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ABSTRACT Macrotermitine termites have domesticated fungi in the genus
Termitomyces as their primary food source using predigested plant biomass. To
access the full nutritional value of lignin-enriched plant biomass, the termite-
fungus symbiosis requires the depolymerization of this complex phenolic poly-
mer. While most previous work suggests that lignocellulose degradation is
accomplished predominantly by the fungal cultivar, our current understanding
of the underlying biomolecular mechanisms remains rudimentary. Here, we pro-
vide conclusive omics and activity-based evidence that Termitomyces employs
not only a broad array of carbohydrate-active enzymes (CAZymes) but also a re-
stricted set of oxidizing enzymes (manganese peroxidase, dye decolorization per-
oxidase, an unspecific peroxygenase, laccases, and aryl-alcohol oxidases) and
Fenton chemistry for biomass degradation. We propose for the first time that
Termitomyces induces hydroquinone-mediated Fenton chemistry (Fe21 1 H2O2 1

H1 ! Fe31 1 �OH 1 H2O) using a herein newly described 2-methoxy-1,4-dihy-
droxybenzene (2-MH2Q, compound 19)-based electron shuttle system to comple-
ment the enzymatic degradation pathways. This study provides a comprehensive
depiction of how efficient biomass degradation by means of this ancient insect’s
agricultural symbiosis is accomplished.

IMPORTANCE Fungus-growing termites have optimized the decomposition of recal-
citrant plant biomass to access valuable nutrients by engaging in a tripartite sym-
biosis with complementary contributions from a fungal mutualist and a codiversi-
fied gut microbiome. This complex symbiotic interplay makes them one of the
most successful and important decomposers for carbon cycling in Old World eco-
systems. To date, most research has focused on the enzymatic contributions of
microbial partners to carbohydrate decomposition. Here, we provide genomic,
transcriptomic, and enzymatic evidence that Termitomyces also employs redox
mechanisms, including diverse ligninolytic enzymes and a Fenton chemistry-
based hydroquinone-catalyzed lignin degradation mechanism, to break down
lignin-rich plant material. Insights into these efficient decomposition mecha-
nisms reveal new sources of efficient ligninolytic agents applicable for energy
generation from renewable sources.

KEYWORDS symbiosis, lignin degradation, Termitomyces, metabolites, redox chemistry,
biodegradation, lignocellulose, redox proteins, secondary metabolism
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Among the different types of nutritional symbiosis, crop agriculture represents one
of the most sophisticated systems. Beyond examples from humans, only a few

insect lineages maintain and manure external symbiotic partners (1). Fungus-growing
termites (Macrotermitinae) underwent a major transition ca. 30 million years ago, when
they started to domesticate the mutualistic fungus Termitomyces (Agaricales,
Lyophyllaceae) as their main food source (2, 3). Since then, fungus-growing termites
have become major biomass decomposers of dead plant material, resulting in a sub-
stantial ecological footprint in the Old World (sub)tropics (4, 5).

Termitomyces is manured by termite workers in a cork-like structure termed the
“fungus comb,” which is found within the underground chambers of the termite
mound and is comprised of predigested plant material (Fig. 1A and B) (6). Old termite
workers collect and transport a mix of dead plant material (7), while younger workers
macerate and ingest the plant material along with asexual Termitomyces spores and
enzymes, which are produced in fungal nodules on the mature parts of the fungal
comb (1, 2). The resulting lignocellulose and spore-enriched feces is then used to craft
fresh fungus comb. After spore germination, the fungus matures within 15 to 20 days,
and energy-rich fungal nodules are formed to serve as the major food source for
younger workers (8). During an average turnover time of 45 to 50 days, the remains of
the comb material serve as the major nutrition of older workers, resulting overall in the
nearly wasteless decomposition and recycling of plant material (9).

Although the feeding behavior of termites has been studied in detail for decades
(10), the underlying biochemical mechanisms for degrading the foraged plant biomass
have remained largely unresolved and are the topic of intense discussion (1, 11). Plant
biomass consists mostly of lignocellulose, a complex matrix consisting of cell wall poly-
saccharides: cellulose (40 to 50%), hemicellulose (25 to 30%), and the structurally com-
plex and inhomogeneous phenolic polymer lignin (15 to 20%) (12). The depolymeriza-
tion and degradation of lignin provides an enormous energetic burden to any
microorganism due to lignin’s recalcitrant nature and the strong covalent carbon-car-
bon and carbon-oxygen linkages between hydroxycinnamoyl alcohol-derived mono-
mers that are covalently cross-linked to plant polysaccharides (Fig. 1C and D) (13, 14).
However, once oxidative mechanisms have broken up the dense lignin structure,
degrading enzymes are able to diffuse into the material and access the embedded
biphenylic, phenolic, and carbohydrate reservoirs for further biomass conversion
(15–17).

Although the degradation process appears to be a necessary endeavor to manure
the product of the complex fungus-termite-bacterium symbiosis, the fate of lignin
within termite fungus combs still remains unclear. A recent study on fungus comb pre-
treatment in Odontotermes formosanus by Li et al. indicated that lignin is partly cleaved
during the first gut passage (18). Additionally, it was hypothesized that Termitomyces
might have lost key delignification potential throughout its evolutionary history with
the termites. However, previous and more recent transcriptomic and analytically
guided studies of other Macrotermitinae species by da Costa and coworkers showed
that fresh comb from Odontotermes spp. and Macrotermes natalensis is lignin rich (7),
suggesting that the role of gut passage in lignin cleavage may differ between termite
species (9). Based on fungal transcriptome sequencing (RNA-seq) analysis and enzy-
matic assays, the study reasoned that maturation of the fungus comb causes the
decomposition of the lignocellulose-rich biomass through the actions of fungal and/or
bacterial enzymes.

These partially contradictory results led us to investigate whether Termitomyces has
the capacity to depolymerize or even degrade lignin-rich biomass. Hence, we com-
menced our analysis by a comparative genome analysis of nine Termitomyces species
and an assessment of their capacity to produce ligninolytic enzymes (e.g., laccase [EC
1.10.3.2], lignin peroxidase [LiP; EC 1.11.1.14], manganese peroxidase [MnP], oxygenase
[unspecific peroxygenases [UPOs]; EC 1.11.2.1], and versatile peroxidases [VPs] [19] as
well as other enzymes supporting degradative pathways and protecting against
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oxidative stress) (20–22). Here, we show that all investigated Termitomyces have similar
repertoires of carbohydrate-active enzymes (CAZymes), including a conserved set of
ligninolytic enzymes (a MnP, a dye-decolorizing peroxidase [DyP], UPOs, and laccases)
with a broad aromatic and phenolic substrate spectrum (23, 24), but lack other class II
peroxidases (e.g., LiPs, VPs) that are known to readily oxidize the more recalcitrant non-
phenolic moieties of lignin, as described for other basidiomycete white-rot fungi (13,
14, 16). Our findings were supported by the analysis of gene expression levels in RNA-
seq data sets obtained from fungus comb at different maturation stages (7). Additional
in silico and biochemical studies led us to the conjecture that Termitomycesmight employ
hydroquinone-mediated Fenton chemistry (Fe21 1 H2O2 1 H1 ! Fe31 1 �OH 1 H2O)
using a herein newly described 2-methoxy-1,4-dihydroxybenzene (2-MH2Q; compound
19)-based electron shuttle system to complement enzymatic lignin degradation path-
ways. We further deduced that the presence of small dicarboxylic acids produced by
Termitomyces not only allows the fungus to solubilize necessary metal ions but also medi-
ates Fenton-based redox chemistry, making the system one of the most effective farming
insect symbioses.

RESULTS
Genomic and transcriptomic analysis of lignocellulolytic capacity. First, we sub-

jected two Termitomyces species, excavated in South Africa in 2011 and 2015, to

FIG 1 (A) Schematic representation of fungus comb at different maturation stages; (B) freshly collected mature fungus comb carrying fungal nodules; (C)
schematic representation of lignin depolymerization via hydroxylation and oxidative cleavage with subsequent degradation by CAZy enzymes to smaller
metabolites; (D) schematic structure of lignin biopolymer, lignin motifs, and lignin-derived degradation products.
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whole-genome sequencing using Illumina sequencing technology (LGC Genomics [Berlin,
Germany]) and RNA sequencing using the BGISeq-500 platform (BGI, Hong Kong). Annotated
genomes of both species were obtained using AUGUSTUS 3.3.3 after RNA-seq data were
mapped to the genomes and used for algorithm training. The resulting draft genome of
Termitomyces sp. strain T153 (Macrotermes natalensis) had an estimated size of 84.1Mb (scaf-
fold N50=23.88kb), with more than 13,000 genes (GenBank accession no. JACKQL000000000).
Similarly, the draft genome of Termitomyces sp. strain T112 (Macrotermes natalensis) had an
estimated size of 79.8Mb (scaffold N50 =33.34 kb) and also .13,000 genes (accession no.
JACKQM000000000). For further analysis, we also reannotated seven Termitomyces genomes
deposited in GenBank, including our previously reported Termitomyces sp. strain J132 (alias
P5) from Macrotermes natalensis (3), using the same settings in AUGUSTUS 3.3.3 (Tables S2
and S3 at https://doi.org/10.5281/zenodo.4431413). To gain insights into the functional
capacity for biomass degradation, we first identified CAZyme families within each genome
using a local installation of the dbCAN2 server (25–27).

Comparison of all nine Termitomyces genomes revealed that all species had rela-
tively similar predicted proteomes with comparable numbers of polysaccharide-
degrading enzymes, such as exo-cellobiohydrolases, endoglucanases assigned to dif-
ferent glycoside hydrolase (GH) families, and lytic polysaccharide monooxygenase
(LPMOs), but no particular enrichment or reduction of CAZy families compared to
those of other basidiomycete reference genomes was found (Fig. 2; see Fig. S1 and S2
at https://doi.org/10.5281/zenodo.4431413) (28).

We then specifically searched Termitomyces genomes for the presence/absence of
gene sequences encoding highly oxidizing enzymes that could contribute to the depo-
lymerization and catabolic degradation of lignin (Fig. 2; see Table S4 at https://doi.org/
10.5281/zenodo.4431413) (18). It is worth noting that Termitomyces genomes con-
tained, on average, 16 gene sequences encoding laccases (AA1) (29–32), oxidases with
low redox potential that use diphenols and related substances as electron donors and
oxygen as the acceptor, thereby creating reactive C and O-based radical species in the
process. In addition, we identified one putative MnP (AA2) per genome, an enzyme
that generates highly reactive Mn31 species that, once chelated, are able to diffuse
through the dense network of lignocellulose, causing oxidation degradation due to
their higher redox potential (23). Furthermore, a subset of gene sequences encoding
alcohol oxidases and dehydrogenases (AA3 and AA5) are known to catalyze the oxida-
tion of (aryl)-alcohols or carbohydrates with the concomitant formation of hydroqui-
nones and/or H2O2 (33, 34). Unlike in previous studies (1), we also identified sequences
encoding a DyP and an UPO (Tables S5 and S6 at https://doi.org/10.5281/zenodo
.4431413), both of which are known for their versatile substrate spectrum. However,
homologous sequences to other class II peroxidases (PODs), such as LiPs, were not de-
tectable. Along these lines, iron reductase domains (AA8, EC 1.16.1) and putative ben-
zoquinone reductases (AA6, EC 1.6.5.6) that are key to maintaining efficient Fenton
chemistry-based redox cycles by reductive Fe21 sequestration and regeneration of or-
ganic benzoquinone-based redox shuttles were identified.

Subsequently, the expression levels of candidate genes related to lignin depolymer-
ization were analyzed in RNA-seq data obtained from three regions in the fungus
comb (Fig. 3) (7): fresh comb (within which most plant biomass decomposition is likely
to occur), old comb (where decomposition might still occur but to a lesser extent), and
nodules as (which feed young workers and serve for fungal spore and enzyme trans-
port) (Fig. 3; Table S27 at https://doi.org/10.5281/zenodo.4431413).

Here, we found differentiating transcription levels of genes encoding oxidative
enzymes (such as laccases, a MnP, and a UPO) and enzymes of the CAZy families AA3
and AA5, as well as enzymes that protect against reactive intermediates (e.g., benzoqui-
none reductase [EC 1.6.5.7], superoxide dismutase [EC 1.15.1.1], glutathione peroxidase
[EC1.11.1.9], and peroxiredoxin [EC 1.11.1.15]) across all three data sets. The combined
genetic and transcriptomic survey revealed that Termitomyces has the capacity to
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FIG 2 Heatmap of the numbers of hits for representatives of different CAZy families in the
predicted proteomes of Termitomyces spp. (T112, T153, J132, GCA_001972325, GCA_003313055,

(Continued on next page)
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produce lignocellulolytic enzymes and may even be able to induce and catalyze Fenton
chemistry (35).

Fenton chemistry of Termitomyces. Fenton chemistry involves the reaction
between Fe21 and H2O2, yielding Fe31 and a highly reactive hydroxyl radical (�OH), a
powerful oxidant (E0 = 2.8 V versus that of a normal hydrogen electrode) that is able to
unselectively oxidize hydrocarbons and nonphenolic aromatic units within lignocellulose-
rich material. Brown-rot fungi are known to make use of Fenton chemistry to depolymerize

FIG 3 Heatmap of redox enzyme transcription levels based on RNA-seq data of fresh comb (light brown),
old comb (black) and nodules (orange) from Macrotermes colony Mn156 (7). Transcript abundances are
depicted as log10 gene expression values, and color schemes were generated by viridis (version 0.5.1) (68, 71).

FIG 2 Legend (Continued)
GCA_003313075, GCA_003313675, GCA_003313785, GCA_003316525) and other selected
basidiomycete fungi (Laccaria bicolor, Moniliophthora perniciosa, Moniliophthora roreri, Agaricus
bisporus var. Burnettii [Agaricus bisporus 1], Agaricus bisporus var. Bisporus [Agaricus bisporus 2],
Coprinopsis cinerea, Schizophyllum commune, Fomitopsis pinicola, Trametes versicolor, Pleurotus
ostreatus, Irpex lacteus). The vertical axis shows clustering of enzymes based on abundance.
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lignocellulose biomass (36) and modulate the redox potential of Fe21/31 species by secretion
of dicarboxylic acids that act as chelators to form diffusible Fe complexes and as proton
donors for catalytic degradation processes (37). Additionally, redox-active fungal quinones
(Q) and hydroxyquinones (H2Q), such as 2,5-dimethoxy-1,4-benzoquinone (2,5-DMQ), 2,5-
dimethoxy-1,4-hydroquinone (2,5-DMH2Q), and its regioisomer 4,5-dimethoxy-1,2-benzen-
diol (4,5-DMH2Q), have been discussed to serve as redox shuttles (3 H2Q1 2 O2 ! 3 Q1 2
H2O 1 2 HO�) in the Fenton chemistry of rotting fungi (e.g., Serpula lacrymans, the
Gloeophyllales, and the Polyporales) (38–40), as they have the ability to switch between oxi-
dation states via one-electron transfer reactions that allow for the concomitant formation of
Fe21 from Fe31 and hydroxyl radicals (HO�) from H2O2 and O2 (see Fig. 5 and 6).

Thus, we evaluated whether Termitomyces employs any of those measures to ena-
ble lignin depolymerization by using Termitomyces sp. T153 and P5 as model strains.
First, we employed a standardized colorimetric ferrozine assay to determine if extracel-
lular Fe31 is reduced to Fe21 within the surrounding mycelium, a prerequisite to initi-
ate Fenton chemistry (41, 42). As depicted in Fig. 4A, topical application of a ferrozine
solution caused a clear color change within minutes, which was indicative of the imme-
diate reduction of Fe31 to Fe21. Next, we determined the pH range within the fungal
mycelium, as enzyme activities, the redox potential of H2O2, and metal complexes are
strongly pH dependent (35). We found indications that Termitomyces acidifies the sur-
rounding medium (Fig. 4D), which would benefit enzyme activities of lignin-degrading
enzymes with a pH optimum of 4.5 to 5.0 (14, 21). As the Fenton reaction also requires
H2O2, we tested if Termitomyces generates sufficient extracellular H2O2 to initiate the
reaction. Based on an H2O2-dependent colorimetric assay, we found that Termitomyces
generates approximately 4 to 6mg extracellular H2O2 per gram mycelium during
growth on solid support (mycelium age, 7 to 21 days) (Tables S18 to S20 at https://doi
.org/10.5281/zenodo.4431413).

In a next step, we evaluated if Termitomyces produces redox-active H2Q/Q using gas
chromatography coupled with mass spectrometry (GC-MS). Although the formation of previ-
ously reported 2,5-DM(H2)Q was not observed, we were intrigued to detect 2-methoxy-1,4-
benzoquinone (2-MQ), its reduced H2Q named 2-methoxy-1,4-dihydroxybenzene (2-MH2Q),
and the fully methylated derivative 1,2,4-trimethoxybenzene (compound 5), as well as other
structurally related (di)methoxylated hydroxybenzenes (e.g., compounds 1, 3, and 12) (Fig. 5).
Additionally, we verified the identities of the newly detected quinone derivatives 2-MQ
and 2-MH2Q by synthesis and comparison of GC-MS retention times (Fig. S20 and S21 and
Tables S16, S17, and S24 at https://doi.org/10.5281/zenodo.4431413).

FIG 4 (A and B) Ferrozine solution added to a Termitomyces sp. T153 culture grown on PDA (18days) and
incubated for 5min (A) and 30min (B); (C) ferrozine solution on a PDA plate (negative control); (D and E)
Termitomyces sp. T153 grown on PDA (28days) containing bromocresol green as a pH indicator (D) and
without the indicator (E); (F) PDA plate containing bromocresol green (negative control).
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To evaluate the ability of H2Qs to reduce Fe31 to Fe21, we employed the established
ferrozine-based Fe31 reduction assay (43). Overall, 2,6-DMH2Q (compound 18), a
regioisomer of 2,5-DMH2Q, was the most reactive derivative that was able to reduce
Fe31 to Fe21 within seconds and was therefore used as positive control in further
experiments (Fig. 6). In comparison, 2-MH2Q (compound 19) showed a reduced reactiv-
ity, which is likely a reflection of the decreasing electron density of the aromatic system
due to the lack of one additional electron-donating –OCH3 group. Other tested
(methoxylated) hydroxybenzenes showed a reduced reactivity compared to those of
compounds 18 and 19. Subsequently, we expanded our studies to combinations of re-
dox-active derivatives and were able to observe in most cases the superposition of re-
dox activities but no indications of synergistic activity (Fig. S9 and Table S21 at https://
doi.org/10.5281/zenodo.4431413).

As Fenton chemistry produces highly reactive hydroxyl radicals (�OH), we then confirmed
the presence of these short-lived radicals in our H2Q-mediated Fenton reactions using a fluo-
rometric assay based on the reaction with terephthalic acid (TPA). As in literature reports for
2,6-DMH2Q (compound 18) (37–40), the newly identified and structurally related H2Q com-
pound 19 catalyzed the formation of �OH in the presence of H2O2 and Fe31 within seconds.
In contrast, derivatives such as 1,2-dihydroxybenzene (compound 10) and syringic acid
(compound 13) caused the formation of hydroxyl radicals with lower initial reactivities, but
they formed over a period of more than 90min (Fig. S5 at https://doi.org/10.5281/zenodo
.4431413). Having verified that Termitomyces produces reactive H2Qs that are able to induce
the formation of Fenton reagents (Fe21, H2O2, and �OH), we then elaborated on the influ-
ence of fungus-derived dicarboxylic acids (oxalic acid, tartaric acid, malic acid, fumaric acid,
and succinic acid) (44–46) on the Fenton reaction (Fig. 7). While at low concentrations of ox-
alic acid (0.1mM) most H2Qs were still able to reduce the formed Fe31 complexes, increasing
concentrations caused the formation of stable Fe complexes with altered redox potentials,

FIG 5 Structures of redox-active compounds discussed in this work. (A) Hydroxyquinones (H2Q); (B)
corresponding quinones (Q); (C) methoxylated derivatives of H2Q. Compounds identified from Termitomyces are
highlighted in a red box, compounds identified from other rotting fungi are marked with a blue box,
derivatives isolated from Termitomyces and of plant origin are highlighted in a purple box, and commercial
derivatives for comparison are highlighted in a black box.
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such that only the most reactive, 2,6-DMH2Q (compound 18), was able to reduce Fe31 to
Fe21 (Fig. S10 to S12 at https://doi.org/10.5281/zenodo.4431413) (46). At 10mM oxalic acid,
a significant amount of autoxidation-related Fe31 reduction was observed. A similar reactiv-
ity trend, albeit with a stronger autoxidation effect, was observed when tartaric acid was
investigated as a chelating agent (47). In contrast, the presence of malic, fumaric, or succinic
acid only moderately altered the redox potential of the Fe-complexes, and only low rates of
autoxidation were observed (Fig. S14 to S16 at https://doi.org/10.5281/zenodo.4431413).

While laboratory culture conditions generally supply sufficient Fe concentrations for
growth, we questioned whether or not the natural fungal comb environment provides
the necessary metal ions for Fenton chemistry (48). To answer this question, we ana-
lyzed the element composition of fungus comb, gut fluids of termite workers, and soil
samples derived from within and outside termite colonies from different locations using

FIG 6 (A) Mechanistic depiction of the 2-MH2Q-initiated Fenton reaction via the formation of a radical semiquinone species and
oxidation to 2-MQ; (B) quantification of Fe31 reduction by H2Q using a colorimetric ferrozine-based assay (sodium acetate
[NH4OAc] buffer, pH 4). Error bars indicate60.5 standard deviation (n= 3). Abs. l562 nm, absorbance at a wavelength of 562 nm;
NC, negative control.
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inductively coupled plasma atomic emission spectrometry (ICP-AES) (49). All tested sam-
ples contained Al, Fe, and Ti as some of the most abundant main elements, in addition to
significant amounts of Mn. However, amounts of elements important for growth (C, H, P,
K, Ca, Mg) were low in all soil samples, with a particularly strong depletion of phosphorus,
but potassium was enriched compared to levels in comb and gut samples (Fig. S22 to S29
and Tables S15, S25, and S26 at https://doi.org/10.5281/zenodo.4431413). Sequential ion
extraction of soil samples was performed to analyze the soluble metal ion content, and
only low concentrations of most metal ions were detectable (50, 51). Although these find-
ings indicate that fungus comb and the gut environment accommodate large amounts of
insoluble Fe/Al oxides, the nano- and microscopic surface areas of these minerals may act
as the necessary catalytic centers for Fenton-like redox chemistry (52).

Enzyme activity tests catalyzing the degradation of model lignin compounds.
We then questioned if enzymatic degradation of lignin or lignin-like model substances
by Termitomyces is measurable using colorimetric assays or MS-based analytical tools
(53). For a first test, we supplemented the culture medium of Termitomyces sp. T153
with the pigment-based model substance Azure B (54), previously used to measure the
redox activity of LPs due to its stability toward oxidative activities of MnPs. Over a time

FIG 7 (A) Structures of metal-chelating dicarboxylic acids; (B) quantification of Fe31 reduction by H2Q using a colorimetric
ferrozine-based assay in in the presence of 1mM oxalic acid and 1mM L-(-)-malic acid after 5 min (black), 60 min (red) and 120
min (blue). Error bars indicate60.5 standard deviation (n= 3).
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course of seven days, we were able to monitor the decolorization of Azure B by
Termitomyces, an effect which became more pronounced with the increasing biomass
and age of the fungus culture (Fig. S16 at https://doi.org/10.5281/zenodo.4431413). To
evaluate if the degrading activity was due to the activity of secreted oxidative enzymes
and/or H2Q-mediated Fenton-based chemistry, we tested both effectors separately
and in combination. While quantification of enzymatic effects was hampered by tech-
nical challenges due to intrinsic light absorption of enzymes concentrates, H2Q-medi-
ated Fenton chemistry clearly induced the degradation of Azure B within 5 to 10 min
in a comparison with the control (Fenton reagents without H2Qs) (Fig. S16 at https://
doi.org/10.5281/zenodo.4431413) (55). We then evaluated whether or not laccase ac-
tivity was detectable within the secretome using a syringaldazine-based assay and
compared the activity to the reactivity of a commercial laccase from Trametes versicolor
(56). However, only residual laccase activity was detectable compared to the activity in
the positive control and thus was unlikely accountable for the degradation of Azure B.

Lastly, we evaluated if Termitomyces exhibits MnP enzymatic activity, which is marked by
the oxidation of Mn21 to Mn31 and the release of the highly reactive oxidant as a carboxylic
acid chelate, using a previously reported leukoberbelin blue test (57). As shown in Fig. 8, leu-
koberbelin-containing Termitomyces cultures and cell-free culture supernatant resulted in
the formation of the blue leukoberbelin complex within minutes, which indicated the forma-
tion of Mn31/41 species. When Termitomyces was grown on potato dextrose agar (PDA)
plates containing both elevated Mn21 concentrations (200 to 500mM) and indicator dye,
the formation of blue leukoberbelin-Mn31/41 complexes was detectable within a few days,
and longer incubation times resulted in macroscopic MnOx precipitates forming around fun-
gal hyphae within 10 to 17days (Fig. 4C). We further confirmed the expression of the gene
encoding the putative MnP by reverse transcription-PCR (RT-PCR) (Fig. S18 and S19 at
https://doi.org/10.5281/zenodo.4431413).

Proteomic analysis. Building on our enzymatic studies and to link the observed
activities with their putative enzymatic origins, we conducted a liquid chromatography
tandem mass spectrometry (LC-MS/MS)-based proteomic analysis of secreted enzymes
of Termitomyces culture supernatants, which were prepared in two different buffer sys-
tems (NaOAc, pH 4.5; KH2PO4, pH 6.5). Overall, a total of 255/303 secreted proteins
were detectable, which were mostly assigned to fungal carbohydrate metabolism
groups, such as glucosidases, glucanases, or chitinases (Tables S29 to S32 at https://doi
.org/10.5281/zenodo.4431413). Interestingly, a potential lignin-degrading aromatic

FIG 8 (A) PDB containing Leukoberbelin blue (left to right, culture of Termitomyces sp. 153, cell-free supernatant,
and PDB broth as a control); (B) Termitomyces sp. T153 cultivated on PDA containing 500mM MnCl2 after 28days;
(C) microscopic image of fungal mycelium after 24 days showing brown MnO2 deposits.
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peroxygenase (8th/13th) and one MnP (13th/11th) ranked among the top 15 most abun-
dant protein sequences, while two other yet-unassigned peroxidases were also detect-
able (31st, 141th/17th, 142nd), albeit at lower abundances. In total, five laccases were de-
tectable, albeit in minor abundances (starting from 76th/99th).

DISCUSSION

In the two major fungus-growing termite genera, Macrotermes and Odontotermes,
the decomposition of plant biomass by the fungal cultivar Termitomyces is based on
the intricate interactions between the predigestive gut passage and the external fungus
comb bioreactor. Although a series of studies have elaborated on the functional roles of
Termitomyces in plant biomass degradation (1–3), experimental insights into the biochemi-
cal mechanisms necessary for plant biomass degradation have remained sparse.

Which ligninolytic enzymes are produced by Termitomyces? Our omics-based
analysis clearly shows that Termitomyces has the capability to produce a set of extracel-
lular lignocellulose-degrading enzymes, most of which generate diffusible extracellular
oxidants (superoxide O2

2, hydroxyl radicals �OH, H2O2, redox-active Mn31/41 species, or
phenoxy radicals) that oxidize the aromatic polymeric three-dimensional (3D) structure
of lignin (Fig. 1D and Fig. 9).

It is particularly intriguing that Termitomyces encodes, on average, 16 different lac-
cases that are differentially transcribed and might differ in their reactivities and sub-
strate spectra. Although laccases are considered not to be essential for lignin degrada-
tion (22, 23), their presence likely assists in partial oxidation of phenolic and
nonphenolic aromatic moieties that facilitate further fragmentation and depolymeriza-
tion (Fig. 9). Here, it is also worth highlighting that produced (aryl)-alcohol oxidases are
able to efficiently oxidize and cleave b-ether units present within lignin substructures
via single-electron transfer reactions (22, 23). Our study also provides conclusive
genomic and biochemical evidence that Termitomyces secretes not only a reactive
MnP, a class II peroxidase, but also a DyP and a UPO, both of which are known for oxi-
dizing a broad-substrate spectrum. While none of these enzymes are capable of
degrading lignin alone, their combined enzymatic actions should allow for lignin’s par-
tial depolymerization, which is necessary for other enzymes of microbial or termite ori-
gin to overcome physical barriers of the polymer and access their target substrates in
the interior of the dense polymer.

Does Fenton chemistry play a role? Following up on the idea that Termitomyces
utilizes complementary Fenton chemistry for breaking chemical bonds in the dense
lignocellulose, we evaluated the presence and absence of metabolic and enzymatic
factors necessary to drive the radical process. Here, we provide collective evidence that
Termitomyces employs Fenton chemistry by the secretion of high levels of (extracellu-
lar) H2O2 and the production of H2Qs that reduce Fe31 to Fe21. For the first time, we
document that the Termitomyces-derived metabolite 2-MH2Q (compound 19) acts as a
redox shuttle for Fenton chemistry and induces the formation of Fe21, as with
4,5-DMH2Q and 2,5-DMH2Q (21, 35). Genomic and transcriptomic analyses also showed
that Termitomyces produces two benzoquinone reductases that may reduce MQ to
MH2Q and thereby close the H2Q/Qbased redox shuttle cycle. Considering that Fenton
chemistry produces several strong oxidants, we evaluated the influence of fungal
dicarboxylic acids on the H2Q-based reduction of Fe31 complexes and found that com-
plexation with oxalic acid renders the metal ion less available for reduction in a con-
centration-dependent manner. Thus, we hypothesize that Termitomyces actively
applies these protective measures in the proximity of its fungal hyphae, which at the
same time allows the sequestering of Fe31 for intracellular processes.

Considering the observation that fungus comb material is crafted from macerated
plant material and is interspersed with metal oxide-rich soil, it appears likely that
Fenton-based degradation pathways play a major role in the overall biomass conver-
sion during fungal maturation. The importance of Fenton chemistry in plant degrada-
tion was recently demonstrated by Schiøtt and Boomsma (58), who showcased that
the combination of enzymatic degradation and Fenton chemistry plays an important
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role in the coevolved leafcutter ant symbiosis, where ants create spatially isolated sub-
strate pellets, called Fenton pellets, that might function as small contained bioconver-
sion reactors.

Conclusions. Collectively, our genomic, transcriptomic, metabolomic, and proteomic
studies document that Termitomyces utilizes a specific set of oxidative enzymes as well as
Fenton chemistry to cope with the challenging task of degrading the lignin-rich plant bio-
mass and presumably applies the same mechanism to detoxify xenobiotic compounds pres-
ent within the comb, such as plant and microbial natural products, which often have struc-
tures similar to those of lignin monomers (48, 50, 52). Our findings increase our general
understanding of the role of Fenton chemistry within the symbiosis of termites and their cul-
tivar and shed light on the molecular synergy mechanisms that may have been decisive for
integrating the complementary contributions of termites and their cultivar. Whether or not
symbiotic and lignocellulolytic bacteria present within the comb might also contribute and
complement fungal-lignin degradation capabilities is the topic of current investigations
(59, 60) that will further elaborate on the question why the Termitomyces-termite symbiosis
has become the most successful path for the termite cultivar.

FIG 9 Lignin modifications and oxidation pathways by Termitomyces. (A) Schematic depiction of lignin oxidation by, e.g., laccases (Lac) in contrast to
degradation by LiP and VP typically found in white-rot fungi (gray box); (B) oxidation and oxidative demethylation of lignin substructures by 2-MH2Q-
catalyzed Fenton chemistry via the formation of short-lived hydroxyl radicals and regeneration of H2Q by (intracellular) benzoquinone reductases (QR); (C)
formation of H2O2 by (aryl)-alcohol oxidases (AAO) and glyoxal oxidases (GLX); (D) oxidative C-C cleavage of lignin substructures via phenoxy and methoxy
radicals derived from radicals and/or enzymatic processes.
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MATERIALS ANDMETHODS
Genome sequencing and processing. DNA was extracted from laboratory-grown heterocaryotic

Termitomyces strains T112 and T153, and genome sequences were produced at LGC Genomics (Berlin,
Germany) using the Illumina MiSeq V3 platform with 300-bp paired-end reads and approximately 12 million read
pairs per sequencing. All library groups were demultiplexed using the Illumina bcl2fastq 2.17.1.14 software (RAW
folder, Group subfolders). Up to two mismatches, or N’s, were allowed in the barcode read when the barcode dis-
tances between all libraries on the lane allowed for it. Sequencing adapters were clipped from all raw reads, and
reads with final lengths of,20 bases were discarded. Afterwards, reads were quality trimmed by removing reads
containing more than one N, deleting reads with sequencing errors, trimming reads at the 39 end to get a mini-
mum average Phred quality score of 10 over a window of 10 bases, and discarding reads with final lengths of
less than 20bp. From the final set of reads, FastQC reports were created for all FASTQ files. SPAdes version 3.13.0
was used for assembly. Prior to annotation, the genomes were soft masked with RepeatMasker 4.0.9 (61). RNA-
seq data were mapped to the genomes with STAR 2.7.3a (62) and used to train the AUGUSTUS gene predictor
with BRAKER 2.1.5 (63). Finally, the genomes of T112 and T153 were annotated with AUGUSTUS 3.3.3 (64).
Protein and mRNA hints were used for the annotation. For details, see https://doi.org/10.5281/zenodo.4431413.

RNA sequencing. RNA was obtained from mycelia of Termitomyces strains T153 and T112 cultivated
on different growth media for 10 days at room temperature. Mycelium was harvested by scraping it
from agar plates with a scalpel, freezing it in liquid nitrogen, and storing it at 280°C until RNA extrac-
tion. RNA extracts underwent 100-bp paired-end BGISeq-500 sequencing at BGI (Hong Kong). For details,
see https://doi.org/10.5281/zenodo.4431413.

RNA-seq data acquisition and processing. RNA-seq data for fresh comb (NCBI accession no.
SRR5944783), old comb (accession no. SRR5944781), and nodules (accession no. SRR5944782) of Termitomyces
strains from Macrotermes colony Mn156 were downloaded from the European Nucleotide Archive (65). The raw
RNA-seq data were mapped to the annotated genes of T153 using HiSat2 with spiced alignments disabled (ver-
sion 4.8.2) (66). Transcript abundance was then estimated using HTSeq-count (version 0.11.2) (67). Count data
from HTSeq were imported into R using the DESeq2 package (version 1.22.2) (67). Genes with low transcript
abundance (,10) were filtered out, and the remaining genes were log10 transformed (68). A heatmap for the
identified redox enzymes was generated using the pheatmap package (version 1.0.12) (69) in R (70) with color
schemes generated by viridis (version 0.5.1) (71). For details, see https://doi.org/10.5281/zenodo.4431413.

CAZy analysis. Identification of CAZymes in the predicted proteomes of Termitomyces and other
Basidiomycetes strains was performed using a local installation of the dbCAN2 server and all three
included tools (HMMER, DIAMOND, and Hotpep searches against the databases included in dbCAN2)
(72). For a reliable analysis, we kept only matches that were independently identified by at least two of
three annotation strategies and only genes and transcripts classified by their substrate target and thus
putative enzymatic functions. EC numbers were assigned using peptide-based functional annotation
(http://www.cazy.org/). For details, see https://doi.org/10.5281/zenodo.4431413.

GC-MS analysis. The fungal isolates Termitomyces sp. P5 and T153 were cultivated on solid media
containing different carbon sources. GC-MS analyses of biosamples were carried out with an Agilent
(Santa Clara, CA, USA) HP 7890B gas chromatograph fitted with an HP5-MS silica capillary column (30 m,
0.25-mm internal diameter, 0.50-mm film) connected to an HP 5977A inert-mass detector. For details,
see https://doi.org/10.5281/zenodo.4431413.

Activity studies of Termitomyces sp. T153. Detection and quantification of H2O2 in the culture me-
dium of Termitomyces sp. T153 was performed using a fluorimetric hydrogen peroxide assay kit (Sigma-
Aldrich). For details, see https://doi.org/10.5281/zenodo.4431413.

Detection of hydroxyl radicals. Concentrations of hydroxyl radicals were measured using a fluoro-
metric assay based on the reaction with terephthalic acid (TPA), yielding the fluorescent oxidation prod-
uct hydroxy-terephthalic acid (hTPA) (for details, see https://doi.org/10.5281/zenodo.4431413).

Ferrozine assay. Fe21 concentrations were evaluated using a standardized ferrozine assay. For
details, see https://doi.org/10.5281/zenodo.4431413.

Proteomic analysis. Termitomyces sp. T153 was cultured in potato-dextrose broth (25ml) for
12 days (20°C, 150 rpm), and secreted enzymes were collected and digested according to a standardized
protocol (for details, see https://doi.org/10.5281/zenodo.4431413). LC-MS/MS analysis was performed on
an UltiMate 3000 RSLCnano system connected to a Q Exactive Plus mass spectrometer (both from
Thermo Fisher Scientific, Waltham, MA, USA). Tandem mass spectra were searched against the UniProt
database record for Termitomyces sp. J132 (https://www.uniprot.org/proteomes/UP000053712; 26
November 2019) using Proteome Discoverer (PD) 2.4 (Thermo) and the algorithms of Mascot 2.4,
Sequest HT (version PD2.2) and MS Amanda 2.0. The mass spectrometry proteomics data have been de-
posited to the ProteomeXchange Consortium via the PRIDE (73) partner repository with the dataset
identifier PXD025936. For details, see 10.5281/zenodo.4431413.

Protein analysis and activity tests. Proteomic analysis and experimental details of laccase and MnP
activity tests are deposited at https://doi.org/10.5281/zenodo.4431413.

Supporting information can be accessed free of charge at Zenodo (https://doi.org/10.5281/zenodo
.4781753) and figshare (https://doi.org/10.6084/m9.figshare.14073491) and contains information regard-
ing culture conditions, isolation procedures, structure elucidation, activity assays, expression-level data,
CAZy counts, and a proteomic hit list.
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