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ABSTRACT OF THE THESIS

The Effect of Urban Texture on Flood Behavior

By

Sarah Balaian

Master of Science in Civil and Environmental Engineering

University of California, Irvine, 2021

Assistant Professor Mohammad Javad Abdolhosseini Qomi, Chair

Flood damages around the world have been increasing at a daunting rate, causing extreme

socioeconomic harm to entire communities. With the increase in urbanization and population

growth, a framework to understanding the effects that the changing urban landscape has on

natural conditions such as flooding has become crucial. While many different approaches

to modeling urban flooding have been introduced, few have considered the effects of spatial

orientation and form of urban areas on flood behavior. Here, we employ a parameter that is

commonly used in statistical and molecular science, called an order parameter, to aid in the

quantification of urban texture. A hybrid reverse Monte Carlo algorithm is implemented to

produce synthetic cities for the purpose of flood modeling; synthetic cities allow for better

control of morphology parameters and reduce the number of independent variables that

could affect resulting trends. By subsequently inundating these models with different flood

possibilities, the results show that there is a connection between the form of the urban layout

and resulting flood water heights. The interaction between porosity and spatial order in the

resulting flood heights prove that they both should be considered in tandem when studying

urban morphology. These results can be used in future flood hazard mitigation and urban

planning programs to account for effects of urban layout on flood levels.
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Chapter 1

Introduction

1.1 Flood Hazards and Urbanization

Despite the tremendous amount of money and effort that has been dedicated to controlling

floods, flood damages in the U.S. have increased over the past decades and are projected

to increase even more into the future [12, 17, 18, 20, 23]. From 1928 through 2000, flood

control expenditures have amounted to $122 billion and in that same time, flood damages

have consistently increased with relatively high damage years (above $5 billion in damages)

becoming more common [12]. Natural hazards in general are on the rise in the United

States, causing more than half trillion dollars in direct economic losses over the past 50 years;

flooding and coastal hazards alone account for one quarter of these losses [16]. This trend

coincides with the increased numbers of people and assets exposed to flood risk. Currently,

over 40 million people, or 0.6 percent of the global population, are exposed to a 1 in 100

year coastal flood event. One study showed that the total value of assets exposed to coastal

flooding in 2005 in the world’s largest post cities is estimated to be $3 trillion, or 5 percent

of the global GDP for that year [18]. This same study suggested that by 2070, the total
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exposed population could grow more than threefold, with asset exposure increasing to more

than ten times current levels [18].

There are many causes of increased flood exposure and damage, including climate change,

population and socioeconomic growth, increased urbanization, and violations of flood man-

agement guidelines [12, 17, 18]. Climate change, in particular, has been a topic of great

discussion in today’s society and the data supports the claims that it is one of the driving

factors of urban flooding. Of the many environmental changes that are caused by climate

change, the largest contribution to population exposure is sea level rise [18, 19]. It is likely

that the rate of sea level rise (SLR) globally in the 21st century will exceed rates observed

in the past, with estimates projecting SLR of 0.3 meters up to 1 meter by 2100 mainly

due to land-ice contributions. This could cause up to 4.6% of the global population to be

flooded annually [14, 20]. As sea level rise boosts the average water height, once in a decade

floods will begin to reach further inland, which will not only intensify floods in regions al-

ready exposed but could also introduce new hazards in areas unfamiliar with them [16, 23].

Along with climate change, flood losses are further exacerbated by increased urbanization

and wealth concentration, especially in floodplains [12, 31]. Continued capital investment in

concentrated areas leads to greater losses when infrastructure and systems of higher economic

wealth are inundated [31]. One study showed that in certain cases the role of socioeconomic

drivers is actually larger than that of climate change; even without projected sea level rise,

asset exposure could already grow eightfold [18]. Any marginal improvements in hazard

mitigation over the years have become insignificant due to the increased concentration of

people and goods in hazardous areas, along with the emergence of new vulnerabilities and

hazards [16]. With urbanization and concentrated wealth also comes an increase in imper-

meable surfaces such as concrete. Since 2001, the area of impermeable surfaces in urban and

suburban areas has risen by 22% [31]. This, along with mismanagement of efficient sewerage

infrastructure systems, also worsens flood damages in urban areas.

2



Although public interest in the dangers of climate change has grown and direct links have

been made between increased urbanization and flood damages, little preparation has been

done for the management of extreme events and their long term implications [18, 19]. In

the years after the 2009 Copenhagen meeting, which was one of many international events

geared towards climate change negotiations, the growth rate of new homes inside America’s

ten percent flood risk zones outpaced the growth rate outside of those areas in a third of the

country’s coastal states [23]. Since most major cities are developed along seas and waterways,

they follow trends towards building in more hazardous areas as they increase in size and

wealth. This causes flood risk to threaten more people than other natural catastrophes [18].

Millions of people already live in big metropolitan centers with projections of 6.5 billion

people, or around 68% of the global population, residing in urban areas by 2050 [2, 18].

Compounded with climate change issues, this level of mass urbanization could increase the

frequency and severity of natural disasters. Instead of addressing these trends at the root,

sea level rise and increased urbanization in hazardous areas has resulted in over-reliance on

applied protections such as dams and dikes which increase the risk of massive catastrophes

in the case of failure [20].

The apparent inability of cities to control and mitigate flood damages is due to many factors,

including bureaucratic conflicts and the technical complexity of understanding urban flood-

ing. A serious shortcoming of existing hazard reduction policies is the inability to empirically

quantify economically devastating impacts of disasters [16]. Factors such as a lack of data

on populations and developments in floodplains, and poor understanding of flood control

measures and policies contribute to this issue [12]. Loss reduction efforts need to be eval-

uated and re-assessed in terms of their effectiveness [16], but there seems to be resistance

towards making these improvements. This is partially due to the very nature of extreme

weather events: they happen relatively rapidly, are impossible to determine due to a lack

of early warning signs, and are assumed to be very infrequent. These factors have shaped

stakeholders’ perception of risk, fostering complacency and affecting risk management deci-
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sions [2]. To improve the mitigation efforts of societies across the globe, it is imperative to

incorporate sustainable development and vulnerability reduction as priorities in urban plan-

ning [16]. Risk must be addressed explicitly to inform decision-making, utilizing knowledge

between experts and stakeholders to tackle complex problems [2].

1.2 Flood Modeling

With the increase in urban flood events across the world and the degree of socioeconomic

harm they cause to entire communities, it has become crucial to produce accurate and ef-

fective flood models that can be used by everybody including politicians, stakeholders, and

everyday citizens alike. One of the leaders in this production, distribution and implemen-

tation of flood maps is the Federal Emergency Management Agency (FEMA). However, the

results from some of FEMA’s flood mitigation attempts, including the Flood Insurance Rate

Maps (FIRMs), fell short of their expectations. The FIRMs had the unintended consequence

of providing residents with a false sense of certainty that homes outside the designated flood

zones were safe from harm [39]. It is apparent that along with technical accuracy of maps

and tools, flood modeling must also consider factors such as people’s perceptions and future

changes. Sanders et. al. [39] proposes that true reductions in consequences from flood-

ing stem from the application of collaborative flood modeling between local stakeholders

and experts. There is value in the production of detailed, progressive, and innovative flood

modeling techniques.

The work of flood modeling has extended past the efforts of agencies such as FEMA into

the realm of academia in fields such as urban planning, engineering, and even sociology.

Important advancements have included the incorporation of projected climate change and

urbanization trends into flood maps to account for unforeseen circumstances [3]. However,

much of the existing research on these trends focus on real-world case studies and not more
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generic configurations [10]. While these real-world studies and flood models are useful in their

own right, more generic models can provide a better insight into how isolated topographic

trends and patterns in urban form affect flood behavior.

The creation of more generic urban form and flood inundation models has introduced inno-

vative and valuable modeling techniques into the conversation of flood risk mitigation. One

major trend that is studied often is urban expansion, such as transitions between nonurban

to urban land use. The current policies for flood damage mitigation most commonly focus

on controlling expansion into flood prone zones. This expansion into hazardous zones not

only exposes more infrastructure, assets, and people to risk but also alters the natural flow

of the floods that do pass through, leading to even greater problems. Huang et. al. [21]

presented both physical experimentation and computational modeling which proved the im-

pact of building coverage on flow behavior. By considering only the urban expansion process

however, models may fail to estimate flood damages properly because it neglects the densities

and patterns of urban cells [28]. In this regard, recent studies have introduced urban models

that focus on patterns of already urbanized areas instead of models that simply observe a

switch from nonurban to urban land. For instance, Mustafa et. al. [28] investigates different

urban development scenarios of densification and their impacts on flood damages. Along

this path, Bruwier et. al. [10] also presents an analysis on the influence of multiple urban

characteristics on surface flow in the case of pluvial flooding. Studies such as these have

contributed to a new multidisciplinary approach to flood modeling: a merger between fluid

dynamics and urban form analysis.

1.3 Urban Form

The creation of a novel type of landscape through intense urbanization has brought with

it a new set of challenges to the urban environment. As urban areas have become more
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populated, there has been a push to understand the connections between urban form and

its effects on an array of different conditions. For instance, the urban heat island, which is

a phenomenon that creates urban micro-climates which experience increased temperatures

relative to their surroundings, is a direct consequence of increased urbanization [42]. Land

use and land cover composition have also been linked to land surface temperature changes

[53]. Due to building heights and density of urban areas, cities take on unique characteristics

of high-rise compact building blocks and deep street canyons. Yuan et. al. [51] recognized

that this is a major source of concern in regard to natural ventilation in urban areas. Reduced

permeability has caused stagnant air to worsen outdoor thermal comfort and air pollution

dispersion. Different wind patterns and vortex regimes have been known to form in response

to this unique urban landscape [22], further contributing to reduced ventilation. Urban flood

damages have also been exacerbated by the increased density of cities and dramatic changes

in hydrological conditions as urbanization continues to grow [28].

Many recent studies have moved beyond simply recognizing this relation and have attempted

to quantify the connection between urban morphology and its adverse effects. Traditionally,

cities were characterized by different urban typologies, or spatial compositions of buildings

and land use types [52]. These compositions were the main factors of urban morphology con-

sidered when trying to understand the effects of urban structure. For instance, many urban

flood mitigation efforts have focused on regulating land use and encroachment [11] but fail to

recognize the effects that configuration can also have on flood disasters. Attributing urban

conditions to not only the composition of the region, as in the land use designation, but also

the configuration introduces new parameters to the discussion of city modeling. While the

composition of land cover is of great importance to urban conditions such as land surface

temperature and flood damages, spatial arrangements may also play a key role in increasing

or decreasing these effects [53]. Permeability and porosity are two notable parameters that

have been emphasized in this field. Ng et. al. [30] utilized these parameters to recommend

“air paths” which can increase ventilation in high-density cities. Tadi et. al. [45] presents
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porosity as a fundamental morphological characteristic of urban systems that integrates two

basic components of urban space: volumes and voids. Along with porosity, other morpholog-

ical indicators of environmental performance including density, rugosity (height variations of

the urban canopy), and sinuosity (angular differences between fluid flow and open spaces)

have been used to characterize city layouts [1]. Some models go even further to introduce

multiple parameter systems which intricately recreate urban forms. Mustafa et. al. [29]

presents a model that introduces up to 10 parameters for generating urban layouts capable

of reducing water depth during urban floods. All of these findings have recognized that it is

crucial to develop a framework within which the spatial information about urban form can

be understood and analyzed.

A novel concept for the characterization of urban geometry that has been employed in recent

years is the application of methods commonly used in molecular and statistical physics to

quantitatively analyze urban form. This is justified by the parallels that can be drawn

between urban morphology and molecular physics; at the right scale, the structure of cities

closely resembles the molecular structure of materials [42, 43, 48]. Sobstyl et. al. [42]

observed that the distinct textures of cities could be compared to the molecular structure of

crystals or liquids. In particular, these studies adopt the radial distribution function (RDF)

to analyze spatial characteristics, which is a tool that describes the probability of finding

a point at a specific distance from the reference point. The radial distribution function is

an important and widely used tool which was shown to extract crucial information about

building clusters in the context of urban cities. Another tool that was briefly mentioned by

Sobstyl [42] is the Mermin order parameter which was used to further describe city texture.

Order parameters are tools used in statistical physics that capture angular distortion be-

tween points, whether it be particles in a molecular structure or buildings in a city. These

parameters determine the degree of spacial ordering within a configuration and can act as a

single statistical measure of the arrangement of points, preserving the heterogeneous nature
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of the structure. Presenting spatial information through a single value allows for the sim-

plified measurement of its effects on any selected physical response. Order parameters have

commonly been used in molecular physics to analyze a wide array of issues, including stress

intensity in the design of composite materials [4] and physio-chemical behavior of complex

systems [35]. Its integration into the world of urban modeling, although new, demonstrates

great potential.

1.4 Research Objective

First and foremost, this project aims at establishing a clear and concise connection between

the form/morphology of urban areas and its effect on flood behavior, specifically water

heights. A probabilistic automated algorithm is introduced for generating synthetic cities

using morphology parameters that are representative of features of urban form. One impor-

tant variable being tested for is the spatial order of the system, a parameter that we propose

to be a key factor in urban form. By subsequently inundating these synthetic cities, we can

obtain crucial information about the correlation between urban morphology and resulting

flood heights. The tools and methods presented in this work can further aid the development

of urban modeling and flood hazard mitigation efforts.

1.5 Thesis Outline

Following this introductory chapter, there are five chapters that make up this thesis. Chapter

two discusses important fluid dynamics theory that is necessary in both the modeling and

resulting data analysis of this study. In chapter three, the algorithm for producing synthetic

cities is explained, along with the parameters that are used for said creation. This chapter

also highlights the spatial order parameter that is crucial to the novelty of this project.
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Chapter four is dedicated to describing the methods behind the finite-volume model BreZo,

which is used to inundate the synthetic cities. Chapter five presents the final results produced

in this study. The resulting data from the inundated synthetic cities are analyzed and

important trends pertaining to the effects of urban morphology are extracted. This thesis

concludes with chapter six, which presents some final thoughts and recommendations for

future work.
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Chapter 2

Fluid Dynamics Theory

2.1 Introduction

Fluid dynamics is the branch of science that deals with the movement of gases and liquids.

Understanding the basics of fluid dynamics is crucial to the successful modeling of any type

of flow, whether it be the flow of flood waters through a city or the flow of air along an

airplane wing. This chapter addresses some of the most critical aspects of fluid dynamics

when discussing hydrodynamic open channel flow, including the shallow water equations and

the dimensionless Reynolds number and Froude number. A brief discussion of the famous

Navier-Stokes equations gives context to the derivation of the shallow water equations which

are used for computing flood models. Beyond the modeling of this flow, the dimensionless

Reynolds number and Froude number can be used to analyze resulting flow behavior.
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2.2 Shallow Water Equations

The fluid flow of shallow water systems can be modeled using a specific set of equations

called the shallow water equations. These equations are applicable to systems in which the

horizontal length scale tends to be much larger than the vertical length scale. Certain types

of phenomena such as tsunami propagation, river flow, and flooding can be modeled using

these equations.

The shallow water equations are a coupled system of partial differential equations (PDEs)

that are derived from the Navier-Stokes equations and consists of a fluid continuity equation

and two momentum equations. The Navier-Stokes equations are a set of two partial differ-

ential equations which express the conservation of mass and the conservation of momentum

and can be written as follows:

∇ · v = 0

∂

∂t
ρv +∇ · (ρv⊗v) =−∇p+ ρg +∇ ·T

(2.1)

Here, v is the three-dimensional velocity vector v = (u v w)T , ρ is the density of the fluid, ∇p

is the pressure gradient, and T is a matrix of stress terms. Also, the following assumptions

are made about the fluid: it is incompressible, i.e. the density ρ is constant, and it is

a Newtonian fluid [15]. In the case of shallow flow where the horizontal length scale is

much greater than the vertical length scale, the vertical dimension can be neglected and the

previous equations can be averaged over the depth, producing the simplified two-dimensional

shallow water equations (SWEs). The depth-integrated continuity equation and the depth-

integrated x- and y-momentum equations combine to form the two-dimensional SWEs in

conservative form as:
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∂h

∂t
+

∂

∂x
(hu) +

∂

∂y
(hv) = 0

∂

∂t
(hu) +

∂

∂x
(hu2) +

∂

∂y
(huv) = −gh∂z

∂x
+

1

ρ
[τsx − τbx + Fx]

∂

∂t
(hv) +

∂

∂x
(huv) +

∂

∂y
(hv2) = −gh∂z

∂y
+

1

ρ
[τsy − τby + Fy]

(2.2)

Here, h is the total depth of the water and z is the elevation of the free surface relative

to the mean water level. Also, τsx and τsy are the surface shear stress, τbx and τby are the

bottom friction, and Fx and Fy are the external forces on the system [15]. These values are

determined based on the system that is being considered. Often, the shallow water equations

can appear in different forms depending on its application by performing differentiation and

canceling out terms [49]. Also, to solve for the shallow water equations, different numerical

methods are implemented to obtain specific solutions of the flow. The nonconservative form

of the previous formulation and a numerical method of solving for it will be discussed in

Chapter 4.

2.3 Reynolds Number

After flow variables are obtained through computations, they are analyzed using important

dimensionless parameters to understand the behavior of the flow and how it is character-

ized. Many dimensionless parameters have been commonly used for this purpose, providing

simple and effective tools for flow characterization. No discussion about dimensionless flow

parameters is complete without the Reynolds number, which is arguably the most impor-

tant parameter in fluid mechanics. This parameter was introduced by the British engineer

Osborne Reynolds in 1883 [50] and it correlates the inertial forces to the viscous forces of a

fluid in motion. This correlation describes the transport properties of a fluid, distinguishing
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between laminar flow and turbulent flow [36]. This number is defined as follows:

Re =
ρDv

µ
(2.3)

where Re is the dimensionless Reynolds number, ρ is the density of the fluid, D is the

diameter of the passage way, v is the velocity of the fluid, and µ is the viscosity of the fluid.

When the Reynolds number is 2,000 and below, the flow can be characterized as laminar.

In laminar flow, the layers of water flow over each other at different speeds with little to

no mixing and the fluid particles move in definite and observable paths, making laminar

flow much easier to study and understand. When the Reynolds number is around 4,000 and

above, the flow is then considered turbulent [24]. Turbulent flow is much more irregular and

does not possess many of the simple patterns that laminar flow does, making it more difficult

to deal with. At a Reynolds number between 2,000 and 4,000, the flow is in the transition

region. Each type of flow is desirable for some circumstances and problematic for different

ones, so it is important to understand the flow characterization using this parameter.

2.4 Froude Number

Another very important dimensionless parameter that is only applicable in free-surface flows

is the Froude number, which is named after the British naval architect William Froude [50].

This parameter is the ratio of channel velocity to speed of propagation of surface waves. For

a rectangular channel, the Froude number is defined as follows:

Fr =
flow velocity

surface wave speed
=

u
√
gy

(2.4)
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where y is the water depth. The resulting value of this ratio can characterize the behavior

of free-surface flow into three different flow regimes:

Subcriticalflow Fr < 1

Criticalflow Fr = 1

Supercriticalflow Fr > 1

Critical flow occurs when the velocity of the flow is the same as the wave speed, causing

Fr = 1. At critical flow, the normal flow depth is equal to the critical depth yc which

represents the depth of flow where energy is at a minimum. This regime is extremely unlikely

and is unstable because any disturbance in energy will shift the flow into one of the other

two regimes. The two types of flow that are more likely are subcritical and supercritical flow.

Subcritical flow occurs when the water velocity is less than the wave speed, meaning that it

behaves in a slow and steady manner. The actual flow depth in this regime is higher than

the critical depth (y > yc) and it is common to a mild slope. On the other hand, flow is

supercritical when Fr > 1, or the flow velocity is greater than the wave speed. This flow

identifies with a higher flow rate and lower depth than the critical flow and behaves as rapid

or unstable flow. Along with differing flow rates and depths, the regimes also differ in their

flow profiles. The flow profile is a measure of how the flow depth changes longitudinally.

Changes in the flow regime can occur because of many different reasons. The most common

reasons are a change in the channel bed or channel geometry, changes in the volumetric flow

rate, or changes in friction. At this instance, a hydraulic jump could possibly occur due to

increased available energy from head loss [13].

When modeling open channel flow, it is important to determine which flow regime the flow

falls into. This is because it could have a direct effect on how the flow is modeled and how

the results are interpreted. To determine whether a flow can be considered subcritical or
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supercritical, the normal flow depth must be compared to the critical depth. The critical

depth of flow is calculated as follows:

yc = (
q2

g
)1/3 (2.5)

where q = Q/w with Q = volumetric flow and w = channel width. This equation is derived

from the equation for the Froude number at critical flow (Fr = 1), in which the normal

depth is the same as the critical depth. It is a function of both volumetric flow and channel

geometry. By calculating this value for critical depth, it can then be compared to the

observed depth of the flow in question to determine the flow regime.

Since the Froude number is a function of channel velocity and wave speed, it is crucial to

defining wave directions and necessary boundary conditions. In shallow water problems, two

separate waves are admitted and the SWEs have two characteristic equations:

d

dt
(u+

√
gh) = 0 along

dx

dt
= u+

√
gh (2.6)

d

dt
(u−

√
gh) = 0 along

dx

dt
= u−

√
gh (2.7)

The boundary conditions for shallow water flow are determined by the celerity of these

characteristic curves. The two celerities are:

dx

dt
= u+ c

dx

dt
= u− c (2.8)

where the wave speed c =
√
gh. In the case of subcritical flow, the Froude number Fr = u/c

is less than one, meaning u < c. When this is the case, the celerity of one characteristic curve

is u+ c > 0 and the other is u− c < 0. Since the celetrity is the rate that a wave propagates,

this shows one wave is propagating positively and the other is propagating negatively. In

terms of boundary conditions, this explains the need for one upstream boundary condition
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and one downstream boundary condition. For supercritical flow however, the Froude number

is greater than one, meaning u > c. The celerity of the characteristic curves are u + c > 0

and u − c > 0 meaning both waves propagate positively. Because of this, the model will

need two upstream boundary conditions and no downstream boundary conditions [47]. This

is crucial to accurate computational modeling of fluid flow as incorrect boundary conditions

can cause large errors in results.

2.5 Summary

By establishing the important fluid dynamics theories that will be utilized in this study, we

have set the foundation for our computations moving forward. The shallow water equations

are the governing equations for the flood inundation models, and the dimensionless param-

eters can be utilized to understand the resulting flow. However, fluid dynamics is only one

part of this study; it is coupled with city science and modeling to create a comprehensive

understanding of urban flooding.
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Chapter 3

Synthetic City Modeling

3.1 Introduction

While many flood inundation models have focused on real-world case studies and city con-

figurations to perform flow analysis, there is a benefit to computationally generating a wide

range of urban configurations using specified morphology parameters. Having control over

these parameters allows for more consistency when observing trends in urban physics. These

configurations must represent combinations of spatial order and porosity values that may be

difficult to find in real-life city configurations. While it is possible to analyze city geome-

tries and fit specific order values to each city, a more extensive study can be accomplished

with computer-generated “synthetic” city configurations. Although ignoring some important

factors of city layouts such as streets and specific land usage, this method of generating

synthetic cities avoids the limitations of existing city configurations and provides clear and

concise models to work with. This simplification reduces the number of independent vari-

ables that are not of importance to this study and allows for a systemic analysis on the

influence of selected factors. Synthetic models were created using a novel probabilistic pro-

17



cedural algorithm which takes user-defined input parameters and uses them to create city

configurations. The algorithm follows the hybrid reverse Monte Carlo model which is a re-

construction technique aimed at producing a model by implementing constraints [8]. Monte

Carlo methods are widely-used computational algorithms that employ the process of random

sampling to make numerical estimations of certain values [34]. The importance and novelty

of the algorithm presented here is that it is able to produce hundreds of configurations with-

out manual interference because of its fully-automated nature. The entire process is also

randomized to ensure no internal or unintended influence affects the models. This allows for

extremely extensive studies to be done on a wide range of configurations, along with future

implementation of more parameters.

3.2 Porosity

Porosity is a very important parameter that is utilized to understand phenomena such as rock

permeability, groundwater flow, separation processes and much more. While this parameter

is most commonly employed when discussing fluid motion through systems, it also appears

in different forms as well since it is simply a representation of void space. Classic methods of

defining random microstructural particle arrangements in composites use a packing fraction,

which is a function of the space occupied by the particles, as a complementary representation

of porosity. It is also used in the calculations of the radial distribution function, which is

a common tool employed in statistical physics [4]. It is not a coincidence that porosity

is also a major factor in understanding urban forms and their influence on flow behavior.

When discussing urban form, porosity is often presented as “urban void space” [45] or as a

percentage of building/built-up coverage, which is the fraction of the total area occupied by

buildings [10, 29]. In their study on the influence of urban forms on surface flow in pluvial

flooding, Bruwier et. al. [10] determined that flooding severity is mostly influenced by this
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building coverage parameter. In our study, we decided to adopt a porosity parameter, which

is the complement of the building coverage, because it provides a more direct representation

of the space that the flood is passing through instead of the space that is occupied by the

buildings.

The porosity parameter in this study is calculated from the ratio of area covered by all

building footprints to the area of the entire domain:

Φ = 1− Nb2

wL
(3.1)

where N is the number of buildings in the domain, b2 is the area of each square building

footprint, w is the width of the domain, and L is the length of the channel. In our analysis,

the number of buildings is determined by the porosity value and the assigned size of building

footprints. Changing the porosity value is done simply by keeping the size of the domain

and the area of the building footprints the same, while changing the number of buildings

created. Figure 3.1 shows three different configurations, all with the same spatial order

but with varying porosity. As the value of porosity Φ becomes smaller, the configurations

become more densely packed and the percentage of built-up area is increased. This aids in

the visualization of the effects that porosity has on flow behavior.

(a) φ = 0.9, χ4 = 0.7 (b) φ = 0.7, χ4 = 0.7 (c) φ = 0.4, χ4 = 0.7

Figure 3.1: Examples of three different configurations, all with the same spatial order χ4

value but different porosity Φ values. The porosity progresses from the highest porosity (left)
to the lowest porosity (right). As porosity decreases, the area of building coverage increases.
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In this study, we create configurations with incrementally changing values of porosity in

order to determine its effect on flood behavior. From our understanding, many of the other

studies done on the effects of urban form have explored configurations with porosity values

of 80% to 50% [10, 28]. To obtain a comprehensive view of the effects of porosity, we have

considered a wider range of values, from 90% down to 10% porosity.

3.3 Mermin Order Parameter

While porosity is an important parameter in the understanding of urban form, here we intro-

duce another parameter which will go beyond porosity and describe the angular orientation

of buildings. Order parameters are used in statistical physics to quantify the patterns and

orientations of particles in different configurations. They have a wide variety of applications

within molecular science, and vary depending on the characteristics of the configuration [35].

Studies in different areas such as fracture mechanics have utilized these order parameters to

quantify the effects of microstructural spatial order on observed trends in material behavior

[4]. As mentioned before, the similarities previously established between structures on the

micro-scale and the city-scale provide a precedent for the implementation of these parameters

in the quantification of urban form. Of the many order parameters that have been intro-

duced, the Mermin order parameter, which was originally created to quantify order in a two

dimensional crystal of circular disks [27], most closely relates to our study of two dimensional

urban form. The use of order parameters has been chosen above other previously studied

methods of quantifying urban form because it provides new insight into spatial orientation

and is more streamlined than other multi-parameter approaches.

The Mermin order parameter quantifies the spatial degree of order of a system by determining

the orientation of n neighboring points with respect to a single point of reference, repeating

this for all N points, and finally calculating the average of these values. This is adopted to
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the current study by considering the centroid of each building to be a point in the domain.

The orientation of n neighboring buildings with respect to one building j is calculated as:

χn,j =
1

Cn,j

Cn,j∑
k=1

exp(iCn,jθj,k) (3.2)

This is done for all N regular points inside the configuration, and the average is then taken

as:

χCn =
1

N

N∑
j=1

χn,j =
1

N

N∑
j=1

[
1

Cn,j

Cn,j∑
k=1

exp(iCn,jθj,k)] (3.3)

where N is the total number of points within the domain and θj,k is the angle between the

line defined by the main building j and the k -th neighboring building and the horizontal

axis. The variable Cn,j is the number of nearest neighbors with respect to the main building

j, and determines the type of pattern the parameter is calculating for. For instance, if we

are considering a perfect close-packing triangular/hexagonal lattice, this means the number

of nearest neighbors is six. This instance is often used in molecular physics applications,

where a space-filling structure is considered a perfectly ordered system [4]. In this study

of urban form, the most spatially ordered configurations are considered to be regular grids

that form urban blocks [52], commonly referred to as grid planes. This format is often

used to study a wide range of urban phenomena as it is historically and commonly used

in planning mega cities around the world [51]. Understanding this, we consider a perfectly

ordered configuration in this study to be a grid lattice, making Cn,j equal to four for all

future calculations. Figure 3.2 shows the patterns that correspond to each value of Cn,j and

their Mermin values χCn,j
.
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Figure 3.2: Corresponding Mermin order values for two different configurations. The con-
figuration on the left is a perfectly ordered hexagonal system and the configuration on the
right is a perfectly ordered grid system. The central atom is shown in red, while the first
neighbors are shown in black. The determination of θj,2 is shown in both systems.

To solve for the Mermin order value with the number of nearest neighbors being four, the

term Cn,j will be replaced by four in Equation 3.3 to define the final Mermin order parameter

χ4 as follows:

χ4 =
1

N

N∑
j=1

[
1

4

4∑
k=1

exp(i4θj,k)] (3.4)

The final Mermin order parameter ranges from a value of zero for extremely disordered

systems, to a value of one for perfectly aligned grid systems.

Since buildings at the boundaries experience a lack of neighbors, the calculation of an order

parameter for these points will be inaccurately lower than the ones away from the boundary,
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making the Mermin order value of the entire system inaccurate. To eliminate this surface

effect caused by the under-coordinated buildings at the boundaries, these boundary buildings

are not considered as part of the N regular buildings; they are only used as neighboring

buildings. An inner box is used to distinguish regular points and strictly neighboring points.

This means that, in reference to Equation 3.4, the points inside the inner box are included

in j = 1, 2, . . . , N . The outer box represents all the points which are located within one

neighboring shell of the reference points and are included in the calculations as k = 1 . . . 4.

While all the points in the domain can be considered neighboring points, only points inside

the inner box are used as reference points. Figure 3.3 distinguishes between these two boxes

and the points that fall within each box.

Figure 3.3: The determination of regular points and strictly neighboring points. The red
line represents the inner boundary which separates the regular points (shown in blue dots)
from the strictly neighboring points (shown in black dots).
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Figure 3.4 shows three examples of configurations which all have the same porosity but

different Mermin order values. Here, you can see the effect that changing the Mermin order

value has on the overall configuration.

(a) φ = 0.65, χ4 = 0.4 (b) φ = 0.65, χ4 = 0.7 (c) φ = 0.65, χ4 = 0.9

Figure 3.4: Examples of three different configurations, all with the same porosity Φ value
but different spatial order χ4 values. The spatial order progresses from the lowest order (left)
to the highest order (right).

Although there is very little research on common spatial order values in city texture, the

work done by Sobstyl [43] that introduced the use of this method for quantifying urban

textures found that local Mermin order parameters in cities range between 0.5 – 0.9. Similar

to our integration of porosity in our synthetic cities, we incrementally change the Mermin

order value used to generate the synthetic cities in order to understand its effects. The

range of Mermin order values tested is from 0.3 – 1. However, it should be noted that

as we reach lower porosity values past 50%, we start to create packed arrangements which

cannot contain as much randomness or disorder as more porous arrangements. The minimum

possible order values change with respect to porosity, with only the configurations of 50% to

90% porosity reaching the most disordered states of χ4 = 0.3. This causes an empty zone

in our configuration landscape of unrealistic or computationally expensive models which are

avoided.
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3.4 Other Model Parameters

3.4.1 Length/Width of Channel

In this study, we ran multiple tests to determine the optimal channel length that ensured

uniform flow. Since the ratio of width to length of the channel is of importance in this

case, the width of the rectangular channel was kept constant at 500 meters while the length

was changed incrementally, ranging from 1,000 meters (1:2) to 10,000 meters (1:20). These

convergence tests will be discussed in further detail in Chapter 5. The results from the tests

showed that for the most complex configurations that are being considered for this study,

which are densely packed and highly disordered, we reach uniform flow with a channel length

of 10,000 meters. This domain size of 500 meters wide and 10,000 meters long will be applied

for all configurations.

3.4.2 Slope

When studying hydrodynamic behavior within a domain, one parameter that should be

considered is the bed slope, since it can have a dramatic effect on flow depth, water surface

profile, and overall flow classification. In order to comprehensively understand the behavior

of floods in the configurations created, we have done an analysis with slopes of -0.1% and

-1% in the left-to-right direction. Simplifying the channel bed to a uniform slope is a strong

assumption, but it is motivated by the intention to focus our analysis on the influence of

the configurations alone. The slope is represented by assigning a bed elevation at each node

with the following value:

z(x) = α(xmax − x) (3.5)

Where xmax is the length of the channel bed and α is the slope value.
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3.5 Hybrid Reverse Monte Carlo Algorithm

The algorithm used to produce synthetic city configurations follows the basic structure of

the hybrid reverse Monte Carlo (HRMC) algorithm that was first introduced by Opletal et.

al. [32] as a way to improve upon the modeling of amorphous carbon structures. The HRMC

method was an adaptation of the Reverse Monte Carlo method introduced by McGreevy et.

al. [26] in 1988 which produced models by implementing constraints to a random generation

process. While the RMC algorithm is a robust and widely used tool, many studies since

then have improved upon it by implementing additional constraints such as the constrained

reverse Monte Carlo (CRMC) and HRMC algorithms [8]. The HRMC algorithm achieves

this improvement with the incorporation of an interaction potential term that alleviates the

problem of unrealistic or physically improbable configurations from RMC alone [32]. In this

study, the HRMC algorithm is adopted and the constraint used is the user-defined Mermin

spatial order value. Utilizing this method allows for efficient and accurate generation of

synthetic cities.

Before the HRMC algorithm was applied to this study, the original RMC method was used.

In this adaptation of the original reverse Monte Carlo algorithm, the desired porosity Φ′

and spatial order χ′4 are defined, and the initial configuration starts with a two dimensional

ordered lattice. It is important to note that the initial point configuration may also be

generated at random [26], but for our study we begin with an ordered lattice. The number of

points N in the initial configuration is determined by the user-defined porosity value, where

each point will signify a building footprint covering a certain area, and does not change

throughout the process. The initial spatial order χ4,old is calculated for this configuration,

which equals one because it is in a completely ordered state at the beginning of the simulation.

One point is randomly chosen and moved in a random direction and distance, and the new

spatial parameter χ4,new is calculated. These are both compared to the desired value of χ′4

and an error is calculated as follows:
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G2
old = (χ4,old − χ′4)2

G2
new = (χ4,new − χ′4)2

(3.6)

If G2
new < G2

old, then the new configuration is accepted, it becomes the initial configuration

and the value of χ4,new becomes the new χ4,old. If not, then the move is invalid and the

old configuration and χ4,old is retained. A new point is moved and the process is then

repeated. This process is continued until the error value reaches the tolerance level in which

the spatial order has reached close enough to the desired value. By following this algorithm,

a final configuration is achieved with the desired spatial order and porosity values.

Although the reverse Monte Carlo method is a fairly robust and reliable algorithm, problems

have been reported on its inability to avoid unrealistic configurations. In the production of

atomic structures, highly strained, high energy configurations were an intrinsic consequence

of the RMC algorithm [32]. In this study, building configurations created with the RMC

method featured some areas in which buildings got extremely close to each other, causing

issues that arose later on with the meshing process and overall efficiency of flood simulations.

This unnecessarily complicated the domains without providing any valuable insight. To

address these problems, Opletal et. al. [32] introduced the hybrid reverse Monte Carlo system

which adds an energy constraint to the algorithm to help avoid unrealistic configurations.

This energy term is included in the calculation of the configuration’s error value whenever

a move is made that leads to an unrealistic configuration. The energy term is accounted for

as follows:

G2 = E + (χ4 − χ′4)2 (3.7)

and it automatically causes the algorithm to reject this configuration, since G2
new > G2

old.

Since the energy term is simply a binary to accept or deny a move, the value of the term is
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arbitrary as long as it is enough to ensure G2
new > G2

old. In this study, the energy term is

determined with respect to the one point j that has been moved and is defined as follows:

E = Ej =
N∑
k=1

Ej,k (3.8)

Ej,k =


1000 dmin < d < dmax

0 otherwise

(3.9)

where d is the distance between the centroids of building j and each surrounding building k,

while dmin and dmax are the conditions that would determine if two buildings are too close

to each other. The minimum restriction is implemented to allow for buildings to get close

enough so that they can merge together, while the maximum restriction is implemented to

define the maximum distance that would require an energy penalty; this is illustrated in

Figure 3.5.
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Figure 3.5: The energy graph (left) shows the value of the energy term E with respect to the
distance between buildings d. Six different instances of building spacing are shown (right)
and their corresponding energy values can be determined from the graph. Buildings that
are close enough to merge can do so without an energy value. When the distance between
buildings is b < d < 1.2b, the energy term jumps to 1,000. When d > 1.2b, the energy term
returns to zero.

The value for dmin is the building side length b, since the maximum distance between two

buildings at which they are still physically able to be combined is the building length b. The

value for dmax is 1.2b, since for this study the minimum acceptable distance between two

buildings is 20 percent of the building length b. This measure was determined through an

analysis of the meshing between buildings; it was discovered that if the distance between

buildings was less than 1.2b, the mesh would become very fine and it would increase the

computation time for the flood simulations. Since our analysis does not focus on the smaller
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scale behavior of fluid flow in these types of areas and instead observes behavior on the

kilometer scale, we avoid these cases with our energy penalty.

The entire hybrid reverse Monte Carlo process for this study is represented as a workflow

diagram in Figure 3.6. As the algorithm iterates through this process, the arrangement and

corresponding Mermin order value converges towards the desired final configuration. The

number of steps that it takes to reach the desired outcome is dependent on many factors:

the number of total buildings in the domain, the desired Mermin order value, the tolerance

for an acceptable final configuration, and also the inherit randomness of the algorithm. This

convergence process can be seen in Figure 3.7.
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Figure 3.6: The workflow of the HRMC process as it progresses through each step. At the
top, the algorithm begins with user-defined input parameters. An initial configuration is
created and the initial spatial order and error values are calculated. The HRMC looping
process then begins. A point is moved at random and the algorithm proceeds through steps
to determine if the move will be accepted or rejected. If rejected, the move is undone and
another point is moved. If accepted, the move becomes part of the configuration and another
point is moved. This process continues until the error value drops below a certain tolerance.
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Figure 3.7: Three different realizations that converge from an initial 2D lattice of points to the final configuration with desired
Mermin order value. Each realization maintains a porosity of Φ = 0.55 and converges towards a desired Mermin order value of
χ4 = 0.5. They all follow somewhat the same path and reach convergence at around the same step, but create three different
realizations.
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3.6 Model Refinement

3.6.1 Merging Overlapping Buildings

While the modeling process itself is robust and automated, some refinement must be done

after the completion of the HRMC algorithm in order to improve upon the model. These

improvements are generally done to simplify the geometries for efficiency in the mesh gener-

ation and simulation steps. The HRMC process allows for the points to come close enough

that the resulting buildings overlap. In order to adjust this to more realistic geometries, the

overlapping buildings are merged together into one as seen in Figure 3.8.

Figure 3.8: Overlapping buildings are merged together to improve the geometry.

These merged buildings are more common in configurations with lower Mermin order and

porosity levels. After merging overlapping buildings, all holes are removed. Also, edges and

verticies that over-complicate the geometries and create meaningless concavity, also known

as outliers, are removed to smooth building edges. The removal of both holes and outliers

can be seen in Figure 3.9.
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Figure 3.9: Holes and outliers are removed from the configuration. Holes are formed during
the generation and merging processes and are removed because they are of no significance to
the model. Outliers, which create meaningless concavity to the geometry, are also removed.

3.6.2 Expand Configuration to Channel Length

Due to the nature of the HRMC process, larger configurations with more points take ex-

ponentially longer to converge. This presents a problem when dealing with models on the

scale of this study. As previously mentioned, the domain is extremely long in order to reach

uniform flow and poses an issue with long inefficient run times. To bypass this issue and

dramatically reduce convergence times for the HRMC process, a method of convergence and

duplication can be used. McGreevy et. al. [26], when discussing calculation details of the

reverse Monte Carlo method, explained that convergence for large configurations can be

sped up by starting with a smaller set of points, such as a subset of the original set, and

allowing it to converge before duplicating it to the intended size. This larger configuration of

duplicated subsets in turn can be used as a starting point for the next HRMC process. This

method is adopted in this study to increase the efficiency of the HRMC method. Since the

size of the channel is 500 meters wide and 10,000 meters long, a subset of initial points that

make up a 500 m x 500 m domain is extracted. The HRMC process is performed on this

subset and when it is completed, it is duplicated along the x- dimension 20 times to fill the

entire channel. Although the original HRMC algorithm then takes this configuration and
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uses it as an initial configuration for another HRMC process, we determined that the spatial

order and porosity of the newly generated configuration is close enough to the subset that

another round would be trivial and would not improve the configuration by much. Figure

3.10 illustrates this duplication.

Figure 3.10: The final configuration which duplicates the 500m x 500m arrangement to fit
the entirety of the 10,000 meter channel

3.7 Computational Grid/Mesh

A critical component to analyzing models with the finite volume method is producing a

refined and high-quality two dimensional mesh that accurately represents the domain, since

the governing shallow water equations are solved on this grid of triangular cells. By using

the flood simulation algorithm BreZo, we are able to utilize an unstructured grid of cells

which allows for the meshing of more complex geometries and irregular boundaries [6]. The

algorithm is also able to perform localized grid refinement which ensures an accurate and
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grid-independent solution. As described earlier, our algorithm for synthetic city generation

includes many steps to simplify our domain for improved efficiency during the meshing and

calculation stages. These adjustments include the rejection of buildings that are generated

too close to each other, the merging of overlapping buildings, and the removal of holes and

outliers in the final geometry.

To prepare the computational mesh, we employed the C program Triangle, created by

Jonathan Richard Shewchuk at the University of California, Berkeley [41] for two dimen-

sional mesh generation. This program creates exact Delaunay triangulations with guar-

anteed quality due to its robust refinement algorithm and small angle restrictions. One

important feature to this program is the inclusion of user-defined holes, which is used in

this study to represent buildings. The treatment of buildings in our flood inundation study

is dictated by the building-hole (BH) method introduce by Schubert and Sanders [40] to

effectively integrate geospatial data for unstructured mesh generation. With this method,

building footprints define mesh holes, or interior wall boundaries, which analytically imitates

the effects of buildings on flood hydrodynamics [40]. The edges of the holes, or walls of the

building, are treated as no-slip boundaries [40]. This method was chosen above many of the

other methods for representing spatial data in meshes, like the building block method, be-

cause it was found to better preserve the geometry of buildings and maintain better accuracy

in relatively coarse meshes.

When generating a mesh, we need to strike a balance between computational accuracy and

efficiency by defining mesh sizes and number of nodes. To ensure a high quality mesh,

the maximum area of a cell is constrained to one tenth the size of a building for the first

500 meters of the domain. The remaining domain is meshed with a maximum cell area of

one quarter the area of a building. This mesh quality difference is implemented because of

the second important mesh attribute: number of nodes. Our main analysis in this study

pertains to the flood heights near the inlet of the domain, and so the mesh is the finest
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at this area. Although we need to mesh and analyze the remainder of the domain as well,

the intricacies of the analysis are less important in this area. We also justify this decision

by the fact that BreZo, which is the finite-volume flood modeling algorithm that will be

described later, performs mesh refinement when needed. This method drastically reduces

the number of nodes within our mesh by 40 percent, increasing the computational efficiency

while maintaining a high level of accuracy. With this method the average number of nodes

in our configurations of a domain size 500 m x 10,000 m ranges between 70,000 and 130,000.

This mesh can be seen in Figure 3.11.

3.8 Summary

The generation of synthetic cities provides controlled environments in which flood inunda-

tion models can be tested and understood. By limiting the number of independent variables,

direct links can be drawn between our parameters and the resulting flood behavior. Intro-

ducing the Mermin order parameter has allowed for control over the spatial order of these

synthetic cities. Through the Monte Carlo method and subsequent model refinement, we

were able to produce hundreds of synthetic cities that are ready for flood inundation tests.
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Figure 3.11: Computational mesh that is created from the synthetic cities. The mesh is
finer at x < 500m and is coarser at x > 500m. The holes in the mesh represent buildings,
following the building hole method. The area of a mesh cell is 10% the size of the buildings
in the first section, and 25% the size of the buildings in the second section.
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Chapter 4

BreZo: An Adaptive Godunov-Based

Model for Flood Simulation

4.1 Introduction

After the generation of the synthetic city models, shallow water flow analysis must be done

to study the flow of presumed floods through the configurations. Extensive work has been

done in the development of flood inundation models and its application in urban flood

modeling. Teng et. al. [46] compared several 1D, 2D, and 3D hydrodynamic models for

simulating flood inundation and presented many advantages and limitations for each. In most

instances, two-dimensional shallow water approximations prove adequate when compared

to more complex three-dimensional models [46], and are therefore utilized in this study.

Of the available models, this study utilizes a Godunov-based finite volume model called

BreZo [6, 7, 38], developed by Brett Sanders from the University of California Irvine and

Lorenzo Begnudelli from the Univeristy of Ferrara. This model solves the shallow water
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equations while presenting increased efficiency and minimized energy error compared to

previous Godunov-based models, proving it to be the best option for this study.

4.2 Methodology

The BreZo model that is used here has seen many iterations throughout the years to improve

accuracy and efficiency. The original iteration was developed by Bradford and Sanders [9]

and has been improved upon through multiple optimization studies. At its core, a fixed

grid finite volume Godunov-type scheme is utilized to solve the shallow water equations for

unsteady, two-dimensional flow along a domain. Godunov-type schemes are very popular

because of their ability to accurately model both subcritical and supercritical flow, capture

hydraulic jumps, and conserve mass [7]. The shallow water flow equations that are directly

discretized for a finite control volume are in integral form [5]. This scheme solves the SWEs

in integral form in computational cells, ensuring the conservation of mass and momentum

in each cell. The integral form of the equations are as follows:

∂

∂t

∫
Ω

UdΩ +

∮
∂Ω

(Fdx−Gdy) =

∫
Ω

SdΩ (4.1)

U =


h

uh

vh

 ; F =


uh

u2h+ 1
2
gh2

uvh

 ; G =


vh

uvh

v2h+ 1
2
gh2

 ;

S =


0

−gh∂zb
∂x
− cDu

√
u2 + v2

−gh∂zb
∂y
− cDv

√
u2 + v2


(4.2)
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where Ω represents a 2D domain with a boundary of ∂Ω; h = flow depth; u, v = depth-

averaged velocities in the x- and y- direction, respectively; z = bed elevation; and cD =

bed drag coefficient which is calculated using the Manning coefficient nm as follows: cD =

gn2
mh
−1/3.

Unstructured grids of triangular cells are utilized in this model’s finite volume scheme because

of its ability to mesh complex domains with irregular boundaries easily using Delaunay

triangulation [6]. As mentioned before, the shallow water equations are solved at each finite

cell as piecewise solutions that are discontinuous at the cell faces [7]. Then reconstruction

is done to understand the fluxes at these interfaces. Due to the unstructured nature of the

grid, organization of the neighborhood of cells, nodes, and faces at each point is crucial

to the success of this model. A robust integer mapping system of arrays is implemented to

define the neighborhood of each cell. Begnudelli and Sanders [6] explain this integer mapping

system extensively and it is used for the advancement of the model in the next steps.

The latest version of BreZo uses an adaptive first-order accurate scheme that is paired

with a second-order accurate terrain model which allows it to achieve close to second-order

convergence with grid refinement [7, 38]. This is an improvement from a previous model

which progresses with a second-order accurate time integration where a predictor is computed

at the n + 1/2 time step and then a corrector is computed at a time step of n + 1. By

adopting the new first-order accurate method, computational effort is minimized due to the

avoidance of calculating a predictor solution and slope limiting gradients while maintaining

high accuracy [7]. Also, a local time stepping scheme was adopted to improve run-time

efficiency [37]. The updated equation for BreZo to advance the solution in time can be

written as:

Un+1
j = Un

j −
∆t

Aj

3∑
k=1

(F⊥)nk∆sk −∆t(So
n
j + Sf

n+1/2
j ) (4.3)
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where j is the cell index, n is the time level, k is the local edge index, U is the analytical

solution to the shallow water equations U = (h uh vh)T , So and Sf are the source terms,

and F is the flux term

F =


hu⊥

huu⊥ + 1
2
gh2 cos Φ

hvu⊥ + 1
2
gh2 sin Φ

 (4.4)

where u⊥ is the velocity perpendicular to the cell face and Φ is the angle between the face

normal vector and the x- axis. Roe’s approximate Riemann solver is used to compute the

flux vector F in Equation 4.4 at the cell faces. Since the finite volume scheme produces

discontinuities at the cell edges, reconstruction of flow variables to the left and right of

these faces is required. This reconstruction is done using the monotone upstream scheme

for conservation laws (MUSCL). Bradford and Sanders [7] found that the most efficient and

accurate application of either primitive or conservative variables to this reconstruction de-

pended on the circumstances. In order to minimize errors that are intrinsic to Godunov-type

models due to this discontinuity reconstruction uncertainty, BreZo implements an adaptive

scheme to the Godunov-based model. This adaptive scheme determines whether to select

primitive or conservative variables for variable reconstruction depending on the local Froude

number [7, 38]. When the flow is subcritical (Fr < 0), the depth h and velocities u and v

are assumed cell-wise constant for reconstruction purposes. On the other hand, when the

flow is supercritical (Fr > 0), the free surface height η and discharge per unit width p = uh

and q = vh, are instead considered cell-wise constant.

Another issue that the BreZo model overcomes is the problem that arises from partially

submerged cells at the wet/dry boundary. A partially submerged cell is a cell in which at

least one, but not all, of the cell nodes are submerged. The depth in this type of cell is

badly represented because finite volume schemes relate the average depth in a cell with the

cell centroid, filling the entire cell with this smaller averaged depth. This also leads to the
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artificial spreading of water into adjacent cells, diffusing the wet/dry boundary [9]. To avoid

this issue, a distinction is made between the free surface elevation η and the depth h at the

centroid, and a relationship between them is determined. In completely wetted cells, this

relationship is simply η = h+ zc, but it does not hold for partially wetted cells. Volume/free

surface relationships (VFRs) are utilized in these cases to facilitate reconstruction of the free

surface of partially submerged cells and determine the relationship between η and h.

4.3 Summary

The implementation of an accurate and computationally efficient flood modeling algorithm

is crucial to the success of this study. By using the algorithm BreZo for this purpose, we are

able to produce precise flood inundation models with ease using our previously generated

synthetic cities. The results are then analyzed to study behaviors and trends that could

present important information about the link between urban morphology and flood levels.
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Chapter 5

Flood Inundation Results

5.1 Introduction

Figure 5.1: The basic workflow of this study progresses from synthetic city generation and
meshing to the creation of inundated flood simulations and final data analysis. The three
steps of synthetic city generation, mesh generation, and flood simulations are all automated
processes that are done consecutively. These processes produce results that are analyzed to
obtain trends.

In this chapter, we will present the results obtained from the synthetic city modeling and

flood inundation processes. Convergence analysis is done to determine the optimal channel

length for the model and the run time for the flood inundation. A subset of 20 configurations

are presented here with their corresponding values of porosity and spatial order to illustrate
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how these parameters affect the resulting model. Through dimensional analysis, we propose

an equation that relates the parameters of this study to flood heights and we validate this

equation with the Manning equation. By analyzing the resulting flood heights from our

inundation models, we are able to quantify the relationship between configurations and their

effects on flood behavior. This is used to further refine the proposed equation for flood

heights. Through this process, we establish a compelling argument for the integration of

porosity and spatial order parameters in the quantitative analysis of urban flooding.

5.2 Convergence Analysis

Applying assumed values of certain parameters to flood models can drastically affect the

behavior of the models, as well as the accuracy of the results. Since this project introduces

flood simulations that are unique due to the computationally generated synthetic cities, no

previously assumed values for channel length and run time could be implemented in these

tests. Due to the novelty of this project, optimal values for the length of the channel and

the run time have to be established through convergence analysis. These two parameters are

dependent on each other, since expanding the channel length will in turn lengthen the time

needed to reach steady state, and so the analysis was done through iterations.

5.2.1 Channel Length

The length of the channel in which a flood is inundated is important because a long enough

channel can achieve uniform flow. Uniform flow is a good reference case for studying external

effects on flow behavior because the water surface is planar, the depth and velocity is the

same at all sections along the flow, and the effect of gravity in shaping the flow can be

ignored [44]. To determine the optimal channel length to achieve uniform flow, convergence
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analysis was done by running multiple tests with a constant channel width of 500 meters

and changing channel lengths. The optimal channel length varied depending on the porosity

we were testing. Configurations with high porosity and high spatial order saw uniform flow

at a shorter channel length than configurations with low porosity and order values. To keep

the conditions constant among all simulations, we ran the analysis with a configuration of

around 45 percent porosity and a Mermin order value of 0.5. The resulting water heights

from these tests were then compared for each channel length in Figure 5.2. As we can see

from the figure, shorter channels saw flood heights that were largely sensitive to the channel

length. As we reach longer channels, these height variations begin to diminish. Although

variations in flood heights were not completely diminished at a channel length of 10,000

meters, it was decreased enough to justify the application of this length to our studies.
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Figure 5.2: Resulting water heights from flood inundation models were determined with
channels of different lengths, ranging between 1,000 and 10,000 meters long. These flood
inundation models used a configuration with Φ = 0.45 and χ4 = 0.5. We see that as the
channel length increases, variations in water heights begin to diminish.

It should be noted that although extensive studies were done to achieve close to uniform

flow for all simulations, some simulations did not achieve true uniform flow. Mostly, these

were “worst case scenarios” of low porosity and spatial order. We also observed some in-

consistencies and uncertainty during the analysis of our final results, which can be expected

when dealing with a large number of simulations. For instance, plotting the flow profile that
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resulted from an inundated configuration of Φ = 0.36 and χ4 = 0.55 shows that this specific

simulation did not reach completely uniform flow. From Figure 5.3, we can see that the

free surface is not completely parallel to the channel bed, meaning that this model has not

completely reached uniform flow conditions. Although this is the case for some of the more

complex and low porosity cases, most other configurations reached closer to uniform flow

with this channel length.
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Figure 5.3: Flow profile of configuration with Φ = 0.36 and χ4 = 0.55. This flow profile
was created by averaging the water heights at each section of the channel length. The water
heights seem to be inconsistent along the length of the channel, proving that true uniform
flow was not achieved for this simulation.

5.2.2 Run Time

To ensure that the simulations had enough time to reach an equilibrium state, tests were

done on the total time needed to run the flood simulations. This equilibrium state is desired

because it ensures that the results taken at the last time step are not dependent on time.

The total run time depends directly on the length of the channel because flows cannot reach

equilibrium until they travel the entirety of the channel and reach the downstream boundary.

Because of this, the tests for run time had to be done simultaneously with tests for channel
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length. Each time the channel length was increased, the run time was also increased to ensure

enough time was allocated for the flood to equilibrate. Similar to the channel lengths, the

run time was also dependent on the configurations; lower porosity and spatial order values

caused run times to become longer. Figure 5.4 shows the amount of time three different

configurations took to reach equilibrium with a channel length of 10 km.

In order to increase efficiency in the flood modeling process, the run time of each simulation

depended on the porosity value of the system. The three run time options are as follows:

t =


10 0.7 < Φ

20 0.4 < Φ < 0.7

30 Φ < 0.4

(5.1)
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Figure 5.4: The total time for three different configurations to reach an equilibrium state.
The first figure (top) is the total run time for a configuration with φ = 0.9 and χ4 = 0.5.
This configuration features high porosity and a moderate level of disorder, causing it to
reach equilibrium fairly quickly at around 2-3 hours. The next configuration (middle) has
a porosity φ = 0.7 and spatial order χ4 = 0.33. It runs for a total of 20 hours and it
reaches equilibrium a bit before that 20 hour mark. The final configuration (bottom) is the
most complex with φ = 0.35 and χ4 = 0.7. This configuration takes the longest to reach
equilibrium with a total run time of around 30 hours.
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5.3 Final Simulations

Using the synthetic cities that were generated from the previously described algorithm and

implementing the necessary parameters that we determined through our convergence anal-

ysis, we were able to create inundation models that accurately determined the behavior of

floods with respect to the changing city morphology. Because the entire process is automated

and created to run only with the manual input of two parameters, we can easily generate

hundreds of these simulations. For our study, a range of different porosity and spatial order

values were used to create around 500 models. Of the 500 models that were created, there are

around 160 different combinations of our two variables Φ and χ4, and each combination was

used to create three different realizations. Since the hybrid reverse Monte Carlo algorithm

for synthetic city generation is probabilistic, each realization was created with the same

values of porosity and Mermin spatial order, but observe a slightly different configuration.

Figure 5.5 shows a subset of 20 different configurations of synthetic cities that were tested.

Note that these figures show only the first 500 meters of the synthetic city, since this initial

configuration is simply repeated as described in Section 3.6.2 to fill the entire channel. Table

5.1 lists the corresponding porosity and spatial order values for each configuration.
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Figure 5.5: Images of 20 unique configurations that were created using the HRMC synthetic city generation algorithm with
different input values of Φ and χ4. The configurations are plotted according to their respective porosity and Mermin order
values and Table 5.1 provides a full list of these values.
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Table 5.1: Corresponding porosity and spatial order values for all configurations shown in
Figure 5.5

Configuration Porosity Φ Spatial Order χ4

1 0.36 0.55
2 0.34 0.77
3 0.21 0.86
4 0.11 1.00
5 0.29 0.69
6 0.40 0.64
7 0.42 0.86
8 0.32 1.00
9 0.50 0.33
10 0.49 0.51
11 0.52 0.73
12 0.50 1.00
13 0.69 0.33
14 0.72 0.51
15 0.71 0.72
16 0.71 1.00
17 0.90 0.33
18 0.90 0.50
19 0.90 0.70
20 0.90 1.00

All the configurations that were created in this study were then inundated with floods. The

first case of inundation that we tested was a flood with an upstream volumetric flow rate of

1,000 m3/s and a mild slope of 0.1%. The boundary condition at the upstream boundary

is defined by the volumetric flow rate Q and the downstream boundary is defined by a dry

boundary condition. The sides of the channel are considered no flow boundaries. Figure 5.6

illustrates these boundaries.

Since the buildings within the domain are represented as holes, the flood inundation is

modeled through the meshed void space between buildings using the previously defined

BreZo algorithm. Results of these simulations are analyzed with a focus on water heights.

Since the flood modeling code BreZo solves the shallow water equations using the finite

volume method, the resulting flood data can be presented as cell-centered values for each
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Figure 5.6: The boundary conditions for all simulations. The upstream B.C. is defined by a
volumetric flow rate and the downstream boundary is defined by a dry B.C.

cell in the mesh which allows for the simple interpretation of results. Figure 5.7 shows the

flow profiles of 60 configurations resulting from this inundation case. The 20 plots in the

figure correspond to the 20 configurations from Figure 5.5 but each plot contains two more

flow profiles; these are the second and third realizations of that specific combination of Φ

and χ4. By presenting all three realizations together, the variations in flood heights from

slight changes in the configuration can be better understood.

As mentioned before in the discussion about convergence analysis, we were not able to reach

uniform flow for some of the lower porosity models due to an insufficiently long channel.

This can be seen in some of the flow profiles. Although this is the case, we believe that

our analysis is still accurate enough to show some interesting trends regardless of the non-

uniformity of the flow. We understand that our results contain a degree of uncertainty and

error which should be considered throughout this discussion.
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Figure 5.7: The flow profiles corresponding to the 20 configurations from Figure 5.5 along
with their second and third realizations. Since many of the flow profiles overlap due to little
to no height variations, the flows have been plotted with dashed lines. This allows for all
profiles to show clearly, even if overlapping. The corresponding Φ and χ4 values are displayed
in the top right-hand corner of each plot.
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With simple back-of-envelope calculations, we determined that the flows for these simulations

are all subcritical. This was done by calculating the critical depth of flow for a volumetric

flow rate of 1,000m3/s with Equation 2.5. For instance, the critical depth for a configuration

with porosity of 50% is calculated as follows:

q =
Q

w
=

1000

0.5 ∗ 500
= 4

yc = (
q2

g
)1/3 = (

42

9.81
)1/3 = 1.177m

Note: The width of the channel is taken as (0.5*500) because 50% of the domain is building

coverage so the area of water flow is reduced by 50%.

The resulting critical water depth is yc = 1.177m, which is greater than the observed water

depth for all configurations with Φ = 0.5. Since y > yc, this means that the flow is sub-

critical. With subcritical flow, a downstream boundary condition must be assigned. For all

simulations in this study, we considered a dry downstream boundary.

The flood heights near the upstream boundary were averaged along the entire width of the

domain and along 100 meters of the channel to obtain upstream water heights for each

configuration. The specific area of interest for two different flood inundation models are

shown in Figure 5.8. To avoid any irregularities at the upstream boundary, water height

measurements were taken at a distance of 50 meters away from the boundary.
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(a) Φ = 0.73, χ4 = 0.42 (b) Φ = 0.46, χ4 = 0.95

Figure 5.8: The flood heights are measured near the upstream boundary for two different
configurations. The heights are taken from all points within the black bounding box which
is 100 meters wide and spans the width of the channel. It is placed 50 meters away from the
upstream boundary to avoid any irregularities.
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5.4 Dimensional Analysis

Large sets of data can be better interpreted through dimensionless variables which simplify

relationships and aid in the understanding of physical phenomena. By non-dimensionalizing

variables, we can reduce a large range of results into a set of simplified curves to help make

sense of findings. This can be done through dimensional analysis using the Buckingham Pi

Theorem which determines how many non-dimensional variables are required for a given set

of dimensional variables [33]. In our study, we are highlighting the variables that affect the

water heights in our flood inundation models. The flood water heights (h) may be a function

of volumetric flow rate (Q), channel bed slope (α), Manning’s coefficient (nM), building edge

size (b), width of the channel (w), length of the channel (L), and gravity (g). Along with

these parameters, the water heights that each configuration experiences is a direct result of

the specific position r of each building in the domain. In a configuration with N buildings,

the water heights can be represented as follows:

h = f(Q,α, nM , b, w, L, g, r1, r2, ..., rN) (5.2)

If the Buckingham Pi theorem were to be applied to this description of water heights, we

would need 2N+5 dimensionless variables. To reduce this, the two dimensionless parameters

that are considered in this study, Φ and χ4, are used to more simply represent the affects that

building positions have on the water heights. Although this is a less exhaustive approach,

it significantly streamlines the representation of building positions while maintaining the

most crucial details. This application of dimensionless variables dramatically reduces the

representation of water heights to

h = f(Q,α, nM ,Φ, χ4, b, w, L, g) (5.3)
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Now that the problem has been reduced to a manageable number of parameters, the Buck-

ingham Pi Theorem can be applied to simplify parameter relationships. The units of every

variable that is being analyzed is reduced down to the primary dimensions of mass (M),

length (L), and time (T). This is shown in the dimensional matrix below.

Table 5.2: Dimensional Matrix

h Q α nM Φ χ4 b w L g
M 0 0 0 0 0 0 0 0 0 0
L 1 3 0 −1

3
0 0 1 1 1 1

T 0 -1 0 1 0 0 0 0 0 -2

Applying the Buckingham Pi Theorem with 10 parameters and 2 dimensions, we know

that the problem can be reduced to 8 dimensionless quantities. By performing dimensional

analysis, we generated the following dimensionless parameters:

Π0 =
Q/hw√
hg

Π1 = α

Π2 =
nM
√
g

w1/6

Π3 = Φ

Π4 = χ4

Π5 =
b

w

Π6 =
w

L

Π7 =
Q2

gw5

Q/hw√
hg

= f(α,
nM
√
g

w1/6
, Φ, χ4,

b

w
,
w

L
,
Q2

gw5
) (5.4)

It is important to note that the dimensionless parameter Π0 is similar to the Froude num-

ber which is an important dimensionless number discussed in Chapter 2. This reflects the

intrinsic importance of the Froude number in any shallow water analysis.
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In this analysis, Π6 can be cancelled out because assuming that we have a long enough

channel, w << L and the term goes to zero. The Π5 term can also be assumed as zero

because b << w.

After this simplification, the relationship of dimensionless parameters can be expressed as

follows:
Q/hw√
hg

= f(α,
nM
√
g

w1/6
, Φ, χ4,

Q2

gw5
) (5.5)

5.5 Effects of Volumetric Flow Rate

After performing dimensional analysis, it becomes clear that the volumetric flow rate plays a

significant role in affecting water heights. A large range of simulations were run for volumetric

flow rates of 1,000 m3/s and 500 m3/s and while these simulations will be discussed in detail

later on, the results showed that decreasing the upstream volumetric flow by 50% had the

direct effect of also decreasing the upstream water height by 50%. To explore this trend

more, a collection of configurations were used to test volumetric flow rates of 100 m3/s, 250

m3/s, 500 m3/s, 750 m3/s, and 1,000 m3/s. The slopes were held constant at 0.1% for all

these tests, and each configuration was run with these five different values. Figure 5.9 shows

the results from this test. From this figure, we can confirm that there is a linear relationship

between the volumetric flow rate and the water heights resulting from these simulations.

By testing this trend with different configurations, we can also see that the rate at which

the water heights change with respect to volumetric flow is dependent on the configuration

geometry. The top two graphs represent changing porosity values while the bottom two

represent changing spatial order.
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Figure 5.9: Linear relationship between flood heights and upstream volumetric flow rates.
The top two figures feature data from configurations that keep the spatial order steady while
changing the porosity values. Graph 1 (top left) features configurations with constant low
spatial order and changing porosity. Graph 2 (top right) similarly features changing porosity,
but with high spatial order. The bottom two figures inversely keep porosity values constant
while changing the spatial order. Graph 3 (bottom left) features data from configurations
with low porosity and altering spatial order. The final graph, graph 4 (bottom right), features
flood heights from configurations with high porosity and changing spatial order.
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After establishing through the modeling process that a linear relationship exists between

volumetric flow rates and water heights, an expression for this relationship can begin to

form. Through dimensional analysis, we had already established that the dimensionless

variable Q/hw√
hg

is a function of a few different dimensionless parameters, including Q2

gw5 . Now

that this linear relationship has been discovered, Equation 5.5 can be reconstructed as

h =
Q

w
√
wg

f(α,Φ, χ4,
nM
√
g

w1/6
) (5.6)

to reflect that the water height h is linearly related to volumetric flow rate Q and is still

a function of α,Φ, χ4, and nM . We can consider a Taylor expansion around nM
√
g

w1/6 , and

neglecting second order effects, can refine the equation further as:

h =
QnM

w5/3
f(α,Φ, χ) (5.7)

To understand this equation in relation to established hydrodynamic theory, it can be inter-

preted in light of the Manning equation for uniform open channel flow which is:

V =
Q

A
=

1

nM

R2/3S1/2 (5.8)

where V is the velocity of the fluid, R is the hydraulic radius R = wh
w+2h

, S is the bed

slope, and nM is the Manning coefficient [50]. This formula can be rewritten in terms of the

variables in this study and solved for flood height h to produce:

h =
QnM

R5/3
√
α

(5.9)

To make a simplification to this Manning equation, we can consider the limiting case of

w/h approaching zero, which in turn makes the hydraulic radius R = w 1
2+w/h

= w
2
, and
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the limiting case of w/h approaching infinite, which makes the hydraulic radius R = 0. By

considering these limiting cases, the hydraulic radius becomes dependent on only w and a

constant term and our independently derived Equation 5.7 can directly be compared to the

Manning equation (Eqn. 5.9).

As we can see, Equation 5.7 that was independently derived in this study through dimensional

analysis and simplifications is a comparable to the Manning equation (Eqn. 5.9), but it is

now also dependent on the two dimensionless parameters Φ and χ which adds the effects of

channel morphology to the determination of flood heights.

5.6 Effects of Porosity and Spatial Order

In order to further refine Equation 5.7, quantitative relationships between flood heights and

the Φ and χ4 parameters must be developed. First, an analysis on the effects of porosity is

performed. Flood inundation results are presented in Figure 5.10.

The relationship between configuration porosity and flood behavior was assessed by com-

paring averaged data from multiple inundation models. In order to isolate the effects of

porosity from any other variations that could influence flood heights, the data was taken

from configurations with constant spatial order. Figure 5.10 shows the correlation between

porosity and flood heights for disordered systems with χ4 = 0.46 in Figure 5.10a and ordered

systems with χ4 = 0.95 in Figure 5.10b. From this figure, we determine that flood heights

change inversely with respect to porosity; as porosity reaches zero, flood heights increase

towards infinite. This establishes an inverse relationship between flood heights and porosity

that follows the form:

h ∝ f(Φ) =
a

Φn
(5.10)
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Figure 5.10: Relationship between upstream flood heights and porosity values for disordered
systems with χ4 = 0.45 (left) and ordered systems with χ4 = 0.95 (right). The results
from flood inundation models are presented as data points and are fitted with an inverse
relationship between porosity and flood height. The graph is also plotted on a logarithmic
scale and presented as the inset figures.

By fitting a curve to the trends obtained through our models, we can determine that the a

and n terms in this relationship are dependent on the spatial order of the system. Studying

this trend on a logrithmic scale for each case of spatial order, the value of a and n can be

taken as the y-intercept and slope of the line for both systems. Figure 5.11 shows how the

values of a and n are related to spatial order. The relationship between spatial order and a

and n values is:

a = 1.61 + 0.76χ4 (5.11)

n =


−3.03 χ4 ≤ 0.5

−5.39 + 4.72χ4 χ4 ≥ 0.5

(5.12)

While the a term varies linearly with respect to χ4 along all values of χ4, the n term sees

more of a piece-wise linear relation. When χ4 is greater than 0.5, the value for n increases
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linearly. However, at a χ4 less than 0.5, there is little to no variation in the value of n. This

shows that when configurations reach χ4 = 0.5, the system is considered disordered and

trying to decrease the spatial order below this point does not have any significant effect on

the physical condition.
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Figure 5.11: Relationship between spatial order and the values for terms a and n. 5.11a
illustrates a linear relationship between the term n and χ4. 5.11b shows a piece-wise linear
relationship between the term n and χ4, demonstrating that changes to spatial order below
χ4 = 0.5 has little to no effect on flood heights.

With this analysis, Equation 5.7 is further refined by the inclusion of this quantitative relation

between Φ and h. The equation reads as follows:

h =
QnM

w5/3

a

Φn
f(α, χ4) (5.13)

where a and n are dependent on χ4.

The relationship between flood heights and spatial order is also subsequently determined

through the analysis of inundation results. Studying systems with constant porosity allows

for the isolation of the effects caused by spatial order alone. Figure 5.12 presents the rela-
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tionship between spatial order and flood heights for systems of low porosity with Φ = 0.40

(Figure 5.12a) and systems of high porosity with Φ = 0.90 (Figure 5.12b).
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Figure 5.12: Relationship between upstream flood heights and Mermin order values for low
porosity systems with Φ = 0.45 (left) and high porosity systems with Φ = 0.9 (right). The
results from flood inundation models are presented as data points and are fitted with a linear
relationship between spatial order and flood height.

Unlike its relationship to porosity, flood heights decrease linearly with respect to spatial

order as:

h ∝ f(χ4) = b+mχ4 (5.14)

The values for m and b are also dependent on the porosity of the system, as systems of lower

porosity have larger m and b values than those of higher porosity. By performing additional

analysis on systems with a range of porosity values, this dependence can be quantified to

produce an understanding on the determination of m and b. Figure 5.13 illustrates this

dependence. The final relationship between porosity and the b and m values is:

65



b =
21.17

Φ
− 20.17 (5.15)

m = −25.45

Φ
+ 25.45 (5.16)

As porosity values increase and reach one, meaning that the buildings in the domain begin

to disappear and we approach an empty channel, the b term approaches one and the m term

approaches zero. When this happens, the weight that is given to f(χ4) in the relation is

reduced. These trends coincide with the idea that at low porosity, flood heights are highly

dependent on spatial order. Any changes to spatial order is able to increase or decrease the

flood heights when considering a fairly packed system. But, as porosity begins to increase,

it subsequently causes the influence of spatial order on flood heights to diminish. High

porosity values render the spatial order mostly inconsequential. This is due to the fact that

high porosity allows for increased voids between buildings which in turn means that the flood

is able to flow without concern for the placement of obstacles. While the curve proposed

here is not a perfect fit to the data, it proves a quantitative relation for the purpose of this

study. This fit, along with the fit for the a and n terms, may be subject to improvement

with the generation of more data.

With this last analysis, the final form of the equation presented in this study is generated

by the inclusion of the quantitative relationship between χ4 and h as:

h =
QnM

w5/3

a(b+mχ4)

Φn
f(α) (5.17)

where terms a and n are dependent on spatial order χ4 and terms b and m are dependent on

porosity Φ. If a configuration with porosity of Φ = 1.0, meaning an empty channel with no

buildings, is considered, this equation reduces to a version of the Manning equation (Eqn.

5.9). Further analysis can later be done to discover the effects of slope on the flood heights

and its interaction with the other parameters.
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Figure 5.13: Relationship between spatial order and the values for terms b and m. As Φ
approaches one, b approaches one in Figure 5.13a and m aproaches zero in Figure 5.13b.

While the interactions between porosity Φ and spatial order χ4 and their effects on flood

heights were presented quantitatively here, it is also helpful to have a complete visualization

of this relationship. Figure 5.14 presents a type of contour plot of the water heights for all

configurations plotted with respect to both the Φ and χ4 values.

Here, the interaction between porosity and spatial order in the resulting flood heights can

be clearly understood. While lower porosity configurations are expected to observe high

flood heights, Figure 5.14 shows that is not the case when the configuration also maintains

a high measure of spatial order. Along with this, configurations with low spatial order also

do not see high flood heights if the porosity is maintained at a high value. This shows the

interaction between the two parameters and their influence on one another. The value of

one parameter, say porosity, is able to determine the influence of the other parameter, which

would be spatial order. It is only when both the porosity and spatial order are at minimum

values with respect to each other that the highest flood heights are produced.
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Figure 5.14: Contour plots of water heights for case one. The porosity Φ is plotted along the
x-axis, the spatial order χ4 is plotted along the y-axis, and the flood heights are plotted along
the z-axis and shown as a colored contour plot. The colorbar shows the flood height values.
The bottom left-hand corner is empty to avoid unrealistic or improbable configurations.

While the analysis of this study has been done mostly using simulations with a volumetric

flow Q of 1, 000m3/s and slope of 0.1%, tests were also done for all configurations with two

more combinations of bed slopes α and upstream volumetric flow rates Q. The three cases

that were tested are described in Table 5.3.

Table 5.3: The Three Flood Cases

Case 1 Case 3 Case 3
Volumetric Flow Q [m3/s] 1000 500 1000

Slope 0.001 0.001 0.01
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Figure 5.15: Contour plots of water heights for case two. The porosity Φ is plotted along the
x-axis, the spatial order χ4 is plotted along the y-axis, and the flood heights are plotted along
the z-axis and shown as a colored contour plot. The colorbar shows the flood height values.
The bottom left-hand corner is empty to avoid unrealistic or improbable configurations.

Case two, which can be seen in Figure 5.15, had been previously mentioned in the study for

the effects of volumetric flow rates on flood heights. In this case, the volumetric flow rate

was reduced by half from case one. Case three, which can be seen in Figure 5.16, was also

tested to determine how changing the slope would effect the flood heights; the volumetric

flow rate was held constant from case one but the slope for this case was increased by a

factor of 10. While the values of flood heights are different for each case, the overall trends

is consistent along all cases. Each case was run with the entire set of 500 configurations to

provide a contour plot of flood heights relative to both porosity and Mermin order.
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Figure 5.16: Contour plots of water heights for case three. The porosity Φ is plotted along the
x-axis, the spatial order χ4 is plotted along the y-axis, and the flood heights are plotted along
the z-axis and shown as a colored contour plot. The colorbar shows the flood height values.
The bottom left-hand corner is empty to avoid unrealistic or improbable configurations.
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Figures 5.14, 5.15 and 5.16 show that changing the slope and upstream volumetric flow rate

changes the flood heights but does not change the interaction between the two parameters

Φ and χ4. This subsequently confirms that the relationships and equations derived in this

study hold true for many different cases.

5.7 Summary

Through the use of the computer-generated synthetic cities from this study, accurate mea-

sures of flood heights were produced for a wide range of model configurations. This allowed

for the study of the effects of important urban morphology parameters Φ and χ4. We indepen-

dently derived an equation to explain flood heights with respect to a number of parameters,

including Φ and χ4, and proved the merit of this equation by successfully comparing it to

the Manning equation. By implementing the relationships found through the study of urban

morphology and its effects of flood heights, this equation was refined further. By testing

three different cases of volumetric flow rate Q and slope α, we were able to confirm that the

interactions between Φ and χ4 hold true in different circumstances.
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Chapter 6

Conclusion

In this work, we have established that the Mermin order parameter is a useful tool that can

be applied to city science in order to better understand the spatial orientation of urban areas

and infrastructure. Since this tool produces a single value that describes spatial orientation,

it works to streamline many of the previously developed methods for quantifying urban

form. Calculating this parameter for real-world city layouts can generate simple assessments

of spatial order for massive complex urban regions, aiding in many different fields of urban

physics. Through the introduction of this parameter into the realm of urban physics, it can

be paired with many of the other previously established tools to help improve the accuracy

and efficiency of modeling city systems.

Along with the introduction of the Mermin order parameter, we have also created an ex-

tremely useful automated probabilistic algorithm for generating hundreds, if not thousands,

of simplistic city configurations using just two parameters: porosity and spatial order. While

this algorithm was used to generate city layouts for the purpose of flood inundation studies,

it could also be applied to many different situations. As previously discussed, there is a

wide array of physical conditions that are affected by the form of urban cities, from urban
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heat islands to city wind tunnels. Thanks to the automated, generic and randomized nature

of the algorithm presented here, the configurations that are produced can be subsequently

applied to study many different physical circumstances.

Beyond just the quantification and modeling of urban form that this study explored, we

were also able to determine the effects that these urban forms had on flood behaviors. While

this study reiterated the well-known fact that city porosity can increase or decrease flood

levels [10], it also proved that the spatial order of the urban system has an effect on floods.

Systems with a lower level of order saw much higher flood levels than systems with higher

levels of order for the same porosity. This finding demonstrates that urban forms cannot be

defined simply by porosity levels alone when studying their effects on urban floods because it

lacks crucial information that aids in understanding trends. These studies must also consider

urban spatial order and orientation in order to fully build connections between urban form

and flood behavior. Future studies in the fields of urban physics and flood modeling can

benefit from the adaptation of spatial order into the set of important parameters.

To quantitatively reflect the influence of urban form in the behavior of floods, this study

proposes a new independently derived equation that determines flood heights from an array

of important parameters. This equation is an improvement of the Manning equation, incor-

porating the established merit of the Manning equation with the studied effects of urban

morphology. With more refinement, this equation can be finalized and presented as a tool

for predicting flood heights in urban areas.

In the future, the proposed tools from this study can be used to quantify the urban form of

major cities. It is important to understand though that cities are extremely complex systems

that are ever-changing. They are the “characteristic physical and social unit of civilization”

[25], and as such, are living communities that evolve over time based on the needs of the

people. While the synthetic cities generated in this study accurately model a wide range of

configurations using two parameters found to be crucial in understanding urban form, they
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do not come close to reflecting the complexity of true cities. The discussion of urban form

is one that will be studied for as long as cities exist, becoming even more important with

trends of urban expansion and increased natural disasters.
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Appendix A

MATLAB Codes

Here we provide all the codes that were used to generate the synthetic cities and prepare

files for BreZo flood inundation models. When used together, these codes create one large

automated system which runs a hybrid reverse monte carlo algorithm to generate points,

creates buildings, generates computational grids, and transforms data into textfiles which

can be easily read by BreZo. The only manual input needed are the necessary values for the

function MAIN.m.

A.1 MAIN Function

%%% MAIN.m %%%

%%%%% AUTOMATED ALGORITHM MAIN FUNCTION %%%%%

% All input values are applied to this function.

% This function can be run through computer’s terminal.
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function MAIN(width,L,phi,chi,iter,slope,Q,ts,out,sd)

% width = width of channel [m]

% L = lengh of channel [m]

% phi = porosity value

% chi = Mermin order value

% iter = iteration/realization number

% slope = slope of channel bed

% Q = upstream volumetric flow rate [m/s^3]

% ts = run time [hr]

% out = Output option: 1 = Tecplot, 2 = Matlab

% sd = seed for random number generator

%% Run buildingsnew to create configuration

[p,phi_r,chi_r] = Buildingsnew(width,L,phi,chi,sd);

% Outputs: p = matlab polyshape

% phi_r = actual phi value of resulting configuration

% chi_r = actual chi value of resulting configuration

%% Create unique name for configuration

fname = sprintf(’w%dl%dp%dm%d_%d’,width,L,round(phi_r*100), ...

round(chi_r*100),iter);
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%% Make directory for configuration and copy all necessary files to dir.

% parbrezo: executable file to run BreZo

% runbrezo.sub: SLURM job submission file

% inputtimeseries: folder with input time series file

system("mkdir "+fname);

system("cp parbrezo "+fname);

system("cp runbrezo.sub "+fname);

system("cp -r inputtimeseries/ "+fname);

cd(fname);

%% Create subfolder for results ’fname.1’ within ’fname’ folder

system("mkdir "+fname+".1");

cd(fname+".1")

%% Transform polyshape to .poly file

% In order for BreZo to understand the domain geometry, the matlab

% polyshape must be transformed to a .poly text file.

polyshape2poly(p,fname);

%% Run Triangle and InputFiles
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% While inside fname directory, run Triangle which is located in /home

% Triangle generates a computational mesh and saves text files inside fname

% directory that will be used by BreZo to understand mesh.

system("../../Triangle/triangle -p -q -a -n -e "+fname);

% Create multiple input files that will be needed by BreZo

InputFiles(fname,slope,Q,ts,out);

%% Prep buildings.txt

system("echo "+fname+".1"+" > buildings.txt");

%% Create .plt file

% makepltfile executable located in /home

!../../makepltfile

% Copy brezo.start file to fname directory

system("cp brezo.start ..");

A.2 Buildingsnew Function

%%% Buildingsnew.m %%%

%%%%% GENERATING CONFIGURATIONS ALGORITHM %%%%%
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% Called by MAIN function

% No manual input needed

function [p,phi_r,chi_r] = Buildingsnew(width,L,phi,chi0,sd)

%% Establish constants

% Seed for random number generator

rng(sd);

% C_n for Mermin order parameter calculation

C_n = 4;

% Length of building side

b = 15;

% Minimum acceptable distance between buildings SF*b

SF = 1.2;

%% Domain

% Create initial domain square

x_dom = width;

y_dom = width;
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% Domain boundary

outlinex = [0 x_dom x_dom 0 0];

outliney = [0 0 y_dom y_dom 0];

%% Determine number of buildings depending on porosity

% Each building is ~200 sqm (15m each side)

% Calculate area of building coverage

Ab = (1-phi)*(y_dom^2);

% Determine number of buildings and lattice dimensions

Nsqr = Ab/(b^2);

N = round((Nsqr*x_dom)/y_dom);

yy = round(sqrt(Nsqr)); xx = N/yy;

%% Create Original Mesh

% Generate initial lattice of points

[X,Y] = meshgrid(linspace(0,x_dom,xx),linspace(0,y_dom,yy));

x = X(:); y = Y(:);

pts = [x y];

% Calculate distance between buildings

dis = round(X(1,6)-X(1,5)); dis = dis*.7;
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% Size of buffer zone for Mermin calculations

B = [dis x_dom-dis x_dom-dis dis dis;

dis dis y_dom-dis y_dom-dis dis];

%% Hybrid Reverse Monte Carlo Algorithm

% Determine initial mermin and error value

chi = mermin_points(x’,y’,B,C_n);

g = (chi-chi0)^2; G0 = g;

step = 0; chi_t = [];

% Begin Monte Carlo loop

while g > 0.001*G0 % check that error is greater than tolerance

g0 = g;

% Select random point to move

pt = randi(length(pts));

% Move point randomly in x and y directions

shftx = (x_dom*rand(1) - x_dom/2)*(1-chi0)*0.1;

shfty = (y_dom*rand(1) - y_dom/2)*(1-chi0)*0.1;

x(pt) = x(pt) + shftx; y(pt) = y(pt) + shfty;

% Check that point is still inside domain

if inpolygon(x(pt),y(pt),outlinex,outliney) == 0
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x(pt) = x(pt) - shftx; y(pt) = y(pt) - shfty;

continue

end

% Calculate mermin of new configuration with moved point

chi = mermin_points(x’,y’,B,C_n);

% Initialize energy Penalty term

energy = 0;

% Mathematical determination of distances between "buildings"

for k = 1:length(pts)

if k == pt

continue

else

theta0 = atan2(y(k)-y(pt),x(k)-x(pt));

theta = abs(theta0);

d = pnt_dist([x(k),y(k)],[x(pt),y(pt)]);

if theta < pi/4 || theta > 3*pi/4

tol_min = b/cos(theta);

tol_max = SF*tol_min;

elseif theta > pi/4 && theta < 3*pi/4

tol_min = b/sin(theta);

tol_max = SF*tol_min;

else

tol_min = b*sqrt(2);

tol_max = SF*tol_min;
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end

% If distance between "buildings" not allowed, change energy

% term to 1000.

if (round(d,10) > round(abs(tol_min),10)) & ...

(round(d,10) <= round(abs(tol_max),10))

energy = 1000;

end

end

end

% Calculate new error value with energy term and new chi

g = energy + (chi-chi0)^2;

% Determine whether move can be accepted

if g > g0

% Deny move

x(pt) = x(pt) - shftx; y(pt) = y(pt) - shfty;

g = g0;

else

% Accept move

chi_t = [chi_t chi];

step = step + 1;

end

end
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%% Model Post-Processing

X = []; Y = []; c = 0;

% Duplicate square configuration to fill entire length of channel L

for k = width:width:L

X = [X x’+(k-width)+(c*(5*b/4))]; Y = [Y y’];

c = c + 1;

end

% Generate buildings from points

p = Create_Buildings(X’,Y’,b,b);

% Determine porosity phi_r and mermin chi_r of entire system

phi_r = 1-(area(p)/(width*L));

chi_r = mermin_points(X,Y,B,C_n);

end

A.3 Create_Buildings Function

%%% Create_Buildings.m %%%

%%%%% GENERATING BUILDINGS ALGORITHM %%%%%

% Called by Buildingsnew function
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% No manual input needed

% This function takes the configuration points and converts them into

% buildings as a polyshape file

function P = Create_Buildings(x,y,w,l)

% x,y = x and y of center of building (must be column)

% w,l = width and length of building

% P = output polyshape file

% Coordinates for 4 vertices of one building

xb = [-w/2 w/2 w/2 -w/2]’;

yb = [-l/2 -l/2 l/2 l/2]’;

% Create polyshape from one building

building = polyshape(xb,yb);

P = polyshape();

% Generate all buildings in configuration using initial building and point

% coordinates from input

for ii = 1:size(x,1)

b = translate(building,[x(ii),y(ii)]);

P(ii) = b;

end

P = union(P);

% Remove any outliers
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P = rmslivers(P,3);

% Remove any holes

P = rmholes(P);

end

A.4 InputFiles Function

%%% InputFiles.m %%%

%%%%% GENERATE NECESSARY INPUT FILES %%%%%

% Called by MAIN function

% No manual input needed

% This function creates five necessary textfiles, generated from "shell"

% templates. These files are named with the specific fname of the current

% working configuration. This is necessary for BreZo to recognize and

% read the files.

% This function also assignes a bed slope to the channel by changing

% elevations of each node within the grid.

function InputFiles(filename,slope,Q,ts,out)

%% Create .bc file

% The .bc file is a textfile used by BreZo to assign boundary conditions to
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% the simulation.

% Here we define a volumetric flow for the upstream boundary.

% Read shell textfile into cell A

fid = fopen(’shell.bc’,’r’);

i = 1;

tline = fgetl(fid);

A{i} = tline;

while ischar(tline)

i = i+1;

tline = fgetl(fid);

A{i} = tline;

end

fclose(fid);

% Change inflow Q [m^3/s]

A{12}(32:36) = sprintf(’%-5.f’,Q);

% Recreate .bc file with new name that corresponds to working configuration

name = sprintf(’%s.1.bc’,filename);

fileID = fopen(name,’w’);

for i = 1:length(A)-1

fprintf(fileID,’%c’,A{i});

fprintf(fileID,’\n’);

end

fclose(fileID);
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%% Create Qinput.dat file

% The Qinput.dat file is a textfile used by BreZo to assign an input time

% series that defines the volumetric flow and run time of the simulation.

% This file is optional and can be ignored by making edits to the .input

% file to assign a constant bc instead of reading from this file.

cd ../inputtimeseries/

% Read shell textfile into cell C

fid = fopen(’Qinput.dat’,’r’);

i = 1;

tline = fgetl(fid);

C{i} = tline;

while ischar(tline)

i = i+1;

tline = fgetl(fid);

C{i} = tline;

end

fclose(fid);

% Change inflow Q [m^3/s]

C{4}(57:60) = sprintf(’%-4.f’,Q);

C{5}(57:60) = sprintf(’%-4.f’,Q);

% Change run time [hr]

C{5}(33:34) = sprintf(’%-2.f’,ts);
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% Recreate Qinput.dat file (no need to rename)

fileID = fopen(’Qinput.dat’,’w’);

for i = 1:length(C)-1

fprintf(fileID,’%c’,C{i});

fprintf(fileID,’\n’);

end

fclose(fileID);

cd ("../"+filename+".1")

%% Create .input file

% The .input file is a textfile used by BreZo to assign input values for a

% range of options.

% Here, we only change the values for run time and output format

% Read shell textfile into cell B

fid = fopen(’shell.input’,’r’);

i = 1;

tline = fgetl(fid);

B{i} = tline;

while ischar(tline)

i = i+1;

tline = fgetl(fid);

B{i} = tline;

end

fclose(fid);
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B{end} = ’’;

% Change run time [hr]

B{8}(20:21) = sprintf(’%-2.f’,ts);

% Change output format

B{18}(4) = sprintf(’%d’,out);

% Create .input file with new name that corresponds to working configuration

name = sprintf(’%s.1.input’,filename);

fileID = fopen(name,’w’);

for i = 1:length(B)

fprintf(fileID,’%c’,B{i});

fprintf(fileID,’\n’);

end

fclose(fileID);

%% Create .wdlog file

% Simply creates .wdlog file with new configuration name

name = sprintf(’%s.1.wdlog’,filename);%(1:end-4));

fileID = fopen(name,’w’);

fclose(fileID);

%% Create .start file
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% The brezo.start file is a textfile used by BreZo to begin the program.

% BreZo reads the name of the configuration from this file to understand

% what filenames to look for.

% Here we simply copy the filename into a shell brezo.start file

% Read shell textfile into cell D

fid = fopen(’brezo.start’,’r’);

i = 1;

tline = fgetl(fid);

D{i} = tline;

while ischar(tline)

i = i+1;

tline = fgetl(fid);

D{i} = tline;

end

fclose(fid);

% Change grid file prefix

D{4} = sprintf(’%s.1’,filename);%(1:end-4));

% Recreate brezo.start file (no need to rename)

fileID = fopen(’brezo.start’,’w’);

for i = 1:length(D)

fprintf(fileID,’%c’,D{i});

fprintf(fileID,’\n’);

end

fclose(fileID);
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%% Edit .1.node file for changing elevation

% The .1.node file is a textfile used by BreZo to understand the location of

% all nodes within a computational mesh. This was originally created by the

% mesh generation tool Triangle.

% Here, we add the bed slope of the channel by assigning elevation values

% to all nodes.

% Read filename.1.node file from directory into cell nds

name = sprintf(’%s.1.node’,filename);%(1:end-4));

fid = fopen(name,’r’);

nds_header = textscan(fid,’%f %f %f %f’,1);

nds = textscan(fid,’%f %f %f %f %f’,’Headerlines’,1,’Delimiter’,’\n’);

fclose(fid);

nds = cell2mat(nds);

% Edit z data of all nodes to new elevation with bed slope

% z = (x_max-x) * slope

nds(:,4) = (max(nds(:,2))-nds(:,2))*slope;

% Recreate filename.1.node file (no need to rename)

fileID = fopen(name,’w’);

fprintf(fileID,’%.0f \t’,nds_header{:});

fprintf(fileID,’\n’);

fprintf(fileID, ’%.0f \t %f \t %f \t %f \t %.0f \n’,nds’);
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fclose(fileID);

end

A.5 Polyshape2poly Function

%%% polyshape2poly.m %%%

%%%%% CONVERT MATLAB POLYSHAPE TO .POLY FILE %%%%%

% Called by MAIN function

% No manual input needed

% This function transforms the Matlab polyshape generated from

% Buildingsnew.m into a .poly textfile for the mesh generator to read. It

% specifies all verticies, segments, and holes of the configuration.

function polyshape2poly(p,filename)

%% Pre-Process Data from polyshape

% Assign X and Y values from polyshape

X = p.Vertices(:,1); Y = p.Vertices(:,2);

% Define bounding box for points

bb = [min(X) min(Y); max(X) max(Y)];

spacing = 5;

XX = [bb(1,1)-spacing 510 bb(2,1)+spacing ...
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bb(2,1)+spacing 510 bb(1,1)-spacing];

YY = [bb(1,2)-spacing bb(1,2)-spacing bb(1,2)-spacing ...

bb(2,2)+spacing bb(2,2)+spacing bb(2,2)+spacing];

% Define number of regions

N = p.NumRegions;

%% Create new .poly file

% Create empty filename.poly file

name = sprintf(’%s.poly’,filename);

fileID = fopen(name,’w’);

% Create arrays defining all verticies of geometry

Xnan = rmmissing(X);

Ynan = rmmissing(Y);

XX = [XX Xnan’]; YY = [YY Ynan’];

XY = [XX’ YY’];

% Create arrays defining segments and holes of geometry

segment = [1 2;2 3;3 4;4 5;5 6;6 1];

XYholes = zeros(N,2);

r = regions(p); cnt = 6;

for ii = 1:N

x = r(ii).Vertices(:,1); y = r(ii).Vertices(:,2);

nv = size(x,1);
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bnds = zeros(nv-1,2);

for jj = 1:nv-1

bnds(jj,:) = [jj+cnt jj+cnt+1];

end

segment = [segment; bnds; nv+cnt cnt+1];

cnt = cnt + nv;

Xcenter = min(x)+rand(20,1)*(max(x)-min(x));

Ycenter = min(y)+rand(20,1)*(max(y)-min(y));

IND = isinterior(r(ii),Xcenter,Ycenter);

ind = find(IND,1);

XYholes(ii,:) = [Xcenter(ind),Ycenter(ind)];

end

% Define line separating fine and coarse mesh

line_ind = find(XX>505 & XX<=510);

[~,I] = sort(YY(line_ind)); B = line_ind(I);

line_seg = [B(1:end-1)’ B(2:end)’];

segment = [segment; line_seg];

% Compile all verticies, segments, and holes into textfile

XY = [(1:size(XY,1))’ XY zeros(size(XY,1),1) ones(size(XY,1),1)];

XYholes = [(1:N)’ XYholes];

segment = [(1:size(segment,1))’ segment ...

[ones(4,1); zeros(size(segment,1)-4,1)]];

segment(3,4) = 2; segment(6,4) = 3;

% Print to .poly file

txt = [size(XY,1) + " 2 1 1"
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string(num2str(XY))

size(segment,1) + " 1"

string(num2str(segment))

string(N)

string(num2str(XYholes))

"2"

"1 " + string(num2str([XY(1,2)+2,XY(1,3)+2]))+ " 1 20"

"2 " + string(num2str([XY(3,2)-2,XY(3,3)+2]))+ " 1 50"];

fprintf(fileID,’%s\n’,txt);

fclose(fileID);

end

A.6 Mermin_Points Function

%%% mermin_points.m %%%

%%%%% CALCULATE MERMIN ORDER VALUE FOR SET OF POINTS %%%%%

% Called by Buildingsnew function

% No manual input needed

% This function calculates the mermin order value of a set of points.

function chi = mermin_points(X,Y,B,C_n)

X = X’; Y = Y’;

101



coords = [X,Y];

chi_jsum = 0;

% Find points (idx) that are inside the inner boundary.

% These points are regular points and are the only points that

% are considered in the following loop

idx = inpolygon(X,Y,B(1,:),B(2,:)); idx = find(idx);

nn=size(idx,1);

% Begin looping through all regular points to find mermin value for each

% point.

for j = idx’

sum_pj = 0;

% Find distance between current point j and all points (including

% points outside of the inner boundary).

distJ = pnt_dist(coords,coords(j,:));

% Find nearest neighbors to current point j

[~,I] = mink(distJ,C_n+1);

NN = I(2:end);

% Find angles between current point and nearest neighbors, and use

% angle theta to calculate value pj. Add value of pj to sum.

% pj = exp ( i C_n theta_jk )

for k = NN’

theta = atan2(Y(k)-Y(j),X(k)-X(j));
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if theta < 0

theta = (2*pi)+theta;

end

pj = abs(real(exp(i*C_n*theta)));

sum_pj = sum_pj+pj;

end

% Average values of pj for nearest neighbors to find final mermin value

% of specific regular point.

chi_j = (1/C_n*sum_pj);

chi_jsum = chi_jsum + chi_j;

end

% Average mermin values of all regular points to find mermin spatial order

% of entire system

chi = (1/nn)*chi_jsum;

end
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