7.6M

Seg2vid [PWJ19] 202M

SADM-9 8.6M

SADM-20 23.2M

SADM-ablation 38.1M

Table 6.6: Number of parameters in comparison with state-of-the-art models.

6.3.5 Failure cases

We have tested the hypothesis that representing object-level motion in a video can be benefi-

cial for prediction. To that end, we have proposed a model that captures occlusions explicitly

and represents class-specific motion. While such high-level modeling is beneficial to predic-

tion, there are failure cases. Specifically, hallucinating the dis-occluded regions can lead to

failure when the background is complex (Fig. 6.8). As the time horizon grows, the predic-

tion becomes increasingly unrealistic, as with other video prediction models, but the explicit

modeling of objects and class-specific motion yields improvements over generic models. Also,

we are constrained by classes for which we have training data, which limits generalization.

So, our work is only a first step to incorporating dynamic models informed by the semantics

of objects in the scene, which we expect will ultimately facilitate intelligent interaction with

physical scenes by autonomous agents.

73

Figure 6.5: Visual comparison of the Cityscapes dataset. Both the predicted video frames

(a) and flow fields (b) are presented. Left: the flow predicted by our network clearly shows

the silver car moves to the left and the camera moves forward, while the flow predicted from

Seg2vid [PWJ19] is dominated by “major” camera motion exhibited in the dataset, i.e.,

zooming-in caused by the movement of the running car. FVS [WGP20] wrongly predicts

the motion of the silver car, resulting in incorrect car locations at T + 3 and T + 5. Note

that, at T + 5, the black car on the left should move outside the image domain, which is

only captured by our model. Again, the “ghost effect” presents near the objects’ boundaries

in the predictions from the other two methods. Right: without conditioning on semantic

segmentation masks, the dis-occluded area of the building is incorrectly inpainted by the

inpainting network as part of the moving car, causing distortions in the results from FVS.

74

Figure 6.6: Ablation study: our model predicts video frames and flow fields by swapping

semantic-aware encoders for the classes of “car” and “road”, verifying that semantic-aware

dynamics is learned with the proposed model.

Figure 6.7: A baseline model without explicit modeling of the semantic-aware dynamics

(single class) shows less accurate motion prediction than SADM and has more artifacts in

the predicted video frames.

Figure 6.8: Complicated dis-occluded regions cause difficulties for the inpainting network,

even if the estimated occlusions are accurate (left).

75

CHAPTER 7

Conclusion

We interpret human perception of the physical scene as building an estimate of past ob-

servations, updating the knowledge with current observations, and utilizing the learned

knowledge to anticipate the future. Although the estimate, or “knowledge”, is theoretically

infinite-dimensional, we intend to approximate it with a finite-dimensional task-specific rep-

resentation, that contains all the past information we need to predict the task in the future.

In the first part of our work, we prove that learning task-specific representation is

tractable with a model realized in its most general form without heuristic assumptions

on the physical meaning of the hidden state. We adopt neural networks as universally-

approximating function classes to imitate the functionality of a state transition model and a

measurement model, so that the hidden feature tensor maintained in the recurrent structure

naturally becomes a task-specific representation of the scene.

Secondly, we demonstrate that the pipeline is still tractable even without any supervi-

sion from the task variable. The model was built upon generic regularities like temporal

consistency or occlusion relations, to partition the scene into object regions and maintain

a “meaningful” representation at the object level. Although showing good performance

on standard benchmarks, the method requires complicated hand-crafted designs to transfer

human inductive bias into executable machine modules.

Thirdly, we propose a model that benefits from both human inductive bias and prior

knowledge learned from the vast amount of (un-annotated) raw video data. By enforcing

class-specific pixel generators to predict future video data, we capture generic motion priors

76

in a semantic-aware manner.

Learning the representation is a trade-off between complexity and fidelity of the approx-

imation of the “true state”. The more abstract knowledge we capture from the data, the

less data volume we need to carry around, the less fine-grained details we can preserve, and

vice versa. Again, the extension of trading-off highly depends on the computation resources

we have and the task at hand. Our work of learning task-sufficient representation from the

video dynamics contributes new insights to this game of tug-of-war.

77

CHAPTER 8

Glossary of Notation

.
= Denote. For example, ∅ .

= {} means we use notation ∅ to represent the

concept “an empty set”.

P The probability distribution.

t The timestamp.

xt A random variable at times t.

X t A collection of random variables x from time 1 up to time t.

X t+k
t A collection of random variables x from time t up to time t+ k.

x[i] ith element of a random variable x.

x The latent state of a stochastic process.

y The observation variable of a stochastic process. In most cases, observa-

tions are video frames, y
.
= I.

z The task variable.

I t Video frame at time t.

I t A collection of video frames up to time t.

pt A pixel located on the tth video frame.

wfoo The parameters of a module named as “foo”.

rt An image region (collection of adjacent pixels) at time t.

Sp A superpixel.

A(·) The area of an image region.

f t f t ∈ RH×W×2, the optical flow defined on video frame t with size H ×W .

78

mt mt ∈ [0, C]H×W , the semantic segmentation mask flow defined on the

video frame t with size H ×W . C is the number of classes.

O The occluded region of an image. O ∈ [0, 1]H×W defined on the image

plane with shape H ×W .

D The dis-occluded region of an image. D ∈ [0, 1]H×W defined on the image

plane with shape H ×W .

\ The removing operation by excluding all pixels belongs to region r[j] from

r[i], i.e., r[i] \ r[j] .
= p ∈ r[i] and p /∈ r[j].

δa(·) The Dirac measure at a given position a.

N (µ;Σ) A normal distribution with mean µ and covariance Σ.

W(·;f) The warping operation. e.g., W(I;f) refers to warping the image I by

optical flow values f .

IoU The intersection-over-union operator.

1[·] The indicator function.

σ(·) The sigmoid function. σ(x)
.
= 1/(1 + e−x)

tanh(·) The hyperbolic tangent function, i.e., tanh(x)
.
= (ex − e−x)/(ex + e−x)

∗ The convolution operator.

◦ The Hadamard product (element-wise product).

ht The hidden state of a recurrent neural network at time t.

Lfoo A loss function term with name “foo”.

KL The Kullback–Leibler divergence

[a, b] The concatenation of (discretized) tensor a and b.

79

REFERENCES

[al20] Josip S. et al. “Warp to the Future.” In CVPR, 2020.

[AS12] Alper Ayvaci and Stefano Soatto. “Detachable Object Detection: Segmentation
and Depth Ordering From Short-Baseline Video.” IEEE Trans. Pattern Anal.
Mach. Intell., 2012.

[AS18] Alessandro Achille and Stefano Soatto. “A separation principle for control in
the age of deep learning.” Annual Review of Control, Robotics, and Autonomous
Systems, 1:287–307, 2018.

[BA96] M.J. Black and P. Anandan. “The Robust Estimation of Multiple Motions:
Parametric and Piecewise-Smooth Flow Fields.” 63(1):75–104, 1996.

[BBP04] Thomas Brox, Andrés Bruhn, Nils Papenberg, and Joachim Weickert. “High
accuracy optical flow estimation based on a theory for warping.” In Eur. Conf.
Comput. Vis., pp. 25–36. Springer, 2004.

[BFE17] Mohammad Babaeizadeh, Chelsea Finn, Dumitru Erhan, Roy H Campbell,
and Sergey Levine. “Stochastic variational video prediction.” arXiv preprint
arXiv:1710.11252, 2017.

[BFS18] Apratim Bhattacharyya, Mario Fritz, and Bernt Schiele. “Bayesian pre-
diction of future street scenes using synthetic likelihoods.” arXiv preprint
arXiv:1810.00746, 2018.

[BL95] Yaakov Bar-Shalom and Xiao-Rong Li. Multitarget-multisensor tracking: princi-
ples and techniques, volume 19. YBs London, UK:, 1995.

[BM98] Lothar Bergen and Fernand Meyer. “Motion Segmentation and Depth Ordering
Based on Morphological Segmentation.” In Eur. Conf. Comput. Vis., 1998.

[BM10] Thomas Brox and Jitendra Malik. “Object segmentation by long term analysis
of point trajectories.” In European conference on computer vision, pp. 282–295.
Springer, 2010.

[BM11] Thomas Brox and Jitendra Malik. “Large displacement optical flow: descriptor
matching in variational motion estimation.” IEEE Trans. Pattern Anal. Mach.
Intell., 2011.

[BMT05] M.F. Beg, M.I. Miller, A. Trouvé, and L. Younes. “Computing large deformation
metric mappings via geodesic flows of diffeomorphisms.” Int. J. Comput. Vis.,
61(2):139–157, 2005.

80

[BRL09] Michael D Breitenstein, Fabian Reichlin, Bastian Leibe, Esther Koller-Meier, and
Luc Van Gool. “Robust tracking-by-detection using a detector confidence particle
filter.” In Computer Vision, 2009 IEEE 12th International Conference on, pp.
1515–1522. IEEE, 2009.

[BS09] Leah Bar and Guillermo Sapiro. “Generalized Newton-type methods for energy
formulations in image processing.” SIAM Journal on Imaging Sciences, 2(2):508–
531, 2009.

[BT09] William Brendel and Sinisa Todorovic. “Video Object Segmentation by Tracking
Regions.” In Int. Conf. Comput. Vis., 2009.

[BVH16] Luca Bertinetto, Jack Valmadre, Joao F Henriques, Andrea Vedaldi, and
Philip HS Torr. “Fully-convolutional siamese networks for object tracking.” In
European Conference on Computer Vision, pp. 850–865. Springer, 2016.

[BWK18] Wonmin Byeon, Qin Wang, Rupesh Kumar Srivastava, and Petros Koumout-
sakos. “Contextvp: Fully context-aware video prediction.” In Proceedings of the
European Conference on Computer Vision (ECCV), pp. 753–769, 2018.

[BWS09] Xue Bai, Jue Wang, David Simons, and Guillermo Sapiro. “Video snapcut:
robust video object cutout using localized classifiers.” In ACM Transactions on
Graphics (TOG), 2009.

[BYS21] Xinzhu Bei, Yanchao Yang, and Stefano Soatto. “Learning semantic-aware dy-
namics for video prediction.” In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 902–912, 2021.

[CBT18] Haoye Cai, Chunyan Bai, Yu-Wing Tai, and Chi-Keung Tang. “Deep video gen-
eration, prediction and completion of human action sequences.” In Proceedings
of the European Conference on Computer Vision (ECCV), pp. 366–382, 2018.

[CCB06] A. Criminisi, G. Cross, A. Blake, and V. Kolmogorov. “Bilayer Segmentation of
Live Video.” In IEEE Conf. Comput. Vis. Pattern Recog., 2006.

[CCY] J Choi, HJ Chang, S Yun, T Fischer, Y Demiris, and JY Choi. “Attentional
correlation filter network for adaptive visual tracking.”.

[CF13] J. Chang and J. W. Fisher III. “Topology-Constrained Layered Tracking with
Latent Flow.” In Int. Conf. Comput. Vis., 2013.

[CFL06] Yizheng Cai, Nando de Freitas, and James J Little. “Robust visual tracking
for multiple targets.” In European conference on computer vision, pp. 107–118.
Springer, 2006.

81

[CKL17] Janghoon Choi, Junseok Kwon, and Kyoung Mu Lee. “Visual tracking by rein-
forced decision making.” arXiv preprint arXiv:1702.06291, 2017.

[CMP07] Guillaume Charpiat, Pierre Maurel, J-P Pons, Renaud Keriven, and Olivier
Faugeras. “Generalized gradients: Priors on minimization flows.” Int. J. Com-
put. Vis., 73(3):325–344, 2007.

[COL17] Qi Chu, Wanli Ouyang, Hongsheng Li, Xiaogang Wang, Bin Liu, and Nenghai
Yu. “Online multi-object tracking using cnn-based single object tracker with
spatial-temporal attention mechanism.” In 2017 IEEE International Conference
on Computer Vision (ICCV).(Oct 2017), pp. 4846–4855, 2017.

[COR16] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus En-
zweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. “The
Cityscapes Dataset for Semantic Urban Scene Understanding.” In Proc. of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[CP11] Antonin Chambolle and Thomas Pock. “A first-order primal-dual algorithm for
convex problems with applications to imaging.” Journal of Mathematical Imaging
and Vision, 2011.

[CPK17] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and
Alan L Yuille. “Deeplab: Semantic image segmentation with deep convolutional
nets, atrous convolution, and fully connected crfs.” IEEE transactions on pattern
analysis and machine intelligence, 40(4):834–848, 2017.

[CZP18] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig
Adam. “Encoder-decoder with atrous separable convolution for semantic image
segmentation.” In Proceedings of the European conference on computer vision
(ECCV), pp. 801–818, 2018.

[DF18] Emily Denton and Rob Fergus. “Stochastic video generation with a learned
prior.” arXiv preprint arXiv:1802.07687, 2018.

[DGA00] Arnaud Doucet, Simon Godsill, and Christophe Andrieu. “On sequential Monte
Carlo sampling methods for Bayesian filtering.” Statistics and computing,
10(3):197–208, 2000.

[DHS15] Martin Danelljan, Gustav Hager, Fahad Shahbaz Khan, and Michael Felsberg.
“Learning spatially regularized correlation filters for visual tracking.” In Proceed-
ings of the IEEE International Conference on Computer Vision, pp. 4310–4318,
2015.

[Dou98] Arnaud Doucet. “On sequential simulation-based methods for Bayesian filtering.”
1998.

82

[DP91] Trevor Darrell and Alexander Pentland. “Robust estimation of a multi-layered
motion representation.” In IEEE Workshop on Visual Motion, 1991.

[DRK16] Martin Danelljan, Andreas Robinson, Fahad Shahbaz Khan, and Michael Fels-
berg. “Beyond correlation filters: Learning continuous convolution operators for
visual tracking.” In European Conference on Computer Vision, pp. 472–488.
Springer, 2016.

[DWQ17] Dawei Du, Longyin Wen, Honggang Qi, Qingming Huang, Qi Tian, and Siwei
Lyu. “Iterative graph seeking for object tracking.” IEEE Transactions on Image
Processing, 27(4):1809–1821, 2017.

[DZ13] Piotr Dollár and C. Lawrence Zitnick. “Structured Forests for Fast Edge Detec-
tion.” In Int. Conf. Comput. Vis., 2013.

[Elm90] Jeffrey L Elman. “Finding structure in time.” Cognitive science, 14(2):179–211,
1990.

[FPZ17] Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman. “Detect to track and
track to detect.” In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 3038–3046, 2017.

[GB08] Michael Grant and Stephen Boyd. “Graph implementations for nonsmooth con-
vex programs.” In V. Blondel, S. Boyd, and H. Kimura, editors, Recent Advances
in Learning and Control, Lecture Notes in Control and Information Sciences, pp.
95–110. Springer-Verlag Limited, 2008. http://stanford.edu/~boyd/graph_

dcp.html.

[GB14] Michael Grant and Stephen Boyd. “CVX: Matlab Software for Disciplined Con-
vex Programming, version 2.1.” http://cvxr.com/cvx, March 2014.

[GCS12] Fabio Galasso, Roberto Cipolla, and Bernt Schiele. “Video Segmentation with
Superpixels.” In ACCV, 2012.

[GFF18] Daniel Gordon, Ali Farhadi, and Dieter Fox. “Re 3: Re al-time recurrent re-
gression networks for visual tracking of generic objects.” IEEE Robotics and
Automation Letters, 3(2):788–795, 2018.

[GFZ17] Qing Guo, Wei Feng, Ce Zhou, Rui Huang, Liang Wan, and Song Wang. “Learn-
ing dynamic siamese network for visual object tracking.” In The IEEE Interna-
tional Conference on Computer Vision (ICCV).(Oct 2017), 2017.

[GKH10a] Matthias Grundmann, Vivek Kwatra, Mei Han, and Irfan Essa. “Efficient Hierar-
chical Graph Based Video Segmentation.” In IEEE Conf. Comput. Vis. Pattern
Recog., 2010.

83

[GKH10b] Matthias Grundmann, Vivek Kwatra, Mei Han, and Irfan Essa. “Efficient Hierar-
chical Graph-based Video Segmentation.” In IEEE Conf. Comput. Vis. Pattern
Recog., 2010.

[GLS13] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. “Vision
meets Robotics: The KITTI Dataset.” International Journal of Robotics Re-
search (IJRR), 2013.

[GLU12] Andreas Geiger, Philip Lenz, and Raquel Urtasun. “Are we ready for Au-
tonomous Driving? The KITTI Vision Benchmark Suite.” In Conference on
Computer Vision and Pattern Recognition (CVPR), 2012.

[GNJ13] Fabio Galasso, S. Naveen, Tatiana J. Cardenas, Thomas Brox, and Bernt Schiele.
“A Unified Video Segmentation Benchmark: Annotation, Metrics and Analysis.”
In Int. Conf. Comput. Vis., 2013.

[GPB11] Gottfried Graber, Thomas Pock, and Horst Bischof. “Online 3D reconstruction
using convex optimization.” In Computer Vision Workshops (ICCV Workshops),
2011 IEEE International Conference on, pp. 708–711. IEEE, 2011.

[Gra12] Alex Graves. “Long short-term memory.” Supervised sequence labelling with
recurrent neural networks, pp. 37–45, 2012.

[GSS93] Neil J Gordon, David J Salmond, and Adrian FM Smith. “Novel approach to
nonlinear/non-Gaussian Bayesian state estimation.” In IEE Proceedings F-radar
and signal processing, volume 140, pp. 107–113. IET, 1993.

[GXC19] Hang Gao, Huazhe Xu, Qi-Zhi Cai, Ruth Wang, Fisher Yu, and Trevor Darrell.
“Disentangling propagation and generation for video prediction.” In Proceedings
of the IEEE International Conference on Computer Vision, pp. 9006–9015, 2019.

[HF09] Rob Hess and Alan Fern. “Discriminatively trained particle filters for com-
plex multi-object tracking.” In Computer Vision and Pattern Recognition, 2009.
CVPR 2009. IEEE Conference on, pp. 240–247. IEEE, 2009.

[HGD17] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. “Mask r-cnn.”
In Proceedings of the IEEE international conference on computer vision, pp.
2961–2969, 2017.

[HGS16] Sam Hare, Stuart Golodetz, Amir Saffari, Vibhav Vineet, Ming-Ming Cheng,
Stephen L Hicks, and Philip HS Torr. “Struck: Structured output tracking
with kernels.” IEEE transactions on pattern analysis and machine intelligence,
38(10):2096–2109, 2016.

84

[HHB18] Zekun Hao, Xun Huang, and Serge Belongie. “Controllable video generation with
sparse trajectories.” In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 7854–7863, 2018.

[HLH18] Jun-Ting Hsieh, Bingbin Liu, De-An Huang, Li F Fei-Fei, and Juan Carlos
Niebles. “Learning to decompose and disentangle representations for video pre-
diction.” In Advances in Neural Information Processing Systems, pp. 517–526,
2018.

[HLM18] Jiawei He, Andreas Lehrmann, Joseph Marino, Greg Mori, and Leonid Sigal.
“Probabilistic video generation using holistic attribute control.” In Proceedings
of the European Conference on Computer Vision (ECCV), pp. 452–467, 2018.

[HLR17] Chen Huang, Simon Lucey, and Deva Ramanan. “Learning policies for adaptive
tracking with deep feature cascades.” In IEEE Int. Conf. on Computer Vision
(ICCV), pp. 105–114, 2017.

[HLT18] Anfeng He, Chong Luo, Xinmei Tian, and Wenjun Zeng. “A twofold siamese
network for real-time object tracking.” In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 4834–4843, 2018.

[HS81] B.K.P. Horn and B.G. Schunck. “Determining Optical Flow.” Artificial intelli-
gence, 17(1-3):185–203, 1981.

[HSA17] Bohyung Han, Jack Sim, and Hartwig Adam. “Branchout: Regularization for
online ensemble tracking with convolutional neural networks.” CVPR, 2017.

[HTS16] David Held, Sebastian Thrun, and Silvio Savarese. “Learning to track at 100 fps
with deep regression networks.” In European Conference on Computer Vision,
pp. 749–765. Springer, 2016.

[HYK15] Seunghoon Hong, Tackgeun You, Suha Kwak, and Bohyung Han. “Online track-
ing by learning discriminative saliency map with convolutional neural network.”
In International Conference on Machine Learning, pp. 597–606, 2015.

[Iba01] Yukito Iba. “Population monte carlo algorithms.” Transactions of the Japanese
Society for Artificial Intelligence, 16(2):279–286, 2001.

[JDT16] Xu Jia, Bert De Brabandere, Tinne Tuytelaars, and Luc V Gool. “Dynamic filter
networks.” In Advances in Neural Information Processing Systems, pp. 667–675,
2016.

[JF01] Nebojsa Jojic and Brendan J Frey. “Learning flexible sprites in video layers.” In
IEEE Conf. Comput. Vis. Pattern Recog., 2001.

85

[JHT20] Beibei Jin, Yu Hu, Qiankun Tang, Jingyu Niu, Zhiping Shi, Yinhe Han, and
Xiaowei Li. “Exploring Spatial-Temporal Multi-Frequency Analysis for High-
Fidelity and Temporal-Consistency Video Prediction.” In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4554–
4563, 2020.

[JRB18] Rico Jonschkowski, Divyam Rastogi, and Oliver Brock. “Differentiable par-
ticle filters: End-to-end learning with algorithmic priors.” arXiv preprint
arXiv:1805.11122, 2018.

[JSZ15] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. “Spatial transformer
networks.” In Advances in Neural Information Processing Systems, pp. 2017–
2025, 2015.

[JXS17] Xiaojie Jin, Huaxin Xiao, Xiaohui Shen, Jimei Yang, Zhe Lin, Yunpeng Chen,
Zequn Jie, Jiashi Feng, and Shuicheng Yan. “Predicting scene parsing and motion
dynamics in the future.” In Advances in Neural Information Processing Systems,
pp. 6915–6924, 2017.

[JYS08] J. Jackson, A. J. Yezzi, and S. Soatto. “Dynamic shape and appearance modeling
via moving and deforming layers.” Int. J. Comput. Vis., 2008.

[Kal60] Rudolph Emil Kalman. “A new approach to linear filtering and prediction prob-
lems.” 1960.

[KBC12] Kalin Kolev, Thomas Brox, and Daniel Cremers. “Fast joint estimation of sil-
houettes and dense 3D geometry from multiple images.” IEEE Trans. Pattern
Anal. Mach. Intell., 34(3):493–505, 2012.

[KBD04] Zia Khan, Tucker Balch, and Frank Dellaert. “An MCMC-based particle filter
for tracking multiple interacting targets.” In European Conference on Computer
Vision, pp. 279–290. Springer, 2004.

[KBP17] Adam Kosiorek, Alex Bewley, and Ingmar Posner. “Hierarchical attentive re-
current tracking.” In Advances in Neural Information Processing Systems, pp.
3053–3061, 2017.

[KLR18] Chanho Kim, Fuxin Li, and James M Rehg. “Multi-object Tracking with Neural
Gating Using Bilinear LSTM.” In Proceedings of the European Conference on
Computer Vision (ECCV), pp. 200–215, 2018.

[KML16] Matej Kristan, Jiri Matas, Aleš Leonardis, Tomas Vojir, Roman Pflugfelder, Gus-
tavo Fernandez, Georg Nebehay, Fatih Porikli, and Luka Čehovin. “A Novel
Performance Evaluation Methodology for Single-Target Trackers.” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 38(11):2137–2155, Nov
2016.

86

[KMM12] Zdenek Kalal, Krystian Mikolajczyk, and Jiri Matas. “Tracking-learning-
detection.” IEEE transactions on pattern analysis and machine intelligence,
34(7):1409–1422, 2012.

[KMM15] Samira Ebrahimi Kahou, Vincent Michalski, and Roland Memisevic. “RATM:
recurrent attentive tracking model.” arXiv preprint arXiv:1510.08660, 2015.

[Kol84] David A Kolb. “Experience as the source of learning and development.” Upper
Sadle River: Prentice Hall, 1984.

[KSC15] C. Kerl, J. Stueckler, and D. Cremers. “Dense Continuous-Time Tracking and
Mapping with Rolling Shutter RGB-D Cameras.” In Int. Conf. Comput. Vis.,
Santiago, Chile, 2015.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classification
with deep convolutional neural networks.” In Advances in neural information
processing systems, pp. 1097–1105, 2012.

[KSH17] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classifica-
tion with deep convolutional neural networks.” Communications of the ACM,
60(6):84–90, 2017.

[KTZ08] M Pawan Kumar, Philip HS Torr, and Andrew Zisserman. “Learning layered
motion segmentations of video.” Int. J. Comput. Vis., 76(3), 2008.

[Laf96] Eric Lafortune. “Mathematical models and Monte Carlo algorithms for physically
based rendering.” Department of Computer Science, Faculty of Engineering,
Katholieke Universiteit Leuven, 20:74–79, 1996.

[LFY18] Yijun Li, Chen Fang, Jimei Yang, Zhaowen Wang, Xin Lu, and Ming-Hsuan
Yang. “Flow-grounded spatial-temporal video prediction from still images.” In
Proceedings of the European Conference on Computer Vision (ECCV), pp. 600–
615, 2018.

[LKC16] William Lotter, Gabriel Kreiman, and David Cox. “Deep predictive cod-
ing networks for video prediction and unsupervised learning.” arXiv preprint
arXiv:1605.08104, 2016.

[LKG11] Yong Jae Lee, Jaechul Kim, and Kristen Grauman. “Key-segments for Video
Object Segmentation.” In Int. Conf. Comput. Vis., 2011.

[LLD17] Xiaodan Liang, Lisa Lee, Wei Dai, and Eric P Xing. “Dual motion gan for
future-flow embedded video prediction.” In Proceedings of the IEEE International
Conference on Computer Vision, pp. 1744–1752, 2017.

87

[LMP01] John Lafferty, Andrew McCallum, and Fernando CN Pereira. “Conditional ran-
dom fields: Probabilistic models for segmenting and labeling sequence data.”
2001.

[LNC17] Pauline Luc, Natalia Neverova, Camille Couprie, Jakob Verbeek, and Yann Le-
Cun. “Predicting deeper into the future of semantic segmentation.” In Proceed-
ings of the IEEE International Conference on Computer Vision, pp. 648–657,
2017.

[LPH17] Zelun Luo, Boya Peng, De-An Huang, Alexandre Alahi, and Li Fei-Fei. “Unsu-
pervised learning of long-term motion dynamics for videos.” In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 2203–2212,
2017.

[LRS18] Guilin Liu, Fitsum A Reda, Kevin J Shih, Ting-Chun Wang, Andrew Tao, and
Bryan Catanzaro. “Image inpainting for irregular holes using partial convolu-
tions.” In Proceedings of the European Conference on Computer Vision (ECCV),
pp. 85–100, 2018.

[LSD15] Jonathan Long, Evan Shelhamer, and Trevor Darrell. “Fully convolutional net-
works for semantic segmentation.” In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 3431–3440, 2015.

[LYT17] Ziwei Liu, Raymond A Yeh, Xiaoou Tang, Yiming Liu, and Aseem Agarwala.
“Video frame synthesis using deep voxel flow.” In Proceedings of the IEEE In-
ternational Conference on Computer Vision, pp. 4463–4471, 2017.

[LYW18] Bo Li, Junjie Yan, Wei Wu, Zheng Zhu, and Xiaolin Hu. “High Performance
Visual Tracking With Siamese Region Proposal Network.” In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 8971–8980,
2018.

[LZK17] Alan Lukežič, Luka Čehovin Zajc, and Matej Kristan. “Deformable parts cor-
relation filters for robust visual tracking.” IEEE Transactions on Cybernetics,
2017.

[MHY15] Chao Ma, Jia-Bin Huang, Xiaokang Yang, and Ming-Hsuan Yang. “Hierarchical
convolutional features for visual tracking.” In Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pp. 3074–3082, 2015.

[ML11] Dennis Mitzel and Bastian Leibe. “Real-time multi-person tracking with detec-
tor assisted structure propagation.” In 2011 IEEE International Conference on
Computer Vision Workshops (ICCV Workshops), pp. 974–981. IEEE, 2011.

88

[MMB17] Tanya Marwah, Gaurav Mittal, and Vineeth N Balasubramanian. “Attentive
semantic video generation using captions.” In Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pp. 1426–1434, 2017.

[MRD17] Anton Milan, Seyed Hamid Rezatofighi, Anthony R Dick, Ian D Reid, and Konrad
Schindler. “Online Multi-Target Tracking Using Recurrent Neural Networks.” In
AAAI, volume 2, p. 4, 2017.

[MSK04] Yi Ma, Stefano Soatto, Jana Košecká, and Shankar Sastry. An invitation to 3-d
vision: from images to geometric models, volume 26. Springer, 2004.

[ND10] Richard A Newcombe and Andrew J Davison. “Live dense reconstruction with a
single moving camera.” In IEEE Conf. Comput. Vis. Pattern Recog., pp. 1498–
1505. IEEE, 2010.

[NH16] Hyeonseob Nam and Bohyung Han. “Learning multi-domain convolutional neu-
ral networks for visual tracking.” In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 4293–4302, 2016.

[NRW18] Seyed shahabeddin Nabavi, Mrigank Rochan, and Yang Wang. “Future Semantic
Segmentation with Convolutional LSTM.” In BMVC, p. 137, 2018.

[NZH17] Guanghan Ning, Zhi Zhang, Chen Huang, Xiaobo Ren, Haohong Wang, Canhui
Cai, and Zhihai He. “Spatially supervised recurrent convolutional neural net-
works for visual object tracking.” In Circuits and Systems (ISCAS), 2017 IEEE
International Symposium on, pp. 1–4. IEEE, 2017.

[OMB14] P. Ochs, J. Malik, and T. Brox. “Segmentation of Moving Objects by Long Term
Video Analysis.” IEEE Trans. Pattern Anal. Mach. Intell., 36(6), 2014.

[PF13] Anestis Papazoglou and Vittorio Ferrari. “Fast object segmentation in uncon-
strained video.” In Int. Conf. Comput. Vis., 2013.

[PGS14] Silvia L Pintea, Jan C van Gemert, and Arnold WM Smeulders. “Déja vu.” In
European Conference on Computer Vision, pp. 172–187. Springer, 2014.

[PWJ19] Junting Pan, Chengyu Wang, Xu Jia, Jing Shao, Lu Sheng, Junjie Yan, and
Xiaogang Wang. “Video Generation From Single Semantic Label Map.” In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 3733–3742, 2019.

[Rei79] Donald Reid et al. “An algorithm for tracking multiple targets.” IEEE transac-
tions on Automatic Control, 24(6):843–854, 1979.

89

[RFB15] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-net: Convolutional
networks for biomedical image segmentation.” In International Conference
on Medical image computing and computer-assisted intervention, pp. 234–241.
Springer, 2015.

[RHW86] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. “Learning
representations by back-propagating errors.” nature, 323(6088):533–536, 1986.

[RLS18] Fitsum A Reda, Guilin Liu, Kevin J Shih, Robert Kirby, Jon Barker, David
Tarjan, Andrew Tao, and Bryan Catanzaro. “Sdc-net: Video prediction using
spatially-displaced convolution.” In Proceedings of the European Conference on
Computer Vision (ECCV), pp. 718–733, 2018.

[RM07] Xiaofeng Ren and Jitendra Malik. “Tracking as Repeated Figure/Ground Seg-
mentation.” In IEEE Conf. Comput. Vis. Pattern Recog., 2007.

[RSL11] Mikel Rodriguez, Josef Sivic, Ivan Laptev, and Jean-Yves Audibert. “Data-
driven crowd analysis in videos.” In ICCV 2011-13th International Conference
on Computer Vision, pp. 1235–1242. IEEE, 2011.

[RWH15] Jerome Revaud, Philippe Weinzaepfel, Zaid Harchaoui, and Cordelia Schmid.
“Epicflow: Edge-preserving interpolation of correspondences for optical flow.” In
Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 1164–1172, 2015.

[SAS17] Amir Sadeghian, Alexandre Alahi, and Silvio Savarese. “Tracking the untrack-
able: Learning to track multiple cues with long-term dependencies.” arXiv
preprint arXiv:1701.01909, 4(5):6, 2017.

[SBC] Jeany Son, Mooyeol Baek, Minsu Cho, and Bohyung Han. “Multi-Object Track-
ing with Quadruplet Convolutional Neural Networks.”.

[SBC17] Jeany Son, Mooyeol Baek, Minsu Cho, and Bohyung Han. “Multi-object tracking
with quadruplet convolutional neural networks.” In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 5620–5629, 2017.

[SC12] Thomas Schoenemann and Daniel Cremers. “A Coding-Cost Framework for
Super-Resolution Motion Layer Decomposition.” IEEE Trans. Image Process.,
2012.

[SCC14] Arnold WM Smeulders, Dung M Chu, Rita Cucchiara, Simone Calderara, Afshin
Dehghan, and Mubarak Shah. “Visual tracking: An experimental survey.” IEEE
Transactions on Pattern Analysis and Machine Intelligence, 36(7):1442–1468,
2014.

90

[SCW15] Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and
Wang-chun Woo. “Convolutional LSTM network: A machine learning approach
for precipitation nowcasting.” Advances in neural information processing sys-
tems, 28, 2015.

[SDC04] P. Smith, Tom Drummond, and R. Cipolla. “Layered Motion Segmentation and
Depth Ordering by Tracking Edges.” IEEE Trans. Pattern Anal. Mach. Intell.,
26(4), 2004.

[SMG17] Yibing Song, Chao Ma, Lijun Gong, Jiawei Zhang, Rynson WH Lau, and Ming-
Hsuan Yang. “Crest: Convolutional residual learning for visual tracking.” In
Computer Vision (ICCV), 2017 IEEE International Conference on, pp. 2574–
2583. IEEE, 2017.

[SMS17] Masaki Saito, Eiichi Matsumoto, and Shunta Saito. “Temporal generative adver-
sarial nets with singular value clipping.” In Proceedings of the IEEE International
Conference on Computer Vision, pp. 2830–2839, 2017.

[SR17] James Steven Supancic III and Deva Ramanan. “Tracking as Online Decision-
Making: Learning a Policy from Streaming Videos with Reinforcement Learning.”
In ICCV, pp. 322–331, 2017.

[SSB12] Deqing Sun, E.B. Sudderth, and M.J. Black. “Layered segmentation and optical
flow estimation over time.” In IEEE Conf. Comput. Vis. Pattern Recog., 2012.

[SSB15] Naveen Shankar Nagaraja, Frank R Schmidt, and Thomas Brox. “Video Seg-
mentation with Just a Few Strokes.” In Proceedings of the IEEE International
Conference on Computer Vision, pp. 3235–3243, 2015.

[SWS13] Deqing Sun, Jonas Wulff, Erik B Sudderth, Hanspeter Pfister, and Michael J
Black. “A fully-connected layered model of foreground and background flow.” In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, pp. 2451–2458, 2013.

[SYL18] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz. “PWC-Net: CNNs
for optical flow using pyramid, warping, and cost volume.” In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 8934–8943,
2018.

[TBL19] Adam Terwilliger, Garrick Brazil, and Xiaoming Liu. “Recurrent flow-guided se-
mantic forecasting.” In 2019 IEEE Winter Conference on Applications of Com-
puter Vision (WACV), pp. 1703–1712. IEEE, 2019.

[TGS16] Ran Tao, Efstratios Gavves, and Arnold WM Smeulders. “Siamese instance
search for tracking.” In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 1420–1429, 2016.

91

[TKS15] Brian Taylor, Vasiliy Karasev, and Stefano Soattoc. “Causal Video Object Seg-
mentation from Persistence of Occlusions.” In IEEE Conf. Comput. Vis. Pattern
Recog. IEEE, 2015.

[TLY18] Sergey Tulyakov, Ming-Yu Liu, Xiaodong Yang, and Jan Kautz. “Mocogan: De-
composing motion and content for video generation.” In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 1526–1535, 2018.

[VAP10] Amelio Vazquez-Reina, Shai Avidan, Hanspeter Pfister, and Eric Miller. “Mul-
tiple Hypothesis Video Segmentation from Superpixel Flows.” In Eur. Conf.
Comput. Vis., 2010.

[VM17] E Velasco-Salido and JM Martınez. “Scale adaptive point-based kanade lukas
tomasi colour-filter tracker.” Under Review, 2017.

[VMN16] Tomas Vojir, Jiri Matas, and Jana Noskova. “Online adaptive hidden markov
model for multi-tracker fusion.” Computer Vision and Image Understanding,
153:109–119, 2016.

[VPT16] Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba. “Generating videos
with scene dynamics.” In Advances In Neural Information Processing Systems,
pp. 613–621, 2016.

[VSR15] Christoph Vogel, Konrad Schindler, and Stefan Roth. “3D Scene Flow Estimation
with a Piecewise Rigid Scene Model.” International Journal of Computer Vision,
115(1):1–28, 2015.

[VYH17] Ruben Villegas, Jimei Yang, Seunghoon Hong, Xunyu Lin, and Honglak Lee.
“Decomposing motion and content for natural video sequence prediction.” arXiv
preprint arXiv:1706.08033, 2017.

[VYZ17] Ruben Villegas, Jimei Yang, Yuliang Zou, Sungryull Sohn, Xunyu Lin, and
Honglak Lee. “Learning to generate long-term future via hierarchical prediction.”
In Proceedings of the 34th International Conference on Machine Learning-Volume
70, pp. 3560–3569. JMLR. org, 2017.

[WA94] John Y.A. Wang and Edward H. Adelson. “Representing Moving Images with
Layers.” IEEE Trans. Image Process., 1994.

[WBS04] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. “Image
quality assessment: from error visibility to structural similarity.” IEEE transac-
tions on image processing, 13(4):600–612, 2004.

[WGP20] Yue Wu, Rongrong Gao, Jaesik Park, and Qifeng Chen. “Future video synthesis
with object motion prediction.” In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 5539–5548, 2020.

92

[WLZ18] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Guilin Liu, Andrew Tao, Jan
Kautz, and Bryan Catanzaro. “Video-to-video synthesis.” arXiv preprint
arXiv:1808.06601, 2018.

[WMG17] Jacob Walker, Kenneth Marino, Abhinav Gupta, and Martial Hebert. “The pose
knows: Video forecasting by generating pose futures.” In Proceedings of the IEEE
International Conference on Computer Vision, pp. 3332–3341, 2017.

[WOW15] Lijun Wang, Wanli Ouyang, Xiaogang Wang, and Huchuan Lu. “Visual tracking
with fully convolutional networks.” In Proceedings of the IEEE International
Conference on Computer Vision, pp. 3119–3127, 2015.

[WP90] Ronald J Williams and Jing Peng. “An efficient gradient-based algorithm for on-
line training of recurrent network trajectories.” Neural computation, 2(4):490–
501, 1990.

[WSB03] Zhou Wang, Eero P Simoncelli, and Alan C Bovik. “Multiscale structural simi-
larity for image quality assessment.” In The Thrity-Seventh Asilomar Conference
on Signals, Systems & Computers, 2003, volume 2, pp. 1398–1402. Ieee, 2003.

[WSY17] Wenguan Wang, Jianbing Shen, Ruigang Yang, and Fatih Porikli. “Saliency-
aware video object segmentation.” IEEE transactions on pattern analysis and
machine intelligence, 40(1):20–33, 2017.

[WTX18] Qiang Wang, Zhu Teng, Junliang Xing, Jin Gao, Weiming Hu, and Stephen
Maybank. “Learning attentions: residual attentional Siamese Network for high
performance online visual tracking.” In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 4854–4863, 2018.

[WVE18] Nevan Wichers, Ruben Villegas, Dumitru Erhan, and Honglak Lee. “Hi-
erarchical long-term video prediction without supervision.” arXiv preprint
arXiv:1806.04768, 2018.

[WY13] Naiyan Wang and Dit-Yan Yeung. “Learning a deep compact image representa-
tion for visual tracking.” In Advances in neural information processing systems,
pp. 809–817, 2013.

[XCW15] SHI Xingjian, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and
Wang-chun Woo. “Convolutional LSTM network: A machine learning approach
for precipitation nowcasting.” In Advances in neural information processing sys-
tems, pp. 802–810, 2015.

[XGY17] Huazhe Xu, Yang Gao, Fisher Yu, and Trevor Darrell. “End-to-end learning of
driving models from large-scale video datasets.” arXiv preprint, 2017.

93

[XNL18] Jingwei Xu, Bingbing Ni, Zefan Li, Shuo Cheng, and Xiaokang Yang. “Struc-
ture preserving video prediction.” In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 1460–1469, 2018.

[XWB16] Tianfan Xue, Jiajun Wu, Katherine Bouman, and Bill Freeman. “Visual dynam-
ics: Probabilistic future frame synthesis via cross convolutional networks.” In
Advances in neural information processing systems, pp. 91–99, 2016.

[XXC12] Chenliang Xu, Caiming Xiong, and Jason J. Corso. “Streaming Hierarchical
Video Segmentation.” In Eur. Conf. Comput. Vis., 2012.

[XYW11] Jiang Xu, Junsong Yuan, and Ying Wu. “Learning spatio-temporal dependency
of local patches for complex motion segmentation.” Computer Vision and Image
Understanding, 115(3):334–351, 2011.

[YC17] Tianyu Yang and Antoni B Chan. “Recurrent filter learning for visual tracking.”
arXiv preprint arXiv:1708.03874, 2017.

[YCS20] Yanchao Yang, Yutong Chen, and Stefano Soatto. “Learning to manipulate in-
dividual objects in an image.” In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 6558–6567, 2020.

[YDD05] Changjiang Yang, Ramani Duraiswami, and Larry Davis. “Fast multiple object
tracking via a hierarchical particle filter.” In Computer Vision, 2005. ICCV 2005.
Tenth IEEE International Conference on, volume 1, pp. 212–219. IEEE, 2005.

[YLS19] Yanchao Yang, Antonio Loquercio, Davide Scaramuzza, and Stefano Soatto.
“Unsupervised moving object detection via contextual information separation.”
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 879–888, 2019.

[YS13] Yanchao Yang and Ganesh Sundaramoorthi. “Modeling Self-Occlusions in Dy-
namic Shape and Appearance Tracking.” In Int. Conf. Comput. Vis., 2013.

[YSS15] Yanchao Yang, Ganesh Sundaramoorthi, and Stefano Soatto. “Self-Occlusions
and Disocclusion in Causal Video Object Segmentation.” In Int. Conf. Comput.
Vis., 2015.

[YWZ18] Ceyuan Yang, Zhe Wang, Xinge Zhu, Chen Huang, Jianping Shi, and Dahua
Lin. “Pose guided human video generation.” In Proceedings of the European
Conference on Computer Vision (ECCV), pp. 201–216, 2018.

[ZGH16] Shun Zhang, Yihong Gong, Jia-Bin Huang, Jongwoo Lim, Jinjun Wang, Naren-
dra Ahuja, and Ming-Hsuan Yang. “Tracking persons-of-interest via adaptive
discriminative features.” In European Conference on Computer Vision, pp. 415–
433. Springer, 2016.

94

[ZIE18] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang.
“The unreasonable effectiveness of deep features as a perceptual metric.” In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 586–595, 2018.

[ZJS13] Dong Zhang, Omar Javed, and Mubarak Shah. “Video Object Segmentation
through Spatially Accurate and Temporally Dense Extraction of Primary Object
Regions.” In IEEE Conf. Comput. Vis. Pattern Recog., 2013.

[ZMW17] Da Zhang, Hamid Maei, Xin Wang, and Yuan-Fang Wang. “Deep Rein-
forcement Learning for Visual Object Tracking in Videos.” arXiv preprint
arXiv:1701.08936, 2017.

[ZPB07] C. Zach, T. Pock, and H. Bischof. “A duality based approach for realtime TV-L
1 optical flow.” Pattern Recognition, pp. 214–223, 2007.

[ZPI17] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. “Unpaired Image-
to-Image Translation using Cycle-Consistent Adversarial Networks.” In Com-
puter Vision (ICCV), 2017 IEEE International Conference on, 2017.

[ZPT18] Long Zhao, Xi Peng, Yu Tian, Mubbasir Kapadia, and Dimitris Metaxas. “Learn-
ing to forecast and refine residual motion for image-to-video generation.” In Pro-
ceedings of the European Conference on Computer Vision (ECCV), pp. 387–403,
2018.

95

