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Wnt Signaling in Hematological Malignancies

Stephanie Grainger*,†, David Traver*, and Karl Willert*,†,1

*University of California, La Jolla, San Diego, CA, United States

†Sanford Consortium for Regenerative Medicine, La Jolla, San Diego, CA, United States

Abstract

Leukemia and lymphoma are a wide encompassing term for a diverse set of blood malignancies 

that affect people of all ages and result in approximately 23,000 deaths in the United States per 

year (Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7–

30.). Hematopoietic stem cells (HSCs) are tissue-specific stem cells at the apex of the hierarchy 

that gives rise to all of the terminally differentiated blood cells, through progressively restricted 

progenitor populations, a process that is known to be Wnt-responsive. In particular, the progenitor 

populations are subject to uncontrolled expansion during oncogenic processes, namely the 

common myeloid progenitor and common lymphoid progenitor, as well as the myeloblast and 

lymphoblast. Unregulated growth of these cell-types leads to mainly three types of blood cancers 

(i.e., leukemia, lymphoma, and myeloma), which frequently exhibit deregulation of the Wnt 

signaling pathway. Generally, leukemia is caused by the expansion of myeloid progenitors, leading 

to an overproduction of white blood cells; as such, patients are unable to make sufficient numbers 

of red blood cells and platelets. Likewise, an overproduction of lymphocytes leads to clogging of 

the lymph system and impairment of the immune system in lymphomas. Finally, cancer of the 

plasma cells in the blood is called myeloma, which also leads to immune system failure. Within 

each of these three types of blood cancers, there are multiple subtypes, usually characterized by 

their timeline of onset and their cell type of origin. Of these, 85% of leukemias are encompassed 

by the four most common diseases, that is, acute myeloid leukemia (AML), chronic myeloid 

leukemia (CML), acute lymphoblastic leukemia (ALL), and chronic lymphocytic leukemia (CLL); 

AML accounts for the majority of leukemia-related deaths (Siegel RL, Miller KD, Jemal A. 

Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7–30.). Through understanding how HSCs 

are normally developed and maintained, we can understand how the normal functions of these 

pathways are disrupted during blood cancer progression; the Wnt pathway is important in 

regulation of both normal and malignant hematopoiesis. In this chapter, we will discuss the role of 

Wnt signaling in normal and aberrant hematopoiesis. Our understanding the relationship between 

Wnt and HSCs will provide novel insights into therapeutic targets.

1. HEMATOPOIETIC STEM CELL (HSC) DEVELOPMENT

The development of hematopoietic stem cells (HSCs) is a dynamic process, involving 

migration through several niches in distinct anatomical locations. The first long-term bona 
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fide HSCs arise directly from specialized hemogenic endothelium in all species examined to 

date, in a process known as the endothelial-to-hematopoietic transition.1 As this transition 

occurs, HSCs begin to express markers of hematopoietic fate, such as the transcriptional 

regulator Runx1.2,3 In mammals, the first HSCs arise from the aorta, umbilical artery, and 

vitelline artery in the midgestation embryo1,4,5 (around embryonic day 10 in mouse). These 

later migrate to the fetal liver, and finally the bone marrow, where HSCs are maintained 

throughout the lifespan of the animal.6 It is thought that at each of these progressive 

locations, the HSCs receive induction cues, such as FGF, Notch, and Wnt, which are 

important for their maturation and function.7 During this dynamic developmental process, 

these HSCs are subject to inputs from various surrounding niches and a variety of 

developmental signaling pathways, reviewed elsewhere.8–10 These early inputs give rise to 

later HSC function, and disruption of these cues fundamentally alter the identity and 

behavior of these cells.11,12 The final result of these developmental cues are long-term HSCs 

(LT-HSCs), housed in the bone marrow; these lie at the apex of the hematopoietic hierarchy, 

seeding the entire blood system for the duration of the organism’s life.

2. HSC HOMEOSTASIS

LT-HSCs are defined by their ability to repopulate the hematopoietic system of an organism 

for a long duration.13 In the bone marrow, these are largely quiescent, but give rise to a 

subpopulation of short-term HSCs (ST-HSCs), which are limited in their capacity for self-

renewal and are able to repopulate an organism only for a few weeks.14 HSCs in turn give 

rise to the lineage restricted common progenitors of the myeloid and lymphoid fates, which 

together can differentiate into all mature blood cells.15,16 (Fig. 1). Recent single-cell 

analyses have indicated that all of these progenitor types have low levels of coexpression of 

multiple lineages, suggesting overlapping cell fates at the transcriptional level, and that these 

fate decisions are rather plastic.17 Additionally, HSCs with long-term single lineage 

reconstitution fate have been identified, suggesting that the binary lineage tree of 

hematopoietic fate is more flexible than previously established.18 It is through careful 

regulation of inductive cues that HSCs are able to self-renew and differentiate into the full 

complement of blood. Disruption of these regulatory cues can accordingly result in cancers 

of the blood, and our understanding of these cues during normal hematopoiesis will be 

critical to determining how they are coopted during oncogenesis.

Our understanding of the native processes governing hematopoietic homeostasis has been 

hindered by technical difficulties, including the relative rarity of these cells in vivo, where it 

is estimated that HSCs form approximately 1/20,000 nucleated hematopoietic cells.14 As a 

result, it has been difficult to elucidate the molecular mechanisms governing their 

homeostasis, as purification of a large enough number of cells for analysis is challenging. It 

is apparent that HSCs receive both cell-intrinsic and -extrinsic cues to govern their 

maintenance reviewed in Ref. 19. In the bone marrow, HSCs reside in close proximity to 

endothelial cells, osteoblasts, and mesenchymal stem cells, which are proposed to supply the 

niche cues governing self-renewal and differentiation20 (Fig. 1), though this is incompletely 

understood. Among others, the Wnt signaling cascade is known to play important roles in 

these processes.
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3. WNT SIGNALING

Wnt genes encode lipid-modified, secreted signaling molecules, which regulate a diverse set 

of developmental and homeostatic programs, ranging from axial patterning to stem cell 

identity and self-renewal reviewed in Ref. 21.22–24 Their broad range of effects are in part 

due to the complex genetic nature of these factors with 19 independent Wnt genes in the 

mammalian genome and multiple genes encoding structurally and functionally distinct 

receptors, including Frizzled (Fzd), lipoprotein related protein (Lrp), receptor tyrosine 

kinase-like orphan receptor (Ror), and receptor-like tyrosine kinase (Ryk). Activation of the 

Wnt signaling cascade has been loosely grouped into either the canonical (β-catenin 

dependent) or noncanonical (β-catenin independent) pathways, though it is important to note 

that these pathways do not necessarily work independently or in opposition to each other. 

Furthermore, a given Wnt may activate distinct signaling cascades depending on expression 

of downstream signaling components.21,25–29

In the absence of Wnt signals (Fig. 2), the DNA binding proteins of the lymphoid enhancing 

factor (LEF)/T-cell factor (TCF) family recruit corepressors, such as Groucho/transducing-

like enhancer (GRG/TLE) and CtBP1, to silence expression of Wnt target genes. The 

transcriptional activator β-catenin is constitutively tagged for proteasomal degradation by 

the so-called destruction complex, consisting in part of GSK3β, APC, and Axin. In the 

presence of a Wnt ligand, Fzd receptors and Lrp coreceptors oligomerize at the membrane, 

leading to dissociation/relocation of the destruction complex, thus releasing β-catenin from 

proteasomal targeting and allowing it to enter the nucleus where it displaces GRG/TLE from 

LEF/TCF and activates expression of Wnt target genes.30 Activation of this arm of the Wnt 

signal often leads to maintenance or specification of cell fate (e.g., stem cell self-renewal or 

differentiation).21 Wnt signaling can be modulated with secreted negative regulators; such as 

secreted frizzed-related proteins (SFRP),31 which are hypothesized to sequester the Wnt 

ligand; Notum,32–34 which inactivates Wnt through deacylation; and Dickkopf (Dkk), which 

bind Lrp to prevent oligomerization with Fzd.35

The β-catenin independent pathways remain poorly understood. In its downstream signal, 

there are a variety of effectors, including RhoA, JNK, and calcium influx pathways21,36–38 

(Fig. 2). Different arms of this cascade can proceed with or without a Fzd receptor, and use 

different coreceptors, such as Ror and Ryk.27,39 The result of activation of these pathways is 

often polarization of the cell for division, migration or extension, or even the polarization of 

whole tissues (i.e., planar cell polarity).21 However, there is also evidence for β-catenin 

independent Wnt signaling in cell fate specification,40 indicating that these seemingly 

distinct pathways have overlapping functions and are possibly tightly integrated.

4. WNT IN HSC DEVELOPMENT AND HOMEOSTASIS

The role of Wnt in HSC development and homeostasis has been intensely debated by the 

field, in part due to conflicting data in the literature.41 Furthermore, the genetic complexity 

of the ligands and receptors, as well as the dynamic nature of HSC development, including 

the multiple cell types involved in self-renewal and differentiation lends itself to a complex 

series of inputs. In particular, harnessing the particular intricacies of timing and signal 
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dosage may be the key to unlocking our understanding of Wnt in HSC ontogeny and 

maintenance.

Almost all Wnts and Fzds are expressed, at least to some degree, in the various 

hematopoietic sites during development,42 indicating a potential role for these during HSC 

ontogeny; however, the specific requirements, if any, for these are only beginning to be 

elucidated. For example, a role for Wnt16 in the specification of HSCs in zebrafish has been 

established,40 whereas Wnt5a seems to regulate lymphopoiesis.43,44 In addition, a 

requirement for Wnt9a in the intraaortic amplification of HSCs was recently shown.45 The 

specific requirements for Fzd receptors is less clear, potentially due to functional 

redundancy, or our incomplete understanding of Wnt-Fzd specificity requirements. It is 

known that Fzd9 is required for lymphoid development and maturation, for example, but its 

potential role in the HSC itself is unclear.46

The expression of Wnt components in the adult bone marrow are only slightly more refined, 

with a handful of these being expressed in putative HSC niche cells: osteoblasts, vascular 

cells, and mesenchymal stem cells.47–51 Wnt function dependent on β-catenin in HSCs is 

driven through LEF/TCF DNA elements, as in other cells.52 Accordingly, conditional 

deletion of β-catenin in the hematopoietic population impairs the long-term self-renewal53 

and regenerative capacities of HSCs.54 Amplification of the Wnt signal, through viral 

expression of a constitutively active β-catenin results in increased numbers of HSCs in vitro 

and conversely, inhibition of Wnt signaling through viral expression of Axin2 or addition of 

a soluble form of a Fzd ligand binding domain results in loss of HSC reconstitution in vivo,
52,55 potentially due to premature differentiation. Early work showed contradictory evidence 

for the role of Wnt/β-catenin signaling in the HSC system: loss of Wnt function through 

Wnt3a deletion,56 β-catenin mutation,53 or overexpression of the antagonist Dkk157 

depleted the HSC pool in vivo, whereas activation of Wnt signaling through stabilized forms 

of β-catenin or the Wnt target prostaglandin E2, resulted in increased HSC number.58,59 

However, others observed a depletion of the progenitor pool upon β-catenin overexpression.
60,61 These contradictions are likely explained by dosage-dependent effects of Wnt signaling 

on different populations of blood cells62; using an allelic series of APC mutants, it was 

possible to show that a low level of Wnt signaling maintains a proliferative HSC phenotype, 

whereas a high level of Wnt activation resulted in total impairment of repopulation capacity 

and exhaustion of the stem cell pool.62

There is also evidence for specific function of Wnt ligands in adult HSCs. For example, 

Wnt3a, Wnt5a, and Wnt10b are all expressed in the bone marrow niche; interestingly, 

expression of Wnt10b is upregulated in response to injury to drive proliferation of bone 

marrow hematopoietic cells.63 Fzd receptors likely play specific roles in the adult niche. For 

example, Fzd8 regulates the long-term quiescence of HSCs by regulating the noncanonical 

downstream calcium pathway.64 HSCs from mice deficient in the β-catenin independent 

receptor Ryk have reduced quiescence, decreased self-renewal, and increased apoptosis.65 

During HSC ageing, there is a shift from β-catenin dependent to independent Wnt signaling, 

which seems to underlie the loss of self-renewal and lineage skewing seen in aged HSCs.66 

Altogether, these studies indicate that a careful balance of Wnt signals is required to regulate 

HSC specification, amplification, homeostasis and ageing. These effects of Wnt on normal 
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HSCs are often hijacked in cancer processes, including the establishment and progression of 

blood cancers (Table 1).

5. WNT SIGNALING IN LEUKEMIA

The balance of self-renewal and differentiation in HSCs is critical to survival of an 

organism. For a cancer to progress, there must be a sustained increase in proliferation and 

also a block in differentiation. As such, mutations affecting cell identity or proliferation, 

such as FLT3, TP53, RUNX1, and KMT2A are commonly found in leukemias.69 In addition 

to these mutations, chromosomal translocations, especially affecting chromatin modulators, 

such as MLLT3-KMT2A, BCR-ABL, and RUNX1-MECOM are associated with, and are 

sometimes sufficient to cause leukemia.69,70 Differences in genetic causes for leukemias 

also give rise to cancers with different mechanisms of action, prognostic outcomes, and 

treatment regimes, making it crucial for us to understand the molecular cues driving these 

events to derive effective treatments.

In different subsets of leukemias, WNT expression and signaling in the bone marrow 

microenvironment are perturbed, often in the absence of a direct mutation in WNT 
component genes. For example, in chronic lymphocytic leukemia (CLL) B-cells, the WNT 

signal and expression of WNT3 and the transcription factor LEF1 are amplified compared to 

normal B-cells.71 In addition, WNT3, WNT4, WNT5B, WNT6, WNT7B, WNT9A, 

WNT10A, WNT14, and WNT16 are all highly expressed in CLL B-cells.72,73 Similarly, in 

E2A-Pbx1 acute lymphoblastic leukemia (ALL) cells, WNT16 is robustly expressed, 

although it can be scarcely detected in normal pre-B cells; this expression is dependent on 

E2A-Pbx1, suggesting that Wnt activation occurs downstream of this translocation.74 

Expression of other leukemic translocation products also induces the expression of WNT 

components in hematopoietic cell lines.75

There is potential for therapeutic targeting of WNT in leukemias. The β-catenin independent 

coreceptor ROR1 is expressed in CLL leukemic cells, but not nonleukemic leukocytes, 

allowing for targeting of these cells with an anti-ROR1 monoclonal antibody (mAb, also 

known as cirmtuzumab).76 High levels of ROR1 are associated with an accelerated form of 

CLL.77 Addition of Wnt5a enhances the proliferation and migration of CLL cells through 

RhoA/Rac1; this effect can be blocked with cirmtuzumab,78 and cannot be achieved in non-

ROR1 expressing leukemic cells.77 Clinically, combining cirmtuzumab with a B-cell 

receptor blocking agent is significantly more effective at clearing leukemic cells in vivo than 

either drug in isolation.79 Taken together, these studies indicate how WNT targeting can be 

used to kill leukemic cells.

On the other hand, not all WNT activation is detrimental. For example, mice hemizygous for 

Wnt5a, which regulates the calcium signaling cascade, have enhanced B-cell proliferation 

and develop spontaneous myeloid leukemia and B-cell lymphomas, possibly because Wnt5a 

antagonizes the β-catenin signal.44,80 In fact, WNT5A has tumor suppressing activity as loss 

of function mutations and/or loss of expression are found in a majority of primary human 

leukemia cells,44 suggesting that this relief of β-catenin signaling repression may be 

necessary for some leukemias to progress. In another instance, exogenous Wnt3a reduced 

Grainger et al. Page 5

Prog Mol Biol Transl Sci. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the proliferative capacity of B-cells in vitro81; however, this may be due to the dosage-

dependent effects of Wnt on HSCs.

Many upstream regulators of Wnt signaling, such as members of the Dickkopf (Dkk) or 

SFRP families have been reported to be transcriptionally silenced due to promoter 

hypermethylation in human samples,82–86 thereby presumably elevating endogenous Wnt 

signaling activity, which may promote proliferation and oncogenic transformation. In 

RUNX1-ETO mediated (acute myeloid leukemia) AML, decreased expression of SFRP1 
results from direct transcriptional repression from the RUNX1-ETO gene product, and leads 

to an increase in Wnt activation.87 Although these are classically thought to be negative 

regulators of the Wnt signal, this is not always the case. This decrease in antagonist 

expression actually seems to have a positive effect on patient survival in BCR-ABL ALL,88 

suggesting that SFRPs may act to activate the WNT signal in leukemic cells. SFRPs have 

been suggested to act as carrier proteins for WNTs in other systems, acting to expand the 

range of the WNT signal, which may also play a role in leukemia.89 Taken together, these 

studies exemplify that Wnt signaling is ectopically activated in many subsets of leukemia, 

leading to increased proliferative and self-renewal capacities of the leukemic stem cells.

Some leukemic stem cells are dependent on Wnt for self-renewal and/or survival. For 

example, β-catenin enhances the self-renewal and proliferation capacity of BCR-ABL 
chronic myeloid leukemia (CML) cells, which also show an increase in β-catenin signaling 

during their expansion; this effect is lost when the Wnt signal is dampened with AXIN 

overexpression.90 This Wnt-mediated self-renewal is due to a splicing defect in GSK3β, 

which impairs its ability to bind AXIN, and target β-catenin for degradation.90,91 

Furthermore, mouse BCR-ABL CML cells refractory to standard treatment are dependent on 

β-catenin, indicating a potential role for Wnt in the evolution of these types of hematological 

malignancies.92 This dependence on β-catenin for cancer progression is not limited to CML; 

it is also seen in subsets of AML,93 CLL,71 and ALL.94,95 In addition, Wnt is also known to 

synergize with other leukemic mutations in mouse models, immortalized cells, and patient 

samples,96–100 likely due to the increased WNT signal resulting from aberrant transgenes. 

Finally, the dependence of leukemic stem cells on Wnt is not limited to the β-catenin 

pathway, as BCR-ABL CML cells also rely on the Wnt-mediated calcium pathway for 

survival101; inhibition of numerous components of Wnt/Ca2+/NFAT sensitizes cells to BCR-

ABL inhibition. Altogether, these studies point to WNT as a potential therapeutic target; 

however, consideration of the effective dosage of the WNT signal and the particular cascade 

affected must be carefully considered.

6. WNT SIGNALING IN LYMPHOMA

Lymphomas are blood cancers that arise in the lymph nodes, as opposed to leukemias that 

mainly arise in the bone marrow. There are many diseases that fall under the umbrella term 

of lymphoma, including Hodgkin’s Lymphoma, Mantle Cell Lymphoma (MCL), and 

Burkitt’s lymphoma, to name a few. As these cancers arise in a plethora of anatomical 

locations, it has been difficult to discern the molecular cues regulating their initiation and 

progression. It is known that lymphomas differ in the genetic causes and also their activation 

of, and reliance on, WNT signaling. For example, patient samples of many different types of 
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lymphoma have differentially increased levels of nuclear (active) β-catenin, but the majority 

of these do not contain mutations in APC or β-catenin,102–105 suggesting that activation of 

the pathway is induced by autocrine or paracrine cues. β-Catenin independent signaling has 

also been proposed to play a role in anaplastic large cell lymphoma, although the extent to 

which this applies to other lymphomas is unclear.106

Many WNT components are found to be dysregulated in various types of lymphoma. For 

example, MCL is associated with a chromosomal translocation, which leads to an increase in 

expression of the context-dependent Wnt target gene cyclinD1, which is not sufficient to 

drive lymphoma on its own.107,108 A microarray study compared gene expression in MCL 

cells and naïve B-cells (their wild-type counterparts), and found that several WNT pathway 

components, including TCF7, FZD7, LRP5, AXIN1, APC, DVL3 were upregulated in MCL 

cells, indicating a potential requirement for WNT signaling in the disease progression.109 

Furthermore, MCL cells frequently show inactivation of GSK3β, which leads to an increase 

in nuclear β-catenin.110 These studies fall in line with the general paradigm that an increase 

in the canonical arm of the Wnt signal leads to an increase in tumorigenicity.

Other lymphomas also have dysregulated Wnt; for example, there is evidence for 

overexpression of the transcription factors TCF1 and LEF1 in subset of T-cell lymphomas 

and small B-cell lymphomas.111,112 This upregulation also occurs in lymphomas that are 

chemoresistant,113 suggesting that WNT could be involved in the evolution of these cancer 

stem cells (the slow-dividing cells that initiate tumors) as well. It is worthy of note that 

TCF1 has also been implicated as a tumor suppressor since 50% of Tcf1−/− mice 

spontaneously develop thymic tumors.114 The authors suggest that this may be due to TCF/

LEF1 specific functions in this process, mainly TCF1 directly inhibiting LEF1 transcription 

and leading to an overall increase in the Wnt signal. Like in leukemia, the absence of Wnt5a, 

which is thought to antagonize the β-catenin signal, can lead to cancer. Speaking to this, loss 

of heterozygosity in Wnt5a+/− mice develop B-cell lymphomas that are clonal in origin.44 

These studies also highlight the importance of Wnt signaling as an initiating event in 

lymphoma, which has also been proposed based on expression studies in humans.115 

However, the reliance of cancer stem cells on Wnt in lymphomas is less clear than that of 

leukemic stem cells. In a mouse model of lymphoma, which develops to 100% penetrance in 

all lymphoid organs, the disease is reliant on upregulation of the Wnt signal,116 

demonstrating that at least some lymphoma cancer cells are reliant on Wnt for survival. 

Finally, different WNTs also differentially affect these cancer cells. For example, a recent 

study highlights that WNT5A is a motility factor in Hodgkin’s lymphoma; addition of 

WNT5A increases the motility of Hodgkin’s lymphoma cells in culture, however, neither 

WNT10A and WNT10B nor WNT16 are able to elicit the same response.117 Developing a 

clear understanding of how different Wnts affect downstream pathways in these diseases 

will be crucial toward developing therapeutic interventions for patients.

7. WNT SIGNALING IN MYELOMA

Myeloma encompasses cancers of the plasma cells, of which multiple myeloma (MM) is the 

most common and is characterized by an accumulation of plasma cells in the bone marrow. 

WNT activation in the absence of β-catenin or APC mutation has been observed in multiple 
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myelomas cells, which were dependent on this signal for continued growth.118 In fact, 

treatment of these with the compound PKF115-584 (which targets the β-catenin/TCF 

complex) results in cytotoxicity of primary patient MM cells and established cell lines, 

without effect on normal plasma cells.119 Wnt2b, Wnt5a, Wnt7a, Wnt10b, Wnt11, and 

Wnt16 are all expressed in MM cell lines120; however, it is worthy of noting that cell-

autonomous Wnts are not necessarily involved in MM and the effects may not be limited to 

these particular Wnts. There is some evidence for sensitizing MM cells to autocrine and 

paracrine Wnt signals from the bone marrow niche.121 In addition to the β-catenin 

dependent signal, Wnt3a is able to induce the RhoA signal in MM cells, including changes 

in cytoskeleton and morphology, indicative of an effect on planar cell polarity.122 These 

alterations lead to an increase in the migration and invasion ability of these cells, and similar 

effects can be achieved using Wnt1 or Wnt4; these effects are dependent on the RhoA arm 

of Wnt signaling.120 These data support roles for both β-catenin dependent and independent 

WNT signaling in MM cells.

MM leads to the osteolytic bone disease, resulting from the destruction of bone (osteoclast 

induction) and repression of its repair (osteoblast suppression). These in turn lead to further 

bone marrow niche dysfunction and these effects are also in part due to loss of Wnt 

regulation. For example, the WNT inhibitors SFRP2 and DKK1 are secreted by several MM 

cell lines, as well as primary patient cells.123 SFRP2 inhibits bone mineralization in vitro,124 

and both Dkk1 and SFRP2 expression are associated with advanced destructive bone lesions 

in patient samples.123,124 In addition, soluble Dkk1 can inhibit the differentiation of 

osteoblasts in vitro, suggesting that inhibition of Wnt through these soluble factors can 

inhibit bone formation and repair.123,125 Severe combined immunodeficient (SCID) mice 

implanted with MM tumor cells spontaneously develop a loss in bone mineral density, which 

can be overcome with anti-Dkk1 antibody treatment; this is due to increased levels of 

osteoblasts and decreased osteoclasts, leading to an overall induction in bone density.126–128 

In addition to its role in MM initiation, MM tumor progression during chemoresistance 

involves the adhesion of MM cells to the bone marrow stroma, where expression of Wnt3 

correlates with increased adhesion, likely progressing through the RhoA signaling cascade.
129 Taken altogether, these data point to the importance in Wnt regulating the interplay 

between MM and bone homeostasis, which when disrupted leads to osteolytic bone disease.

8. CONCLUSIONS AND PERSPECTIVES

The link between aberrant WNT signaling and many cancers is well established. However, 

in the case of blood malignancies, this requirement has been less clear, possibly due to the 

dosage-dependent effects of WNT on the stem cell niche and the dynamic nature of blood 

development and homeostasis. These studies together show that WNT plays a role in 

leukemias and lymphomas. Of note, these observations indicate a potential role for planar 

cell polarity in the pathogenesis of MM. Planar cell polarity has largely been studied in the 

context of whole tissue polarity, in contrast to the single cell nature of the blood; however, 

the involvement of the RhoA arm of Wnt signaling in MM suggests that this may be a 

mechanism exploited by tumorigenic single cells as well. One study has also pointed to a 

role for planar cell polarity in CLL.130 Further studies will reveal the involvement of Wnt/

planar cell polarity in tumorigenesis of hematopoietic cells. In addition to the roles described 
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earlier, aberrant WNT seems to be a common mechanism for drug resistance in leukemia 

and lymphoma,131–133 suggesting that these tumors may be “WNT addicted.” In one 

example, pretreatment of purified patient ALL blasts to suppress the WNT signal was 

sufficient to restore chemosensitivity in relapsed patient cell lines,134 an indication of one 

potential therapeutic avenue targeting WNT. A thorough understanding of how WNT 

regulates normal and malignant hematopoiesis will be key to future therapeutic 

interventions.
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Fig. 1. 
Adults hematopoietic stem cells (HSCs) reside in the bone marrow. (A) The marrow of long 

bones is the niche for homeostasis of HSCs, where they reside in close proximity to many 

cell types. For example, the blood vessels, which carry circulating HSCs and their progeny; 

the bone-building osteoblasts; the bone-degrading osteoclasts; the supportive pericytes, and 

other bone marrow stromal cells. (B) In the niche, the quiescent long-term (LT) HSCs give 

rise to short-term (ST) HSCs, which in turn can gives rise to the common myeloid or 

lymphoid progenitors, which can differentiate into all cell types of the blood, and many cells 

from the immune system.
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Fig. 2. 
Wnt signaling pathways. Schematic representations of the β-catenin dependent and 

independent Wnt signaling cascades. In the β-catenin dependent cascade, Wnt-Fzd-LRP 

interaction culminates in the nuclear translocation of β-catenin to bind lymphoid enhancing 

factor (LEF)/T-cell factor (TCF) transcription factors and drive gene expression. In the β-

catenin independent pathway, there are several arms of signaling. For instance, Wnt–Fzd 

interaction leads to either Rho/Rock or Rac/JNK signaling, culminating in changes in the 

actin cytoskeleton or gene expression, respectively. Alternatively, WNT-Fzd-Ror2/Ryk 

interaction lead to changes in intracellular Ca++ levels, which affect protein kinase C (PKC), 

calmodullin-dependent protein kinase (CaMK) signaling cascades, or NFAT/AP1 driven 

gene expression changes. Dkk, Dickkopf; Fzd, Frizzled; LRP, lipoprotein related protein; 

Ryk; receptor-like tyrosine kinase; SFRP, secreted frizzed-related proteins.
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Table 1

Known Wnt and Fzd Knockdown and Knockout (KO) Phenotypes in HSCs.

Genes Knockdown or Knockout Phenotypes References

Wnt1 Decreased number of thymocytes; some functional redundancy with Wnt4 (mouse KO) 67

Wnt3a Homozygous mutants are lethal at E12.5; loss of HSCs and progenitors and impairment of long-term engraftment 
(mouse KO)

56

Wnt4 Decreased number of thymocytes; some functional redundancy with Wnt1 (mouse KO) 67

Wnt5a Increased B-cells (mouse KO, cell culture model) 43,44

Wnt9a Decreased intraaortic expansion of HSCs and progenitors (zebrafish knockdown and KO) 45

Wnt16 Loss of HSC specification (zebrafish knockdown) 40

Fzd5 Extraembryonic vascular development is abnormal (mouse KO) 68

Fzd9 Decreased B-cells (mouse KO) 46

HSC, Hematopoietic stem cell.
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