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Knowing the target oxygen saturation (SpO2) range that results in the best

outcomes for acutely hypoxemic adults is important for clinical care, training, and

research in low-income and lower-middle income countries (collectively LMICs).

The evidence we have for SpO2 targets emanates from high-income countries

(HICs), and therefore may miss important contextual factors for LMIC settings.

Furthermore, the evidence from HICs is mixed, amplifying the importance of

specific circumstances. For this literature review and analysis, we considered

SpO2 targets used in previous trials, international and national society guidelines,
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and direct trial evidence comparing outcomes using different SpO2 ranges (all

from HICs). We also considered contextual factors, including emerging data on

pulse oximetry performance in different skin pigmentation ranges, the risk of

depleting oxygen resources in LMIC settings, the lack of access to arterial blood

gases that necessitates consideration of the subpopulation of hypoxemic patients

who are also hypercapnic, and the impact of altitude on median SpO2 values.

This process of integrating prior study protocols, society guidelines, available

evidence, and contextual factors is potentially useful for the development of other

clinical guidelines for LMIC settings. We suggest that a goal SpO2 range of 90-94%

is reasonable, using high-performing pulse oximeters. Answering context-specific

research questions, such as an optimal SpO2 target range in LMIC contexts, is

critical for advancing equity in clinical outcomes globally.

KEYWORDS

LMICs, Africa, context, oxygen saturation targets, SpO2

Introduction

Guidelines for best-practice oxygen saturation (SpO2) targets in
acutely hypoxemic adults are based entirely on evidence from high-
income countries (HICs), which encompass only 16% of the world’s
population (1–11). This can be problematic for clinical staff, clinical
teachers, and researchers in low-income and lower-middle income
countries (collectively LMICs) who are working to improve patient
outcomes with oxygen therapy. As Chowdhury et al. note when
examining a case of stroke care in an LMIC setting, “evidence-based
standards of care cannot be separated from the contexts in which
they are produced” (12). This is not simply a need to acknowledge
that certain recommended interventions may not be available in
all settings. Features of a given context may actually shift the risk-
benefit balance of an intervention toward a different best-practice
standard of care; differences in context could mean that a given
intervention that leads to better outcomes in one setting could lead
to neutral or worse outcomes in another. There is a specific example
of this complexity in the sepsis literature, where fluid resuscitation
volumes found to be life-saving or neutral in multiple HICs were
found to be harmful in LMICs (13–18). The reasons for this may
have to do with differences in the underlying etiologies of sepsis,
timing of patient presentation, and lack of availability of ventilators
to “rescue” patients from fluid overload (19).

Not only does all of the evidence on optimal SpO2 target ranges
emanate from HICs, but also the evidence does not definitively
point to an optimal SpO2 range (2–11, 20). Our research team is
planning a trial of high flow versus standard flow oxygen delivery
in five hospitals in three LMIC countries in sub-Saharan Africa
(Kenya, Malawi, and Rwanda) (21). To ensure consistent practices
in the two arms of the trial, we need to choose an SpO2 range to
target for titrating oxygen therapy in both arms. The trial itself
is based on the premise that context matters: the question of
whether high flow oxygen is superior to standard flow has been
explored in multiple HIC settings (22), but different epidemiology
and resources may change the answer as to whether high flow
oxygen should be used in LMIC settings for the best patient- and
systems-level outcomes.

Methods

To identify the optimal SpO2 range for patients enrolled
in the trial, we conducted a scoping literature review regarding
SpO2 targets for patients with hypoxemia (23). We reviewed
prior interventional trials in hypoxemic adults to determine the
precedent of SpO2 target ranges set in research protocols. We
examined SpO2 target guidelines from national and international
respiratory and critical care organizations for patients with
hypoxemia. We also looked at direct evidence from trials
comparing patient outcomes using different SpO2 target ranges.
We explored literature regarding context-specific considerations
that could impact the choice of best-practice SpO2 range in LMICs,
including the relative inaccuracy of pulse oximetry in patients
with darker skin pigmentation and shock, the need to conserve
oxygen resources for all patients (24, 25), the lack of consistent
access to arterial blood gases, which necessitates consideration of
hypercapnic patients, and the impact of altitude on SpO2 (26–28).

SpO2 ranges used in previous
interventional trials

In previous ARDSNet trials evaluating mortality outcomes with
interventions in patients with acute respiratory distress syndrome
(ARDS), target oxygenation has been set at 88–95% (Table 1).
The landmark trial of low tidal volume ventilation in ARDS chose
this target range for study participants (29). The average level
of arterial partial pressure of oxygen (PaO2; SpO2 not reported)
reflects this and was similar between both groups when measured
at days 1, 3, and 7 (range 73–77 mmHg). More recent studies
assessing proning and paralysis in ARDS used this same 88–95%
range without differences in measured PaO2 between groups (30,
31). These studies were all conducted in patients in HICs admitted
to intensive care units with ARDS.

Other studies that assessed acute hypoxemic respiratory failure
(AHRF) in non-intubated patients have used a higher SpO2 cutoff
(Table 1). The FLORALI trial of high flow oxygen, non-invasive
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TABLE 1 Oxygen targets used in prior trials enrolling hypoxemic adults.

Trial Target SpO2 Population

ARDSNet Low TV (29) 88–95% Intubated ARDS patients

PROSEVA (30) 88–95% Intubated ARDS patients

PETAL (31) 88–95% Intubated ARDS patients

FLORALI HFNC (32) ≥92% Non-intubated patients with
acute hypoxemic respiratory
failure with P:F ratio ≤300

HIGH RCT (33) ≥95% Non-intubated
immunocompromised
patients with acute
hypoxemic respiratory failure

Recovery-RS (34) “Across all groups, local
policies and clinical
discretion informed
decisions”

Non-intubated COVID-19
patients with acute
hypoxemic respiratory failure

SpO2 , oxygen saturation; ARDS, acute respiratory distress syndrome; P:F, ratio of partial
pressure of arterial oxygen to the fraction of inspired oxygen; HFNC, high flow nasal cannula;
RCT, randomized control trial.

ventilation, and standard flow oxygen in acutely hypoxemic adults
used a target SpO2 of ≥92%; the HIGH trial of high flow
versus standard oxygen in immunocompromised adults with acute
hypoxemia targeted ≥95% (32, 33). The Recovery-RS trial, which
was conducted to assess optimal non-invasive respiratory support
modalities in patients with COVID-19 and AHRF, did not set a
specific oxygen saturation target and instead deferred to individual
study site policies and clinical discretion (34).

Society guidelines for SpO2 targets

Multiple professional societies provide recommendations and
guidance for SpO2 targets for patients with AHRF (Table 2).
The British Thoracic Society (BTS) guidelines recommend a
higher oxygenation goal of 94–98%, except for patients at risk
for hypercapnia, for which they recommend a goal of 88–92%

(35). Other groups, including the World Health Organization
(WHO), Society of Critical Care Medicine (SCCM) Surviving
Sepsis campaign, and the Thoracic Society of Australia and
New Zealand, advocate for a more conservative oxygenation goal
typically of at least ≥90%, except again for patients at risk for
hypercapnia, where they recommend 88–92% (36–38). In 2018,
a British Medical Journal (BMJ) Expert panel evaluated data
on oxygenation targets in multiple clinical scenarios, including
respiratory failure, myocardial infarction, and acute stroke. The
expert panel recommended a general oxygenation goal of 90–94%
for most patients, with an adjusted goal of 88–92% for those at risk
of hypercapnia (39). The American Thoracic Society (ATS) does
not specifically cite an oxygenation target in their guidelines, with
the exception of 88–92% for non-invasive ventilation for patients at
risk of hypercapnia (40, 41).

Direct evidence for different SpO2 target
ranges

An understanding of the potential risks of both hypoxemia
and hyperoxia has driven investigations of the optimal SpO2
target range for different populations of patients. While we know
that hypoxemia can result in tissue ischemia and death, we also
know that hyperoxia can cause oxidative stress and inflammation,
with the potential for negative clinical consequences (42–44). In
critically ill (not necessarily hypoxemic) patients, a prior practice of
allowing or even targeting hyperoxia to promote tissue oxygenation
has been found to be harmful (42, 45). In acutely hypoxemic
patients, the question is more complicated, as potentially harmful
levels of FiO2 may be needed to reach “normoxia” in some patients;
this raises the question of whether not only an avoidance of
hyperoxia, but even pursuing some level of permissive hypoxemia,
could be beneficial (43).

Many recent studies have assessed conservative versus liberal
SpO2 goals in different patient populations, with the weight of
evidence suggesting that lower (“conservative”) SpO2 targets are

TABLE 2 Society guidelines for oxygen saturation targets.

Society/Guidelines Recommended target Level of recommendation

British Thoracic Society (BTS) (35) 94–98% for most patients
88–92% for those at risk of hypercapnia

–Grade D Recommendation
–Grade A for COPD, Grade D for other
conditions

World Health Organization (WHO) COVID-19 guidelines
(37)

≥94% for those with emergency signs during resuscitation
>90% once patients are stable

–COVID-19 specific recommendations

Society of Critical Care Medicine (SCCM) Surviving sepsis
campaign, COVID-19 recommendations (36)

90–96% –Strong recommendation

Thoracic Society of Australia and New Zealand (38) 92–96% for most patients
88–92% for risk of hypercapnia

–Grade B Recommendation

British Medical Journal (BMJ) Expert panel (39) 90–94% for most patients
88–92% for risk of hypercapnia

– Recommended not starting
supplemental oxygen on patients with
acute MI or CVA with SpO2 ≥ 90% (if
SpO2 90–92%, weak recommendation; if
SpO2 ≥ 93%, strong recommendation)

American Thoracic Society (ATS) (40, 41) No specific oxygenation targets specifically commented on in ATS
guidelines for general hypoxemic patients
88–92% for non-invasive ventilation for patients at risk of hypercapnia
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not harmful and may even produce superior outcomes as compared
with higher (“liberal”) SpO2 targets in some cases. Table 3 outlines
these studies, patient populations, and their specific comparisons,
all of which occurred in HICs.

SpO2 goals in patients with acute hypoxemic
respiratory failure or mechanically ventilated

In patients with acute hypoxemic respiratory failure, ARDS,
and patients receiving mechanical ventilation, multiple recent
studies have found no difference in outcomes between liberal and
conservative oxygen targets (2, 4, 5). Semler et al. assessed outcomes
in mechanically ventilated patients with three SpO2 target ranges
[low (88–92%), intermediate (92–96%), or high (96–100%)], and
found no significant difference in ventilator-free days or mortality
between the three target groups (11).

Only one study of patients with respiratory failure, the LOCO2
study, suggested possible harm to lower oxygenation targets, in
patients with ARDS. It compared conservative (PaO2 55–70 mmHg
or SpO2 88–92%) and liberal (PaO2 90–105 mmHg or SpO2 ≥96%)
oxygenation goals, and while the study was stopped early due to
low likelihood of significant difference, there were 5 mesenteric
ischemic events present in the conservative oxygenation group (10).

Tyagi et al. conducted a recent retrospective cohort study
analyzing the relationship between the occurrence of hyperoxia
with mortality in mechanically ventilated patients. They identified
a U-shaped curve, where PaO2 was positively correlated with
mortality below 100 mmHg and above 200 mmHg. This study
found that exposure to severe hyperoxia, defined as PaO2
>200 mmHg, correlated with higher mortality (OR 1.29; 95% CI
1.04–1.59) (46).

A systematic review and meta-analysis by Cumpstey et al.
included eight trials of mechanically ventilated patients (47). They
found a possible increased long-term mortality with targeting
hyperoxia versus normoxia, and no difference in outcomes with
targeting relative hypoxemia versus normoxemia.

SpO2 goals in critically ill patients
As noted, studies have also been done in critically ill

patients (not necessarily with acute hypoxemia or ventilated),
largely focused on the question of benefits or harms with
hyperoxia, and also comparing different target ranges for SpO2.
These have generally confirmed either harm or neutrality with
higher oxygen targets.

The HyperS2S study, which was a two-by-two factorial design
study including an evaluation of normoxia versus hyperoxia in
patients with septic shock, used the same oxygenation target of
88–95% in the normoxia group as the ARDS studies mentioned
above. Compared to hyperoxia (using an FiO2 of 1.0 regardless
of SpO2), the normoxia group had fewer adverse events and no
significant difference in 28-day mortality (35% in normoxia vs.
43% in hyperoxia, p = 0.12) (8). The Oxygen-ICU trial in ICU
patients with expected stay >72 h, was terminated early due to
difficulty enrolling patients, but the study showed lower mortality
in the conservative oxygenation group (SpO2 94–98%) compared
to the “conventional“ oxygenation group (SpO2 97–100%) (11.6%
vs. 20.2%, p = 0.01) (7).

Gelissen et al. compared “low-normal” to “high-normal”
oxygenation targets in ICU patients who met two or more criteria

for the Systemic Inflammatory Response Syndrome (SIRS) (6).
They found no significant different in organ dysfunction between
the arms, though the study may have been underpowered to
find a difference. Schmidt et al. examined restrictive and liberal
oxygenation targets in comatose adults after out-of-hospital cardiac
arrest, with a lower target in the liberal arm than Gelissen et al. (3).
In this population of critically ill adults, they found no difference in
death or severe disability or coma between the two arms.

The Improving Oxygen Therapy in Acute-Illness (IOTA)
systematic review, a meta-analysis of 25 randomized controlled
trials (RCTs) comparing liberal and conservative oxygen therapy
in acutely ill adults, evaluated liberal and conservative oxygen
strategies defined either by an FiO2 or target SpO2 value (9). This
analysis found that a 1% increase in SpO2 was associated with a
25% increase in relative risk of in-hospital mortality. Overall, liberal
oxygen strategies carried an increased relative risk for in-hospital
mortality (1.21, 95% CI 1.03–1.43), 30-day mortality (1.14, 95% CI
1.01–1.29), and mortality at longest follow-up (1.10, 95% CI 1.00–
1.20).

Across the several ranges of oxygenation targets and several
populations examined, it appears that low-normal SpO2 targets and
high-normal SpO2 targets result in similar outcomes. Supra-normal
target ranges (hyperoxia) may be harmful.

Context-specific considerations in LMICs

Bias in pulse oximetry measurements
Pulse oximetry (SpO2) does not perfectly correlate with arterial

oxygen saturation (SaO2) as measured by blood gas, and prior
studies have found multiple potential sources of inaccuracy,
particularly as patients become sicker, as denoted by rising lactate
and hypoxia (48, 49). These include severe hypoxemia, low
perfusion, patient movement, and severe anemia. The quality and
appropriate use of the device also play a significant role (50).

The accuracy of pulse oximetry can also be influenced by
skin pigmentation, leading to measurement bias. Studies have
demonstrated discrepancies in oxygen saturation detected by pulse
oximetry and true arterial oxygen saturation based on patients’
skin tone (51). Valbuena et al. evaluated discrepancies by race
between pulse oximetry and arterial oxygen saturation among
patients in medical and surgical wards. They found that, compared
to white patients, Black patients had higher odds of having occult
hypoxemia noted on arterial blood gas that was not detected by
pulse oximetry, with occult hypoxemia defined as arterial blood
oxygen saturation (SaO2) of <88% despite a pulse oximetry (SpO2)
reading of ≥92% (52). Henry et al. found that, compared to white
patients, Black, Asian, and American-Indian patients admitted to
the ICU or undergoing surgery during hospitalization were more
likely to experience occult hypoxemia; however, the differences
were only significant for Black patients after adjustment (OR
1.65; 1.28–2.14; p < 0.001) (53). A systematic review and meta-
analysis investigating this bias in pulse oximetry measurement was
performed by Shi et al., and found that compared to standard SaO2
measurement, pulse oximetry overestimates oxygen saturation in
people with higher levels of skin pigmentation (pooled mean bias
1.11%; 95% CI 0.29–1.93%) and people described as Black/African
American (1.52%; 0.95–2.09%) (54).
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TABLE 3 Studies of conservative versus liberal oxygen saturation goals.

References Study design Conservative [# patients] Liberal [# patients] Outcome

Studies of patients with acute hypoxemic respiratory failure and ventilated patients

Panwar et al. (5) RCT in mechanically
ventilated patients

SpO2 88–92%
[52]

SpO2 ≥ 96%
[51]

–No significant difference in organ dysfunction,
ICU mortality, or 90-day mortality

ICU-ROX (2) RCT in mechanically
ventilated ICU patients

SpO2 90–97%, FiO2 decreased to
0.21 if SpO2 > 90%
[484]

SpO2 with no specific upper
limit, > 90%
[481]

–No significant difference in ventilator free days
No significant difference in 180 day mortality

LOCO2 (10) RCT in patients with ARDS PaO2 55–70 mmHg (SpO2

88–92%)
[99]

PaO2 90–105 mmHg
(SpO2 ≥ 96%)
[102]

–Prematurely stopped due to safety concerns and
low likelihood of significant difference
–34.3 vs. 26.5% mortality in conservative group at
day 28 (95% CI −4.8 to 20.6)
–5 mesenteric ischemic events in conservative
group

HOT-ICU (4) RCT in patients with acute
hypoxemic respiratory
failure

PaO2 60 mmHg
(Only had measured SaO2

corresponding, median ranged
from 91 to 94%)
[1,441]

PaO2 90 mmHg
(Only had measured SaO2

corresponding, median ranged
from 94 to 98%)
[1,447]

–No significant difference in 90 day mortality
–No significant between-group different in days
alive without life support
–Similar occurrence of organ injury

Semler et al. (11) Pragmatic,
cluster-randomized,
cluster-crossover trial in
mechanically ventilated
adults

Low
SpO2 90%; goal
range, 88–92%
[808]

Intermediate
SpO2 94%; goal range, 92–96%
[859]

High
SpO2 98%; goal
range, 96–100%
[874]

–No difference in ventilator-free days or 28-day
mortality between all three groups.

Tyagi et al. (46) Single center cohort in
mechanically ventilated
patients

Evaluated dose and duration of
PaO2 associated with mortality

–PaO2 positively correlated with mortality above
200 mmHg and below 100 mmHg

Studies of patients with critical illness

Oxygen-ICU (7) RCT in ICU patients with
anticipated stay > 72 h

PaO2 70–100 mmHg (SpO2

94–98%)
[218]

PaO2 up to 150 mmHg (SpO2

97–100%)
[216]

–Terminated early due to difficulty enrolling
Conservative group had lower mortality (11.6 vs.
20.2%, p = 0.01)

HyperS2S (8) 2 × 2 factorial RCT for
patients with septic shock
(evaluated hypertonic saline
and hyperoxia)

Target SpO2 of 88–95%
[223]

Hyperoxia with FiO2 at 1.0
[219]

–Trial stopped prematurely for safety reasons
No significant difference in 28-day mortality (35%
normoxia vs. 43% hyperoxia, p = 0.12)
Fewer adverse events in normoxia group (76 vs.
85%, p = 0.02), as well as fewer ICU weakness and
atelectasis

Gelissen et al. (6) RCT in critically ill patients
with SIRS

Target PaO2 8–12 kPa
SpO2 Median:
95.8 (94.6–97)
[205]

Target PaO2 14–18 kPa
SpO2 Median:
97.2 (95.6–98.5)
[195]

–No significant difference in duration of
ventilation, in-hospital mortality, AKI, or MI
–Not powered for smaller effect size

Schmidt et al. (3) 2 × 2 factorial RCT in
comatose adults with
out-of-hospital cardiac
arrest (evaluated blood
pressure targets as well)

PaO2 9–10 kPa (68–75 mm Hg)
[394]

PaO2 13–14 kPa (98–105 mm Hg)
[395]

–Similar incidence of death or severe disability or
coma between both groups of oxygenation targets.

RCT, randomized controlled trial; SIRS, Systemic Inflammatory Response Syndrome.

Henry et al. also looked at clinical outcomes of these disparities,
and found that occult hypoxemia was associated with increased
odds of mortality in surgical (OR 2.96; 1.20–7.28; p = 0.019) and
ICU patients (OR 1.36; 1.03–1.80; p = 0.033). Occult hypoxemia was
associated with fewer hospital-free days in surgical patients (−2.5
days; −3.9 to −1.2 days; p < 0.001) but not ICU patients (0.4 days;
−0.7 to 1.4 days; p = 0.500) (53). This is in agreement with other
studies that have found that patients with occult hypoxemia defined
in this case as SpO2 ≥88% despite SaO2 <88%, were at higher risk
of organ dysfunction and mortality (55).

This bias in measurement can also influence delivery of medical
interventions. Gottlieb et al. investigated how these discrepancies

in pulse oximetry measurements translate into racial and ethnic
disparities in supplemental oxygen administration. This study
found that patients of Asian, Black, and Hispanic race and
ethnicity were all associated with a higher SpO2 for a given
hemoglobin oxygen saturation. Furthermore, Asian (coefficient,
−0.291; 95% CI, −0.546 to −0.035; p = 0.03), Black (coefficient,
−0.294; 95% CI, −0.460 to −0.128; p = 0.001) and Hispanic
(coefficient, −0.242; 95% CI, −0.463 to −0.020; p = 0.03)
race and ethnicity were associated with lower average oxygen
delivery rates (56). When controlling for the discrepancy between
average SpO2 and average hemoglobin oxygen saturation, race
and ethnicity were not associated with oxygen delivery rate.
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In other words, Asian, Black, and Hispanic patients received
less supplemental oxygen than white patients, and this bias was
explained by differences in pulse oximeter performance. Fawzy
et al. similarly found that inaccuracy of pulse oximetry by race and
ethnicity was associated with significantly delayed or unrecognized
eligibility for COVID-19 therapies among Black and Hispanic
patients (57).

The studies above demonstrate that not only is there significant
bias in measurement of oxygen saturation in individuals with
darker skin tones, it also translates into poorer healthcare
delivery and clinical outcomes for these patients, which further
perpetuates health inequities. The literature also highlights
that the magnitude of inaccuracy with different skin tones
is variable and not well-quantified, differing by device and
other patient factors, including low perfusion (49, 58). These
studies were all performed in HICs, and there is a critical
paucity of such data in LMICs. In our LMIC study settings
of Kenya, Malawi, and Rwanda, most patients are Black. In
addition, the inability to monitor oxygen saturation continuously
or frequently in these settings also increases the risk of late
identification of hypoxemia.

Oxygen conservation
While the optimal SpO2 target range is not known, we do

know that high levels of SpO2 can be harmful for patients (46). In
addition, the lack of adequate supplemental oxygen supply is still a
significant barrier to the provision of adequate oxygen therapy in
many LMICs (25). Geographical constraints to oxygen delivery and
periods of high demand, among other logistical barriers, highlight
the insufficient access to oxygen in many health systems across the
world (59, 60). This is confirmed by World Health Organization
(WHO) data that indicated that 35% of LMIC hospitals evaluated
did not have any access to supplemental oxygen (61). While HIC
settings generally do not need to consider the possibility that
higher SpO2 target ranges could result in shortages of oxygen
and therefore critical hypoxemia for a proportion of hypoxemic
patients, this is a relevant consideration for LMIC settings. If
unnecessarily high SpO2 targets result in an inability to provide
oxygen to a proportion of hypoxemic patients, then this will

TABLE 4 Advantages and disadvantages of an 90-94% target SpO2 in
Kenya, Malawi, and Rwanda.

Advantages Disadvantages

• Prior ARDS trials have previously
set SpO2 targets in a similar range
• This range accounts for patients at
risk of hypercapnia, as well as
prevents potential harm from
hyperoxia
• Prior society and expert guidelines
differ, but most recommendations
include components of this range
• This range encourages conservation
of oxygen resources by avoiding
unnecessary hyperoxia in some
patients that could result in
inadequate oxygen resources for other
patients
• Providing an upper bound avoids
the risks of hyperoxia

• Patients with darker skin tones are at risk
of occult hypoxemia due to differential
accuracy of pulse oximeters by skin tone
• Hidden hypoxemia is associated with
delayed clinical care and poorer outcomes
• Sicker patients with poor perfusion may
have inaccurate pulse oximeter
measurements
• This range does not fully take into account
adjustments to SpO2 target range for patients
at risk of hypercapnia
• The range is relatively narrow, and this
target range may be difficult to achieve given
the dynamic nature of SpO2 in some patients
over time

result in worse outcomes overall for the population of hypoxemic
patients. The risks of hyperoxia, coupled with the fact that
supplemental oxygen is a scarce resource that can be depleted in
LMIC settings, highlights the need to consider the full context and
population consequences when deciding on an SpO2 target range.
Prior studies have suggested that even small differences in SpO2
target ranges can have profound impacts on oxygen consumption
(62). Semler et al. also demonstrated that lower SpO2 targets
were associated with overall lower FiO2 despite no difference in
hypoxemia (SpO2 <85%) (11). This demonstrates a lower SpO2
target could decrease overall oxygen resource utilization without
carrying a risk for worse hypoxemia.

Lack of consistent access to arterial blood gases
Many LMIC sites do not have consistent access to arterial blood

gases. This means that pulse oximetry is crucial for the ability to
recognize and treat hypoxemia, even recognizing the limitations of
pulse oximetry noted above (24, 63).

The lack of consistent access to arterial blood gases also means
that LMIC sites will often not be able to identify the subpopulation
of hypoxemic patients who also have hypercapnia. A chosen SpO2
target range must be safe for the subpopulation of hypoxemic
patients who are also hypercapnic. Higher SpO2 targets in this
population can dangerously worsen hypercapnia due to an increase
in dead space, the Haldane effect, and a decrease in minute
ventilation (64). For this population, as noted above, the accepted
target range is 88–92% (35–41).

Altitude
The impact of altitude on median SpO2 in a healthy population

is not specific to LMIC settings, but is another contextual factor
that could impact the choice of SpO2 target range (26–28). Median
SpO2 values decrease in healthy populations as altitude increases
(27, 28). Four of our five study sites are located at an altitude above
1,500 m, and thus likely have a somewhat lower median SpO2
value for their healthy populations than sea-level locations. While
it is not well-understood whether or how SpO2 targets should be
adjusted based on the “normal” values for a population at a given
altitude (26), sites at higher altitudes may want to choose lower
SpO2 target ranges to account for the lower “normoxia” ranges of
their own population.

SpO2 target range of 90–94%

Based on the review of available evidence and discussion among
investigators and clinicians across study sites, we preliminarily
decided to use 90–94% as the target SpO2 range for our trial of high
flow versus standard flow oxygen (Table 4). This was consistent
with precedent from prior trials, multiple society guidelines, and
the evidence we have for liberal versus conservative targets.
Our choice of target SpO2 range of 90–94% also accounts for
contextual factors, including pulse oximetry bias in patients with
dark skin pigment, oxygen conservation goals, the need to consider
hypercapnic patients, and the impact of altitude on the median
SpO2 of a population. Recognizing that pulse oximeters have a
range of performance characteristics, (65, 66) we are mitigating

Frontiers in Medicine 06 frontiersin.org

https://doi.org/10.3389/fmed.2023.1148334
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-10-1148334 April 12, 2023 Time: 10:56 # 7

Herbst et al. 10.3389/fmed.2023.1148334

the risk of occult hypoxemia by using pulse oximeters that have
expanded evidence for accurate performance with a range of skin
pigmentation levels (67); locations with less-studied or poorly-
performing pulse oximeters may want to choose a higher range.

Conclusion

The optimal SpO2 target range for acute hypoxemic adults
has not been established by trial evidence. Landmark studies of
hypoxemic respiratory failure have often used a range of 88–95%,
and society guidelines recommend at least an SpO2 > 90% (88–
92% for patients with hypercapnia). A lower SpO2 target might lead
to occult hypoxemia and worse outcomes in patients with darker
skin pigmentation or for patients in settings where monitoring
may be limited. However, risks of hyperoxia and depletion of
oxygen resources must be considered when recommending a
target oxygenation goal. Inability to identify hypercapnic patients
and the impact of altitude are also important considerations.
Based on available evidence from HICs of outcomes between
liberal and conservative oxygen targets, we preliminarily chose
an SpO2 target of 90–94%, determined by an accurate pulse
oximeter, as a reasonable SpO2 range that might mitigate risks
from hyperoxia while avoiding hypoxemia and conserving oxygen
in our study settings.

We used precedent from prior trials, society guideline
recommendations, direct evidence from HIC trials, and the input
of content and context experts in LMICs to determine a reasonable
target SpO2 range for our LMIC contexts. Nonetheless, our work
points to the need for ongoing critical care research in LMICs, to
create robust evidence that arises from and is applicable to LMIC
settings. Improving equity in evidence must include prioritization
of research in diverse settings globally.
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