
o 

DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



Deceniler 1979 Fortran Newsletter 

=FOR-WORD=> 

VOluoe 5, NlIIiJer 4, Page 13 

DRAFl' Report Describes Department of Energy Fortran Extensions 

The Language Working Group of the Advanced Canputing canmittee, u.s. Department of Energy, has 
produced a DRAFr report entitled Fortran Language Requirements. This is the Fourth Report of the 
Language Working Group. 

The Advanced Computing Committee was established by the Office of ADP Management, to provide a 
forum for the exchange of information regarding computing needs among Laboratories and Program 
Offices of the Department of Energy. The Advanced Computing canmittee chartered a Language Working 
Group to study and make recommendations concerning language needs. This report describes Fortran 
language requirements identified by the Language Working Group. 

The intent of this publication is to solicit comments on the Language Model and on the specific 
Language Extension Features described in this Report. 

DISCLAIMER This publication in no way reflects a policy of the Department of Energy for a pre
ferred or desired Fortran compiler. The Language Model and the specific Language Extension Features 
described therein are intended for review, discussion, and comment only; their implementation will 
not necessarily provide any Vendor with a competitive advantage in Department of Energy procurement 
at this time. 

COpies of this report may be obtained from Loren P. Meissner (address in Mailing Area below). Ask 
for "LW:; Report". A Carcnent Form is included with each copy distributed. Readers are invited to 
submit comments concerning their portability requirements and their opinion of the overall LW:; For
tran extension project, as well as detailed comments concerning the individual features proposed as 
Fortran extensions. 

An important motive for the work of the 
Language Working Group has been the need for a 
common Array Processing. syntax to be used by the 
major DOE Laboratories. Other features are also 
included, however. These include Data Struc
tures, Dynamic Storage, Macro Processing, Con
trol Structures, Precision Specification, and 
Environmental Inquiry. 

The proposed extensions are incorporated 
into a multi-level language model. The nucleus 
of this model is Fortran 77. The next level 
consists of features that are generally avail
able, but for which a cammon syntax is needed: 
these include word-oriented bit data, timing 

IDren P. Meissner 
CSAM - SOB 
Lawrence Berkeley Laboratory 
Berkeley CA 94720 

functions, asynchronous input and output, and 
Namelist. The third level defines advanced 
features, including ~ray Processing and the 
other facilities described above. 

Between now and the middle of 1980, a 
number of meetings will be held at DOE canputing 
sites to present this proposal. The comments 
received will be evaluated, and recommendations 
will be made to the Department of Energy. One 
possible further action would be a "cammon front 
end" compiler implementation, which would accept 
extended Fortran 77 syntax and would generate 
code for any of several of the hardware confi
gurations in use at DOE laboratories. 

FIRST CLASS 

---- - --- ---- --1 
For Reference I 

I Not to be taken from this room 

l 
~301 [5 4 12/191 (2100) 

w 
o -



Page 14, VoltDe 5, NI.mtler 4 :FOrtran Newsletter Deoember 1979 

FORl'RAN STANDAIU; CXMoJl'r.IEE lICrIVI'rIES 

The ANSI Technical Ccmnittee on Fortran 
(X3J3) met in Boston during the week of October 
15 to 19. The six "action items" considered by 
the canmittee are described below. Remember 
that X3J3 actions may be rescinded or exten
sively revised before final standardization. 

!. Free Form for Source Input Defined 

An alternative "Free Form" for Fortran 
source statement input was adopted. Record 
length is processor dependent, but must be at 
least 72 positions. A statement delimiter is an 
end-of-record or a semicolon. A statement label 
is permitted on a new statement that begins 
within a record. A ccmment is a blank charac...: 
ter, or the rightmost characters of a record 
following "!". Continuation is indicated by 
"&" as the rightmost non-blank character of a 
record, ignoring any trailing comment in the 
record. An incomplete character constant 
resumes following "&" as the leftmost character 
of the next (non-comment) record; a character 
constant cannot be continued over a trailing 
comment. 

~. Modifications to Bit Data ~. 
New operators, .BNOJ'., • BAND. , .BOR. and 

• BXOR. were adopted. These operators are needed 
to avoid syntactic ambiguity with logical opera
tors. 

3. Data Structures. 

A basic data structures proposal was 
adopted. A "form declaration" defines and names 
a form and declares the arrangement of its con
stituent fields. A "structure declaration" 
creates an instance of the form, with a speci
fied identifier as the structure name. A struc
ture name, or a name of a component of a struc
ture, may be referenced. A whole structure may 
be referenced for input and output, assignment, 
or ,comparison; as an actual argument; or in a 
SAVE statement. An expression or function may 
produce a structure as its value. 

4. Procedures for Defining the Content of Core 
Fortran. ---

A procedure was adopted, whereby all 
features go into the Language Extension Module 
by default, and can be moved into the Core only 
by formal action. 

~. Autanatic Creation of Local Arrays 

A subprogram may contain an adjustable 
array declaration, where the array name is not a 
dummy argument. Thus storage may be allocated 
upon entry to the subprogram. Such an array 

must not appear in a SAVE statement; allocated 
storage is released upon exit fran the subpro
gram. Such an array must not be initialized nor 
Equivalenced, nor in Common. 

.§.. Significance of Blanks 

A proposal for a source program form with 
significant blanks was discussed, but was tabled 
to the following meeting. 

Other Proposals Considered 

A global naming facility for inter
procedure communication was discussed. This 
facility could replace storage association, cam
mon, Equivalence, multiple entry points, 
extended range of 00 loops, and statement func
tions. It also provides an internal procedure 
capability. Data names as well as procedure 
names and form names (of data structures) are 
permitted. Names may be explicitly "exported" 
and "imported". The feature is compatible with 
Fortran 77. . 

A generalized specification for numeric 
precision was discussed. 

Variable (within maximum) length character 
data was proposed. String length would be 
determined by assignment. Length could be 
inquired by the LEN function, but would not be 
explicitly available as a datum. Maximum length 
is declared, and is the same for ail elements of 
a given array. Null strings are permitted. 

Also discussed was the question of whether 
certain intrinsic functions should be permitted 
in constant expressions (e.g., at canpile time). 

Report of ISO Fortran Meeting Available 

Selected papers from the ISO Fortran 
Experts' Group meeting, held at TUrin, Italy 
during November, are compiled in a report avail
able fran Loren P. Meissner. Ask for X3J3/l23. 

Future Meetings of X3J3 

(Further information is available from the X3J3 
Vice Chairman, Martin Greenfield, r.iS 844a, 
Honeywell Information Systems, 300 Concord Rd, 
Billerica MA 01821.) 

7 to 11 Jan 1980, San Diego CA 
10 to 14 Mar 1980, San Francisco CA 
12 to 16 May 1980, Aberdeen MD (Anyone planning 

to attend this meeting, who is not a US 
citizen, should notify Martin Greenfield as 
soon as possible.) 

11 to 15 Aug 1980, Aspen CO 
(Oct 1980, possibly Florida) 

Nov 1980, Netherlands (ISO Fortran) 

PUB-30l [5 4 12/79] 

I 
I 

I 
I 

I 
I 



Dece!rber 1979 Fortran Newsletter ~lt.me 5, Nlmtler 4, Page 15 

Walt Brainerd, IDs AlaIlDS NM: 

X3J3 has been considering a change in the 
status of blanks in Fortran. In the current 
standard, blanks may appear anywhere and can 
never be used as meaningful separators between 
names and keywords. It seems inevitable that a 
change must eventually occur. 

Groups of computer users are attempting to 
develop packages of software tools to provide a 
stable, uniform environment across different' 
languages, different machines, and different 
operating systems. Such packages generally 
include text editors, report generators, cam
pilers, macro processors, symbolic debuggers, 
commano language interpreters, file system 
managers, directory handlers, spelling checkers, 
cross reference listers, and flow charters. 
Within such an environment, "symbols" should 
always be recognized in the same way since the 
existence of variants destroys uniformity. 
Readable text is one of the basic elements of 
such an environment; therefore, the rules that 
govern "symbols" within text would have to pre
vail. That is, blanks would necessarily be sig
nificant. 

'Standardization is a great boon to the 
development of a uniform environment. There are 
five programming languages currently undergoing 
stanoardization both nationally and internation
ally. Fortran is one of these. others that are 
canoidates for incorporation within a uniform 
environment are Cobol, PL/l, and Pascal. All of 
these recognize blanks. In addition there are 
awlication areas being standardized: data base, 
graphics, real-time. These application areas 
must interface with the principal programming 
languages. Certainly such a task will be easier 
if greater uniformity is provided among the 
principal languages. 

For the next Fortran standard (early to mid 
80's), X3J3 is proposing to change the card
oriented, fixed-field program form currently 
standardized. A free-field source form is much 
more in keeping with the communication media in 
use today. This will necessitate a period of 
adjustment when both forms must be handled, 
perhaps by a CXlIlIPiler switch or even by direc
tives that are interspersed in text, such as the 
commonly implemented LIST, NO LIST directives. 
Or it oould be handled by a software tool that 
translated fran the old form to the new. The 
same mechanisms, to effect an orderly transition 
could be applied to a change in the significance 
of blanks, if there is a general consensus tl1at 
such a change should be undertaken. 

The opinions of the Fortran community would 
be very helpful. Please check one of the 

PUB-JOI [5 : 4 12/79] 

following and return to X3J3 via IDren P. Meiss
ner (address on first page of this newsletter). 

Check one: 

Strongly opposed to significant blanks, 
ever. 

Strongly opposed to significant blanks in 
the next standard. 

Uncertain as to whether a change should be 
made. 

Favor a change eventually, but not in the 
next standard. 

Favor a change in the next standard. 

Any additional comments you may have 
regarding this issue will be carefully con
sidered. 

Hairn .!. Kilov, Latvian SSR: 

This comment is due to the letter by Doug 
Pearson (For-WOrd, September 1979). He mentions 
a certain, probably convenient form of a DO loop 
as allegedly not existing in any language. But 
look at Algol 68! The simplest example is: 

WHILE 
read (x); x t- a 

DO 
process (x) 

00; 

(The while-part in Algol-68 is an expression in 
the sense of Algol 68!) 

I can quote with pleasure fran the extraor
dinarily, well-written paper by C.H. Lindsey: 
"Never, mind the quality, feel the style." (Fran 
Proceedings of the Conference on Applications of 
Algol 68, Norwich, 1976): " ••• if there are two 
reasons for exiting a loop, and afterwards two 
different actions are to be taken, ••• then the 
correct way to do it in Algol 68 is to put the 
actions inside the while-part of the loop, where 
they belong ••• " • This conclusion was made 
there after discussing at length the problem of 
creating and maintaining a tree dictionary. 

Richard~. Leeds, Santa Clara CA: 

Pearson's remarks on loop constructs are a 
subset of the features available in "Data Basic" 
by Microdata. (This language is database 
oriented, . rather than novice oriented.) Con
structs of the following form are allowed: 

LOOP 
<statement block> 
WHILE <expression> DO 
<statement block> 
REPFAT 



Page 16, ~l.IIIe 5, Ntmtler 4 

Adam Boyarski, Stanford CA: 

Fortran Newsletter Deoentler 1979 

This note describes a feature that I would 
very much like to have included in the next ANSI 
Fortran standard. It does not need the addition 
of a new concept, but is confined to existing 
elements of the Fortran language. The feature 
can be sllllUllaIized a follows: 
"The name of a statement function can be used as 
an argument in an argument list." 

with the current Fortran standard, a func
tion whose name is used as an argument would 
have to be a separately compiled function. I 
find this additional complexity to be both dis
tasteful and a source of error, especially in 
large awlications. We were fortunate enough to 
have had a compiler with this feature, and its 
usefulness was very evident. The featur~ is 
especially useful for fitting routines, integra
tion ,routines, and graphic display routines. I 
urge the ANSI committee to include this simple 
extension. 

David .!!. Wilson, Madison WI: 

ConCerning the new binary type: please ban 
equivalences between binary entries with differ
ing bit lengths. This will give implementers 
the freedom to start each element of a binary 
array at a word boundary, resulting in much fas:" 
ter execution. 

LtO>l William Mhitaker, Report to ISO/l'C 97/OC 5 
on JIda: "A rigorous definition will allCM con
trol of the language to make possible wide por
tability. It is our intent that there be no 
subset or superset compilers and that a valida
tion facility be used to assure compliance. 

"Our economic analyses ShCM that even more 
benefit may be attributed to the commonality 
resulting from exactly compatible systems than 
what would be attributed to the technical 
improvements postulated from introduction of 
Ada." 

Q:m{lUter Weekly, 11 <k:t.ober 1979, page 7: "The 
proposed European SystemS Language, ESL, will 
probably be a subset of Ada. According to 
sources close to the joint CII Honeywell
Bull/Siemens team working on the project, the 
ESL requirement can be met by an Ada subset and 
this is the solution likely to be recorrmended to 
the EEX:." 

Software Tools User Group Formed 

A collection of software tools was 
described by Brian W. Kernighan of Bell Labs and 
P.J. Plauger of Yourdon inc. ("Software Tools", 
Addison-Wesley 1976). These tools have been 
implemented on UNIX as well as a number of other 
systems. 

The first software tools users meeting was 
held in June 1979. The second meeting will be 
held at Boulder CO on January 29, 1980. Special 
interest groups in four areas have been formed: 
the Ratfor preprocessor, Network applications, 
Text processing, and Text formatting. The Rat
for group is studying the feasibility of con
verting the tools to Fortran 77. 

A Software Tools Newsletter is available 
from Debbie Scherrer 

CSAM - SOB 
Lawrence Berkeley Laboratory 
Berkeley CA 94720 

Fortran 77 Programming by Jerrold L. Wagener 
(Wiley, 1980). This book is designed around 
Fortran 77 programming techniques. Emphasis is 
on the elements of good program construction and 
documentation. Part I contains the fundamentals 
of the language; Parts II and III explore the 
more advanced topics. 

Fortran 77 by Loren P. Meissner and Elliott I. 
Organick (Addison'-Wesley, 1980).' A thorough 
revision of "Fortran IV" by, the same authors. 
Features structured programming' control con
structs of Fortran 77. Includes new chapters on 
Character Data Type, and Advanced Input and Out
put. A new Appendix summarizes ANSI Standard 
X3.9-1978 (Fortran 77). 

~ F'OlH«)R[) 

This Newsletter is prepared for the U.S. 
Dept. of Energy under Contract W-7405-ENG-48. 

Reference to a company or product name does 
not imply approval or r~dation of the pro
duct by the University of california or the U.S. 
Dept. of Energy, to the exclusion of others that 
may be sui table. 

The editor's name and address appear in the 
Mailing area on the first page of each issue. 
Requests for additions or corrections to ti1e 
mailing list should be directed to the editor. 

Correspondence on all Fortran-related 
topics is welcomed. Especially solicited' are 
reviews of recent Fortran textbooks, software 
products, literature, etc. 

PDB-301 [5 4 12/19] 



Volume 5, Number 2 -- June 1979 

= FOR - W 0 R 0= > 
Fortran Newsletter 

(Pages 5 - 8) PUB-30l (2100) 

a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a 

X3J3 Votes to Adopt Si x New Features 

At its May 1979 meeting the ANSI Technical Committee on Fortran, X3J3, tentatively adopted the 
following specific features for inclusion in the next revision of the Fortran Standard: 

(1) A BIT data type, patterned after the CHARACTER data type of Fortran 77. (See next page.) 

(2) An expanded character set, with the addition of the nine characters ! " % ; < >? & 
Each of these characters is in both the ASCII and EBCDIC codes and absent from the-ISO reserved 

list. With the exception of the underscore, no specific use of these additional characters is ident
ified at this time. 

(3) Longer symbolic names up to 31 characters as opposed to the limit of 6 in Fortran 77. (There 
have been many requests for longer names in Fortran, including that from the X3J3 data base task 
group X3J3.l) Also names may contain the underscore character, but a name must not begin with an 
unde rs core. 

(4) An IMPLICIT NONE statement; This extends the IMPLICIT statement of Fortran 77 to allow the user 
to "turn off" the default implicit typing. 

(5) Implied DO-list variables are allowed in substring expressions in DATA statements. 

(6) No distinction between upper and lower case letters (if both are supported as non-Fortran charac
ters), except in character constants and apostrophe or H editing in a format specification. 

In the language architecture area, X3J3 at this meeting further refined the definition of the core 
plus modules architecture for the Fortran language. In particular, criteria for the core were dis
cussed, which included the following aspects: 

(1) Complete and consistent 
(2) Concise 
(3) Portable 
(4) Efficient compilation and execution 

(5) Minimal duplication of functionality 
(6) Features needed for use of application modules 
(7) Elegant 
(8) Desired and implementable by all vendors 

The core would contain all features necessary for the effective use of "external facility" modules. 
Work is currently progressing on the possibility of allowing designers of such modules considerable 
freedom in devising syntax appropriate to their application areas. 

a a a a a a a a a a a a a a a a a 

~ Word of Cauti on (Editorial) 

Past experience with previous published lists 
of X3J3 actions suggests that some implementors 
tend to take such lists more seriously than is 
warranted. Features "adopted" by X3J3 are often 

a a a a a a a a a a a a a a a a a 

Loren P. Meissner 
50B 3239 
Lawrence Berkeley Laboratory 
Berkeley CA 94720 

~@r;Rw~1ID 
JUN 28 1979 

RLt, dA), t 

L.B.L. LlSRARY 

(Based on X3J3 News Release, May 1979) 

a a a a a a a a a a a a a a a a a 

deleted or extensively revised before the next 
version of the Fortran Standard is adopted. Com
piler implementations of these features may p'rove 
useful as test beds, but implementors should not 
make serious investment decisions on the assump
tion that such actions by X3J3 are final. 

a a a a a a a a a a a a a a a a a 

I 
I 

I 

I 

I 

" 

FIR S T C LAS S 

/--- - -- --,- ----------_. ------
- '" 

For Reference 

Not to be taken from this room 



page 6 FOR-WORD Fortran Newsletter Volume 5, Number 2, June 1979 

Summary of BIT data ~ features 

The following features are included in the BIT 
data type proposal adopted by X3J3 at its May, 
1979 meeting. 

1. Type declaration for BIT data entities. The 
syntax is identical to that for CHARACTER data in 
Fortran 77. In accordance with the "minimal dyn
amic storage" policy adopted earlier, restric
tions on actual arguments whose length is not 
known at compile time have been delete'd. 

2. Bit substring notation is the same as for 
character data. Thus bits are numbered from left 
to right, and the first position is 1. 

3. Three classes of operators are defined. 
--Concatenation of bit strings; 
--.NOT., .AND., .OR., and .XOR. operations on bit 
strings, which produce a new string. It was not
ed that there is an implied definition of a "1" 
bit as "true" and "0" as "false", in the way the 
resulting string is defined. 
--Relational operators on strings, based on an 
implied "collating sequence" with "1" greater 
than "0". 

4. Bit assignment, with truncation and zero-pad
ding, analogous to CHARACTER assignment, except 
that truncation and padding is from the left. 

5. Binary, octal, and hexadecimal constants, 
e.g. B'OOlOlll', 0'7653107', Z'98ABC71F'. 

6. Bit entities in DATA statement. 

7. B, 0, and Z edit descriptors 

8. List-directed input and output. Input forms 
may include B, 0, and Z; output forms are B, 0, 
or Z at processor option, and are enclosed in 
apostrophes. It has been suggested that an addi
tional "unformatted stream" input and output mode 
is needed for transmitting bits to or from devices 
or processes. 

9. Bit intrinsic functions, for converting to or 
from integers (with user indication of the pro
cessor sign convention), for converting to or 
from a logical datum, shifting, pattern matching 
(INDEX), bit count, and string length. 

Other X3J3 Actions 

The proposal to permit implied DO-lists for 
substrings in a DATA statement was viewed primar
ily as an oversight in the Fortran 77 specifica
tion. 

The "dual case" proposal is effective only if 
upper and lower case characters are both recog=
nized, and requires that no distinction be made 
between the two cases in identifiers, keywords, 
etc. (However, in character values the distinc
tion is maintained.) 

X3J3 also tabled a proposal to make blanks 
significant in a Fortran program. There was dis
cussion of the means, for maintaining compatibil
ity with older programs if such a proposal were 
adopted. 

X3J3 also decided not to prepare an Interim 
Technical Report defining DOUBLE PRECISION COM
PLEX data type. 

Discussion (but no formal action) took place 
concerning arrays, general precision specifica
tion, criteria for core and modules, macro pro
cessing, source form, data structures, CASE con
trol structure, and Global (inter-procedure) 
data and control information processing. It is 
expected that proposals in these areas will be 
adopted by mi~ 1980. 

During the discussion of core and modules 
criteria" it was suggested that certain "Appli
cations modules" may require new syntax and re
quire special compiler support, and yet may be 
developed outside X3J3. A "Pseudo-preprocessor" 
approach was suggested, and will be studied fur
ther during forthcoming meetings. A set of 
rules would be established, describing the way 
of transforming Pseudo-preprocessor source into 
Fortran; however, there would be no requirement 
that an actual processor implement the transfor
mation as a separate preprocessor step (hence 
"pseudo"). The transformation could involve in
put other than purE' text (e.g., environment or 
system description), and could produce output 
other than Fortran text (e.g., predigested sym
bol table or run-time assertions). The advan
tage of the preprocessor form for describing the 
transformation is that arithmetic etc. need not 
be described for each applic?tion module, and 
that problems of overlap among different appli
cations could be identified and resolved. 

Also under discussion in the language archi
tecture area is the idea of a dynamically chang
ing "input" and "output" area for experimental 
and obsolete features. Core Fortran would remain 
stable on an approximate 10 year cycle, while a 
shorter period would be provided for changes in 
the content of the dynamic areas. 

International Liaison 

International processing of Fortran 77 has 
progressed to the point where X3J3 has been 
asked to recommend a US position on the final 
international vote to adopt Fortran 77 as an ISO 
standard. At the May meeting, X3J3 voted to 
recommend that the US vote affirmatively. 

A meeting of ISO Technical Committee 97, Sub
committee 5, will be held in Italy during Novem
ber 1979. It is planned that one and a half 
days will be available during the meeting for 
working group sessions on Fortran. Individuals 
interested in attending should contact their ISO 
representative. 



FOR-WORD Fortran Newsletter -- Volume 5, Number 2, June 1979 page 7 

Retain WHILE 

(K W Loach, Plattsburgh NY): I wish to make a 
brief comment on an item appearing recently in 
For-Word (March 1979, page 2). The X3J3 commit
tee took a "s traw-vote" and decided against a 
"WHILE" control clause, proposing instead a "DO 
forever with EXIT" structure. I disagree with 
this tentative decision. 

The proposed structure is indeed flexible and 
can indeed be embedded within an outer DO loop to 
ensure termination. However, if these were suf
ficient criteria, we might just as well abolish 
all control entirely, except for the "IF condi
tion GO TO •.• " construct. This meets the same 
criteria of flexibility and embeddability. The 
poin t is that the "IF •.• " and "DO forever •.. " 
constructs are both indirect and lack the clarity 
of the simpler "WHILE •.. " construct. In fact, a 
"DO forever with EXIT" requires an exit condition 
which is the negati ve of the WHILE condi tion. 
Thus a theoretical "WHILE (C) DO .•• " would have 
to be rendered as "DO forever; IF (not C) EXIT". 
I find these negated control conditions loose, 
confusing, and irritating. 

By all means introduce a "DO ..• REPEAT" loop, 
but please allow the "WHILE (C) ..• REPEAT" con
struct as well. It is a very slight extension and 
would allow a much greater clarity of program 
structure. 

/* Threnody in C */ 

Request for Fortran Tutorial Program 

Many BASIC systems have implemented a self
paced tutorial, written in BASIC, and intended 
for introducing students to the language who have 
no previous experience with BASIC. 

For-Word recently received a request for assi
stance in locating a similar introductory tutor
ial on Fortran, that would run in an on-line mode 
and would presumably be written in Fortran. 

If anyone knows of such an implementation, or 
is developing one, or would like to discuss the 
development of one, please get in touch with 

Ed Sowell (714) 773-3876 
Engineering Dept., Cal State Fullerton 
Fullerton CA 92634 

Announcements 

The Federal COBOL Compiler Testing Service, 
Dept. of the Navy (Washington DC 20376) announces 
"Fortran 78 Compiler Validation System", version 
1.0, which is designed to test the Subset lang
uage. For further information, write to the 
address given above. The package of tests is 
available from National Technical Information 
Service, at a cost of just under $500.00 

Virtual Systems (1500 Newell Ave., Walnut 
Creek CA 94596 -- 415 935-4944) ann 0 un-

for (the first time; until the last time; time after time) 

while (wondering in front of my terminal) 

ces a Fortran 77 Subset compiler for 
INTEL 8086 Microprocessor. Extensions 
include ROM/RAM allocation, Boolean 
funct:ions, and debug assertions. Cross 
compilers operate on PDP-II and LSI-II, 
and runtime support for 8086 is includ
ed. Other related products for Intel, 
Zilog, and Motorola computers are avail
able. Contact Ralph Swearingen at Vir
tual Systems. 

if (programming is an endless task); 

else 

why end every statement with a semicolon; (From DATAMATION, May 1979, page 43) : 
The Sperry Univac V77-800 Miniframe is 
... designed for both commercial and 

--j. knight 
scientific data processing. There is an 
optional new high speed 64-bit floating 
point processor that works in conjunc-

Errata list available -----
The article "Fortran 77" by W.S. Brainerd et 

aI, was published last fall in Communications of 
the ACM. A short list of errata is now available 
from For-Word on request. (The list will proba
bly be published soon in CACM.) 

References 

A description of Intel Fortran-80, an exten
sion of Subset Fortran 77, appeared in SIGPLAN 
Notices, April 1979 (pages 64-76). The article 
discusses the reasons for extending the subset 
in various ways, and for not implementing the 
full Fortran 77 language. 

tion with a new globally optimized ANS 
'77 Fortran ...• For more information, 

write to us at Sperry Univac Mini-Computer Opera
tions, 2722 Michelson Drive, Irvine CA 92713, or 
call (714) 833-2400, ext 536. 

New products from Pelorus Software (Suite 114, 
1000 East Apache Trail, Tempe AZ 85381) include 
Execution Tracer, Structured Fortran Pre-compiler 
Rev2, Dump Interpreter Rev3, and Interactive De
bugger Rev2. The Fortran transporter has been 
shelved. A brochure is available. 

A Fortran preprocessor developed in Sweden by 
Volvo Flygmotor is being marketed by Software 
Consulting Services, 901 Whittier Dr., Allentown 
PA 18103 (215) 797-9690 



page 8 FOR-WORD Fortran Newsletter Volume 5, Number 2, June 1979 

Softool Corp (340 S Kellogg Ave, Goleta CA 
805-964-0560) has released three new products: 
Interface Documenter, Memory Management Package, 
and Module Orderer. Tools currently available 
from Softool include 
ANSI Fortran Checker and Error Detector 
Fortran Instrumenter I and II 
Documenter A 
Interface Documenter 
Memory Management Package 
Module Orderer 
IBM/DG/Fortran Transportation Package 
Off-the-shelf versions of most of these products 
are available for IBM 360/370 and Data General 
computers, and some of the products are available 
in SEL versions as well. All products apply to 
Fortran programs, and some can be applied to pro
grams written in other languages. 

a a a a a a a a a a a a a a a a a 

Concerning For-Word 

This Newsletter is prepared for the U.S. Depar
tment of Energy under Contract W-7405-ENG-48. 

Reference to a company or product name does 
not imply approval or recommendation of the prod
uct by the University of California or the U.S. 
Department of Energy to the exclusion of others 
that may be suitable. 

The Editor's name and address appear in the 
Mailing area on the first page of this Newslet
ter. 

Correspondence on all Fortran-related topics 
is welcomed. Especially solicited are reviews of 
up-to-date Fortran books or software products, 
especially those based on Fortran 77. 

The mailing list currently includes about 
2000 addressees. These include about 60 from 
Canada, 150 from the United Kingdom, and 150 from 
about 30 other countries. The newsletter has been 
published approximately quarterly since 1975. 

The first issue was published in February 1975, 
and was titled "Newsletter of the West Coast Work
ing Group on Fortran Langauge Development." The 
initial mailing consisted of 64 copies. The first 
mailing lis t was compiled by Guy de Balbine, after 
the Workshop on Fortran Preprocessors at Pasadena 
CA in the fall of 1974. The "West Coast Working 
Group" was initially formed by Reifer, Meissner, 
and others to survey structured Fortran prepro
cessors. From the beginning, however, a further 
interest was the dissemination of information con
cerning developments that were taking place in 
the Fortran language, both in the X3J3 committee 
and elsewhere. Reports of activities of X3J3 have 
continued to occupy considerable space in the col
umns of this Newsletter. The issue of April 1976 
reported the tentative adoption by X3J3 of IF-THEN 
-ELSE. 
a a a a a a a a a a a a a a a a a 

, , 

Forthcoming Meetings of X3J3 

July 30 - Aug 3: Santa Fe NM 
Oct 15 - 19: Boston MA 
Nov 12 - 16 (ISO meeting): Italy 
Jan 1980: San Diego CA 
Mar 1980: Northern CA 
May 1980: Aberdeen MD 
Aug 1980: Colorado 
Oct 1980: possibly Florida 

Further information is available from the X3J3 
Vice Chairman, Martin Greenfield, MS 844a, Honey
well Information Systems, 300 Concord Rd, Biller
ica MA 01821. 

Feedback from Users Needed (Editorial) 

Reaction from readers to reports of proposals 
adopted by X3J3 are of considerable value. Par
ticularly useful are reports of existing imple
mentations of a feature with the same or somewhat 
different syntax. For example, have you used a 
version of Fortran that permits recursion? How 
has it helped with non-toy applications examples? 
Does your input system accept a si-gnificant blank 
convention, and if so, how do you maintain compa
tibility between significant and nonsignificant 
blank assumptions in different input files? 

Another area where feedback could be extreme
ly useful is surveys of applications involving 
proposed features such as array manipulation or 
bits. Hardware vendors and compiler imp lemen
tors often have a perception of the usefulness of 
such a feature, but greater breadth of experience 
would be helpful in designing a standard language 
version. 

X3J3 has recently discussed the uses of bit 
data. The question of whether to left justify or 
right justify a bit string during assignment, in
put or output, or conversion to other data types 
appears to depend upon the application. One use 
of bits is for unformatted stream input and out
put to devices such as real-time process control, 
telemetry, and the like; in this case, a field of 
consecutive bits is to be treated as an integer. 
In most other uses, the bits either form what is 
in effect a logical array (e.g., a sparse matrix 
map, or a graph connectivity matrix), or else 
they represent a pattern of some sort (image pro
cessing, for example). Are there other categor
ies not covered by these descriptions? Are there 
any "unusual" bit applications you know of? Let 
us know how bits are used at your installattion. 
The .bit data proposal just passed by X3J3 may 
need to be extended or revised on the basis of 
user feedback. It is already obvious that addi
tional input and output modes are probably need
ed for bit data. 

Keep those cards and letters coming, folks. 



r 

Volume 5, Number 3 -- September 1979 

= FOR - WaR D = > 
Fortran Newsletter 

(Pages 9 - 12) PUB-301 (2100) 

a a a .a a a a a a a_ a a a a a a a 

November ~ Meeting to Include Fortran Sessions 

During the week of November 12, 1979, Subcom
~tee 5 (Programming Languages) of Technical 
Committee 97 (Computers and Information Process
ing) of ISO (International Organization for 
Standardization) will meet in Turin, Italy. 
Delegates are appointed by the National Member 
Bodies (for the U.S., this is ANSI and its 
subsidiary organizations such as X3). Plenary 
sessions of Subcommittee 5 are scheduled for 
Wednesday, Thursday, and Friday (Nov. 14 - 16), 
and meetings of subgroups working under the 
auspices of Subcommittee 5 will meet on Monday 
and Tuesday (Nov. 12 - 13). 

A meeting of the ad hoc Fortran group of 
experts will be held on November 12 and 13 in 
connection with this Subcommittee 5 meetin~. 
This Fortran meeting will take place at the same 
location as the Subcommittee 5 meeting: Jolly 
Hotel Ambasciatori, Torino, Italy. For further 
information, contact your ISO National Member 
Body. 

Canada Adopts Fortran 12 Standard 

Canadian Standards Association has adopted 
Fortran 77 as its standard Fortran language. 
The document reference is CSA-Z243.l8-l979. 
The technical content of the Canadian standard 
is identical to that of ANSI X3.9-1978. 

Other International Activities 

ANSI Committee X3 has adopted a favorable 
recommendation as the US position on ISO stand
ardization of Fortran 77. 

In the Real-Time Fortran area, a standard on 
Tasking is in preparation. It is expected that 
the final proposed standard will include Instru
ment Society of America S61.3 as a subset. 

Loren P. Meissner 
SOB 32lla 
Lawrence Berkeley Laboratory 
Berkeley CA 94720 

PUB-30l [5 3 9/79] 

a a a a a a a a a a a a a a a a a 

Federal Information Processing Standard 
for Fortran proposed 

A propo~ed Federal Information Processing 
Standard f~r Fortran has been submitted for 45-
day review. The announcement appeared in the 
Federal Register for the week of July 20. It 
incorporates the Fortran 77 standard by refer
ence, and includes a further requirement that a 
facility for detecting non-standard syntax must 
be available in some form. 

WHET 1£ WhatSTONE? 

A number of inquiries have been received con
cerning the meaning of the term WHETSTONE. Some 
investigation (thanks especially to Betty Ho1-
berton and Werner Schenk) has turned up the fact 
that it refers to a "benchmark" or set of pro
grams for measuring the speed and other perform
ance parameters for various hardware and soft
ware combinations. The "Whetstone benchmark" 
has come to be so called because of the method 
of analysis used by the original developers, 
B. A. Wichmann and H. J. Curnow (see "A Synthet
ic Benchmark", in Computer Journal for February 
1976), that involved translation of the higher
level language into an intermediate form called 
Whetstone code. 

The particular feature of interest is that 
this benchmark is carefully designed in an at
tempt to accurately reflect the performance 
of the computer system while executing "typical" 
scientific programs. There are four different 
performance profiles, one of which is supposed 
to represent the performance of scientific pro
grams running under Fortran. 

According to a recent article in a Digital 
Equipment Corp. newsletter,. "The Whetstone 
benchmark has now become the industry-wide stan
dard for measuring performance capabilities ••.•• " 

FIRST CLASS 



page 10 FOR-WORD Fortran Newsletter Volume 5, Number 3, September 1979 

a a a a a a a a a a a a a a a a a 

Fortran Standards Committee (X3J3) Activiti es 

A meeting of ANSI Technical Committee X3J3 
was held at Santa fe NM, July 30 - August 3. 
Six "action items" were considered, the first 
of which related to Committee positions on pro
posals on the ISO-SC5 meeting agenda for Novem
ber. The other five are summarized here: 

Array Processing. A basic proposal for array 
processing was adopted. "All of the current 
Fortran 77 operators (arithmetic, relational, 
logical, character, and replacement) are exten
ded to accept arrays as operands." Operands 
must be conformable arrays or scalars. "The op
eration is performed element by element on cor
responding elements of the [operand] arrays." 
For assignment, it is assumed that the entire 
right-hand side is evaluated before any new val
ues are stored. Also, all Fortran 77 intrinsic 
functions are extended to operate elemetwise on 
array arguments. 

Special operations are also added for multi
plication of matrices (and, to 'some extent, vec
tors) and for solving A * X = B ("matrix divi
sion"). Several new intrinsic functions are 
added. 

A WHERE statement, analogous to IF ••• TREN, 
is controlled by a logical array expression. 
Statements in the "where block" must be conform
able array assignment statements. 

CASE Statement. A CASE construct proposal 
was adopted. The opening statement includes a 
control expression, which must be of one of the 
enumerable types (integer, logical, character, 
or bit). The following case blocks are intro
duced by a list of expressions and ranges. If 
the control expression matches an expression in 
the list, or falls within a range, the corres
ponding block is executed and an exit from the 
construct occurs. A "residual" case block is 
executed if none of the others applies. (The 
expressions and ranges in the lists for all the 
blocks must be aisjoint, and the residual block 
may appear anywhere among the case blocks.) 

Form of Character Constants. A character 
constant-;ay be enclosed either in single quotes 
or in double quotes; an apostrophe edit descrip
tor is extended in the same manner. Either form 
may include the opposite character within the 
delimited string. This proposal was adopted. 

Data Structures. A proposal for data struc
tur~as presented and discussed, but action 
was deferred. A form or template is defined, 
consisting of a collection of fields. A~
ture is then declared as an instance of the 
form. Fields within a structure are referenced 
by a Qualified~. An entire structure may 
be raierenced for unformatted input or output, 

a a a a a a a a a a a a a a a a a 

for assignment (of all elements of an equivalent 
structure), and for equality tests between two 
equivalent structures. A structure may also be 
used as an actual argument, when the dummy argu
ment is an equivalent structure. Equivalence of 
structures is "strict" -- Le., the configura'" 
tions and field attributes (including numeric 
type) must match exactly. 

Significant Blanks. A proposal for signifi
cant blanks was discussed at length, and finally 
deferred to a following meeting. A "compiler' 
switch" might be necessary to distinguish old and 
new forms; this might be the same, as the source 
form swit'ch (controlling continuation convention 
and source record length). Keywords such as GO 
TO, END IF, ELSE IF, END FILE would, in effect, 
exist in two alternative forms. There was some 
difficulty with the wording of the proposal; the 
most straightforward statement appeared to re". 
quire blanks on either side of an exponentiation 
operator and to prohibit blanks in a character 
constant -- thus a few "exceptional cases" need 
to be added. 

Other Items Discussed ------
Items relating to "core and modules" defini-

'tion, relationships, and criteria included: 
Procedures for defining core content; 
Inter-module dependences; and 
Criteria for syntax extensions. 

A "name management" proposal was presented, 
relating to the idea of groups of program units. 
(Conceptually, all the program units of a group 
are compiled together, although this would not 
be explicitly required.) Declarations specify 
the scope of names (of data and of procedures) to 
be a program unit, a group, or the entire "execu
table program", and permit "import" and "export" 
of names from one program area to another. Most 
need for internal procedures, and some require
ments for GLOBAL data (including some uses of 
COMMON) are covered by this proposal. 

Dynamic storage was discussed. The particular 
topic was permitting an array declaration within 
a subprogram without a corresponding actual array 
parameter, where the amount of storage allocated 
is determined at run time. Two mechanisms were 
suggested, and both were viewed favorably (accor
ding to a straw vote): allocating an array on 
entry with deallocation on exit; and allocating 
in response to a special (ALLOCATE ?) statement 
within the subprogram. This discussion excluded 
"based" (pointer-controlled or multiple-copy) al
location -- a given storage area, as discussed, 
is either present or absent. 

Future Meetings of X3J3 

Oct 15 - 19, 1979; Braintree (Boston) MA 
Jan 7 - II, 1980; San Diego CA 

(Call M. Greenfield at 617 667-3111, ext 2912.) 



FOR-WORD Fortran Newsletter -- Volume 5, Number 3, September 1979 page 11 

Caveat (a Latin word meaning beware) 

As we have pointed out many times in These 
Pages, "X3J3 actions" should never be considered 
final, and implementors should not make serious 
investment decisions based on reports of votes 
taken at X3J3 meetings. X3J3 actions are often 
reversed, deleted, or extensively revised before 
final standardization. 

CORRESPONDENCE (excerpted) 

Kenneth A. Redish, Hamilton, Ontario, Canada: 
In the minutes of X3J3, I have recently noticed 
,discussion of on-line syntax checking. We have 
provided an interactive Editor which allowed 
free-format typing of Fortran statements each of 
which was syntax checked at the end of its en.:.. .. 
try. This system ••. allowed only about 30 act
ive terminals. Later, we changed the system so 
that syntax checking is applied only when the 
user requests it - usually after entering a com
plete program. We now find we can provide ade
quate response time to 60 active terminals. 
(The users are almost all beginners, so the runs 
do not demand much execution time or space.) To 
allow the free-form input we require (1) com
ments to begin with an asterisk (not a 'C'); (2) 
continuation lines begin with a plus sign -
moved to column 6 by the editor. 

Doug Pearson, Mountain View CA: A few years ago 
I attended a workshop on structured programming. 
The instructors used a certain loop form they 
said was not available in any language. However 
it was very general and very simple, and I find 
it appealing: 

DO 
[zero or more executable statements] 
WHILE condi tion 
[zero or more executable statements] 
OD 

No doubt some people would prefer UNTIL; no 
doubt some people need FOR; and we're back to 
the real problem: too many different ways to do 
one thing. Is that really a problem? 

[Ed note: The loop construct adopted by X3J3 in 
March 1979 (see For-Word Vol 5 No 1) includes a 
slight variation of this construct. Instead of 
WHILE condition, you may write IF (complement
~ condition) EXIT.] 

Robert J Horn III, Concord MA: We work with a 
fairly wide sample of scientific programming 
problems, including environmental simulations, 
weather forecasting, scientific database, pro
gram development, and general computing support. 
We work way beyond the limits of the 66 Fortran 
standard or the 77 standard. We use RATFOR, 
which provides additional control structures, 
macros, variable length character data, upper 

and lower case characters, and in-line comments. 
We use Data General Fortran 5, with unlimited 
recursion, and bit variables. We would not give 
up these without a reasonable replacement. 

Our heaviest uses of bit data are in the con
version of foreign data tapes, and in machine 
dependent plotter driver code. We also use bits 
for some telecommunications problems, and in a 
few instances to implement very large boolean 
arrays. 

We use recursion for much more than just toy 
programs. In particular, we have three heavily 
used production programs where recursion is vi
tal. One is a least cost navigation through an 
N by M matrix subject to moderately complex con
straints. In this program, a recursive dynamic 
programming solution substantially improved the 
time and quality of the solution. (This program 
is used about 10,000 times annually.) The second 
program is a tree analysis program where recur
sion is used heavily. We use it for decision 
tree analysis and program structure analysis. 
(This one gets about 1000 runs annually.) The 
third is our key index subroutines for database 
activity. In another instance we use indirect 
recursion where two routines use each other to 
solve sub-problems. 

A low cost recursion implementation is feas
ible and very much worth the cost. The only pen
alty we have seen is that the DG implementaion 
discards local variables on exit (standard-com
patible) and prohibits ENTRY's. (These hinder 
the use of outside software.) Any new standard 
should permit both direct and indirect recursion. 

Our use of RATFOR also provides some feedback 
on loop structures, array operations, and charac
ter variables. About half of the DO loops are 
either simple array statemens or conditional 
array statements. [Ed note: The remainder of 
this paragraph describes conditional array state
ments, which closely resemble the WHERE structure 
adopted in the X3J3 array proposal.] These usu
ally arise because our simulations involve equa
tions with two or more different regimes (e.g., 
near-field and far-field equations). When consi
dering array operators, include an "array if" op
eration. 

Finally, variable length strings are worth 
some effort. We use them extensively, and we 
feel that fixed length defeats the flexibility 
and ease of use that inspired the use of strings. 
We never overlap operands or result, and we set 
maximum size limits. 

I would like to see standard Fortran reach the 
usability of our version of RATFOR-Fortran S. 
Based on the problems and complaints I get when 
we use 66 Fortran, I would not switch to a new 
language unless it is as convenient as RATFOR. 



.,,\ 

page 12 FOR-WORD Fortran Newsletter Volume 5, Number 3, September 1979 

ANNOUNCEMENTS 

Programming in Standarn Fortran, by Alex Bal
four and David H. MaIWick, ·was published during 
July by Elsevier in North America and by Heine
mann in the UK. This book provides comprehens
ive coverage of the new standard Fortran 77 sui~ 
table both for experienced Fortran users and for 
those with some experience of elementary pro
gramming techniques. It aims to encourage devo
tees of the language to write good Fortran pro
grams and to adopt the new Standard. Bearing in 
mind the limitations of Fortran 77, great empha
sis has been placed on structured programming 
and design techniques. The value of adhering to 
the Standard in these times of ever-increasing 
demands for program portability is also 
stressed. Many worked examples and exercises 
are provided. [From the book cover.] 

LINPACK is a collection of Fortran subrou
tines which analyze and solve various systems of 
simultaneous linear algebraic equations. Docu
mentation is in LINPACK User's Guide, SIAM, 
1979, by J. J. Dongarra,~R~ Bunch, C. B. 
Moler, and G. W .• 3tewart (available from Soc. 
for Ind. and Appl. Math.). The software is 
available from IMSL or NESC for a nominal 
charge. 

The LINPACK routines employ a relatively new 
technique for condition number estimation that 
gives efficient estimates which are more realis
tic than those obtained by most older methods. 

IMSL (International Mathematical and Statis
tical Libraries, Inc.) develops and distributes 
mathematical software, as well as serving as a 
distribution center for software developed else
where (including LINPACK). IMSL publishes a 
newsletter, which is available from IMSL, Sixth 
Floor GNB Bldg, 7500 Bellaire Blvd, Houston TX, 
77036. 

Statistical software is also available from 
the BMPD project. A BMPD Newsletter is also 
available, from Health Sciences Computing Facil
ity, Center for Health Sciences, University of 
California, Los Angeles CA 90024. 

We are still getting anguished requests like 
the following: "We are using Univac's 'ASCII 
Fortran' which is based on the Fortran 77 stand
ard. While we are anxious to use all the feat
ures of this compiler, we are hesitant to do so 
due to portability problems. I would like to 
know what other vendors have a Fortran 77 based 
compiler. Also, does IBM ever intend to make 
such a compiler available? Any help you can 
supply will be appreciated.~ 

Readers of For-Word are aware that a few 
Fortran 77 software products ·have been an~ 

nounced. According to rumors we are hearing, a 
number of· others are just about to spring forth. 
(Several of these will be coming from vendors of 
the smaller computers; one of the larger computer 
manufacturers is also on the point of making an 
announcement. We have heard nothing definite 
from IBM.) Most developers of Fortran 77 prod
ucts are following the (basically commendable) 
practice of witholding product announcements un
til,there is an actual product ·available. Most 
users of particular systems seem to be aware of 
the latest rumors regarding systems, but 
this is of little help to those, like our recent 
correspondent, who want to know how widely avail
able Fortran 77 is on other systems. 

For-Word can only sit tight, along with the 
rest of you, and continue to extend an offer to 
announce any Fortran 77 compilers (and related 
products) as soon as we hear of them. 

In SIGPLAN Notices, July 1979 (page 2), there 
is a letter concerning "extended range" of DO 
and "inactive" loops -~ concepts that were pres
ent in the 1966 Fortran standard and in the draft 
published in 1976 but not in Fortran 77. The 
writer speculates that "the problem of determin
ing when a DO loop becomes inactive during execu
tion is undecidab Ie" [by the compiler]. However, 
at some small expense, it can presumably be de
tected during execution, and the writer suggests 
that this be done. Compilers can much more read
ily enforce the Fortran 77 rules, since the range. 
of a DO loop is a contiguous block of statements. 

II 

Concerning For-Word 

This Newsletter is prepared for the U.S. De
partment of Energy under Contract W-7405-ENG-48. 

Reference to a· company or product name does 
not imply approval or recommendation of the prod
uct by the University of California or the U.S. 
Department of Energy, to the exclusion of others 
that maY'be suitable. 

The Editor's name and adress appear in the 
Mailing area on the first page of each edition. 

Correspondence on all Fortran-related topics 
is welcomed. Especially solicited are reviews 
of recent Fortran textbooks, software products, 
literature, etc. 

KEEP THOSE CARDS AND LETTERS COMING, FOLKS I 

It is often better to, rather than to, in.or
der to pedantically avoid an allegedly improper 
form, engage in unnecessary circumlocution, split 
an infinitive. 



= FOR - W 0 R D = > 
Fortran Newsletter 

PUB-301 
Volume 5, Number (Pages 1 - 4) 2100/ March 1979 

X3J3 Refining "Core-~Modules" Language Architecture 
(X3J3 News Release, March 1979) 

Subsequent to the adoption about a year ago of "Fortran 77" as the official American National Stan

dard Fortran, the ANSI Fortran Standards technical committee (X3J3) has been hard at work preparing 

for the next version of the Fortran standard. A major activity is the exploration of a "core-plus

modules" organization for Fortran for the purposes of providing an orderly environment 

(1) conducive to introducing state-of-the-art language features, 

(2) for identifying obsolescent features, and 

(3) in which to accommodate standard facilities for major specialized application areas. 

Item (3) may include, for instance, the ISA
ANSI standard facilities for process control app
lications, and the CODASYL Fortran data base fac
ility. (A task force of X3J3 has been formed to 
further develop this CODASYL facility.) X3J3 is 
in the process of devising guidelines governing 
the form that such a proposed applications module 
may take, and the standard Fortran mechanisms by 
which Fortran programs may utilize the facilities 
of such a module. 

In addition to applications modules the core
plus-modules architecture includes a core Fortran 
langauge, a module for archaic, obsolescent, or 
redundant Fortran features', and one or more lan
guage extension (i.e., specialized or experimen
tal features) modules. The Fortran core is curr
ently envisioned as being a small yet rather com
plete general-purpose language, and exhibiting 
state-of-the-art capabilities, efficient execu
tion, and ease of implementation. 

In addition to the core-pIus-modules organiza
tion, X3J3 has tentatively adopted (1) a policy 
permitting the inclusion in Fortran of language 
features requiring automatic dynamic allocation 
of temporary storage, and (2) a new "block-DO" 
control structure (analogous to the "block-IF" 

II II II II II II II II II II II II 

Loren P. Mei ssner 
50B 3239 
Lawrence Berkeley Laboratory 
Berkeley CA 94720 

~@~rr~1ID 
MAY 15 1979 

_ Pd. ~itv 
L.B.L. LIBRARY 

II II II II II 

of Fortran 77, but for repetition 'control rather 
than selection control) which includes loop-exit 
facilities and-is extendable. 

Specific language features under active consi-
deration for inclusion in Fortran include: 

(1) "free-form" program source, 
(2) array operations, 
(3) internal procedures, 
(4) bit-string data type, 
(5) record data structures, and 
(6) enhanced subroutine calling mechanisms. 

SIGNUM Conference Proceedings Available 

A conference on the Programming Environment for 
Development of Numerical Software was held in 
Pasadena CA during October 1978. Members of X3J3 
participated in the program, and interaction with 
IFIP Working Group 2.5 was also featured. (See 
also For-Word, Volume 4, No.3, page 11.) Pro
ceedings have been published in SIGNUM Newsletter 
for March 1979, copies of which may be ordered 
for $8.00 from ACM, PO Box 12105 Church Street 
Station, New York 10249. 

FIR S TeL ASS 

For Reference 

i Not to be taken. from this room 
\ 

\, / 



page 2 FOR-WORD Fortran Newsletter -- Volume 5, Number 1, March 1979 

Activities of the Languages Working Group, 
Advanced Computing Committee, Dept. of Energy 

It has been noted that groups of users with 
special interests may be of increasing importance 
for language development, in contrast to an ear
lier period when much of the development was done 
by hardware vendors. The Languages Working Group 
was formed as a joint effort of several "super
comput~r" sites supported by the Department of" 
Energy: Lawrence Livermore Laboratory, Magnetic 
Fusion Energy at Lawrence Livermore Laboratory, 
Sandia at Livermore, Los Alamos Scientific Labor
atory, Sandia at Albuquerque, Lawrence Berkeley 
Laboratory, Argonne National Laboratory, Oak 
Ridge National Laboratory, and associate partic
ipation by Stanford Linear Accelerator Center 
and National Center for Atmospheric Research. 

This group designed a 4-level extended Fortran 
structure: 
--Level 0 is the current ANSI Fortran standard; 
--Levell is "common extensions already in use": 
Asynchronous input-output, Namelist, Word-orient
ed bit manipulation, Time inquiries, and On-off 
listing controls. 
--Level 2 is "required extensions": Array proces
sing and dynamic storage allocation, Record (da
ta) structures, Macro facility (intimately in
volved with compiler),Control structure exten
sions, Free source form, Complex double precis
ion, Environmental inquiry, and advanced Name-" 
list. 
--Level 3 is hardware dependent and experimental 
features. 

A draft functional specification has been pre
pared, but, has not yet been released. 

An e'ffort has been funded by the Department of 
Energy, with the goal of translating this func
tional description into a language design. Walt 
Brainerd (Los Alamos Scientific Laboratory), Jean 
Martin (Lawrence Livermore Laboratory), and Larry 
Rl1dsinski (Argonne National Laboratory) are in
volved in this effort. It is hoped that the 
Department of Energy can fund the conversion of 
the language design into an actual implementa
tion of the extended language. 

X3J3 Adopts "Minimal" Dynamic Storage 
Several working groups within X3J3, in their 

consideration of features for inclusion in a pos
sible future Fortran standard, have encountered 
an apparent need for "implicit" (sys tem-managed) 
dynamic storage. For example, a "matrix divide" 
operation appears to require an amount of tempo
rary storage that cannot necessarily be predicted 
at compile time. 

At its March" 1979, meeting, X3J3 adopt'eda 
proposal whose intent was to instruct working 
groups not to discard such features simply on the 
basis of an apparent dynamic storage requirement. 

X3J3 Adopts General Loop Control Cons truct 
At its meeting in March, 1979, X3J3 adopted a 

proposal to include a "Block-DO" looping con
struct. 

This construct is bracketed by the keywords 
DO - REPEAT. An optional control clause is set 
off by parentheses. Thus the opening statement 
may have one of the following three forms, accor
ding to the current proposal. 

DO ' [meaning "DO forever"] 
DO ( <indexing clause> ) 
DO «expression> TIMES 

An indexing clause is identical to a Fortran 77 
DO-loop indexing specification. It is contem
plated that other control clause forms may be 
adopted in the future. 

An EXIT statement is also provided, to permit 
termination of execution of a loop. 

Possible 'extensions that were discussed",""but . 
not adopted at this time, include names for DO 
and IF blocks, which could permit multi-level 
EXIT operations; a CYCLE feature (also possibly 
with multi-level capability); and special exit 
processing. The latter feature, which would 
permit exit processing statements following the 
REPEAT statement but within the static range of 
the block, would be terminated by an END DO 
statement. 

Other possible extensions include a comprehen
sive control clause such as FROM ••. BY .•• UNTIL 
.•. , which would permit traversing a linked stru
cture or other more general loop conditions. 

In a "straw vote", the committee expressed a 
definite bias against a WHILE control clause. It 
is felt that "DO forever with EXIT" can handle 
those programming situations that could be served 
by WHILE, but more flexibly (since the test is 
not constrained to appear at the beginning or end 
of the loop), and more safely (since the test can 
be imbedded in a DO n TIMES loop to provide as
surance of loop termination). 

X3J3 Favors Internal Procedures -----
At the August, 1978, meeting, X3J3 adopted a 

proposal to include internal procedures in the 
future Fortran language." Reference 'to,-an' inter
nal procedure could occur within an expression 
(as a function reference) or in a separate state
ment (as a subroutine reference). Internal pro
cedures would be permitted to have arguments, 
1. e., a' facility beyond simple "remote code 
blocks" is contemplated. 

The proposal was further refined at the meeting 
in March, 1979. However, the crucial issues of 
name (and label) scoping have not yet been re
"solved. There is some sentiment for deferring a 
final decision on" scoping for internal procedures 
pending a comprehensive review of scoping in gen
eral. For example, data items with "global" 
scope" might be introd~ced. 



FOR-\~ORD Fortran News 1 etter -- Volume 5, Number 

a a a a a a a a a a a a a a a a a 

On Being "Fortran-like" 

(K. Hirchert, Urbana IL -- reprinted from X3J3 
Minutes): In the past, one of the guiding prin
ciples of X3J3 in considering changes to Fortran 
has been whether the change was "Fortran-like". 
With the passing of many of the more concrete 
criteria for judging whether something was "For
tran-like" (e.g. fixed column requirements), the 
feeling has developed that the criterion of being 
"Fortran-like" is no longer meaningful. I sug
gest that if we cannot identify some more basic 
criteria for deciding what is "Fortran-like" 
then we will have effectively lost our histo;ical 
tie to Fortran, and the results of our efforts 
might as well be called the successor to PL/I or 
Algol 68 or an entirely new' language as be called 
the new Fortran standard. With that idea in 
mind, I will offer one possible criterion for a 
language being "Fortran-like". 

In 'general, there appears to be a tradeoff be
tween the intellectual elegance of a language and 
the optimum performance that can be achieved in 
it, even with optimizing compilers. It seems 
that every language feature has some pathological 
case which is more difficult to implement than 
the feature is in general. "Elegant" languages 
typically require the handling of those cases as 
well as the simple ones. "Performance" languages 
typically disallow the funny cases. Optimizing 
compilers will admittedly allow the simple code 
to be generated for the simple cases much of the 
time, but factors such as the use of variables 
and separate compilation make compile time anal
ysis impossible some of the time, and that means 
that the complicated code must be generated when 
the simple code might have sufficed, hurting per
formance. If the compiler is not an optimizing 
compiler, the loss of performance is more direct. 

Fortran has traditionally been a "performance" 
language. A couple of examples will illustrate 
this: 

1. The pathological case in the association of 
arguments with formal parameters comes when one 
argument is associated with two or more formal 
parameters. Rather than force the semantics of 
one particular type of parameter-argument asso
ciation method on the Fortran implementer (e.g. 
call by address),. Fortran has disallowed this 
case, thus allowing implementers to choose other 
forms of parameter-argument association which 
might be more efficient on their particular ma
chine (e.g. call by value-result). 

2. The pathological case in moving character 
substrings comes when the source and destination 
fields overlap. Again, rather than force all 
moves through temporaries or other "protective" 
approaches, Fortran disallows overlap. 

I do not mean to imply that all decisions in 
Fortran have beer. strictly performance oriented. 
For example, incorporating backwards DO loops in 
the same structure as forwards DO loops was more 
an "elegance" decision. Still, on the whole, 
most decisions in the design of Fortran have 

-- March 1979 page 3 

a a a a a a a a a a a a a a a a a 

weighed towards performance. My concern is that 
we may be forgetting this basic characteristic 
in our desire to "do simple things simply." May 
I suggest that a better goal would be to "do 
reasonab Ie things reas onab ly. " We mus t balance 
the human engineering benefits of any of our de
cisions against their possible performance 
costs. In many cases, we may be able to have 
our cake and eat it too, but when a choice is 
necessary, let us not forget what it is that we 
are selling. After all, if the current body of 
Fortran users wanted to choose elegance over 
performance, they might already be programming 
in PL/I or Algol or Pascal. 

a a a a a a a a a a a a a a a a 

Toward £. Standard for Floating-Binary Hardware 

It is clear that the cause of Language Standar
dization would be greatly aided by the appearance 
of a hardware standard for floating-point arith
metic. A giant step in this direction is being 
taken within the IEEE Microprocessor user commun
ity. 

An article in SIGNUM Newsletter, March 1979 
sets forth "Principles and Preferences for Co~pu
ter Arithmetic". [This is the same Newsletter 
that is referenced on page 1 of this For-Word.] 
There is apparently a real prospect that micro
processors will adopt a common form of floating 
binary arithmetic. (This article should be read 
in conjunction with two other references: 
1. Coonen, J. T., "Specifications for a Proposed 
Standard for Floating Point Arithmetic" Oct 78 
Memo UCB/ERL M78/72, Electronics Res. L~b., Uni~. 
of Calif., Berkeley; 
2. A Proposed Standard for Floating Point Arith
metic, Feb 79; available from Richard H. Delp, 
Signetics Corp., PO Box 9052, Sunnyvale CA 94086) 

For example, on "proper rounding", the article 
states: 

"Proper rounding is simple to define and des
cribe, not difficult to implement and offers many 
desirable properties including ••• the minimum 
average error. It would be interesting to know 
the arguments of the machine designers who have 
decided against it. It is our opinion that the 
rounding strategy inherent to a floating-point 
microprogram of a computer (or calculator) is the 
worst place for a machine designer to demonstrate 
originality, in particular if his own experience 
with numerical calculation is rather limited. 
The chaos of careless and exotic rounding strat
egies in our present computers seriously impedes 
the production of clean numerical software. Dod
ges and tricks, costly to develop, which might be 
necessary to overcome the difficulties with roun
ding effects on one computer may be unnecessary 
or even damaging on another, thus reducing the 
portability of programs .. Therefore, ... Auni ver
sally standard scheme should be adopted for the 
rounding in the floating-point operations on all 
computers." 

(Current efforts are concentrating on binary.) 



page 4 FOR-WORD Fortran Newsletter Volume 5, Number 1 March 1979 
D a a a D a aDD D DaD D a, a D 

"Core-~-modules" and Subroutine Libraries 
(J. Rice, 'West Lafayette IN) 

One import,ant consequence of the "Core-plus
modules" concept in a future Fortran standard 
that needs consideration is its effect on librar
ies. It is possible that the Core will be large 
enough that libraries can be written.in it; even 
now the best libraries are written in "intersec
tion Fortran". However, the time will eventually 
come when it is unreasonable to write certain li
brary routines in the Core language. The follow
ing questions then arise: Is a different library 
needed for each Module? or for every combination 
of Core plus Module? 

It is obvious to note that library routines are 
normally used already compiled so one might con
clude that it is sufficient to ensure that a pro
gram compiled in one Fortran environment (Core 
plus Module X plus Module Y) will work with a 
program compiled in another-·F,ort-ran environment 
(Core plus Module Z). This would be the case if 
the principle of "separate compilation" is re
tained and I assume that it will be. Thus one 
might conclude that libraries 'would be adequately 
served merely by adopting standards on program 
linkages. 

However, libraries are also used as an impor~ 
tant source of working ,software in source form 
for constructing large programs. Thus one takes 
the library's Sorter or Linear Equation Solver 
and makes minor modifications on it to fit it in
to a large program package. Good coding and doc
umentation makes this practical. No problems 
should arise if the package is envisaged to be in 
Core plus Module X and the library routine is in 
Core plus Module Y. That is to say, the program
mer should not have to_do anything special nor 
suffer any substantial penalty if he incorporates 
a library routine into his program. ' 

The point made here is ac.tually more general in 
nature. Fortran should support and facilitate a 
software parts technology. The program library 
is one aspect of such a technology .-but, as pro
gramming matures, we can expect to see other 
modes of operation ,for this technology (e.g., a 
Sears catalog of programs). Such a technology is 
already widely anticipated in scientific comput
ing circles where it is viewed as a way to sig
nificantly reduce software costs. It is impor
tant that a future Fortran standard facilitate 
this technology and remove some of the barriers 
that now exist in Fortran 77. 

DaD D D D D Dad D DaD D D a 

SIGNUM Appoints X3J3 Representative 
ACM Special Interest Group on Numerical Mathe

matics has agreed to provide travel support for 
an individual, to permit him to participate as a 
Voting Member of X3J3. Brian Smith of Argonne 
National Laboratory will serve in this role, and 
will be assisted by six other SIGNUM members who 
will attend some X3J3 meetings, will keep 'up to 
date on X3J3 activities, and will help analyze 
Fortran proposals. ' 

DaD D D D DaD a a a a a aDD 

BOOK REVIEW -----
Fortran: A Structured, Disciplined Style, by 
G. B. Davis and T. R. Hoffmann; McGraw Hill, 1978 

This beginning Fortran text is based on the new 
Fortran 77 language. The authors must be given 
the highest praise for presenting only features 
of Fortran 77 and discouraging their readers from 
using nonstandard features provided by a local 
system. The authors provide a very accurate and 
complete description of the Fortran 77 language. 

However, since not everyone is expected to have 
a Fortran 77 compiler available, the reader is 
always shown how to do things "the old way." 
This approach .allows the instructor to teach For
tran 77 and -still use an older system, but the 
presentation of multiple ways to do almost every
thing will create a great deal of confusion. 

In most respects, the book admirably lives up 
to the claim in its title. Many excellent sug
gestions are given to improve programming style. 
However, there are many examples that use GO TO 
statements, where the Fortran .77 IF-THEN-ELSE 
would have 'been more appropriate. 

[Excerpted from a review by W.S. Brainerd, to 
, appear in Computing Reviews. 1 
-D D D D D D D D D DaD DaD D D 

Product Announcements 
Prime Computer, Inc. (40 Walnut St., Wellesley 

Hills MA 02181) has announced a complete Fortran 
77 compiler, featuring global optimization, fast 
compilation, extensive and comprehensible error 
diagnostics, and re-entrant coding. Extensions 
to Fortran 77 include Namelist, Double complex, 
Encode-decode, data initialization in specifica
tion statements, and continued support for Holl
erith and extended DO range. Minimum trip count 
for DO loops is programmer selectable. For fur
ther information write W. A. Burke at Prime. 

HPAC Ltd. (Cherwell House, 1-5 London Place, 
Gt. Clements, Oxford OX4 l4T, England) announces 
the introduction of Fortran 77. For further in
formation, phone Oxford (0865) 724851/2 or TELEX 
887106. 

Softool Corp. (Leon Presser, 340 S. Kellogg Av 
Goleta CA 93017) announces Fortran Instrumenter 
II for providing execution profiles, and a com
piler which guarantees conformance to both IBM 
and Data General Fortran dialects. 

a aDD D D DaD D D D D D D D a 

Concerning For-Word 
This Newsletter is prepared for the U.S. Depar

tment of Energy under Contract W-7405-ENG-48. 

Reference to a company or product name does not 
imply approval or recommendation of the product 
by the University of California or the U.S Depar
tment of Energy to the exclusion of others that 
may be suitable. -

The Editor's name and address appear in the 
Mailing area on page 1 of this Newsletter. 

, I 


