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RESEARCH ARTICLE BIOPHYSICS AND COMPUTATIONAL BIOLOGY
EVOLUTION

Darwinian evolution as a dynamical principle
Charles D. Kochera,b,1 and Ken A. Dilla,b,c,1,2
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Darwinian evolution (DE)—biology’s powerful process of adaptation—is remarkably
different from other known dynamical processes. It is antithermodynamic, driving
away from equilibrium; it has persisted for 3.5 billion years; and its target, fitness,
can seem like “Just So” stories. For insights, we make a computational model. In
the Darwinian Evolution Machine (DEM) model, resource-driven duplication and
competition operate inside a cycle of search/compete/choose. We find the following:
1) DE requires multiorganism coexistence for its long-term persistence and ability to
cross fitness valleys. 2) DE is driven by resource dynamics, like booms and busts, not
just by mutational change. And, 3) fitness ratcheting requires a mechanistic separation
between variation and selection steps, perhaps explaining biology’s use of separate
polymers, DNA and proteins.

Darwinian evolution | survival of the fittest | competitive exclusion | driven nonequilibrium

Darwinian Evolution (DE) is the unrelenting drive for biological adaptation on earth.
Also referred to here as Survival of the Fittest (SOF), DE is among the most resourceful,
innovative, and powerful drivers in the earth’s balances of energy, matter, water, and
food. Ever since the work of Charles Darwin and Herbert Spencer in the 1860’s (1, 2),
SOF has been invoked in narratives about biological adaptations, such as the shapes of
the beaks of Darwin’s finches, the color patterning on the wings of England’s peppered
moths (3, 4), and many others (5, 6). Its operational basics are well known: Genes encode
proteins encode traits; variations are explored by mutational change; organisms compete
for finite resources; and natural selection retains those genes/proteins that give the species
greater fitness for its environment.

But as a matter of basic principle, DE is not fully understood. What is the force?
Why is there any force at all? What has sustained its extraordinary persistence since life
began 3.5 billion years ago? SOF resembles variational principles in physics, wherein a
system explores its degrees of freedom and tends toward those states that are maxima or
minima of some mathematical function, but it has its differences. Variational principles
are central to physics: balls roll downhill toward states of minimum gravitational potential
energy; gas molecules diffuse, tending toward states of maximum entropy. Living systems
do not drive toward equilibrium. Rather, they tend toward adaptation, selfishness, and
intricacy, powered by persistent inflows, in a process that has not died for billions of
years. The driver of evolution is not the Second Law of Thermodynamics and is not a
tendency toward equilibrium (7–9). Fitnesses in biology are unlike energies in physics.
While material equilibria are tendencies toward endstates, fitnesses are tendencies across
uncountably many different molecules, mechanisms of action, and degrees of freedom,
toward opportunistic advantages across uncountably many environmental situations.
Here, we frame these questions in terms of evolution as a machine-like cycle.

Evolution as a Cyclic Machine

We look at Darwinian Evolution as a machine; Fig. 1. We define the Darwinian
Evolution Machine (DEM) as the biosphere-wide process that undergoes cycles of local
actions, powered by local environments. Fig. 1 column (a) shows the starting point of
the operating cycle, namely a wild-type (WT) population (status quo) at time t. The
operating cycle has these steps:

• The driver is external resources out of equilibrium. The persistent intake of resources
drives the autocatalytic process of moms making moms*. Evolution is a machine
insofar as it undergoes repetitive cycles of operation, driven by a nonequilibrium
(NEQ) input of resources from the environment.

∗“Mom” is our shorthand for a collection of related mutants, or a specific phenotype, made more quantitative below,
resembling what Manfred Eigen called a quasispecies (10, 11).
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Fig. 1. The Darwinian Evolution Machine. (Top) (A) A reference (wild type)
population of organisms produces functional devices X at time t. (B) Searching
the momsemble by mutation produces device Y . (C) X and Y compete for finite
resources. (D) The winner Y produces more population, and that population
now replaces the old reference at t+ 1. (Bottom) The corresponding climbing
of the fitness landscape in the competition of X with Y , produced by the
momsemble search (shaded area).

• Mutational search. Column (b) indicates a search over a
space that we call a momsemble of all possible mutations
in sequence-function polymers (proteins, DNA and RNA,
and their corresponding phenotypes). Unlike equilibrium
statmech, these are searches over molecular structures and
functions, not over coordinates, velocities, and conformations.
The mutant sequence encodes a mutant function, but at the
stage of column (b), these are hypothetical, not yet realized by
growth into a corresponding population.

• Growth and competition for finite resources. Column (c)
shows the competition of the mutant vs. WT populations for
resources.

• Natural selection and updated status quo. Column (a) at time
t + 1 indicates that winners now become the status quo at
the next time step, and they now acquire the greater resources
befitting their new status. The resultant climbing of fitness
can be regarded as a Feynman ratchet, a device in which
undirected inputs, which act randomly forward or backward,
drive a directed output action, like in a ratchet†. Such a process
has been called kinetic asymmetry in molecular machines (13–
15). By converting the growth rates of individual cells to
populations of their progeny, growth-rate advantages at the
cell level convert to larger populations and larger utilizations
of resources, which propagate into the next generation.

• Division of labor: Variance (b) is distinct from selection (c).
Fig. 1 (Bottom) shows a fitness landscape. Panel (b) shows
the momsemble as a cloud of options around X , which are
(mutationally possible) proposed future populations. A specific
mutant Y is one point in this cloud. The step from (b)
to (c) entails the realization of functions by growing up a
population Y , competing it with X , and selecting X or Y .
Fitness ratcheting would be impossible without this functional
separation of variation from selection (Section I).

†Brownian ratchets are examples of Feynman ratchets when the input is thermal energy
(12). But here, the randomness is from sequence mutations.

Theory of the DEM

The heart of the DEM is “moms making more moms” in
competition for resources. Let An be the number of individuals
(moms) of “type” n. These individuals take in resources rj from
the environment at a total rate‡ Unj(An, {ri}i) and turn them into
internally stored intermediates Pnj. We assume no interactions
between the types of moms other than indirectly through their
drawdown of resources§. Second, we suppose that reproduction
rates depend only on the internal levels Pnj—a single mom
of type n has a reproduction rate of the form Rn({Pnj/An}j).
Since each individual acts independently, the total rate of new
moms of type n that are made is Rn({Pnj/An}j)An. These internal
intermediates grow and decay according to Ṗnj = gnj − DnjPnj,
where gnj is the production rate and Dnj is the decay rate of
the intermediates. At steady state, we have Pnj ∝ gnj. Since
reproduction rates (use of the Pnj) are usually much slower than
eating rates (production of the Pnj), gnj ∝ Unj(An, {ri}i). The
total amount of an intermediate is proportional to the eating rate
that produces that intermediate.

The full dynamics of duplications of N moms and depletion
of M resources is given by

drj
dt

= αj(t)− djrj −
N∑

n=1
Unj(An, {ri}i),

dAn
dt

= Rn

({
Unj(An, {rk}k)

An

}
j

)
An − DnAn,

[1]

whereαj(t) is the rate at which the environment supplies resource
j. In the case of only a single resource, which we will focus on
below, we have

dr
dt

= α(t)− drr −
N∑

n=1
Un(An, r),

dAn
dt

= Rn
(
Un(An, r)

An

)
An − DnAn,

[2]

Before taking the next step in our analysis, we note that the
competition Eqs. 1 and 2 are similar to consumer-resource
models of population genetics (popgen) or ecology, such as of
Volterra (16), Fisher (17), MacArthur (18, 19), and later Tilman
(20). Popgen models treat the dynamics of the reproduction of
multiple moms that compete against each other for resources.
These models entail asserting different simplifications of the
functional forms of Un and Rn. In popgen models of the Fisher
type as formulated by, e.g., Crow and Kimura (21), Rn and Dn
are taken to be constants. In the Tilman model, Rn is a function
of the resources only, Rn = Rn(fn(r)), because the eating rate is
assumed to be linear in An, Un(An, r) = fn(r)An.

We describe in Coexistence Helps to Avoid Extinctions below
how the linearity approximation is too simple for the principles
of interest here. For now, we note that to advance beyond the
linearity approximation, we assert here a saturating form of the
eating conversion rate Un(An, r). To illustrate the need for it,
consider the Tilman model. If An is increased while r is held
constant, then the resource drawdown rate Un(An, r) = fn(r)An
‡We use the simplified notation f ({rj }j) = f (r1 , r2 , . . . ).
§Of course, in any particular application of the model, there can be additional interactions.
One example is sexual reproduction, which causes type n to have offspring of type m 6= n.
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Fig. 2. How environments drive relative populations. (Left) Coexistence
of three moms (orange, green, and red) on a single resource (blue, NEQ
supplied by the environment). (Right) Switching to the purple resource drives
a change in populations; now orange moms take over from green, and red
dies out.

will diverge. Biochemical processes have speed limits, often given
by the Michaelis–Menten function, because molecular processes
of binding entail sites that can fill up. Similarly, if the amount
of food is held constant, no matter how many individuals are
added, the rate at which it is eaten will eventually saturate. The
same is true for keeping An constant while increasing r. If both
An and r are increased, however, then the eating could increase
indefinitely¶. A function that satisfies all of these conditions is
Un(An, r) = (knAnr)/(Bn + cnr + An), as proposed elsewhere
in refs. 22–24. If we let Rn(x) = qnx and we consider just
two competitors for simplicity, we find that there exists a stable
coexistence steady-state with both moms present (SI Appendix).

What the Machine Perspective Tells Us about
Evolution

In the sections below, we reason with the DEM equations above
and the machine cycle shown in Fig. 1 about the questions
raised in the introduction. On the one hand, our premises are
simply the well-known basics of mutation, selection, and the
dynamics of winning resources through competitions. On the
other hand, this machine formulation gives new quantitative
insights into the role of environmental dynamics (how unruly
and fluctuating resources drive evolution); the role of search and
sample (to achieve innovation, to cross fitness valleys, and to
sustain persistence of the biosphere); and the power of converting
individual growth rates to population sizes.

A. Adapting to Environments by Changing Mom Populations.
Environments can be unruly, unstable, and undependable, even
rapidly and sharply so, such as in resource booms and busts. The
DEM has some memory of its history of food availability through
its relative mom populations. Fig. 2 shows how an environment
switching from “blue food” to “purple food” drives a transition
from a coexistence of mostly green moms, with some red and
orange ones, to mostly orange moms, where red has gone extinct.
This environmental transition from blue to purple food drives a
rebalancing of populations toward moms that can best utilize the
new food and away from moms that cannot#. It’s just a simple

¶For simplicity here, we neglect spatial heterogeneities, but the model is readily general-
ized.
#The result in Fig. 2 is quite general. If we were to instead make the constants kn in the
eating rates a function of the environment, we would get the same result, since changing

Environment 
driver

Popula�on 
response

Time
Fig. 3. Before, orange and green moms share the food. After, orange
gets it all. (Left) During the boom, orange and green share the resource.
(Middle) In the bust, green dies, freeing up its resources. (Right) In the next
boom, orange gets all of the resources.

computational example of how the DEM description captures
the essential feature of Darwinian adaptation to environments.

B. Changing Environments Drive Resource Reallocations.
Fig. 3 is a DEM calculation showing a boom-bust cycle of
resources driving a change in moms and reallocated resources.
Our term boom and bust is simply a surrogate to represent the
many different kinds of ways that environments can change,
either in regular or more capricious irregular ways, through small
fluctuations or huge disruptions. Before the bust (Left), orange
and green moms coexist, both feeding from the same supply
of resources (blue). Then, the bust kills off the green mom, now
freeing up the resource supply that green previously commanded.
In the next boom (Right), those resources are now available to
the orange mom, in addition to the resource allocation she would
naturally receive from the next environmental boom. In short,
“orange eats green’s lunch.” We refer to this reallocation as a turn
of the fitness ratchet because it is part of a unidirectional cycle:
Busts flush out unfit moms (green), freeing up more resources,
which are taken up by the more fit moms (orange). The cycle
recenters the momsemble around the new dominant moms at
each step, moving away from moms that are diminished or
extinct. During a bust, the unfit moms that struggled to survive
during the boom are cleared away, leaving all of the resources for
the more fit moms.

Here is a note on modeling extinction—deterministic vs.
stochastic. On the one hand, we have expressed the DEM dynam-
ics as deterministic ODEs. In practice, ODEs cannot properly
treat extinction: Continuum dynamics allows populations of
moms to become infinitesimal, less than a single individual, but
still not zero. This is unphysical. Only stochastic simulations
(Fig. 3) or a manual extinction cutoff (Fig. 4) can properly capture
the complete irreversibility when the last mom dies (SI Appendix).

C. Coexistence Helps to Avoid Extinctions. A common view of
Darwinian evolution, as often embodied in population genetics
and ecology models, is that Winners-Take-All (WTA). That is,
even the smallest advantage of one mom and her lineage ulti-
mately wins out, driving all the other competing moms to extinc-
tion. Called competitive exclusion||, or Gause’s Law (27), this is

parameters with the environment is mathematically the same as treating the resource
after the environmental change as a new resource (SI Appendix).
||In the Tilman model, competitive exclusion is also known as the R∗ rule (25, 26).
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Fig. 4. Winner-takes-all dynamics is more susceptible to extinction
than coexistence dynamics. (Left) WTA models are “brittle” to supply chain
disruptions. The lone winner after the first bust (green) dies out after the
second bust. (Right) In the DEM, orange doesn’t fully die out in the first bust,
so it rises up again after the second bust.

“one of the central themes of research ecology” (28). Competitive
exclusion is the idea that n species cannot coexist unless there are
at least n distinct resources available. It says that the number of
species that can coexist is limited by the number of resources
available. In the case of one resource, a single winner takes all.

However, competitive exclusion does not always hold in real-
ity. Biology has many examples of peaceful coexistence (PCE).
One is the paradox of the plankton, in which “it is possible for a
number of species to coexist... all competing for the same sorts
of materials” (29). Different explanations have been given for
apparent violations of the competitive exclusion idea (30–35).
Systems may not reach steady state or may have more complex
interactions, such as cooperative couplings between moms (36).
An important class of models that encompass both WTA and
PCE in different situations are those such as in the present
work, in which mathematically the function Un is nonlinear
and saturating as a function of resources or populations (37–40).
Such nonlinearity could arise from various mechanisms (41–43):
predators interfering with each other (24); or that moms cannot
become infinitely dense or produce offspring infinitely fast. Our
purposes here do not require specifying a particular mechanism.
What is essential here, however, for explaining key features of
evolutionary dynamics, is that Un saturates.

Fig. 4 compares models: those allowing peaceful coexistence
versus those that are only winner-takes-all. It shows an environ-
mental resource that undergoes booms (blue line, high value)
and busts (low value). This figure illustrates two points. First,
the left side shows how a WTA competition of two moms on
a single resource leads to an extinction. The orange mom can
survive busts. Orange begets a green mom during a boom. The
green mom is good enough to win and “take all” during that
boom. However, the second bust kills green, so neither green nor
orange survives. The WTA mechanism is brittle: The risk of total
extinction is high in an oscillating environment, because not all
mutants that win during boom times can survive every bust (SI
Appendix for details). Even though WTA leads to good fitness in
today’s boom, it may die out in tomorrow’s bust.

Second, Fig. 4, Right shows how the peacefully coexisting
community of the DEM model is more resistant to extinction,
able to survive both busts. The saturating form ofUn(An, r) in our
DEM model admits additional solutions to the dynamics, beyond
just winner-takes-all steady states. As before, orange can survive
all the busts, and a mutation raises up the green. This time, green
does not take all. Orange still remains “lurking in the bushes”—
i.e., having a small population—because the DEM allows for the
coexistence steady state. The second bust kills green, but now
the orange lurkers rise up again because they weren’t fully killed
off by green. The DEM is more robust to extinctions caused by
a short-term beneficial, but long-term unfit, mutation. This is

consistent with the well-known importance of biodiversity for
ecosystem robustness.

In a WTA-model world, where every niche has exactly one
mom filling it, an extinction event leaves the niche unfilled. If
this niche is vital to the ecosystem (part of a resource recycling
chain, say), leaving it vacant could collapse other dependent
populations. In contrast in a PCE-model world, the “lurkers”
can pick up the burden of carrying the community. There are
other solutions to this problem too, such as species coexisting on
multiple resources and overlapping in niche.

D. How Davids Beat Goliaths: The Power of Fitness Ratcheting.
One way that Darwinian evolution differs from physical flows
is in their dominant components. In physics, such as a river
flow, the average velocity is roughly the speed of the dominant
population, say from the middle of the river. But in DE, it’s
the fitness that ultimately drives dominance. It’s sometimes the
“Davids,” not the “Goliaths,” that matter most. Adaptation raises
up “more fit” sequences no matter how far they are from the
average. A phenotype can come to dominate a population by
starting in a single individual. It’s because in DE cellular rates
convert to populations, and rate differences are inside the “moms
making moms” autocat loop. The type of signal amplification that
happens in the DEM is very different from simple amplification.
An amplifier makes a whole signal louder, both the quiet and the
loud parts. In the DEM, only the “best” signal is amplified (i.e.,
“most fit”), even if that signal is very weak. To use a metaphor,
the DEM takes in all the noise in a crowded room and picks out
only the conversation most important to you.

How does evolution leverage small advantages? Consider a
mom A eating a resource and growing exponentially (ignore for
the moment its death rate and resource considerations), dA/dt ∼
kAAr. It develops a fairly large population. Now, imagine that
it mutates one individual of type B, growing at dB/dt ∼ kBBr.
Initially, while the total amount of B is much less than the total
amount of A, the fraction of B in the population goes as B/(A+
B) ≈ B/A ∼ exp(1krt), where 1k = kB − kA. Unsurprisingly,
the mutant mom will grow in population fraction if it grows faster
than the existing mom. The exponential leveraging of different
growth rates leading to dominance in the population is the essence
of the DEM’s unique amplification—after all, biology’s principle
is survival of the fittest, not survival of the most numerous—and
thus applies to populations that start out small, at the level of a
single cell.

The simple qualitative argument above is deterministic, and it
only holds exactly when we can model the populations as growing
exponentially. We can more precisely account for all of the details
using a stochastic model. We follow Kimura (44), who calculated
the probability of fixation of an allele given that it starts with a
population fraction p and has a constant selective advantage s.
We apply his argument to a system of N total moms that starts
with one mutant mom so that p = 1/N . Kimura’s treatment
gives the fixation probability u as

u =
1− e−2s

1− e−2Ns . [3]

By “a constant selective advantage s,” we mean that the average
change in the fraction of mutant moms per generation, which
equals dp/dt times the generation time, goes as sp(1 − p). In
the DEM, we can calculate dp/dt using p = An/

∑
m Am and

the DEM ODEs to find s(1k) and subsequently u(1k), the
probability for one mutant individual with a growth advantage
of 1k to eventually fix in the population—that is, to be the
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Fig. 5. Even small advantages in growth rate �k lead to high fixation
probabilities. Sometimes advantageous mutants do not survive (Lower Left),
but if a mutant is able to make even one or two more of itself per
generation than the current wild type, then its odds of fixation approach
unity (Upper Right).

winner-taking-all**. However, in general, in the DEM, s will
depend on the total number of moms N , which changes with
time. To use Eq. 3, s must be constant. To demonstrate the
leveraging of 1k in amplifying small advantages in the DEM,
we will take a special case. In the case†† where two moms A and
B are at carrying capacity, i.e., with N = A + B constant, but
A and B are still able to change their population fraction during
each generation of time δt, it was found in ref. 46 that s = 1kδt.
If we scale time so that δt = 1, the probability of fixation of a
beneficial mutation that starts as one mom is

u =
1− e−21k

1− e−2N1k . [4]

This probability is plotted as a function of the rate difference
1k for various values of N in Fig. 5. It shows that even very
small selective advantages (differences 1k) lead to appreciable
differences in fixation.

E. Innovation by Incremental Opportunism. A key concept of
Darwinian evolution is that biology achieves adaptations, even
complex ones, through incremental random changes and oppor-
tunistic selection among those variations. Many adaptations seem
clever and intricate, with many components working together
with precision, like a watch. Examples are eyes, lightweight wings
on birds, molecular motors, blood clotting systems, chemotaxis,
and glycolysis and photosynthesis systems. Counterarguments to
incremental opportunism are that complexity seems so unlikely in
the absence of purposeful design, that blind watchmakers cannot
make watches (47, 48), and that reaching such high fitness peaks
would require crossing fitness valleys. An example is the eye: To
evolve an eye, opponents say, would require first creating half an

**In a stochastic competition with fixed competitors, one mom will always win out in
the end because of “random extinctions,” as argued directly by Cole (45) and by Kimura
(44, 46) as a consequence of his fixation probability.
††Here, we note that Kimura and Crow use the common reproduction term kAA, where the
resource is presumed to be its constant steady-state value, while we have been using the
ecology-type term kAAr(t). The units of k now change accordingly. The model of Kimura
and Crow is an approximation to our competition equations where the resource is taken
to always be at steady state and the total number of moms is constant at carrying capacity.

Fig. 6. The DEM is able to traverse fitness valleys. Species A (orange)
competes with species B, which has three strains: an initial WT (green), a poor
mutant strain (blue), and a much better mutant (red). Green cannot mutate
to red directly—it mutates to blue which can mutate to red. The ability of B
to traverse the poor (fitness valley) blue state is because orange, green, and
blue can coexist until the better red mom mutation appears.

eye, which is costly and would have no value. An organism that is
in a local minimum of fitness would be less fit—and therefore less
stable—than the wild-type organism that is already the dominant
population.

In response, we first note that incremental random opportunis-
tic strategies are well known to succeed in complex situations,
such as high-dimensional spaces—in protein folding (49, 50)
and in explore-and-exploit computer algorithms (51–54), such
as Metropolis Monte Carlo (55, 56). Second, we note that there
is a connection between complexity and functionality (57, 58).
Third, the biosphere search of functional options is massively
parallelized among organisms and species.

F. How the DEM Crosses Fitness Valleys. Fourth, an important
part of diversity generation boils down to the difference between
winner-takes-all (WTA) and peaceful coexistence (PCE). In PCE,
many organisms exist in low population. Such rare organisms can
readily experience a rise in their populations, either driven by a
change in environment (Figs. 2 and 3) or by a mutational change
in the organism (Fig 6). In the latter case, the orange mom
(species A) is initially better than the green mom (species B).
The green mom can mutate into the blue variant (by which we
mean have blue offspring), which is worse than the original wild
type of species B, but the blue variant can mutate into the red
variant which is much better than any of the other moms. There
is a fitness valley, the blue mom, between the current wild type
and the true fitness maximum. Because of peaceful coexistence
in the DEM model, the blue strain “lurks in the weeds” and is
eventually able to mutate out the red one, which replaces the
green one as the wild type of species B.

G. The NEQ Input Powers the Climbing of Fitness Hills. Fig. 7
illustrates the difference between a nondriven tendency of
materials relaxing toward equilibria (Left) vs. a driven tendency of
evolution toward opportunistic adaptation (Right). In the former,
there is a cost (free energy) of climbing over barriers. In the
latter, there are kinetic costs too, but some costs are paid by the
nonequilibrium drivers, by the large numbers of moms in parallel,
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Fig. 7. Nonequilibrium dynamics can be very different from those of near-equilibria. (Left) Near equilibrium: (Top) processes flow downhill in free energy
and (Bottom) crossing kinetic barriers entail rare events. (Right) A driven learning machine like the DEM is like having many golfers driving balls uphill.

and by the coexistence of lurkers. We use the metaphor of golfers
on a mountainside to express how fitness valleys are crossed.
Because evolution entails a driven nonequilibrium system with
persistent resource availability, it is much like aimless golfers
located broadly across the landscape driving golf balls uphill and
downhill. The ratcheting upward on a fitness landscape happens
only because those points are selected for after the fact, not
targeted a priori. Since the DEM is not winner-takes-all, there
are many such golfers sampling the space simultaneously. There’s
power in numbers.

H. The Drive to Persist. Persistence in evolution—that is, the
ability to self-sustain over time—is different from persistent
stability in an equilibrium thermodynamic system. The former
entails sustaining nonequilibrium fluxes, driven by nonequi-
librium inputs. It is dynamic, not static (7). But evolution’s
persistence goes beyond just being a driven system. Evolution is
also adaptive—that is, persistent even in the face of capricious
unruly ever-changing environments. This adaptability of the
DEM comes from two key features: i) Autocatalysis, of moms
making moms, giving an exponential growth regime because
dA/dt ∝ A; and ii) Variance, which samples rate coefficients
k = k(s, r) that depend both on phenotype and environmental
resources. It is the intrinsic sloppiness of copying that further pro-
tects the DEM from extinction. Because the rate k(s, r) depends
on sequence, and because in the DEM model there is peaceful
coexistence among many different sequences, the death of any
one sequence or lineage or species is not sufficient to extinguish
the full Darwinian Evolution Machine; Fig. 4. Extinction can be
avoided by innovations that arise in coexisting variants.

I. Why Variation Must Be Functionally Distinct from Selection.
In all fitness ratchets, such as computational Monte Carlo (55),
the propose step is distinct from the accept step. The propose
step must be as unbiased as possible and sample the space
of options as uniformly and completely as possible, without
prejudgment about where successes will be found. The bias
and judgment are localized in the acceptance step, which selects
for improved fitness. Without this separation, fitness ratchets

cannot tell uphill from downhill‡‡. Without the separation
of the propose step from the accept step, a machine could
not discriminate a good status quo with a poor mutation from
a poor status quo with a good mutation. Evolution would have
no sense of fitness direction without a way to distinguish the
status quo from a proposed future.

J. Speculation: Why There Are Two Polymers, DNA and Pro-
teins. Today’s biology uses both informational and functional
polymers, DNA and proteins. The need for two different
polymers can be rationalized by the essential requirement for
functional distinction between variation (b) and selection (c)
in Fig. 1. Biology implements the biased/unbiased separation
by using different polymer types§§. DNA and RNA are in-
formational while proteins are functional. Here is a sensible
explanation for this. Biases reside in proteins by virtue of the
sequence-to-function relationships of foldable polymers, or corre-
spondingly by bias in phenotype expression during development
(48, 60–63). Information is unbiased in DNA because these
are stiff rod-like chain molecules by virtue of their double-
strandedness and high persistence lengths. No matter what a
DNA sequence is, DNA’s conformation is relatively independent
of the sequence. In contrast, proteins have structure–function
relationships because they can fold into different shapes. Biology
separates unbiased search and proposal from biased function and
acceptance by these different physical properties of biomolecules.

Conclusions

We have sought insights into dynamical features of Darwinian
evolution. Here are three. First, we find the importance of
coexistence, rather than winner-takes-all, for evolution’s power
of innovation, ability to cross fitness valleys, and resilience against
extinction to the vagaries of the environment. Second, we find

‡‡Imagine no panel (b) step, with mutations simply acting on X directly. Mutations would
simply drive random steps up and down on the fitness landscape, never ratcheting up on
average.
§§In a sense, the story of the origin of life can be interpreted as the story of how nature
discovered a physical realization of these two properties and coupled them together (59).
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that environment histories are as important as fitness landscapes
of mutations for understanding biological adaptations. Third,
a dynamic mechanism that climbs fitness landscapes must
have a division of labor, like propose and accept in Monte
Carlo computer algorithms: unbiased search coupled with biased
functional evaluation. Biology has performed this separation
by using different polymer types—DNA for information and
proteins for function.

Data, Materials, and Software Availability. There are no data underlying
this work.
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