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RAPID COMMUNICATION Open Access

Dysregulated transcriptional networks in
KMT2A- and MLLT10-rearranged T-ALL
Huining Kang1, Nitesh D. Sharma2, Christian K. Nickl2, Meenakshi Devidas3, Mignon L. Loh4, Stephen P. Hunger5,
Kimberly P. Dunsmore6, Stuart S. Winter7 and Ksenia Matlawska-Wasowska2*

Abstract

For children and young adults with T-lineage acute lymphoblastic leukemia (T-ALL), event free survival following
relapse is < 10%. We recently showed that rearrangements of the mixed lineage leukemia gene (KMT2A-R) are
associated with induction failure and an inferior survival in T-ALL. Because there are currently no molecular features
that inform treatment strategies in T-ALL, we hypothesized that transcriptional alterations related to KMT2A-R and
MLLT10-R T-ALL could identify biologically relevant genes and signaling pathways for the development of targeted
therapies for these groups of patients. We analyzed microarray data from a retrospective cohort of 100 T-ALL
patients to identify novel targets for KMT2A (n = 12) or MLLT10 (n = 9) chimeras. We identified 330 probe sets that
could discriminate between these groups, including novel targets, like RUNX2, TCF4 or MYO6. The results were
further validated in two independent data sets and the functional networks were analyzed to identify pathways
that may be of pathogenic or therapeutic relevance.
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Introduction
Despite our growing understanding of the heterogeneity of
genomic alterations in T-ALL [1–5], genetic alterations are
not used to stratify therapy in T-ALL. Although, approxi-
mately 80-90% of patients with T-ALL can be cured, for
those who relapse, event free survival is poor [6]. Because
attempts to further dose-intensify therapy have generally
resulted in greater toxicity without improved survival,
efforts are underway to identify more effective treatments
for patients with high-risk disease, including those with
high levels of post-induction minimal residual disease [6].
A better understanding of the molecular drivers of resist-
ant disease may inform the development of targeted ther-
apies to improve outcome and reduce the burden of
treatment-related acute and chronic adverse events.
The repertoire of chromosomal rearrangements

affecting the KMT2A gene (KMT2A-R) includes over 100
translocation partners [7]. We recently showed that
KMT2A-MLLT4 and del3’KMT2A are important determi-
nants of high-risk disease in HOXA-deregulated T-ALL

[8]. The clinical outcome of other HOXA-related lesions
involving MLLT10 gene (MLLT10-R), remains controver-
sial [8–10]. Using gene expression profiles, others have
developed signatures that distinguish KMT2A-R in AML
and B-ALL [11, 12] however such studies have not been
performed on larger data sets for T-ALL. The data on
transcriptional signatures in T-ALL with KMT2A-R and
MLLT10-R is very limited [2–5]. Specifically, gene expres-
sion signatures in KMT2A-R T-ALL were reported for
only three KMT2A-MLLT1 cases thus far [2, 5]. While de-
regulation of HOXA9/10 is a hallmark of KMT2A-R and
MLLT10-R, its over-expression does not inform patient
outcome, suggesting that additional genes deregulated by
these translocations could play an important role in
leukemia pathobiology. Therefore, we hypothesized that
supervised profiling of 100 well-characterized T-ALL cases
could identify KMT2A- and MLLT10-deregulated genes
and signaling networks allowing the development of
targeted therapies in T-ALL.

Material and methods
Primary T-ALL samples were obtained from patients en-
rolled in Children’s Oncology Group AALL0434 study
(n = 100) [8]. All cases that passed the hybridization
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quality controls were subjected to Affymetrix U133 Plus
2.0 microarray [13]. Scale factor < 40; GAPDH M33197
3′ intensity > 15,000; and GAPDH M33197 3′/5′ ratio <
3 were applied as array experimental quality parame-
ters [13]. The Robust Multi-array Average (RMA)
algorithm was used to generate and normalize signal in-
tensities [8, 13]. From 54,675 probe sets, we selectively
filtered out probes associated with gender-related genes,
globins, and internal controls [8, 13]. Linear Models for
the Microarray approach implemented in R package
limma [14] was utilized to identify differentially expressed
probe sets in association to specific genomic lesions. Ben-
jamini and Hochberg method was used to calculate the
False Discovery Rate (FDR) to adjust for multiple testing.
Java Treeview [15] was used to generate the heatmaps.
Gene Set Enrichment Analysis (GSEA) [16] was per-
formed to identify signaling pathways related to specific
genomic lesions.

Results and discussion
Because KMT2A-R and MLLT10-R drive HOXA-deregu-
lated leukemias, we sought to identify specific genes that
are enriched in T-ALL with these genomic abnormal-
ities. Specifically, we searched for differentially expressed
genes that could discriminate between T-ALL cases with
KMT2A-R (n = 12), MLLT10-R (n = 9) and the
remaining T-ALL cases lacking these alterations (Others;
n = 79), and found 330 probe sets corresponding to
genes deregulated between these groups (False Discovery
Rate; FDR ≤0.05) (Additional file 1: Figure S1A, Add-
itional file 2: Table S1). For T-ALL samples harboring
KMT2A-R, 258 probes sets were found significantly dif-
ferentially expressed including 242 probe sets that were
upregulated and only 16 probe sets corresponding to
genes downregulated in KMT2A-R (Fig. 1a). In addition
to HOXA genes, KMT2A-R had increased expression of
PROM1, encoding transmembrane glycoprotein, MYO6,
which encodes ATP-dependent motor protein, and mul-
tiple regulators of transcription: RUNX2, TCF4, ZNF503,
ZNF827, SMAD1, CPEB2. We also identified increased
expression of WHAMMP2/WHAMMP3 and GOLGA8I
pseudogenes located on chromosome 15q13.1, which
were recently reported in AML [7]. Thirty-nine probe
sets were upregulated and only one was downregulated
in MLLT10-R cases (Fig. 1b). In agreement with others,
MLLT10-R differentially expressed HOXA genes, MEIS1,
and other genes located at chromosome 10: CASC10,
SKIDA1, SPAG6, ZNF503, BMI1 and COMMD3 [4].
QKI, which encodes an RNA-binding protein involved
in alternative splicing, was found to be the most down-
regulated gene in both KMT2A-R and MLLT10-R cases
(Fig. 1a, b). All the above genes except for BMI1,
COMMD3, NKX2.3 and EML were also deregulated in
KMT2A-R cases indicating that KMT2A-R and

MLLT10-R share similar transcription programs when
compared to lesion-negative cases.
Because KMT2A-R and MLLT10-R demonstrate a

strong similarity in HOXA-mediated deregulation of
gene expression, we compared gene expression profiles
between these two groups. Among 38 probe sets shown
in Fig. 1c, thirty-two were downregulated and five were
upregulated in MLLT10-R compared to KMT2A-R.
MYO6, RUNX2, CPEB2, ZNF827 and TCF4 were the
most overexpressed genes in KMT2A-R compared to
MLLT10-R, suggesting that KMT2A-R T-ALL encom-
pass a specific biological subset, which collectively drive
a unique oncogenic program. Since KMT2A-MLLT4
confers an inferior outcome, we sought to determine
which genes discriminate between KMT2A-MLLT4
(n = 5) and KMT2A-MLLT1 (n = 5). Among the 26
discriminatory probes sets, we found two, MLLT4 and
uncharacterized RP11-38P22 that were over-expressed
and 24 were downregulated, including SEPW1,
SMAD1, CHI3L2 and MYOM2 between MLLT4 and
MLLT1 (Additional file 1: Figure S1B).
To validate our findings in an independent patient cohort

we have performed differential gene expression profiling
using existing T-ALL microarray data sets reported by Sou-
lier [2] and Dik [3]. The Soulie’s data set consisted of
92 T-ALL cases including 3 harboring KMT2A-MLLT1 and
four with PICALM-MLLT10 alterations. The Dik’s data set
comprised of 23 cases including six PICALM-MLLT10 fu-
sions. We observed a significant overlap between our data
and existing microarray data sets confirming that in
T-ALL, KMT2A and MLLT10 chimeras drive unique tran-
scriptional programs resulting in specific changes in gene
signatures and expression patterns (Additional file 3: Table
S2, Additional file 4: Table S3).
To further characterize transcriptional alterations in

MLLT10-R and KMT2A-R T-ALL, we performed GSEA
to assess functional networks and aberrant cell signaling
pathways [16]. Gene ontology and canonical pathway
analyses identified multiple genes and signaling net-
works, which were commonly or exclusively dysregu-
lated in KMT2A-R and/or MLLT10-R cases. KMT2A-R
were negatively enriched in regulators of protein export,
intracellular protein localization and transport (Fig. 2a).
Aberrant localization of oncoproteins or tumor suppres-
sors have been detected in many different types of can-
cer [17]. Thus, downregulation in protein transport
machinery may lead to the disruption in signal transduc-
tion in KMT2A-R T-ALL. On the contrary, genes upreg-
ulated in KMT2A-R included regulators of extracellular
matrix organization and collagen formation, which are
known modulators of cancer invasion (Additional file 5:
Table S4). The tumor microenvironment and adhesion
were also shown to play a protective role in conferring
drug resistance in leukemia [18].
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Fig. 1 Gene expression profiling for KMT2A-R and MLLT10-R in a cohort of 100 T-ALL samples. Analyses were performed for 330 probe sets related to
commonly and exclusively differentially expressed genes in 3 T-ALL groups: KMT2A-R, MLLT10-R and Others (FDR≤ 0.05) (Additional file 2: Table S1). a
Heat map of the top 40 up-regulated and top 10 down-regulated genes in KMT2A-R as compared to cases that do not harbor either KMT2A- or
MLLT10-R. The genes were selected out of 307 identified probe sets ranked by FDR ≤0.05 b Heat map indicating 46 probe sets associated with
aberrantly deregulated genes in MLLT10-R as compared to cases not harboring these and KMT2A gene lesions. c Differentially expressed genes (27
probe sets) in MLLT10-R versus KMT2A-R. Columns indicate T-ALL samples organized in groups based on presence or absence of genomic lesion of
interest. “Others” reflect cases that do not have either KMT2A-R or MLLT10-R. Rows indicate probe sets corresponding to significantly expressed genes.
Each row represents the relative expression for a particular gene across the samples within above the mean (red), below the mean (green), and
around the mean (black). Vertical bars discriminate between up-regulated (red) and down-regulated (green) genes in given comparable groups
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Fig. 2 KMT2A-R and MLLT10-R T-ALL show dysregulation in multiple cell signaling pathways critical for leukemia development and progression.
a Negatively correlated gene sets in KMT2A-R T-ALL (intracellular transport). Green line shows the enrichment score based on hits of genes
(indicated by the bars on the abscissa) in the ordered list of differentially regulated genes resulting from the comparison of KMT2A-R positive
samples and Other T-ALL patient samples. Red/blue bar area beneath the black bars indicates degree of association with a specific phenotype.
b KMT2A-R and MLLT10-R are negatively enriched in genes involved in alternative splicing compared to the Others. c Example of positively
enriched gene sets containing genes upregulated in both KMT2A-R and MLLT10-R samples compared to the Others. d Positively correlated gene
sets in MLLT10-R vs. KMT2A-R. Gene sets containing genes upregulated in MLLT10-R positive samples compared to KMT2A-R samples (distinct
tyrosine kinase signaling pathways). NES, Normalized Enrichement Score; FDR, False Discovery Rate
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Interestingly, MLLT10-R were positively enriched in reg-
ulators of embryonic development, while genes specifically
downregulated in this group were mostly associated with
cell cycle, DNA synthesis and repair (Additional file 5:
Table S4, Additional file 6: Table S5) [4]. Genes involved in
protein K48-linked ubiquitination and stem cell differenti-
ation were positively enriched in MLLT10-R when com-
pared to KMT2A-R (Additional file 7: Figure S2). Both,
MLLT10-R and KMT2A-R showed downregulation in a
number of genes involved in the regulation of gene expres-
sion, ribosome organization and biogenesis, and chromatin
modifications (Additional file 5: Table S4, Additional file 6:
Table S5). Importantly, we found that KMT2A-R and
MLLT10-R were negatively enriched in genes involved in
alternative splicing and mRNA processing (Fig. 2b). These
findings might be linked to the downregulation of the QKI
gene as seen in lung and brain tumors [19]. Deregulation
of alternative splicing promotes genomic instability leading
to the generation of aberrantly spliced genes and subse-
quent malignant transformation [20].
Recently, a subset of T-ALL cases with the activation

in the hedgehog pathway was shown to be sensitive to
the hedgehog pathway inhibitor, vismodegib [21]. The
activation of hedgehog signaling has also been associated
with increased cell proliferation and tumor resistance in
several solid tumors [22]. Here, we show that KMT2A-R
and MLLT10-R were positively enriched in genes en-
coding members of the hedgehog signaling network
(Fig. 2c), indicating that patients harboring these lesions
might benefit from therapies with hedgehog inhibitors.
While the mechanisms mediating epithelial to mesenchy-
mal transition (EMT) have been widely studied in solid tu-
mors, several lines of evidence indicate a critical role of
EMT modulators in promoting leukemia cell motility and
migration [23]. Our data demonstrate positive enrichment
in genes associated with EMT in KMT2A-R, suggesting the
need to further investigate the roles of EMT in T-ALL
progression and resistance (Fig. 2c).
While our findings demonstrated that KMT2A-R share

common biological networks with MLLT10-R [4],
KMT2A-R also shared similar gene expression signatures
with KMT2A-R in AML or BCP-ALL [5, 11, 12]. Our
GSEA results demonstrate a strong enrichment for pub-
lished data sets of genes differentially expressed in
KMT2A-R leukemias (Additional file 8: Figure S3). We also
identified signaling networks that could discriminate be-
tween KMT2A-R and MLLT10-R T-ALL. Compared to
KMT2A-R, MLLT10-R showed upregulation in multiple re-
ceptor and/or tyrosine kinase-mediated pathways (e.g. Met,
TGFB, PYK2, ERBB, PDGFR), for which FDA-approved in-
hibitors are available (Fig. 2d, Additional file 6: Table S5).
These findings are of great interest considering that
MLLT10-R were associated with T-ALL relapse [10]. In
summary, this study reports findings for 12 T-ALL cases

with KMT2A-R, which extends upon the observations by
others [2, 5]. Overall, we have identified an extended reper-
toire of aberrant gene expression profiles in KMT2A-R and
MLLT10-R T-ALL. These findings provide a mechanistic
basis for additional pre-clinical testing in classes of thera-
peutic agents that may hold promise for high-risk T-ALL.
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