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ABSTRACT OF THE DISSERTATION

Discovering Data-Driven Actionable Intelligence

for Clinical Decision Support

by

Ahmed M. Alaa H. H. Ibrahim

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2019

Professor Mihaela van der Schaar, Chair

The rapid digitization of healthcare has led to a proliferation of clinical data, manifesting through

electronic health records, biorepositories, and disease registries. This dissertation addresses the

question of how machine learning (ML) techniques can capitalize on these data resources to assist

clinicians in predicting, preventing and treating illness. To this end, we develop a set of ML-

based, data-driven models of patient outcomes that we envision to be embedded within systems of

decision support deployed at different stages of patient care.

We focus on two broad setups for analyzing clinical data: (1) the cross-sectional setup wherein

data is collected by observing many patients at a particular point of time, and (2) the longitudinal

setup in which repeated observations of the same patient are collected over time. In both setups,

we develop models that are: (a) capable of answering counter-factual questions, i.e., can predict

outcomes under alternative treatment scenarios, (b) interpretable in the sense that clinicians can

understand how the model predictions for individual patients are issued, and (c) automated in the

sense that they adaptively tune their modeling choices for the dataset at hand, with little or no need

for expert intervention. Models satisfying these three requirements would enable the realization of

actionable, transparent and automated decision support systems that operate symbiotically within

existing clinical workflows.

Our technical contributions are multi-faceted. In the cross-sectional data setup, we develop ML

models that fulfill the aforementioned requirements (a)-(c) as follows. We start by developing a
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comprehensive theoretical framework for causal inference, whereby we quantify the limits to how

well ML models can recover the causal effects of counter-factual treatment decisions on individual

patients using observational (retrospective) data, and we build ML models — based on Gaussian

processes — that achieve these limits. Next, we develop a novel symbolic meta-modeling approach

for interpreting the predictions of any ML-based prognostic model by converting the “black-box”

model into an understandable symbolic equation that relates patients’ features to their predicted

outcomes. Finally, we develop a model selection approach based on Bayesian optimization that

enables the automation of predictive and causal modeling. In the longitudinal data setup, we

develop a novel deep probabilistic model for sequential clinical data that satisfies requirements (a)-

(c) by capitalizing on the strengths of both state-space models and deep recurrent neural networks.

To demonstrate the utility of our models, we evaluate their performance on various real-world

datasets for cohorts of breast cancer, cardiovascular disease and cystic fibrosis patients. We show

that, compared to existing clinical scorers, our ML-based models can improve the accuracy of pre-

dicting individual-level prognoses, guide treatment decisions for individual patients, and provide

insights into underlying disease mechanisms.
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CHAPTER 1

Introduction

Current advances in health information technology — including digital patient records and data

management tools, wearable devices, efficient methods for genomic sequencing — are expected to

drastically increase the amount of data collected for individual patients through electronic health

records (EHR), biorepositories, and disease registries. The proliferation of health data is evident

by the dramatic increase in the rate of adoption of EHR technologies in healthcare facilities all

over the developed world; in 2015, 84% of hospitals in the US adopted an EHR system, which

represents a 9-fold increase since 2008 [DDS15].

The availability of large-scale data resources that keep track of patients’ features and health

outcomes paves the way for more individualized approaches to patient care, whereby examples

and experiences encoded in data for previous patients are used to unravel disease phenotypic di-

versity. To achieve this, data by itself is not sufficient — we need models that learn from this

data how prognoses would vary among future patients based on their individual traits. In this dis-

sertation, we use machine learning (ML) to develop such models — we envision our models as

being embedded within systems of decision support deployed at different stages of care to assist

clinicians in predicting, preventing and treating illness.

In this Chapter, we lay out our vision for applying ML to healthcare data, and summarize the

contributions presented in each of the subsequent chapters. Section 1.1 provides an overview of
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the type of problems and clinical setups that we address throughout the dissertation, and coins the

notion of a “typical ML modeling pipeline” — the basic modeling steps and requirements that are

shared among all of the problems under consideration. In Section 1.2, we flesh out the research

vision laid out in Section 1.1, and specify the technical contributions of each chapter in the light of

this vision.

1.1 Machine Learning for Individualized Medicine

Throughout this dissertation, we address the two main setups for ML-based modeling of clinical

data: (1) the cross-sectional setup in which data is collected by observing many patients at a

particular point of time [Lev06], and (2) the longitudinal setup in which repeated observations of

the same patient are collected over time [KF13]. In Chapters 2, 3 and 4, we develop techniques that

cover various aspects of ML modeling in the cross-sectional setup, whereas in Chapter 5, we tackle

the longitudinal setup by developing a comprehensive model for disease trajectories. In Chapters

6, 7 and 8, we delve deeper into the clinical application of the ML models developed in earlier

chapters by applying these models to data from large-scale cohorts of breast cancer, cardiovascular

disease and cystic fibrosis patients.

1.1.1 Machine Learning Modeling Pipelines

Both the cross-sectional and longitudinal setups share a set of modeling stages that we call “the

ML modeling pipeline”. A high-level abstraction of the typical ML modeling pipeline is illustrated

in Figure 1.1. In what follows, we describe each stage of the pipeline and its significance in both

the cross-sectional and longitudinal setups, then in Section 1.1.2 we provide a brief overview on

how the dissertation is organized around the different stages of the pipeline.
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Stage 1: Modeling Choices

The first stage of the pipeline is concerned with making modeling choices. Modeling choices

comprise the broad, preset assumptions on the nature of the model used to fit the data — for in-

stance, in the cross-sectional setup where we might seek to fit a regression model to predict patient

outcomes based on their variables, potential modeling choices would include: whether the model

should be a simple linear model, or a complex non-linear one, and whether interactions between

patient variables should be accounted for [BH03]. In the longitudinal setup, we might choose to fit

a “memoryless” model that does not take temporal correlations between data samples into account,

or a model that does [MSA11]. The first stage of the pipeline is crucial because it sets an upper

bound on how well the ML model can accurately capture the data.

Because traditional epidemiological research had a relatively few number of possible models

at its disposal, the first stage of the modeling pipeline was typically overlooked. That is, most

standard cross-sectional studies resort to either a Cox regression or a logistic regression model, and

further complexity is induced in these models by manually adding non-linear effects and interaction

terms that are exogenous to the model itself [CSM08]. However, when considering an ML-based

approach, the space of possible modeling choices is virtually unbounded. ML modeling choices do

not only involve a choice of the basic model structure (e.g., Random forests, neural networks, etc),

but also a choice of the hyper-parameters of these basic model structures (e.g., number of trees in a

random forest, number of layers in a neural network, etc.). Naı̈ve or arbitrary modeling decisions

can seriously hinder the accuracy of an ML model, because different ML model structures and

hyper-parameters can lead to drastically different predictive accuracy.

Central to our proposed ML models is the idea of automation. In Chapters 4 and 5, we de-
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Figure 1.1: Illustration for the typical machine learning modeling pipeline.

velop methods for making modeling choices in a completely data-driven fashion for both the

corss-sectional and longitudinal setups, without the need for manual tuning or expert interven-

tion. Through these automated methods, the ML system is able to craft the model structure by

itself so that it best fits the dataset at hand, thereby guarding against naı̈ve modeling decisions that

may bottleneck the model’s predictive accuracy.

Stage 2: Machine Learning Modeling

At the core of the modeling pipeline is the actual ML model being used to make predictions. For

simple supervised prediction tasks, such as predicting a patient’s risk of cardiovascular disease or

diabetes based on their age and lifestyle-related variables, one can simply use standard off-the-

shelf regression or classification models [WRK17]. However, many clinical questions cannot be

simply reduced to a straightforward prediction problem. As we discuss in detail in Chapter 2, in

many cases we would be interested in answering questions such as “What is the effect of a given

treatment on an individual patient?”, “What is the best treatment option for the patient at hand?”,

or “Would this patient have better outcomes had they received a different medication?” For this

type of questions, the answer requires inferring the causal effects of interventions, which in turn

requires inferring the patient outcomes in counter-factual scenarios that are not observed in the
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data [MW15]. Thus, our core ML models must be able to carry out causal inference tasks and not

just predictive inference ones.

The ML modeling stage should account only for a broad range of clinical questions, but also

for different data formats. In the cross-sectional setup, data is simply a static array of variables

characterizing the patient state at a given point of time, whereas in the longitudinal setup, data is

(irregularly) collected for every patient over time, and each patient may have a different number of

observations.

Stage 3: Model Interpretation

Once the appropriate modeling choices have been made (stage 1), and a model has been trained

using the available data (stage 2), we have a functioning ML pipeline in the pragmatic sense —

i.e., we have a model that makes the predictions that we are interested in. However, in almost all

clinical setups, this is not enough. An accurate but inscrutable ML model may fail to gain patient

and clinician trust. In fact, the conspicuous reluctance of many clinical researchers and epidemi-

ologists to use ML models is often attributed to these models’ “black-box” nature, which hinders

their transparency and interpretability [GMR19].

Because decision support systems based on ML models will be used to inform critical decision-

making, clinicians and patients must be able to understand what these models have learned from

data and how they makes their predictions. Various regulatory committees have even listed the

transparency and intelligibility of prognostic models as a requirement for their deployment [KHA16].

The final stage of the ML pipeline thus comprises an interpretation method that enables the users

of the ML model to understand its predictions. This stage is inextricable from the preceding stages

— the appropriate kind of model interpretation depends on the ML model being used and format
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of the data used to train this model.

1.1.2 Outline of the Dissertation

The rest of this dissertation is organized around the ML pipeline in Figure 1.1. For both the cross-

sectional and longitudinal setups, we develop models and algorithms that belong in different stages

of the ML pipeline. The dissertation is divided into two parts: the first part (Chapters 2-5) focuses

on our technical contributions with respect to developing ML tailored to healthcare applications,

and the second part (Chapters 6-8) applies these methods to real-world clinical data. In what

follows, we provide a sneak peek into each of the upcoming chapters, and explain how it relates to

the high-level vision in Figure 1.1.

1.1.2.1 Models for Cross-sectional Data

Chapters 2, 3 and 4 deal with the 3 stages of the ML pipeline in the cross-sectional setup. In this

setup, we examine the relationship between a health outcome Y (e.g., prevalence of a disease, sur-

vival outcomes, etc) and patient features X by taking a static “snapshot of a population” at a single

point of time. (Note that our notion of a “cross-sectional setup” corresponds to what is known

in the epidemiological literature as observational studies, which covers cohort, cross-sectional,

and case-control studies.) Chapter 2 starts off with the core component of the pipeline (stage 2),

where we develop a comprehensive framework for ML-based models for causal effect estimation.

Chapter 3 proceeds by providing a novel symbolic approach for interpreting the predictions of any

black-box ML model (stage 3). In Chapter 4, we conclude the ML pipeline for cross-sectional data

by developing an algorithm for automating the predictive and causal modeling choices.
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1.1.2.2 Models for Longitudinal Data

In Chapter 5, we study the longitudinal setup. In this setup, we are presented sequential data of

the form X1, . . ., Xt collected for patients who were followed up over an extended period of time.

When dealing with longitudinal data, our goal is typically to capture disease trajectories in order to

predict patient prognoses in a dynamic fashion and understand the underlying disease mechanisms

and dynamics. Unlike in the cross-sectional setup where, in Chapter 5 we do not analyze each

stage of the pipeline separately, but rather develop a single comprehensive model for sequential

data that executes all stages of the pipeline jointly.

1.1.2.3 Clinical Application

In Chapters 6, 7, and 8, we present a summary of the clinical studies that we conducted based on

the ML models developed in earlier chapters. In these studies, we applied our models to cross-

sectional data from large-scale cohorts of breast cancer, cardiovascular disease and cystic fibrosis

patients, and longitudinal data from the UK cystic fibrosis registry.

1.2 Summary of Technical Contributions

In what follows, we present a brief summary of the technical contributions of each of the upcoming

chapters with respect to existing literature.

Chapter 2 Contributions

In Chapter 2, we consider the problem of using ML to estimate the causal effect of a treatment on

individual patients on the basis of retrospective, observational data (causal modeling in stage 2 of
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the pipeline). This problem differs fundamentally from supervised learning since we never observe

the treatment effects in the observational data — we only observe the outcomes of a patient with or

without the treatment, but never both. Despite a variety of recently proposed algorithmic solutions

to this problem, a principled guideline for building estimators of treatment effects using machine

learning algorithms is still lacking. In this chapter, we provide such guidelines by characterizing

the fundamental limits of estimating heterogeneous treatment effects, establishing conditions under

which these limits can be achieved, and building a practical algorithm for estimating treatment

effects based on Gaussian processes.

Chapter 3 Contributions

In this Chapter, we tackle stage 3 of the pipeline: understanding the predictions of a general ML

model. To this end, we introduce the symbolic metamodeling framework — a general methodology

for interpreting predictions by converting “black-box” models into “white-box” functions that are

understandable to human subjects. A symbolic metamodel is a model of a model, i.e., a surrogate

model of a trained (machine learning) model expressed through a succinct symbolic expression

that comprises familiar mathematical functions and can be subjected to symbolic manipulation.

We parameterize metamodels using Meijer G-functions — a class of complex-valued contour in-

tegrals that depend on real-valued parameters, and whose solutions reduce to familiar algebraic,

analytic and closed-form functions for different parameter settings. This parameterization enables

efficient optimization of metamodels via gradient descent, and allows discovering the functional

forms learned by a model with minimal a priori assumptions. We show that symbolic metamod-

eling provides a generalized framework for model interpretation many common forms of model

explanation can be analytically derived from a symbolic metamodel.
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Chapter 4 Contributions

This Chapter addresses stage 1 of the pipeline. We developed an algorithm for automating the

design of predictive and causal modeling tailored for clinical prognosis. Our algorithm optimizes

ensembles of model configurations efficiently using a novel batched Bayesian optimization (BO)

algorithm that learns a low-dimensional decomposition of the models’ high-dimensional hyper-

parameter space in concurrence with the BO procedure. This is achieved by modeling the models’

performances as a black-box function with a Gaussian process prior, and modeling the “similari-

ties” between the pipelines’ baseline algorithms via a sparse additive kernel with a Dirichlet prior.

For causal models, we propose an influence function-based approach to estimate their accuracy.

Chapter 5 Contributions

Chapter 5 focuses on the longitudinal setup, where we develop a sequential model for predict-

ing patient outcomes and understanding disease dynamics. Existing models provide the patient

with pragmatic (supervised) predictions of risk, but do not provide the clinician with intelligi-

ble (unsupervised) representations of disease pathology. In this Chapter, we develop the attentive

state-space model, a deep probabilistic model that learns accurate and interpretable structured

representations for disease trajectories. Unlike Markovian state-space models, in which state dy-

namics are memoryless, our model uses an attention mechanism to create “memoryful” dynamics,

whereby attention weights determine the dependence of future disease states on past medical his-

tory. To learn the model parameters from medical records, we develop an inference algorithm that

jointly learns a compiled inference network and the model parameters, leveraging the attentive

representation to construct a variational approximation of the posterior state distribution.
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Part I

Machine Learning for Individualized

Medicine
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CHAPTER 2

Estimating Treatment Effects from Observational Data

We start off with the core component of the ML pipeline: ML modeling. There is already a wide

range of well-established, off-the-shelf predictive models, hence we focus on causal modeling.

The problem of estimating heterogeneous (individualized) causal effects of a treatment from ob-

servational data is central in public health and drug development [FTR11]. The increasing avail-

ability of observational data in these domains has encouraged the development of various ma-

chine learning algorithms tailored for inferring treatment effects using observational data (e.g.

[LF17, WA17, SJS17, AS17]). Due to the peculiarity of the treatment effect estimation problem,

these algorithms address various modeling aspects that are foreign to standard supervised learning

setups; such aspects include ways to handle sample selection bias [Hec77], and ways to model

treated and untreated data points. Despite a variety of recent algorithmic approaches, principled

guidelines for model design are lacking.

In this Chapter, we identify guiding principles for designing practical treatment effect estima-

tion algorithms in the context of Bayesian nonparametric inference, and propose one an algorithm

that follows these guidelines. We set these guidelines by characterizing the fundamental limits

of estimating treatment effects, and studying the impact of various common modeling choices on

the achievability of those limits. In what follows, we provide a brief technical background for the

treatment effect estimation problem, along with a summary of our contributions.
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2.1 Background and Summary of Contributions

Our analysis hinges on the Rubin-Neyman potential outcomes model [Rub05]. That is, we consider

an observational dataset with a population of subjects, where each subject i is endowed with a d-

dimensional feature Xi ∈ X . We assume that X = [0, 1]d, but most of our results hold for

general compact metric spaces (bounded, closed sets in Rd). A treatment assignment indicator

Wi ∈ {0, 1} is associated with subject i; Wi = 1 if the treatment under study was applied to

subject i, andWi = 0 otherwise. Subject i’s responses with and without the treatment (the potential

outcomes) are denoted as Y (1)

i and Y (0)

i , respectively. Treatments are assigned to subjects according

to an underlying policy that depends on the subjects’ features, i.e. Wi 6⊥⊥ Xi. This dependence is

quantified via the conditional distribution p(x) = P(Wi = 1|Xi = x), also known as the propensity

score of subject i [RR84]. The response Y (Wi)

i is the “factual outcome” which we observe in the

data, whereas Y (1−Wi)
i is the unrealized “counterfactual outcome” [BPQ13]. An observational

dataset Dn comprises n samples of the form:

Dn = {Xi,Wi, Y
(Wi)

i }ni=1 (2.1)

The causal effect of the treatment on subject i with a feature Xi = x is characterized through

the conditional average treatment effect (CATE) function T (x), which is defined as the expected

difference between the two potential outcomes [Rub05], i.e.

T (x) = E
[
Y (1)

i − Y
(0)

i |Xi = x
]

(2.2)

Our goal is to identify a set of guiding principles for building estimators of the CATE T (x) using

samples from Dn. Throughout this Chapter, we will assume that the density dP(Xi,Wi, Y
(0)

i , Y (1)

i )

supports the assumptions of unconfoundedness and overlap, which are necessary for causal identi-

fiability and consistency. Unconfoundedness requires that (Y (0)

i , Y (1)

i )⊥⊥ Wi |Xi, whereas overlap
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requires that 0 < p(x) < 1 [RR84]. Selection bias occurs in Dn since the distribution of the

treated/control subjects does not match that of the overall population.

In order to come up with principled guidelines for building estimators of T (x), we charac-

terize the fundamental (information-theoretic) limits of estimating the CATE using samples from

Dn, and identify the modeling choices that would allow achieving those limits. To this end, in

Section 2.3 we tackle the following question: what are the fundamental limits of CATE esti-

mation? We answer this question by deriving the optimal minimax rate for estimating T (x) using

Dn. Interestingly, it turns out that the optimal rate does not depend on selection bias, but rather

on the smoothness and sparsity of the more “complex” of the functions E[Y (0)

i |Xi = x ] and

E[Y (1)

i |Xi = x ]. We focus our analysis on Bayesian nonparametric methods, since they have the

appealing properties of being robust to misspecification and are accessible for theoretical analysis.

Our analysis reveals that the relative importance of the different modeling aspects vary with

the sample size. In particular, in the large-sample regime, selection bias does not pose a serious

problem, and the model’s performance would be mainly determined by its structure, i.e. the

way the outcomes Y (0)

i and Y (1)

i are modeled, and the impact of that on variable selection and

hyperparameter tuning. On the contrary, selection bias can seriously harm a model’s generalization

performance in small-sample regimes. A good model should then be carefully designed so that it

operates well in both regimes by possessing the right model structure that would allow learning at

a fast rate, and the right model selection (hyperparameter optimization) scheme that would account

for selection bias.

In Section 2.5, we build a practical CATE estimation algorithm guided by the results of the

analyses in Section 2.3. We model the outcomes Y (0)

i and Y (1)

i using a Gaussian process with a non-

stationary kernel that captures the different relevant variables and different levels of smoothness
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of the functions E[Y (0)

i |Xi = x ] and E[Y (1)

i |Xi = x ]. We prove that this model structure can

achieve the optimal rate of CATE estimation when tuned with the right hyperparameters. We

also propose a doubly-robust hyperparameter optimization scheme that accounts for selection bias

in small-sample regimes, without hindering the model’s minimax-optimality in the large sample

limit. We show that our algorithm outperforms state-of-the-art methods using a well-known semi-

synthetic simulation setup.

2.2 Related Work

Very few works have attempted to characterize the limits of CATE estimation, or study the im-

pact of different modeling choices on the CATE estimation performance in a principled man-

ner. [AS18c] characterized the asymptotic “information rates” for different CATE estimators, but

provided no clear guidelines on practical model design or an analysis of the impact of sample se-

lection bias. The study in [KSB17] was rather empirical in nature, comparing the performance of

different regression structures for the potential outcomes while ignoring selection bias. A similar

study, but focusing only on random forest models, was conducted in [LSF17].

Most of the previous works have been algorithmic in nature, focusing mainly on devising algo-

rithms that correct for selection bias (e.g. [JSS16,YJS18a,WA17,LF17]). Some of these works cast

the selection bias problem as a problem of covariate shift [SKM07], and use techniques from rep-

resentation learning to learn feature maps that balance the biased data (e.g. [LF17,SJS17,JSS16]).

However, those works report much bigger improvements in CATE estimation when changing their

model structure (e.g. architecture of a neural network), as compared to the gains attained by only

accounting for bias (see the comparisons between the TARnet and BNN models in [SJS17]). Sim-

ilar observations are reported in [AS17,AJS18], where the selection of the model structure seemed
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to influence the achieved CATE estimation performance even when selection bias is not accounted

for. However, none of these works offer a discussion on whether selection bias is actually the

main challenge in CATE estimation, or whether the outcomes’ model structure may have a bigger

influence on performance.

In contrast to the works above, in this Chapter we do not attempt to develop a model by presup-

posing that particular modeling aspects are of greater importance than others, but rather provides

a framework for understanding the limits on the achievable performance, and how different mod-

eling aspects influence a model’s chance of achieving those limits. We use our analyses to both

reflect on the modeling choices made in the works above, and also devise a novel, principled CATE

estimation algorithms that achieves the fundamental performance limits.

2.3 Estimating CATE: Problem Setup

2.3.1 Potential Outcomes and Propensity Score

We consider the following random design regression model for the potential outcomes:

Y (w)

i = fw(Xi) + εi,w, w ∈ {0, 1}, (2.3)

where εi,w ∼ N (0, σ2
w) is a Gaussian noise variable. It follows from (2.2) that the CATE is

T (x) = f1(x)−f0(x). The response surfaces f1(x) and f0(x) correspond to the subjects’ responses

with and without the treatment. We assume that fw(.) : X → R, w ∈ {0, 1}, is a totally bounded

function that lives in a space of “smooth” or “regular” functions, with an unknown smoothness

parameter αw. We use Hölder balls for concreteness, although our results extend to other function

spaces. A function fw(.) lies in the Hölder ballHαw , with a Hölder exponent αw > 0, if and only if

it is bounded in sup-norm by a constant C > 0, all its partial derivatives up to order bαwc exist, and
15



all its partial derivatives of order bαwc are Lipschitz with exponent (αw − bαwc) and constant C.

The Hölder exponents quantify the complexities of f0 and f1, and hence the hardness of estimating

T (x) would depend on α0 and α1.

2.3.2 Bayesian Nonparametric Inference

Nonparametric inference is immune to misspecification of the outcomes’ and propensity models

[Ken18], and hence we focus on Bayesian nonparametric methods for inferring T (.) on the basis

of Dn. Bayesian inference entails specifying a prior distribution Π over f1(.) and f0(.), i.e.

f0, f1 ∼ Π(ϕ̄β0 , ϕ̄β1), (2.4)

where ϕ̄βw = {ϕkβw}
∞
k=1, w ∈ {0, 1}, are complete orthonormal bases (indexed by a parameter

βw > 0) with respect to Lebesgue measure in X , fw =
∑

k f̄
k
w ·ϕkβw , and f̄kw = 〈fw, ϕkβw〉. Thus, for

given bases ϕ̄β0 and ϕ̄β1 , Π places a probability distribution on the projections {f̄kw}k. Potential

choices for the basis ϕ̄βw that would give rise to implementable Bayesian inference algorithms

include regular wavelet basis [Zha97], radial basis for a reproducing kernel Hilbert space (RKHS)

[VZ08b], etc. In general, βw would determine the smoothness of the function space spanned by

ϕ̄βw .

2.3.3 Towards Principled CATE Estimation

To evaluate the predictive accuracy of the Bayesian inference procedure, we analyze the “frequen-

tist” loss of point estimators T̂ (x) induced by the Bayesian posterior dΠn(T (x) | Dn), assuming

that Dn is generated based on fixed, true response surfaces f1(x) and f0(x). (This type of analysis

is sometimes referred to as the “Frequentist-Bayes” analysis [SV15].) In particular, we quantify

the performance of a point estimator T̂ (x) = δ(dΠn(T (x) | Dn)) by its squared-L2(P) error, which
16



was dubbed the precision of estimating heterogeneous effects (PEHE) in [Hil11], and is formally

defined as:

ψ(T̂ ) , E ‖ T̂ − T ‖2L2(P), (2.5)

where L2(P) is the L2 norm with respect to P(X), i.e. ‖f(x)‖2
L2(P) =

∫
f 2(x) dP(X = x).

The “fundamental problem of causal inference” is that for every subject i in Dn, we only

observe the factual outcome Y (Wi)

i , whereas the counterfactual Y (1−Wi)
i remains unknown, which

renders empirical evaluation of the PEHE in (2.5) impossible. Moreover, Dn would generally

exhibit sample selection bias [Hec77], because the treatment assignment mechanism (decided

by p(x)) creates a discrepancy between the feature distributions of the treated/control population

and the overall population. Thus, standard supervised learning approaches based on empirical

risk minimization cannot be used to learn a generalizable model for the CATE from samples in

Dn. This gives rise to the following fundamental modeling questions that are peculiar to CATE

estimation:

• [Q1]: How should the treatment assignment Wi be incorporated into the learning model?

• [Q2]: How should selection bias be handled?

Adequate answers to [Q1] and [Q2] would provide guidelines for selecting the priorΠ(ϕ̄β0 , ϕ̄β1).

Addressing the modeling questions above requires a profound understanding of the fundamental

limits of CATE estimation, in addition to an understanding of the impact of different modeling

choices on the achievability of such limits. The next Sections provide principled answers to [Q1]

and [Q2] by addressing the following, more fundamental questions:

• Section 2.4: What are the limits on the performance achieved by any CATE estimator?

• Section 2.5: How can we build practical algorithms that can achieve these limits?
17



2.4 Fundamental Limits of CATE Estimation

In this Section, we establish an information-theoretic limit on the performance of any CATE

estimator. In what follows, we use the standard Bachmann-Landau order notation, and write

a ∨ b = max{a, b}, a ∧ b = min{a, b}. The notation a . b means that a ≤ Cb for a univer-

sal constant C, and � denotes asymptotic equivalence.

2.4.1 Optimal Minimax Rates

The “hardness” of a nonparametric estimation problem is typically characterized by its minimax

risk [Sto82], i.e. the minimum worst case risk achieved by any estimator when the estimand is

known to live in a given function space [YT15]. In the following Theorem, we establish the op-

timal minimax rate for the PEHE risk in terms of the complexity of the response surfaces f0 and f1.

Theorem 1. Suppose that X = [0, 1]d, and that fw depends on a subset of dw features with

dw ≤ min{n, d} for w ∈ {0, 1}. If f0 ∈ Hα0 and f1 ∈ Hα1 , then the optimal minimax rate is:

inf
T̂

sup
f0,f1

ψ(T̂ ) � n
−
(
1+ 1

2

(
d0
α0
∨ d1
α1

))−1︸ ︷︷ ︸
CATE estimation

∨ log
(
dd0+d1

d
d0
0 d

d1
1

) 1
n

.︸ ︷︷ ︸
Variable selection

The above holds for any p(.) ∈ Hαp , αp > 0. �

In Theorem 1, the supremum is taken over αw-Hölder balls (w ∈ {0, 1}), whereas the infimum

is taken over all possible Bayesian estimators. The minimax rate in Theorem 1 corresponds to the

fastest rate by which any (Bayesian) estimator T̂ (.) can approximate the CATE function T (.).

The proof of Theorem 1 uses information-theoretic techniques based on Fano’s method to derive
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algorithm-independent estimation rates [YB99]. In the following set of remarks, we revisit [Q1]

and [Q2] in the light of the results of Theorem 1.

How can Theorem 1 help us address [Q1] and [Q2]?

. Remark 1 (Smoothness and sparsity)

Theorem 1 says that estimating CATE is as hard as nonparametric regression for functions

with additive sparsity [RYW09, YT15]. The minimax rate in Theorem 1 decomposes into a term

reflecting the complexity of CATE estimation under correct variable selection for f0 and f1, and a

term reflecting the complexity of variable selection. Variable selection complexity remains small

as long as log(d) = Θ(nζ), for some ζ ∈ (0, 1), and approaches the parametric rates as ζ → 0.

The minimax rate will generally be dominated by the complexity of CATE estimation, and will

approach the parametric rates only for very smooth response surfaces with small number of relevant

dimensions, i.e. d0
α0
∨ d1

α1
→ 0.

The main takeaway from Theorem 1 is that the CATE learning rate is determined by the more

“complex” of the surfaces f0 and f1, where complexity is quantified by the sparsity-to-smoothness

ratio dw/αw for w ∈ {0, 1}. Thus, a model would achieve the optimal CATE learning rate only if it

selects the correct relevant variables for f0 and f1, and tunes its “hyperparameters” (i.e. smoothness

of the prior) to cope with a complexity of d0
α0
∨ d1
α1

. When d0
α0

and d1
α1

are very different (e.g. f0 and f1

have different relevant features), rate-optimal estimation is possible only if the model incorporates

such differences in Π(ϕ̄β0 , ϕ̄β1).

The discussion above provides a concrete answer to [Q1]: the treatment assignment variable

w should be incorporated into the model in such a way that it encodes the different relevant di-
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mensions and smoothness levels of f0 and f1 in the bases ϕ̄β0 and ϕ̄β1 . (The simplest way

to achieve this is to use two separate models for f0 and f1.) This is not fulfilled by many of

the previous models that built a single regression function of the from f : X × {0, 1} → R,

and estimated the CATE as T̂ (x) = f(x, 1)− f(x, 0) [Hil11, JSS16, PQJ17]. This is because such

models enforced the smoothness of the prior along all features to be the same forw = 0 andw = 1.

. Remark 2 (Selection bias)

Theorem 1 gives a rather surprising answer to [Q2]: the optimal learning rate is oblivious to

selection bias. Such a finding is consistent with previous results on nonparametric kernel density

estimation under selection bias [BGM17], and parametric Bayesian inference under covariate shift

[Shi00,SS07]. It shows that many of the recent works have missed the target; the works in [JSS16,

SJS17, AS17] cast the problem of CATE estimation as one of covariate shift that results from

selection bias. However, Theorem 1 says that selection bias is not a problem when we have a

sufficiently large amount of data. This is because selection bias is inherently a misspecification

problem, and hence its impact on nonparametric inference is washed away in large-sample regimes.

Remarks 1 and 2 posit an explanation for various recurrent (empirical) findings reported in

previous literature. For instance, [HMC17] found that separate modeling of f0 and f1 via Bayesian

additive regression trees (BART) outperforms the well-known single-surface BART model devel-

oped in [Hil11]. Similar findings were reported for models based on Gaussian processes [AS17],

and models based on deep neural networks [SJS17]. All such findings can be explained in the light

of Remark 1. On the other hand, Remark 2 may provide an explanation as to why the “TARnet”

model in [SJS17], which models f0 and f1 using separate neural networks and does not account

for selection bias, outperformed the “BNN” model in [JSS16], which regularizes for selection bias
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but fits a single-output network for f0 and f1.

2.4.2 Backing off from “Asymptopia”

Theorem 1 shows that selection bias does not hinder the optimal minimax rates, and that it is only

the structural properties of the prior Π(ϕ̄β0 , ϕ̄β1) that determine a model’s rate of learning. But

does the achieved learning rate suffice as a sole criterion for addressing the modeling questions

[Q1] and [Q2]? The answer is “yes” only ifDn comes from a large observational dataset, in which

case the learning rate suffices as a descriptor for the large-sample performance. However, if Dn

is small, which is typical in post-hoc analyses of clinical trials [FTR11], then one should make

the design choices that would optimize the small-sample performance. In order to give a complete

picture of the performance in large and small-sample regimes, we derive the following bound on

the PEHE:

ψ(T̂ ) ≤ C̄ · exp(D2(Q0 ‖Q)) · ‖f0 − f̂0‖2L2(P0)
+ C̄ · exp(D2(Q1 ‖Q)︸ ︷︷ ︸

Reyni
Divergence

) · ‖f1 − f̂1‖2L2(P1)︸ ︷︷ ︸
Supervised

learning loss

, (2.6)

for some C̄ > 0, where L2(Pw), for w ∈ {0, 1}, is the L2 norm with respect to dP(X = x |W =

w), Q = dP(X = x), Qw = dP(X = x |W = w), and Dm(p ‖ q) is the mth order Réyni diver-

gence. The bound in (2.6) holds for all n > 0, and is tight (refer to the Appendix); it shows that the

PEHE is a weighted linear combination of the mean squared losses for the two underlying super-

vised problems of learning f0 and f1 with no covariate shift, where the weights are determined by

the extent of the mismatch between the distributions of the treated and control populations, quan-

tified by the Réyni divergence measure. If Dn is a dataset obtained from a randomized controlled

trial (Q = Q0 = Q1), then we have D2(Q0 ‖Q) = D2(Q1 ‖Q) = 0, and the bound boils down to

a sum of two supervised learning losses, i.e. ψ(T̂ ) ≤ C̄ · ‖f0 − f̂0‖2L2(P) + C̄ · ‖f1 − f̂1‖2L2(P).
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Figure 2.1: The PEHE in (2.7) plotted on a log-log scale.

Since the minimax rate for standard nonparametric regression is ‖fw − f̂w‖22 � Cw · n
−2αw

2αw+dw

[Sto82], when d0/α0 >> d1/α1, the first-order Taylor approximation for the logarithm of the

PEHE in (2.6) is given by:

log(ψ(T̂ )) ≈ D2(Q0‖Q)︸ ︷︷ ︸
Selection

bias

+ log(C0)︸ ︷︷ ︸
Bias

correction

− 2α0

2α0 + d0︸ ︷︷ ︸
Learning rate

log(n) + O
(
n
−2α1

2α1+d1
+

2α0
2α0+d0

)
. (2.7)

That is, when viewed on a log-log scale, the behavior of the PEHE versus the number of samples

can be described as follows. log(PEHE) is a linear function of log(n). Selection bias adds a

constant offset to log(PEHE), but does not affect its slope, which harms the performance only

in the small-sample regime. In the large-sample regime, the slope of log(PEHE), which depends

solely on the smoothness and sparsity of the response surfaces, dominates the performance, and

selection bias becomes less of a problem. Figure 2.1 depicts the PEHE in (2.7) on a log-log scale.
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2.5 CATE Estimation using Non-Stationary Gaussian Process Regression

In this Section, we build on the analyses conducted in Section 2.4 to design a practical algorithm

for CATE estimation.

2.5.1 Non-Stationary Gaussian Process Priors

We specify the prior Π(ϕ̄β0 , ϕ̄β1) as a Gaussian process (GP) over g : X × {0, 1} → R, with a

kernelKβ , and a hyperparameter set β as follows:

g ∼ GP (0,Kβ(z, z′)) , (2.8)

where z = (x,w) ∈ X × {0, 1}, and fw(x) = g(x,w). The kernel Kβ specifies the bases ϕ̄β0

and ϕ̄β1 through its induced canonical feature map Kβ(., z) [RW06, ARL12]. As pointed out in

Remark 1, the treatment assignment variable w should encode the different relevant dimensions

and smoothness levels of f0 and f1. Thus, we model Kβ as a non-stationary kernel that depends

on w as follows:

Kβ(z, z′) = Γ (w,w′) · kTβ (x, x′),

kβ(x, x′) = [kβ0(x, x
′), kβ1(x, x

′), kβ0(x, x
′) + kβ1(x, x

′)] ,

Γ (w,w′) = [Γ0(w,w
′), Γ1(w,w

′), 1− Γ0(w,w
′)− Γ1(w,w

′)] ,

where Γ0(w,w
′) = (1− w)(1− w′), Γ1(w,w

′) = w · w′, and kβw(x, x′) is a Matérn kernel with a

length-scale parameter βw, for w ∈ {0, 1}. The kernel defined above ensures that any covariance

matrix induced by points in X × {0, 1} is positive definite. Variable selection is implemented

by using the automatic relevance determination version of the Matérn kernel [RW06]. The non-

stationarity of Kβ allows setting different length-scales and relevant variables for the marginal

23



priors on f0 and f1 while sharing data between the two surfaces, i.e.

Kβ((x,w), (x′, w)) = kβw(x, x′), w ∈ {0, 1},

Kβ((x,w), (x′, w′)) = kβ0(x, x
′) + kβ1(x, x

′), w 6= w′. (2.9)

That is, all draws from the prior give Matérn sample paths with different smoothness levels

(β0 and β1) for f0 and f1, respectively, and the correlations between the paths are captured via the

kernel mixture kβ0(x, x
′) +kβ1(x, x

′). Note that draws from a Matérn prior with length-scale β are

almost surely β̄-Hölder for all β̄ ≤ β [VZ11]. Thus, GP(0,Kβ) specifies a βw-Hölder ball as an a

priori regularity class for response surface fw, w ∈ {0, 1}.

In the following Theorem, we show that point estimators induced by the prior GP(0,Kβ) can

achieve the optimal minimax rate in Theorem 1.

Theorem 2. Suppose that the dw relevant features for fw are known a priori for w ∈ {0, 1}.

If f0 ∈ Hα0 , f1 ∈ Hα1 , Π = GP(0,Kβ), and T̂ = EΠ [T | Dn ], then we have that

ψ(T̂ ) . n
− 2(α0∧β0)

2β0+d0 ∨ n−
2(α1∧β1)
2β1+d1

whenever min{α0, α1, β0, β1} ≥ d/2. �

Note that posterior consistency holds for all combinations of (α0, α1, β0, β1) since the support

of the Matérn prior is the space of bounded continuous functions1. The bound in Theorem 2 can

be shown to be tight using the results in [Cas08]. Theorem 2 says that the posterior induced by the

prior GP(0,Kβ) contracts around the true CATE function at the optimal rate given in Theorem 1

1This is because the RKHS associated with the prior lies dense in the space of bounded continuous functions
[VZ08a, VZ08b].
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provided that the following matching condition is met:

βv = αv

αv
d1−v
dv

≤ β1−v ≤ α1−v +
α1−v · dv

2αv
− d1−v

2
, (2.10)

where v = 1 if d1/α1 > d0/α0, and v = 0 otherwise. The condition in (2.10) implies that

achieving the optimal rate (steepest slope in Figure 2.1) via the non-stationary GP prior in Section

2.5.1 is only a matter of hyperparameter tuning: the smoothness of the prior needs to match the

smoothness of the “more complex” of the two response surfaces. Note that Theorem 2 implies that

we do not need to handle selection bias in order to achieve the optimal rate, which is consistent

with the earlier discussion in Remark 2.

2.5.2 Doubly-Robust Hyperparameters

Theorem 2 says that the optimal minimax rate for CATE estimation can be achieved by satisfy-

ing the smoothness matching condition in (2.10). However, in practice, the smoothness levels of

the true response functions are unknown and need to be learned from the data. Moreover, since

selection bias is impactful in small-sample regimes, ignoring it may lead to a poor generaliza-

tion performance when the size of Dn is small. In this Section, we propose a hyperparameter

optimization algorithm that accounts for selection bias while ensuring minimax-optimality in the

large-sample limit.

Previous works tend to adjust for selection bias “mechanically” using variants of importance

sampling approaches based on inverse-propensity-weighting (IPW) [SKM07, Shi00], and kernel

mean matching [HGB07], or by learning a “balanced representation” of treated and control popu-

lations [LF17]. We do not attempt to explicitly adjust for selection bias using ad-hoc approaches,
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and rather seek the “informationally optimal” estimator of the PEHE. That is, we seek the most

efficient (unbiased) estimator ψ̂∗(T̂ ) of ψ(T̂ ), which satisfies an analog of the Cramér-Rao bound

(information-inequality) in parametric estimation, i.e. Var[ψ̂∗(T̂ )] ≤ Var[ψ̂(T̂ )], for any estimator

ψ̂(T̂ ).

Classical Cramér-Rao bounds do not apply to estimators of the form ψ̂∗(T̂ ), since such es-

timators are functionals of nonparametric objects. There are, however, analogous information

inequalities for nonparametric estimation, including Bhattacharyya’s variance bound [Bha46], and

its generalization due to Bickel [BKB98]. We proceed by realizing that the PEHE ψ(T̂ ) is simply

a functional that belongs to the doubly-robust class of functionals analyzed by Robins in [RLT08].

Thus, one can construct the “most” efficient estimator of ψ(T̂ ) using the most efficient influence

function of ψ(T̂ ) as follows [RLT08, Rob04]:

ψ̂∗(T̂ ) =
n∑
i=1

(
Y (Wi)

i − (Wi − p(Xi)) · T̂ (Xi)

p(Xi) · (1− p(Xi))

)2

.

The derivation of the estimator above can be found in Theorem 9 in [Rob04] and Section 5 in

[RLT08]. When the propensity function p(.) is known, this estimator approximate the PEHE at

its optimal minimax rate. We estimate p(.) via standard kernel density estimation methods. It

can be easily shown using the results in [DL05] that when using the estimator above to tune the

GP hyperparameters via cross-validation, then the learned length-scale parameters will satisfy the

matching condition for minimax optimality.

2.6 Experiments

In this Section, we check the validity of our analyses using a synthetic simulation setup (Subsection

2.6.1), and then evaluate the performance of our proposed model using data from a real-world
26



(a) Impact of selection bias. (b) Impact of over-smoothed priors. (c) Performance of different models.

Figure 2.2: Scatter-plots and linear fits for the PEHE of NSGP on a log-log scale in different
simulation setups (RCT: randomized controlled trial).

clinical trial with simulated potential outcomes (Subsection 2.6.2). We will use the acronym NSGP

to refer to the non-stationary GP model proposed in Section 2.5.

2.6.1 Learning Brownian Response Surfaces

2.6.1.1 Synthetic Model

Let X = [0, 1], and define a κ-fold integrated Brownian motion Bκ, κ ∈ N+, on X as follows:

Bκ(x) =

∫ x

0

∫ xκ

0

· · ·
∫ x2

0

B0(x1) dx1 dx2 · · · dxxκ ,

where B0(.) is a standard Brownian motion (Wiener process). Sample paths of B0 are almost

surely Hölder regular with exponent 1
2

[KS12]. Since B0(x) is almost surely non-differentiable

everywhere in X , then sample paths of Bκ(x) are Hölder with exponent κ + 1
2
, i.e. Bκ ∈ Hκ+ 1

2

with probability 1. Therefore, when the true response surfaces are κ-fold integrated Brownian

paths, the optimality and achievability results in Theorems 1 and 2 should hold. To this end, we

simulate the true response surfaces f0 ∈ Hα0 and f1 ∈ Hα1 as f0 ∼ Bα0−1
2
, and f1 ∼ Bα1−1

2
,

where we setα0 = 2.5 andα1 = 5.5. The propensity score is modeled as a parametrized logistic

function p(x |η) = (1 + e−η (x−1
2
))−1, where η ∈ R is a parameter that determines the severity

of selection bias. For a pair of fixed Brownian paths f0 and f1, synthetic observational samples
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[Q1] [Q2] Model In-sample
√

PEHE Out-of-sample
√

PEHE [Q1] [Q2] Model In-sample
√

PEHE Out-of-sample
√

PEHE

X X NSGP 0.51± 0.013 0.64± 0.030 X T-XGBoost 1.46± 0.081 1.98± 0.152

SGP 0.95± 0.021 1.21± 0.052 S-XGBoost 2.97± 0.211 3.04± 0.216

X X CMGP 0.61± 0.011 0.76± 0.012 X T-AdaBoost 2.40± 0.177 2.79± 0.212

X TARNet 0.88± 0.021 0.95± 0.025 S-AdaBoost 4.53± 0.317 4.56± 0.312

X BNN 2.21± 0.115 2.15± 0.125 X T-OLS 1.85± 0.107 1.94± 0.122

X X CFR Wass. 0.71± 0.018 0.76± 0.032 S-OLS 5.06± 0.357 5.05± 0.352

X X CFR MMD 0.73± 0.021 0.78± 0.022 X T-DNN 3.36± 0.137 3.46± 0.142

X T-Random Forest 1.41± 0.071 2.21± 0.162 S-DNN 3.56± 0.217 3.64± 0.212

S-Random Forest 2.72± 0.241 2.91± 0.252 X MARS 1.66± 0.106 1.74± 0.112

X Causal Forest 2.41± 0.141 2.82± 0.181 k-NN 2.69± 0.177 4.06± 0.212

BART 2.00± 0.141 2.22± 0.151 X PSM 4.92± 0.312 4.92± 0.312

X BCF 1.31± 0.061 1.71± 0.102 X TMLE 5.27± 0.357 5.27± 0.352

Table 2.1: Simulation results for the IHDP dataset. The values reported correspond to the average
PEHE (± 95% confidence intervals).

(Xi,Wi, Y
(Wi)

i )i are generated as follows: Xi ∼ Uniform[0,1], Wi ∼ Bernoulli(p(x |η)),

and Y (Wi)

i ∼ fWi
+N (0, σ2), where σ2 = 0.1.

2.6.1.2 Experiments and Results

Using the setup in Section 2.6.1.1, we conducted the following Monte Carlo simulations to verify

our theoretical findings and highlight the merits of our NSGP model.

• Verifying Theorems 1 and 2: In order to check the validity of the results of Theorems 1

and 2, we use a NSGP Matérn prior GP(0,Kβ), with length-scale parameters β0 and β1 that are

matched exactly with the regularities of the Brownian paths f0 and f1 (i.e., β0 = 2.5 and β1 = 5.5).

According to Theorem 1, the optimal rate for estimating the CATE T = f1 − f0 is n
−5
6 , and from
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Theorem 2, the NSGP with β0 = 2.5 and β1 = 5.5 should achieve that rate.

Figure 2.2 provides a scatter-plot for the PEHE achieved by the NSGP with respect to the

number of samples on a log-log scale for different settings of η. We fit a linear regression model

that describes the PEHE behavior in the log-log scale. We found the slope of the linear fit to be

0.8437, which is very close2 to the slope of 5
6
≈ 0.833 predicted by Theorem 1. Moreover, by

changing the magnitude of η from 0 to 1
2
, the PEHE curve did not exhibit any significant change

in its slope, and was only moved upwards by a constant offset. On the contrary, Figure 2.2 shows

the PEHE behavior when the NSGP prior is over-smoothed (β0 > α0) for η = 0: as predicted by

Theorem 2, learning becomes sluggish (slopes become less steep) as β0 increase since the matching

condition in (2.10) does not hold any more.

• NSGPs do not leave any money on the table: In this experiment, we show that the different

components of the NSGP model allow it to perform well in small and large sample regimes. We

set a strong selection bias of η = 1
2

and compare the log(PEHE) characteristic of NSGP with a

model that uses the same non-stationary kernel as NSGP, and another model that uses a standard

stationary kernel, but both models are tuned using marginal likelihood maximization. As we can

see in Figure 2.2, the model with the non-stationary kernel achieves the same learning rate as

NSGP, but exhibits a large offset as it does not account for selection bias, whereas the stationary

model fails to learn the smoothness of the rougher Brownian motion since it assigns the same

length-scale to both surfaces, and hence it over-smooths the prior, achieving a suboptimal rate.

2The minor discrepancy is a result of the residual error in the linear regression fit.
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2.6.2 The Infant Health and Development Program

We evaluated the performance of the NSGP model presented in Section 2.5.1 using the standard

semi-synthetic experimental setup designed by Hill in [Hil11]. We report a state-of-the-art result

in this setup, and draw connections between our experimental results and our analyses.

2.6.2.1 Data and Benchmarks

The Infant Health and Development Program (IHDP) is an interventional program intended to en-

hance the health of premature infants [Hil11]. [Hil11] extracted features and treatment assignments

from a real-world clinical trial, and introduced selection bias to the data artificially by removing a

subset of the patients. The potential outcomes are simulated according to the standard non-linear

”Response Surface B” setting in [Hil11]. The dataset comprised 747 subjects, with 25 features

for each subject. Our experimental setup is identical to [Hil11, JSS16, SJS17, AS17]: we run 1000

experiments in which we compute the in-sample and out-of-sample
√

PEHE (with 80/20 train-

ing/testing splits), and report average results in Table 2.1.

We compared the performance of NSGP with a total of 23 CATE estimation benchmarks. We

considered: tree-based algorithms (BART [Hil11], Causal forests [WA17], Bayesian causal forests

[HMC17]), methods based on deep learning (CFR Wass., CFR MMD, BNN, TARnet [SJS17]),

multivariate additive regression splines (MARS) [PQJ17], Gaussian processes (CMGP) [AS17],

nearest neighbor matching (k-NN), propensity score matching (PSM), and targeted maximum like-

lihood (TMLE) [PGV11]. We also composed a number of T-learners and S-learners as in [KSB17],

using a variety of baseline machine learning algorithms (DNN stands for deep networks and OLS

stands for linear regression).
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2.6.2.2 Results and Conclusions

As we can see in Table 2.1, the proposed NSGP model significantly outperforms all competing

benchmarks. The combined benefit of the two components of an NSGP (non-stationary kernel

and doubly-robust hyperparameters) is highlighted by comparing its performance to a vanilla SGP

(stationary GP) with marginal likelihood maximization. The gain with respect to such a model is a

2-fold improvement in the PEHE.

Because the IHDP dataset has a “moderate” sample size, both selection bias and learning rate

seem to impact the performance. Thus, our method took advantage of having addressed modeling

questions [Q1] and [Q2] appropriately by being both “rate-optimal” and “bias-aware”.

The check marks in columns [Q1] and [Q2] designate methods that address modeling questions

[Q1] and [Q2] “appropriately” in the light of the analysis presented in Section 2.3. Methods with

[Q1] checked use a regression structure with “outcome-specific” hyperparameters, and methods

with [Q2] checked adjust for selection bias. A general observation is that the structure of the

regression model seem to matter much more than the strategy for handling selection bias. This is

evident from the fact that the TARnet model (does not handle bias but models outcomes separately)

significantly outperforms BNN (handles bias but uses a single-surface model [SJS17]), and that all

T-learners (models 2 separate response surfaces) outperformed their S-shaped counterparts (models

a single surface). For parametric models, such as OLS, the issue of selecting the right regression

structure is even more crucial.

To sum up, the results in Table 2.1 imply that selecting the right regression structure is crucial

for rate-optimality in sufficiently large dataset, whereas handling selection bias provides an extra

bonus. In Table 2.1, methods that address both [Q1] and [Q2] (NSGP, CMGP, and CFR. Wass and
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MMD) displayed a superior performance.
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CHAPTER 3

Symbolic Approaches to Prognostic Model Interpretability

The ability to interpret the predictions of a (predictive or causal) machine learning model brings

about patient and clinician trust, and supports understanding of the underlying disease being mod-

eled [LL17, Lip16, MS19]. In many clinical settings, interpretability can be a crucial require-

ment for the deployment of machine learning, since a model’s predictions would inform critical

decision-making. Model explanations can also be central in other domains, such as natural sci-

ences [SL09, WWR19], where the primary utility of a model is to help understand an underlying

phenomenon, rather than merely making predictions about it. Unfortunately, most state-of-the-art

models — such as ensemble models, kernel methods, and neural networks — are perceived as

being complex “black-boxes”, the predictions of which are too hard to be interpreted by human

subjects [LL17, YJS18b, JYS18, SGK17, LCG13, EDF17, BBR17, MJ18, TLP18, ZSS18, CSW18,

RSG16].

In this Chapter, we approach the problem of model interpretation by introducing the symbolic

metamodeling framework for expressing black-box models in terms of transparent mathematical

equations that can be easily understood and analyzed by human subjects (Section 3.1). The pro-

posed metamodeling procedure takes as an input a (trained) model — represented by a black-box

function f(x) that maps a feature x to a prediction y — and retrieves a symbolic metamodel g(x),

which is meant to be an interpretable mathematical abstraction of f(x). The metamodel g(x) is a
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Figure 3.1: Pictorial depiction of the symbolic metamodeling framework. Here, the model f(x)
is a deep neural network (left), and the metamodel g(x) is a closed-form expression x1 x2 (1 −
x2 exp(−x1)) (right).

tractable symbolic expression comprising a finite number of familiar functions (e.g., polynomial,

analytic, algebraic, or closed-form expressions) that are combined via elementary arithmetic op-

erations (i.e., addition and multiplication), which makes it easily understood by inspection, and

can be analytically manipulated via symbolic computation engines such as Mathematica [AB17],

Wolfram alpha [Wol13], or Sympy [MSP17a]. Our approach is appropriate for models with small

to moderate number of features, where the physical interpretation of these features are of primary

interest.

A high-level illustration of the proposed metamodeling approach is shown in Figure 3.1. In

this Figure, we consider an example of using a neural network to predict the risk of cardiovascular

disease based on a (normalized) feature vector x = (x1, x2), where x1 is a person’s age and x2 is

their blood pressure. For a clinician using this model in their daily practice or in the context of

an epidemiological study, the model f(x) is completely obscure — it is hard to explain or draw

insights into the model’s predictions, even with a background knowledge of neural networks. On

the other hand, the metamodel g(x) = x1 x2 (1 − x2 exp(−x1)) is a fully transparent abstraction

of the neural network model, from which one can derive explanations for the model’s predictions

through simple analytic manipulation, without the need to know anything about the model structure
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and its inner workings1. Having such an explicit (simulatable) equation for predicting risks is

already required by various clinical guidelines to ensure the transparency of prognostic models

[KHA16].

In order to find the symbolic metamodel g(x) that best approximates the original model f(x),

we need to search a space of mathematical expressions and find the expression that minimizes a

“metamodeling loss” `(g(x), f(x)). But how can we construct a space of symbolic expressions

without predetermining its functional from? In other words, how do we know that the metamodel

g(x) = x1 x2 (1−x2 exp(−x1)) in Figure 3.1 takes on an exponential form and not, say, a trigono-

metric or a polynomial functional form?

To answer this question, we introduce a novel parameterized representation of symbolic expres-

sions (Section 3.2), G(x; θ), which reduces to most familiar functional forms — e.g., arithmetic,

polynomial, algebraic, closed-form, and analytic expressions, in addition to special functions, such

as Bessel functions and Hypergeometric functions — for different settings of a real-valued param-

eter θ. The representationG(x; θ) is based on MeijerG-functions [Mei46,Mei36,BS13], a class of

contour integrals used in the mathematics community to find closed-form solutions for otherwise

intractable integrals. The proposed Meijer G-function parameterization enables minimizing the

metamodeling loss efficiently via gradient descent — this is a major departure from existing ap-

proaches to symbolic regression, which use genetic programming to select among symbolic expres-

sions that comprise a small number of predetermined functional forms [OLM18, MR14, VSD09].

Existing methods for model interpretation focus on crafting explanation models that support

only one “mode” of model interpretation. For instance, methods such as DeepLIFT [SGK17] and

1Note that here we are concerned with explaining the predictions of a trained model, i.e., its response surface.
Other works, such as [KL17], focus on explaining the model’s loss surface in order to understand how it learns.
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LIME [RSG16], can explain the predictions of a model in terms of the contributions of individual

features to the prediction, but cannot tell us whether the model is nonlinear, or whether statistical

interactions between features exist. Other methods such as GA2M [LCG13] and NIT [TLP18],

focus exclusively on uncovering the statistical interactions captured by the model, which may not

be the most relevant mode of explanation in many application domains. Moreover, none of the

existing methods can uncover the functional forms by which a model captures nonlinearities in the

data — such type of interpretation is important in applications such as applied physics and material

sciences, since researchers in these fields focus on distilling an analytic law that describes how the

model fits experimental data [SL09, WWR19].

Our perspective on model interpretation departs from previous works in that, a symbolic meta-

model g(x) is not hardwired to provide any specific type of explanation, but is rather designed to

provide a full mathematical description of the original model f(x). In this sense, symbolic meta-

modeling should be understood as a tabula rasa upon which different forms of explanations can be

derived — as we will show in Section 3.3, most forms of model explanation covered in previous

literature can be arrived at through simple analytic manipulation of a symbolic metamodel.
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3.1 Symbolic Metamodeling

Let f : X → Y be a machine learning model trained to predict a target outcome y ∈ Y on the basis

of a d-dimensional feature instance x = (x1, . . . , xd) ∈ X . We assume that f(.) is a black-box

model to which we only have query access, i.e., we can evaluate the model’s output y = f(x) for

any given feature instance x, but we do not know the model’s internal structure. Without loss of

generality, we assume that the feature space X is the unit hypercube, i.e., X = [0, 1]d.

The metamodeling problem. A symbolic metamodel g ∈ G is a “model of the model” f that

approximates f(x) for all x ∈ X , where G is a class of succinct mathematical expressions that

are understandable to users and can be analytically manipulated. Typically, G would be set as the

class of all arithmetic, polynomial, algebraic, closed-form, or analytic expressions. Choice of G

will depend on the desired complexity of the metamodel. In most medical applications, we might

opt to restrict G to algebraic expressions. Given G, the metamodeling problem consists in finding

the function g in G that bests approximates the model f .

Figure 3.2 shows a pictorial depiction of the metamodeling problem as a mapping from the

modeling space F — i.e., the function class that the model f inhabits2 — to the interpretable

metamodeling space G. Metamodling is only relevant when F spans functions that are considered

uninterpretable to users. For models that are deemed interpretable, such as linear regression, F

will already coincide with G, because the linear model is already an algebraic expression (and a

first-order polynomial). In this case, the best metamodel for f is the model f itself, i.e., g = f .

2For instance, for an L-layer neural network, F is the space of compositions of L nested activation functions. For
a random forest with L trees, F is the space of summations of L piece-wise functions.
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Formally, metamodeling can be formulated through the following optimization problem:

g∗ = arg min
g∈G

`(g, f), `(g, f) = ‖ f − g ‖22 =

∫
X

(g(x)− f(x))2 dx, (3.1)

where `(.) is the metamodeling loss, which we set to be the mean squared error (MSE) between f

and g. In the following Section, we will focus on solving the optimization problem in (3.1).

3.2 Metamodeling via Meijer G-functions

In order to solve the optimization problem in (3.1), we need to induce some structure into the meta-

modeling space G. This is obviously very challenging since G encompasses infinitely many possi-

ble mathematical expressions with very diverse functional forms. For instance, consider the exem-

plary metamodel in Figure 3.1, where g(x) = x1 x2 (1−x2 exp(−x1)). If G is set to be the space of

all closed-form expressions, then it would include all polynomial, hyperbolic, trigonometric, log-

arithmic functions, rational and irrational exponents, and any combination thereof [Cho99,BC13].

Expressions such as g′(x) = (x21 + x22) and g′′(x) = sin(x1) · cos(x2) are both valid metamodels,

i.e., g′, g′′ ∈ G, yet they each have functional forms that are very different from g. Thus, we need

to parameterize G in such a way that it encodes all such functional forms, and enables an efficient

solution to (3.1).

To this end, we envision a parameterized metamodel g(x) = G(x; θ), θ ∈ Θ, whereΘ = RM is

a parameter space that fully specifies the metamodeling space G, i.e., G = {G(.; θ) : θ ∈ Θ}. Such

parameterization should let G(x; θ) reduce to different functions for different settings of θ — for

the aforementioned example, we should haveG(x; θ′) = (x21+x22) andG(x; θ′′) = sin(x1)·cos(x2)

for some θ′, θ′′ ∈ Θ. Given the parameterization G(x; θ), the problem in (3.1) reduces to

g∗(x) = G(x; θ∗), where θ∗ = arg min
θ∈Θ

`(G(x; θ), f(x)). (3.2)
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Thus, if we have a parameterized symbolic expression G(x; θ), then metamodeling boils down to

a straightforward parameter optimization problem. We construct G(x; θ) in Section 3.2.1.

3.2.1 Parameterizing symbolic metamodels with Meijer G-functions

We propose a parameterization of G(x; θ) that includes two steps. The first step involves decom-

posing G(x; θ) into a combination of univariate functions. The second step involves modeling

these univariate functions through a very general class of special functions that includes most

known familiar functions as particular cases. Both steps are explained in detail in what follows.

Step 1: Decomposing the metamodel. We breakdown the multivariate function g(x) into sim-

pler, univariate functions. From the Kolmogorov superposition theorem [Kol57], we know that

every multivariate continuous function g(x) can be written as a finite composition of univariate

continuous functions and the addition operation as follows3:

g(x) = g(x1, . . . , xn) =
r∑
i=0

gouti

(
d∑
j=1

ginij (xj)

)
, (3.3)

where gini and goutij are continuous univariate basis functions, and r ∈ N+. The exact decomposi-

tion in (3.3) always exists for r = 2d, and for some basis functions gouti : R→ R, and ginij : [0, 1]→ R

[Spr93]. When r = 1, (3.3) reduces to the generalized additive model [Has17]. While we proceed

our analysis with the general formula in (3.3), in our implementation we set r = 1, gout as the

identify function, and include extra functions ginij of the interactions {xi xj}i,j to account for the

complexity of g(x).

3The Kolmogorov decomposition in (3.3) is a universal function approximator [HSW89]. In fact, (3.3) can be
thought of as a 2-layer neural network with generalized activation functions [Kur92, GP89, IP03, HSW89, Cyb89].
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Step 2: Meijer G-functions as basis functions. Based on the decomposition in (3.3), we can

now parameterize metamodels in terms of their univariate bases, i.e., G(x; θ) = G(x; {gouti }i, {ginij }i,j),

where every selection of a different set of bases would lead to a different corresponding metamodel.

However, in order to fully specify the parameterization G(x; θ), we still need to parameterize the ba-

sis functions themselves in terms of real-valued parameters that we can practically optimize, while

ensuring that the corresponding parameter space spans a wide range of symbolic expressions.

To specify G(x; θ), we model the basis functions in (3.3) as instances of a Meijer G-function

— a univariate special function given by the following line integral in the complex plane s [Mei46,

Mei36]:

Gm,n
p,q

( a1,...,ap
b1,...,bq

∣∣x) =
1

2πi

∫
L

∏m
j=1 Γ (bj − s)

∏n
j=1 Γ (1− aj + s)∏q

j=m+1 Γ (1− bj + s)
∏p

j=n+1 Γ (aj + s)
xs ds, (3.4)

where Γ (.) is the Gamma function and L is the integration path in the complex plane. The contour

integral in (3.4) is known as Mellin-Barnes representation [BS13]. An instance of a Meijer G-

function is specified by the real-valued parameters ap = (a1, . . ., ap), bq = (b1, . . ., bq), and indexes

n and m, which define the poles and zeros of the integrand in (3.4) on the complex plane4. In the

rest of this Chapter, we refer to Meijer G-functions as G functions for brevity.

For each setting of ap and bq, the integrand in (3.4) is configured with different poles and

zeros, and the resulting integral converges to a different function of x. A powerful feature of the

G function is that it encompasses most familiar functions as special cases [BS13] — for different

settings of ap and bq, it reduces to almost all known elementary, algebraic, analytic, closed-form

4Since Γ (x) = (x− 1)!, the zeros of factors Γ (bj − s) and Γ (1− aj + s) are (bj − k) and (1− aj − k), k ∈ N0,
respectively, whereas the poles of Γ (1− bj + s) and Γ (aj + s) are (−aj − k) and (1− bj − k), k ∈ N0.
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G-function Equivalent form

G0,1
3,1

(
2,2,2
1

∣∣x) x

G1,0
0,1 ( −0 |x) e−x

G1,2
2,2

(
1,1
1,0

∣∣x) log(1 + x)

G1,0
0,2

(
−
0, 1

2

∣∣∣x24 ) 1√
π

cos(x)

G1,2
2,2

(
1
2
,1

1
2
,0

∣∣∣x) 2 arctan(x)

Table 3.1: Representation of familiar elementary functions in terms of the G function.

and special functions. Examples for special values of the poles and zeros for which the G function

reduces to familiar functions are shown in Table 3.1. Perturbing the poles and zeros around their

values in Table 3.1 gives rise to variants of these functional forms, e.g., x log(x), sin(x), x2e−x,

etc. Tables of equivalence between G functions and familiar functions can be found in [GR14], or

computed using programs such as Mathematica [AB17] and Sympy [MSP17a].

By using G functions as univariate basis functions (gini and goutij ) for the decomposition in (3.1),

we arrive at the following parameterization for G(x; θ):

G(x; θ) =
r∑
i=0

Gm,n
p,q

(
θouti

∣∣∣ d∑
j=1

Gm,n
p,q

(
θinij |xj

) )
, (3.5)

where θ = (θout, θin), θout = (θout0 , . . ., θoutr ) and θin = {(θini1 , . . ., θinid )}i are the G function parameters.

Here, we use Gm,np,q (θ |x) = Gm,np,q (ap,bq |x), θ = (ap,bq), as a shortened notation for the G function

for convenience. The indexes (m,n, p, q, r) are viewed as hyperparameters of the metamodel.

To demonstrate how the parameterization G(x; θ) in (3.5) captures symbolic expressions, we

revisit the stylized example in Figure 3.1. Recall that in Figure 3.1, we had a neural network model

with two features, x1 and x2, and a metamodel g(x) = x1 x2 (1 − x2 e−x1). In what follows, we
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Figure 3.3: Schematic for the metamodel in Figure 3.1.

show how the metamodel g(x) can be arrived at from the parameterization G(x; θ).

Figure 3.3 shows a schematic illustration for the parameterization G(x; θ) in (3.5) — with

r = 2 — put in the format of a “computation graph”. Each box in this graph corresponds to one

of the basis functions {gini }i and {goutij }i,j , and inside each box, we show the corresponding instance

of G function that is needed to give rise to the symbolic expression g(x) = x1 x2 (1− x2e−x1). To

tune the poles and zeros of each of the 6 G functions in Figure 3.3 to the correct values, we need to

solve the optimization problem in (3.2). In Section 3.2.2, we show that this can be done efficiently

via gradient descent.
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3.2.2 Optimizing symbolic metamodels via gradient descent

Another advantage of the parameterization in (3.5) is that the gradients of the G function with

respect to its parameters can be approximated in analytic form as follows [BS13]:

d

dak
Gm,n
p,q

( ap
bq

∣∣x) ≈ xak−1 ·Gm,n+1
p+1,q

(
−1,a1−1,. . .,an−1,an+1−1,. . .,ap−1

b1,. . .,bm,bm+1,. . .,bq

∣∣∣x) , 1 ≤ k ≤ p,

d

dbk
Gm,n
p,q

( ap
bq

∣∣x) ≈ x1−bk ·Gm,n
p,q+1

( a1,. . .,an,an+1,. . .,ap
b1−1,. . .,bm−1,0,bm+1−1,. . .,bq−1

∣∣x) 1 ≤ k ≤ q. (3.6)

From (3.6), we see that the approximate gradient of aG function is also aG function, and hence the

optimization problem in (3.2) can be solved efficiently via standard gradient descent algorithms.

The solution to the metamodel optimization problem in (3.2) must be confined to a predefined

space of expressions G. In particular, we consider the following classes of expressions:

Polynomial expressions ⊂ Algebraic expressions ⊂ Closed-form expressions ⊂ Analytic expressions,

where the different classes of mathematical expressions correspond to different levels of meta-

model complexity, with polynomial metamodels being the least complex (See Figure 3.2).

Algorithm 1 summarizes all the steps involved in solving the metamodel optimization problem.

The algorithm starts by drawing n feature points uniformly at random from the feature space [0, 1]d

— these feature points are used to evaluate the predictions of both the model and the metamodel

in order to estimate the metamodeling loss in (3.1). Gradient descent is then executed using the

gradient estimates in (3.6) until convergence. (Any variant of gradient descent can be used.) We

then check if every basis function in the resulting metamodel g(x) lies in G. If g(x) /∈ G, we search

for an approximate version of the metamodel g̃(x) ≈ g(x), such that g̃(x) ∈ G.
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Algorithm 1 Symbolic Metamodeling

� Input: Model f(x), hyperparameters (m,n, p, q, r)

� Output: Metamodel g(x) ∈ G

• Xi ∼ Unif([0, 1]d), i = {1, . . ., n}.

• Repeat until convergence:

......θk+1 := θk − γ∇θ
∑
i `(G(Xi; θ), f(Xi))

∣∣
θ=θk

• g(x)← G(Xi; θ
k)

• If g(x) /∈ G:

......g̃(x) = G(x; θ̄), G(x; θ̄) ∈ G, ‖θ̄ − θk‖ < δ, or

......g̃(x) = Chebyshev(g(x))

3.3 Related Work: Symbolic Metamodels as Gateways to Interpretation

The strand of literature most relevant to our work is the work on symbolic regression [OLM18,

MR14, VSD09]. This is a regression model that searches a space of mathematical expressions

using genetic programming. The main difference between this method and ours is that symbolic

regression requires predefining the functional forms to be searched over, hence the number of

its parameters increases with the number of functions that it can fit. On the contrary, our Mei-

jer G-function parameterization enables recovering infinitely many functional forms through a

fixed-dimensional parameter space, and allows optimizing metamodels via gradient descent. We

compare our method with symbolic regression in Section 3.4.

Symbolic metamodeling as a unifying framework for interpretation. We now demonstrate

how symbolic metamodeling can serve as a gateway to the different forms of model explanation

covrered in the literature. To vivify this view, we go through common types of model explanation,
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and show that given g(x) we can recover these explanations via analytic manipulation of g(x).

The most common form of model explanation involves computing importance scores of each

feature dimension in x on the prediction of a given instance. Examples for methods that pro-

vide this type of explanation include SHAP [LL17], INVASE [YJS18b], DeepLIFT [SGK17],

L2X [CSW18], LIME [EDF17, RSG16], GAM [Has17], and Saliency maps [SVZ13]. Each of

these methods follows one of two approaches. The first approach, adopted by saliency maps, use

the gradients of the model output with respect to the input as a measure of feature importance. The

second approach, followed by LIME, DeepLIFT, GAM and SHAP, uses local additive approxima-

tions to explicitly quantify the additive contribution of each feature.

Symbolic metamodeling enables a unified framework for (instancewise) feature importance

scoring that encapsulates the two main approaches in the literature. To show how this is possible,

consider the following Taylor expansion of the metamodel g(x) around a feature point x0:

g(x) = g(x0) + (x− x0) · ∇x g(x0) + (x− x0) ·H(x) · (x− x0) + . . . ., (3.7)

where H(x) = [∂2g/∂xi∂xj]i,j is the Hessian matrix. Now consider — for simplicity of exposi-

tion — a second-order approximation of (3.7) with a two-dimensional feature space x = (x1, x2),

i.e.,

g(x) ≈ g(x0) + (x1 − x0,1) · gx1(x0)− x0,2 · x1 · gx1x2(x0) + 1
2 (x1 − x0,1)2 gx1x1(x0)

+ (x2 − x0,2) · gx2(x0)− x0,1 · x2 · gx1x2(x0) + 1
2 (x2 − x0,2)2 gx2x2(x0)

+ x1 ·x2 · gx1x2(x0), (3.8)

where gx = ∇x g and x0 = (x0,1, x0,2). In (3.8), the term in blue (first line) reflects the importance

of feature x1, the term in red (second line) reflects the importance of feature x2, whereas the

last term (third line) is the interaction between the two features. The first two terms are what
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generalized additive models, such as GAM and SHAP, compute. LIME is a special case of (3.8)

that corresponds to a first-order Taylor approximation. Similar to saliency methods, the feature

contributions in (3.8) are computed using the gradients of the model with respect to the input, but

(3.8) is more general as it involves higher order gradients to capture the feature contributions more

accurately. All the gradients in (3.8) can be computed efficiently since the exact gradient of the G

function with respect to its input can be represented analytically in terms of another G function.

Statistical interactions between features are another form of model interpretation that has been

recently addressed in [LCG13, TLP18]. As we have seen in (3.8), feature interactions can be

analytically derived from a symbolic metamodel. The series in (3.8) resembles the structure of the

pairwise interaction model GA2M in [LCG13] and the NIT disentanglement method in [TLP18].

Unlike both methods, a symbolic metamodel can analytically quantify the strength of higher-order

(beyond pairwise) interactions with no extra algorithmic complexity. Moreover, unlike the NIT

model in [TLP18], which is tailored to neural networks, a symbolic metamodel can quantify the

interactions in any machine learning model (3.7).

Table 3.2: Comparison between SM and SR.

f1(x) = e−3x f2(x) = x
(x+1)2

f3(x) = sin (x) f4(x) = J0(10
√
x)

SMp −x3 + 5
2 (x2 − x) + 1 x3

3 −
4x2

5 + 2x
3

−1
4 x2 + x −7 (x2 − x)− 1.4

R2: 0.995 R2: 0.985 R2 : 0.999 R2 : −4.75

SMc x4×10
−6

e−2.99x x (x+ 1)−2 1.4x1.12 I0.0003

(
10 e

jπ
2
√
x
)

R2: 0.999 R2: 0.999 R2 : 0.999 R2 : 0.999

SR x2 − 1.9x+ 0.9 0.7x
x2+0.9x+0.75 −0.17x2 + x+ 0.016 −x (x− 0.773)

R2: 0.970 R2 0.981 R2 : 0.998 R2 : 0.116
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3.4 Experiments

Building on the discussions in Section 3.3, we demonstrate the use cases of symbolic meta-

modeling through experiments on synthetic and real data. In all experiments, we used Sympy

[MSP17a] (a symbolic computation library in Python) to carry out computations involving Meijer

G-functions.

3.4.1 Learning Uni-variate Symbolic Expressions

We start off with four synthetic experiments with the aim of evaluating the richness of symbolic

expressions discovered by our metamodeling algorithm. In each experiment, we apply Algorithm 1

(Section 3.2.2) on a ground-truth univariate function f(x) to fit a metamodel g(x) ≈ f(x), and

compare the resulting mathematical expression for g(x) with that obtained by Symbolic regression

[OLM18] implemented using gplearn library [Ste15].

In Table 3.2, we compare symbolic metamodeling (SM) and symbolic regression (SR) in terms

of the expressions they discover and their R2 coefficient with respect to the true functions. We

consider four functions: an exponential e−3x, a rational x/(x + 12), a sinusoid sin(x) and a

Bessel function of the first kind J0(10
√
x). We consider two versions of SM: SMp for which

G = Polynomial expressions, and SMc for which G = Closed-form expressions. As we can see,

SM is generally more accurate and more expressive than SR. For f1(x), f2(x) and f4(x), SM man-

aged to figure out the functional forms of the true functions (J0(x) = I0(e
jπ
2 x), where I0(x) is the

Bessel function of the second kind. For f3(x), SMc recovered a parsimonious approximation g3(x)

since sin(x) ≈ x for x ∈ [0, 1]. Moreover, SMp managed to retrieve more accurate polynomial

expressions than SR.
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Figure 3.4: Box-plots for the median ranks of features by their estimated importance per sample
over the 1000 samples of each data set. The red line is the median. Lower median ranks are better.

3.4.2 Instance-wise feature importance

Now we evaluate the ability of symbolic metamodels to explain predictions in terms of instance-

wise feature importance (Section 3.3). To this end, we replicate the experiments in [CSW18] with

the following synthetic data sets: XOR, Nonlinear additive features, and Feature switching. (See

Section 4.1 in [CSW18] or Appendix B for a detailed description of the data sets.) Each data set

has a 10-dimensional feature space and 1000 data samples.

For each of the three data sets above, we fit a 2-layer neural network f(x) (with 200 hidden

units) to predict the labels based on the 10 features, and then fit a symbolic metamodel g(x) for

the trained network f(x) using the algorithm in Section 3.2.2. Instancewise feature importance

is derived using the (first-order) Taylor approximation in (3.8). Since the underlying true features

are known for each sample, we use the median feature importance ranking of each algorithm as a

measure of the accuracy of its feature ranks as in [CSW18]. Lower median ranks correspond to

more accurate algorithms.

In Figure 3.4, we compare the performance of metamodeling (SM) with DeepLIFT, SHAP,

LIME, and L2X. We also use the Taylor approximation in (3.8) to derive feature importance scores

from a symbolic regression (SR) model as an additional benchmark. For all data sets, SM performs
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competitively compared to L2X, which is optimized specifically to estimate instancewise feature

importance. Unlike LIME and SHAP, SM captures the strengths of feature interactions, and conse-

quently it provides more modes of explanation even in the instances where it does not outperform

the additive methods in terms of feature ranking. Moreover, because SM recovers more accurate

symbolic expressions than SR, it provides a more accurate feature ranking as a result.
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CHAPTER 4

Automated Prognostic Modeling

Given the abundance of ML-based predictive and causal models, which model should we use for

the dataset at hand? Despite a variety of ML-based modeling options at our disposal, there is, how-

ever, a concerning gap between the potential and actual utilization of ML in prognostic research;

the reason being that clinicians with no expertise in data science find it hard to manually design

and tune ML pipelines [LSJ17]. To fill this gap, we developed AUTOPROGNOSIS, an automated

ML (AutoML) framework tailored for clinical prognostic modeling that encapsulates the modules

presented in the previous Chapters, and automates their design choices. AUTOPROGNOSIS takes as

an input data from a patient cohort, and uses such data to automatically configure ML pipelines.

Every ML pipeline comprises all stages of prognostic modeling: missing data imputation, feature

preprocessing, prediction, and calibration. An overview of the system is provided in Figure 4.1.
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Figure 4.1: High-level illustration for AUTOPROGNOSIS.
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The core component of AUTOPROGNOSIS is an algorithm for configuring ML pipelines using

Bayesian optimization (BO) [SLA12]. Our BO algorithm models the pipelines’ performances as a

black-box function, the input to which is a “pipeline configuration”, i.e. a selection of algorithms

and hyperparameter settings, and the output of which is the performance (predictive accuracy)

achieved by such a configuration. We implement BO with a Gaussian process (GP) prior on

the black-box function. To deal with the high-dimensionality of the pipeline configuration space,

we capitalize on the fact that for a given dataset, the performance of one ML algorithm may

not be correlated with that of another algorithm. For instance, it may be the case that the

observed empirical performance of logistic regression on a given dataset does not tell us much

information about how a neural network would perform on the same dataset. In such a case,

both algorithms should not share the same GP prior, but should rather be modeled independently.

Our BO learns such a decomposition of algorithms from data in order to break down the high-

dimensional optimization problem into a set of lower-dimensional sub-problems. We model the

decomposition of algorithms via an additive kernel with a Dirichlet prior on its structure, and learn

the decomposition from data in concurrence with the BO iterations. We also propose a batched

(parallelized) version of the BO procedure, along with a computationally efficient algorithm for

maximizing the BO acquisition function.

In addition to the causal models we proposed in Chapter 2, numerous machine learning-based

models for causal inference were developed in the past few years, capitalizing on ideas from rep-

resentation learning [YLL18], multi-task learning [AS18a] and adversarial training [YJS18a]. The

literature on machine learning-based causal inference is constantly growing, with various related

workshops and competitions being held every year [DHS17]. Automating the selection of ML

causal models is tricky since it is impossible to know what the counterfactual outcome would have
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been had patients received an alternative treatment. Since causal effects are determined by both

factual and counterfactual outcomes, ground-truth effects can never be measured in an observa-

tional study, and hence empirical validation of causal modeling choices is anything but straightfor-

ward [SDA13].

To address this issue, we use influence functions — a key technique in robust statistics and

efficiency theory [HRR11, RLT08] — to develop a model validation procedure that estimates the

performance of causal inference methods applied to a given observational dataset without the

need to access counterfactual data, in order to enable the AUTOPROGNOSIS system to select among

causal inference models. To the best of our knowledge, ours is the first validation procedure for

models of individualized causal effects. Our procedure can be easily extended to other under-

explored problems involving unlabeled data, such as semi-supervised learning [OOR18].

4.1 Overview of Related Literature

4.1.1 Automated ML and Bayesian Optimization

To the best of our knowledge, none of the existing AutoML frameworks, such as AUTO-WEKA

[KTH16], AUTO-SKLEARN [FKE15], and TPOT [OM16] use principled GP-based BO to configure

ML pipelines. All of the existing frameworks model the sparsity of the pipelines’ hyperparame-

ter space via frequentist tree-based structures. Both AUTO-WEKA and AUTO-SKLEARN use BO, but

through tree-based heuristics, such as random forest models and tree Parzen estimators, whereas

TPOT uses a tree-based genetic programming algorithm. Previous works have refrained from

using principled GP-based BO because of its statistical and computational complexity in high-

dimensional hyperparameter spaces. Our algorithm makes principled, high-dimensional GP-based
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BO possible by learning a sparse additive kernel decomposition for the GP prior. This approach

confers many advantages as it captures the uncertainty about the sparsity structure of the GP prior,

and allows for principled approaches for (Bayesian) meta-learning and ensemble construction that

are organically connected to the BO procedure.

Various previous works have addressed the problem of high-dimensional GP-based BO. [WZH13]

identifies a low-dimensional effective subspace for the black-box function via random embedding.

However, in the AutoML setup, this approach cannot incorporate our prior knowledge about de-

pendencies between the different hyperparameters (we know the sets of hyperparameters that are

“activated” upon selecting an algorithm [HHL11]). This prior knowledge was captured by the Arc-

kernel proposed in [SDS14], and similarly in [JAG17], where a BO algorithm for domains with

tree-structured dependencies was proposed. Unfortunately, both methods require full prior knowl-

edge of the dependencies between the hyperparameters, and hence cannot be used when jointly

configuring hyperparameters across multiple algorithms, since the correlations of the performances

of different algorithms are not known a priori. [BBK11] proposed a naı̈ve approach that defines an

independent GP for every set of hyperparameters that belong to the same algorithm. Since it does

not share any information between the different algorithms, this approach would require trying all

combinations of algorithms in a pipeline exhaustively. (In our system, there are 4,800 possible

pipelines.) Our model solves the problems above via a data-driven kernel decomposition, through

which only relevant groups of hyperparameters share a common GP prior, thereby balancing the

trade-off between “information sharing” among hyperparameters and statistical efficiency.
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4.1.2 Causal Model Validation

Researchers developing new methods for causal inference validate their models using synthetic

data-generating distributions that encode pre-specified causal effects — e.g., [Hil11,WA17,PQJ17].

However, such synthetic distributions bear very little resemblance to real-world data, and hence

are not informative of what methods would actually work best on a given real-world observational

study [SSB08]. Because no single model will be superior on all observational studies [DHS17],

model selection must be guided by a data-driven validation procedure.

While the literature is rich with causal inference models, it falls short of rigorous methods for

validating those models on real-world data. Applied researchers currently rely on simple heuristics

to predict a model’s performance on a given dataset [SJT17,RY14,LLR03], but such heuristics do

not provide any theoretical guarantees, and can fail badly in certain scenarios [SBT18].

Despite their popularity in statistics, influence functions are seldom used in machine learning.

Recently in [KL17], influence functions were used for interpreting black-box models by tracing

the impact of data points on a model’s predictions. Our usage of influence functions differs from

[KL17] in that we use them to construct efficient estimators of a model’s loss and not to explain the

inner workings of a learning algorithm. In that sense, our work is more connected to the literature

on plug-in estimation and nonparametric efficiency theory [GM92, RLT08, RLM17, Vaa14].

4.2 AUTOPROGNOSIS: A System for Automated Prognostic Modeling

We start with the predictive modeling setup, where our goal is to automate the design of predictive

models for the dataset at hand. Consider a datasetD = {(xi, yi)}ni=1 for a cohort of n patients, with

xi being patient i’s features, and yi being the patient’s clinical endpoint. AUTOPROGNOSIS takes D
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as an input, and outputs an automatically configured prognostic model which predicts the patients’

risks. This Section provides an overview of the components of AUTOPROGNOSIS.

The core component of AUTOPROGNOSIS is an algorithm that automatically configures ML

pipelines, where every pipeline comprises algorithms for missing data imputation (�), feature

preprocessing (♣), prediction (•), and calibration (F). Table 4.1 lists the baseline algorithms

adopted by the system in all the stages of a pipeline. The imputation and calibration stages are

particularly important for clinical prognostic modeling [Bla16], and are not supported in exist-

ing AutoML frameworks. The total number of hyperparameters in AUTOPROGNOSIS is 106, which is

less than those of AUTO-WEKA (786) and AUTO-SKLEARN (110). The pipeline configuration algorithm

uses Bayesian optimization to estimate the performance of different pipeline configurations in a

scalable fashion by learning a structured kernel decomposition that identifies algorithms with

correlated performance. Details of the Bayesian optimization algorithm are provided in Sections

4.3.

4.3 Pipeline Configuration via Structured Bayesian Optimization

Let (Ad,Af ,Ap,Ac) be the sets of all missing data imputation, feature processing, prediction, and

calibration algorithms in AUTOPROGNOSIS (Table 4.1), respectively. A pipeline P is a tuple:

P = (Ad, Af , Ap, Ac)

where Av ∈ Av, ∀v ∈ {d, f, p, c}. The space of all pipelines is given by P = Ad ×Af ×Ap ×Ac.

Thus, a pipeline is a selection of algorithms from the elements of Table 4.1. An exemplary

pipeline can be specified as follows: P = {MICE,PCA,Random Forest,Sigmoid}. The total number of

pipelines in AUTOPROGNOSIS is |P| = 4, 800.

55



Pipeline Stage Algorithms

� Data Imputation � missForest (2) � Median (0) � Most-frequent (0) � Mean (0)

� Matrix completion (2) � MICE (1) � None (0) � EM (1)

♣ Feature process. ♣ Feature agglo. (4) ♣ Kernel PCA (5) ♣ Polynomial (3) ♣ Fast ICA (4)

♣ R. kitchen sinks (2) ♣ Nystroem (5) ♣ Linear SVM (3) ♣ Select Rates (3)

♣ PCA (2) ♣ None (0)

• Prediction • Bernoulli NB (2) • AdaBoost (4) • Decision Tree (4) • Grad. Boost. (6)

• Gaussian NB (0) • XGBoost (5) • Extr. R. Trees (5) • Light GBM (5)

•Multinomial NB (2) • R. Forest (5) • Neural Net. (5) • Log. Reg. (0)

• Ridge Class. (1) • Bagging (4) • k-NN (1) • Surv. Forest (5)

• LDA (4) • L. SVM (4) • GP (3) • Cox Reg. (0)

F Calibration F Sigmoid (0) F Isotonic (0) F None (0)

Table 4.1: List of algorithms included in every stage of the pipeline. Numbers in brackets corre-
spond to the number of hyperparameters.

The specification of a pipeline configuration is completed by determining the hyperparame-

ters of its constituting algorithms. The space of hyperparameter configurations for a pipeline is

Θ = Θd × Θf × Θp × Θc, where Θv = ∪aΘa
v , for v ∈ {d, f, p, c}, with Θa

v being the space of

hyperparameters associated with the ath algorithm in Av. Thus, a pipeline configuration Pθ ∈ PΘ

is a selection of algorithms P ∈ P , and hyperparameter settings θ ∈ Θ; PΘ is the space of all

possible pipeline configurations.
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4.3.1 The Pipeline Selection & Configuration Problem

The main goal of AUTOPROGNOSIS is to identify the best pipeline configuration P ∗θ∗ ∈ PΘ for a given

patient cohort D via J-fold cross-validation as follows:

P ∗θ∗ ∈ arg max
Pθ∈PΘ

1

J

J∑
i=1

L(Pθ;D(i)
train,D(i)

valid), (4.1)

where L is a given accuracy metric (AUC-ROC, c-index, etc), D(i)
train and D(i)

valid are training and

validation splits of D in the ith fold. The optimization problem in (4.1) is dubbed the Pipeline

Selection and Configuration Problem (PSCP). The PSCP can be thought of as a generalization for

the combined algorithm selection and hyperparameter optimization (CASH) problem in [FKE15,

KTH16], which maximizes an objective with respect to selections of single algorithms from the

set Ap, rather than selections of full-fledged pipelines from PΘ.

4.3.2 Solving the PSCP via Bayesian Optimization

The objective in (4.1) has no analytic form, and hence we treat the PSCP as a black-box optimiza-

tion problem. In particular, we assume that 1
J

∑J
i=1 L(Pθ;D(i)

train,D
(i)
valid) is a noisy version of a black-box

function f : Λ→ R, were Λ = Θ × P, and use BO to search for the pipeline configuration P ∗θ∗ that

maximizes the black-box function f(.) [SLA12]. The BO algorithm specifies a Gaussian process

(GP) prior on f(.) as follows:

f ∼ GP(µ(Λ), k(Λ,Λ′)), (4.2)

where µ(Λ) is the mean function, encoding the expected performance of different pipeline, and

k(Λ,Λ′) is the covariance kernel [RW06], encoding the similarity between the different pipelines.
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Figure 4.2: Illustration for a exemplary subspace decomposition {Λ(m)}3m=1.

4.3.3 Bayesian Optimization via Structured Kernels

The function f is defined over the D-dimensional space Λ, where D = dim(Λ) is given by

D = dim(P) +
∑

v∈{d,f,p,c}
∑

a∈Avdim(Θa
v). (4.3)

In AUTOPROGNOSIS, the domain Λ is high-dimensional, with D = 106. (The dimensionality of Λ

can be calculated by summing up the number of pipeline stages and the number of hyperparam-

eters in Table 4.1.) High-dimensionality renders standard GP-based BO infeasible as both the

sample complexity of nonparametric estimation and the computational complexity of maximizing

the acquisition function are exponential in D [GKK06, KSP15]. For this reason, existing AutoML

frameworks have refrained from using GP priors, and relied instead on scalable tree-based heuris-

tics [FKE15,KTH16]. Despite its superior performance, recent empirical findings have shown that

plain-vanilla GP-based BO is feasible only for problems with D ≤ 10 [WZH13]. Thus, the de-

ployment of GP-based BO has been limited to hyperparameter optimization for single, pre-defined

ML models via tools such as Google’s Visier and HyperTune [GSM17]. AUTOPROGNOSIS

overcomes this challenge by leveraging the structure of the PSCP problem as we show in what
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follows.

4.3.3.1 The Structure of the PSCP Problem

The key idea of our BO algorithm is that for a given dataset, the performance of a given group of

algorithms may not be informative of the performance of another group of algorithms. Since

the kernel k(Λ,Λ′) encodes the correlations between the performances of the different pipeline con-

figurations, the underlying “informativeness” structure that relates the different hyperparameters

can be expressed via the following sparse additive kernel decomposition:

k(Λ,Λ′) =
∑M

m=1km(Λ(m), Λ′
(m)

), (4.4)

where Λ(m) ∈ Λ(m),∀m ∈ {1, . . .,M}, with {Λ(m)}m being a set of disjoint subspaces of Λ. (That is,

∪mΛ(m) = Λ, and Λ(m) ∩ Λ(m′) = ∅.) The subspaces are assigned mutually exclusive subsets of the

dimensions of Λ, so that
∑
mdim(Λ(m)) = D. The structure of the kernel in (4.4) is unknown a

priori, and needs to be learned from data. The kernel decomposition breaks down f as follows:

f(Λ) =
∑M

m=1fm(Λ(m)). (4.5)

The additively sparse structure in (4.4) gives rise to a statistically efficient BO procedure. That is, if

f is γ-smooth, then our additive kernels reduce sample complexity from O(n
−γ

2γ+D ) to O(n
−γ

2γ+Dm ),

where Dm is the maximum number of dimensions in any subspace [RYW09, YT15]. (Similar

improvements hold for the cumulative regret [KSP15].)

Each subspace Λ(m) ⊂ Λ contains the hyperparameters of algorithms with correlated perfor-

mances, whereas algorithms residing in two different subspaces Λ(m) and Λ(m′) have uncorrelated

performances. Since a hyperparameter in Θ is only relevant to f(.) when the corresponding algo-

rithm in P is selected [HHL09], then the decomposition {Λ(m)}m must ensure that all the hyperpa-

rameters of the same algorithm are bundled together in the same subspace. This a priori knowledge
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about the “conditional relevance” of the dimensions of Λ makes it easier to learn the kernel decom-

position from data. Figure 4.2 provides an illustration for an exemplary subspace decomposition

for the hyperparameters of a set of prediction, feature processing and imputation algorithms. Since

the structured kernel in (4.4) is not fully specified a priori, we propose an algorithm to learn it from

the data in the next Section.

4.3.3.2 Structured Kernel Learning

AUTOPROGNOSIS uses a Bayesian approach to learn the subspace decomposition {Λ(m)}m in con-

currence with the BO procedure, where the following Dirichlet-Multinomial prior is placed on the

structured kernel [WLJ17]:

α ∼ Dirichlet(M,γ), zv,a ∼ Multi(α), (4.6)

∀a ∈ Av, v ∈ {d, f, p, c}, where γ = {γm}m is the parameter of a Dirichlet prior, α = {αm}m are the

Multinomial mixing proportions, and zv,a is an indicator variable that determines the subspace to

which the ath algorithm inAv belongs. The kernel decomposition in (4.4) is learned by updating the

posterior distribution of {Λ(m)}m in every iteration of the BO procedure. The posterior distribution

over the variables {zv,a}v,a and α is given by:

P(z, α |Ht, γ) ∝ P(Ht | z)P(z |α)P(α, γ), (4.7)

where z = {zv,a : ∀a ∈ Av,∀v ∈ {d, f, p, c}}, and Ht is the history of evaluations of the black-box func-

tion up to iteration t. Since the variables {zv,a}v,a are sufficient statistics for the subspace decom-

position, the posterior over {Λ(m)}m is fully specified by (4.6) marginalized over α, which can be

evaluated using Gibbs sampling as follows:

P(zv,a = m | z/{zv,a},Ht) ∝ P(Ht | z) (|A(m)
v |+ γm),
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where P(Ht | z) is the GP likelihood under the kernel induced by z. The Gibbs sampler is imple-

mented via the Gumble-Max trick [MTM14] as follows:

ωm
i.i.d∼ Gumbel(0, 1), m ∈ {1, . . .,M}, (4.8)

zv,a ∼ arg max
m

P(Ht | z, zv,a = m)(|A(m)
v |+ γm) + ωm.

4.3.3.3 Exploration via Diverse Batch Selection

The BO procedure solves the PSCP problem by exploring the performances of a sequence of

pipelines {P 1
θ1 , P

2
θ2 , . . .} until it (hopefully) converges to the optimal pipeline P ∗θ∗ . In every iteration

t, BO picks a pipeline to evaluate using an acquisition function A(Pθ;Ht) that balances between ex-

ploration and exploitation. AUTOPROGNOSIS deploys a 2-step batched (parallelized) exploration

scheme that picks B pipelines for evaluation at every iteration t as follows:

• Step 1: Select the frequentist kernel decomposition {Λ̂(m)}m that maximizes P(z |Ht).

• Step 2: Select the B pipelines {P b
θ }Bb=1 with the highest values for the acquisition function

{A(P b
θ ;Ht)}Bb=1, such that each pipeline P b

θ , b ∈ {1, . . ., B}, involves a distinct prediction

algorithm from a distinct subspace in {Λ̂(m)}m.

We use the well-known Upper Confidence Bound (UCB) as acquisition function [SLA12]. The

decomposition in (4.4) offers an exponential speed up in the overall computational complexity

of Step 2 since the UCB acquisition function is maximized separately for every (low-dimensional)

component fm; this reduces the number of computations from to O(n−D) to O(n−Dm). The

batched implementation is advantageous since sequential evaluations of f(.) are time consuming

as it involves training the selected ML algorithms.
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Step 2 in the algorithm above encourages exploration as follows. In every iteration t, we select

a “diverse” batch of pipelines for which every pipeline is representative of a distinct subspace

in {Λ̂(m)}m. The batch selection scheme above encourages diverse exploration without the need

for sampling pipelines via a determinantal point process with an exponential complexity as in

[KDK16,Nik15,WLJ17]. We also devise an efficient backward induction algorithm that exploits

the structure of a pipeline to maximize the acquisition function efficiently.

4.4 Validating Causal Models

In the previous sections, we developed a BO procedure for conducting predictive model selection.

However, for causal models, the empirical performance measure L cannot be straightforwardly

evaluated. In this Section, we develop an efficient estimator for the empirical performance of a

causal inference model based on observational data.

4.4.1 Notation and Definitions

4.4.1.1 Causal Inference from Observational Data

Recall from Chapter 2 the standard potential outcomes framework for modeling causal effects

in observational and experimental studies [Rub74, Rub05]. In this framework, a “subject” is

associated with a feature X ∈ X , a treatment assignment indicator W ∈ {0, 1}, and an outcome

Y ∈ R. The outcome variable Y takes on the value of either of the two “potential outcomes” Y (0)

and Y (1), where Y = Y (1) if the subject received the treatment (W = 1), and Y = Y (0) otherwise,

i.e., Y = W Y (1) + (1−W )Y (0). The causal effect of the treatment on the subject is thus given by

Y (1) − Y (0).
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� Observational data. In a typical observational study, we are given n samples of the tuple

Z = (X,W, Y ) drawn from a probability distribution with a parameter θ, i.e.,

Z1, . . . , Zn ∼ Pθ , (4.9)

where Pθ belongs to the family P = {Pθ′ : θ′ ∈ Θ}, and Θ is the parameter space. We break down

the parameter θ into a collection of nuisance parameters θ = {µ0, µ1, π, η}, where µ0 and µ1 are the

conditional potential outcomes, i.e.,

µw(x) = Eθ
[
Y (w) |X = x

]
, w ∈ {0, 1}, (4.10)

and π is the treatment assignment mechanism, i.e.

π(x) = Pθ(W = 1 |X = x ), (4.11)

whereas η(x) = Pθ(X = x). To ensure the generality of our analysis, we assume that P is a non-

parametric family of distributions. That is, Θ is an infinite-dimensional parameter space, with the

nuisance parameters {µ0, µ1, π, η} being specified only through mild smoothness conditions.

� The causal inference task. The goal of causal inference is to use the samples {Zi}ni=1 in or-

der to infer the causal effect of the treatment on individual subjects based on their features, i.e., the

estimand is a function T : X → R, where

T (x) = Eθ
[
Y (1) − Y (0) |X = x

]
. (4.12)

The function T (x) in (4.12) is commonly known as the conditional average treatment effect (CATE)1.

Its importance resides in the fact that it can guide individualized decision-making policies (e.g.,

patient-specific treatment plans or personalized advertising policies [BPQ13]). For this reason, the

1To ensure the identification of the CATE, we assume that Pθ satisfies the standard “unconfoundedness” and
“overlap” conditions in [Pea09, Rub05].
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CATE function is the estimand of interest for almost all modern machine learning-based causal

inference methods (e.g., [AS18a, WA17, YJS18a, YLL18]).

� Accuracy of causal inference. A causal inference model M maps a dataset {Zi}ni=1 to an es-

timate T̂ (.) of the CATE. The accuracy of a model is typically characterized by the squared-L2 loss

incurred by its estimate, i.e.,

`θ(T̂ ) ,
∥∥ T̂ (X)− T (X)

∥∥2
θ
, (4.13)

where ‖f(X)‖2θ = Eθ[f2(X)]. The performance evaluation metric in (4.13) was dubbed the precision

of estimating heterogeneous effects (PEHE) in [Hil11] — it quantifies the ability of a model to

capture the heterogeneity of the causal effects of a treatment among individuals in a population.

4.4.1.2 Model Validation & Selection

We now consider a set of candidate causal inference models −→M = {M1, . . . ,MM}. These may

include, for example, different machine learning methods (e.g., Causal Gaussian processes, GAN-

ITE, causal forests, etc.), different hyperparameter settings of one method, etc. Our goal is to select

the best modelM∗ ∈ −→M that incurs the minimum PEHE for a given dataset.

� Beyond cross-validation. Evidently, reliable model selection requires a model validation proce-

dure that estimates the PEHE accuracy of each model in −→M. Unlike standard supervised learning

in which all data points are definitely “labeled”, in the causal inference setting we do not have

access to the ground-truth causal effect Y (1) − Y (0). This is because in an observational dataset,

we can only observe the factual outcome Y (W ), but not the counterfactual Y (1−W ). This renders

the empirical measure of PEHE, i.e., 1
n

∑n
i=1(T̂ (Xi)− (Y (1)

i − Y (0)

i ))2, incalculable from the samples
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{Zi = (Xi,Wi, Yi)}ni=1, and hence standard cross-validation techniques cannot be used to evaluate

the performance of a given causal inference model2.

4.5 Causal Model Validation via Influence Functions

How can we test the PEHE performance of a causal inference model without observing a test label

Y (1) − Y (0)? To answer this question, we develop a consistent and efficient validation procedure

that estimates the PEHE of any causal inference model via a statistic that does not depend on

the counterfactual data Y (1 − W ). Using this procedure, practitioners can evaluate, compare and

select causal inference models as envisioned in Section 4.4.1.

Our validation procedure adopts a plug-in estimation principle [WLF11], whereby the true

(unobserved) causal effect T is replaced with an estimate T̃ . The key idea of our procedure is

that — since PEHE is a functional of distributions spanned by Θ — if we know a model’s PEHE

under a proximal plug-in distribution Pθ̃ ≈ Pθ, then we can approximate its true PEHE under Pθ

using a (generalized) Taylor expansion. In such an expansion, the influence functions of the PEHE

functional are analogous to derivatives of a function in standard calculus.

A high-level description of our procedure is given below.

1. Step 1: Plug-in estimation

• Fit a plug-in model θ̃ = {µ̃0, µ̃1, π̃, η̃}.

• Compute a plug-in estimate `θ̃ of the PEHE.

2In Appendix B, we analyze a number of naı̈ve alternatives to cross-validation that were used in previous works to
tune the hyperparameter of causal inference models [SJS17, Shi00], etc.). We show that all such alternatives provide
either inconsistent or inefficient estimates of the PEHE.
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2. Step 2: Unplugged validation

Use the influence functions of `θ̃ to predict `θ.

In what follows, we provide a detailed explanation of the two-step procedure above.

4.5.1 Step 1: Plug-in Estimation

In Step 1, we obtain an initial guess of a model’s PEHE by evaluating the PEHE functional at an

estimated parameter θ̃ instead of the true parameter θ, i.e.,

`θ̃(T̂ ) =
∥∥ T̂ (X)− T̃ (X)

∥∥2
θ̃
, (4.14)

where T̂ is the CATE estimate of the modelM being validated, θ̃ = {µ̃0, µ̃1, π̃, η̃} is a plug-in model

that is obtained from the observational data, and T̃ (x) = µ̃1(x)− µ̃0(x).

The plug-in model θ̃ = {µ̃0, µ̃1, π̃, η̃} is estimated from the observational data {Zi}ni=1 as follows:

• µ̃w, w ∈ {0, 1}, is obtained by fitting a supervised model to the sub-dataset {(Xi, Yi) |Wi = w}.

• π̃ is obtained using a supervised classification model fit to the sub-dataset {(Xi,Wi)}ni=1.

The feature distribution component of θ̃, η̃(x), can be obtained by estimating the density of X using

the feature samples {Xi}ni=1. Once we have obtained θ̃, the plug-in PEHE estimate in (4.14) can be

easily evaluated.

The plug-in approach in (4.14) solves the problem of the inaccessibility of the label Y (1) − Y (0)

by “synthesizing” such label through the plug-in model θ̃, and testing a model’s inferences against

the synthesized CATE function T̃ . This idea is the basis for recent model selection schemes, such

as Synth-Validation [SJT17] and Plasmode simulations [FSP14], which propose similar plug-in

approaches for validating causal inference models.
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� Plug-in estimation is not sufficient. The plug-in estimate in (4.14) exhibits a model-dependent

plug-in bias `θ − `θ̃ that makes it of little use for model selection. This is because `θ̃(T̂ ) measures

how well T̂ approximates the synthesized causal effect T̃ and not the true effect T . Thus, comparing

plug-in PEHE estimates of different models can reveal their true comparative performances only

if the plug-in bias is small3, i.e., ‖T̃ − T‖2θ ≈ 0. However, if ‖T̃ − T‖2θ is large, then plug-in PEHEs

tell us nothing about how different models compare on the true distribution Pθ.

4.5.2 Step 2: Unplugged Validation

How can we get the plug-in bias “unplugged”? We begin by noting that the plug-in PEHE and the

true PEHE are two evaluations of the same functional at θ̃ and θ, respectively. Therefore, we can

write `θ in terms of `θ̃ via a von Mises expansion as follows [Fer12]:

`θ(T̂ ) = `θ̃(T̂ ) +
∞∑
k=1

∫ ˙̀(k)
θ̃

(z; T̂ )

k!
d(Pθ − Pθ̃)

⊗k, (4.15)

where ˙̀(k)
θ (z; T̂ ) = ˙̀(k)

θ (z1, . . . , zk; T̂ ) is a kth order influence function of the PEHE functional at θ

(indexed by T̂ ), with z being a realization of the variable Z in (4.9), and P⊗kθ is the k-fold product

measure of Pθ.

� Influence functions. The von Mises expansion generalizes Taylor expansion to functionals — it

recovers the PEHE at θ based solely on its (higher order) influence functions at θ̃. In this sense, the

influence functions of functionals are analogous to the derivatives of (analytic) functions. Influence

functions may not be unique: any set of unbiased k-input functions — i.e., Eθ[ ˙̀(k)
θ (Z; T̂ )] = 0 — that

3Paradoxically enough, if T̃ is a perfect estimate of T (i.e., ‖T̃ − T‖2θ = 0), then the model selection task itself
becomes obsolete, because the plug-in model would already be better than any model being evaluated. With the
plug-in approach, however, we can never know how accurate T̃ is, since `θ̃(T̃ ) = 0 by definition.
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Figure 4.3: Panels (a)-(c) depict exemplary MLE estimating equations for the PEHE as explained
in Section 4.5.2. The x-axis corresponds to PEHE values (`), and the y-axis corresponds to the
score function S(` | T̂ ). The true PEHE `θ(T̂ ) solves the estimating equation S(` | T̂ ) = 0. Solid lines
( ) correspond to S(` | T̂ ), whereas dashed lines ( ) depict the derivative of the score at the
plug-in PEHE. (a) The unplugged validation step is analogous to the first iteration of Fisher scoring
via Newton-Raphson method. The predicted PEHE is obtained by correcting for the plug-in bias,
which is inversely proportional to the Fisher information metric I(` | T̂ ). (b) Comparison between
two plug-in estimates θ̃1 and θ̃2 for a score function S(` | T̂ ) ( ). The better plug-in estimate
conveys more (Fisher) information on the true PEHE, i.e., slope of ( ) is steeper than that of
( ), and hence it provides a better PEHE prediction. (c) Selecting between two models T̂ 1 and
T̂ 2 with score functions S(` | T̂ 1) and Sθ(` | T̂ 2), respectively. While T̂ 1 has a smaller plug-in PEHE
than T̂ 2, predicted PEHEs flip after correcting for plug-in bias.

satisfy (4.15) are valid influence functions. We discuss how to calculate the influence functions of

`θ̃ in the next section.

An influence function ˙̀(k)
θ̃

(z1, . . ., zk; T̂ ) can be interpreted as a “measure of the dependence of

`θ̃ on the value of k data points in the observational data”, i.e., its value reflects the sensitivity of

the plug-in PEHE estimate to perturbations in the data. Marginalizing out the data (z1, . . ., zk) with

respect to d(Pθ − Pθ̃) results in a functional derivative of `θ̃ in the “direction” (Pθ − Pθ̃) [RLM17].

The expansion in (4.15) represents the plug-in bias `θ − `θ̃ in terms of functional derivatives of

`θ̃. To see how the bias is captured, consider the first-order von Mises expansion, i.e.,

`θ(T̂ ) ≈ `θ̃(T̂ ) +

∫
˙̀(1)
θ̃

(z; T̂ ) d(Pθ − Pθ̃). (4.16)

Thus, the plug-in bias will be large if the functional derivative of `θ̃ is large, i.e., the PEHE estimate

is sensitive to changes in the plug-in model θ̃. This derivative will be large if many data points have
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large influence, and for each such data point, the plug-in distribution is not a good representative

of the true distribution, i.e., d(Pθ − Pθ̃) is large.

� Dispensing with the counterfactuals. Note that the expansion in (4.15) quantifies the plug-

in bias in terms of fixed functions of “factual” observations Z = (X,W, Y (W )) only. Thus, the true

PEHE can be estimated without knowledge of the counterfactual outcome Y (1−W ) by calculating

the sample average of the first m terms of (4.15) as follows:

ˆ̀(m)

n (T̂ ) = `θ̃(T̂ ) +
m∑
k=1

1

k!
Un

[
˙̀(k)
θ̃

(Z; T̂ )
]
, (4.17)

where Un is the empirical U-statistic, i.e., the sample average of a multi-input function. (4.17)

follows directly from (4.15) by capitalizing on the unbiasedness of influence functions.

4.5.3 Relation to Maximum Likelihood Estimation

In Section 4.5.2, we used functional calculus to construct a mathematical approximation of a

model’s performance that does not depend on counterfactual data. But is this approximation also

a statistically efficient estimate?

Recall that in (parametric) maximum likelihood estimation (MLE), a parameter estimate θ∗ is

obtained by solving the estimating equation S(θ) = 0, where S(θ) is the score function — i.e., the

derivative of the log-likelihood. For estimating equations that cannot be solved analytically, the

classical Fisher scoring procedure [Lon87] is used to obtain a numerical solution for MLE.

Our two-step validation procedure4 is equivalent to finding the MLE of a model’s PEHE using

the classical Fisher scoring procedure. To illustrate this equivalence, we capture the structural

4Here we consider a first-order von Mises approximation.
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resemblance between the two procedures in Figure 4.3 as well as the tabulated comparison below.

Estimating equation Fisher scoring

(Parametric MLE)

S(θ∗) = 0 θ̂ ≈ θ0 + I−1(θ0)S(θ0)

(Our procedure)

S(`∗ | T̂ ) = 0 `θ(T̂ ) ≈ `θ̃(T̂ ) + Eθ[ ˙̀(1)
θ̃

(z; T̂ )]

Fisher scoring implements the Newton-Raphson numerical method to solve S(θ) = 0. It uti-

lizes the Taylor approximation of S(θ) around an initial θ0 to formulate an iterative equation

θ̂k+1 = θk + I−1(θk)S(θk) — where I(θ) is the Fisher information — that eventually converges to

θ∗. From the tabulated comparison above, we can see that our procedure is analogous to the first

Newton-Raphson iteration of Fisher scoring. That is, plug-in estimation is similar to finding an

initial estimate θ0, and the unplugged validation step is similar to updating the initial estimate.

This analogy suggests that our procedure is statistically sound. Similar to cross-validation in

supervised learning [DL05], our procedure is a de facto MLE algorithm that computes the “most

likely PEHE of a model given observational data”. As shown in Figure 4.3-(a), it does so by

searching for the root of the score S(` | T̂ ) via a one-shot Newton-Raphson procedure.

The juxtaposition of our procedure and Fisher scoring — in the tabulated comparison above

— suggests an operational definition for Fisher information I(` | T̂ ) as the ratio between the score

function and influence function. (This relation also holds in parametric models [BHH98].) The

expression of the plug-in bias in terms of the Fisher metric provides an information-geometric

interpretation of our validation procedure. That is, the Fisher information content of the plug-in
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model θ̃ determines how much the final PEHE estimate will deviate from the initial plug-in estimate

(see Figures 4.3-(b) and 4.3-(c) for depictions).

4.5.4 Consistency and Efficiency

In the following Theorem, we establish the conditions under which our validation procedure is

statistically efficient.

Theorem 1. Let µ0, µ1, and π be bounded Hölder functions with Hölder exponents α0, α1 and

β, respectively, and X ∈ [0, 1]d. If (i) T̂ and θ̃ are fit using a separate sample than that used to

compute ˆ̀(m)
n (T̂ ), and (ii) T̃ is a minimax optimal estimate of T , then we have that:

ˆ̀(m)

n (T̂ )− `θ(T̂ ) = OP

(
1√
n
∨ n

−(α0∧α1)(m+1)
2(α0∧α1)+d

)
.

If m ≥ d d
2(α0∧α1)

e, then the following is satisfied:

(Consistency)
√
n (ˆ̀(m)

n (T̂ )− `θ(T̂ ))
d−→ N (0, σ2),

(Efficiency) Var[ˆ̀(m)

n (T̂ )] ≤ Var[ˆ̀′(T̂ )],

for some constant σ > 0, and any estimator ˆ̀′(T̂ ). ���

This result gives a cut-off value on the minimum number of influence terms m needed for the

PEHE estimator ˆ̀(m)
n (T̂ ) to be statistically efficient. This cut-off value depends on the dimension-

ality and smoothness of the CATE function.

Theorem 1 also says that the plug-in model θ̃ needs to be good enough for our procedure to

work, i.e., T̃ must be a minimax optimal approximation of T . This is a viable requirement: it is

satisfied by models such as Gaussian processes and regression trees [AS18a].

Finally, Theorem 1 also says that our procedure yields the minimum variance estimator of a
71



model’s PEHE. This can be understood in the light of the analogy with MLE (Section 4.5.2): since

influence functions are proportional to Fisher information, the PEHE estimate in (4.17) satisfies

the Cramér-Rao lower bound on estimation variance.

4.6 Calculating Influence Functions

Recall that influence functions operationalize the derivatives of `θ(.) with respect to distributions

induced by θ. But since Pθ is nonparametric — i.e., θ is infinite-dimensional — how can we

compute such derivatives?

A common approach for computing the influence functions of a functional of a nonparamet-

ric family P is to define a smooth parametric submodel of P, and then differentiate the func-

tional with respect to the submodel’s (scalar) parameter [Vaa14, Ken18]. A parametric submodel

Pε = {Pε : ε ∈ R} ⊂ P is a subset of models in P that coincides with Pθ at ε = 0. In this Chapter, we

choose to work with the following parametric submodel: dPε(z) = (1 + εh(z)) dPθ(z), for a bounded

function h(z).

Given the submodel Pε, it can be shown (by manipulating the von Mises series in (4.17)) that

the first order influence function satisfies the following condition:

∂ `ε(T̂ )

∂ε

∣∣∣
ε=0

= Eθ[ ˙̀(1)
θ (z; T̂ ) · Sε(z)|ε=0 ], (4.18)

where Sε(z) = ∂ log(dPε(z))/∂ε is the score function of the parametric submodel, and `ε is the PEHE

functional evaluated at Pε. In the next Theorem, we derive a closed-form expression for ˙̀(1)
θ (z; T̂ ).
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Theorem 2. The first order influence function of the PEHE `θ(T̂ ) is unique, and is given by:

˙̀(1)
θ (Z; T̂ ) = (1−B)T 2(X) +B Y (T (X)− T̂ (X))−

A (T (X)− T̂ (X))2 + T̂ 2(X)− `θ(T̂ ),

where A = (W − π(X)), and B = 2W (W − π(X)) · C−1

for C = π(X)(1− π(X)). ���

This result implies that the influence functions of `θ(T̂ ) do not depend on η(x). Thus, the plug-in

model θ̃ does not need to be generative. This is a great relief since estimating (high-dimensional)

feature distributions can be daunting.

4.7 Experiments

As envisioned in the beginning of this Chapter, practitioners can use our validation procedure to

select the best causal inference method for a given dataset. Unlike pervasive “expert-driven” mod-

eling practices [Rub10], this automated and data-driven approach to model selection enables con-

fident deployment of (black-box) machine learning-based methods, and safeguards against naı̈ve

modeling choices.

In this Section, we demonstrate the practical significance of influence function-based valida-

tion by assessing its utility in model selection. In particular, we assemble a pool of models —

comprising all methods published recently in ICML, NeurIPS and ICLR — and use our validation

procedure to predict the best performing model on 77 benchmark datasets from a recent causal

inference competition.
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4.7.1 Experimental Setup

� Influence function-based validation. We implement a stratified P -fold version of our valida-

tion procedure as follows. First, we randomly split the training data into P mutually exclusive

subsets, with Zp being the set of indexes of data points in the pth subset, and Z−p its complement.

In the pth fold, the model being evaluated is trained on the data in Z−p, and issues a CATE estimate

T̂−p. For validation, we execute our two-step procedure as follows:

Step 1: Plug-in estimation

Using the dataset indexed by Z−p, we fit the plug-in model θ̃−p = {µ̃−p,0, µ̃−p,1, π̃−p} as explained

in Section 4.4.1.1. We use two XGBoost regression models for µ̃−p,0 and µ̃−p,1, and then calculate

T̃−p = µ̃−p,1 − µ̃−p,0. For π̃−p, we use an XGBoost classifier. Our choice of XGBoost is motivated

by its minimax optimality [LY18], which is required by Theorem 1.

Step 2: Unplugged validation

Given θ̃−p, we estimate the model’s PEHE on the held-out sample Zp using the estimator in (4.17)

with m = 1, i.e.,

ˆ̀(1)
p =

∑
i∈Zp

[
(T̂−p(Xi)− T̃−p(Xi))

2 + ˙̀(1)
θ̃−p

(Zi; T̂−p)
]
,

where ˙̀(1)
θ (.) is given by Theorem 2. (Here, the first order U-statistic U1 in (4.17) reduces to a

sample average.) The final PEHE estimate is given by the average PEHE estimates over the P

validation folds, i.e., ˆ̀(1)
n = n−1

∑
p

ˆ̀(1)
p .
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Method name Reference % Winner

BNNF Johansson et al. (2016) 3 %

CMGP‡ Alaa et al. (2017) 12 %

TARNetF Shalit et al. (2017) 8 %

CFR Wass.F Shalit et al. (2017) 12 %

CFR MMDF Shalit et al. (2017) 9 %

NSGPF Alaa et al. (2018) 17 %

GAN-ITE♦ Yoon et al. (2018) 7 %

SITE‡ Yao et al. (2018) 7 %

BART Hill (2011) 15 %

Causal Forest Wager et al. (2017) 10 %

Factual — 53 %

IPTW — 54 %

Plug-in — 65 %

AutoPrognosis — 72 %

Random — 10 %

Supervised — 84 %

Table 4.2: Comparison of baselines over all datasets.

� Automated causal inference. Using our validation procedure, we implement the AutoProg-

nosis BO procedure, and then pick the model with smallest ˆ̀(1)
n . Our candidate models include all

methods published in ICML, NeurIPS and ICLR conferences from 2016 to 2018. This comprises

a pool of 8 models, with modeling approaches ranging from Gaussian processes to generative

adversarial networks. In addition, we included two other key models developed in the statistics

community (BART and causal forests). All candidate models are presented in Table 4.2.
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� Data description. We conducted extensive experiments on benchmark datasets released by the

“Atlantic Causal Inference Competition” [Hil16], a data analysis competition that compared mod-

els of treatment effects. The competition involved 77 semi-synthetic datasets: all datasets shared

the same data on features X, but each dataset had its own simulated outcomes and assignments

(W,Y ). Features were extracted from a real-world observational study, whereas outcomes and as-

signments were simulated via data generating processes that were carefully designed to mimic

real data. Each of the 77 datasets had a unique data generating process encoding varying prop-

erties (e.g., levels of treatment effect heterogeneity, dimensionality of the relevant feature space,

etc.) Detailed explanation of the data generating processes was published by the organizers of the

competition in [DHS17].

The feature data shared by all datasets was extracted from the Collaborative Perinatal Project

[Nis72], a study conducted on a cohort of pregnant women to identify causes of infants’ develop-

mental disorders. The treatment was a child’s birth weight (W = 1 if weight < 2.5 kg), and outcome

was the child’s IQ after a given follow-up period. The study contained 4,802 data points with 55

features (5 are binary, 27 are count data, and 23 are continuous).

� Performance evaluation. We applied automated causal inference on 10 realizations of the sim-

ulated outcomes for each of the 77 datasets, i.e., a total of 770 replications. (Those realizations

were generated by the competition organizers and are publicly accessible [Hil16].) For each real-

ization, we divide the data into 80/20 train/test splits, and use training data to predict the PEHE of

the 10 candidate models via 5-fold influence function-based validation. Then, we select the model

with smallest estimated PEHE, and evaluate its PEHE on the out-of-sample testing data.
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� Baselines. We compare influence function-based validation with 3 heuristics commonly used

in the epidemiological and statistical literature [SBT18]:

Baseline PEHE estimator

Factual validation ˆ̀
n(T̂ ) = 1

n

∑
i(µ̂Wi(Xi)− Y (Wi)

i )2

IPTW validation ˆ̀
n(T̂ ) = 1

n

∑
i

(µ̂Wi (Xi)−Y
(Wi)
i )2

(1−2Wi)(1−Wi−π̃(Xi))

Plug-in validation ˆ̀
n(T̂ ) = 1

n

∑
i(T̂ (Xi)− T̃ (Xi))

2

Factual validation evaluates the error in the potential outcomes (µ0, µ1) using factual samples only.

Inverse propensity weighted (IPTW) validation is similar, but weights each sample with its (esti-

mated) “propensity score” π̃(x) to obtain unbiased estimates [LLR03]. Plug-in validation is identi-

cal to Step 1 of our procedure: it obtains a plug-in PEHE estimate [RY14, SJT17]. To ensure fair

comparisons, we model T̃ and π̃ in the heuristics above using XGBoost models similar to the ones

used in Step 1 of our procedure.

� Results. Table 4.2 summarizes the fraction of datasets for which each baseline comes out

as winner across all datasets5. As we can see, our influence function-based (IF-based) approach

that automatically picks the best model for every dataset outperforms any single model applied re-

peatedly to all datasets. This is because the 77 datasets encode different data generating processes,

and hence no single model is expected to be a good fit for all datasets. The gains achieved by

5The magnitudes of causal effects were not consistent across datasets, hence PEHE values were in different nu-
merical ranges.
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automation are substantial — the PEHE of the automated approach was (on average) 47% smaller

than that of the best performing single model.

It comes as no surprise that our procedure outperforms the factual, IPWT and plug-in validation

heuristics. This is because, as we have shown in Theorem 1, the IF-based approach is the most

efficient estimator of PEHE. We also compare our validation procedure with the “supervised”

cross-validation procedure that is allowd to observe the counterfactual data in the training set. As

we can see, despite having access to less information, our IF-based approach comes closer to the

supervised approach (as compared to the competing validation methods).
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CHAPTER 5

Deep Probabilistic Modeling of Longitudinal Data

Chronic diseases — such as cardiovascular disease, cancer and diabetes — progress slowly through-

out a patient’s lifetime, causing increasing burden to the patients, their carers, and the healthcare

delivery system [STL07]. The advent of modern electronic health records (EHR) provides an

opportunity for building models of disease progression that can predict individual-level disease

trajectories, and distill intelligible and actionable representations of disease dynamics [BT10].

Models that are both highly accurate and capable of extracting knowledge from data are important

for informing practice guidelines and identifying the patients’ needs and interactions with health

services [Top19, Coy11, VSS09].

In this Chapter, we develop a deep probabilistic model of disease progression that capital-

izes on both the interpretable structured representations of probabilistic models and the predictive

strength of deep learning methods. Unlike the previous Chapters, here we address the longitudi-

nal data setup where follow-up data are collected for the same patient over time. Our model uses

a state-space representation to segment a patient’s disease trajectory into “stages” of progression

that manifest through clinical observations. But unlike conventional state-space models, which are

predominantly Markovian, our model uses recurrent neural networks (RNN) to capture more com-

plex state dynamics. The proposed model learns hidden disease states from observational data in

an unsupervised fashion, and hence it is suitable for EHR data where a patient’s record is seldom
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Figure 5.1: Sequential data models. (a) Graphical model for an RNN. ♦ denotes a deterministic
representation, (b) Graphical model for an HMM.© denotes probabilistic states, (c) Graphical de-
piction of an attentive state space model. With a slight abuse of graphical model notation, thickness
of arrows reflect attention weights.

annotated with “labels” indicating their true health state [AS18d].

Our model uses an attention mechanism to capture state dynamics, hence we call it an attentive

state-space model. The attention mechanism observes the patient’s clinical history, and maps it to

attention weights that determine how much influence previous disease states have on future state

transitions. In that sense, attention weights generated for an individual patient explain the causative

and associative relationships between the hidden disease states and the past clinical events for that

patient. Because the attention mechanism can be made arbitrarily complex, our model can capture

complex dynamics while maintaining its structural interpretability. We implement this dynamic

attention mechanism via a sequence-to-sequence RNN architecture [SVL14].

Because our model is non-Markovian, inference of posterior disease states is intractable and

cannot be conducted using standard forward-backward routines (e.g., [LLL15, DDZ16, ZZA17]).

To address this issue, we devise a structured inference network trained to predict posterior state

distributions by mimicking the attentive structure of our model. The inference network shares

attention weights with the generative model, and uses those weights to create summary statistics

needed for posterior inference. We jointly train the inference and model networks using stochastic

gradient descent.
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To demonstrate the practical significance of the attentive state-space model, we use it to model

the progression trajectories of breast cancer using data from the UK Cystic Fibrosis registry. Our

experiments show that attentive state-space models can extract clinically meaningful representa-

tions of disease progression while maintaining superior predictive accuracy for future outcomes.

5.1 Related Literature

Various predictive models based on RNNs have been recently developed for healthcare settings —

e.g., “Doctor AI” [CBS16a], “L2D” [LKE16], and “Disease-Atlas” [LS18]. Unfortunately, RNNs

are of a “black-box” nature since their hidden states do not correspond to clinically meaningful

variables (Figure 5.1a). Thus, all the aforementioned methods do not provide an intelligible model

of disease progression, but are rather limited to predicting a target outcome.

There have been various attempts to create interpretable RNN-based predictive models using

attention. The models in [CBS16b, MCZ17, KCK19] use a reverse-time attention mechanism to

learn visit-level attention weights that explain the predictions of an RNN. The main difference

between the way attention is used in our model and the way it is used in models like “RETAIN”

[CBS16b] is that our model applies attention to the latent state space, whereas RETAIN applies

attention to the observable sample space. Hence, attention gives different types of explanations in

the two models. In our model, attention interprets the hidden disease dynamics, hence it provides

an explanation for the mechanisms underlying disease progression. On the contrary, RETAIN uses

attention to measure feature importance, hence it can only explain discriminative predictions, but

not the underlying generative disease dynamics.

Almost all existing models of disease progression are based on variants of the HMM model
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[WSW14, LLL15, AHS17]. Disease dynamics in such models are very easily interpretable as they

can be perfectly summarized through a single matrix of probabilities that describes transition rates

among disease states. Markovian dynamics also simplify inference because the model likelihood

factorizes in a way that makes efficient forward and backward message passing possible. However,

memoryless Markov models assume that a patient’s current state d-separates her future trajectory

from her clinical history (Figure 5.1b). This renders HMM-based models incapable of properly ex-

plaining the heterogeneity in the patients’ progression trajectories, which often results from their

varying clinical histories or the chronologies (timing and order) of their clinical events [VSS09].

This limitation is crucial in complex chronic diseases that are accompanied with multiple morbidi-

ties. Our model addresses this limitation by creating memoryful state transitions that depend on

the patient’s entire clinical history (Figure 5.1c).

Most existing works on deep probabilistic models have focused on developing structured in-

ference algorithms for deep Markov models and their variants [KSS17, DDZ16, KSB16, JDW16,

RSG18]. All such models use neural networks to model the transition and emission distributions,

but are limited to Markovian dynamics. Other works develop stochastic versions of RNNs for the

sake of generative modeling; examples include variational RNNs [CKD15], SRNN [FSP16], and

STORN [BO14]. These models augment stochastic layers to an RNN in order to enrich its output

distribution. However, transition and emission distributions in such models cannot be decoupled,

and hence their latent states do not map to clinically meaningful identification of disease states.

To the best of our knowledge, ours is the first deep probabilistic model that provides clinically

meaningful latent representations, with non-Markovian state dynamics that can be made arbitrarily

complex while remaining interpretable.
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5.2 Attentive State-Space Models

We start off by describing the structure of EHR data in Section 5.2.1, and then we develop the

attentive state-space representation of disease progression in Section 5.2.2.

5.2.1 Structure of the EHR Data

A patient’s EHR record, denoted as ~xT , is a collection of sequential follow-up data gathered during

repeated hospital visits. We represent a given patient’s record as

~xT = {xt}Tt=1, (5.1)

where xt is the follow-up data collected during the tth hospital visit, and T is the total number of

visits. The follow-up data xt ∈ X is a multi-dimensional vector that comprises information on

biomarkers and clinical events, such as treatments and ICD-10 diagnosis codes [BT10].

5.2.2 Attentive State-Space Representation

We model the progression trajectory of the target disease via a state-space representation. That is, at

each time step t, the patient’s health is characterized by a state zt ∈ Z which manifests through the

follow-up data xt. The state space is the (discrete) set of all possible stages of disease progression

Z = {1, . . . , K}. In general, progression stages correspond to distinct disease phenotypes. For

instance, chronic kidney disease progresses through 5 stages (Stage I to Stage IV), each of which

corresponds to a different level of renal dysfunction [EN06]. We assume that {zt}t is hidden, i.e.,

the true health state of a patient is not observed, and should be learned in an unsupervised fashion.
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We model the joint distribution of states and observations via the following factorization:

pθ(~xT ,~zT ) =
T∏
t=1

pθ(xt | zt)︸ ︷︷ ︸
Emission

pθ(zt |~xt−1,~zt−1)︸ ︷︷ ︸
Transition

, (5.2)

where ~zt = {z1, . . ., zt}, 1 ≤ t ≤ T , and θ is the set of parameters of our model.

Attentive state transitions. What makes the model in (5.2) differ from standard state-space mod-

els? The main difference is that the transition probability in (5.2) assumes that the patient’s

health state at time t depends on their entire history (~xt−1,~zt−1). This is a major departure

from the standard Markovian assumption, which posits that pθ(zt |~xt−1,~zt−1) = pθ(zt | zt−1),

i.e., future states depend only on current state. Most existing disease models are Markovian

(e.g., [LLL15, WSW14]).

To capture non-Markovian dynamics, we model the state transition distribution as follows:

pθ(zt |~xt−1,~zt−1) = pθ(zt | ~αt,~zt−1), (5.3)

where ~αt = {αt1, . . ., αtt−1}, αti ∈ [0, 1],∀i,
∑

i α
t
i = 1, is a set of attention weights that act as

sufficient statistics of future states. The attention weights admit to a simple interpretation: they

determine the influences of past state realizations on future state transitions via the linear dynamic

pθ(zt | ~αt,~zt−1) =
t−1∑
t′=1

αt−1t′ P (zt′ , zt), ∀t ≥ 1, (5.4)

where P is a baseline state transition matrix, i.e., P = pij ∈ [0, 1],
∑
j pij = 1, and the initial state

distribution isπ = [ p1, . . ., pK ]. The attention weights ~αt assigned to all previous state realizations

at time t are generated using the patient’s context ~xt via an attention mechanismA as follows:

~αt = At(~xt). (5.5)
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where A is a deterministic algorithm that generates a sequence of functions {At}t, At : X t →

[0, 1]t. We specify our choice of the attention mechanism in the next Section.

Emission distribution. The follow-up data xt = (xct , x
b
t) comprises both a continuous compo-

nent xct (e.g., biomarkers and test results) and a binary component xbt (e.g., clinical events and

ICD-10 codes). To capture both components, we model the emission distribution in (5.2) through

the following factors pθ(xt | zt) = pθ(x
b
t |xct , zt) · pθ(xct | zt), where

pθ(x
c
t | zt) = N (µzt , Σzt), pθ(x

b
t |xct , zt) = Bernoulli(Logistic(xct , Λzt)). (5.6)

The model in (5.6) specifies a state-specific distribution for binary (Bernoulli) and continuous

(Gaussian) variables, with state-specific emission distribution parameters (µzt , Σzt , Λzt). This, an

attentive state-space model is completely specified through θ = (π,P ,A,µ,Σ,Λ).

Generality of the attentive representation. For particular choices of the attention mechanism

in (5.5), our model reduces to various classical models of sequential data as shown in Table 5.1.

The generality of the attentive state representation is a powerful feature because it implies that

by learning the attention functions {At}t, we are effectively testing the structural assumptions of

various commonly-used time series models in a data-driven fashion.

5.2.3 Sequence-to-sequence Attention Mechanism

To complete the specification of our model, we now specify the attention mechanism A in (5.5).

Recall that A is a sequence of deterministic functions that map a patient’s context ~xt to a set of

attention weights ~αt at each time step. Since our model must output an entire sequence of attention

weights every time step, we implementA via a sequence-to-sequence (Seq2Seq) model [SVL14].
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Model Attention mechanism

HMM [LLL15] αtt−1 = 1, αtj = 0, j ≤ t− 2.

Order-m HMM [WST95] αtj = 1{m≤j≤t−1}, j ≤ t− 2.

Variable-order HMM [BEY04] αtj ∈ {0, n̄−1}, n̄ =
∑
i 1{αti≥γ}.

Table 5.1: Reduction of attentive state-space models to standard models.

Our Seq2Seq model uses LSTM encoder-decoder architecture as shown in Figure 5.2. For each

time step t, the patient context ~xt is fed to the LSTM encoder, and the final state of the encoder,

ht, is viewed as a fixed-size representation of the patient’s context, and is passed together with the

last output O to the decoder side.

Encoder 

Decoder 

Attention Weights  

Softmax Layer 

Figure 5.2: Seq2Seq architecture for the attention mechanismA.

In the decoding phase, the last state of the encoding LSTM is used as an initial state of the

decoding LSTM, and O is used as its first input. Then, the decoding LSTM iteratively uses its

output at one time step as its input for the next step. After t− 1 decoding iterations, we collect the

t− 1 (normalized) attention weights via a Softmax output layer.

The main difference between our architecture and other Seq2Seq models — often used in
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language translation tasks [BCB15, SVL14] — is that in our case, we learn an entire sequence

of attention weights for each of the T data vectors in ~xT . We achieve this by running t − 1

decoding iterations to collect t− 1 outputs for every single encoding step. Moreover, in our setup

attention sequence is the target sequence being learned. This should not be confused with other

Seq2Seq schemes with attention, where attention is used as an intermediate representation within

the decoder [VSP17].

5.2.4 Why Attentive State Space Modeling?

Most existing models of disease progression are based on Hidden Markov models [AHS17,LLL15,

WSW14, GR02]. However, the Markovian dynamic is oversimplified: in reality, a patient transi-

tion to a given state depends not only on her current stage, but also on her individual history of past

clinical events [STL07]. In this sense, a Markov models is of a “one-size-fits-all” nature — under

a Markov model, all patients at the same stage of progression would have the same expected future

trajectory, irrespective of their potentially different individual clinical histories. Because Markov

models explain away individual-level variations in progression trajectories, their interpretable na-

ture should be thought of as a bug and not a feature, i.e., a Markov model is easily interpretable

only because it does not explain much, it only encodes our own prior assumptions about disease

dynamics.

Attentive state space models overcome the shortcomings of Markov models by using attention

weights to create non-stationary, variable-order generalization of Markovian transitions, whereby

the dynamics of each patient changes over time based on her individual clinical context. An at-

tentive state model can learn dynamics that are as complex as those of an RNN, but through the

factorization in (5.2), it ensures that its hidden states correspond to meaningful disease states.
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5.3 Attentive Variational Inference

Learning the model parameter θ and inferring a patient’s health state in real-time requires comput-

ing the posterior pθ(~zt |~xt). However, the non-Markovian nature of our model renders posterior

computation intractable. In this Section, we develop a variational learning algorithm that jointly

learns the model parameter θ and a structured inference network that approximates the posterior

pθ(~zt |~xt). We show that the attentive representation proposed is useful not only for improving

predictions and extracting clinical knowledge, but also can help improve structured inference.

5.3.1 Variational Lower Bound

In variational learning, we maximize an evidence lower bound (ELBO) for the data likelihood, i.e.,

log pθ(~xT ) ≥ Eqφ [ log pθ(~xT ,~zT )− log qφ(~zT |~xT ) ] ,

where qφ(~zT |~xT ) is a variational distribution that approximates the posterior pθ(~zT |~xT ). We

model the variational distribution qφ(~zT |~xT ) using an inference network that is trained jointly

with the model through the following optimization problem [MG14, KW14]:

θ∗, φ∗ = arg max
θ,φ

Eqφ [ log pθ(~xT ,~zT )− log qφ(~zT |~xT ) ] . (5.7)

By estimating θ and φ from the EHR data, we recover the generative model pθ(~xT ,~zT ), through

which we can extract clinical knowledge, and the inference network qφ(~zT |~xT ), through which

we can use to infer the health trajectory of the patient at hand.
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5.3.2 Attentive Inference Network

We construct the inference network qφ(~zT |~xT ) so that it mimics the structure of the true posterior

[KSS17]. Recall that the posterior factorizes as follows:

pθ(~zT |~xT ) = pθ(z1 |~xT )
T∏
t=2

pθ(zt | ~αt−1,~zt−1,~xt:T ).

Consequently, we impose a similar factorization on the inference network, i.e.,

qφ(~zT |~xT ) = qφ(z1 |~xT )
T∏
t=2

qφ(zt | ~αt−1,~zt−1,~xt:T ). (5.8)

To capture the factorization in (5.8), we use the architecture in Figure 5.3 to construct an

inference network that mimics the attentive structure of the generative model. In this architecture,

a “combiner function” C(.) is fed with all the sufficient statistics of a state zt, and outputs its

posterior distribution. The combiner uses the attention weights created byA to condense summary

statistics of zt.

As dictated by (5.8), the parent nodes of zt are the attention weights ~αt, the previous states

~zt−1 and the future observations ~xt:T . The inference network encodes these sufficient statistics as

follows. The attention weights ~αt are shared with the attention network in Figure 5.2. The future

observations ~xt:T are summarized at time t via a backward LSTM that reads ~xT in a reversed order

as shown in Figure 5.3. Finally, the previous states ~zt−1 are sampled from the combiner functions

at previous time steps as described below.

Posterior sampling. In order to sample posterior state trajectories from the inference network,
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Figure 5.3: Attentive inference network.

we iterate over the combiner function C(.) for t ∈ {1, . . ., T} as follows:

p̃t = C(htq, ~αt, (z̃1, . . ., z̃t−1) |π,P ),

z̃t ∼ Multinomial(p̃t), (5.9)

where p̃t = (p̃t1, . ., ., p̃
t
K),
∑

k p̃
t
k = 1, is the posterior state distribution estimated by the inference

network at time t, and htq is the tth state of the backward LSTM in Figure 5.3, which summarizes

the information in ~xt:T . As we can see in (5.9), at each time step t, the combiner function takes

as an input all the previous states (z̃1, . . ., z̃t−1) sampled by earlier executions of the combiner

function. The dashed blue lines in Figure 3 depict the passage of older state samples to later

executions of the combiner function.

The combiner function estimates the posterior p̃t by emulating the state transition model in
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(5.5), i.e.,

p̃tk,forward =
∑t−1
t′=1α

t
t′P (z̃t′ , k), k ∈ {1, . . ., K},

h̃tq = [htq, p̃
t
1,forward. . ., p̃

t
K,forward],

p̃t = Softmax(W>
q h̃

t
q + bq). (5.10)

As shown in (5.10), the combiner emulates the generative model to compute an estimate of the

“filtering” distribution p̃tk,forward ≈ pθ(zt |~xt), i.e., it attends to previously sampled states with

proportions determined by the attention weights. Then, to augment information from the future

observations ~xt:T , it concatenates the filtering distribution with the backward LSTM state and

estimates the posterior through a Softmax output layer.

5.3.3 Learning with Stochastic Gradient Descent

In order to simultaneously learn the parameters of the generative model and inference network, we

use stochastic gradient descent to solve (5.10) as follows:

1. Sample (z̃(i)

1 , . . ., z̃
(i)

T ) ∼ qφ(~zT |~xT ), i = 1, . . ., N .

2. Estimate ELBO L̂ = 1
N

∑
i `θ,φ(~xT , z̃

(i)

1 , . . ., z̃
(i)

T ).

3. Estimate the gradients ∇θL̂ and ∇φL̂.

4. Update φ and θ.

In Step 2, the term `θ,φ(.) denotes the objective function in (5.10). We estimate the gradients in

Step 3 via stochastic backpropagation [SHW15]. In Step 4, we use ADAM [KB14] to update the

parameters of the attention mechanism (Figure 5.2) and the inference network (Figure 5.3). The

emission parameters are updated straightforwardly by their maximum likelihood estimates.
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Figure 5.4: LL vs. training epochs.

Rao-Blackwellization via attention. As we have seen, our attentive inference network archi-

tecture enables sharing parameters between the generative model and the inference model, which

would definitely accelerate learning. Another key advantage of the attentive structure qφ(zt |~xT ) is

that it acts as a Rao-Blackwellization of the conventional structured inference network which con-

ditions on all observation (i.e., qφ(zt |~xT ) [KSS17, ZZA17, KSB16]). Because attention weights

(together with ~zt−1) and ~xt:T )) act as sufficient statistics for state transitions, our inference net-

works guides the posterior to focus only on the pieces of information that matter. Rao-Blackwellization

helps reduce the variance of gradient estimates (Step 3 in the learning algorithm above), and hence

accelerate learning [RGB14].

5.4 Experiments

In this Section, we use our attentive state-space framework to model cystic fibrosis (CF) progres-

sion trajectories. CF is a life-shortening disease that causes lung dysfunction, and is the most

common genetic disease in Caucasian populations [SLS17]. Experimental details are listed here-
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under.

Implementation. We implemented our model using Tensorflow. The LSTM cells in both the

attention network (Figure 5.2) and the inference network (Figure 5.3) had 2 hidden layers of size

100. The model and inference networks were trained using ADAM with a learning rate of 5×10−4,

and a mini-batch size of 100. The same hyperparameters’ setting was used for all baseline mod-

els involving RNNs. All results reported in this Section where obtained via 5-fold cross-validation.

Data description. We used data from a cohort of patients enrolled in the UK CF registry, a

database held by the UK CF trust1. The dataset records annual follow-ups for 10,263 patients

over the period from 2008 and 2015, with a total of 60,218 hospital visits. Each patient is associ-

ated with 90 variables, including information on 36 possible treatments, diagnoses for 31 possible

comorbidities and 16 possible infections, in addition to biomarkers and demographic information.

The FEV1 biomarker is the main measure of severity in CF patients [SHE10].

Training. In Figure 5.4, we show the model’s log-likelihood (LL) versus the number of train-

ing epochs. As we can see, the more training iterations we apply, the better the model likelihood

gets: it jumped from −4× 10−6 in the initial iterations to −8× 10−5 after training was completed.

The best value of the log-likelihood is 0, which is achieved when the inference network qφ(zt |~xT )

coincides with the true model pθ(zt |~xT ), and the observed data likelihood given the model is 1.

Attentive inference is accurate because it utilizes the minimally sufficient set if past information,

which reduces the variance in gradient estimates (Section 5.3.3).

1https://www.cysticfibrosis.org.uk/the-work-we-do/uk-cf-registry/
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Use cases. We assess our model with respect to the two use cases it was designed for: (1) ex-

tracting clinical knowledge on disease progression mechanisms from the data, and (2) predicting a

patient’s health trajectory over time. We assess each use case in Sections 5.4.1 and 5.4.2.
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Figure 5.5: Distribution of observations in each progression stage.

5.4.1 Understanding CF Progression Mechanisms

Population-level phenotyping. Our model learned a representation of K = 3 CF progression

stages (Stages 1, 2 and 3) in an unsupervised fashion, i.e., each stage is a realization of the hidden

state zt. As we show in what follows, each learned progression stage corresponded to a clinically

distinguishable phenotype of disease activity. The learned baseline transition matrix was

P =


0.85 0.10 0.05

0.13 0.72 0.15

0.24 0.10 0.66

 .

The FEV1 biomarker is currently used by clinicians as a proximal measure of a patient’s health

in order to guide clinical and therapeutic decisions [BM11]. In order to check that the learned

progression stages correspond to different levels of disease severity, we plot the estimated mean
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Diabetes ABPA Depression Pancreatitus P. Aeruginosa

Model AUC-ROC AUC-ROC AUC-ROC AUC-ROC AUC-ROC

Attentive SS 0.709 ± 0.02 0.787 ± 0.01 0.751 ± 0.03 0.696 ± 0.04 0.680 ± 0.01

HMM 0.625 ± 0.02 0.686 ± 0.03 0.667 ± 0.08 0.625 ± 0.04 0.610 ± 0.02

RNN 0.634 ± 0.03 0.727 ± 0.10 0.575 ± 0.01 0.590 ± 0.06 0.654 ± 0.01

LSTM 0.675 ± 0.03 0.740 ± 0.07 0.609 ± 0.12 0.578 ± 0.05 0.671 ± 0.01

RETAIN 0.610 ± 0.06 0.718 ± 0.05 0.580 ± 0.09 0.600 ± 0.08 0.676 ± 0.02

Table 5.2: Performance of the different competing models for the 5 prognostic tasks.

of the emission distribution for the FEV1 biomarker in Stages 1, 2 and 3 in Figure 5.5 (left). As

we can see from Figure 5.5 (left), the mean values of the FEV1 biomarker in each stage were

79%, 68% and 53%, respectively. These values matched with the cutoff values on FEV1 used in

current guidelines for referring critically-ill patients to a lung transplant [BM11]. Thus, the learned

progression stages can be translated into actionable information for clinical decision-making.

The progression stages learned by our model represented clinically distinguishable phenotypes

with respect to multiple clinical variables. To illustrate these phenotypes, in Figure 5.5 (right) we

plot the risks of various comorbities (Diabetes, asthma, ABPA, hypertension and depression) for

patients in the 3 CF progression stages learned by the model. (Those risks were obtained directly

from the learned emission distribution corresponding to the binary component xbt of the clinical

observation xt.) As we can see, the incidences of those comorbidities and infections increase sig-

nificantly in the more severe progression Stages 2 and 3 as compared to Stage 1.

Individualized contextual diagnosis. Population level modeling of disease stages can be already

obtained with simple HMM models, but our model captures more complex dynamics that are spe-

cific to individuals, and can be made non-Markovian and non-stationary depending on the patient’s
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Figure 5.6: Average attention weights over time.

context. To demonstrate the complex and non-stationary nature of the learned state dynamics, we

plot the average attention weights assigned to the patients’ previous state realizations in every

”chronological” time step of a patient trajectory. The average attention weights per time step is

plotted in Figure 5.6.

As we can see, a patient’s state trajectory behaves in a quasi-Markovian fashion (only current

state takes all the weight) only on its edges. That is, at the first time step and the last time step, the

only thing that matters for prediction is the patient’s current state. This is because in the first time

step, the patient has no history, whereas in the final step, the patient is already in the most severe

state and hence her current health deterioration depends overrides all past clinical events. Memory

becomes important only in intermediate Stages — this is because patients in Stages 2 and 3 are

more likely to have been diagnosed with more comorbidities in the past.
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5.4.2 Predicting Prognosis

As we have seen in Section 5.4.1, our model is capable of extracting clinical intelligence from

data, but does this compromise its predictive ability? To test the predictive ability of attentive

state-space models, we sequentially predict the 1-year risk of 4 comorbidities (ABPA, diabetes,

depression and pancreatitus), and 1 lung infections (Pseudomonas Aeruginosa) that are common

in the CF population. We use the area under receiver operating characteristic curve (AUC-ROC)

for performance evaluation. We report average AUC-ROC with 95% confidence intervals. We

compare our model with 4 baselines: a vanilla RNN and an LSTM trained for sequence prediction,

a state-of-the-art predictive model for healthcare data known as RETAIN [KCK19, CBS16b], and

an HMM.

As we can see in Table 5.2, our model did not incur any performance loss when compared to

models trained and tailored for the given prediction task (RNN, LSTM and RETAIN), and was in

fact more accurate on all of the 5 tasks. The source of the predictive power in attentive state-space

models comes from the usage of LSTM networks to model state dynamics in a low-dimensional

space that summarizes the 90 variables associated with each patient. While HMMs can also learn

interpretable representations of disease progression, they displayed modest predictive performance

because of their oversimplified Markovian dynamics. Because attentive state-space models are ca-

pable of combining the interpretational benefits of probabilistic models and the predictive strength

of deep learning, we envision them being used for large-scale disease phenotyping and clinical

decision-making.
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Part II

Application to Clinical Data
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CHAPTER 6

Predicting Deterioration of Lung Function in Cystic Fibrosis

6.1 Background

Cystic fibrosis (CF) is an autosomal recessive disease caused by the presence of mutations in both

alleles at the cystic fibrosis transmembrane conductance regulator (CFTR) gene, and is the most

common genetic disease in Caucasian populations [ASC08, FWH14]. Impaired CFTR function-

ality gives rise to different forms of lung dysfunction, all of which eventually lead to progressive

respiratory failure [MNR14, SLS17]. Despite recent therapeutic progress that significantly im-

proved CF prognosis [RBB12], only half of the current CF population are expected to live to over

40 years old [MGS14]. Lung transplantation (LT) is recommended for patients with end-stage

respiratory failure as a means to improved life expectancy [Flu98,LAC01,HBI09]. Unfortunately,

there are more LT candidates than available lung donors [Flu98], and in addition, the LT proce-

dure is accompanied by serious risks of subsequent post-transplant complications [MRE02]. An

effective LT referral policy should ensure an efficient allocation of the scarce donor lungs by pre-

cisely identifying high-risk patients as candidates for transplant, without overwhelming the LT

waiting list with low-risk patients for whom a LT might be an unnecessary exposure to the risk of

post-transplant complications [LAH05].

Current consensus guidelines, such as those recommended by the International Society for

Heart and Lung Transplantation (ISHLT) [WBC15], consider referring a patient for LT evaluation
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when the forced expiratory volume (FEV1) drops below 30% of its predicted nominal value. This

guideline, which is widely followed in clinical practice [HL12, HKH14], is based mainly on the

seminal study by Kerem et. al [KRC92], which identified FEV1 as the main predictor of mortality

in CF patients using survival data from a cohort of Canadian CF patients (patients eligible 1977-

1989). While the FEV1 biomarker has been repeatedly confirmed to be a strong predictor of

mortality in CF patients [MW98, MRE02, WDB14], recent studies have shown that the survival

behavior of CF patients with FEV1 <30% exhibits substantial heterogeneity [RQH17], and that the

improvements in CF prognosis over the past years have changed the epidemiology and demography

of CF populations [UTF13, SSS17], which may have consequently altered the relevant CF risk

factors (A striking example of a significant change in the demography of the CF population is

the sharp decline in pediatric mortality in recent years [UTF13].) However, none of the existing

prognostic models that combine multiple risk factors [HWW97, LAF01, BAM12, ASC15] have

been able to demonstrate a significant improvement in mortality prediction compared to the FEV1

criterion in terms of the positive predictive value, which is a proximal measure for the rate of

premature LT referral (low-risk patients referred to a transplant) [MRE02].

The goal of this Chapter is to develop a CF prognostic model that can guide clinical decision-

making by precisely selecting high-risk patients for LT referral. We use the automated ML algo-

rithm developed in Chapter 4 (AutoPrognosis) to accomplish this goal. In particular, we apply

AutoPrognosis to discover an accurate, data-driven prognostic model on the basis of a contempo-

rary cohort from the UK CF registry; a database that includes 99% of the CF population in the

UK [CFRa, CFRb, FLM17].
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6.2 Data and Experimental Setup

Experiments were conducted using retrospective longitudinal data from the UK cystic fibrosis Reg-

istry; a database sponsored and hosted by the UK cystic fibrosis Trust [CFRa]. The registry com-

prises a list of annual follow-up variables for individual CF patients that includes demographics,

genetic mutations, airway colonization and microbiological infections, comorbidities and compli-

cations, transplantation, hospitalization, spirometry and therapeutic management. We used Auto-

Prognosis to automatically construct a prognostic model for predicting 3-year mortality (a realistic

waiting time in a lung transplantation waiting list [MRE02]) based on the follow-up variables at

baseline.

All experiments were conducted using data for a baseline cohort comprising patients’ follow-

up variables collected in 2012: this was the most recent cohort for which 3-year mortality data was

available. A total of 115 variables were associated with every patient, all of which were fed into

AutoPrognosis in order to encourage an agnostic, data-driven approach for discovering risk factors.

Since transplantation decisions are mostly relevant for adults (93.75% of transplantation operations

recorded in the registry were performed in adults), we excluded pediatric patients, and included

only patients who were more than 18 years old. (Deaths in children with CF are now very rare

in developed countries [UTF13, NLL17].) Outcomes are defined as death or lung transplantation

within 3 years of the baseline data collection date. Patients who were lost to follow-up or have

already undergone a transplant before 2012 were excluded. Figure 6.1 depicts a flow chart of the

data assembly process involved in our analysis. Of the 4,532 patients who were aged 18 years or

older in 2012, a total of 114 patients underwent a lung transplant before their 2012 annual review,

and a total of 354 patients were lost to follow-up. Of the remaining 4,064 patients, 382 patients
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8,794 patients enrolled in the UK CF 
Registry on 31st December 2012 

 
 

4,532 adult patients enrolled in the 
UK CF Registry on 31st December 2012 

 
 
 
 
 

4,178 adult patients with follow-up 
data on 31st December 2015 

 
 
 

 
4,064 patients included in the analysis 

 

 
4,262 pediatric patients 

(< 18 years) 
 

354 patients lost to 
follow-up 

 
114 patients with a 

transplant before 2012 
 

Figure 6.1: Patient selection and data assembly process.

(9.4%) experienced an adverse outcome within a 3-year period.

Of the 382 patients who experienced an adverse outcome, 266 died without receiving a trans-

plant, 104 underwent a successful transplant, and 12 patients received a transplant but died within

the 3-year horizon. The characteristics of the patients in the baseline cohort are provided in Ta-

bles 6.1 and 6.2. The study population was stratified into two subgroups based on the endpoint

outcomes and the characteristics of the two subgroups were compared using Fisher’s exact test for

discrete (and categorical) variables, and Mann-Whitney U test for continuous variables.

The number of CFTR mutations (in either alleles) whose frequencies in the cohort exceeded

1% was 66, with the most frequent five mutations being ∆F508, G551D, R117H, G542X, and

621+1G→T. Previous studies on CF genetics have classified CFTR mutations into 6 different cat-
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Figure 6.2: Schematic depiction for the in-sample model ft obtained by AutoPrognosis.

egories according to the mechanism by which they obstruct the synthesis and traffic of CFTR

[FWH14]. We used the CFTR genetic classification in order to cluster the (high-dimensional)

genotype information. In particular, we converted the genotype information of every patient into a

vector of 9 binary features which encodes the following information: whether the CFTR mutation

is homozygous, whether any of the two alleles carries a∆F508 or a G551D mutation, and the class

to which the mutation carried by the patient belongs.

6.3 Training and Validation of AutoPrognosis

All evaluations of diagnostic accuracy were obtained via 10-fold stratified cross-validation in or-

der to assess the generalization performance, where a held-out sample was used to evaluate the

performance of the model learned by AutoPrognosis in every fold using a mutually exclusive

training sample. In every cross-validation fold, AutoPrognosis conducts up to 200 iterations of the

Bayesian optimization procedure presented in Chapter 4, where in every iteration it explores a new

pipeline and tunes its hyper-parameters. AutoPrognosis builds an ensemble of all the pipelines that

it explored in which every pipeline is given a weight that is proportional to its empirical perfor-

mance. The in-sample model fit obtained by AutoPrognosis is depicted in Figure 6.2. The model
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combines two pipelines: the first uses missForest imputation [SB11] and a random forest classifier

(with 736 trees) with no feature processing, whereas the second pipeline uses simple mean im-

putation, a PCA transformation with 80 components followed by an XGBoost classifier with 650

trees. Both pipelines used sigmoid regression for calibration. The in-sample area under receiver

operating characteristic curve was 0.9714, and the model was well-calibrated, with a Brier score

of 0.0543.

6.4 Results

6.4.1 Systematic Review of Existing Risk Scores

We compared the diagnostic accuracy of AutoPrognosis with state-of-the-art prognostic models

that were developed for predicting short-term CF outcomes. In order to identify and select the

competing prognostic models, we searched PubMed for studies published in the last 10 years (in

all languages) with the terms “(cystic fibrosis) and survival and (prognostic or predictive model)”.

We filtered the relevant studies by their clinical end-points, focusing only on studies that defined

the composite end-point of death and lung transplantation in a time horizon of less than 5 years.

We identified 3 contemporary studies that developed and validated prognostic models using multi-

center or registry data [NLL17,MDM13,DJ15,BAM12]. In the first study, Buzzetti et al. [BAM12]

developed a parsimonious multivariate logistic regression model for predicting 5-year outcomes for

CF patients using 4 variables, and demonstrated that it outperforms the model developed by Liou

et al. [LAF01] using retrospective data from 9 Italian CF centers. McCarthy et al. [MDM13] de-

veloped a predictive model, dubbed “CF-ABLE”, for predicting 4-year CF outcomes using 4 vari-

ables, and validated their model using data for 370 patients enrolled in the Irish CF registry data.

106



Dimitrov et al. [DJ15] proposed a modified version of the CF-ABLE score, dubbed “CF-ABLE-

UK”, which they (externally) validated through the UK CF registry data, reporting a c-statistic of

0.80 (95% CI: 0.79−0.83). More recently, Nkam et al. [NLL17] developed a multivariate logistic

regression model for predicting 3-year CF outcomes using 8 risk factors. The model was internally

validated through the French CF registry, reporting a c-statistic of 0.91 (95% CI: 0.89−0.92). We

compared the diagnostic accuracy of AutoPrognosis with these 3 models as they considered similar

clinical end-points and were validated on contemporary retrospective cohorts.

All of the studies mentioned above explored the usage of only a few risk factors in model de-

velopment. To the best of our knowledge, ours is the first study to investigate an agnostic, machine

learning-based approach for discovering risk factors for CF using a representative cohort that cov-

ers the entire CF population in the UK. In order to assess the clinical utility of AutoPrognosis,

we also compared its diagnostic accuracy with the simple FEV1-based prediction rule proposed by

Kerem et al. [KRC92], where a LT referral criterion that selects CF patients with an FEV1% of

less than 30% predicted was recommended. This simple prediction rule continues to be the main

criterion for LT referral in current clinical practice guidelines [HKH14, HL12, OEA06].

6.4.2 Diagnostic Accuracy Evaluation

The main objective of CF prognostic models is to inform LT referral decisions [MRE02, Flu98,

BDS15, HKH14]. Since donor lungs are scarce [Flu98, LAH05, LAC01], the clinical utility of a

prognostic model should be quantified in terms of the model’s ability to (precisely) identify patients

who are truly at risk and hence should be allocated in a LT waiting list. Many of the previously

developed models have been validated only through goodness-of-fit measures [HWW97, ASC15],

which reveal little information about the models’ actual clinical utility. The area under receiver
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operating characteristic (AUC-ROC) curve has been used to quantify the discriminative power

of the models developed by Nkam et al. [NLL17], McCarthy et al. [MDM13] and Buzzetti et

al. [BAM12]. AUC-ROC is nevertheless a misleading quantifier for the usefulness of a CF prog-

nostic model as it is insensitive to the prevalence of poor outcomes in the population, and assumes

that positive and negative predictions are equally important [Swe88]. Since most patients would

not need a LT at the 3-year horizon (the prevalence of poor outcomes is as low as 9.4%), a model’s

AUC-ROC evaluation can be deceptively high, only reflecting a large number of “easy” and “non-

actionable” true negative predictions, without reflecting the actual precision of the LT referral

decisions guided by the model. The inappropriateness of AUC-ROC as a sole measure of diagnos-

tic accuracy in the context of LT referral for CF patients was highlighted by Mayer-Hamblett et

al. [MRE02], where it was shown that models with seemingly high AUC-ROC can still have mod-

est predictive values (refer to Table 3 therein). A detailed technical analysis of the shortcomings

of the AUC-ROC in imbalanced datasets was recently conducted by Saito et al. [SR15].

In order to ensure a comprehensive assessment for the clinical usefulness of AutoPrognosis,

we evaluated the positive predictive values (PPV) and negative predictive values (NPV) for all

predictive models under consideration, in addition to the standard AUC-ROC metrics. (PPV is

also known as the precision metric.) The PPV reflects the fraction of patients who are truly at

risk among those identified by the model as high risk patients. A model’s PPV characteristic best

represents its clinical usefulness as it reflects the precision in the associated LT referral decisions

[MRE02]. That is, at a fixed sensitivity, models with higher PPV would lead to fewer patients

who are not at risk being enrolled in a transplant waiting list, resulting in a more effective lung

allocation scheme with fewer premature referrals.

In Table 6.3, we compare the performance of AutoPrognosis with the competing models in
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terms of various diagnostic accuracy metrics that capture the models’ sensitivity, specificity and

predictive values. In particular, we evaluate the models’ AUC-ROC, Youden’s J statistic, area

under precision-recall curve (AUC-PR), average precision and the F1 score. The AUC-ROC and

Youden’s J statistic characterize the models’ sensitivity and specificity; the J statistic, also known

as the “informedness”, characterizes the probability of an “informed decision”, and is computed

by searching for the optimal cutoff point on the ROC curve that maximizes the sum of sensitivity

and specificity [FFR05, AB94]. As discussed earlier, the clinical usefulness of a model is bet-

ter represented via its PPV characteristics, and hence we evaluate the models’ AUC-PR, average

precision and F1 scores. The three metrics characterize the models’ precision (PPV) and recall

(sensitivity): the AUC-PR is an estimate for the area under the precision-recall curve using the

trapezoidal rule [DG06, SR15], whereas the average precision is a weighted mean of precisions

achieved at each threshold on the (non-interpolated) precision-recall curve, where the weights are

set to be the increase in recall across the different thresholds [Zhu04]. We chose to report both

the AUC-PR and the average precision since the trapezoidal rule used to estimate the AUC-PR can

provide overly optimistic estimates for the precision-recall performance; both AUC-PR and aver-

age precision provide numerically close estimates for well-behaved precision-recall curves [FK15].

The F1 score is the harmonic mean of the model’s precision and recall; in Table 6.3 we compute

each model’s F1 score at the cutoff point determined by its Youden’s J statistic.

AutoPrognosis outperformed the competing models with respect to all diagnostic metrics under

consideration. We found the model developed by Nkam et al. [NLL17] to be the most competitive

clinical model with respect to all metrics. All the results in Table 6.3 are statistically signifi-

cant: 95% confidence intervals and p-values were obtained via 10-fold stratified cross-validation.

All prognostic models performed markedly better than the simple criterion based on the FEV1
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biomarker. AutoPrognosis displayed a satisfactory discriminative power, with an AUC-ROC of

0.89 (95% CI: 0.88−0.90) and a J statistic of 0.67 (95% CI: 0.65−0.69), outperforming the most

competitive clinical model which achieves an AUC-ROC of 0.86 (95% CI: 0.85−0.87, p-value

< 0.001) and a J statistic of 0.58 (95% CI: 0.55−0.61, p-value < 0.001). More importantly, Auto-

Prognosis displayed an even more significant gain with respect to the precision-recall performance

metrics. In particular, it achieved an AUC-PR (Random guessing achieves an AUC-PR that is as

low as 0.09.) of 0.58 (95% CI: 0.54−0.62), an average precision of 0.59 (95% CI: 0.55−0.63) and

an F1 score of 0.60 (95% CI: 0.57−0.63), whereas the most competitive clinical model achieved

an AUC-PR of 0.50 (95% CI: 0.47−0.53, p-value < 0.001), an average precision of 0.48 (95% CI:

0.45−0.51, p-value < 0.001) and an F1 score of 0.52 (95% CI: 0.50−0.54, p-value < 0.001).

We observe that the competing clinical models, albeit satisfying high AUC-ROC figures, are

providing marginal (or no) gains with respect to the precision-recall metrics (The big gap between

the AUC-PR and average precision values for the FEV1-based criterion reported in Table 6.3 re-

sulted from the fact that this criterion creates a binary statistic with limited number of operating

points, while the average precision is computed using the non-interpolated precision-recall curve.)

For instance, the CF-ABLE-UK score achieves a better AUC-ROC compared to the FEV1-based

criterion, but performs rather poorly in terms of the precision-recall measures since it additively

combines the FEV1 predictors and many of the variables correlated with it, and hence it double-

counts the risk factors for a large number of patients. (As we will show later, the CF-ABLE-UK

score also ignores Oxygen therapy intake, which is an important variable for precise identification

of low-FEV1 patients at risk.) The models developed by Nkam et al. and Buzzetti et al. achieve

impressively high gains in AUC-ROC, but only modest gains in the AUC-PR and F1 scores, im-

plying a limited clinical significance. Contrarily, AutoPrognosis was able to provide not only a
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high AUC-ROC figure, but also a significant improvement in the precision-recall metrics.

6.4.3 Assessing the Clinical Utility of AutoPrognosis

Practical deployment of a prognostic model in clinical decision-making would entail converting

the model’s (continuous) outputs into binary decisions on whether a patient might be an appro-

priate candidate for transplant referral [MRE02]. This can be achieved by setting a cutoff point

on the model output (which corresponds to the patient’s risk), beyond which the patient is rec-

ommended for a transplant. In order to examine the potential impact of the prognostic models

under study on clinical decision-making, we evaluated the diagnostic accuracy of AutoProgno-

sis, the best performing clinical model, and the FEV1-based criterion, at various cutoff points for

transplant referral. The results are summarized in Table 6.4.

In order to ensure a sensible comparison, sensitivity was fixed for all models at four levels

(0.13, 0.46, 0.62, and 0.73); these are the four levels of sensitivity achieved by the FEV1 criterion

at the cutoff thresholds 20%, 30%, 40% and 50%, respectively. The results in Table 6.4 show

that at each cutoff threshold, the model learned via AutoPrognosis outperforms both the FEV1

criterion and the best performing competing model in terms of PPV, specificity, accuracy, and F1

scores. Of particular interest is the cutoff point of FEV1 <30 % (underlined in Table 6.4), which

represents the main transplant referral criterion adopted in current clinical practices. The transplant

referral policy achieving the same sensitivity as that achieved by the FEV1 <30 % criterion places

a threshold of 0.33 on the output of AutoPrognosis. At this operating point, AutoPrognosis yields a

PPV of 65%, which is significantly higher than that achieved by the FEV1 criterion (48%), and that

achieved by the model developed by Nkam et al. [NLL17] (56%). That is, by adopting the model

learned by AutoPrognosis for LT referral, we expect that the fraction of patients populating the
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lung transplant waiting list who are truly at risk would rise from 48% to 65%. In other words, in a

waiting list of 100 patients, our model would replace 17 patients who were unnecessarily referred

to a transplant with 17 other patients who truly needed one.
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Figure 6.3: FEV1 trajectories.
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Figure 6.4: Predicted risk groups.

The clinical utility of AutoPrognosis is not limited to transplant referral; the predictions prompted

by AutoPrognosis serve as granular risk scores that can quantify the severity of future outcomes

and hence can be used for treatment planning, follow-up scheduling, or estimating the time at

which a transplant would be needed in the future. For instance, decisions on whether a CF patient

carrying a G551D mutation should start taking the (expensive) ivacaftor or lumacaftor drugs can

be guided by the predictions of our model [RHG14, WER15]. Patients with risk predictions that

do not exceed the LT referral threshold are not equally healthy; higher risk scores are still indica-

tive of higher levels of CF severity. The results in Tables 6.3 and 6.4 quantify the models’ ability

to distinguish patients with and without poor (binary) outcomes (death or LT), but do not show

how well the different models are able to predict less severe outcomes. To this end, we sought

to classify the predictions of AutoPrognosis into low, moderate and high risk categories, and test

the model’s ability to predict intermediate poor outcomes. We chose pulmonary function decline

within a 3-year period as the intermediate poor outcome; we define pulmonary decline as the event
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when a patient has an FEV1% predicted less than 30% in the year 2015 (but did not undergo a lung

transplant) when her FEV1% predicted was greater than 30% in 2012.

The FEV1 trajectories for all patients enrolled in the UK CF registry in 2012 are visualized

in Figure 6.3; FEV1 trajectories corresponding to pulmonary decline events are highlighted in red.

The trajectories in Figure 6.3 belong only to patients who had FEV1 > 30% in 2012 and did not die

or undergo a transplant in 2015. A total of 4.4% of those patients experienced pulmonary function

decline in 2015. The inset plot in Figure 6.4 shows a histogram for the predictions of AutoProgno-

sis stratified by the occurrence of a pulmonary decline; we can visually see that AutoPrognosis is

able to discriminate patients with and without the intermediate poor outcome. A two-sample t-test

rejects the hypothesis that the average predictions for AutoPrognosis for patients with and without

pulmonary decline are equal (p-value < 0.0001). The average predicted risk for patients without

pulmonary decline was 0.046, whereas for those with pulmonary decline, the average predicted

risk was 0.116. In order to assess the ability of our model to predict the pulmonary decline events,

we redefined the poor outcomes as being death, lung transplant or pulmonary decline in a 3-year

period. The in-sample average precision and AUC-PR of the predictive model learned by Auto-

Prognosis were 0.66 (95% CI: 0.63−0.69) and 0.65 (95% CI: 0.63−0.69), respectively, whereas

those achieved by the model developed by Nkam et. al were 0.51 (95% CI: 0.48−0.54) and 0.48

(95% CI: 0.45−0.51). (95% confidence intervals were obtained via bootstrapping.) This demon-

strates that AutoPrognosis is more precise than the existing models in predicting intermediate poor

outcomes.

Predicated on the results above, we classified the CF population into three risk groups, with

low, moderate and high risk, based on the risk predictions of AutoPrognosis. (In what follows, we

converted the outputs of AutoPrognosis, which are real numbers between 0 and 1, into percent-
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ages.) The risk groups are defined as follows: the low risk group is associated with risk predictions

in the range (0-5%), whereas the moderate risk group is associated with risk predictions in the

range (5-30%), and finally, the high risk group is associated with risk predictions that exceed 30%.

Figure 6.4 is a scatter plot for the CF patient outcomes in 2015 (red colored dots correspond to

deaths or transplants, yellow dots correspond to pulmonary decline events, and blue dots corre-

spond to patients with no adverse outcomes). The outcomes are plotted against the predictions

issued by AutoPrognosis (y-axis), and every individual patient’s FEV1 measure in 2012 (x-axis).

As we can see, the FEV1 criterion can only provide a low-precision classification of patients with

and without the poor outcome, whereas AutoPrognosis provides a more precise risk stratification

for the CF population in which most patients with intermediate poor outcomes (pulmonary decline)

reside in the moderate risk group, and patient allocation to the high risk group exhibits lower false

alarm rates (refer to Table 6.4). Clinicians can use the risk predictions and risk strata learned by

AutoPrognosis as actionable information that guide clinical decisions. For instance, patients in

the high risk group would be immediately referred to a transplant, patients in the moderate risk

group would be recommended a drug with potential consideration for a transplant in the future,

and patients in the low risk group should routinely pursue their next annual review.

6.4.4 Variable Importance Analysis

We sought to understand how the different patient variables contribute to the predictions issued

by AutoPrognosis. Previous studies have identified a wide range of CF risk factors including

FEV1% predicted [LAH05, ASC15, MDM13, NLL17, SLS17], female gender [ASC15, SLS17],

BMI [MDM13, DJ15], Pseudomonas Aeruginosa infection [ASC15], Burkholderia cepacia col-

onization [NLL17], hospitalization [NLL17], CF-related diabetes [CSH10, SLS17], non-invasive
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Figure 6.5: AUC-ROC of individual variables.
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Figure 6.6: AUC-PR of individual variables.

ventilation [NLL17], and∆F508 homozygous mutation [ASC15]. Since AutoPrognosis was trained

in order to provide precise predictions, we focus not only on identifying variables that are most pre-

dictive of the outcomes in the sense of AUC-ROC maximization, but also on understanding which

variables AutoPrognosis exploited in order to improve the precision (i.e. PPV) of the learned model

(refer to Tables 6.3 and 6.4). These variables can then be considered when updating the current

consensus guidelines on LT referral and waiting list priority allocation [WBC15].

We evaluated the predictive power of each individual variable by providing AutoPrognosis with

one variable at a time, and assessing the diagnostic accuracy of the model that it constructs using

only that variable. We evaluated the AUC-ROC and the AUC-PR metrics (using 10-fold stratified

cross-validation) in order to get a full picture of each variable’s predictive power with respect to

sensitivity, specificity, precision and recall. The most predictive 22 variables with respect to both

the AUC-ROC and the AUC-PR metrics are illustrated in Figures 6.5 and 6.6. In both figures, the

bars associated with the variables correspond to the AUC-ROC/AUC-PR performance achieved by

AutoPrognosis using only this variable. The black error bars correspond to the 95% confidence

117



intervals. Since CF patients may encounter pulmonary disorders manifesting in either increased

airway resistance or impaired gas exchange [YB11], we labeled the patients’ variables in Figures

6.5 and 6.6 based on the aspect of lung function that they reflect. Variables that describe lung

function in terms of airway resistance (e.g. FEV1, FEV1% predicted, FEV1 trajectory, etc) are

represented through red bars. Variables that describe lung function in terms of gas exchange (e.g.

Oxygenation) are represented through blue bars. Variables that represent pulmonary disorders

resulting from bacterial infections are represented through green bars. All other variables had their

corresponding bars colored in yellow.

Figure 6.5 shows that the spirometric (FEV1) biomarkers, including the FEV1 measurements

collected 3 years prior to 2012, display the best AUC-ROC performance. Interestingly, we found

that the history of FEV1 measurements (e.g. the FEV1% predicted 1 year before baseline) is as

predictive as the FEV1 measurements at baseline. Variables reflecting pulmonary disorders re-

sulting from bacterial infections (intravenous antibiotic courses in hospital [EMN17]) were the

second most predictive in terms of the AUC-ROC performance. The most predictive complica-

tions were found to be diabetes and CF-related diabetes. Apart from intravenous antibiotics, the

most predictive treatment-related variable was usage of oral corticosteroids. Genetic variables and

microbiological infections were found to have a poor predictive power when used solely for pre-

dictions, though intravenous antibiotic courses can be thought of as proxies for microbiological

infections.

Figure 6.6 shows that the importance ranking for the patients’ variables changes significantly

when using precision (i.e. AUC-PR) as a measure of the variables’ predictive power. Most re-

markably, reception of Oxygen therapy turns out to be the variable with the highest AUC-PR.

Hence, precise risk assessment and transplant referral decisions need to consider, in addition to the
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Figure 6.7: Depiction for transplant referral policies based on AutoPrognosis and the FEV1 crite-
rion for different patient subgroups.

spirometric biomarkers, other biomarkers that reflect disorders in gas exchange, such as the partial

pressure of carbon dioxide in arterial blood (PaCO2) and Oxygen saturation by pulse oximetry

(SpO2) [STH11]. Prevalence of respiratory failures that are usually treated via Oxygenation, such

as hypoxemia and hypercapnia [STH11,KBS17,YB11,WDB14], should be considered as decisive

criteria for LT referral even when airway obstruction is not severe (i.e. FEV1 >30%). AutoProg-

nosis was able to learn a prediction rule that carefully combines spirometric and gas exchange

variables in order to come up with a precise lung transplant referral criterion that accurately disen-

tangles patients who are truly at risk from those who do not need a lung in the near future (refer

to Tables 6.3 and 6.4). Our results indicate that looking at the right accuracy metric that reflects

the true clinical utility (in this case the precision-recall curve) is important not only for tuning

and comparing predictive models, but also for discovering risk factors that are relevant for clinical

decision-making.

Figures 6.7 illustrates how LT referral policies based on AutoPrognosis handle patient sub-
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groups stratified by spirometric and Oxygenation variables. In this Figure, we look at 4 subgroups:

patients with FEV1 < 30% who received Oxygen therapy, patients with FEV1 < 30% who did

not receive Oxygen therapy, patients receiving Oxygen therapy but had FEV1 ≥ 30%, and patients

who were neither Oxygenated nor had their FEV1 drop below the 30% threshold. The subgroup

memberships are labeled on the y-axis; every patient is represented as a dot in a scatter plot, with

the x-axis quantifying the risk estimate of AutoPrognosis for every individual patient. Patients

with adverse outcomes are represented via red dots, whereas those with no adverse outcomes are

depicted as blue dots. As we can see in Figure 6.7, the simple FEV1 criterion would refer the

two subgroups with poor spirometric biomarkers (FEV1 < 30%) to a transplant; this leads to a

referral list with many blue dots (this is depicted via the dotted box that groups all patients with

FEV1 < 30% in Figure 6.7), and consequently a high false positive rate that leads to a PPV of 48%.

Contrarily, AutoPrognosis orders the risks of the 4 subgroups by accounting for both Oxygenation

and spirometry; this results in a more precise list of referrals at any given cutoff threshold (as can

be seen in the dotted box that groups all patients with risk cutoff of 0.33, where the majority of the

dots in the box are red). AutoPrognosis achieves precision by assigning a high risk to Oxygenated

patients, even if their spirometric biomarkers are not severe. At a fixed TPR of 46%, this leads

to some patients with FEV1 < 30% but good clinical outcomes being replaced with Oxygenated

patients with FEV1 > 30% who experienced adverse outcomes, which raises the PPV to 65%.

6.5 Discussion and Conclusions

In this Chapter, we applied the AutoPrognosis framework, developed earlier in Chapter 4, to the

problem of predicting short-term survival of cystic fibrosis patients using data from the UK CF

registry. AutoPrognosis was capable of learning an ensemble of machine learning models (includ-
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ing the well-known random forest and XGBoost algorithms) that outperformed existing risk scores

developed in the clinical literature, mainstream practice guidelines, and naı̈ve implementation of

vanilla machine learning models. We demonstrated the clinical utility of the prognostic model

learned by AutoPrognosis by examining its potential impact on lung transplant referral decisions.

Our analysis showed that the model learned by AutoPrognosis achieves significant gains in terms

of a wide variety of diagnostic accuracy metrics. Most notably, AutoPrognosis achieves significant

gains in terms of the positive predictive values, which implies a remarkable improvement in terms

of the precision of lung transplant referral decisions. AutoPrognosis’ interpreter module revealed

that the model is able to achieve such gains because it recognizes the importance of variables that

reflect disorders in pulmonary gas exchange (such as Oxygenation), and learns their interactions

with spirometric biomarkers reflecting airway obstruction (such as FEV1). This gave rise to a pre-

cise survival prediction rule which disentangles patients who are truly at risk from those who do

not necessarily need a transplant in the short term.

Although our study provided empirical evidence for the clinical usefulness of applying auto-

mated machine learning in prognostication, it has some limitations. First, the prognostic model

learned by AutoPrognosis needs to be externally validated in order to ensure that our findings gen-

eralize to other CF populations. Second, the net clinical utility of our model needs to be evaluated

by considering post-transplant survival data, through which we can identify high-risk patients for

whom a transplant is indeed beneficial. Finally, we had no access for data on patients who went

through a transplant evaluation process or were enrolled in wait list but did not get a transplant

within the 3-year analysis horizon, which rendered direct comparisons with the actually realized

clinical policy impossible.
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CHAPTER 7

Cardiovascular Disease Risk Prediction

7.1 Background

Globally, cardiovascular disease (CVD) remains the leading cause of morbidity and mortality

[TL17]. Current guidelines for primary prevention of CVD emphasize the need to identify asymp-

tomatic patients who may benefit from preventive action (e.g., initiation of statin therapy [RDF08])

based on their predicted risk [KCT08, DVP08, CPF03, SLP04]. Different guidelines recommend

different algorithms for risk prediction. For example, the 2010 American College of Cardiol-

ogy/American Heart Association (ACC/AHA) guideline [GAB10] recommended use of Framing-

ham Risk Score [DVP08], whereas the 2016 European guidelines recommended use of the Sys-

tematic Coronary Risk Evaluation (SCORE) algorithm [PHA16]. In the UK, the current National

Institute for Health and Care Excellence (NICE) guidelines recommend use of the QRISK2 score

to guide the initiation of lipid lowering therapies [HCV08, HCB17].

Existing CVD risk scores are typically developed using multivariate regression models that

combine information on a limited number of well-established risk factors, and generally assume

that all such factors are related to the CVD outcomes in a linear fashion, with limited or no in-

teractions between the different factors. Because of their restrictive modeling assumptions and

limited number of predictors, existing algorithms generally exhibit modest predictive performance

[STS12], especially for certain sub-populations such as individuals with diabetes [CSR07,MWG04,
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MSS14,BGB07] or rheumatoid arthritis [KCT08]. Data-driven techniques based on machine learn-

ing (ML) can improve the performance of risk predictions by exploiting large data repositories to

agnostically identify novel risk predictors and more complex interactions between them. However,

only a few studies have investigated the potential advantages of using ML approaches for CVD

risk prediction, focusing only on a limited number of ML methods [AWL17, ALR18] or a limited

number of risk predictors [WRK17].

In this Chapter, we explore the potential value of using ML approaches to derive risk predic-

tion models for CVD. We analyzed data on 423,604 participants without CVD at baseline in UK

Biobank, a large prospective cohort study in which participants were recruited from 22 centers

throughout the UK. Similar to the previous Chapter, we used the AutoPrognosis framework —

developed in Chapter 4 — to derive an ML-based CVD risk prediction model and evaluated its

predictive performances in the overall population and clinically relevant sub-populations.

7.2 Data and Experimental Setup

7.2.1 Study Design and Participants

Participants were enrolled in the UK Biobank from 22 assessment centers across England, Wales,

and Scotland, during the period spanning from 2006 to 2010 [SGA15]. We extracted a cohort of

participants who were 40 years of age or older and had no known history of CVD at baseline. That

is, patients with previous history of coronary heart disease, other heart disease, stroke, transient

ischaemic attack, peripheral arterial disease, or cardiovascular surgery were excluded from the

analysis. The total number of participants who met the inclusion criteria was 423,604. The last

available date of participant follow-up was Feb 17, 2016. UK Biobank obtained approval from the
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North West Multi-centre Research Ethics Committee (MREC), and the Community Health Index

Advisory Group (CHIAG). All participants provided written informed consent prior to enrollment

in the study. The UK Biobank protocol is available online [Pal07].

The UK Biobank dataset keeps track of a large number of variables for each participant, but

most of those variables are missing for most patients. In order to include the maximum possible

number of (informative) variables in our analysis, we included all variables that are missing for

less than 50% of patients with CVD outcomes. This corresponded to a rate of missingness of 85%

for the entire population of participants. Our rationale for assessing the missingness rate among

patients with CVD is that missingness itself maybe informative (i.e., the chance of a variable

being missing may depend on the outcome). By excluding all variables that were missing for

more than 85% of the participants, a total of 473 variables were included in our analysis. We

categorized all variables in the UK Biobank into 9 categories: health and medical history, lifestyle

and environment, blood assays, physical activity, family history, physical measures, psychosocial

factors, dietary and nutritional information, and sociodemographics [GI15].

7.2.2 Outcome

The primary outcome was the first fatal or non-fatal CVD event. A CVD event was defined as

the assignment of any of the ICD-10 diagnosis codes F01 (vascular dementia), I20-I25 (coro-

nary/ischaemic heart diseases), I50 (heart failure events, including acute and chronic systolic heart

failures), and I60-I69 (cerebrovascular diseases), or any of the ICD-9 codes 410-414 (ischemic

heart disease), 430-434, and 436-438 (cerebrovascular disease). Follow-up data was obtained from

the hospital episode statistics (a data warehouse containing records of all patients admitted to NHS

hospitals), and the equivalent datasets in Scotland and Wales [AAF15].
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7.2.3 Characteristics of the Study Population

A total of 423,604 participants had sufficient information for inclusion in this analysis. Overall, the

mean (SD) age of participants at baseline was 56.4 (8.1) years, and 188,577 participants (44.5%)

were male. Over a median follow-up of 7 years (5th-95th percentile: 5.7-8.4 years; 3 million

person-years at risk), there were 6,703 CVD cases. The mean age of CVD cases was 60.5 years

(60.2 years for men and 61.1 years for women). Because the minimum follow-up period for all

participants was 5 years, we evaluated the accuracy of the different models in predicting the 5-year

risk of CVD. At a 5-year horizon, the total number of CVD cases was 4,801.

7.2.4 Models Tested

Framingham Risk Score

At the time of conducting this study, the UK Biobank had not yet released data on the partic-

ipants’ total cholesterol, HDL cholesterol and LDL cholesterol, which are used as predictors

in various established algorithms, such as Framingham score [DVP08], ACC/AHA [GLB14],

QRISK2 [HCV08], and SCORE [CPF03]. The Framingham score, however, provides an incar-

nation of its underlying model based on nonlaboratory predictors, which replaces lipids with Body

Mass Index (BMI) [DVP08]. Since BMI is currently collected for 99.38% of the UK Biobank

participants, we compared our model with the BMI version of the Framingham score. We used the

published predicting equations (beta-coefficients and survival functions) of the BMI-based Fram-

ingham model developed in [DVP08]. (Framingham risk calculator and model coefficients are

publicly available in: https://www.framinghamheartstudy.org.)

The Framingham score is based on 7 core risk factors: gender, age, systolic blood pressure,
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treatment for hypertension, smoking status, history of diabetes, and BMI. All of those variables

were complete for the participants in the extracted cohort, with the exception of systolic blood

pressure (missing for 6.8% of the participants), and BMI (missing for 0.62% of the participants).

We used the MissForest non-parametric data imputation algorithm [SB11] to recover the missing

values. Using the MissForest algorithm, we sampled 5 imputed datasets and averaged the model

predictions for each participant on the 5 datasets (this is known in the literature as Rubin’s rules

[SB11]). The number of imputed datasets was selected via cross-validation.

Cox Proportional Hazards Model

We evaluated the performance of two Cox Proportional Hazards (PH) models derived from the

analysis cohort: a model that only uses the traditional 7 risk factors used by the Framingham

score, and a model that uses all of the 473 variables in the UK Biobank. To fit the Cox PH models,

we imputed the missing data using the MissForest imputation algorithm (with 5 imputations). The

Cox PH model that uses the traditional 7 risk factors used by Framingham score can be thought

of as a variant of Framingham score calibrated to the UK population (the Framingham score was

originally derived for a US population). For the Cox PH model that uses all of the 473 predictors,

we applied variable selection using the LASSO method [Tib96]. (Variable selection was applied

since fitting the Cox model with all variables resulted in an inferior performance due to the numer-

ical collapse of the Cox model solvers in high dimensions.) To apply variable selection, we fit a

LASSO regression model (a linear model penalized with the L1 norm) to predict the (binary) CVD

outcomes. The fitted model gives a sparse solution whereby many of the estimated coefficients are

zero. We select all the variables with non-zero coefficients in the fitted LASSO model and feed

those variables into a Cox model fitted on the same batch of data. We optimize the LASSO model
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regularization parameter via cross-validation.

7.3 Model Development using AutoPrognosis

Model Training

To train the AutoPrognosis model, we conduct 200 iterations of the Bayesian optimization proce-

dure in presented in Chapter 4, where in each iteration the algorithm explores a new ML pipeline

and tunes its hyper-parameters. Cross-validation was used in every iteration to evaluate the perfor-

mance of the pipeline under evaluation. The (in-sample) model learned by AutoPrognosis com-

bined 200 weighted ML pipelines, the strongest of which comprised the MissForest data impu-

tation algorithm, no feature processing steps, an XGBoost ensemble classifier (with 200 estima-

tors) [CG16], and sigmoid regression for calibration.

Variable Ranking

In order to identify the relative importance of the 473 variables used to build our model, we use

a post-hoc approach to rank the contribution of the different variables in the predictions issued

by the model. The ranking is obtained by fitting a random forest model with the participants’

variables as the inputs, and the predictions of our model as the outputs, and then assigning variable

importance scores to the different variables using the standard permutation method in [SBK08].

Using the permutation method, we assess the mean decrease in classification accuracy for every

variable after permuting that variable over all trees. The resulting variable importance scores reflect

the impact each variable has on the predictions issued by AutoPrognosis. We used the random

forest algorithm for post-hoc variable ranking because it is a nonparametric algorithm that can
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recognize complex patterns of variable interaction while enabling principled evaluation of variable

importance [SBK08]. Other variable ranking methods based on associative classifiers (such as the

one proposed in [AS18b]) entail a computational complexity that is exponential in the number of

variables, and hence are not suitable for our study as it involves more than 400 variables.

To disentangle the “modeling gain” achieved by utilizing ML-based techniques from the “infor-

mation gain” achieved by just using more variables, we created a simpler version of AutoPrognosis

that only uses the same 7 core risk factors (age, gender, systolic blood pressure, smoking status,

treatment of hypertension, history of diabetes, and BMI) used by the existing prediction algorithms.

In addition, we created another version of the AutoPrognosis model that uses only non-laboratory

variables in UK Biobank.

Statistical Analysis

In order to avoid over-fitting, we evaluated the prediction accuracy of all models under consider-

ation via 10-fold stratified cross-validation using area under the receiver operating characteristic

curve (AUC-ROC). In every cross-validation fold, a training sample (381,244 participants) was

used to derive the Cox PH models, standard ML models, and our model (AutoPrognosis), and

then a held-out sample (42,360 participants) was used for performance evaluation. We report the

mean AUC-ROC and the 95% confidence intervals (Wilson score intervals) for all models. The

calibration performance of our model was evaluated via the Brier score.
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Model AUC-ROC Absolute AUC-ROC Change

Framingham score 0.724 ± 0.004 Baseline model

Cox PH Model (7 core variables) 0.734 ± 0.005 + 1.0%

Cox PH Model (all variables) 0.758 ± 0.005 + 3.4%

AutoPrognosis (7 core variables) 0.744 ± 0.005 + 2.0%

AutoPrognosis (369 non-lab. variables) 0.761 ± 0.005 + 3.7%

AutoPrognosis (104 lab. variables) 0.735 ± 0.008 + 1.1%

AutoPrognosis (all variables) 0.774 ± 0.005 + 5.0%

Table 7.1: Performance of different CVD risk prediction models.

7.4 Results

Prediction Accuracy

Comparison of Prediction Models

The prediction accuracy of the different models under consideration evaluated at a 5-year horizon is

shown in Table 7.1. We used the Framingham score as a baseline model for performance evaluation

(AUC-ROC: 0.724, 95% CI: 0.720-0.728). Both the Cox PH model with the 7 conventional risk

factors (AUC-ROC: 0.734, 95% CI: 0.729-0.739), and the Cox PH model with all variables (AUC-

ROC: 0.758, 95% CI: 0.753-0.763) achieved an improvement in the AUC-ROC compared to the

baseline model (p < 0.001). The improvement achieved by the Cox PH model that uses the same

predictors used by the Framingham score is due in part to the fact that the Cox PH model is directly

derived from the analysis cohort, whereas the Framingham score coefficients were derived from a

different population.

Most of the variables in the UK Biobank are non-laboratory variables collected through an
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automated touchscreen questionnaire about lifestyle, clinical history and nutritional habits. We

evaluated the accuracy of AutoPrognosis once when it is trained with 369 variables corresponding

to the participants’ self-reported information (questionnaires) only, and once when it is trained

with 104 variables obtained from blood assays, diagnostic tests, and physiological measurements.

As we can see in Table 7.1, AutoPrognosis with only questionnaire-related variables still achieves

a significant improvement over the baseline Framingham score (AUC-ROC: 0.752, 95% CI: 0.747-

0.757, p < 0.001), and is superior to the model that only uses laboratory-based variables.

Classification Analysis

In order to better assess the clinical significance of our results, we compared the AutoPrognosis

model with the traditional Framingham score in predicting 7.5% CVD risk (threshold for initiating

lipid-lowering therapies recommended by the NICE guidelines [HCB17]). At this operating point,

the Framingham baseline model predicted 2,989 CVD cases correctly from 4,801 total cases, re-

sulting in a sensitivity of 62.2% and PPV of 1.5%. Our AutoPrognosis model correctly predicted

3,357 out of the 4,801 CVD cases, resulting in a sensitivity of 69.9% and PPV of 2.6%. This

corresponds to 368 net increase in the number of CVD patients who would benefit from receiving

a preventive treatment in a timely manner when utilizing the predictions of our model.

Variable Importance

Table 7.2 lists the 20 most important variables ranked according to their contribution to the pre-

dictions of the AutoPrognosis model (along with their importance scores). Variables related to

physical activity (usual walking pace) and information on blood measurements appeared to be

more important for the predictions of AutoPrognosis than traditional risk factors included in most
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existing scoring systems. For women, a remarkable predictor of CVD risk was the measured “ankle

spacing width”. This may be linked to symptoms of poor circulation, such as swollen legs, which

is predictive of future CVD events [AHH08]. We also found that usage of hormone-replacement

therapy (HRT) was on the list of top predictors of CVD risk for women. For men, blood mea-

surements such as haematocrit percentage and haemoglobin concentration, and variables such as

urinary sodium concentration were among the most important risk factors.

Prediction Accuracy in Individuals with History of Diabetes

Among the 423,604 participants included in our cohort, a total of 17,908 participants (4.22%) had

a known history of diabetes (either Type 1 or Type 2) at baseline. In Table 7.3, we show the AUC-

ROC performance of AutoPrognosis and the baseline Framingham score when validated separately

on the diabetic and non-diabetic populations. As we can see, the baseline Framingham score was

less accurate in the diabetic population (AUC-ROC: 0.578, 95% CI: 0.560-0.596) compared to its

achieved accuracy for the overall population (AUC-ROC: 0.724, 95% CI: 0.720-0.728, p < 0.001).

On the contrary, AutoPrognosis maintained high predictive accuracy for the diabetic population

(AUC-ROC: 0.713, 95% CI: 0.703-0.723).

We note that the list of important variables in the diabetic subgroup is substantially different

from that of the overall population. One major difference is that for diabetic patients, microalbu-

minuria appeared to be strongly linked to an elevated CVD risk. In the overall population (423,604

participants), the average measure of microalbumin in urine was 27.8 mg/L for participants with no

CVD events, and 52.2 mg/L for participants with CVD events. In the diabetic population (17,908

participants), participants with no CVD events had an average microalbumin in urine of 61.0 mg/L,

whereas for those with a CVD event, the average microalbumin in urine was 128.76 mg/L. (Infor-
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mation on microalbumin in urine was available for 30% of the patients in the overall population,

and 50% of patients in the diabetic population.)

Predictive Ability of Individual Variables in UK Biobank

In order to evaluate the individual predictive ability of the UK Biobank variables, we exhaustively

fitted simple versions of our AutoPrognosis model for each of the 473 variables. For each such

model, we use one distinct variable as an input and evaluate the resulting AUC-ROC. Because

most variables are correlated with age and gender, we use the age variable as a second predictor

for all models, and fit separate models for men and women. The AUC-ROC values of the resulting

models are depicted in the scatter-plot in Fig 7.1.

As shown in Fig 7.1, variables related to smoking habits or exposure to tobacco smoke dis-

played the highest predictive ability. Self-reported health rating was predictive for both genders,

but more predictive for women. Existence of long-standing illness was strongly predictive of CVD

events for women, and less predictive for men. Variables extracted from the electrocardiogram

(ECG) records possessed stronger predictive ability for men.

7.5 Discussion and Conclusions

In this large prospective cohort study, we developed a ML model based on the AutoPrognosis

framework for predicting CVD events in asymptomatic individuals. The model was built using

data for more than 400,000 UK Biobank participants, with over 450 variables for each participant.

Our study conveys several key messages. First, AutoPrognosis significantly improved the accu-

racy of CVD risk prediction compared to well-established scoring systems based on conventional

risk factors and currently recommended by primary prevention guidelines (Framingham score).
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Second, AutoPrognosis was able to agnostically discover new predictors of CVD risk. Among

the discovered predictors were non-laboratory variables that can be collected relatively easily via

questionnaires, such as the individuals’ self-reported health ratings and usual walking pace. Third,

AutoPrognosis uncovered complex interaction effects between different characteristics of an indi-

vidual, which led to recognition of risk predictors that are specific to certain sub-populations for

whom existing guidelines were providing unreliable predictions.

When can ML help in prognostic modeling?

The abundance of a large number of informative variables in the UK Biobank (473 variables)

guarantees an “information gain” that can be achieved by any data-driven model, including the

standard Cox PH model, compared to the existing prediction algorithms that use only a limited

number of conventional risk factors (e.g., Framingham score). The results in Table 7.1 show that,

in addition to the information gain, AutoPrognosis also attained a “modeling gain” that allowed

it to outperform the standard Cox PH model that uses all of the 473 variables. In general, the

modeling gain achieved by AutoPrognosis would result from its ability to select among different

models with various levels of complexity and numerical robustness in a completely data-driven

fashion, without committing to any presupposition about the superiority of any given model. In

our experiments, the Cox PH supplied with all of the 473 variables (without variable selection)

provided a noticeably poor performance (i.e., an average AUC-ROC of 0.6). This is because the

numerical solvers of the Cox PH model collapse when the data dimensionality is very large —

this is why a variable selection pre-processing step was essential for fitting the Cox PH model.

This implies that, even if the true underlying data model is perfectly linear, fitting standard linear

models such as Cox PH or linear regression may not be sufficient for harnessing the information

133



gain, since such models are not numerical robust in high-dimensional settings. AutoPrognosis

solves this problem by selecting more robust models that better fit the high-dimensional data —

in our experiments, these where tree-based models such as XGBoost and random forests. This

observation shows that information gain and modeling gain are inherently entangled: to harness

the information gain, we need to consider a more complex modeling space.

While the information gain appeared to be more significant than the modeling gain in our exper-

iments, we note that even when provided with the same 7 core risk factors used by the Framingham

score, AutoPrognosis was still able to offer a statistically significant AUC-ROC gain compared to

the Framingham score and a Cox PH model that uses the same 7 variables. This shows that the

modeling gain is not necessarily limited to settings where many predictors are available and numer-

ical robustness, but is rather achievable whenever a small number of predictors display complex

interactions.

Risk prediction with non-laboratory variables

Individuals in developed countries tend to seek out health information through online resources

and web-based risk calculators [HNK05]. In developing countries, where 80% of all world-wide

CVD deaths occur [GYF08], there are limited resources for risk assessment strategies that require

laboratory testing [GYF08, MLM07]. The results in Table 7.1 show that AutoPrognosis could

potentially provide reliable risk predictions by using information from non-laboratory variables

about the participants’ lifestyle and medical history. The most predictive non-laboratory variables

included in our model were ages, gender, smoking status, usual walking pace, self-reported overall

health rating, previous diagnoses of high blood pressure, income, Townsend index and parents’

ages at death. Inclusion of such variables in web-based risk calculators can help provide reasonably

134



accurate risk predictions when obtaining laboratory variables is not viable.

One remarkable finding in Table 7.1 (and Fig 7.1) is that apart from the well-established age

and gender risk factors, two other non-laboratory variables were found to be very predictive of the

CVD outcomes; those are the “self-reported health rating”, and the “usual walking pace”. (Both

variables were also found to be predictive of the overall mortality risk in a recent study on the UK

Biobank [GI15].) Neither of the two variables is included in any of the existing risk prediction

tools. Walking pace was equally predictive for men and women, but the self-reported health rating

was more predictive for women and less for men. This may be explained by either gender-specific

reporting bias or true clinical differences. Therefore, prediction tools that would include subjective

non-laboratory variables, such as the self-reported health rating, should be carefully designed in

such a way that self-reporting bias is reduced.

Risk predictors specific to diabetic patients

Unlike the Framingham score, AutoPrognosis was able to maintain high predictive accuracy for

participants diagnosed with diabetes at baseline. This suggests that the AutoPrognosis model has

learned diabetes-specific risk factors that were not previously captured by the existing prediction

algorithms. By investigating the risk factor ranking within the diabetic subgroup (Table 7.3), we

found that urinary microalbumin (measured in mg/L) is a very strong marker for increased CVD

risk among individuals with diabetes. The dismissal of urinary microalbumin in existing risk scor-

ing systems may explain their poor prognostic performance when validated in cohorts of diabetic

patients [MWG04,CSR07]. Our results indicate that predictions based on AutoPrognosis can pro-

vide better guidance for CVD preventive care in diabetic patients.

It is worth mentioning that the microalbumin in urine measures were available for only 125,406
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participants in the overall cohort (29.6%). In a standard prognostic study, such a variable may

get omitted from the analysis because of its high missingness rate. AutoPrognosis automatically

recognized that this variable is relevant for diabetic patients, and hence did not omit it in its feature

processing stage.

Limitations

The main limitation of our study is the absence of the cholesterol biomarkers (total cholesterol,

HDL cholesterol and LDL cholesterol) from the latest release of the UK Biobank data repository,

which hindered direct comparisons with the QRISK2 scores currently recommended by the NICE

guidelines. Furthermore, other blood-based biomarkers have been reported to be associated with

CVD risk, but were also not yet released in the UK Biobank data repository, such as triglycerides

[ACS02], measures of glycemia [ECN10], markers of inflammation [Col12], and and natriuretic

peptides [WKW16]. Inclusion of such predictors could improve the predictive accuracy of all

models tested in this study, and could also alter the risk predictors’ ranking in Table 7.2, but is

unlikely to change our conclusions on the usefulness of ML modeling in CVD risk prediction.
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Variable (Men) Score Variable (Women) Score

Age∗ 0.346 Age∗ 0.370

Smoking∗ 0.101 Smoking∗ 0.099

Usual walking pace 0.052 Usual walking pace 0.057

Systolic blood pressure∗ 0.040 Ankle spacing width 0.035

Microalbumin in urine 0.032 Self-reported health rating 0.030

High blood pressure 0.030 Systolic blood pressure∗ 0.026

Red blood cell distribution width 0.025 High blood pressure 0.024

Self-reported health rating 0.019 Red blood cell distribution width 0.023

Haematocrit percentage 0.014 Microalbumin in urine 0.017

Father age at death 0.014 Father age at death 0.017

BMI∗ 0.013 White blood cell count 0.011

Diastolic blood pressure 0.012 Number of Treatments 0.011

White blood cell count 0.012 Mean reticulocyte volume 0.008

Impedance of arm (left) 0.009 Leg predicted mass (right) 0.006

Haemoglobin concentration 0.007 Neutrophill count 0.006

Neutrophill count 0.005 Basal metabolic rate 0.005

Number of Treatments 0.004 Hormone-replac. therapy usage 0.005

Mean reticulocyte volume 0.004 Blood clot in the leg 0.004

Urinary sodium concentration 0.004 Forced expiratory volume 0.004

Monocyte count 0.004 Duration of fitness test 0.004

Table 7.2: Variable ranking by their contribution to the predictions of AutoPrognosis.

Model AUC-ROC (No diabetes) AUC-ROC (Diabetes)

Framingham score 0.724 ± 0.004 0.578 ± 0.018

AutoPrognosis 0.774 ± 0.005 0.713 ± 0.010

Table 7.3: Performance of AutoPrognosis in the diabetic patient subgroup.
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Figure 7.1: Predictive ability of the UK Biobank variables for men and women. Each point
represents a variable in the UK Biobank ordered by the ability to predict CVD events for men and
women. Predictions based solely on age achieved an AUC-ROC of 0.632 ± 0.003 for men and
0.665± 0.002 for women. We report the AUC-ROC from models trained with individual variables
in addition to age, and only display variables that achieved a statistically significant improvement
in AUC-ROC compared to predictions based on age only. Each color represents a different variable
category. Variables deviating from the (dotted gray) regression line have an AUC-ROC that differs
between men and women more than expected in view of the overall association between the two
genders, suggesting a stronger relative importance in one gender group.
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CHAPTER 8

Breast Cancer Prognostication and

Treatment Benefit Prediction

8.1 Background

Breast cancer is the most common cancer among women globally, with incidence rates varying

from 19.3 per 100,000 women in Eastern Africa to 89.7 per 100,000 women in Western Europe.

[FAB17,BFS18] While prognosis of early-stage breast cancer has improved substantially since the

introduction of adjuvant endocrine and chemotherapies, [GKS18] these treatments need to be used

judiciously, with careful balancing of risks and benefits, particularly in patient subgroups where

their utility is as yet unclear. Accurate prediction of survival rates following breast-conversing

surgery can guide individualized therapeutic decisions by applying the relative risk reduction of

a given adjuvant therapy to the predicted risk of an individual patient, thereby estimating the net

survival benefit for that patient. [SGR19, SPH07]

Over the years, various breast cancer prognostication models have been developed to enable

tailored post-surgical therapeutic decisions by predicting the survival profiles of individual pa-

tients on the basis of their clinicopathological features. Of these, Adjuvant! Online [RSD01] and

PREDICT [WAG10, RWD17] have been the most commonly used worldwide. [SM16] Adjuvant!

Online has been previously used to predict the expected benefits of specific adjuvant therapies in

early breast cancer but is currently not in use. PREDICT v2.1 [RWD17] (https://predict.nhs.uk)
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is currently recommended by the UK NICE guidelines, and was endorsed by the American Joint

Committee on Cancer (AJCC). [KHA16] In the period spanning from 2011 to 2019, PREDICT

was accessed through more than 1 million sessions from more than 100 cities all over the world

(https://breast.predict.nhs.uk/statistics.html).

However, despite its widespread use, PREDICT v2.1 has been shown to under-perform in

specific subgroups of patients, including older patients, patients with tumours over 50mm, small

ER-positive tumours, or larger ER negative tumours. [MSP17b] Over or under-estimation of the

survival rates within specific patient subgroups could lead to under or over-treatment, thereby, neg-

atively impacting patient outcomes. [OBR05, BYH12, CTH09, MHV16] We hypothesize that the

limitations of existing tools arise from: (1) the lack of flexibility in the underlying Cox regression

method predominantly used to develop prognostic models, [RSD01,RWD17] and (2) the derivation

of models using outdated and relatively modest-sized cohorts where certain subgroups of patients

may not be sufficiently represented. Machine learning (ML) technologies that can readily infer

complex patterns from data, accoutered with big data resources provide the opportunity to address

the aforementioned limitations. [OE16, CA17]

In this Chapter, we apply the AutoPrognosis framework (presented in Chapter 4) to develop

Adjutorium; a breast cancer prognostication tool that predicts patient outcomes and treatment ben-

efits in order to guide personalized therapeutic decisions. We develop and validate Adjutorium

using data for nearly 1 million women in two large-scale cohorts that are representative of the UK

and US populations.
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8.2 Data and Experimental Setup

8.2.1 Study Participants

Patient data for the study were obtained from two cohorts: the UK National Cancer Registration

and Analysis Service (NCRAS, n=620,249), and the US Surveillance, Epidemiology and End

Results program [NHK18] (SEER, n=588,735). NCRAS is the population-based cancer registry

for England, hosted and maintained by Public Health England. The SEER program at the National

Cancer Institute collects data on cancer diagnoses, treatment and survival for approximately 30%

of the US population. The two databases combined hold data for over 1.2 million cases diagnosed

between 2000 and 2016. To develop our model, we considered standard prognostic factors included

in models in current clinical use, [RWD17, GBE92, MCB11] including age at diagnosis, mode of

detection (screening/symptomatic), estrogen receptor (ER) status, human epidermal growth factor

receptor 2 (HER2) status, number of lymph nodes involved, tumour size and histological tumour

grade.

We included patients who were diagnosed after January 1st 2005, and were aged 30 to 90 years

at diagnosis. Specific age data were not available on patients less than 30 years of age in NCRAS;

hence, these were excluded. Furthermore, we excluded patients with missing data on more than 4

variables (< 10% of all participants), and a small number of patients who were outliers for tumour

size (> 90 mm tumour), and number of positive lymph nodes (> 50). A total of 395,862 and

571,635 patients met the inclusion criteria in NCRAS and SEER, respectively (Figure 8.1).
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8.2.2 Outcomes

The primary outcome of interest for prognostication was survival from all-cause mortality with and

without adjuvant therapies at 3, 5 and 10 years after surgery for breast cancer. All-cause mortality

was further subdivided into breast cancer related mortality, which was assessed as a secondary

outcome, and mortality due to other causes. Breast cancer related mortality was defined as ICD-10

code C.50 listed on the death certificate as a cause of death, whereas mortality due to other causes

was defined as any other ICD-10 code.

8.2.3 Missing Data Imputation

A limitation of existing models has been their dependence on complete case analysis, and lack of

flexibility to incorporate missing variables. Our analysis suggested that missingness was highly

informative [WHH12]; (log-rank test for difference in 5-year survival between patients with com-

plete data and one or more missing variable, p < 0.001). In this context, including only patients

with complete data is likely to affect model generalisability. Therefore, in the interest of generalis-

ability, we opted to impute any missing data using data available on other variables. For all study

cohorts, we imputed missing data using using the model-based multiple chained equations [Zha16]

(MICE) method. We tested the robustness of the model to missing data in sensitivity analyses, as

discussed subsequently.

8.3 Model Development using AutoPrognosis

AutoPrognosis was used to automatically construct an optimized prognostic model fit to the dataset

at hand by tuning the parameters of an ensemble of 20 state-of-the-art machine learning models
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(such as gradient boosting and deep neural networks). The overall Adjutorium model was con-

structed by fitting 10 binary classification models (optimized via AutoPrognosis) to predict out-

comes at 10 distinct knots (time horizons spanning from 1 to 10 years from baseline, with 1-year

increments). Survival curves were created by smoothing the predictions at the 10 knots by fit-

ting the discrete predictions to a Weibull survival function. We used the symbolic metamodeling

methodolgy presented in Chapter 3 to convert the trained ensemble model into an understandable

mathematical equation that links patient variables to predicted outcomes. An illustrative schematic

of AutoPrognosis is provided in Figure 8.2.

8.4 Statistical Analysis

Comparison with Cox Proportional Hazards Model

A standard Cox proportional hazards (PH) model fit on the same data as Adjutorium was also

assessed for comparison. Consistent with previous methods, [RWD17] we applied two separate

models, with different baseline hazards for ER positive and ER negative cancer. We included

an age squared term to allow for non-linear effects of baseline age at diagnosis on breast cancer

mortality.

Model Training, Internal and External Validation

Patient samples from the NCRAS database were randomly split into two mutually exclusive co-

horts: a training cohort of 316,690 patients used for model derivation, and an internal validation

cohort of 79,172 patients used to evaluate model accuracy. The entire SEER cohort (571,635

patients) was reserved for external validation. We trained Adjutorium using the NCRAS train-
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ing data to predict breast cancer and all-cause mortality without adjuvant therapies by adjusting

survival times for treatment effects, to create a counterfactual “untreated” survival cohort. The

estimated survival time in the absence of treatments was calculated as:

ST=0
bc = ST=1

bc ×HR,

where Sbc represents the uncensored survival time for each individual, T is the indicator for treat-

ment, and HR is the hazard ratio associated with a specific treatment based on the EBCTCG

meta-analysis. [Gro12] This is consistent with previous approaches used to create adjusted coun-

terfactual survival times in cross-over trials. [LAS19] The same procedure was applied to the Cox

PH model.

We conducted internal and external validation of Adjutorium within the NCRAS validation co-

hort (n=79,172) and the SEER cohort (n=571,635), respectively. We validated predicted outcomes

in the original unadjusted cohort, incorporating treatment effects for patients that had received

a given therapy. Using this approach allowed us to evaluate the composite predictive accuracy as

well as treatment effects. As breast cancer mortality and mortality from other causes are competing

causes, overall survival probability from all causes was calculated as follows:

Pall(t) = Pbc(t)× Pnbc(t).

Here, Pall(t), Pbc(t) and Pnbc(t) represent overall survival, survival from breast cancer, and survival

from other non-breast cancer related causes at time horizon t, respectively. For individuals on

adjuvant therapy, Pbc(t) was calculated as a function of survival without treatment P T=0
bc (t) (as

predicted by the trained model), and the effect of treatment, as follows:

P T=1
bc (t) =

(
P T=0
bc (t)

)HR
.
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Performance Evaluation

Discriminative Accuracy. We compared the discriminative accuracy of Adjutorium in predicting

all-cause and breast cancer-specific mortality at 3, 5 and 10 years from baseline relative to PRE-

DICT v2.1, [RWD17] the Nottingham Prognostic Index (NPI), [LE08] and the in-house Cox PH

model fitted to the NCRAS training cohort. We assessed the discriminative accuracy of Adjutorium

using the time-dependent area under receiver operating characteristic curve [LC16] (AUC-ROC),

Harrells concordance index [HLM96] (C-index), and Unos C-index. [UCP11] For all evaluations,

95% confidence intervals were obtained using bootstrapped re-sampling.

Calibration. We evaluated the calibration curves of Adjutorium by comparing predicted risk of

mortality with observed risk in the cohort at the time horizons of interest. For each time horizon,

we divided the risk ranges predicted by Adjutorium into 10 quantiles, and within each quantile,

we estimated the observed risk in the corresponding patient samples using a Kaplan-Meier esti-

mator. [DN03] Calibration curves were evaluated by plotting the predicted risks by Adjutorium on

the x-axis, and plotting the corresponding observed risk on the y-axis.

Sensitivity analyses. In order to examine the robustness of Adjutorium to missingness, we val-

idated its performance separately on individuals with complete data and those with at least one

missing variable. Moreover, in order to assess the robustness of Adjutorium to time-cohort effects,

due to changes in patient management and survival over time, we also compared the discriminative

accuracy of our model with that of PREDICT v2.1 in subsets of patients diagnosed within 1-year

windows spanning from 2005 to 2016.
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Subgroup analyses. We validated Adjutorium within specific patient subgroups stratified by age,

ER status, HER2 status, tumour size and tumour grade. We specifically assessed the performance

of Adjutorium relative to PREDICTv2.1 in patients aged more than 65 years, patients with larger

tumours, and patients with negative ER status. Error counts in each subgroup were obtained

through decision thresholds that maximize the Youden J-statistic for each model. To assess the

prognostic value of each variable, we also evaluated the predictive ability of each individual vari-

able within each subgroup by re-fitting the machine learning model with one variable at a time.

8.5 Results

Adjutorium Model Development. A high-level illustration for the machine learning model gener-

ated by AutoPrognosis when fitted to the development cohort (n=316,690) is provided in Figure

8.3. The overall model comprised an ensemble of four binary classification models [KZP07]:

random forest, neural network, gradient boosting, and AdaBoost. The prediction issued by Adju-

torium is a weighted combination of the predictions of the four members of the ensemble in Figure

8.3.

The risk equation that maps patient variables to breast-cancer-related and non-breast-cancer-

related survival curves (i.e., Pbc(t) and Pnbc(t)) are visualized in Figure 8.4. For a given patient,

the breast-cancer-related survival probability is given by Pbc(t) = 1/(1+exp(−λbc(t))), where t is

the time horizon at which the survival probability is evaluated. The term λbc(t) can be interpreted

as the odds ratio for survival at time t, and is decomposed as follows:

λbc(t) = λ̄bc(t)︸ ︷︷ ︸
Population-level

+ λ̄G,ERbc (t)︸ ︷︷ ︸
Grade-ER-specific

,

where the first term λ̄bc(t) is shared among all patients in the population, and includes the non-
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linear effects of the age and number of lymph nodes variables, in addition to interaction terms

between age, mode of detection, tumour size and number of lymph nodes (Figure 8.4). The sec-

ond term λ̄G,ERbc (t) includes linear contributions of all prognostic variables, with coefficients that

are specific to every possible combination of tumour grade and ER status. The risk equations in

Figure 8.4 demonstrate that our machine learning approach identified new interactions that were

not incorporated in previous models [RWD17], namely the interactions between tumour grade and

all other prognostic factors. The risk equation for Pnbc(t) is similar to that of Pbc(t).

Discriminative Accuracy. Adjutorium uniformly outperformed PREDICT v2.1, NPI, and the

conventional Cox PH model in predicting all-cause and breast cancer-specific mortality, both when

validated internally within NCRAS (Table 8.5), and externally within the SEER cohort (Table 8.6).

The improvements were achieved with respect to all discriminative accuracy metrics and all time

horizons under study.

In internal validation, Adjutorium predicted 10-year all-cause mortality with an AUC-ROC

accuracy of 0.813 (95% CI: 0.811-0.815), compared with 0.771 (95% CI: 0.769-0.773) by PRE-

DICT v2.1, 0.687 (95% CI: 0.685-0.689) by NPI, and 0.773 (95% CI: 0.769-0.777) by the Cox PH

model. Similar performance gains were achieved over the other time horizons, and with respect to

the C-index statistic (Table 8.5). The improvements in accuracy achieved by Adjutorium were even

more significant in predicting breast cancer-specific mortality, with an AUC-ROC of 0.824 (95%

CI: 0.821-0.827) for 10-year outcomes, compared with 0.729 (95% CI: 0.726-0.732) by PREDICT

v2.1, 0.756 (95% CI: 0.754-0.758) by NPI, and 0.784 (95% CI: 0.780-0.788) by the Cox PH model.

The fact that the accuracy improvements were more significant in the secondary outcome is not

surprising since all of the variables included in the model were breast cancer-related.

Adjutorium generalized well to the external validation cohort, with similar accuracy improve-
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ments for both the primary and secondary outcomes (Table 8.6). With respect to 10-year all-cause

mortality, Adjutorium achieved an AUC-ROC of 0.790 (95% CI: 0.787-0.793), compared to 0.756

(95% CI: 0.753-0.759) by PREDICT, 0.631 (95% CI: 0.628-0.634) by NPI, and 0.778 (95% CI:

0.771-0.785) by the Cox PH model. Similar gains were achieved over the other time horizons

(Table 8.6). For prediction of 10-year breast cancer-specific mortality, Adjutorium achieved an

AUC-ROC of 0.800 (95% CI: 0.796-0.804), compared to 0.744 (95% CI: 0.741-0.747) by PRE-

DICT, 0.768 (95% CI: 0.765-0.771) by NPI, and 0.773 (95% CI: 0.764-0.780) by Cox PH model.

Importantly, Adjutorium outperformed the Cox PH model fitted to the same development co-

hort, reflecting the gain from modeling, i.e., the gain achieved by using flexible machine learning

models instead of standard regression. On the other hand, the gain achieved by the Cox PH model

compared to PREDICT v2.1 in external validation reflects the gain from information, i.e., the gain

achieved by using large-scale, representative data that enhance the accuracy and generalizability of

the fitted models to other cohorts that might entail different demographic structure and outcomes.

Sensitivity Analysis. Internal and external validation on patient sample with complete and miss-

ing data demonstrated the robustness of Adjutorium to data missingness; the model performed

well in cases with complete and missing data, outperforming other models by similar margins in

both analyses. When validated on 21,164 patients (in the internal validation cohort) with com-

plete data on all variables, the AUC-ROC accuracy of Adjutorium with respect to 10-year breast

cancer-specific mortality was 0.811 (95% CI: 0.0.808-0.814), and 0.783 (95% CI: 0.780-0.786) for

PREDICT v2.1. When validated on 57,996 patients with missing data on one or more variables,

the AUC-ROC accuracy of Adjutorium was 0.829 (95% CI: 0.0.827-0.831), and 0.728 (95% CI:

0.725-0.731) for PREDICT v2.1. Adjutorium also displayed robustness to time-cohort effects; in-
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ternal validation on sub-cohorts stratified by diagnosis dates from 2005 to 2016 showed that the

accuracy gains by Adjutorium are achieved for all diagnosis years Figure 8.7.

Subgroup Analysis. The accuracy improvements achieved by Adjutorium were consistent across

all subgroups of patients stratified by age, HER2 status, ER status and tumour grade (Table 8.8).

Improvements were greater in subgroups that are poorly served by current prognostic tools; the

accuracy gains achieved by Adjutorium relative to PREDICT v2.1 were higher in elderly patients

(age > 65 yrs at diagnosis), patients with ER negative and HER2 negative breast cancer (Table

8.8), and patients with large tumours. This is likely due to the fact that data-driven machine learn-

ing captured nuanced interactions and non-linear patterns that were not incorporated in existing

prognostic tools.

8.6 Discussion and Conclusions

In this Chapter, we developed and validated Adjutorium — a machine learning-based tool for pre-

dicting the individualized benefit of adjuvant therapies in breast cancer based on the AutoPrognosis

framework presented in Chapter 4. Involving data from nearly 1 million individuals with breast

cancer from the UK and US, this is one of the largest studies of its kind. We found that Adjutorium

substantially outperforms one of the most widely used standards for clinical decision making, and

critically is generalisable to distinct clinical settings. To our knowledge this is the first applica-

tion of a machine learning model for prognostication in breast cancer, that has been shown to be

generalisable across multiple nationally representative cohorts.

While several prognostication methods are available for supporting clinical decisions regarding

adjuvant therapies in breast cancer, they have well recognized limitations particularly in terms of
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their accuracy in certain subgroups and their generalisability to other populations. We find that

Adjutorium outperforms existing clinical decision support tools in terms of accuracy, and calibra-

tion to observed outcomes, across all patient groups. Additionally, it shows substantially improved

performance in subgroups where existing clinical decision support tools are known perform poorly

(e.g., older women with early cancer, HER negative and ER negative breast cancer) suggesting that

using Adjutorium to support clinical decisions may lead to better treatment decisions, and poten-

tially better outcomes in these subgroups. By contrast with other existing tools, Adjutorium is

robust to missing data, and is able to make accurate predictions even when information on some

of the prognostic factors is not available. This is an important advance, making our model more

generalisable to settings where data on patients may be incomplete.

We find that Adjutorium not only outperforms PREDICT v2.1, but also a Cox proportional

hazards model fit on the same training cohort. This suggests that gains in performance are achieved

not only due to a larger representative set for training the models, but also due to the flexible nature

of the machine learning algorithms applied. Our fitted model does not make any assumptions about

the linearity of the patient risks as function of prognostic factors, or the proportionality of hazards

over time. Additionally it is able to infer interactions, and non-linear associations in a data-driven

fashion, as evident through the interpretable risk equations describing the machine learning model.

We acknowledge limitations of our model, which include the retrospective nature of our study

which makes it difficult to assess changes in patient outcomes when using Adjutorium relative to

existing tools. Another limitation is that our model does not predict outcomes such as recurrence,

and currently does not incorporate gene expression based predictive information. However, these

can be easily incorporated into our model. Also, Adjutorium does not explicitly derive treatment

effects in a data-driven fashion, rather using estimates from meta-analyses on clinical trials.
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statistical estimation.” Sankhyā: The Indian Journal of Statistics, pp. 1–14, 1946.

[BHH98] Ayanendranath Basu, Ian R Harris, Nils L Hjort, and MC Jones. “Robust and efficient

estimation by minimising a density power divergence.” Biometrika, 85(3):549–559,

1998.

162



[BKB98] Peter J Bickel, Chris A Klaassen, Peter J Bickel, Y Ritov, J Klaassen, Jon A Wellner,

and YA’Acov Ritov. Efficient and adaptive estimation for semiparametric models,

volume 2. Springer New York, 1998.

[Bla16] Michael J Blaha. “The Critical Importance of Risk Score Calibration.”, 2016.

[BM11] Andrew T Braun and Christian A Merlo. “Cystic fibrosis lung transplantation.” Cur-

rent opinion in pulmonary medicine, 17(6):467–472, 2011.

[BO14] Justin Bayer and Christian Osendorfer. “Learning stochastic recurrent networks.”

arXiv preprint arXiv:1411.7610, 2014.
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