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Minireview
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Abstract
Hepatic fibrogenesis is a pathophysiological outcome of chronic liver injury hallmarked by

excessive accumulation of extracellular matrix proteins. Fibrosis is a dynamic process that

involves cross-talk between parenchymal cells (hepatocytes), hepatic stellate cells, sinu-

soidal endothelial cells and both resident and infiltrating immune cells. In this review, we

focus on key cell-types that contribute to liver fibrosis, cytokines, and chemokines influenc-

ing this process and what it takes for fibrosis to regress. We discuss how mitochondria and

metabolic changes in hepatic stellate cells modulate the fibrogenic process. We also briefly

review how the presence of fibrosis affects development of hepatocellular carcinoma.
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Introduction

Liver fibrosis is a consequence of sustained wound-healing
response to chronic liver injury.1 The main causes include
chronic HCV and HBV infection, exposure to toxins (e.g.
alcohol liver disease), non-alcoholic steatohepatitis
(NASH), and autoimmune diseases such as primary biliary
cirrhosis, primary sclerosing cholangitis, and autoimmune
hepatitis. Morphologically, liver fibrosis is characterized by
accumulation of extracellular matrix (ECM), followed
by formation of fibrous scar and subsequent cirrhosis
which is defined by the presence of nodules of regenerating
hepatocytes with decreased blood supply to the liver.2,3

Hepatic stellate cells (HSCs) are the main ECM-producing
cells in the injured liver.4 In healthy livers, HSCs localize in
the space of Disse, where they are in a quiescent state and
store vitamin A (Figures 1 and 2). However, following con-
tinuous liver injury, HSCs activate into myofibroblasts, start
expressing alpha-smooth muscle actin (a-SMA), migrate at
the site of tissue repair, and secrete large amount of ECM
(Figures 1 and 2). Interestingly, when the liver injury is
removed, myofibroblasts may undergo apoptosis and

inactivation,5 and therefore clearance of causative etiolo-
gies underlying liver fibrosis can slow down the process
and lead to fibrosis regression. Despite extensive knowl-
edge on liver fibrosis mechanisms, antifibrotic therapies
effective in human have not been developed so far.6

In this review, we highlight recent data of molecular
mechanisms of liver fibrosis and summarize the current
knowledge of targeting each pathway of the pathogenesis
process to relieve liver fibrosis.

Origin of fibrogenic myofibroblasts

The majority of the studies aiming at identifying the origin
of myofibroblasts have suggested that most likely HSCs are
the main source of myofibroblasts in the injured liver.7–9

However, this topic is still controversial and other than
HSCs several other cell types have been proposed to give
rise to myofibroblasts. For example, epithelial cells which
in physiological conditions are located on the surface
of blood vessels and organs could potentially lose their
polarity, migrate and originate myofibroblasts through a
process called epithelial–mesenchymal transition (EMT).

Impact statement
Advanced liver fibrosis results in cirrhosis,

portal hypertension, and liver failure and

often requires liver transplantation.

Advanced liver fibrosis and cirrhosis are

also major risk factors for hepatocellular

carcinoma (HCC). Hepatic stellate cells

(HSCs) play a pivotal role in the pathogen-

esis of liver fibrosis. In this review, we

summarize the basic mechanisms that

influence liver fibrosis development and

how oxidative stress, mitochondrial dys-

function, and metabolic remodeling mod-

ulate HSC activation and indicate areas of

potential therapeutic intervention.
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Interestingly, some studies have shown that cholangiocytes
and hepatocytes under prolonged culturing conditions
increase the expression of a-SMA and downregulate epithe-
lial markers.10,11 Nonetheless, lineage-tracing experiments
that permanently label cholangiocytes, hepatocytes, and
epithelial precursor cells have shown that epithelial cells
do not give rise to hepatic myofibroblasts.12–14 These obser-
vations therefore suggest that EMT is not crucial for liver
fibrogenesis in vivo.15

Bone marrow (BM)-derived cells like mesenchymal stem
cells (MSCs) and fibrocytes have also been proposed to
originate myofibroblasts. MSCs are multipotent cells that
differentiate into osteoblasts, adipocytes, myocytes, and
chondrocytes. Surprisingly, recently it has been reported
that MSCs may protect the tissue in which they are
recruited from developing fibrosis.16

Fibrocytes are cells with a spindle-like shape which were
first described in 1994.17 They express fibroblast markers

Figure 1. Cell types in liver fibrosis. Quiescent HSCs in healthy livers are localized in the space of Disse. Following chronic liver damage, injured hepatocytes, immune

cells and activated Kupffer cells release pro-fibrogenic molecules which activate HSCs. Activated HSCs upregulate ⍺-SMA expression, secrete growth factors, and

produce large amounts of ECM. The figure depicts the different cell types and fibrogenic mediators involved in the fibrotic process and the crosstalk between them

(see text for details).

Figure 2. Features of quiescent and activated HSCs. Quiescent HSCs store retinoid droplets, proliferate slowly, and express high levels of GFAP and LRAT. Upon liver

injury, increase of inflammatory cytokines, ROS production, metabolic reprogramming or iron overload, HSCs become activated. Activated HSCs are characterized by

loss of retinoid droplets, increased proliferation, and expression of fibrogenic markers (⍺-SMA, TIMP1, Lox and LoxL2). Moreover, activated HSCs produce ECM

proteins such as collagen type I and collagen type III which are hallmarks of liver fibrosis.
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such as fibronectin, vimentin, collagen type I as well
as hematopoietic cell markers like CD45, MHCII, CD34,
CD11b, Gr1, CD86, CCR2, Ly6c, CD54, CD80, CCR1,
CCR7, and CCR5.18,19 Studies have reported that both
cholestatic and CCl4-induced liver injury can trigger the
recruitment of fibrocytes into the injured liver where they
can start expressing a-SMA. However, their contribution to
liver myofibroblasts range between 3% and 50%.20–22

Mesothelial cells are similar to epithelial cells, and they
can be found in internal organs and serous cavities where
they are organized into cell monolayers.23 They originate
from the embryonic mesoderm layer and some studies
have suggested that both portal fibroblasts (PFs) and
HSCs may derive from mesothelial cells.24,25 Interestingly,
it has been shown that after CCl4-induced liver injury, both
HSCs and myofibroblasts originate from mesothelial cells;
however, in cholestatic liver injury, mesothelial cells give
rise only to HSCs, but not myofibroblasts.26,27 Therefore,
some controversies remain whether mesothelial cells can
differentiate into myofibroblasts in fibrotic livers.
Nonetheless, a study has suggested that mesothelial cells
may be involved in fibrosis of the liver capsule.22

PFs consist of heterogeneous cell populations which are
localized underneath the bile duct epithelium. PFs were
first described in cholestatic liver disease by immunohisto-
chemistry, histology, and electron miscroscopy.28–30 During
biliary fibrosis, PFs start expressing a-SMA and produce
ECM.31–33 However, identification or purification of quies-
cent PFs is challenging due to the lack of markers which can
efficiently discriminate fibroblasts from other mesenchy-
mal cells. Nevertheless, markers such as Ntpdas2, elastin,
and Thy1 were recently reported to be expressed specifi-
cally by PFs, but not by HSCs.34 Intriguingly, by using
transgenic mice, two collagen-producing cell populations
were identified in the injured liver: Vitamin A-positive
HSCs and Vitamin A-negative PFs.35 In CCl4-induced
liver fibrosis, myofibroblasts originate mainly from HSCs,
whereas PFs are the major source of myofibroblasts in early
biliary fibrosis. However, as cholestatic disease progresses,
HSCs contribute to the majority of myofibroblasts. More
recently, it was reported that activation of PFs during cho-
lestatic liver fibrosis is mediated by TGF-b1 and involves
the interaction of mesothelin with a MUC16-Thy1-TGFbRI
complex.36

In summary, current studies regarding the origin of
hepatic myofibroblasts indicate that, depending on the
type of liver injury, they arise mostly from liver-resident
HSCs, mesothelial cells, and activated PFs. The contribu-
tion of BM-derived cells to hepatic fibrosis is quantitatively
small, suggesting that these cells may be important in the
modulation of other myofibroblast populations.

Key cytokines and chemokines involved
in liver fibrosis

In liver fibrosis, death of hepatocytes and cholangiocytes
causes activation of HSCs directly or through several
cytokines which are released by immune cells including
innate lymphoid cells (ILC), Kupffer cells, Th17 cells,
and bone marrow-derived monocytes (Figure 1).

Those inflammatory cytokines have been reported to
affect liver fibrosis in vivo and in vitro.37 Interestingly,
while it has been shown that monocyte chemotactic protein
type I (MCP-1) and CCL5 promote fibrogenesis, IL-10 and
IFN-c have the opposite effect.38,39 IL-17 is secreted by Th17
cells and its levels are elevated in hepatitis B and C, alco-
holic liver disease (ALD), and autoimmune hepatitis.40

Neutrophils and mast cells can also be a major producer
of IL-17 in fibrotic liver.41 IL-17 is a profibrogenic cytokine
which stimulates HSCs to increase levels of collagen type I,
a-SMA, and TGF-b by activating NF-jB and STAT3.42

Deletion of IL-17 or IL-17RA protects mice from cholestatic
and toxin-induced liver fibrosis.42 High blood levels of
IL-22, another cytokine produced by Th17 cells, are
observed in cirrhotic patients.43,44 Although IL-22 was
shown to promote human hepatocellular carcinoma,45

other studies demonstrated the protective effects of IL-22
in murine models of ALD, acetaminophen-induced liver
injury, and T-cell mediated hepatitis.46–48 Accordingly, it
has been shown that IL-22 induces HSC senescence and
inhibits liver fibrosis in mice.49 However, in contrast to
these findings, other studies have suggested that IL-22 is
proinflammatory and profibrogenic in hepatitis B patients
and hepatitis B mice model.50–52 Additionally, increased
IL-17 and IL-22 is a common signature for advanced liver
fibrosis and pharmacological inhibition of IL-22 and IL-17
reduced hepatic fibrosis in murine models.41

IL-33 and its receptor ST2 are elevated in cirrhotic
patients.53,54 In experimental models of mouse liver fibro-
sis, IL-33 is released from injured hepatocytes that stimu-
late ILC to produce IL-13 which in turn stimulates HSCs via
the IL-4Ra and STAT6 axis.53 Liver sinusoidal endothelial
cells and HSCs can also be a potential source of IL-33 in
fibrotic liver.55 Mice lacking IL-33 or ST2 are protected from
liver fibrosis.53,54

Chemokines are small chemotactic cytokines that direct
chemotaxis and recruitment of leukocytes into the injured
liver.56 Within the chemokine family, C-C motif chemokine
(CCL2), also known as monocyte chemoattractant protein 1
(MCP-1), is released by activated macrophages, fibroblasts,
and parenchymal cells during injury.57 CCL2 stimulates the
recruitment of monocyte-derived macrophages in the
injured liver causing activation of myofibroblasts.58

Therefore, the CCR2-CCL2 axis can potentially be an excel-
lent target for therapeutic interventions.59–61

Among growth factors, transforming growth factor-b
(TGF-b) plays a central role in liver fibrogenesis.62 Liver
macrophages including Kupffer cells are the main producer
or TGF-b, but it can also be secreted by HSCs. TGF-b binds
to the TGF-b receptor type II which phosphorylates TGF-b
receptor type-I which follows the activation of both Smad-
dependent and Smad-independent pathways.62 In HSCs,
TGF-b activates Smad2/3 stimulating the synthesis of
ECM proteins such as type I and II collagen and inhibiting
their degradation. Overall, TGF-b promotes activation of
HSCs into myofibroblast and liver fibrosis through various
mechanisms. For example, it has been shown that the Rho
GTPase signaling mediates the TGF-b-induced HSCs
migration.63 MicroRNAs (miRNA) have also been sug-
gested to be involved in the regulation of HSCs by TGF-b.
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In particular, miR-29 is downregulated by TGF-b in HSCs
with the consequent upregulation of ECM proteins.64 In
addition, TGF-b-dependent downregulation of miR-30c
and miR-193 in HSCs has an effect on ECM remodeling.65

Interestingly, it has been shown that the TGF-b pathway
is inhibited by BAMBI and Smad7 which interact
with and negatively regulate the TGF-b type I receptor.66

Consequently, it was demonstrated that inhibiting TGF-b
synthesis or overexpressing BMP-7, which is an opposing
factor of TGF-b, resulted in reduction of liver fibrosis.67,68

Platelet-derived growth factor (PDGF) is produced by
platelets, macrophages, myofibroblasts, and HSCs. PDGF
is the most potent mitogen for HSCs and its levels are ele-
vated in fibrotic livers where, synergistically with TGF-b,
it acts as a fibrogenic factor.69,70 PDGF is present in four
isoforms (PDGF-A, B, C, and D) which interact with the
PDGFR-a and -b, a receptor with intrinsic tyrosine kinase
activity. In a rat model of biliary injury by BDL, the expres-
sion of PDGF-B, PDGF-D, and PDGFR-bwas elevated com-
pared to the other isotypes.71 Another study showed that
overexpression of PDGF-B in transgenic mice increased
liver fibrosis and HSCs activation.72 These results were
confirmed by a study which reported that the PDGFR-
b-mediated PDGF-B and PDGF-D signaling pathway
are critical in the development of liver fibrosis.73

Therefore, strategies aimed at inhibiting both TGF-b and
PDGF signaling can potentially result in promising antifi-
brotic therapies.

Oxidative stress in liver fibrosis

In the injured liver, apoptotic or necrotic hepatocytes,
activated Kupffer cells, activated HSCs, and neutrophils
produce reactive oxygen species (ROS) which facilitate
HSC activation and migration.74 ROS are produced by
nicotinamide adenine dinucleotide phosphate (NADPH)
oxidase (NOX) by transferring electron from nicotinamide
adenine dinucleotide phosphate to molecular oxygen.75

Mammalian cells have seven NOX isoforms: NOX1,
NOX2, NOX3, NOX4, NOX5, DUOX1, and DUOX2. HSCs
express NOX1, NOX2, and NOX4.76,77 Mice lacking a reg-
ulatory component of NOX are not able to produce ROS in
response to angiotensin II, PDGF, leptin, or apoptotic
bodies. Consequently, those mice show less liver fibrosis
after BDL or CCl4 treatment.78,79 In agreement with this
result, deficiency of NOX1 and NOX4 protected mice
from developing liver inflammation and fibrosis by inhib-
iting hepatic stellate cells activation.80 Recently, it was also
reported that NOX1 expression in macrophages promotes
hepatic tumorigenesis by inducing the production of
inflammatory cytokines.81 Promising in vivo studies using
the dual NOX1/NOX4 inhibitor GTK137831 have demon-
strated that the compound can suppress ROS production,
inhibit HSCs activation, and improve liver fibrosis in CCl4,
BDL, and fast-food diet mouse model of liver injury.77,82–84

Interestingly, the cross talk between ROS and TGF-b is now
very well recognized. On one hand, TGF-b inhibits
the expression of several antioxidant enzymes, and on the
other hand, it has been reported that ROS increases the
expression of TGF-b in different organs.85,86

Role of mitochondria and metabolic
reprogramming of HSC in fibrosis

Mitochondria play critical roles in energy and ROS produc-
tion and homeostasis. About 90% of cellular ROS is pro-
duced in the mitochondria87 and as mentioned above, has
important roles in hepatic fibrogenesis. Although many
studies have delineated the role of mitochondria in hepa-
tocytes during disease progression,88 very little is known
about mitochondrial status in HSCs and how it plays a role
during fibrogenesis. ECM production and secretion by
activated HSCs demand abundant supply of intracellular
ATP. Mild mitochondrial uncouplers that reduced ATP and
ROS levels were able to prevent activation and proliferation
of both mouse and human HSCs.89

Moreover, a recent study indicated an increase in mito-
chondrial respiration andmembrane potential in fibrogenic
HSCs.90 The elevated mitochondrial membrane potential in
activated HSCs (compared to quiescent HSCs) sensitized
them to mitochondria delivery of doxorubicin (Dox) via
triphenylphosphonium (TPP) conjugation (TPP-Dox).
While activated HSCs were killed by TPP-Dox, non-fibro-
genic HSCs were spared.90

The activation of HSCs is accompanied by metabolic
reprogramming similar to the Warburg effect in tumor
cells, in which the cells tend to favor energy production
via glycolysis rather than the much more efficient oxidative
phosphorylation pathway. The metabolic switch to glycol-
ysis during HSCs activation happens rapidly within
the first 48 h of activation. Inhibition of glycolysis by
2-Deoxy-D-glucose (2DG) converts the activated HSCs to
a more quiescent state.91 Pyruvate, the end product of
glycolysis, is converted to lactate by the enzyme lactate
dehydrogenase. Lactate accumulated in activated HSCs,
and pharmacologic inhibition of lactate dehydrogenase
suppressed HSCs activation.91

The amino acid glutamine is the most abundant circu-
lating amino acid in blood and has important metabolic
functions. Glutamine acts as a building block for several
molecules such as for the synthesis of non-essential
amino acids, synthesis of metabolites that are important
in maintaining mitochondrial metabolism, and generation
of antioxidants that counteract ROS.92 Similar to the
reliance of cancer cells on glutamine metabolism (glutami-
nolysis),92 HSCs activation also depends on it.93,94

Expression of genes that regulate glutaminolysis increased
during activation of HSCs that result in increased gluta-
mine consumption. Consequently, either depletion of
glutamine or inhibiting enzymes involved in glutaminoly-
sis disrupted transdifferentiation of HSCs.93,94 Strategies
that are targeted at lactate and glutamine metabolism
may represent novel therapeutic approaches for the treat-
ment of liver fibrosis. Hedgehog and YAP signaling were
identified as important regulators of HSC metabolic switch
during activation91,93,94 and also provide potential thera-
peutic avenues to explore.

Adenosine 50 monophosphate-activated protein kinase
(AMPK) is a master regulator of metabolism that maintains
cellular energy homeostasis.95 Absence of adiponectin
(an AMPK activator) in mice augmented CCl4-induced
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fibrosis.96 Moreover, activation of AMPK in human HSCs
by adiponectin or AICAR inhibited HSCs activation
and migration in response to PDGF.97 Similarly, AMPK
silencing increased PDGF-induced HSCs proliferation,
migration, and activation.97 It was indicated that AMPK
activation can inhibit HSCs activation by dampening the
activation of either NFkB or mTOR signaling.97

Angiogenesis and liver fibrosis

During chronic liver injury, two distinct pathways are
responsible for the functional changes in liver vascular
architecture. First, inflammation and fibrosis cause hypoxia
which promotes angiogenesis.98,99 Second, the wound-
healing process that is typical of chronic liver disease
promotes the release of proangiogenic cytokines and
growth factors.98–101 HSCs function as the pericytes of the
liver because of their anatomical location and their ability
to regulate sinusoid contraction.102 Once activated, HSCs
promote angiogenesis by producing vascular endothelial
growth factor (VEGF) and angiopoietin-1103,104 and increas-
ing the expression of their receptors VEGFR-2 and Tie-2.
Interestingly, it has been shown that VEGF directly stimu-
lates HSCs proliferation, migration, and chemotaxis.105 In
support to these findings, blocking VEGF or angiopoietin-1
reduces liver fibrosis.104,106 In addition to VEGF, PDGF can
also contribute to the angiogenic phenotype of HSCs.107

Moreover, HSCs can secrete several CXC chemokines
such as CXCL8, CXCL9, CXCL10, and CXCL12 which
have been shown to stimulate angiogenesis during liver
fibrosis.108,109

Role of iron overload in liver fibrosis

Iron is one of the most abundant element on Earth and
is essential for all living organisms as it plays a critical
role in various processes, such as oxygen transport, various
enzymatic reactions including DNA synthesis and electron
transport chain.110 The human body lacks proper physio-
logical mechanisms to excrete iron110 and therefore needs to
be closely regulated. On one hand where iron deficiency
can cause anemia, excess iron can lead to severe oxidative
stress and cellular damage by fueling the “Fenton reaction”
that generates ROS and hydroxyl free radicals.111 In the
human body, iron is primarily found bound to hemoglobin
or stored in the liver by hepatocytes or Kupffer cells, which
are especially prone to the toxic effects of iron overload.
The clearest example is the toxic effect of iron on hepato-
cytes in hereditary hemochromatosis, which eventually
leads to cirrhosis and HCC.111–113 Iron overload is a risk
factor and might play a causal role in the development
and progression of metabolic syndrome, type-2 diabetes,
non-alcoholic fatty liver disease (NAFLD), ALD, NASH,
and fibrosis.111,114

Hepcidin, a 25 amino acid polypeptide hormone pro-
duced by hepatocytes, is a central regulator of iron homeo-
stasis.115 Hepcidins also have anti-microbial properties.115

Binding of hepcidin to the transmembrane iron exporter
ferroportin on the iron-storing cells such as hepatocytes
and Kupffer cells leads to ferroportin internalization and

degradation and thereby prevents release of stored
iron into the circulation.115,116 Similarly, ferroportin degra-
dation by hepcidin in intestinal epithelial cells results in
reduction of iron transfer into circulation.115 Although fer-
roportin expression was reported in both murine117 and
human118 HSCs, very little is known about the role of fer-
roportin and hepcidin on HSC activation and fibrosis.
Emerging evidence indicate that hepcidin has anti-fibrotic
effects and its expression is inversely related to the extent of
fibrosis in patients.118 Adenoviral-mediated hepcidin over-
expression inhibited fibrosis in CCl4 and bile duct ligation
models of mice.118 Ferroportin expression increases in acti-
vated HSC and the anti-fibrotic action of hepcidin in HSC is
primarily mediated by degradation of ferroportin.118

Mechanistically, hepcidin inhibits TGF-b-mediated Smad3
activation which is linked to ferroportin-mediated regula-
tion of AKTsignaling. Ferroportin is a negative regulator of
AKT activation. Therefore, hepcidin-mediated ferroportin
downregulation increases P-AKT levels. Activated AKT
sequesters unphosphorylated Smad3 in the cytosol and
prevents heterodimerization with Smad4 and subsequent
nuclear translocation thereby blunting the TGF-b-mediated
signaling.118,119 Consequently, treatment of mice with either
hepcidin or deletion of ferroportin inhibited experimental
fibrosis in mice.118 Interestingly, bone morphogenic protein
6 (BMP6), a known inducer of hepcidin, which belongs to
the TGF-b superfamily of growth factors, also inhibits
hepatic fibrosis.120 Compared to WT mice, Bmp6�/� mice
are prone to hepatic inflammation and fibrosis when fed
MCD diet and recombinant BMP6 prevented HSC activa-
tion.120 Taken together, excessive iron can induce HSC
activation and fibrosis by inducing oxidative stress in hep-
atocytes and Kupffer cells, thereby inducing inflammation
and fibrosis.

Fibrosis regression

For long time, scientists believed that liver fibrosis is
an irreversible process. However, studies performed in
patients and rodent models have indicated that fibrosis
can regress when the fibrotic insult (e.g. HBV, HCV,
alcohol, chemicals, biliary obstruction, and obesity) is
removed.121–124 The time needed to obtain a significant
regression varies according to the cause and severity of
the liver disease. However, whether cirrhosis, characterized
by the most advanced stage of fibrosis, vascularized septae,
and nodular parenchymal regeneration, can be reversed is
still a matter of debate.125 Maturation of ECM scar makes
it less accessible and resistant to proteases.122 The presence
of non-reducible cross-linked collagen and changes in
hepatic vasculature suggested that the cirrhotic process is
irreversible.125,126 However, it is now clear that fibrosis and
even cirrhosis may regress. When risk factors for chronic
liver diseases are no longer present or the underlying con-
ditions are successfully treated, hepatic reparative mecha-
nisms can slowly improve the hepatic architecture.127–130

During the regression process, fibrous septa of cirrhotic
livers may become thinned and perforated and the charac-
teristic parenchymal nodularity can disappear with time.127
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Increased collagen degradation is the main mechanism
of fibrosis resolution.121 During fibrosis resolution, the
loss of TGF-b signaling is critical. Then the reduction
in the expression of tissue inhibitor of metalloproteinases
1 (TIMP-1) enables matrix metalloproteinases (MMPs)
secreted by Kupffer cells/macrophage to degrade fibrillar
collagen types I and III.131 Partial degradation of collagen
in turn triggers HSCs apoptosis by several mechanisms,
such as activation of death receptor-mediated pathways
(Fas or TNFR-1 receptors), caspase 8 and 3, upregulation
of pro-apoptotic proteins (e.g. p53, Bax, caspase 9), and
downregulation of anti-apoptotic proteins (e.g. Bcl-2).132

Overexpression of peroxisome proliferator-activated recep-
tor c (PPARc) or treatment with a PPARc agonist reverted
activated HSCs to a quiescent phenotype.133 Additionally,
during liver fibrosis resolution, about 50% of activated
HSCs reverted to a more quiescent state.5,134 These inacti-
vated HSCs are more sensitive to further fibrogenic stimuli
than quiescent HSCs. However, it is still not very well
understood whether inactivation is a common feature of
all activated myofibroblasts.

Liver fibrosis and HCC

HCC is the most common type of liver cancer and the
second leading cause of cancer deaths worldwide with
very limited treatment options.135 Furthermore, HCC is
the fastest growing cancer in the United States.136 The
main risk factors for HCC are chronic hepatitis B virus
(HBV) or hepatitis C virus (HCV), excessive alcohol con-
sumption, diabetes, and NASH.137 Advanced liver fibrosis
and cirrhosis are major risk factors for HCC, with up to 90%
of cases occurring on the background of a cirrhotic
liver.138,139 Rarely, HCC can also develop in the absence of
cirrhosis and advanced fibrosis such as those induced
by inherited metabolic disorders, e.g. hemochromatosis,
porphyria, and type-1 glycogen storage diseases.139,140

Compared to HCV-induced HCC that relies more on the
cirrhotic microenvironment and the necroinflammatory
response, HBV-induced HCC can progress more frequently
in the absence of cirrhosis, most likely due to the differen-
tial ability of HCV and HBV to integrate into the host
genome and directly modulate cellular oncogenesis.140,141

Nevertheless, HBV patients with cirrhosis more frequently
progresses to HCC compared to non-cirrhotic HBV
patients.142

Although the present main risk factors for HCC are HBV
and HCV infections, their relative contribution, especially
in developed countries, is rapidly declining due to the
effectiveness of HBV vaccines and anti-HCV drugs.143–145

Non-alcoholic fatty liver disease (NAFLD) is now the most
common cause of chronic liver disease in the United
States.146 About 30% of the US adult population has
NAFLD that increases to 90% in morbidly obese individu-
als.147 NAFLD is characterized by the histological presence
of >5% macrovesicular steatosis of hepatocytes in an indi-
vidual without significant alcohol use or other known
causes of chronic liver disease. About 10–20% of NAFLD
patients exhibit NASH, which is a severe and chronic liver
inflammation that includes ballooning degeneration of

hepatocytes, fibrosis, and liver damage.146,148 Quite a few
of the patients suffering from NASH progress to end-stage
liver disease (cirrhosis), liver failure, and HCC. Although
NAFLD is currently the major cause of HCC without
advanced fibrosis or cirrhosis in the US population,149

the risk of NAFLD patients for severe liver disease and
mortality increased with the stage of fibrosis.150

Fibrosis and cancer-associated fibroblasts (CAF) can
influence liver cancer development by modulating the
tumor microenvironment.151,152 Fibrosis is a dynamic pro-
cess. Deposition of ECM in fibrotic liver not only alters the
mechanical properties of the liver but also has the ability to
modulate and co-ordinate multiple signaling networks in
epithelial, endothelial, stromal, immune, and tumor cells
by either directly binding specific receptors such as integ-
rins and growth factor receptors or by forming complexes
with ligands that augment their activity and promote bind-
ing to their receptors.153 For example, fibronectin and vitro-
nectin derived from ECM can either bind their cognate
integrin receptors154 or can also bind hepatocyte growth
factor (HGF) and modulate signaling by complexing
c-Met (HGF receptor) and integrin receptors thereby stim-
ulating the growth and survival of transformed cells.155

HSCs play both direct and indirect roles in HCC
development. Besides being a key cell type responsible
for fibrosis development, activated HSCs can indirectly
support hepatic tumorigenesis by secreting angiogenic fac-
tors such as VEGF and angiopoietin-1, and CXC chemo-
kines that can influence tumor vascularization.103,104,108,109

Additionally, HSCs can influence the immune landscape of
the liver, tilting the scale towards malignant transforma-
tion. Besides being able to secrete pro-inflammatory cyto-
kines, and stimulate Kupffer cells, activated HSCs express
PDL-1 (B7-H1)156 and B7-H4157 that can induce either
exhaustion or anergy of activated T-cells, respectively,
in the liver thereby protecting malignant cells from the
adaptive immune system and creating an environment con-
ducive for survival and proliferation of pre-malignant cells.
Additionally, HSCs may induce a tolerogenic environment
in the liver by expanding immunosuppressive Treg cells
through IL-2158 or retinoic acid-dependent manner.159

Not only activation of HSCs but also HSCs senescence
may strongly influence the tumor development. Senescence
of activated HSCs has been shown to improve liver fibro-
sis,160 that in effect would be against tumor development.
Senescent cells develop a secretory profile composed
mainly of inflammatory chemokines, cytokines, and pro-
teases, which is known as senescence-associated secretory
phenotype (SASP).161 Senescent HSCs have an inflammato-
ry phenotype,162 and SASP from HSCs promotes HCC in
obese mice treated with carcinogen.161 HSCs SASP can
skew macrophage polarization towards a tumor-
inhibiting M1-state, and inhibiting the HSCs SASP by p53
deletion results in M2 macrophage polarization and HCC
promotion.163

HSC activation can also directly influence HCC devel-
opment by secreting critical cytokines and chemokines
such as HGF, TGF-b, PDGF, IL-6, and Wnt ligands that
can act directly on the tumor cells.164–166 Cross-talk between
HSCs and HCC cells has been shown in both in vitro and
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in vivo experiments.165,167 Co-culture with HSCs as well as
conditioned media from HSCs culture promotes prolifera-
tion, migration, and inflammatory phenotypes of HCC cell
lines,165,167 and the cross-talk between HSCs and HCC cells
is bidirectional.167 Additional evidence of a tumor promot-
ing role of HSCs is that HCC xenograft tumors grow better
in the presence of HSCs.165

PNPLA3, fibrosis, and HCC

The patatin-like phospholipase domain-containing 3
(PNPLA3), also known as adiponutrin (ADPN), is a nutri-
tionally regulated protein whose expression is controlled
by the sterol regulatory element-binding protein 1c
(SREBP-1c) and possess triglyceride (TG) hydrolase activi-
ty.168,169 In a cell, PNPLA3 is found localized in the endo-
plasmic reticulum and lipid droplets.170 The human
PNPLA3 polymorphism (I148M), rs738409, has been
strongly implicated in the development and progression
of NAFLD, NASH, and fibrosis.170,171 Genome-wide asso-
ciation studies indicate that homozygous PNPLA3 (I148M)
mutation increases the risk of NAFLD-associated HCC by
12-fold.172,173 However, whether PNPLA3 (I148) SNP pro-
motes HCC development by triggering a specific oncogenic
pathway or by creating a conducive microenvironment by
promoting steatosis, inflammation, and fibrosis needs fur-
ther investigation.174

The I148M SNP leads to a functional loss of the enzy-
matic activity and leads to TG accumulation in hepatocytes.
However, the loss of PNPLA3 enzymatic activity is not suf-
ficient to describe the functional consequence of PNPLA3
(I148M) mutation since Pnpla3�/� mice do not develop
NAFLD.175,176 PNPLA3 (I148M) mutant protein is resistant
to proteasome-mediated degradation and accumulates on

the surface of hepatic lipid droplets which might interfere
with the activity of other triglyceride metabolizing
enzymes.170 Expression of an enzymatically active but
ubiquitylation-resistant isoform of PNPLA3 accumulated
on the lipid droplets and increased hepatic triglyceride
levels when expressed in livers of mice.177 Therefore,
not the loss of enzymatic activity but rather the property
of PNPLA3 (I148M) mutant protein to accumulate on the
lipid droplets might explain the observed phenotype asso-
ciated with it. Consequently, Pnpla3 silencing reduces
hepatic steatosis, NASH, and fibrosis.177,178

In the liver, PNPLA3 is expressed in both hepatocytes
and HSCs and its expression is much higher in HSCs
compared to hepatocytes.179 While PNPLA3 modulates
TG metabolism in hepatocytes, PNPLA3’s primary role in
HSCs is the hydrolysis and release of retinyl esters.174,179

Therefore, loss of PNPLA3 function would lead to intracel-
lular retention of retinol in HSCs. Consequently, PNPLA3
148M carriers with fatty liver or obesity have lower fasting
circulating retinol concentrations180 and retinyl-palmitate
was found elevated in the livers of homozygous PNPLA3
I148M carriers.181 HSCs are the primary storage depot of
retinol (Vitamin A) in the body which are stored in HSCs
lipid droplets.182 Retinol (Vitamin A) is known to influence
cell growth, apoptosis, and differentiation183 and has also
been associated with NAFLD.184,185 Upon activation, HSCs
lose their retinol content and activate into myofibro-
blasts182; however, it is not clear whether loss of retinol
plays any role in HSCs activation. PNPLA3 was shown to
increase during HSCs activation in a TGFb-dependent
manner186 and may play a role during the activation
process since PNPLA3 ablation may suppress HSCs activa-
tion.187 Moreover, PNPLA3 (I148M) mutant HSCs have
a more inflammatory and fibrogenic phenotype and

Figure 3. Metabolic reprogramming of HSC. (a) Multiple aspects of glucose and glutamine metabolism are altered during HSC activation that can provide potential

therapeutic avenues (indicated by red font). (b) A simplified depiction of metabolic pathways altered during HSC activation. Up arrows indicate upregulated pathway

and down arrows mean downregulated. Dwm: Mitochondrial membrane potential; LDH: lactate dehydrogenase; GDH: glutamate dehydrogenase; GOT2: glutamic-

oxaloacetic transaminase 2; GPT2: glutamate pyruvate transaminase 2.
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therefore can directly contribute to fibrosis development.187

Increased activation of PNPLA3 (I148M) HSCs is attributed
to the suppression of PPARc activity by JNK-mediated
phosphorylation of the inhibitory Serine 84 residue
and increase in pro-fibrogenic AP-1 activity.187

Besides classical TG and retinol metabolism,
PNPLA3 might also affect other metabolic pathways.
Overexpression of PNPLA3 I148M in HCC cell line
(Huh7) led to two-fold increase in lactic acid suggesting a
shift to anaerobic metabolism and mitochondrial dysfunc-
tion188 which, as discussed above, favors HSC activation.
Additional studies are needed to confirm and better under-
stand mechanisms of PNPLA3 (I143M) in HSC activation
and whether the critical function of PNPLA3 (I148M) is in
the hepatocyte, the HSCs, or both.

Conclusions and future prospects

Liver fibrosis is a major health problem that still lacks effec-
tive therapeutic strategies. Therefore, understanding the
mechanisms underlying this process is crucial for translat-
ing basic research into new clinical therapies. In particular,
translational research should focus on studying fibrosis in
different types of human liver diseases such as ASH,
NASH, and HCC in order to design targeted therapeutic
interventions.

Since several liver cell types are involved in liver
fibrosis, identifying the origin of myofibroblasts and a
better understanding of how HSCs get activated and inacti-
vated is of paramount importance. Moreover, uncovering
the detailed crosstalk between hepatocytes, HSCs, and
Kupffer cells during liver fibrosis progression and regression
will definitely help to provide new therapeutic strategies.

How CAFs/HSCs, fibrosis, and the tumor microenvi-
ronment influence hepatocarcinogenesis also need to be
fully elucidated. Although several studies have demon-
strated that HSCs and fibrosis promote development of
HCC, an alternative hypothesis is that CAFs may limit
cancer progression. Therefore, future studies should aim
at investigating whether HSCs and CAFs can also exert
tumor-suppressive functions in the context of liver cancer.
Answering this question may open new therapeutic paths
for the treatment of HCC.

Metabolic reprogramming of HSCs during activation
(Figure 3) is another area that needs further investigation.
Metabolic addiction of HSCs to glycolytic and glutamino-
lytic pathways could be exploited to develop therapeutic
strategies. Additionally, although the importance of
PNPLA3 (I143M) in hepatocytes in promoting NAFLD
and ALD is well established, its potential role in HSC acti-
vation remains enigmatic.
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