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The SENSEI Generic In Situ Interface: Tool and
Processing Portability at Scale

E. Wes Bethel1, Burlen Loring1, Utkarsh Ayatchit4, David Camp1, Earl P. N.
Duque5, Nicola Ferrier2, Joseph Insley2, Junmin Gu1, James Kress3, Patrick
O’Leary4, David Pugmire3, Silvio Rizzi2, David Thompson4, Gunther H. Weber1,
Brad Whitlock5, Matthew Wolf3, Kesheng Wu1

AbstractOne key challenge when doing in situ processing is the investment required
to add code to numerical simulations needed to take advantage of in situ processing.
Such instrumentation code is often specialized, and tailored to a specific in situ
method or infrastructure. Then, if a simulation wants to use other in situ tools, each
of which has its own bespoke API [4], then the simulation code team will quickly
become overwhelmed with having a different set of instrumentation APIs, one per
in situ tool or method. In an ideal situation, such instrumentation need happen only
once, and then the instrumentation API provides access to a large diversity of tools.
In this way, a data producer’s instrumentation need not be modified if the user
desires to take advantage of a different set of in situ tools. The SENSEI generic
in situ interface addresses this challenge, which means that SENSEI-instrumented
codes enjoy the benefit of being able to use a diversity of tools at scale, tools that
include Libsim, Catalyst, Ascent, as well as user-defined methods written in C++ or
Python. SENSEI has been shown to scale to greater than 1M-way concurrency on
HPC platforms, and provides support for a rich and diverse collection of common
scientific data models. This chapter presents the key design challenges that enable
tool and processing portability at scale, some performance analysis, and example
science applications of the methods.

1 Introduction and Overview

A fact of life in in situ processing is the need to add instrumentation code to data pro-
ducers, such as numerical simulations, in order to invoke tools for in situ processing.
Over the years, tools like Libsim and Catalyst have evolved to include in situ APIs,
but these are incompatible with one another. As a result, an application that wants
to use both Libsim and Catalyst would need to have tool-specific instrumentation.
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This problem compounds as we consider the use of more and more tools, tools
that include not only visualization, but also those for statistical analysis, machine
learning, preparation of derived data products, among others.

The SENSEI generic in situ interface project has focused on solving this problem
of tool portability in a directway. Its key objective is tomake it possible for a SENSEI-
instrumented data producer, such as a numerical simulation, to make use of any of a
number of different external tools and applications for in situ processing, and to do
so without requiring any instrumentation code changes when going from one tool to
another. This concept may be thought of as “tool portability”, or more colloquially
as “write once, run everywhere”. A related concept, proximity portability, refers to
the notion of being able to run either in situ on the same set of nodes, or in transit
on different set of nodes, and also without any instrumentation changes.

In this chapter, we focus on the design and implementation issues for the purposes
of achieving tool portability. One central idea is the design of the SENSEI in situ
interface itself (Sect. 2), which includes a solution to a challenging data modeling
problem.We present several examples that illustrate tool portability (Sect. 3), explore
the costs of in situ processing using this generic interface at scale (Sect. 4), and
illustrate its application to specific science applications (Sect. 5).

The SENSEI project website1 provides direct access to the SENSEI interface
source code, documentation, code examples, and other project-related information.

2 The SENSEI Generic In Situ Interface Design

Given the high level objective of tool portability — being able to have a SENSEI-
instrumented code connect in situwith various tools like Libsim, Catalyst, or custom
analysis codes — we identify three design considerations.

First, if a simulation is instrumented with SENSEI, it should be able to use any
of the different runtimes transparently, without any coding changes needed on the
simulation side to use a different tool. In other words, in an ideal world, once a
simulation has been instrumented with SENSEI, then any effort needed to leverage
any other in situ tool should occur outside the simulation instrumentation code.

Second, if an analysis routine works with SENSEI, it should be portable, in
the specific sense that it should be a straightforward process to move that piece of
analytics to a different scientific simulation that uses SENSEI. The porting concerns
should be at the level of datamanagement (specifying the change in names of variable
arrays), instead of wholesale rewriting of code.

Third is the desire to simplify the creation of in situ methods and tools for
simulation scientists, data analysts, and visualization experts. This concept is related
to the tool portability objective, but it is also worth mentioning separately. Given that
there exist multiple in situ frameworks, each with its own capabilities, advantages,
and expected coding patterns, it is quite challenging for simulation scientists to

1 http://www.sensei-insitu.org/
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instrument their code to each of the frameworks separately. The same idea applies
for in situ tool/method developers as they consider which of the in situ frameworks
for implementing and deploying their method.

As presented in earlier work [2], the approach used to meet these design consid-
erations focuses on two separate, but related, issues. First, we need to solve a data
model problem so that producers and consumers are able to exchange data. Second,
we need to define an API that is suitable for use in instrumenting both data producers
and consumers in a way that is representative of common design patterns and use
scenarios.

2.1 SENSEI Data Model

A key part of the design of the common interface was a decision on a common data
description model. Our choice was to extend a variant on the VTK data model. There
were several reasons for this choice. The VTK data model is already widely used in
applications like VisIt [5] and ParaView [16], which are important codes for the post-
hoc development of the sorts of analysis and visualization that are required in situ.
The VTK data model has native support for a plethora of common scientific data
structures, including regular grids, curvilinear grids, unstructured grids, graphs,
tables, and AMR. There is also already a dedicated community looking to carry
forward VTK to exascale computing [12].

Despite its many strengths, there were some key additions we added for the
SENSEI model. To minimize effort and memory overhead when mapping memory
layouts for data arrays from applications to VTK, we extended the VTK datamodel to
support arbitrary layouts formulticomponent arrays through a newAPI called generic
arrays [6]. Through this work, this capability has been back-ported to the core VTK
data model. VTK now natively supports the commonly encountered structure-of-
arrays and array-of-structures layouts utilizing zero-copy memory techniques.

2.2 SENSEI Interface

The SENSEI interface is comprised of three components, which are shown in Fig. 1.
The data adaptor performs a mapping from the simulation data model to the VTK
data model. The analysis adaptor performs a mapping from the VTK data model to
that used by the in situ analysis methods. The bridge links together the data adaptor
and the analysis adaptor, and provides the API that a simulation uses to trigger the
invocation of the in situ methods. In this design and implementation, the VTK data
model is the bridge data model between producer and consumer.

The data adaptor defines anAPI to fetch the simulation data packaged asVTKdata
objects. The analysis adaptor uses this API to access the data to pass to the analysis
method. To instrument a simulation code for SENSEI, one has to provide a concrete
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Fig. 1: The SENSEI bridge includes a DataAdaptor, seen by the simulation code or
data producer, an AnalysisAdaptor, seen by the analysis code or data consumer, a
bridge data model, and machinery to link the two adaptors.

implementation for this data adaptor API. The API treats connectivity and attribute
array information separately, providing specific API calls for requesting each. As a
result, we can avoid using compute cycles needed to map the connectivity and/or
data attributes to the VTK data model unless actually needed by active analysis
methods. The main parts of the originally released sensei::DataAdaptorAPI are
shown in Listing 1. Subsequent releases of the sensei::DataAdaptor API have
added methods: for exposing multiple named datasets; for fetching ghost zone and
adaptive mesh refinement (AMR) covered cell masks information; and, for fetching
light weight metadata useful for load balancing and planning data movement in in
transit configurations[10].

namespace sensei {
class DataAdaptor : ... {
/// provide the mesh. if structure_only is true,
/// then only the container data object is
/// returned without geometry or topology
/// information.
vtkDataObject* GetMesh(bool structure_only);
/// add an attribute array to the mesh container,
/// if not already added.
bool AddArray(vtkDataObject* mesh,

int association,
const std::string& arrayname);

/// enquire about available attribute arrays.
unsigned int GetNumberOfArrays(int association);
std::string GetArrayName(int association,

unsigned int index);
/// release data.
void ReleaseData();
}; }

Listing 1: SENSEI Data Adaptor API.
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The analysis adaptor’s role is to take the data adaptor and pass the data to the
analysis method, doing any transformations as necessary. For a specific analysis
method, the analysis adaptor is provided the data adaptor in its Execute method.
Using the sensei::DataAdaptor API, the analysis adaptor can obtain the mesh
(geometry, and connectivity) and attribute or field arrays necessary for the analysis
method. The main elements of the analysis adaptor API is shown in Listing 2.

namespace sensei {
class AnalysisAdaptor : ... {
public:
/// Execute the analysis routine.
virtual int Execute(DataAdaptor* data) = 0;

/// Finalize the analyis routine
virtual int Finalize() = 0;

}; }

Listing 2: SENSEI Analysis Adaptor API.

2.3 Data Types Supported in the SENSEI Interface

Conceptually SENSEI expects a simulation to expose a number of “meshes” for
in situ processing. Here a “mesh” can represent a spatially geometric data set.
However, collections of non-spatially oriented data such as arrays, tables, and graphs
are also supported. Irrespective of the type of data, each mesh that a simulation
exposes represents a logical grouping of array based data partitioned and distributed
for parallel execution. Meshes are therefor comprised of collections of distributed
“blocks” such that each MPI rank has zero or more “blocks” of data. We liberally
use the term “block” when referring to the subsets of a mesh which are distributed
among a simulation’s MPI ranks for parallel execution. The so called “blocks” can,
but do not need to, have a Cartesian structure. For instance the subsets of points
allocated to each MPI rank in particle in cell (PIC) simulation are referred to as
blocks of data.

The SENSEI data model makes use of VTK to internally represent simulation
data. VTK is widely used in the analysis of HPC simulation data already and supports
a diverse array of dataset types ranging for finite element method (FEM) datasets
to graphs. VTK supports zero copy transfer of array based data and is extensible at
both compile and run time. The SENSEI APIs make use of the base class in the VTK
data model, vtkDataObject, so that any VTK dataset type including user defined
types may be passed through the API without modification. A high level depiction
of some of the types of data supported in the SENSEI data model are enumerated in
Table 1.
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Type Description
AMR Adaptive Mesh Refinement (AMR) is a specialization of a multi-block

dataset where blocks have differing resolutions. Different organization
schemes exist such as block structured overlapping and oct-tree.

Multi-“block” The general mesh type used in the SENSEI data model. All array based data
passed through the simulation interface is multi-block. Blocks are used to
partition subsets of the data to MPI ranks for parallel execution.

Uniform Cartesian A block type where data exists on regular Cartesian mesh. Geometry is
fully implicit.

Stretched Cartesian A block type where data exists on a stretched Cartesian mesh. Geometry is
defined by 3 coordinate axes.

Curvilinear A block type with hexahedral elements in a regular ordering such that
element indexing is logically Cartesian. Geometry is fully explicit.

Unstructured/FEM A block type with collections of potentially mixed types of finite element
method (FEM) cells with an arbitrary ordering. Geometry is full explicit.

PIC/Point cloud A block type where data exists at points in space. Implemented as unstruc-
tured mesh.

Molecular A block type specifically designed for molecular dynamics with represen-
tations of atoms and bonds between them.

Tabular A block type where data is organized as a collection of rows and columns.
Graph A block type where data is organized on nodes and edges without spatial

information.
Array collection A block type consisting of an arbitrary set of arrays without any spatial

information.

Table 1: SENSEI supports a rich collection of common scientific data models,
ranging from simple, like the uniform Cartesian mesh, to more complex, like AMR.

2.4 SENSEI Data Producer Coding Example

To better understand the steps involved in instrumenting a simulation and analysis
code with SENSEI, we present coding examples showing how to use the SENSEI
interface. Here, we focus on the steps needed to instrument a data producer (e.g., a
simulation) for use with SENSEI. We call this instrumentation the “bridge” code.
The bridge code is not a part of SENSEI. Rather it is a concept that enables us to
discuss simulation instrumentation in a general way.

The bridge code does three things: initializes SENSEI, including passing user
provided XML that selects the data consumer; periodically invokes in situ processing
through the SENSEI APIs as the simulation state evolves; and finalizes SENSEI.
Listing 3 shows an example in C++. Conditionals protect each of the three bridge
code blocks, as the code is only executed if and when the simulation determines it
would like to do in situ processing.
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int main(...) {
// initialize the simulation
...

// initialize SENSEI
if (doInSitu) {
ca = sensei::ConfigurableAnalysisAdaptor::New();
ca->Initialize(userXMLFile);

}

// simulation main loop
for (int timestep=first; timestep < last; ++timestep) {

// advance simulation
...

if (doInSitu) {
// create and initialize the data adaptor
DataAdaptor *da = DataAdaptor::New();
da->Initialize(...);
// invoke in situ processing
ca->Execute(da);
// clean up
da->Delete();

}
}

// SENSEI shutdown and cleanup
if (doInSitu) {
ca->Finalize();
ca->Delete();

}

// simulation specific cleanup
...

}

Listing 3: Data producer, data bridge setup and use.

2.5 SENSEI Data Consumer Coding Example

Next, in Listing 4 we present the view from an in situ method where we set up
the analysis adaptor. This particular example is from the SENSEI histogram end-
point, which is also part of the SENSEI code distribution. When instrumenting
for an in situ analysis method, one has to provide a sensei::AnalysisAdaptor
subclass that implements the Execute(sensei::DataAdaptor*) method. In the
simplest case, the analysis method’s data model is based on the VTK data model,
in which case the AnalysisAdaptor subclass obtains the VTK data object using
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the sensei::DataAdaptor and then does the necessary computation. This listing
does not show computation of the histogram, only setting up the “inbound” bridge.

namespace sensei {
bool Histogram::Execute(sensei::DataAdaptor* data) {
...
// request light-weight mesh without connectivity info
vtkDataObject* mesh = data->GetMesh(/*structure_only*/true);
// request the array to histogram
data->AddArray(mesh, this->Association, this->ArrayName);
...
// * compute histogram using the array available on mesh
// * cell or point data locally and then reduce local
// * result across ranks using MPI Reduce.
} }

Listing 4: In Situ data consumer, data bridge setup and use.

If the analysis method uses a different data model other than the VTK data model,
then the Histogram::Executemethod needs to obtain the raw array pointers from
the VTK data object and then do any needed transformations.

3 SENSEI Tool Portability

One of the main strengths of the SENSEI design and implementation is the idea
of tool portability. The design objective is to be able to instrument a data producer
code once with SENSEI, and then use any number of different in situ or in transit
methods without any coding changes. This section explores the different ways that
SENSEI achieves tool portability by presenting examples of use with a diverse set
of in situ tools, ranging from user-written Python, to in situ endpoints from both the
SENSEI and Ascent projects.

3.1 Configurable Analysis Adaptor

Reviewing briefly, in SENSEI, there are data producers that are instrumented with
SENSEI to invoke aDataAdaptor that is specific to the data producer code. There are
also data consumers, or endpoints, which have associated AnalysisAdaptors. The
purpose of the DataAdaptor and AnalysisAdaptor is to perform any necessary
transformations between a native data model and the bridge data model.

In addition, SENSEI provides a configurable analysis adaptor, which uses an
XML file to select and configure one or more back ends at run time. Run time
selection of the back end via XML means one user can access Catalyst, Libsim,
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or a Python-based method with no changes to the code. In Fig. 2, we see the data
producer, the AMReX code invokes an AMReX specific DataAdaptor. Its bridge
code pushes the data through the configurable analysis adaptor to the back end that
was selected at run time via the SENSEI configuration file.

Fig. 2: Leveraging SENSEI’s configurable analysis adaptor, a single data producer
has access to any number of potential in situ or in transit methods. The runtime
choice of which in situ or in transit method or endpoint, along with its associated
parameters, is specified in a human-readable XML configuration file. Image courtesy
B. Loring.

3.2 Connecting SENSEI to Libsim, Catalyst, Ascent, or ADIOS

To illustrate tool portability, Fig. 3 presents an example of a single data pro-
ducer, the oscillators miniapplication, which is part of the SENSEI software
distribution, coupled to three different in situ endpoints that perform visualization.
Figs. 3a, 3b, and 3c show sample images and the associated XML configuration file
used to produce the image with Libsim, Catalyst, and Ascent, respectively. The run-
time selection of endpoint is performed by SENSEI’s configurable analysis adaptor.
This example reinforces the idea of tool portability, one of SENSEI’s design ob-
jectives, whereby no instrumentation code changes are needed on the data producer
side when changing between in situ endpoints.

For in transit configurations, where data must be explicitly moved from producer
ranks to consumer ranks, SENSEI can take advantage of several different potential
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<sensei>
<analysis type="libsim" mode="batch" frequency="1"

session="configs/random_2d_64_libsim.session"
image-filename="random_2d_64_libsim_%ts"
image-width="800" image-height="800"
image-format="png"
options="-debug 0" enabled="1" />

</sensei>

(a) Sample image and XML that was used to configure the run with Libsim.

<sensei>
<analysis type="catalyst" pipeline="pythonscript"
filename="configs/random_2d_64_catalyst.py"
enabled="1" />

</sensei>

(b) Sample image and XML that was used to configure the run with Catalyst.

<sensei>
<analysis type="ascent"
actions="configs/random_2d_64_ascent.json"
enabled="1" />

</sensei>

(c) Sample image and XML that was used to configure the run with Ascent.

Fig. 3: Example of SENSEI’s tool portability, where the oscillatorsminiapplica-
tion is used with three different in situ infrastructures: Libsim, Catalyst, and Ascent.
In all cases, there are no coding changes needed to the oscillators miniappli-
cation. Instead, the only difference is in the configuration file, which specifies the
specific in situ method to be run and using what parameters. Note that these three
backends all make use of their own separate configuration files as well. Images
courtesy B. Loring.



The SENSEI Generic In Situ Interface: Tool and Processing Portability at Scale 11

<sensei>
<transport type="adios1" filename="random_2d_64.bp"
method="FLEXPATH" enabled="1" />

</sensei>

Listing 5: This XML configures runs to use ADIOS as a data transport. The filename
in this example is used to establish a connection between sender and receiver. SENSEI
has the ability to switch between several different potential data transport tools at
runtime via XML-based configuration files.

data transport mechanisms. Continuing the example of connecting the oscillators
miniapplication to one of several potential endpoints, Listing 5 shows the SENSEI
configuration file that connects the data producer to the ADIOS data transport. That
data transport could then be connected to any of the endpoints shown earlier in Fig. 3
to produce exactly the same visual results as when those endpoints are invoked in
situ.

Using this idea to implement in transit processing, and building on the adaptor
and endpoint strategy, one can construct in situ and in transit workflows by “daisy
chaining” together transport layers and endpoints that perform specific types of pro-
cessing. This has been demonstrated at scale on HPC systems with several different
scientific simulations and different types of endpoints [1, 2, 10].

3.3 Coupling with User-written Python Tools

Due to the growing collection of Python-based tools and methods for diverse ac-
tivities ranging from visualization to analysis and machine learning, the SENSEI
project includes the ability to invoke Python-based methods for use in situ, including
parallel Python-based methods and use of such methods at scale on HPC platforms.
This section provides a high-level overview of how to invoke user-supplied Python
code in situ, and in parallel, from a SENSEI-instrumented application, and is a con-
solidation of a more detailed discussion of design principles and implementation
details discussed elsewhere [11].

Focusing on the user-supplied Python analysis code only, the basic idea is that
the user-supplied Python code needs to contain three functions: Initialize,
Execute, and Finalize. The PythonAnalysis forwards calls from SENSEI’s
C++ AnalysisAdaptor API to those three user-provided Python functions. Those
three functions are contained in the user Python file that is passed as an argument to
the PythonAnalysis class. During initialization, the PythonAnalysis class reads
the user Python script file on Rank 0, and then broadcasts that script to all other
ranks. No specific action is required on the part of the user Python code for this to
happen. The function signatures are shown in Listing 6.

The runtime selection of the user-supplied Python method is accomplished via
SENSEI’s ConfigurableAnalysis. The ConfigurableAnalysis allows users
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def Initialize():
# your initialization code here
return

def Execute(dataAdaptor):
# your in situ analysis code here
return

def Finalize():
# your tear down code here
return

Listing 6: The user-supplied Python file must contain three functions: Initialize,
Execute, and Finalize, which are invoked by the SENSEI AnalysisAdaptor at
runtime.

to select one of the analysis back ends at run time via an XML configuration file.
Example XML is shown in Listing 7, which contains the name of the user-supplied
Python script, along with some initialization values that are specific to the variables
in that script.

<sensei>
<analysis type="python" script_file="userPythonFile.py"
enabled="1">
<initialize_source>
threshold=1.
mesh='mesh'
array='data'
cen=1

</initialize_source>
</analysis>

</sensei>

Listing 7: The XML initilization file used by SENSEI’s ConfigurableAnalaysis
to invoke the user-supplied Python code, as well as to provide some initialization
values specific to the user script. Having initialization values in the configuration
file helps to avoid having hard-coded parameters inside the Python code itself.

The user-supplied XML file shown in Listing 7 includes Python code that can be
thought of as initialization steps. The idea is that this initialization source is injected
by SENSEI and executed as source code in the interpreter. This channel is only used
for initialization, and as a result, is only run once at start up. This channel can be
used to set global variables that control execution of the user defined analysis script.
Once the initialization source has been run, the user provided Initialize function,
if present, is invoked.
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During a simulation run, the simulation periodically invokes the analysis back
end passing a data adaptor instance, which enables the analysis to access the data it
needs from the simulation. In the case of a user-supplied Python code running in situ,
when the C++ implementation’s Execute override is called (by the simulation), it
creates a SWIGwrapped instance of the data adaptor passed to it, builds an argument
list containing the wrapped adaptor instance, and invokes the user-supplied Python
Execute function. The Python analysis code uses the wrapped data adaptor to
query metadata and then selectively access data objects containing the desired set
of arrays. The data adaptor returns a VTK-wrapped vtkDataObject instance. The
user Python code makes use of VTK’s numpy_supportmodule to access simulation
data. A complete example is show in Listing 8.

The parallel user Python code may need to make use of MPI for tasks like
interprocess communication. SENSEI uses an isolated MPI communication space,
which can be overridden by the simulation if desired. The communicator is accessible
in the Python script via a global variable named comm.

Since many parallel simulations make use of ghost zones, the corresponding
analysis methods will require access to them for their computations. SENSEI has
adopted the ghost zone convention now used by both ParaView [9] and VisIt [17].
SENSEI’s DataAdaptor provides methods for querying the presence of ghost zones
and accessing mask arrays identifying them.

We leverage this capability to perform a conditional in situ computation of a
time-varying data producer running in parallel on an HPC system.We configured the
oscillatorminiapplicationwith 256 randomly positioned and initialized harmonic
oscillators on a 163842 plane. This configuration serves as a proxy for a simulation
of a chemical reaction on a 2D substrate where the output represents the reaction
rate. Data generated by the miniapplication at simulation time 1 is shown on the
left of Fig. 4, including an isoline at 1.0. In the original study [11], we ran this
miniapplication at four concurrency levels (512, 1024, 2048 and 4096 cores) for 100
timesteps and invoked the in situmethod, in this case our custom Python code shown
in Listing 8, at each timestep. Note that this code uses SENSEI’s ghost zone mask
array to support selective computations. In each invocation, we calculate the area of
the domain where the reaction rate exceeds a given threshold, here set to 1.0, and
accumulate the value over all timesteps. At the end of the run we use matplotlib
to generate the x-y plot shown in the right of Fig. 4, which shows the time-evolving
area computation.
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import numpy as np, matplotlib.pyplot as plt
from vtk.util.numpy_support import *
from vtk import vtkDataObject, vtkCompositeDataSet

# default values of control parameters
threshold = 0.5
mesh = ''
array = ''
cen = vtkDataObject.POINT
out_file = 'area_above.png'
times = []
area_above = []

def pt_centered(c):
return c == vtkDataObject.POINT

def Execute(adaptor):
# get the mesh and arrays we need
dobj = adaptor.GetMesh(mesh, False)
adaptor.AddArray(dobj, mesh, cen, array)
adaptor.AddGhostCellsArray(dobj, mesh)
time = adaptor.GetDataTime()

# compute area above over local blocks
vol = 0.
it = dobj.NewIterator()
while not it.IsDoneWithTraversal():

# get the local data block and its props
blk = it.GetCurrentDataObject()

# get the array container
atts = blk.GetPointData() if pt_centered(cen) \
else blk.GetCellData()

# get the data and ghost arrays
data = vtk_to_numpy(atts.GetArray(array))
ghost = vtk_to_numpy(atts.GetArray('vtkGhostType'))

# compute the area above
ii = np.where((data > threshold) & (ghost == 0))
vol += len(ii[0])*np.prod(blk.GetSpacing())

it.GoToNextItem()

# compute global area
vol = comm.reduce(vol, root=0, op=MPI.SUM)

# rank zero writes the result
if comm.Get_rank() == 0:

times.append(time)
area_above.append(vol)

def Finalize():
if comm.Get_rank() == 0:

plt.plot(times, area_above, 'b-', linewidth=2)
plt.xlabel('time')
plt.ylabel('area')
plt.title('area Above %0.2f'%(threshold))
plt.savefig(out_file)

return 0

Listing 8: A complete, working example of user-written Python code run in situ by
SENSEI to produce the results shown in Fig. 4. This code uses SENSEI’s ghost zone
mask array to perform a conditional computation.
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Fig. 4: The reaction rate on a planar substrate as computed in the miniapp is shown
here at simulation time 1, including an iso-line of 1 in black (left). At each time step
the in situ analysis (Listing 8) computes the area of the substrate where the reaction
rate is greater or equal to 1. The area is accumulated and plotted at the end of the
run (right). Images courtesy B. Loring, et al. [11]

3.4 In Situ analysis of AMR data

Adaptivemesh refinement (AMR) is a computational technique introduced byBerger
and Colella [3]. It is used for solving systems of partial differential equations whereby
computational resources are targeted to areas of the simulated domain where numer-
ical errors are unacceptably large. Periodically during the simulation, estimates of
the numerical error are obtained, cells with unacceptably large errors are flagged for
refinement, and a new mesh discretization is generated where the flagged cells have
increased spatial resolution. The increased spatial resolution reduces discretization
errors. Cells with acceptable errors remain at their existing resolution. In overlapping
block structured AMR, the domain is decomposed in to groups of blocks organized
by refinement level. The blocks in higher levels fully overlap those in lower levels.
Metadata accompanying the set of blocks is used to describe the hierarchical nesting
of the blocks.

The SENSEI data and analysis adaptor API’s and data model includes support for
AMR-capable data producers. Among these capabilities are APIs for fetching mask
arrays, which indicate where mesh cells are covered by more refined cells, and for
fetching metadata, which describes the hierarchical structure of the AMR data [10].
These extensions enable seamless movement and processing of AMR data by the
supported in situ and in transit methods and endpoints.

Fig. 5 shows two examples of in situ processed AMR data. In the left panel a
pseudocolored image produced using SENSEI’s Python back-end in conjunctionwith
the Yt visualization module shows the hierarchical structure of an AMR advection
miniapp that ships with the AMReX framework [11]. In the right panel, blue lines
on an extracted isosurface show the refined nature of the mesh. In both cases the
mask arrays obtained through SENSEI’s data adaptor API are critical for correct
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Fig. 5: Adaptive mesh refined (AMR) data has a hierarchical structure where mesh cells in regions
of the simulation where numerical error is unacceptably large are refined, increasing the spatial
resolution, to reduce the error. SENSEI’s data model and adaptor API’s are designed for use with
AMR data producers. Left: In this in situ pseudocolored rendering, using SENSEI’s Yt back-
end, over set lines show the hierarchical mesh structure. Data produced by an AMReX advection
mini-application. Right: In this image an isosurface extracted with SENSEI’s Catalyst back-end is
rendered. The blue lines show the refined mesh structure. Data produced with the AMReX IAMR
compressible Navier-Stokes simulation. Images courtesy B. Loring.

processing of the refined data. Cells that are covered by refined cells in higher levels
as indicated by the mask need to be discarded during in situ processing so that only
the highest resolution data is used.

The SENSEI analysis adaptors for in situ and in transit methods and endpoints
with AMR processing capabilities handle translation of AMR data from SENSEI’s
data model.As in the case of other SENSEI instrumented data producers, AMR sim-
ulations make use of run time provided XML to select one of the in situ or in transit
data processing, analysis, or movement methods. No changes to the simulation are
required to switch between the various in situ and in transit methods and endpoints.

Fig. 6 shows renderings of results produced by IAMR, a compressible Navier-
Stokes solver implemented on top of AMReX. These IAMR runs were made on
NERSC’s Cray XC40 Cori with 2048 MPI ranks. The simulation was configured
using a Rayleigh-Taylor instability initial condition and set to use 3 levels with a
base mesh of 2562 x 512 giving an effective resolution of 10242 x 2048. The top
most panel shows 10 isosurfaces rendered with Libsim, the middle panel shows the
same isosurfaces rendered with Catalyst, and the bottom most panel shows them
again rendered with Ascent. The SENSEI XML used to switch between the different
renderers is shown next to the corresponding image. In each case the XML file points
to a library specific configuration file which contains the configuration information
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<sensei>
<analysis type="libsim"
session_file="rt_contour.session"
enabled="1" />

</sensei>

(a) Rendering the IAMR Rayleigh-Talyor simulation with Libsim

<sensei>
<analysis type="catalyst"
script_file="rt_contour.py"
enabled="1" />

</sensei>

(b) Rendering the IAMR Rayleigh-Talyor simulation with Catalyst

<sensei>
<analysis type="ascent"
actions="rt_contour.json"
enabled="1" />

</sensei>

(c) Rendering the IAMR Rayleigh-Talyor simulation with Ascent

Fig. 6: This SENSEI data producer, the AMReX IAMR Rayleigh-Taylor simulation instrumented
with the SENSEI interface, is shown here running in parallel on a large HPC platform with 3 levels
of refinement. Three runs were made, the first using the SENSEI Analysis Endpoint that invokes a
Libsim-based renderer (top), the second one that invokes a Catalyst-based renderer (middle), and
the third using one that invokes an Ascent-based renderer (bottom). Switching between the different
rendering back-ends required no changes to the simulation code. Instead, runtime provided XML,
shown to the right of each figure, was used to effect the change. Images courtesy B. Loring.

in the rendering library’s native format. These library specific configurations, in the
case of Libsim and Catalyst, can be generated using the respective GUIs.
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Fig. 7: Performance analysis to measure the potential impact to a code of invoking
a method directly as a subroutine call compared to invoking the method through the
SENSEI interface. In this particular test configuration, which entails using in situ
processing of a structured mesh using an autocorrelation operation, there are
no significant differences between the two when measuring and comparing time to
solution (Fig. 7a) and memory footprint (Fig. 7b). Image courtesy Ayachit et al.,
2016 [1].

4 SENSEI In Situ Performance Analysis at Scale

There are several potential different dimensions of performance analysis of in situ
systems and methods. Of these, we focus on two specific questions in this section.
The first is to examine the degree to which use of in situ methods impacts the
performance of a simulation running at scale on an HPC system. The second is to
compare the performance of a typical scientific visualization task when run in post
hoc and in situ configurations so as to gain an understanding of potential gains that
might result from using an in situ approach.

4.1 Performance Impact of In Situ Processing

One key question is “how much does the use of in situ methods impact simulation
code” in terms of memory footprint and runtime. Ayachit, et al., 2016 [1] approach
this problem by setting up a test matrix that consists of the several configurations
aimed to revealing performance differences between invoking methods directly vs.
invoking them using in situ infrastructure. The study involves the use of several
different in situ analysis methods that have embarrassingly parallel scaling char-
acteristics. The test battery includes runs at varying concurrencies (1K-, 6K-, and
45K-way parallel) on a large HPC platform, and include measurements of runtime
and memory use.

The results of those tests, shown in Fig. 7, reveal there was no appreciable
difference in either runtime or memory footprint when invoking the method directly
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as a subroutine compared to invoking themethod through the SENSEI infrastructure.
In other words, the use of in situmethods at scale had no appreciable difference when
compared to the application just making a subroutine call. This result means the in
situ interface did not “get in the way“ of the application, or otherwise incur any
significant cost in terms of runtime or memory footprint.

Some of the characteristics of the SENSEI interface and the study that enabled
this type of result are as follows. First, this particular study focused on processing
of structured, 3D meshes. Such data types require relatively little metadata, and are
amenable to zero copy sharing between the simulation and in situmethod. The results
would have likely been somewhat different with a different type of data model that
carries a heavier cost in terms of metadata, such as AMRmeshes. At the time of that
study, the SENSEI interface provided support for zero copy data sharing between
the simulation and in situ method for structure mesh data models. More recent
work enables shallow- and zero-copy data sharing for other types of data whenever
possible and feasible. Some of the science examples studied include unstructured
meshes, where portions of the data required shallow- or deep-copies, including a
large-scale CFD run at greater than 1M-way parallel, shown in Fig. 8.

This particular study from Ayachit, et al., 2016 [1] focuses on a relatively narrow
set of configurations to explore performance impact at scale for in situ processing.
Other studies have examined different dimensions of performance in in transit pro-
cessing. For example, Morozov and Lukić, 2016 [13] compare time to solution in
situ and in transit work processes. Kress, et al., 2019 [8] examine cost estimation for
in transit configurations of some common visualization rendering scenarios. This
particular area, performance analysis of in situ and in transit processing, is a vibrant
area of research with a long history in distributed computing.

Fig. 8: From a 1M-way parallel PHASTA run on mira at Argonne National Labora-
tory, this image is a zoomed-in view of a 2D slice from 3D volume. This numerical
simulation models the flow over a vertical tail-rudder assembly for a geometry that
exactly matches the configuration of an ongoing wind tunnel experiment. Image
courtesy K. Jensen, A. Bauer, A. Ayachit, and P. O’Leary [1].
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4.2 Cost Savings of In Situ over Post Hoc

Another dimension of performance analysis for in situ processing is to examine
time-to-solution for a workflow consisting of a simulation producing numerical re-
sults that are then processed either in situ or in a post hoc configuration. Ayachit,
et al., 2016 [1] include such a study, which shows significant differences in time-
to-solution for in situ and post hoc configurations. In their study, they run a data
producer over 100 timesteps at a range of concurrencies: 1K-, 6K-, and 45K-way
parallel. The computation results are then analyzed using a set of simple, embarrass-
ingly parallel methods (histogram, point-wise autocorrelation) and visualized with
ParaView/Catalyst.

In the post hoc configuration, data from each time step is written to disk using
a file-per-processor configuration. Then, these datafiles are read back in from disk
and processed by the analysis and visualization methods. The post hoc configuration
uses 1/10 the number of nodes used to produce the data, since this ratio is typical of
many post hoc workflows where there are typically far fewer ranks used for analysis
than were used to compute the data.

In the in situ configuration, the analysis and visualization are performed at the
same concurrency as the simulation. This configuration is also representative ofmany
common in situ configurations: using a differing number of ranks for producer and
consumer would likely entail data movement or redistribution, which is essentially
an in transit use scenario.

The findings from this study, presented in detail in Ayachit, et al., 2016 [1], show
that the expensive cost of disk I/O, both for writing and reading, is a significant
impediment. It is no surprise that avoiding disk I/O altogether results in a huge
performance gain. In addition, being able to run the analysis and visualization at
the same scale as the simulation results in significantly lower runtimes for that part
of the processing. The disparity between in situ and post hoc configurations grows
with scale: as concurrency increases, the difference in performance between these
two modalities also increases. This study makes a strong case for performance gains
that result when using in situ processing.

5 SENSEI In Situ Applications to Science Problems

The next two sections present results where the SENSEI interface facilities in situ
processing for specific science applications. The first, in §5.1, shows how in situ
processing helps to validate mesh configurations for the Nek5000 code. The sec-
ond, in §5.2, shows use of in situ processing to produce data extracts for post-hoc
analysis, where the data extract is significantly smaller in size than the underlying
computational mesh.
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5.1 In Situ Mesh Validation in Combustion Simulations

Nek5000 is a massively-parallel high-order spectral element computational fluid
dynamics (CFD) solver written in Fortran and used for more than 30 years [14].
Domain scientists use it for large-scale simulations of fluid flow, thermal convec-
tion, combustion, magnetohydrodynamics, and electromagnetics. During a typical
simulation, spectral (mesh) elements may deform, sometimes causing the Jacobian
of some of the elements to become zero or negative. In those cases the simulation
can not proceed.

Users of Nek5000 frequently encounter the problem of identifying the exact loca-
tion of problematic mesh elements within the whole mesh. Employing the standard
post-hoc approach to address this problem is both time consuming and requires
vast storage space. To alleviate this problem, Shudler et al. demonstrated Nek5000
instrumented with SENSEI as a tool to enable users to find problematic regions of
the simulation mesh in situ [15].

Fig. 9: (a) Simulation mesh. Image courtesy Saumil Patel, Argonne National Lab-
oratory; (b) In situ visualization highlighting very small and vanishing Jacobians.
Image courtesy Sergei Shudler, Argonne National Laboratory [15].

The left side of Fig. 9 shows the input mesh for a Nek5000 simulation of an
experimental combustion engine. The hexahedral elements of the mesh may be valid
(i.e., non-vanishing Jacobians) at the start of a production run, but may become
highly skewed or distorted (vanishing Jacobians) during the mesh motion. The goal
of this in situ workflow with SENSEI is to determine when and where vanishing
Jacobians, if any, occur. The desired outcome is to provide a capability to users where
they can validate the mesh before running any production-level simulations at scale.
The right side of Fig. 9 shows an in situ rendering with SENSEI and Catalyst where
the problematic areas of the mesh are highlighted in red (low values of the Jacobian).
In Situ visualization of vanishing Jacobians allows users to locate the problematic
regions of the mesh quicker, providing a list of the problematic elements that can be
fixed in preparation for large-scale production runs.
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5.2 In Situ Processing and Analysis in Wind Energy Applications

One area of study in wind energy applications is the numerical modeling of wind
turbines as individuals and as groups in wind farms. As individuals, some studies
focus on stresses and other factors of the wind turbine elements, including the blades,
the nacelle, and the tower. As groups, in farms, some studies seek to analyze the
interplay of turbulence and its impact when the downstream wake from one wind
turbine intersects other wind turbines.

A recent study from Kirby, et al., 2018 [7] explores the use of in situ methods in
a numerical modeling and analysis workflow. Here, the W2A2KE3D code is used to
model the NREL WindPACT-1.5MW wind turbine (as well as other models, which
are presented in cited work). Fig. 10 demonstrates in situ extracts visualized in VisIt
showing the wake evolution through seven cut-planes across the wake as a function
of rotor diameter at fixed locations downstream of the wind turbine. Here, the in
situ operation is to extract and produce 7 cut-planes at 400 × 400 resolution, each
containing five flow variables and three coordinates. Additionally, a center plane of
resolution 2000 × 400 with the same variables is extracted and is shown in the top
of Fig. 11. An isocontour of velocity magnitude is shown the bottom of Fig. 11,
which reveals the complex tip vortex phenomenon evolving downstream of the wind
turbine.

Fig. 10: Downstream cross flow cut-planes at various positions of the NREL
WindPACT-1.5MW wind turbine. Image courtesy Kirby et al., 2018 [7].

For this study, one of the benefits reported by the authors is a significant cost
savings. For their particular workflow, which entails performing analysis of wake
turbulence, they realize a data reduction factor of approximately 246.2 that results
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Fig. 11: (Top) Instantaneous flow visualization of the the NRELWindPACT-1.5MW
wind turbine. The absolute tangential ow velocity is visualized demonstrating the
wake propagation downstream annotated by rotor diameter lengths. (Bottom) An
isocontour of the velocity magnitude demonstrating the vortex structure evolution
of the NREL WindPACT-1.5WM wind turbine. The data extracts were created in
situ using Libsim, and were rendered in a post-processing step using VisIt. Image
courtesy Kirby et al., 2018 [7].

when using in situ methods to produce data extracts at each timestep as opposed to
doing I/O at full spatiotemporal resolution.

For problems such wind turbine and wind farm modeling, the authors suggest
that in situ workflows “provide opportunities for increased productivity as the data
extraction and visualization is co-produced with simulation results at run-time.” The
productivity increase results from a decrease in data sizes, and provides the ability
to do analysis at high spatiotemporal resolution with only a fraction of the I/O and
computational cost required by a post hoc workflow.

6 Conclusion

The SENSEI generic in situ interface hasmade it possible for parallel simulation code
to be instrumented once but then take advantage of any number of different potential
in situ or in transit methods or tools for analysis and visualization. The primary
design feature that makes this code coupling possible is the adaptor model, whereby
implementation-specific code that, say, maps from native to bridge data models,
provides a degree of portability between data producers and data consumers. The
examples in this chapter show SENSEI being used with a diverse set of visualization
and analysis endpoints, including Libsim, Catalyst, Ascent, and user-written Python
code. This latter capability, being able to invoke user-written Python code both in
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situ and in parallel, opens the doors to a vast world of tools for analysis, computer
vision, and machine learning that exist in the Python world.

This system has been studied extensively at scale, including at over 1M-way
concurrency. The findings show that when there is a high degree of alignment
between data models, as would be the case with something like a 3D structure mesh,
that the in situ operations are highly efficient due to SENSEI’s ability to use zero copy
wherever possible. SENSEI’s rich support for a wide diversity of different scientific
data models means that it is readily usable by nearly all scientific simulation codes
in existence today.
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