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In their book “How the Body Shapes the Way We Think: A New View of Intelligence,”

Pfeifer and Bongard put forth an embodied approach to cognition. Because of this

position, many of their robot examples demonstrated “intelligent” behavior despite limited

neural processing. It is our belief that neurorobots should attempt to follow many of these

principles. In this article, we discuss a number of principles to consider when designing

neurorobots and experiments using robots to test brain theories. These principles are

strongly inspired by Pfeifer and Bongard, but build on their design principles by grounding

them in neuroscience and by adding principles based on neuroscience research. Our

design principles fall into three categories. First, organisms must react quickly and

appropriately to events. Second, organisms must have the ability to learn and remember

over their lifetimes. Third, organisms must weigh options that are crucial for survival. We

believe that by following these design principles a robot’s behavior will bemore naturalistic

and more successful.

Keywords: adaptive behavior, embodiment, learning, memory, neuromodulation, value

1. INTRODUCTION

Neurorobotics is a powerful tool for testing brain theories and increasing our understanding of
neuroscience. The robot controller is modeled after some aspect of the nervous system. Unlike
human or other animal studies, the neuroroboticist has access to every aspect of this artificial brain
during the lifetime of the agent. Therefore, the neuroroboticist can analyze and perturb the nervous
system in ways that a neuroscientist cannot with present recording technology. Not only can a
neurorobot be tested under laboratory conditions that are similar to those of an animal experiment
in order to provide direct comparisons, but it can also be tested in more natural conditions to see
how these brain functions might respond to real-world situations.

The actions of a neurorobot are embedded in its environment. By choosing an appropriate
morphology, simple mechanical designs can perform complex functions by taking advantage of
environmental features, thus alleviating slow, power-hungry nervous systems from having to make
these calculations. This is known as morphological computation (Pfeifer and Bongard, 2006).
Neurorobot designs can be degenerate, that is, they can contain multiple systems capable of
performing the same functions (Edelman and Gally, 2001). In this way the agent can still survive in
the environment should one system fail. Similar to many mobile operating systems, neurorobot
computation can follow the brain architecture by having multiple processes run in parallel in
an event-driven manner, continuously responding to concurrent events. These ideas have roots
in behavior-based robots (Brooks, 1991; Arkin, 1998) and the design of neuromorphic hardware
(Merolla et al., 2014; Davies et al., 2018).
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To adapt to a changing environment a neurorobot must be
able to learn, store and recall information. Memory systems in
neurorobotics are particularly applicable in spatial memory for
navigation and contextual memory for learning representations
of the environment (Milford et al., 2016; Gaussier et al., 2019;
Hwu et al., 2020). Success within dynamic environments, such
as the real-world, requires the processing of risk, reward, and
uncertainty by some notion of value and the ability to adapt
(Oudeyer and Kaplan, 2007; Krichmar, 2008; Merrick, 2017).
Through such systems, neurorobots are able to predict future
events and adapt to changes in the environment.

The world is full of trade-offs and changing needs that
require us to make choices. Incorporating behavioral trade-offs
into neurorobots such as reward vs. punishment, invigorated
vs. withdrawn activity, expected vs. unexpected uncertainty for
attention, exploration vs. exploitation of choices, foraging for
food vs. defending one’s territory, coping with stress vs. keeping
calm, and social interaction vs. solitary restraint can lead to
interesting behavior in neurorobotics (Canamero et al., 2006;
Hiolle et al., 2012; Krichmar, 2013; Lones et al., 2018). Many
of these trade-offs are regulated by the neuromodulators and
hormone levels in the brain.

In this article, we present a set of principles to take into
consideration when designing neurorobots. They fall into three
categories: 1) Embodiment and reactions, 2) Adaptive behavior,
learning and memory, and 3) Behavioral trade-offs. Following
these design principles can make neurorobots more naturalistic
and more interesting. Many of the ideas put forth in this article
are based on material from our forthcoming book (Hwu and
Krichmar, 2022).

2. EMBODIMENT AND REACTIONS -
RESPONDING TO THE HERE AND NOW

In this first set of neurorobotic design principles, we focus
on what (Pfeifer and Bongard, 2006) called the “here and
now.” These design principles are grounded in neuroscience
and are focused on processes that respond to events. Even
without learning and memory, these processes lead to flexible,
adaptive behavior.

2.1. Embodiment
Brains do not work in isolation; they are closely coupled with the
body acting in its environment (Chiel and Beer, 1997). Biological
organisms perform morphological computation; that is, certain
processes are performed by the body that would otherwise be
performed by the brain (Pfeifer and Bongard, 2006). Moment-
to-moment action can be handled at the periphery by the body,
sensors, actuators, and reflexes at the spinal cord level. This
allows the central nervous system, which is slower and requires
more processing than the body or peripheral nervous system, to
predict, plan, and adapt by comparing its internal models with
current information from the body (Shadmehr and Krakauer,
2008; Hickok et al., 2011).

In biology, the morphology and behavior must fit within the
organism’s ecological niche. Therefore, the layout of its sensors

and actuators, their resolution and range are tuned to meet
the specific organism’s needs (Ziemke, 2003). As an example,
consider a toddler flailing his or her arms. The child’s arms more
easily move toward the front of the torso than the back. By chance
the toddler’s hand touches an object causing a reflexive grasping
motion. This leads to the fingers, wheremost of the tactile sensors
are located, touching the object. The child will then move this
hand in its easiest direction, which tends to be toward the face,
where a range of sensors for vision, olfaction, and taste receptors
reside. Comparing that with the embodiment and design of an
insect or a fish, it is clear that these design implementations are
specific to the organism’s niche. Attention to these environmental
details can provide guidance for the design of neurorobots. The
form of the organism’s body shapes its behavior and its brain
function. This requires a brain and body that is engaged with the
environment, which is what we should strive for in designing our
neurorobots.

For many tasks that we carry out with ease, our brains are
too slow to sense, process and move. For example, skiing down
a hill or catching a wave on a surfboard happens too fast for our
central nervous system to position the body appropriately. But
the form and compliance of the body can position itself properly
and adjust itself to perturbations without brain control. This is
morphological computation in action.

Trapping a soccer ball is another example of morphological
computation. In a RoboCup tournament, the Segway soccer
team from The Neurosciences Institute solved this difficult
sensorimotor problem with a very cheap design (Fleischer et al.,
2006). On a large playing field it was nearly impossible for the
robot to catch a fast-moving soccer ball, given that the Segway
was large and cumbersome and had a slow camera frame rate
and slow IR sensor refresh rate. Soccer balls would bounce off
the robot before it had a chance to respond. After much trial
and error, the team used plastic tubing that was fastened around
the robot’s body like a hula-hoop at just the right height (see
Figure 1). Any ball that was passed to the Segway robot was
trapped by the tubing, giving the robot time to use its camera and
IR proximity sensors to place the ball in its kicking apparatus. In
a sense, this is what humans do when playing soccer. They use
soft pliant materials angled appropriately to soften the impact of
a ball coming toward them. Many actions like these take place
without much thought (i.e., brain processing).

By putting more emphasis on designs that exploit the
environment, we can offload some of the control from the
cognitive robot’s central nervous system onto the body itself.
This should allow the robot to be more responsive to the
environment and more fluid in its actions. In addition, it frees
up the nervous system to put more emphasis on planning,
prediction, and error correction rather than reflexivemovements.
Too often cognitive neuroscientists forget that the body and
the peripheral nervous system are performing many vital,
moment-to-moment behaviors and tasks without central control.
Even functions that are thought to be purely mental have a
basis in embodiment. For example, it has been argued that
interactions in which a person needs to understand another
is an embodied process rather than an internal simulation
(Gallagher, 2001).
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FIGURE 1 | Video sequence showing robot capturing a soccer ball using morphological computation. A pliant plastic hoop around the Segway robot allowed trapped

the soccer ball, allowing the slower IR sensors and camera to confirm that a soccer ball was caught.

2.2. Efficiency Through Cheap Design
Cheap design means finding the simplest solution to the

challenge the robot is facing. One way to do this is by exploiting
the environment. For example, winged insects and fast swimming

fish exploit their environment by creating vortices with their wing
beats or fin movements, which causes additional thrust and more
energy to come out than the animal put in. Most of our touch

receptors are where we need them most, at our fingertips. It
would be wasteful to have this fine level of resolution on the back
of our hands or arms. This is what is meant by cheap.

For example, in legged locomotion, roboticists have put
much time and effort in creating robust controllers for legged
locomotion. The importance of the cheap design principle can

be observed when comparing the biped locomotion of passive
dynamic walking robots to sophisticated humanoid robots, such
as Honda’s Asimo or Aldebaran’s NAO. Passive dynamic walking
robots exploit gravity, friction, and the forces generated by their

swinging limbs (Collins et al., 2005). As a result, they require
very little energy or control to move (see Table 1). In contrast,
robots such as Asimo need complex control systems and long-
lasting batteries to achieve the same result. Although these
passive walkers are not necessarily biologically inspired, once the

engineers or artists implement a design that minimizes energy
expenditure, the gait looks very natural.

However, it should be stressed that passive dynamics and
morphological computation are not enough to support a
complete range of natural behaviors. Rather it frees up the system
from expending energy and computational resources on some
functions, while allowing it to concentrate on other functionality.

Saving energy is a recurring theme in biology since biological
organisms are under tight metabolic constraints (Beyeler et al.,
2019; Krichmar et al., 2019). However, there is a trade-off that
comes with efficiency. For example, it is more efficient to walk on
four legs, but then arms are not available for manual dexterity
and gestures, which is important for bipedal organisms. In a
complete system, passive control is closely coupled with spinal
cord reflexes, which in turn are in close communication with
motor cortex and other areas of the brain. These issues should
be taken into consideration when designing neurorobots.

It is not only the body that follows the principle of
cheap design: brains do as well. Biological systems are

TABLE 1 | Energy consumed during legged locomotion (Collins et al., 2005). Unit

weight per unit distance.

Agent Energy consumption

Asimo 3.23

Cornell biped 0.20

Humans 0.20

under extreme metabolic constraints and need to represent
information efficiently. Therefore, the nervous system must
encode information as cheaply as possible. The brain operates
on a mere 20 watts of power, approximately the same power
required for a ceiling fan operating at low speed (Krichmar
et al., 2019). Although being severely metabolically constrained
is at one level a disadvantage, evolution has optimized brains in
ways that lead to incredibly efficient representations of important
environmental features that are distinctly different from those
employed in current digital computers. The brain utilizes many
means to reduce its functional metabolic energy use. Indeed,
one can observe at every level of the nervous system strategies
to maintain high performance and information transfer while
minimizing energy expenditure.

At the neuronal coding level, the brain uses several strategies
to reduce neural activity without sacrificing performance. Neural
activity (i.e., the generation of an action potential, the return
to resting state, and synaptic processing) is energetically very
costly, and this drives the minimization of the number of spikes
necessary to encode the neural representation of a new stimulus.
Such sparse coding strategies appear to be ubiquitous throughout
the brain (Olshausen and Field, 2004; Beyeler et al., 2019).
Efficient coding reduces redundancies and rapidly adapts to
changes in the environment. At a macroscopic scale, the brain
saves energy by minimizing the wiring between neurons and
brain regions (i.e., number of axons) and yet still communicates
information at a high level of performance (Laughlin and
Sejnowski, 2003). Information transfer between neurons and
brain areas is preserved by a small-world network architecture,
which reduces signal propagation (Sporns, 2010). These energy-
saving ideas should be taken into consideration in constructing
neural controllers for robots, which like biological organisms
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have limited energy resources. Moreover, many of these strategies
could inspire newmethodologies for constructing power-efficient
artificial intelligence.

2.3. Sensory-Motor Integration
In the brain, the sensory and motor systems are tightly coupled.
An organism or robot may get new sensory information
that causes an action. Each action then creates new sensory
information. Neurorobots can take advantage of this tightly
coupled loop. For example, figure-ground segregation is a
difficult computer vision problem in which a scene of static
objects needs to be recognized from the background (e.g., a
small toy block sitting on a similarly colored table). However,
segmentation can be facilitated by sensorimotor integration in
a very natural way as was demonstrated in a robot experiment
by Fitzpatrick and Metta (2003). In their study, the robot’s hand
moved until it happened to hit the toy block, triggering motion
detector responses in its visual system. In this way the robot’s
motor system generated sensory information, both visual and
tactile, which led to the unexpected recognition of an object on
the table. In the nervous system, a copy of the action, called
a motor efference copy, is fed back to the brain. It creates an
expectation that can be used to error check the movement and
the expected sensory experience. Because hitting the toy creates a
violation of both tactile and visual sensory expectations, the toy
block is easily differentiated from the table.

It is important to emphasize howmuch the sensory andmotor
nervous systems are intertwined. Too often neuroscientists study
these systems separately, but they are highly interconnected and
work in concert. Although there are brain areas specialized
for sensing such as auditory cortex and visual cortex, and
there are areas of the brain devoted to action such as the
motor cortex, most of the cortex is associational and cannot be
called exclusively sensory or motor systems. These associational
cortical areas are highly interconnected and the delineation
between perception and action becomes blurred (Fuster, 2004).
The parietal cortex receives multimodal sensory inputs and is
important for planningmovements. Bymultimodal wemean that
the brain area receives more than one sense: auditory, olfactory,
taste, visual, touch, or vestibular. The frontal cortex also receives
multimodal inputs and is important for decisions, control of
actions, and action selection. These multimodal association areas
have direct influence on what we perceive and how we move.

2.4. Degeneracy
Degeneracy is the ability of elements that are structurally
different to perform the same function or yield the same
output (Edelman and Gally, 2001). To be fault tolerant and
flexible a system’s architecture should be designed such that
different subsystems have different functional processes and
there is an overlap of functionality between subsystems. In
this design, if any subsystem fails the overall system can still
function. This is different from redundancy, in which an identical
system copy is kept in case there is a system failure (e.g.,
redundant array of independent disk [RAID] computer memory
systems). Degeneracy appears throughout biology, from low-
level processes such as the genetic code and protein folding

to system-level processes such as behavioral repertoires and
language. For example, there are four nucleotide bases in DNA
(thymine, cytosine, adenine, and guanine). It takes three bases to
encode an amino acid, which is the building block of proteins.
This means that there are potentially 43 or sixty-four possible
combinations, but only twenty amino acids make up the proteins
found in the human body. In many cases, different triplets
encode the same amino acid. Therefore, the genetic code is
considered degenerate. As a result, the genetic code is fault
tolerant to mutations. The heterogeneity of neuron types within
and between brain regions, as well as between organisms is
another example of degeneracy. For instance, the nervous system
has numerous cell types which can be distinguished by their
anatomy, connectivity or firing behavior (Ascoli et al., 2007;
Wheeler et al., 2015). Furthermore, organisms like the nematode
C. Elegans have neurons that don’t fire action potentials (Sarma
et al., 2018). Despite this variability, these neuronal elements
communicate with sensors, actuators, and other brain regions
that have similar properties and often operate in the same
environment. At the other end of the biological spectrum is
communication. We have an almost infinite number of ways to
communicate the same message. The same message could be
communicated through voice, text, email, Morse code, gesture,
or facial expressions. Degeneracy and variability is not only
important to demonstrate for biological realism, it also leads to
robustness and fault tolerance when operating in noisy, dynamic
environments.

Degeneracy at multiple levels was nicely demonstrated by the
neurorobot Darwin X, which was used to demonstrate spatial and
episodic memory (Krichmar et al., 2005; Fleischer et al., 2007).
Darwin X solved a dry version of the Morris water maze and
a place-learning version of a plus maze (see Figure 2). In the
Morris water maze, a rat swims through murky water until it
finds a platform hidden beneath the surface. After several days
of exploration, the rat will swim directly to the platform from
any starting location. If the hippocampus is damaged, the rat
cannot learn the location of the platform. In the dry version, a
reflective piece of paper was the proxy for the platform. It was the
same color as the floor, so the robot could not see the platform
but it could “feel” when it was on the platform by means of a
downward-pointing light sensor.

Darwin X had an extensive model of the hippocampus
formation and its surrounding cortical regions. Similar to a
rodent, as the robot explored its environment, hippocampal
place cells emerged. In the Darwin X experiments, combinations
of place cells were used to plan routes to goals. The robot’s
behavior and neural activity were directly compared with rodent
experiments. Like the rat, place cells could be used to predict not
only the current location of the robot but also the location from
which the robot came and the location to which it was heading.
In the robot experiments, several levels of degeneracy emerged.

Degeneracy at the Neuronal Level
Because the neuroroboticists were able to track every neuron
in Darwin’s simulated nervous system, they were able to trace
the neuronal activity that led to hippocampal place activity.
Although hippocampal place activity was similar on different
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FIGURE 2 | Darwin X experiments for spatial and episodic memory. (A,B) Experimental setup for a dry version of the Morris water maze. Adapted from Krichmar et al.

(2005). (C,D) Experimental setup for for place learning with the plus maze. Adapted from Fleischer et al. (2007).

trials when the robot passed through the same location on the
same heading, the neuronal activity leading to that neuron’s place
activity on a given trial differed dramatically. That is, different
neural activation patterns led to the same hippocampal place cell
outcome.

Degeneracy at the Systems Level
Darwin X received sensory input from its camera (vision),
whiskers (somatosensory), compass (head direction), and laser
range finder (depth/distance). Darwin X’s spatial memory was
multimodal and degenerate. Even when one or more of its
sensory modalities were lesioned, Darwin X’s behavior and place
cell activity remained stable. Different sensory pathways led to
the same outcome of knowing where Darwin was located.

Degeneracy at the Behavioral Level
In the Morris maze task, nine different Darwin X subjects,
which consisted of the identical robots with slightly different
nervous systems due to variations in initial synaptic connection
probabilities, solved the same spatial navigation task in unique
ways. Some subjects bounced off the “red” wall to the hidden
platform, some bounced off the “blue” wall, and others went
directly toward the platform location. The proficiency of each
subject differed as well. Some were better learners than others.
However, despite their idiosyncrasies they all shared the same
outcome of solving this task.

2.5. Multitasking and Event-Driven
Processing
Cognitive scientists tend to study the brain in a serialized fashion

by focusing on one subsystem at a time, be it a type of memory or

a specific perceptual effect. But intelligence emerges from many

processes operating in parallel and driven by events.We (humans
and other organisms) are multitaskers, and to multitask we must

do things in parallel. The brain is the ultimate event-driven,
parallel computer. There is no overarching clock as in computer
architectures. Rather the brain responds to events when
they happen. Therefore, neurorobots should have a multitask

design that responds to multiple, asynchronous events in a
timely manner.

Neurons throughout the brain are responding simultaneously

to multiple events. Although the different parts of the brain may
be acting somewhat independently, they are highly interactive.

The sensory system is telling the motor systemwhat it senses, and
the motor system is telling the sensory system what its last action
was. This brain analogy can be extended to the whole organism,
in which control is parallel, asynchronous, and spatiotemporally
matched with the real world.

A classic way of studying cognitive science was a serial
process of “sense, think, and act,” which guided many artificial
intelligence robot designs. In response to this, Rodney Brooks
and Ron Arkin developed behavior-based robots that responded
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asynchronously to events (Brooks, 1991; Arkin, 1998). There
are parallels between the subsumption architecture’s layered
hierarchical design and the nervous system. Neuroscientist Larry
Swanson proposed a basic plan for the nervous system that
somewhat follows this design; a four-component functional
systems model with a motor system controlling behavior and
visceral functions (i.e., internal organs and bodily functions),
whose output is a function of activity in sensory, cognitive, and
behavioral state systems, with feedback throughout (Swanson,
2007). It should be noted that in this view the central nervous
system is only one component. Areas that regulate basic
behaviors and internal monitoring are subcortical.

Correlates of the subsumption architecture can be observed
in the brain’s structure. Prescott et al. (1999) suggested
that the hierarchical, layered subsumption architecture could
describe the neural mechanisms of defense for the rat. For
example, the lower levels were reactive and included withdrawal,
startling, and freezing. The higher levels subsumed the lower
levels by suppressing behavior or predicting outcomes through
conditioning. Sensory input provides stimuli that can trigger
behavioral responses. Another example involves self-monitoring
systems in the nervous system (Chiba and Krichmar, 2020).
Figure 3 shows an overview of this architecture with brain
systems on the left and the corresponding robot control systems
on the right. There is low-level control for sensor processing and
motor reflexes. The autonomic nervous system may subsume
these lower levels to maintain homeostasis or adapt set points.
Higher levels can set states or context that may shape responses.

Multitasking and event-driven processing is prevalent in
current technology due in part to the ubiquity of real-time
and embedded systems. Most modern computing devices,
including smartphones, desktop computers, onboard automotive
computers and entertainment systems, have parallel processes
to handle asynchronous events. Neuromorphic computing
architectures developed by researchers andmajor chip companies
such as IBM and Intel are asynchronous and highly parallel, and
they are composed of many computing units that act like neurons
(Merolla et al., 2014; Davies et al., 2018). This architectural
design also follows the Efficiency through Cheap Design principle
described in Section 2.2. Neuromorphic hardware architectures
use orders of magnitude less power than conventional computing
by not relying on a synchronous clock and using spiking elements
(Krichmar et al., 2019). A neuron uses most of its energy when it
fires an action potential and when an action potential is processed
at the synapse. Because neurons do not fire often (in the typical
range of 10–100 Hz), the nervous system is in low-power mode
between spikes. This idea was not lost on most neuromorphic
hardware designers. Furthermore, communication bandwidth
is reduced because information is sent only when there is a
spike event.

3. ADAPTIVE BEHAVIOR - LEARNING AND
MEMORY

Adaptation requires learning and remembering what was learned
so that it can be applied in the future. Motivation is a key driver

of learning. Motivators take many forms, which are called value
systems. Another key aspect of adaptive behavior is the ability
to predict future events. This requires building up a memory of
expectations and the ability to adjust when expectations do not
meet the current situation.

3.1. Learning and Memory
Unlike artificial systems, our brains allow us to learn quickly,
incrementally, and continuously. With just a few presentations of
something new, we can learn to recognize an object or situation
or even learn a new skill. When we learn something new, we do
not forget what we have learned previously. Moreover, we can
take what we learn from one situation and apply it to another.
On the other hand, artificial learning systems struggle under
these situations, suffer from catastrophic forgetting of previous
learning when something new is learned, and have difficulties
generalizing learning from one task to another.

A brain region important for learning and memory is the
hippocampus. The hippocampus is necessary to learn new
memories and to consolidate those new experiences into long-
term memories that can last a lifetime. The hippocampus can
rapidly learn new autobiographical and semantic information,
sometimes in the first experience (i.e., one-shot learning).
Over time, this information becomes consolidated in the
rest of the brain. Having a rapid learning system that can
interact with a slower long-term storage area, which has been
called complementary learning systems (McClelland et al.,
1995; Kumaran et al., 2016), is thought to be the means
by which our brains overcome catastrophic forgetting (i.e.,
forgetting previously learned information when learning new
information). This aligns with another memory model, known as
the hippocampal indexing theory (Teyler and DiScenna, 1986),
which states that memories in the form of neocortical activation
patterns are stored as indices in the hippocampus that are later
used to aid recall. Although this may be an oversimplification, the
notion that the hippocampus andmedial temporal lobe integrates
multimodal information from the neocortex makes sense and is
backed by experimental evidence.

Our memories have context, and this contextual information
can help us generalize when we encounter novel yet similar
situations. In the literature this is called a schema, which is
the memory of a set of items or actions bound together by a
common context (van Kesteren et al., 2012). For example, if you
are in a restaurant, you expect to see tables, chairs, a menu,
waiters, and so forth. If you go to a new restaurant, that common
context information can be used to rapidly consolidate the novel
information into the restaurant schema. This requires mental
representations that are flexible enough to learn tasks in new
contexts and yet stable enough to retrieve and maintain tasks in
old contexts (Carpenter and Grossberg, 1987). Tse et al. (2007)
demonstrated this by training rats on different schemas, which
were collections of associations between different foods and their
locations in an enclosure. They found that the rats were able to
learn new information quickly if it fit within a familiar schema.
Additionally, the rats were able to learn new schemas without
forgetting previous ones. The hippocampus was necessary for
learning schemas and any new information matching a schema.
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FIGURE 3 | Schematic for self-monitoring systems in biology and in engineering. On the left are terms and regions derived from neuroscience. On the right are terms

adapted from autonomous robots but could be applied to many embedded systems. Blue: low-level sensory processing and motor control. Green: homeostasis,

maintenance, and monitoring. Orange: high-level planning, adapting, and goal-driven behavior. Adapted from Chiba and Krichmar (2020).

A subsequent study showed increased plasticity in the medial
prefrontal cortex (mPFC) when information was consistent with
a familiar schema (Tse et al., 2011). However, the hippocampus
was not necessary to recall thesememories, even after a short time
period (e.g., 48 h). This challenged the idea of complementary
learning systems because new information could rapidly be
consolidated in cortical memory under these conditions.

The Tse et al. (2007) schema experiment was replicated with
a neural network model based on interactions between the
hippocampus and the mPFC (Hwu and Krichmar, 2020), and
later tested on a robot required to create and utilize a schema
(Hwu et al., 2020). A contextual pattern of objects and locations
projected to the mPFC, in which each individual neuron encoded
a different schema. The ventral hippocampus (vHPC) and dorsal
hippocampus (dHPC) created triplet indices of schema, object,
and location. The vHPC and dHPC drove activity that eventually
activated a place cell through a winner-take-all process in the
action network. This action neuron caused the robot to go to
that location in search of the cued object. Contrastive Hebbian
learning (CHL) was used to make the association between
schema, object, and location. CHL utilizes oscillatory epochs,
in which the duration depends on the familiarity and novelty
of information, to learn associations. This assimilation of new
information has similarities to adaptive resonance theory or ART
(Grossberg, 2013). The model contained neuromodulators to
encode novelty and familiarity. For example, if an object is novel
and the context is unfamiliar, a new schema must be learned.
However, if an object is novel and the context is familiar, the
object can be added to an existing schema.

The schema model was embedded on the Human Support
Robot (HSR) from Toyota (Yamamoto et al., 2018) and given

the task of finding and retrieving objects in a classroom and a
break room. In a trial, the robot was prompted to retrieve an
object, which required prior knowledge of the schema to which
the object belonged and the location of the object. This caused the
robot to navigate toward a location, recognize the object, grasp
the object, and then return the object to its starting location.

In the first experiment, the HSR was placed in a room with
typical classroom items (e.g., apple, bottle, computer mouse,
book). Figure 4A shows the performance of the HSR retrieving
classroom items. With each trial the number of correct places
recalled increased and the time to retrieve an item decreased.
After training and testing in the classroom, an original item was
replaced by a novel item (Exp 1b in Figure 4A). Although the
object was novel, the HSR knew it belonged in the classroom
and was able to quickly consolidate this new information into the
existing classroom schema.

In the second experiment, the HSR was placed in a room with
typical break room items (e.g., apple, cup, banana, microwave
oven). After training and testing, the classroom schema was
tested again to see if the robot was able to maintain performance
of prior tasks. As with the classroom, Figure 4B shows that the
robot was able to learn this new break room schema without
forgetting objects’ locations in the classroom (CR in Figure 4B).

In the third experiment, the HSR was tested to see whether
schemas could help with the retrieval of items that it was never
explicitly trained to retrieve. If the HSR was cued with a book, it
searched for the book on the desk in the classroom because books
are likely to be found in a classroom schema (see Figure 5A). If
the HSR was cued by showing it a banana, the HSR searched for
the banana in the break room first rather than in the classroom
(see Figure 5B).
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FIGURE 4 | Performance on neurobotic schema experiments. The blue lines show the activation of the correct location neuron for a cued object. The red lines show

the retrieval times. (A) Experiment 1. Performance in the classroom schema (Exp 1a) and retrieval of novel object (Exp 1b). (B) Experiment 2. Performance in the

breakroom schema. CR denotes performance when returned to classroom. Novel denotes retrieval of a novel object. Adapted from Hwu et al. (2020).

FIGURE 5 | Cuing the robot on objects it had not retrieved before. Top: The robot was shown a banana. The robot then went to the break room to pick up the banana

and navigated to the drop-off location to deposit it. Bottom: Heat map of action layer during experiment 3. (A) Cued to retrieve a book. (B) Cued to retrieve a banana.

Adapted from Hwu et al. (2020).

The neurorobotic schema experiments showed how
context is tied to spatial representations via hippocampal
interaction with the mPFC. Moreover, it demonstrates

how ideas from memory models in the brain may improve
robotic applications and issues in artificial intelligence, such
as catastrophic forgetting and lifelong learning. A robot
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that has contextual memory could have applications for
assistive technologies.

3.2. Value Systems
Robots should be equipped with a value system that constitutes
a basic assumption of what is good and bad for its health
and well-being. A value system facilitates the capacity of a
biological brain to increase the likelihood of neural responses
to an external phenomenon (Merrick, 2017). The combined
effects of perception, experience, reasoning, and decision making
contribute to the development of values in animals. Value can
also be thought of as a measure of the effort one is willing to
expend to obtain reward or to avoid punishment.

In addition to rewards and punishment, intrinsic motivation
can be considered as a value system (Oudeyer and Kaplan, 2007).
This can take the form of seeking novelty, fun, play or curiosity,
that is, obtaining value for its own sake rather than to satisfy some
need. For example, Oudeyer and colleagues created a robotic
playground where a Sony AIBO dog with a motivation to explore
and learn new things learned to manipulate objects (Oudeyer
et al., 2007). The robot first spent time in situations that were
easy to learn and then shifted its attention progressively to more
difficult situations, avoiding situations in which nothing could be
learned.

Neuromodulators are thought to act as the brain’s value
systems (Krichmar, 2008). Neuromodulators are chemicals that
signal important environmental or internal events. They cause
organisms to adapt their behavior through long-lasting signals to
broad areas of the nervous system. Neuromodulators in the brain
influence synaptic change (i.e., learning and memory) to satisfy
global needs according to value.

To shape behavior, cognitive robots should have an innate
value system to tell the robot that something was of value
and trigger the appropriate reflexive behavior. From this
experience the agent can learn which stimuli were predictive
of that value and try to maximize the acquisition of good
value while minimizing the acquisition of bad value. Many of
these value-based robots employ models of the dopaminergic
neuromodulatory system to shape behavior (Sporns and
Alexander, 2002; Cox and Krichmar, 2009; Fiore et al., 2014;
Chou et al., 2015).

Besides the dopaminergic reward system, there are multiple
neuromodulators signal different value types (Doya, 2002;
Krichmar, 2008). The serotonergic system is involved in
harm aversion or impulsiveness (Miyazaki et al., 2018). The
noradrenergic system signals oddball or unexpected events (Yu
and Dayan, 2005). The cholinergic system is thought to increase
attention to important features and at the same time to decrease
the allocation of attention to distractors (Yu and Dayan, 2005).
Acetylcholine and noradrenaline could be thought to signal
intrinsic value by allocating attention and triggering learning
(Avery and Krichmar, 2017). These systems interact with each
other through direct and indirect pathways, and they all respond
strongly to novelty by sending broad signals to large areas of the
brain to cause a change in network dynamics resulting in decisive
action.

Introducing saliency into the environment can lead to
attentional signaling. For example, the robot CARL was
designed to test a computational framework for applying
neuromodulatory systems to the control of autonomous robots
(Cox and Krichmar, 2009). The framework was based on the
following premises (Krichmar, 2008): (1) the common effect
of the neuromodulatory systems is to drive an organism to be
decisive when environmental conditions call for such actions
and allow the organism to be more exploratory when there
are no pressing events; and (2) the main difference between
neuromodulatory systems is the environmental stimuli that
activate them. In the experiment, two out of four objects
were salient, and CARL learned the appropriate action for
each (see Figure 6). Unexpectedly, a strong attentional bias
toward salient objects, along with ignoring the irrelevant objects,
emerged through its experience in the real world. The selective
attention could be observed both in CARL’s behavior and in
CARL’s simulated brain. These neurorobotic experiments showed
how phasic neuromodulation could rapidly focus attention on
important objects in the environment by increasing the signal-
to-noise ratio (SNR) of neuronal responses. The model further
suggested that phasic neuromodulation amplifies sensory input
and increases competition in the neural network by gating
inhibition.

The neuromodulatory system also regulates attention
allocation and response to unexpected events. Using the Toyota
Human Support Robot (Yamamoto et al., 2018), the influence of
the cholinergic (ACh) system and noradrenergic (NE) systems
on goal-directed perception was studied in an action-based
attention task (Zou et al., 2020). In this experiment, a robot
was required to attend to goal-related objects (the ACh system)
and adjust to the change of goals in an uncertain domain (the
NE system). Four different actions (i.e., eat, work-on-computer,
read, and say-hi) were possible in the experiment and each
of them was associated with different images of objects. For
example, the goal action “eat" might result in attention to objects
such as apple or banana, whereas the action “say-hi" should
increase attention to a person. During the experiment, the goal
action changed periodically and the robot needed to select
the action and object that it thought the user wanted on the
basis of prior experience. The ACh system tracked the expected
uncertainty about which goal was valid, and the NE system
signaled unexpected uncertainty when goals suddenly changed
(Yu and Dayan, 2005). High ACh activity levels allocated
attention to different goals. Phasic NE responses caused a rapid
shift in attention and a resetting of prior goal beliefs. The model
demonstrated how neuromodulatory systems can facilitate
rapid adaptation to change in uncertain environments. The
goal-directed perception was realized through the allocation of
the robot’s attention to the desired action/object pair. Figure 7
shows the robot deciding which object to bring to the user.
The bottom of Figure 7 shows views from the robot’s camera
as it correctly guesses that the user’s goal is to eat. Its top-down
attention system finds an appropriate object, which is an apple in
this case.

One problem that remains unsolved in neurorobotics is that
these artificial value systems are dissociated from the agent’s
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FIGURE 6 | CARL robot in colored panel task. The panels could flash any of six different colors. One color, green, signaled positive value. Another color, red, signaled

negative value. The remaining colors were neutral. Positive and negative signals were transmitted from the panel to a receiver on the bottom of CARL. (A) CARL

during an approach or find response. The panels on the right show strong neuronal activity in its simulated green visual area, the dopaminergic system (VTA), and the

find motor neurons. (B) CARL during a withdrawal or flee response. The panels on the right show strong neuronal activity in its simulated red visual area, the

serotonergic system (raphe), and the flee motor neurons. Adapted from Cox and Krichmar (2009).

body. Real pain, hunger, thirst, and fatigue drive a true value
system. Without this connection to body-dependent drives, an
artificial value system does not signal the immediacy of the agent’s
need and lacks to some degree the ability to shape the agent’s
behavior. It would be interesting to tie something like the robot’s
battery level to its hunger value. With faster-charging batteries
or better solar cells this might be possible. An interesting step
in this direction is the work on self-monitoring systems that
can recognize drops in their performance, adapt their behavior,
and recover. For example, Cully et al. (2015) developed a novel
method for adapting gaits on a hexapod robot. In a sense, the
robot controller had a memory of potential gaits. If one or more
of the robot’s legs were damaged, the robot would detect the
damage, “imagine” different ways of moving, and then choose
the new gait that it thought would work best under the new
circumstances. In this way, the robot knew something was wrong
and was able to adapt its behavior quickly without intervention.

3.3. Prediction
Predicting outcomes and planning for the future is a hallmark of
cognitive behavior. Much of the cortex is devoted to predicting
what we will sense or the outcome of a movement or what series
of actions will lead to big payoffs. Thus, a neurorobot should
strive to have these predictive capabilities. Through prediction
and active inference, agents anticipate future sensory input based
on prior experience. This minimizes free energy by predicting
future outcomes so that they minimize the expenditures required
to deal with unanticipated events (Friston, 2010). The idea

of minimizing free energy has close ties to many existing

brain theories, such as Bayesian brain, Predictive Coding, cell
assemblies, Infomax, and the theory of neuronal group selection

(Edelman, 1993; Rao and Ballard, 1999; Friston, 2010). In the
theory of neuronal group selection (Edelman, 1993), plasticity

is modulated by value. Value systems control which neuronal
groups are selected and which actions lead to evolutionary fitness;
that is, they predict outcomes that lead to positive value and

avoid negative value. In this sense predicting value is inversely
proportional to surprise.

Prediction is crucial for fitness in a complex world and

a fundamental computation in cortical systems (George and
Hawkins, 2009; Clark, 2013; Richert et al., 2016). It requires
the construction and maintenance of an internal model. In a

similar fashion, model-based reinforcement learning builds an
internal model made up of the likelihood and expected value for

transitions between states (Solway and Botvinick, 2012).
Prediction has been useful in developing robot controllers.

For example, in a humanoid robot experiment it was shown that
having a predictive model helped the robot make appropriate
reactive and proactive arm gestures (Murata et al., 2014). In the
proactive mode the robot’s actions were generated on the basis
of top-down intentions to achieve intended goals. In the reactive
mode the robot’s actions were generated by bottom-up sensory
inputs in unpredictable situations. In another robot experiment
the combination of model-based and model-free reinforcement
learning was used in a sorting task (Renaudo et al., 2015). The
robot had to push cubes on a conveyor belt. The model-based
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FIGURE 7 | Toyota Human Support Robot implementation for the goal-driven

perception model, including the top-down attentional search process for a

guessed action “eat” based on three different real indoor views, to select the

highest attention region for bottom-up object prediction. Adapted from Zou

et al. (2020).

system improved performance by maintaining a plan from one
decision to the next. However, the experiments suggested that the
model-free system scales better under certain conditions andmay
be better in the face of uncertainty.

Jun Tani’s group has developed several predictive robot
controllers using recurrent neural networks (Tani, 2016; Ahmadi
and Tani, 2019; Chame et al., 2020). For example, they trained
a hierarchy of continuous time recurrent neural networks
(CTRNN) to learn different movements. Learning was achieved
via backpropagation through time (BPTT), a means to apply
an error signal to a sequence of neural activities. A teacher
guided a humanoid Sony QRIO robot through different
behavioral tasks. The CTRNNs received visual information and
proprioceptive joint angles from the humanoid robot. Important
to the learning were the different timescales of the CTRNNs.
Slower higher-level CTRNNs sent predictions to the faster
lower-level CTRNN units. Prediction errors from the lower
levels were propagated to the higher levels for adjustments.
Movements that appeared repeatedly were segmented into

behavioral primitives. These primitives were represented in
fast context dynamics in a form that was generalized across
object locations. On the other hand, the slow context units
appeared to be more abstract in nature, representing sequences
of primitives in a way that was independent of the object
location. Tani (2016) speculated that this prediction multiple
timescale hierarchy had similarities to the cortex. Fast responding
motor primitives can be found in the primary motor cortex,
and the slower prefrontal cortex sends top-down predictions
to the primary motor cortex. Similarly, the primary visual
cortex sends sensory information and prediction errors to the
slower parietal cortex, which sends top-down predictions for
the primary visual cortex. In this group’s recent work, they
show the potential for prototyping robotics agents, modeled after
active inference from the free energy principle theory (Friston,
2010), for human-robot interaction and socially assistive
robotics (Chame et al., 2020).

4. BEHAVIORAL TRADE-OFFS -
CONTEXTUAL DECISION-MAKING

Biological organisms need to consider many trade-offs
to survive. These trade-offs regulate basic needs such as
whether to forage for food, which might expose oneself to
predators, or hide in one’s home, which is safer but does
not provide sustenance. These trade-offs can be cognitive as
in introverted or extroverted behavior. Interestingly, many
of these trade-offs are regulated by chemicals in our brain
and body, such as neuromodulators or hormones. These
modulatory areas monitor and regulate environmental events.
They send broad signals to the brain that can dramatically
change behaviors, moods, decisions, etc. The brain can
control these modulatory and hormonal systems by setting a
context or making an adjustment when there are prediction
errors (Chiba and Krichmar, 2020).

We discuss the neuroscience behind the trade-offs
and neurorobots that incorporate these trade-offs. We
consider these behavioral trade-offs to be neurorobotic
design principles. By applying them to neurorobots,
we may realize behavior that is more interesting and
more realistic.

4.1. Reward vs. Punishment
Dopaminergic neurons have phasic responses that match quite
well with a reward prediction error signal used to shape behavior
(Schultz et al., 1997). What about punishment? One model
suggested that tonic serotonin tracked the average punishment
rate and that tonic dopamine tracked the average reward rate
(Daw et al., 2002). They speculated that a phasic serotonin
signal might report an ongoing prediction error for future
punishment. It has been suggested that the serotonergic and
dopaminergic systems activate in opposition for goal-directed
actions (Boureau and Dayan, 2011). This trade-off between
reward and punishment can be quite nuanced when invigoration
of activity can lead to rewards and punishment can lead to
inaction.
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4.2. Invigorated vs. Withdrawn
The dopamine and serotonin systems also regulate a trade-off
between invigorated novelty seeking and withdrawn risk-averse
behavior. It has been suggested that serotonin modulates the
desire to withdraw from risk, which can take place in social
interactions or in foraging for food (Tops et al., 2009). One can
imagine that too much withdrawal from society could lead to
symptoms of depression.

Consider the open-field test that is used to measure anxiety
in rodents (Fonio et al., 2009). Usually, when a mouse is placed
in an unfamiliar open area it will first stay near the borders of
the environment in which it might be concealed. The mouse
may hide in a nest area if available. After some time the mouse
decides the environment is safe and becomes curious. The mouse
will then proceed to explore the environment by moving more
and investigating the middle of the area. Serotonin levels can
alter this behavior. For example, Heisler et al. (1998) showed that
mice with increased serotonin spent less time in the center of the
open-field arena. In contrast, cocaine, which increases the level
of dopamine, increased locomotive activity and the exploration
of novel objects (Carey et al., 2008).

A neurorobot experiment took this trade-off into
consideration by modeling the interactions between the
serotonergic and dopaminergic systems (Krichmar, 2013).
Figure 8 shows the experimental setup and behaviors. A neural
network controlled the behavior of an autonomous robot and
tested in the open-field paradigm. When simulated serotonin
levels were high, sensory events led to withdrawn anxious
behavior such as wall following and finding its nest (i.e., the
robot’s charging station). When simulated dopamine levels were
high, sensory events led to curious behavior such as locomotion
to the middle of the enclosure or exploring a novel object.

The robot responded appropriately to sensory events in
its environment. Novel objects resulted in its exploring the

environment, and stressful events caused the robot to seek safety.
When the environment was unfamiliar, serotonergic activity
dominated, resulting in anxious behavior such asWallFollow and
FindHome actions. However, once the robot had become more
familiar with its environment (approximately 60 s into the trial)
DA levels were higher and there was more curious or exploratory
behavior. At approximately 120 s into the trial, there was an
unexpected light event due to flashing the lights on and off, which
resulted in a phasic 5-HT response and a longer tonic increase
in 5-HT. This caused the robot to respond with withdrawn or
anxious behavior until approximately 210 s into the trial when
a pair of object events triggered exploration of the center of the
environment. Specifically, tonic levels of 5-HT had decayed, and
the object events caused an increase in DA levels triggering a
change in behavioral state (see Figure 9A). Figure 9B shows the
proportion of curious behavior (OpenField and ExploreObject)
and anxious behavior (FindHome and WallFollow) for five
experimental trials. Each bar was the average proportion of
time spent in either curious (green bars) or anxious (red bars)
behaviors. The error bar denoted the standard error. Figure 9C
shows the behavior time-locked to the light event. The light event,
which occurred at approximately the halfway point in the trial,
was introduced to cause a stress response. After the light event,
the neurorobot’s behavior rapidly switched to anxious behavior
until roughly 60 s later when it became curious again. Variation
occurred due to different times of the light event and random
variations in other sensory events.

Similar to the rodent experiments, changing the serotonin
and dopamine levels affected the robot’s behavior. Increasing the
tonic serotonin levels in the model caused the robot to respond
to a stressful event such as a bright light to stay near the walls
or its charging station indefinitely. Increasing the tonic DA levels
resulted in more curiosity and risk taking. In effect, it took more
risks by venturing into the middle of the environment during

FIGURE 8 | Neurorobotic experimental setup for invigorated and withdrawn behavior. Experiments were run on an iRobot Create. (A) Robot arena. The picture in the

middle was a novel object for the robot to explore. (B) Wall follow behavior. (C) Find home behavior. Finding the robot’s docking station. (D) Open field behavior. (E)

Explore object behavior. Adapted from Krichmar (2013).
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FIGURE 9 | Neurorobot results for invigorated and withdrawn behavior. (A) A representative example of behavioral and neural responses in a single trial. The x-axis

shows time progression of the trial in seconds. The subplot for “Behavioral State” denotes the state of the robot across time. The subplots for “State Neurons,”

“Events,” “ACh/NE,” and “Neuromodulatory Neurons” show neural activity over the trial with pseudocolors ranging from dark blue (no activity) to bright red (maximal

activity). The subplot for “Tonic Neuromodulation” denotes the level of tonic activation contributing to DA and 5-HT neurons. (B) Proportion of time in Curious

(ExploreObject and OpenField) and Anxious (FindHome and WallFollow) behavior, averaged over 5 trials. Error bars represent standard error. (C) Similar to B except

the behaviors were time-locked to the Light event. Adapted from Krichmar (2013).
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or right after the stressful light event. Despite the simplicity
of the neural network model, the robot’s behavior looked quite
natural and similar to that of a mouse in the same situation.
Since the neuroroboticist was able to precisely control the
neuromodulation activity, the experiment could shed light on
neurological issues such as anxiety, depression, and obsessive
compulsive disorders.

4.3. Expected Uncertainty vs. Unexpected
Uncertainty
The world is full of uncertainty with which we must cope in
our daily lives. Sometimes the uncertainty is expected, forcing
us to increase our concentration on a task. Other times the
uncertainty is unexpected, forcing us to divert our attention.
How we deal with these types of uncertainty can be thought
of as a behavioral trade-off. Once again, neuromodulators
influence this trade-off of how we apply our attention. Yu
and Dayan (2005) suggested that cholinergic neuromodulation
tracks expected uncertainty (i.e., the known unreliability in
the environment), and noradrenergic neuromodulation tracks
unexpected uncertainty (i.e., observations that violate prior
expectations) The basal forebrain, where cholinergic neurons
reside, encodes the uncertainty of prior information and this
can modulate attention to different features. The locus coeruleus,
where noradrenergic neurons reside, is involved in cognitive
shifts in response to novelty. When there are strong violations
of expectations, locus coeruleus activity may induce a “network
reset” that causes a reconfiguration of neuronal activity that
clears the way to adapt to these changes (Bouret and Sara,
2005). In modeling and in experimental work, it has been shown
that the cholinergic system mediates uncertainty seeking (Naude
et al., 2016; Belkaid and Krichmar, 2020). Uncertainty seeking
is especially advantageous in situations when reward sources
are uncertain. The trade-off between expected and unexpected
uncertainty can also be observed in how we apply our attention
(Avery et al., 2012). Top-down attention or goal-driven attention,
which ramps up our attention to look for something, is related
to expected uncertainty. Bottom-up or stimulus-driven attention
occurs when a surprise or unexpected uncertainty diverts our
attention.

The Toyota HSR neurorobot experiment discussed in
Section 3.2 and shown in Figure 7 explored this trade-off
between expected and unexpected uncertainty by modeling the
cholinergic and noradrenergic system ability to regulate attention
(Zou et al., 2020). Because the user’s goals could be uncertain,
simulated cholinergic neurons tracked how likely the user would
be to choose any of these goals (i.e., expected uncertainty). When
the user interacting with the robot changed their goals (i.e.,
unexpected uncertainty), the noradrenergic system in the model
responded by resetting prior beliefs and rapidly adapting to the
new goal. Figure 10 shows how the robot correctly guessed the
user’s goals, which then drove attention to the object associated
with the goal (e.g., eat leads to attention to an apple or orange).
Note how quickly the noradrenergic (NE) system responded
to goal changes, which led to the cholinergic system (ACh)
increasing attention to objects related to the new goal. In this

way, the robot was able to monitor a trade-off between the known
and unknown uncertainties in the world to rapidly respond to
the user’s changing needs. Similar to the example in the schema
experiments described in Section 3.1, such goal-driven attention
could provide benefits for assistive robot technologies.

4.4. Exploration vs. Exploitation
During decision making or information gathering, there exists
a trade-off between exploration and exploitation in which it
is sometimes best to explore new options and other times
it is best to exploit opportunities that have paid off in the
past. A framework was presented in which neuromodulation
controlled the exploration/exploitation trade-off (Aston-Jones
and Cohen, 2005). When neuromodulators have tonic activity,
the animal’s behavior is exploratory and somewhat arbitrary.
However, when the neuromodulator has a burst of phasic activity,
the animal is decisive and exploits the best potential outcome at
the given time. The CARL robot described in Section 3.2 (see
Figure 6) incorporated tonic and phasic neuromodulation (Cox
and Krichmar, 2009). When there was tonic neuromodulation,
the robot randomly explored its environment by looking at
different colored panels. If one of the colors became salient due
to a reward or punishment signal, the robot’s neuromodulatory
systems responded with a phasic burst of activity. This
phasic neuromodulation caused a rapid exploitative response
to investigate the colored panel. It also triggered learning to
approach positive-value objects and avoid negative-value objects.

4.5. Foraging vs. Defending
Hormones are chemical messengers in the body that can
affect the brain and other organs. They regulate a number of
bodily functions such as body temperature, thirst, hunger, and
sleep. Like neuromodulators, hormones can be triggered by
environmental events and can broadly change neural activity.
For example, the hormone orexin regulates hunger levels. This
can lead to a behavioral trade-off in which animals foraging for
food are less willing to defend a territory (Padilla et al., 2016).
Foraging for food may cause an animal to leave its nest exposed
to predators. However, defending one’s territory requires energy
expenditure, which if prolonged requires food for replenishment.

Hormones can be modeled and embodied in robots to
explore interesting naturalistic tradeoffs (Canamero, 1997). For
example, Cañamero’s group modeled hormones that tracked a
robot’s health (Lones et al., 2018); one hormone was related to
the battery level, and another hormone monitored the robot’s
internal temperature, which was related to how much the robot
moved and the climate of its environment. The robot’s tasks
were to maintain health and gather food resources, which might
require aggressive action. This neurorobotics study demonstrated
how maintaining health requires behavioral trade-offs. Searching
for food increased the robot’s internal temperature and reduced
the robot’s battery level. Being aggressive to obtain food also
reduced battery levels. However, not searching for food would
lead to starvation. Modeling the secretion and decay of hormones
allowed the robot to maintain a comfortable energy and internal
temperature level and at times led to an aggressive behavior
of pushing objects away to get at food resources. However,
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FIGURE 10 | Expected and unexpected uncertainty neuromodulation in neurorobot experiment. Top chart. Robot’s response to guess the user’s goal. Center chart.

Noradrenergic (NE) neuron activity level. Bottom chart. Cholinergic (ACh) neuron activity level. There was an ACh neuron for each potential goal. Adapted from Zou

et al. (2020).

as the environments became more complex an epigenetic
system, which monitored and controlled the hormones, became
necessary for the robot’s comfort level to be maintained
satisfactorily. Their epigenetic system acted in a similar way
to the hypothalamus, a subcortical brain region that regulates
many of our bodily functions. Their experiments showed that
an epigenetic mechanism significantly and consistently improved
the robot’s adaptability and might provide a useful general
mechanism for adaptation in autonomous robots.

4.6. Stress vs. Calm
In his book Why Zebras Don’t Get Ulcers, Robert Sapolsky
describes how a zebra, which is calmly grazing, responds when
it encounters a lion (Sapolsky, 2004). The zebra quickly runs
away from this stressful situation. Once clear of danger, the
zebra is calm again. This fight-or-flight response is mediated by
the stress hormones known as glucocorticoids, which increase
blood flow and awareness. However, this stress response does
come at the expense of regulating long-term health and short-
termmemory (Chiba and Krichmar, 2020). Unlike zebras, people
sometimes remain in a constant state of stress due to elevated
glucocorticoids, which can cause damage to the hippocampus
and memory.

Although there has been little work to date on neurorobots
that regulate their stress level, downregulation of behavior could
be useful for autonomous systems far from power sources, which
might have a stress-like response to carry out a mission and then
switch to a low-power calm mode after the mission has been
accomplished. In an interesting paradigm that explores the stress
vs. calm trade-off, experiments have shown that rats appear to
be capable of empathy and prosocial behavior (Ben-Ami Bartal
et al., 2011). In one study a rat was trapped in a cage and clearly
stressed. Another rat observing this behavior became stressed,
too. The observing rat, feeling bad for its trapped friend, found a
lever that opened the cage and released the trapped rat. This study
suggested that rats can feel another’s pain (i.e., feel empathy) and
are willing to act on the other’s behalf (i.e., can be prosocial).

In a robotic variation of the empathy experiment, a rat
was trapped in a cage interacted with two different robots,
one of which was helpful and opened the cage and the
other of which was uncooperative and ignored the trapped rat
(Quinn et al., 2018). Interestingly, the rat remembered who
its robot friends were. When the helpful robot was trapped,
the rat freed that robot but did not free the robot that
was uncooperative. This could have implications for rescue
robotics. A robot that can identify and relieve stress or
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anxiety could have applications for robotic caretakers or for
disaster relief.

4.7. Social vs. Solitary
Hormones can regulate a trade-off between social bonding and
independence. Estrogen, progesterone, oxytocin, and prolactin
can influence a number of neural systems to ensure maternal
nurturing, bonding, and protection of young (Rilling and Young,
2014). In particular, oxytocin has been shown to regulate social
and paternal bonding (Young and Wang, 2004). An interesting
example of oxytocin’s effect on bonding has been observed in
voles. Whereas, prairie voles are polygamous and the male does
not assist in the nurturing of young pups, meadow voles are
monogamous and both parents participate in the pup rearing.
Interestingly, meadow voles have more oxytocin receptors than
prairie voles. Furthermore, inhibiting oxytocin prevents pair
bonding in meadow voles (Young and Wang, 2004). However,
social bonding requires devoting energy to another, possibly at
the expense of one’s own health. Therefore, it could be argued that
there should be a balance between social and solitary behavior.

Neurorobot experimenters have investigated the balance
between social and solitary behavior. By simulating social
hormones, Cañamero’s group investigated attachment bonds
between a robot and a “caregiver” (Canamero et al., 2006;
Hiolle et al., 2009, 2012). Although they did not explicitly model
oxytocin, their system did simulate the type of bonding observed
between a parent and a child. The robot found a good balance
between asking the caregiver for help and learning on its own.
Too much interaction with a caregiver led to stress and rejection
by the robot. Not enough interaction with a caregiver resulted
in isolation. As with humans, a proper balance is important for
learning and development.

5. DISCUSSION

In this article, we discussed a number of principles to consider
when designing neurorobots and experiments using robots to test
brain theories. These principles are strongly inspired by Pfeifer
and Bongard’s design principles for intelligent agents. We build
upon these design principles by grounding them in neurobiology
and by adding principles based on neuroscience research. We
highlight the importance in neurorobotics for designing systems
that are reactive, adaptive, predictive, able to manage behavioral
tradeoffs, and capable of learning from experience.

As summarized in Figure 11, the principles fall into three
broad categories: 1) Embodiment and reactions. These are
reactive, reflexive and rapid responses. They are often carried
out without involving the central nervous system. Rather they
emerge through the body’s interaction with the environment
or are handled by the peripheral nervous system and reflex
arcs involving the spinal cord. They can have short-term
adaptive properties and lead to behavioral repertoires. 2)
Adaptive behavior. Biological organisms have the ability to
learn continually over the lifetime of the organism. A major
property of the brain is its plasticity. In particular, hippocampal
interactions with the cortex lead to long-term contextual
memory. Neuromodulatory systems can signal value, which

shapes learning and triggers adaptive behavior. Another hallmark
of the brain is its ability to predict outcomes. This requires the
construction, maintenance and updating of memory systems. 3)
Behavioral trade-offs. To survive in a dynamic world, organisms
must make decisions based on their needs and environmental
context. Oftentimes, these needs are a trade-off between opposing
motivations (e.g, taking a risk for a reward vs. playing it safe
to avoid punishment). These trade-offs can lead to interesting
behavior. Many of these trade-offs are regulated by sub-cortical
neuromodulator and hormone levels.

5.1. Importance of Low-Level Processes
and Model Organisms
Although the examples in this article focused primarily on
vertebrates, the principles could be applied to modeling other
organisms. Studies of the insect visual system have led to
elegant, efficient solutions for robot navigation that could
be deployed on neuromorphic hardware (Galluppi et al.,
2014; Schoepe et al., 2021). The emphasis on vertebrates
and especially the mammalian brain has been data-driven
in part. There are numerous studies of rodents, non-human
primates and humans that have provided modelers with
anatomical, behavioral, and neurophysiological data to make
their simulations more biologically accurate. However, the
complexity of these organisms and their brains makes holistic
modeling difficult. A promising avenue may be to study
organisms that have less complex brains and behaviors. Recent
work on model organisms such as drosophila and the nematode
C. Elegans are providing rich data sets for neuroboticists (Sarma
et al., 2018; Scheffer et al., 2020). The OpenWorm project (Sarma
et al., 2018) provides the biological data and the simulation
tools, including a robotics sub-project, to create interesting
neurorobots that followmany of the design principles introduced
here.

There is a tendency in neurorobotics, which is a subarea
of cognitive robotics (Cangelosi and Asada, 2022), to model
cognitive functions such as attention, decision-making, planning,
etc. Although modeling human cognition may be an ultimate
goal for the field, many of the design principles introduced here
concentrate on low-level processes such as how the body shapes
behavior, motivations, homeostatic control of body functions
to name a few. As we emphasized in this paper and in Chiba
and Krichmar (2020), many of these processes are driven by
sub-cortical brain regions and neurochemicals. Their interaction
with the environment and bodily functions lead to interesting
behavior that could be described as cognitive. Early examples
of neurorobots and behavior-based robots demonstrated that
intelligent behavior could arise from interactions between the
robot and the environment without complex nervous systems
or control systems (Braitenberg, 1986; Brooks, 1991; Holland,
2003). More work needs to be done to first build a foundation
of these low-level processes, upon which higher-order cognitive
processes can be added. Moreover, each cognitive model should
carefully choose an appropriate level of abstraction and state
assumptions about the lower level processes that support
the model.
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FIGURE 11 | Summary of neurorobot design principles.

5.2. Next Steps and Future Directions
The principles of neurorobotics introduced here can address
major challenges facing artificial intelligence and robotics
research. In general, neurorobotics explores these challenges
in embodied settings, providing a fresh perspective that
extends beyond simulations and algorithms performed on
computers. Neurorobotics incorporates features of the brain
that may begin to address lifelong continual learning, efficient
computing, operating on scarce knowledge, and human-
computer interaction.

We expect that new neuroscience discoveries will further
inform neurorobots, and vice versa. Progress in learning
and memory may lead to applications capable of continual
learning. Advances in our understanding of multimodal sensory
systems may be incorporated into neurorobotics that not
only classify but also understand the meaning of what they
are perceiving. Given the recent achievements of artificial
intelligence, hybrid systems combining machine learning and
deep learning with neurorobotic design principles could lead to
interesting applications in autonomous driving, assistive robots,
and manufacturing.

In the intermediate term, we believe that neurobiological
concepts in learning and memory, navigation, decision making,
social behavior, and more, will have found their way into
practical applications. Progress in neuromorphic computing and

algorithms will lead to applications that can run at the edge
with little human intervention. This may lead to advances in
search and rescue robots and in robots capable of autonomously
exploring unknown environments such as the deep sea or
extraterrestrial planets.

In the long-term we hope that neurorobotics will achieve
more general intelligence rather than being designed for specific
tasks. In fact the delineation between conventional robotics and
neurorobotics may be blurred, with all robots possessing some
neurobiologically inspired aspects. With the rapid advances in
computing and other technologies, it is hard to predict far
into the future. However, we do believe that neurorobotics and
cognitive machines, in some form, will seamlessly be a part of
our everyday lives.

6. CONCLUSION

In closing, we believe that neurorobots that follow many
of the design principles discussed in this article will have
more interesting, naturalistic behavior. This not only
allows the robot to be a better model for understanding
the complex behaviors observed in biology, it also
could lead to better robots that show more intelligence
and that are more natural in their interactions with
other agents.
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